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Abstract –  With  serial  execution  hitting  its 
performance limits, the world has now started to turn 
to  parallelism  over  the  last  few  years.  Many  new 
programming  models  and  languages  have  been 
suggested and created to this effect. Of these, the MPI 
programming  language  follows  the  message  passing 
model while UPC aims for a partitioned global address 
space model. Over the last few years, MPI has become 
extremely popular due to the amount of parallelism it 
offers,  but  at  the  price  of  increased  complexity  in 
programming. UPC, on the other hand, tries to keep 
the performance of MPI and offer an easier and more 
intuitive  programming  environment.  The  purpose  of 
this  project  is  to  study  and  compare  these  two 
languages  that  are  based  on  two  different 
programming  models  and  to  compare  their 
performance and scalability on distributed systems.

I.   INTRODUCTION TO UPC

A.   The Partitioned Global Address Space (PGAS)

The UPC models a PGAS and is, therefore, called 
a PGAS language. PGAS languages are explicitly parallel, 
i.e. The programmer has to explicitly specify where what 
and, sometimes, even how to parallelize a given code.

The amount of parallelism is fixed at the startup. 
This allows the programmer, as well as the compiler, to 
make certain optimizations based on the pre-knowledge of 
the number of threads available.

These  languages,  like  MPI,  are  SPMD  (Single 
Program  Multiple  Data)  based.  This  means  that  each 
thread  runs  the  exact  same  program,  but  operates  on 
different data sets.

As the name suggests,  these languages presents 
the  programmer  with  a  global  address  space  memory 
model which makes it easier to represent distributed data 

structures.  This  address space has a two-level  hierarchy 
and is logically partitioned into local and remote memory.

A point to be noted is that  there need not  be a 
physical  globally  shared  memory  in  the  system.  PGAS 
uses  pointers  and  division  of  per-node  memory  into 
private and shared regions to cleverly produce the illusion 
of global memory.

PGAS languages also provide constructs to easily 
represent  distributed  data  structures  and  their  split-up 
across the threads. This allows the programmer to control 
performance critical decisions in a simple way.

Besides  C,  the  PGAS  model  has  also  been 
implemented  for  parallel  programming  in  FORTRAN 
(CAF) and Java (Titanium).

A pictorial view of the PGAS model is shown in 
fig. 1

B.   Execution model

UPC has a very simplistic execution model. All 
codes are SPMD parallel with the amount of parallelism 
fixed  at  program  startup.  This  is  available  through  a 
constant called THREADS within the program.

Each thread also has a unique id assigned to it, 
and can be found in the MYTHREAD constant.

UPC also  provides  functions  and  constructs  for 
declaring  shared  variables  data  structures,  thread 
synchronization, collective operations, work division and 
dynamic  shared  memory  allocation.  These  will  be 
discussed in the remaining parts of section 1.

C.   Shared variables and arrays

Normally,  variables  and  objects  created  by  a 
program or function are allocated in the private memory 
space of each thread or function. UPC, however, provides 
keywords to declare shared variables which reside in the 
global memory.



Shared scalars are allocated only once, and reside 
in the shared memory available on thread 0.

For arrays, however, the programmer can decide 
on  type  type  of  distribution  desired  across  the  threads. 
This means that although the entire array is shared, each 
thread has an affinity to some of the elements since they 
reside  on  the  global  memory  space  allocated  in  the 
memory of the node on which the thread runs.

The  layout  can  be  cyclic,  blocked  or  striped 
(blocked cyclic).  For 2-D arrays,  it  can imply 1-D row 
based, 1-D column based, row-block, or column blocked 
distributions.  The possibilities are presented in the table 
below:

Declaration Meaning
shared int ours; Shared scalar on thread 0
shared int a[N]; Cyclic distributed array
shared [] int a[N]; Shared array on thread 0
shared [*] int a[N]; Block distributed array

shared [A] int a[N]; Block  distributed  with  fixed 
block size

Table 1. Declaring shared variables

D.   Synchronization

UPC  provides  two  basic  synchronization 
primitves.  These  are  barriers  and  locks.  Barriers 
themselves  are  convention  barriers  in  which  a  thread 
blocks until all other threads reach that point in code.

There  is  also  available  another  type  of  barrier 
called a split phase barrier which can be used to overlap 
the wait-time on a barrier with later computations that are 
not dependent on the barrier.  This barrier utilizes notify 

and wait calls.
UPC also provides a fence primitive that can be 

used to enforce strict consistency.
Locks in UPC are shared. They locks can be used 

to ensure mutual exclusion of critical sections. Based on 
the  needs,  the  pointer  to  the  lock  can  be  given  to  all 
threads  or  to  just  one  thread.  In  either  case,  the  lock 
resides in shared memory.

Primitive Meaning
upc_barrier Block until all other threads arrive
upc_notify Notify that thread is ready for barrier
upc_wait Wait for others to be ready
upc_fence Ensures  that  all  shared  references 

issued before upc_fence are complete

Table 2. Synchronization primitives

A process can perform computation unrelated to 
the barrier between upc_notify & upc_wait.

Statement Meaning
upc_lock_t *lck; Declare a lock
lck  = 
upc_all_lock_alloc();

Allocate  lock,  return 
pointer to all threads

lck  = 
upc_global_lock_alloc();

Allocate  lock,  return 
pointer to thread 0 only

upc_lock(lck); Lock
upc_unlock(lck); Unlock
upc_lock_free(lck); Free the lock

Table 3. Using locks in UPC



E.   Collectives

Collective operations are executed by all threads 
are  are  used  for  communication  between  threads.  The 
collectives can be data movement collectives like scatter, 
gather, broadcast, permute etc. or computation collectives 
like  reduce  and  prefix  sum.  The  George  Washington 
University maintains a library of UPC collectives. More 
details can be found on [1].

F.   Bringing it all together: PI estimation

The following  codes a  simple UPC program to 
estimate the value of PI.

#include <upc_relaxed.h>
#include <stdio.h>

shared [THREADS] double sum[THREADS];

int main () {
  int i;
  double pi, step, trials, my_trials;
  double x, tmp;

  trials = 1024000.0;
  step = 1.0/trials;
  my_trials = trials/THREADS;
  tmp = (double)0.0;

  for(
  i = MYTHREAD*my_trials;
  i < (MYTHREAD+1)*my_trials;
  i++) {
    x = ((double)i-0.5)*step;
    tmp += 4.0/(1.0 + (x*x));
  }
  sum[MYTHREAD] = tmp;

  upc_barrier;

  if (MYTHREAD == 0) {
    for(i = 0; i < THREADS; i++)
      pi += sum[i]*step;
    printf("PI = %f.\n", pi);    
  }

  return 0;
}

Listing 1. UPC code for PI estimation

Here,  we  use  a  shared  array  sum  to  store  the 
partial results from each thread and then use thread 0 to 
access all these and then sum them up to give us the result. 
Due  to  the  way  the  array  is  declared,  a  thread  i gets 

element sum[i] assigned to it.
An  alternate  method  s  to  eliminate  the  shared 

array  and  instead  use  a  collective  reduce  operation  to 
obtain  the  result  from  all  the  arrays.  Note  that  the 
collective has an implicit barrier and hence does not need 
an  explicit  upc_barrier.  It  however  is  important  in 
Listing 1 to make sure that all the values have been filled 
before thread 0 starts accessing it.

#include <upc_relaxed.h>
#include <bupc_collectivev.h>
#include <stdio.h>

int main () {
  int i;
  double pi, step, trials, my_trials;
  double x, sum;

  trials = 1024000.0;
  step = 1.0/trials;
  my_trials = trials/THREADS;
  sum = (double)0.0;

  for(
  i = MYTHREAD*my_trials;
  i < (MYTHREAD+1)*my_trials;
  i++) {
    x = ((double)i-0.5)*step;
    sum += 4.0/(1.0 + (x*x));
  }

  sum = sum*step;

  pi=bupc_allv_reduce(double,sum,0,UPC_ADD);

  if (MYTHREAD == 0) 
    printf("PI = %f.\n", pi);    

  return 0;
}

Listing 2. using a collective reduce

G.   Work distribution: upc_forall

Consider the code given in Listing 3 for a simple 
vector  addition.  Once  the  sharing  of  the  data  has  been 
decided, we control which thread executes which iteration 
by using and if statement. This ensures that a particular 
iteration i is performed by the thread only if it owns the 
corresponding elements of the arrays (viz. sum[i], v1[i] 
and v2[i].

UPC provides  a  special  for  loop  work  division 
construct which takes an extra parameter called affinity to 
decide  the  iterations  executed  by  each  thread.  In  other 
words,  a  Thread  executes  an iteration  only if  it  has  an 



affinity  to  the  object  passed  as  affinity  parameter  to 
upc_forall.  The code is Listing 4 is equivalent  to the 
one in Listing 3.

#include <upc_relaxed.h>

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

int main() {
  int i;
  for(i = 0; i < N; i++)
    if(MYTHREAD == i%THREADS)
      sum[i]=v1[i]+v2[i];
}

Listing 3. Vector addition in parallel

The affinity parameter  i can also be replaced by 
&sum[i] or &v1[i] or &v2[i].

#include <upc_relaxed.h>

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

int main() {
  int i;
  upc_forall(i = 0; i < N; i++, i)
    sum[i]=v1[i]+v2[i];
}

Listing 4. Vector addition using upc_forall

H.   Notes on pointers

Pointers in UPC are broadly classified into four 
different types based on where they reside and where they 
point to. Table 4 gives these categories and how to create 
these pointers. 

Where does the pointer point?

Local Shared

Where 
does the 
pointer 
reside?

Private int *p1; int *shared p3;

Shared shared int 
*p2;

shared int 
*shared p4;

Table 4. Declaring pointers in UPC

Generally,  using  shared  pointers  to  private 
memory (type p2) is not recommended. Pointer arithmetic 

in UPC is powerful enough to implicitly support blocked 
and  non-blocked  array  distributions.  Also,  casting  of 
shared pointers to private is allowed, but not vice versa.

Casting of shared to local is well defined only if 
the object pointed to by the pointer to shared has affinity 
with the thread performing the cast.

I.   Dynamic memory allocation

UPC  provides  collective  and  non-collective 
versions  of  functions  for  dynamic  shared  memory 
allocation.

The non-collective version is called by one thread 
only  and  gets  back  a  pointer  to  a  contiguous  block  of 
shared memory.

The  collective  version,  on  the  other  hand,  is 
expected to be called by every thread. The call returns the 
same pointer to each thread, and the memory is allocated 
on per-thread shared basic with a fixed block size passed 
to the function.

The  syntax  for  the  two  functions  is  given  in 
Listing 5. Once done, the memory can be freed. Note that 
this function is not collective and has to be executed on 
every thread for a shared data structure.

shared void *upc_global_alloc (
size_t nblocks, size_t nbytes);

shared void *upc_all_alloc (
size_t nblocks, size_t nbytes);

nblocks : number of blocks
nbytes  : block size

void upc_free (shared void* ptr)
Listing 5. Dynamic memory allocation

J.   Consistency models

A memory consistency model defines the order in 
which  one  thread  may  see  another  threads  accesses  to 
memory.  There  are  two  different  consistency  models 
available  in  UPC  viz.  strict  and  relaxed,  and  can  be 
enforced by including upc_strict.h or upc_relaxed.h 
header file, respectively.

With  the  strict  model,  all  accesses  will  always 
appear in order. On the other hand, accesses may appear 
out of order to other threads in the relaxed model.

It is usually preferred to use a relaxed model and 
enforce  strictness  only  when  necessary  since  the  strict 



model disables all compiler optimizations.

/* Initialize MPI */
int MPI_Init(int *argc, char **argv)

/* Determine number of processes within  a 
communicator */
int MPI_Comm_size(MPI_Comm comm, int *size)

/* Determine processor rank within a 
communicator */
int MPI_Comm_rank(MPI_Comm comm, int *rank)

/* Exit MPI */
MPI_Finalize()

/* Send a message */
int MPI_Send(void *buf, int count, 
  MPI_Datatype datatype, int dest, int tag,
  MPI_Comm comm)

/* Receive a message */
int MPI_Recv(void *buf, int count, 
  MPI_Datatype datatype, int src, int tag, 
  MPI_Comm comm, MPI_Status *status)

/* Scatter */
int MPI_Scatter(void* sendbuf,
  int sendcount, MPI_Datatype sendtype,
  void* recvbuf, int recvcount,
  MPI_Datatype recvtype, int root,
  MPI_Comm comm);

/* Gather */
int MPI_Gather(void* sendbuf,
  int sendcount, MPI_Datatype sendtype,
  void* recvbuf, int recvcount,
  MPI_Datatype recvtype,int root,
  MPI_Comm comm);

/* Prefix Sum */
int MPI_Scan(void* sendbuf, void* recvbuf,
  int count, MPI_Datatype datatype,
  MPI_Op op,MPI_Comm comm);

/*Reduce */
int MPI_Reduce(void* sendbuf,
  void* recvbuf,int count,
  MPI_Datatype datatype,MPI_Op op,
  int root,MPI_Comm comm);

/* All Gather */
int MPI_Allgather(void* sendbuf,
  int sendcount, MPI_Datatype sendtype,
  void* recvbuf, int recvcount,
  MPI_Datatype recvtype, MPI_Comm comm);

Listing 6. MPI subroutines

#include "mpi.h"
#include <stdio.h>

int main (int argc, char **argv) {
  int i;
  int THREADS, MYTHREAD;
  double pi, step, trials, my_trials
  double x, sum;

  MPI_Init(&argc, &argv);
  MPI_Comm_size(MPI_COMM_WORLD, &THREADS);
  MPI_Comm_rank(MPI_COMM_WORLD, &MYTHREAD);

  trials = 1024000.0;
  step = 1.0/trials;
  my_trials = trials/THREADS;
  sum = (double)0.0;

  for(
  i = MYTHREAD*my_trials;
  i < (MYTHREAD+1)*my_trials;
  i++) {
    x = ((double)i-0.5)*step;
    sum += 4.0/(1.0 + (x*x));
  }

  MPI_Barrier(MPI_COMM_WORLD);

  MPI_Reduce(&sum,&pi,1,MPI_DOUBLE, MPI_SUM, 
                         0, MPI_COMM_WORLD);

  if (MYTHREAD == 0)
    printf("PI = %f.\n", pi);    

  MPI_FINALIZE();

  return 0;
}

Listing 7. PI estimation in MPI

K.   Hand-tuning UPC code

Some  basic  guidelines  for  increasing  parallel 
performance are:

● Use  local  pointers  instead  of  shared  pointers 
when  dealing  with  local  shared  data,  through 
casting and assignments 

● Use block copy instead of copying elements one 
by one with a loop (upc_memget)

● Overlap  remote  accesses  with  local  processing 
using split-phase barriers

● Improve  single-node  performance  by  using 
standard libraries



II.   BRIEF REVIEW OF MPI

MPI  follows  an  SPMD  message  passing  based 
parallel  programming  model.  There  is  no  concept  of  a 
shared  memory  and  all  communications  and 
synchronizations in MPI occur through explicit  message 
passing. Messages can be point-to-point or collective.

For point-to-point messages, any MPI_Send call 
from sender must have a corresponding MPI_Recv called 
by the receiver. Although MPI is extremely powerful, this 
constraint makes it harder to code and debug programs in 
MPI.

Some of the commonly used MPI functions are 
presented in Listing 6, followed by a simple PI estimation 
program  in  Listing  7.  An  exhaustive  list  of  MPI 
subroutines  can  be  found  on  [2].  All  commutation 
subroutines have blocking and non-blocking versions.

III.   INSTALLING AND USING UPC

There  are  many  implementations  of  UPC 
available. The following is an incomplete list of various 
versions available:

● Berkeley UPC - UC, Berkeley's implementation 
using GASNet

● HP  UPC  -  for  all  HP-branded  platforms, 
including Tru64, HPUX and Linux systems

● Cray UPC - for Cray X1 and future Cray vector-
family platforms

● GCC UPC - for x86, SGI IRIX, Cray T3E
● IBM UPC - for IBM Blue Gene and AIX SMP's

We installed Berkeley UPC 2.6.0 on Glenn, which 
is an OSC production cluster. The cluster contains dual-
core Opterons connected together by Infiniband. Berkeley 
UPC uses GASNet as its underlying communication layer, 
which, in turn, needs a working implementation of MPI in 
order to spawn threads on remote nodes.

Also,  Berkeley  UPC  utilizes  an  HTTP-based 
UPC-to-C translator.  It  connects  to  a  remote  server  via 
HTTP to convert the UPC code into C and then compiles 
it  locally.  Alternately,  one  can  compile  and  use  a  local 
translator  or  run it  on an HTTP server  node within the 
distributed  system.  We  used  the  default  HTTP-based 
UPC-to-C translator.

Steps  for  compiling  Berkeley  UPC  2.6.0  are 
presented  in  Listing  8.  A  more  comprehensive  set  of 
instructions can be found on [3].

0. Get Berkeley UPC 2.6.0
# wget -c 
http://upc.lbl.gov/download/release/berkeley
_upc-2.6.0.tar.gz

1. Extract
# tar -zvxf berkeley_upc-2.6.0.tar.gz

2. Obtain an interactive node
# qsub -I nodes:2:ppn:2

3. change directory
# cd  berkeley_upc-2.6.0

4. configure UPC
#  ./configure  CC=mpicc  CXX=mpiCC  –disable-
debug –disable-udp –disable-aligned-segments 
--prefix=$HOME/opt

the  configure  script  should  automatically  detect  the 
network  API  being  used  and  locate  its  libraries.  Also, 
nabling debug, udp or aligned-segments may break the 
package. 

5. make the package
# make

6. install the package
# make install

Listing 8. Compiling Berkeley UPC 2.6.0

This  creates  the  Berkeley  UPC compiler  called 
upcc in $HOME/opt/bin. To use UPC, simply create a file 
using vi, or any other text editor of choice, save it with a 
.upc extension and follow the steps in Listing 9.

1. get interactive nodes
# qsub -I -l nodes=8:ppn=2

2. export PATH
# export PATH=$PATH:$HOME/opt/bin

3. compile the code
# upcc <-T=16> file.upc -o file

4. run the code
# mpiexec <-n=16> file

Listing 9. Running UPC programs



One point  to  remember is  that  if  the  code uses 
THREADS or MYTHREAD constants  to  declare arrays 
or for deciding the sharing block sizes, then the number of 
threads must be passed at compile time and when running 
the program. upcc uses -T switch for this purpose.

Also,  the  default  thread  spawner,  upirun,  uses 
mpirun,  which is not  used on OSC clusters.  Hence,  all 
codes must to be run by using mpiexec.

IV.   PERFORMANCE COMPARISON

The  performance  data  was  collected  for  four 
different  problems  by  comparing  the  runtime  of  serial 
execution with that of execution of UPC codes and MPI 
codes. The UPC code along with the performance data are 
presented in sub-sections  A-D. The codes were run with 
16 and 32 threads, except for matrix multiplication, which 
was run with 64 threads due to its extremely computation 
intense nature. All source code is present in the tar file 
submitted with the project.

A.   PI Estimation

The  same  code,  as  presented  in  Listing  2,  was 
used. The results are summarized in the graph below.

Graph 1. MPI vs UPC for PI Estimation

This program requires very little communication 
amongst  the  processes.  As  seen  above,  UPC  scales 
linearly with the number of  threads,  but  MPI shows an 
exponential increase. The code in Listing 1, however, does 
not scale well and gives poorer results due to usage of a 
shared array.

Graph 2. Matrix Vector with 16 Threads

B.   Matrix-Vector Multiplication

The matrix  a  is  row-block divided amongst  the 
threads while arrays b and c are block distributed. Each 
thread is responsible for evaluating the value of elements 
of the c array assigned to it. The program proceeds by pre-
fetching  the  b  array  since  its  needed  by  all  for  all 
computations.  Then,  the  iterations  are  work-distributed 
amongst  the threads,  based on affinity with elements of 
array c. A possibility is to cast shared data pointers to local 
pointers if  it  resides on the node itself.  It turns out that 
code  with  casting  runs  almost  twice  as  fast  the  code 
without  casting.  Graphs 2 and 3 show a comparison of 
MPI code and UPC code (with pointer casting).

Graph 3. Matrix-Vector with 32 Threads

This  code  requires  an  initial  data  movement 
followed  by  computations  with  local  data.  Hence  the 
computations  play  a  more  important  role  than 
communication, an MPI scales nicely, leveling out at large 



data  size,  probably  due  a  naïve  implementation  of  the 
computations. UPC on the other hand shows remarkable 
improvements at large data sizes but with lesser threads.

C.   Two Matrix-Vectors with dependency

Graph 4. M-V M-V with 16 Threads

Here,  we have two matrix-vectors  in  which the 
result of one is used for calculations in the other. Hence, 
we have to compute array c first and then copy it to all 
nodes again perform the second matrix-vector. Graphs 4 
and 5 give the performance comparison with MPI.

Graph 5. M-V M-V with 32 Threads

This code is fairly communication intensive since 
each  outer  iteration  requires  two communications.  Here 
again, MPI levels out at large data sizes while UPC simply 
zooms up.  Using libraries  (like BLAS) for  computation 
may help smoothen out the differences.

D.   Matrix-Matrix Multiplication

This  is  an  extremely  computation  as  well  as 
communication intense task. The implementation used is a 
naïve  row-block  distributed  implementation.  The  MPI 
code  suffers  and  does  not  run  for  matrices  larger  than 
2048x2048,  probably  due  to  memory  allocation 
limitations. Graph 6 summarizes the results.

Graph 6. Matrix-Matrix on 64 Threads

The peak MFLOPS achieved for all the problems 
by UPC is presented in Table 5.

Problem Problem Size MFLOPS

M-V 4096 5240

M-V M-V 4096 5543

M-M 4096 1168

Table 5. UPC Peak MFLOPS

V.   CONCULSION

The performance comparison clearly shows that 
even though UPC is easier to code and provides a more 
intuitive  programming  environment,  for  the  very  same 
code, MPI give a much better performance.

With MPI,  a lot  of  responsibility rests  with the 
programmer. But, if done correctly, if the most naïve of 
implementations can give a good scale-up. Hence, its not a 
wonder  that  MPI  has  become  a  de  facto  standard  for 
parallel programming.

Also, UPC's limitation on maximum shared block 
size  (1048576)  and  lack  of  explicit  construct  for  2-D 



distribution of data structures limits its capabilities. Also, 
it  needs  large  data  sets  to  perform  well  on  a  large 
distributed systems. MPI on the other hand, scales up as 
well as down gracefully.
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