
UNIFIED PARALLEL C - A STUDY AND PERFORMANCE
COMPARISON WITH MPI

(PROJECT REPORT)
Pawas Ranjan, P. Sadayappan

Department of Computer Science and Engineering, The Ohio State University
ranjan, saday@cse.ohio-state.edu

Abstract – With serial execution hitting its
performance limits, the world has now started to turn
to parallelism over the last few years. Many new
programming models and languages have been
suggested and created to this effect. Of these, the MPI
programming language follows the message passing
model while UPC aims for a partitioned global address
space model. Over the last few years, MPI has become
extremely popular due to the amount of parallelism it
offers, but at the price of increased complexity in
programming. UPC, on the other hand, tries to keep
the performance of MPI and offer an easier and more
intuitive programming environment. The purpose of
this project is to study and compare these two
languages that are based on two different
programming models and to compare their
performance and scalability on distributed systems.

I. INTRODUCTION TO UPC

A. The Partitioned Global Address Space (PGAS)

The UPC models a PGAS and is, therefore, called
a PGAS language. PGAS languages are explicitly parallel,
i.e. The programmer has to explicitly specify where what
and, sometimes, even how to parallelize a given code.

The amount of parallelism is fixed at the startup.
This allows the programmer, as well as the compiler, to
make certain optimizations based on the pre-knowledge of
the number of threads available.

These languages, like MPI, are SPMD (Single
Program Multiple Data) based. This means that each
thread runs the exact same program, but operates on
different data sets.

As the name suggests, these languages presents
the programmer with a global address space memory
model which makes it easier to represent distributed data

structures. This address space has a two-level hierarchy
and is logically partitioned into local and remote memory.

A point to be noted is that there need not be a
physical globally shared memory in the system. PGAS
uses pointers and division of per-node memory into
private and shared regions to cleverly produce the illusion
of global memory.

PGAS languages also provide constructs to easily
represent distributed data structures and their split-up
across the threads. This allows the programmer to control
performance critical decisions in a simple way.

Besides C, the PGAS model has also been
implemented for parallel programming in FORTRAN
(CAF) and Java (Titanium).

A pictorial view of the PGAS model is shown in
fig. 1

B. Execution model

UPC has a very simplistic execution model. All
codes are SPMD parallel with the amount of parallelism
fixed at program startup. This is available through a
constant called THREADS within the program.

Each thread also has a unique id assigned to it,
and can be found in the MYTHREAD constant.

UPC also provides functions and constructs for
declaring shared variables data structures, thread
synchronization, collective operations, work division and
dynamic shared memory allocation. These will be
discussed in the remaining parts of section 1.

C. Shared variables and arrays

Normally, variables and objects created by a
program or function are allocated in the private memory
space of each thread or function. UPC, however, provides
keywords to declare shared variables which reside in the
global memory.

Shared scalars are allocated only once, and reside
in the shared memory available on thread 0.

For arrays, however, the programmer can decide
on type type of distribution desired across the threads.
This means that although the entire array is shared, each
thread has an affinity to some of the elements since they
reside on the global memory space allocated in the
memory of the node on which the thread runs.

The layout can be cyclic, blocked or striped
(blocked cyclic). For 2-D arrays, it can imply 1-D row
based, 1-D column based, row-block, or column blocked
distributions. The possibilities are presented in the table
below:

Declaration Meaning
shared int ours; Shared scalar on thread 0
shared int a[N]; Cyclic distributed array
shared [] int a[N]; Shared array on thread 0
shared [*] int a[N]; Block distributed array

shared [A] int a[N]; Block distributed with fixed
block size

Table 1. Declaring shared variables

D. Synchronization

UPC provides two basic synchronization
primitves. These are barriers and locks. Barriers
themselves are convention barriers in which a thread
blocks until all other threads reach that point in code.

There is also available another type of barrier
called a split phase barrier which can be used to overlap
the wait-time on a barrier with later computations that are
not dependent on the barrier. This barrier utilizes notify

and wait calls.
UPC also provides a fence primitive that can be

used to enforce strict consistency.
Locks in UPC are shared. They locks can be used

to ensure mutual exclusion of critical sections. Based on
the needs, the pointer to the lock can be given to all
threads or to just one thread. In either case, the lock
resides in shared memory.

Primitive Meaning
upc_barrier Block until all other threads arrive
upc_notify Notify that thread is ready for barrier
upc_wait Wait for others to be ready
upc_fence Ensures that all shared references

issued before upc_fence are complete

Table 2. Synchronization primitives

A process can perform computation unrelated to
the barrier between upc_notify & upc_wait.

Statement Meaning
upc_lock_t *lck; Declare a lock
lck =
upc_all_lock_alloc();

Allocate lock, return
pointer to all threads

lck =
upc_global_lock_alloc();

Allocate lock, return
pointer to thread 0 only

upc_lock(lck); Lock
upc_unlock(lck); Unlock
upc_lock_free(lck); Free the lock

Table 3. Using locks in UPC

E. Collectives

Collective operations are executed by all threads
are are used for communication between threads. The
collectives can be data movement collectives like scatter,
gather, broadcast, permute etc. or computation collectives
like reduce and prefix sum. The George Washington
University maintains a library of UPC collectives. More
details can be found on [1].

F. Bringing it all together: PI estimation

The following codes a simple UPC program to
estimate the value of PI.

#include <upc_relaxed.h>
#include <stdio.h>

shared [THREADS] double sum[THREADS];

int main () {
 int i;
 double pi, step, trials, my_trials;
 double x, tmp;

 trials = 1024000.0;
 step = 1.0/trials;
 my_trials = trials/THREADS;
 tmp = (double)0.0;

 for(
 i = MYTHREAD*my_trials;
 i < (MYTHREAD+1)*my_trials;
 i++) {
 x = ((double)i-0.5)*step;
 tmp += 4.0/(1.0 + (x*x));
 }
 sum[MYTHREAD] = tmp;

 upc_barrier;

 if (MYTHREAD == 0) {
 for(i = 0; i < THREADS; i++)
 pi += sum[i]*step;
 printf("PI = %f.\n", pi);
 }

 return 0;
}

Listing 1. UPC code for PI estimation

Here, we use a shared array sum to store the
partial results from each thread and then use thread 0 to
access all these and then sum them up to give us the result.
Due to the way the array is declared, a thread i gets

element sum[i] assigned to it.
An alternate method s to eliminate the shared

array and instead use a collective reduce operation to
obtain the result from all the arrays. Note that the
collective has an implicit barrier and hence does not need
an explicit upc_barrier. It however is important in
Listing 1 to make sure that all the values have been filled
before thread 0 starts accessing it.

#include <upc_relaxed.h>
#include <bupc_collectivev.h>
#include <stdio.h>

int main () {
 int i;
 double pi, step, trials, my_trials;
 double x, sum;

 trials = 1024000.0;
 step = 1.0/trials;
 my_trials = trials/THREADS;
 sum = (double)0.0;

 for(
 i = MYTHREAD*my_trials;
 i < (MYTHREAD+1)*my_trials;
 i++) {
 x = ((double)i-0.5)*step;
 sum += 4.0/(1.0 + (x*x));
 }

 sum = sum*step;

 pi=bupc_allv_reduce(double,sum,0,UPC_ADD);

 if (MYTHREAD == 0)
 printf("PI = %f.\n", pi);

 return 0;
}

Listing 2. using a collective reduce

G. Work distribution: upc_forall

Consider the code given in Listing 3 for a simple
vector addition. Once the sharing of the data has been
decided, we control which thread executes which iteration
by using and if statement. This ensures that a particular
iteration i is performed by the thread only if it owns the
corresponding elements of the arrays (viz. sum[i], v1[i]
and v2[i].

UPC provides a special for loop work division
construct which takes an extra parameter called affinity to
decide the iterations executed by each thread. In other
words, a Thread executes an iteration only if it has an

affinity to the object passed as affinity parameter to
upc_forall. The code is Listing 4 is equivalent to the
one in Listing 3.

#include <upc_relaxed.h>

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

int main() {
 int i;
 for(i = 0; i < N; i++)
 if(MYTHREAD == i%THREADS)
 sum[i]=v1[i]+v2[i];
}

Listing 3. Vector addition in parallel

The affinity parameter i can also be replaced by
&sum[i] or &v1[i] or &v2[i].

#include <upc_relaxed.h>

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

int main() {
 int i;
 upc_forall(i = 0; i < N; i++, i)
 sum[i]=v1[i]+v2[i];
}

Listing 4. Vector addition using upc_forall

H. Notes on pointers

Pointers in UPC are broadly classified into four
different types based on where they reside and where they
point to. Table 4 gives these categories and how to create
these pointers.

Where does the pointer point?

Local Shared

Where
does the
pointer
reside?

Private int *p1; int *shared p3;

Shared shared int
*p2;

shared int
*shared p4;

Table 4. Declaring pointers in UPC

Generally, using shared pointers to private
memory (type p2) is not recommended. Pointer arithmetic

in UPC is powerful enough to implicitly support blocked
and non-blocked array distributions. Also, casting of
shared pointers to private is allowed, but not vice versa.

Casting of shared to local is well defined only if
the object pointed to by the pointer to shared has affinity
with the thread performing the cast.

I. Dynamic memory allocation

UPC provides collective and non-collective
versions of functions for dynamic shared memory
allocation.

The non-collective version is called by one thread
only and gets back a pointer to a contiguous block of
shared memory.

The collective version, on the other hand, is
expected to be called by every thread. The call returns the
same pointer to each thread, and the memory is allocated
on per-thread shared basic with a fixed block size passed
to the function.

The syntax for the two functions is given in
Listing 5. Once done, the memory can be freed. Note that
this function is not collective and has to be executed on
every thread for a shared data structure.

shared void *upc_global_alloc (
size_t nblocks, size_t nbytes);

shared void *upc_all_alloc (
size_t nblocks, size_t nbytes);

nblocks : number of blocks
nbytes : block size

void upc_free (shared void* ptr)
Listing 5. Dynamic memory allocation

J. Consistency models

A memory consistency model defines the order in
which one thread may see another threads accesses to
memory. There are two different consistency models
available in UPC viz. strict and relaxed, and can be
enforced by including upc_strict.h or upc_relaxed.h
header file, respectively.

With the strict model, all accesses will always
appear in order. On the other hand, accesses may appear
out of order to other threads in the relaxed model.

It is usually preferred to use a relaxed model and
enforce strictness only when necessary since the strict

model disables all compiler optimizations.

/* Initialize MPI */
int MPI_Init(int *argc, char **argv)

/* Determine number of processes within a
communicator */
int MPI_Comm_size(MPI_Comm comm, int *size)

/* Determine processor rank within a
communicator */
int MPI_Comm_rank(MPI_Comm comm, int *rank)

/* Exit MPI */
MPI_Finalize()

/* Send a message */
int MPI_Send(void *buf, int count,
 MPI_Datatype datatype, int dest, int tag,
 MPI_Comm comm)

/* Receive a message */
int MPI_Recv(void *buf, int count,
 MPI_Datatype datatype, int src, int tag,
 MPI_Comm comm, MPI_Status *status)

/* Scatter */
int MPI_Scatter(void* sendbuf,
 int sendcount, MPI_Datatype sendtype,
 void* recvbuf, int recvcount,
 MPI_Datatype recvtype, int root,
 MPI_Comm comm);

/* Gather */
int MPI_Gather(void* sendbuf,
 int sendcount, MPI_Datatype sendtype,
 void* recvbuf, int recvcount,
 MPI_Datatype recvtype,int root,
 MPI_Comm comm);

/* Prefix Sum */
int MPI_Scan(void* sendbuf, void* recvbuf,
 int count, MPI_Datatype datatype,
 MPI_Op op,MPI_Comm comm);

/*Reduce */
int MPI_Reduce(void* sendbuf,
 void* recvbuf,int count,
 MPI_Datatype datatype,MPI_Op op,
 int root,MPI_Comm comm);

/* All Gather */
int MPI_Allgather(void* sendbuf,
 int sendcount, MPI_Datatype sendtype,
 void* recvbuf, int recvcount,
 MPI_Datatype recvtype, MPI_Comm comm);

Listing 6. MPI subroutines

#include "mpi.h"
#include <stdio.h>

int main (int argc, char **argv) {
 int i;
 int THREADS, MYTHREAD;
 double pi, step, trials, my_trials
 double x, sum;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &THREADS);
 MPI_Comm_rank(MPI_COMM_WORLD, &MYTHREAD);

 trials = 1024000.0;
 step = 1.0/trials;
 my_trials = trials/THREADS;
 sum = (double)0.0;

 for(
 i = MYTHREAD*my_trials;
 i < (MYTHREAD+1)*my_trials;
 i++) {
 x = ((double)i-0.5)*step;
 sum += 4.0/(1.0 + (x*x));
 }

 MPI_Barrier(MPI_COMM_WORLD);

 MPI_Reduce(&sum,&pi,1,MPI_DOUBLE, MPI_SUM,
 0, MPI_COMM_WORLD);

 if (MYTHREAD == 0)
 printf("PI = %f.\n", pi);

 MPI_FINALIZE();

 return 0;
}

Listing 7. PI estimation in MPI

K. Hand-tuning UPC code

Some basic guidelines for increasing parallel
performance are:

● Use local pointers instead of shared pointers
when dealing with local shared data, through
casting and assignments

● Use block copy instead of copying elements one
by one with a loop (upc_memget)

● Overlap remote accesses with local processing
using split-phase barriers

● Improve single-node performance by using
standard libraries

II. BRIEF REVIEW OF MPI

MPI follows an SPMD message passing based
parallel programming model. There is no concept of a
shared memory and all communications and
synchronizations in MPI occur through explicit message
passing. Messages can be point-to-point or collective.

For point-to-point messages, any MPI_Send call
from sender must have a corresponding MPI_Recv called
by the receiver. Although MPI is extremely powerful, this
constraint makes it harder to code and debug programs in
MPI.

Some of the commonly used MPI functions are
presented in Listing 6, followed by a simple PI estimation
program in Listing 7. An exhaustive list of MPI
subroutines can be found on [2]. All commutation
subroutines have blocking and non-blocking versions.

III. INSTALLING AND USING UPC

There are many implementations of UPC
available. The following is an incomplete list of various
versions available:

● Berkeley UPC - UC, Berkeley's implementation
using GASNet

● HP UPC - for all HP-branded platforms,
including Tru64, HPUX and Linux systems

● Cray UPC - for Cray X1 and future Cray vector-
family platforms

● GCC UPC - for x86, SGI IRIX, Cray T3E
● IBM UPC - for IBM Blue Gene and AIX SMP's

We installed Berkeley UPC 2.6.0 on Glenn, which
is an OSC production cluster. The cluster contains dual-
core Opterons connected together by Infiniband. Berkeley
UPC uses GASNet as its underlying communication layer,
which, in turn, needs a working implementation of MPI in
order to spawn threads on remote nodes.

Also, Berkeley UPC utilizes an HTTP-based
UPC-to-C translator. It connects to a remote server via
HTTP to convert the UPC code into C and then compiles
it locally. Alternately, one can compile and use a local
translator or run it on an HTTP server node within the
distributed system. We used the default HTTP-based
UPC-to-C translator.

Steps for compiling Berkeley UPC 2.6.0 are
presented in Listing 8. A more comprehensive set of
instructions can be found on [3].

0. Get Berkeley UPC 2.6.0
wget -c
http://upc.lbl.gov/download/release/berkeley
_upc-2.6.0.tar.gz

1. Extract
tar -zvxf berkeley_upc-2.6.0.tar.gz

2. Obtain an interactive node
qsub -I nodes:2:ppn:2

3. change directory
cd berkeley_upc-2.6.0

4. configure UPC
./configure CC=mpicc CXX=mpiCC –disable-
debug –disable-udp –disable-aligned-segments
--prefix=$HOME/opt

the configure script should automatically detect the
network API being used and locate its libraries. Also,
nabling debug, udp or aligned-segments may break the
package.

5. make the package
make

6. install the package
make install

Listing 8. Compiling Berkeley UPC 2.6.0

This creates the Berkeley UPC compiler called
upcc in $HOME/opt/bin. To use UPC, simply create a file
using vi, or any other text editor of choice, save it with a
.upc extension and follow the steps in Listing 9.

1. get interactive nodes
qsub -I -l nodes=8:ppn=2

2. export PATH
export PATH=$PATH:$HOME/opt/bin

3. compile the code
upcc <-T=16> file.upc -o file

4. run the code
mpiexec <-n=16> file

Listing 9. Running UPC programs

One point to remember is that if the code uses
THREADS or MYTHREAD constants to declare arrays
or for deciding the sharing block sizes, then the number of
threads must be passed at compile time and when running
the program. upcc uses -T switch for this purpose.

Also, the default thread spawner, upirun, uses
mpirun, which is not used on OSC clusters. Hence, all
codes must to be run by using mpiexec.

IV. PERFORMANCE COMPARISON

The performance data was collected for four
different problems by comparing the runtime of serial
execution with that of execution of UPC codes and MPI
codes. The UPC code along with the performance data are
presented in sub-sections A-D. The codes were run with
16 and 32 threads, except for matrix multiplication, which
was run with 64 threads due to its extremely computation
intense nature. All source code is present in the tar file
submitted with the project.

A. PI Estimation

The same code, as presented in Listing 2, was
used. The results are summarized in the graph below.

Graph 1. MPI vs UPC for PI Estimation

This program requires very little communication
amongst the processes. As seen above, UPC scales
linearly with the number of threads, but MPI shows an
exponential increase. The code in Listing 1, however, does
not scale well and gives poorer results due to usage of a
shared array.

Graph 2. Matrix Vector with 16 Threads

B. Matrix-Vector Multiplication

The matrix a is row-block divided amongst the
threads while arrays b and c are block distributed. Each
thread is responsible for evaluating the value of elements
of the c array assigned to it. The program proceeds by pre-
fetching the b array since its needed by all for all
computations. Then, the iterations are work-distributed
amongst the threads, based on affinity with elements of
array c. A possibility is to cast shared data pointers to local
pointers if it resides on the node itself. It turns out that
code with casting runs almost twice as fast the code
without casting. Graphs 2 and 3 show a comparison of
MPI code and UPC code (with pointer casting).

Graph 3. Matrix-Vector with 32 Threads

This code requires an initial data movement
followed by computations with local data. Hence the
computations play a more important role than
communication, an MPI scales nicely, leveling out at large

data size, probably due a naïve implementation of the
computations. UPC on the other hand shows remarkable
improvements at large data sizes but with lesser threads.

C. Two Matrix-Vectors with dependency

Graph 4. M-V M-V with 16 Threads

Here, we have two matrix-vectors in which the
result of one is used for calculations in the other. Hence,
we have to compute array c first and then copy it to all
nodes again perform the second matrix-vector. Graphs 4
and 5 give the performance comparison with MPI.

Graph 5. M-V M-V with 32 Threads

This code is fairly communication intensive since
each outer iteration requires two communications. Here
again, MPI levels out at large data sizes while UPC simply
zooms up. Using libraries (like BLAS) for computation
may help smoothen out the differences.

D. Matrix-Matrix Multiplication

This is an extremely computation as well as
communication intense task. The implementation used is a
naïve row-block distributed implementation. The MPI
code suffers and does not run for matrices larger than
2048x2048, probably due to memory allocation
limitations. Graph 6 summarizes the results.

Graph 6. Matrix-Matrix on 64 Threads

The peak MFLOPS achieved for all the problems
by UPC is presented in Table 5.

Problem Problem Size MFLOPS

M-V 4096 5240

M-V M-V 4096 5543

M-M 4096 1168

Table 5. UPC Peak MFLOPS

V. CONCULSION

The performance comparison clearly shows that
even though UPC is easier to code and provides a more
intuitive programming environment, for the very same
code, MPI give a much better performance.

With MPI, a lot of responsibility rests with the
programmer. But, if done correctly, if the most naïve of
implementations can give a good scale-up. Hence, its not a
wonder that MPI has become a de facto standard for
parallel programming.

Also, UPC's limitation on maximum shared block
size (1048576) and lack of explicit construct for 2-D

distribution of data structures limits its capabilities. Also,
it needs large data sets to perform well on a large
distributed systems. MPI on the other hand, scales up as
well as down gracefully.

VI. ACKNOWLEDGMENTS

I would like to take this opportunity to thank Prof.
P. Sadayappan for his guidance and for motivating to
study parallel programming in greater detail. His courses
(CSE 621 and CSE 721) have been extremely interesting
and intellectually stimulating. I also wish to thank Jim
Dinan for helping me out with installing Berkeley UPC on
Ohio Supercomputer Center's clusters.

VII. REFERENCES

[1] George Washington University UPC [Online]. Available:
http://www.gwu.edu/~upc/documentation.html

[2] MPI Subroutine Reference [Online]. Available:
http://www.nersc.gov/vendor_docs/ibm/pe/am107mst02.html

[3] Berkeley UPC installation guide [Online]. Available:
http://upc.lbl.gov/download/dist/INSTALL

[4] Berkeley UPC Homepage [Online]. Available:
http://upc.lbl.gov/

[5] George Washington University High Performance Computing
Laboratory UPC Manual v1.2 [Online]. Available:
http://upc.gwu.edu/downloads/Manual-1.2.pdf

[6] Kathy Yelick, Unified Parallel C, Spring 2006 Tutorial for
CS 267 [Online]. Available:

[7] CSE 621 and CSE 721 Lecture Notes and Slides

	[2]MPI Subroutine Reference [Online]. Available: http://www.nersc.gov/vendor_docs/ibm/pe/am107mst02.html

