Impacts of Ridesourcing - Lyft and Uber - on Transportation including VMT, Mode Replacement, Parking, and Travel Behavior

Alejandro Henao
Doctoral Candidate, Civil Engineering alejandro.henao@ucdenver.edu www.alehenao.com

Doctoral Dissertation Defense January 19, 2017

Acknowledgments

Committee:

- Dr. Wesley Marshall (Advisor)
- Dr. Bruce Janson (Chair)
- Dr. JoAnn Silverstein
- Dr. Carey McAndrews
- Dr. Debbi Main
- Dr. Kevin Krizek

Funding Institutions

- National Science Foundation
- IGERT Program Fellowship
- Bridge to the Doctorate Fellowship
- Dwight Eisenhower Fellowship

Dwight David Eisenhower
Transportation Fellowship Program

- Mountain-Plains Consortium
- ITE Scholarships
- CU Denver Scholarships

People and Organization

- Classmates and Friends
- Transportation Professionals
- Lyft and Uber
- Lyft/Uber Passengers
- FAMILY

Agenda

I. Introduction
II. Background
III. Literature Review
IV. Research Methods
V. Data

Agenda

VI. Driver Perspective
VII. VMT Impacts
VIII. Parking Impacts
IX. Travel Behavior Changes

Agenda

X. Overall Results

XI. Summary Conclusions

- Policy Recommendations
- Future Applications
- Future Research

I. Introduction

- Motivation
- Research Needs

Cali, Colombia

INTRO

Colorado

Disrupting Transportation

Many factors, including:

- Social networks
- Real-time information
- Mobile technology

Allow the creation and popularization of on-demand transportation services all over the world.

บด

enterprise CarShare

Hertz. 24/7

curb
(2.) zipcar

Ridesourcing

Sourcing of rides from a 'for-fare' driver pool accessible through an app-based platform.

Other names:
"Transportation Network Companies (TNCs)", "ride-hauling", "ride-booking", "ride-matching", "on-demand-rides", "app-based rides"

Ridesourcing

Associated Press

RIDESOURCING
 \neq RIDESHARING

AP STYLEBOOK

Lyft to go global and take on Uber outside the US
CNBC - Jan 13, 2017
Number two U.S. ride-hailing company, Lyft, is growing faster and cutting losses faster than its giant competitor, Uber. And this year, the startup ...
Lyft might be eyeing a global market to take on Uber
Business Insider - Jan 13, 2017
Uber, Lyft, transit agencies see potential for partnerships
In-Depth - San Francisco Chronicle - Jan 12, 2017

Lyft drivers say they are happier, better paid than Uber drivers

By Carolyn Said, San Francisco Chronicle Updated 3:30 pm, Tuesday, January 17, 2017

\square

INTRO

Photos Source: The Telegraph

Yellow Cab, Long a Fixture of City Life, Is for Many a Thing of the Past

NYC TRANSPORTATION

Uber and Lyft cars now outnumber yellow cabs in NYC 4 to 1

SF blasts Uber, Lyft for downtown traffic congestion

Ride-hail companies like Uber and Lytt are being blamed by the San Francisco Municipal Transportation Agency for a lack of regulation that has led to increased trafic in The City. (Ekevara Kitpowsong/Special to S.F. Examiner)

Sy Joe Fitzgerald Rodriguez on December 11, 2016 1:00 am
The potential 45,000 Uber and Lyft drivers circling San Francisco streets for commute fares are gumming up city traffic, according to transit officials.
In a recent state regulatory filing, the San Francisco Munic ipal Transportation Agency took the California Public Utilities Commission - which is tasked with regulating ride-hail companies - to task for failing to reasonably limit the industry's explosive growth.
\equiv © C © The New llork Eimes
N.Y. / REGION

City Hall and Uber Clash in Struggle Over New York Streets

By MATt FLEGENHEIMER and EMMA G. FITZSIMMONS JuLY 16 , 2015
© 0

David Plouffe, a top Uber operative, at Sylvia's restaurant in Harlem on Tuesday, was joined by more than a dozen community leaders, all of them critical of a proposed cap on the company's growth. Iryan R. Smith for The New York Times

For months, the clash has seemed inevitable: the professed disrupters of municipal transportation policy and the chief executive of the country's

INTRO

Lyft and Uber Won't Release Data to Shed Light on How They Affect Traffic

By Aaron Bialick Jun 30, 2015

1s ride-hail services like Lyft and Uber have boomed in San Francisco and other cities, proponents claim they help reduce demand for parking and road space by making it easier for people to own fewer cars. But very little data has been released by the ride-hail companies that would allow experts to assess their impact on streets and traffic.

In a panel discussion yesterday, Lyft's Curtis Rogers emphasized that reducing car ownership is "our end goal that we think we share with the city."

But when Thea Selby of the SF Transit Riders Union pressed Rogers for data to show whether Lyft might be substituting for transit trips more than car trips, he said he couldn't provide it. Rogers insisted, however, that Lyft doesn't want to compete with Muni, walking, or bicycling. "We think we're just one more piece to the puzzle."
"We celebrate Muni getting better," said Rogers. "We're well INTRO we pulled everyone off of Muni and put them in

Photo: Jason A. Staats/Twitter be going two miles per hour on the road. That's

Research Needs

$$
\begin{aligned}
&> \text { DATA } \\
&> \text { DRIVER SIDE } \\
& \bullet \text { Efficiency } \\
& \cdot \text { Earnings } \\
&> \text { VMT IMPACTS } \\
&> \text { PARKING IMPACTS }
\end{aligned}
$$

> TRAVEL BEHAVIOR

- Mode Replaced
- Why?

II. Background

Operations

- Uber operates globally (450+ cities)
- Uber completed 2 billion trips in the summer 2016
- First billion rides in 6 years
- Second billion in 6 months
- Lyft so far is only in the U.S.
- Lyft is giving rides at a rate of 17 million U.S. rides per month
- Lyft is estimated to have 20\% market-share

Valuation

- Latest Uber valuation: $\$ 62.6$ billion
- Lyft: \$5.5. billion dollars
- Valuation without owning vehicles, physical infrastructure, or having to hire drivers as employees

III. Literature Review

Academic

- Anderson (2014): Interview 20 drivers (Anthropology) about driver strategies and possible VMT impacts
- Cramer \& Krueger (2016): Comparison of UberX with Taxis. Hired by Uber to do the study
- Rayle et al. (2016): Intercept survey in San Francisco comparing ridesourcing with taxis. User characteristics, wait times, and trips served

III. Literature Review

Organizations

- SUMC (2016): Intercept Survey in seven U.S. cities. Higher use of shared modes, the more likely people use transit and own fewer cars.
- FiveThirtyEight (2015): Used data acquired via a Freedom of Information Act request to the city. In NY, Uber is taking rides away from taxis and covers a larger area

III. Literature Review

- Review of carsharing literature
- Help develop research methods for this dissertation
- Each Chapter includes a more detailed Literature Review

III. Literature Review

- Very limited research studies
- Lack of open data
- Levitt, Freakonomics (2016). Why Uber Is an Economist's Dream.
- Independent data questionable
- Research design questionable
- Several gaps

Book Chapter

"A Framework for Understanding the Impacts of Ridesourcing on Transportation"

(Henao \& Marshall, 2017)

Disrupting Mobility

Impacts of Sharing Economy and Innovative Transportation on Cities
Editors: Gereon Meyer, Susan Shaheen

IV. Research Methods

$>$ Innovative approach to collect data
> Became an independent-contractor to drive for both Lyft and Uber and get access to exclusive data
> Exploratory Analysis
> IRB Approval
> Two Datasets:

1. Driver Dataset (416 rides)
2. Passenger Dataset: (311 Surveys)

Lyft and Uber Driver Profiles

Smartphone Apps

METHODS

Driver Dataset

Driver Data Collection (e.g. travel attributes)

MEIHODS

Mileage and Times

Cruising/Waiting for a ride (A-B)En-Route to passenger (B-C)
$>$ Waiting for Passenger (C)
With-passenger (WP ride) (C-D)

GPS Tracking of a Lyft/Uber ride

METHODS

DRIVER DATA COLLECTION			
Driver Initials: \qquad Date: \qquad Time: \qquad Odometer: \qquad LOG-IN - Location: BREAKS - Mins: \qquad Miles: \qquad Last ride to LOG-OUT time \& dist: \qquad $\operatorname{mins}(\ldots \quad$ mi) END - Time: \qquad Odometer: \qquad Location: \qquad Log-out to End time \& dist: \qquad mins (\qquad mi)			
Ride \# (shift): \qquad Ride Request from: \square lyft \quad LyftLine \quad UberX \quad UberPool \# Passengers: \qquad Weather: \square Clear \square Foggy \square Rainy \square Sunny \square Snowy \square Windy \square Other: \qquad Temperature: \qquad			
Driver Location at Request: Time at Request: \qquad Waiting/Cruising for a ride time: \qquad mins Cruising for a ride distance: \qquad mi (from last)			
Pick-up Location: \qquad , םSU-L םSU-M םSU-H \| aU-L Lyft/Uber est. time: \qquad mins GoogleMaps: \qquad mins (\qquad mi) Arrival Time: \qquad Req to Arr time: \qquad mins MyTracks distance: \qquad mi Time Ride Starts: \qquad Driver Waiting: \square mins			
PARKING - Location:_ P. Cost $\$ \ldots \quad$ Cruising time \& dist:___ mins (___ mi)			

Driver Data Collection Form

METHODS

Passenger Survey

I interviewed passengers during the ride:

> "Hi rider, I'm a grad student doing research on transportation. Would you help me by doing a short survey (~6 minutes) about this ride?
> You can use my tablet or go to this link: www.ride-survey.com.
> Thank you!"

METHODS

Passenger Survey

$>$ Passengers took survey on the tablet provided
$>$ On their own devices: www.ride-survey.com
> In some cases, verbal interview
Passenger survey questions:

1. Specific Trip Questions (Q1-Q10)
2. General Use Questions (Q11-Q25)
3. Demographic Questions (Q26-28)

V. Data

RIDESOURCING DATA

416 Rides

> 198 Lyft
> 164 UberX
> 39 LyftLine
> 15 UberPool

PASSENGER DATASET
Survey Questions:

- Specific Trip (Q1-Q10)
- General Use (Q11-Q25)
- Demographics (Q26-Q37)

311 Passenger Surveys

SURVEY RESPONSE

RATE: 87.5\%

Origin-Destination (O-D) Matrix

DESTINATION	Home	Work	School	Shopping/ Errands	Going Out// Social	Airport	Hotel/ Airbnb	Family/ Friend	Other	Totals
Home	2	36	16	7	34	18	0	4	12	129
Work	21	8	1	1	1	2	6	0	1	41
School	5	0	0	3	0	0	0	2	0	10
Shopping/Errands	11	1	0	3	1	0	0	0	0	16
Going Out/Social	30	1	0	3	10	0	3	3	1	51
Airport	3	0	0	0	0	0	2	0	0	5
Hotel/Airbnb	0	2	0	0	7	4	0	0	4	17
Family/Friend	10	1	0	0	1	1	3	1	2	19
Other	8	3	0	2	2	1	3	1	3	23
Totals	90	52	17	19	56	26	17	11	23	311

DAIIA

	Ridesourcing		Denver Population ${ }^{\text {a }}$		Ridesourcing		Denver Population ${ }^{\text {a }}$
	Responses	(\%)	(\%)		Responses	(\%)	(\%)
Gender				Marital Status			
Female	145	46.9\%	50.0\%	Single or never married	185	62.7\%	41.7\%
Male	162	52.4\%	50.0\%	Married or in a family relationship	80	27.1\%	39.2\%
Prefer not to answer	2	0.6\%		Separated, divorced, or widow	28	9.5\%	19.1\%
n	309			Other	2	0.7\%	
				n	295		
Residency							
Local Resident	254	82.2\%	--	Household size ${ }^{\text {b }}$			
Visitor	55	17.8\%	--	1	65	22.3\%	--
n	309			2	129	44.2\%	--
				3	56	19.2\%	--
Age				4	30	10.3\%	--
18-24 ${ }^{\text {b }}$	78	25.2\%	10.0\%	5+	12	4.1\%	--
25-34	132	42.7\%	21.8\%	n	292		
35-44	56	18.1\%	15.4\%				
45-54	30	9.7\%	11.7\%	Children in household			
55-64	7	2.3\%	10.5\%	Yes	47	20.5\%	25.1\%
65+	6	1.9\%	10.7\%	No	182	79.5\%	74.9\%
n	309			n	229		
Race/Etchnicity				Education			
Asian	24	7.8\%	3.5\%	Less than High School	9	3.0\%	13.9\%
Black/African American	16	5.2\%	9.4\%	Graduated high school or equiv.	49	16.5\%	17.7\%
Hispanic or Latino	39	12.7\%	30.9\%	Some college, no degree	58	19.5\%	18.3\%
White	206	66.9\%	53.1\%	Associate or Bachelor's degree	124	41.8\%	32.5\%
Other	16	5.2\%	3.1\%	Advanced degree (Master's, PhD)	57	19.2\%	17.6\%
Prefer not to answer	7	2.3\%		n	297		
n	308						
				Employment Status			
Household Income ${ }^{\text {c }}$				Working (Full-time or Part-Time)	246	81.7\%	70.9\%
\$30K or less	34	11.5\%	28.3\%	Volunteer	1	0.3\%	--
\$31K - \$45K	56	18.9\%	14.0\%	Unemployed	15	5.0\%	6.3\%
\$46K - \$60K	58	19.6\%	11.1\%	Retired	8	2.7\%	--
\$61K - \$75K	30	10.1\%	10.0\%	N/A	31	10.3\%	--
\$76-\$100K	40	13.5\%	11.9\%	n	301		
Over \$100K	50	16.9\%	24.9\%				
Prefer not to answer	28	9.5\%	--	Student Status			
n	296			Student (Full-time or Part-time)	70	23.3\%	34.2\%
				Not currently a student	230	76.7\%	65.8\%
				n	300		

[^0]| | Rides ourcing | | Population ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
| | Responses | (\%) | (\%) |
| Gender | | | |
| Female | 145 | 46.9\% | 50.0\% |
| Male | 162 | 52.4\% | 50.0\% |
| Prefer not to answer | 2 | 0.6\% | |
| n | 309 | | |
| Residency | | | |
| Local Resident | 254 | 82.2\% | -- |
| Visitor | 55 | 17.8\% | -- |
| n | 309 | | |
| Age | | | |
| $18-24^{\text {b }}$ | 78 | 25.2\% | 10.0\% |
| 25-34 | 132 | 42.7\% | 21.8\% |
| 35-44 | 56 | 18.1\% | 15.4\% |
| 45-54 | 30 | 9.7\% | 11.7\% |
| 55-64 | 7 | 2.3\% | 10.5\% |
| 65+ | 6 | 1.9\% | 10.7\% |
| n | 309 | | |

DAIIA

VI. Driver Perspective

> Travel times and distances
 > Earnings

Data Analysis

TRAVEL DISTANCES

$$
\begin{gathered}
d_{\text {shift }}=\left[\sum\left(d_{1}+d_{2}+d_{3}\right)\right]+d_{4} \\
d_{T}=\sum d_{\text {shift }}=\sum d_{1}+\sum d_{2}+\sum d_{3}+\sum d_{4} \\
V M T_{T}=\sum d_{1}+\sum d_{2}+W P M T_{T}+\sum d_{4} \\
V M T_{T}=W P M T_{T}+\text { Additional } V M T
\end{gathered}
$$

Ridesourcing Efficiency Distance $=\frac{\sum d_{3}}{d_{T}}=\frac{W P M T_{T}}{V M T_{T}}$

ADDITIONAL PERCENT OF WPMT

$$
\frac{\text { Additional } V M T}{W P M T_{T}}=\frac{V M T_{T}}{W P M T_{T}}-1
$$

Total Miles per $100 \mathrm{WPMT}=\frac{100 * V M T_{T}}{W P M T_{T}}$

TRAVEL TIMES

$$
\begin{gathered}
t_{\text {shift }}=\left[\sum\left(t_{1}+t_{2}+t_{3}+t_{4}\right)\right]+t_{5} \\
t_{T}=\sum t_{\text {shift }}=\sum t_{1}+\sum t_{2}+\sum t_{3}+\sum t_{4}+\sum t_{5} \\
\text { Ridesourcing Efficiency Time }=\frac{\sum t_{4}}{t_{T}}
\end{gathered}
$$

EARNINGS

$\operatorname{Gross} \operatorname{Earnings}(\$ / h r)=\frac{\sum \text { Driver Earnings (incl.tip) }}{t_{T}}$
Gross Earnings $(\$ /$ mile $)=\frac{\sum \text { Driver Earnings (incl.tip) }}{d_{T}}$
Net Earnings $=$ Gross Earnings - Expenses

Travel Times and Distance Summary Statistics

	DRIV OR					DROP-OFF PASSENGER	$\begin{gathered} \text { END } \\ \text { LOCATION } \end{gathered}$
		Waiting/Cruising for a ride	From Request to Pick-up (en-route to passenger)	Waiting for Passenger	From Pick-up to Drop-off (WP ride)	From last Drop-off to End Location	$\begin{array}{r} \text { Totals } \\ \left(\mathbf{t}_{\mathrm{T}} \& \mathrm{~d}_{\mathrm{T}}\right) \end{array}$
	Total (L t)	4,965.00	2,511.00	531.00	6,106.00	1,416.00	15,529.00
	Mean	11.94	6.04	1.28	14.68	21.78*	37.33
	St. Dev.	15.46	3.65	2.10	10.04	12.27*	20.30
	Median	7.50	5.00	1.00	11.50	20.00*	32.83
	Total ($\Sigma \mathrm{d}$)	635.91	600.56		2,929.94	784.29	4,950.69
	Mean	1.53	1.44		7.04	12.07*	11.90
	St. Dev.	3.94	1.44		8.60	7.43*	10.37
	Median	0.20	1.00		3.55	12.00*	8.30
Average mph			14.35		28.79	33.23	19.13

[^1]
DRIVER STUDY

Times and Distance Efficiency

	WP Ride $\left(\Sigma d_{3} \& \Sigma t_{4}\right)$	Total minus Commute at End	Efficiency: WP/(Total minus Commute at End)	$\begin{array}{r} \text { Totals } \\ \left(\mathbf{t}_{\mathrm{T}} \& \mathbf{d}_{\mathrm{T}}\right) \end{array}$	Overall Efficiency (WP/Total)	Additional Percent of WPMT	VMT per 100-WPMT
Time (minutes)	6,106.0	14,767.0	41.3\%	15,529.0	39.3\%		
Distance (miles)	2,929.9	4,482.9	65.4\%	4,950.7	59.2\%	69.0\%	169.0

DRIVER STUDY

Earnings

> MAKE UP TO \$1,000/WK DRIVING

DRIVER STUDY

Earnings

Lyft/Uber Fares \& Commission

	Passenger Cost*					To Driver**	Lyft/Uber Commision**
	Lyft/Uber Service Fee	Base Fare	Cost per Minute Fare	Cost per Mile Fare	Minimum Paid by Passenger (Fee + Fare)		
Lyft	\$2.10	\$0.50	\$0.12	\$1.01	\$7.10	80\% Fare	100\% Service Fee
UberX	\$1.95	\$0.75	\$0.13	\$1.00	\$6.95	+ 100\% Tips	+ 20\% Fare

* Rates as of Fall 2016 in U.S. dollars. Rates varied and have been lowered over time
** 20\% Commision when first signed-up in 2014. Newer drivers pay a higher commision (25% or more)

Passenger Cost, Driver Earnings, Real Commission

| | Passenger Cost | | To Driver | | | To Lyft/Uber | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Total Paid
 (before tip) | Total Cost per
 WP Mile
 (before tip) | Total Earned
 (before tips) | Tips | Total Earned
 (with tips) | Actual
 Commision
 (before tip) | Actual
 Comission
 (after tip) |
| Lyft
 $(\mathrm{n}=237)$ | $\$ 2,934.58$ | $\$ 1.87$ | $\$ 2,059.25$ | $\$ 276.00$ | $\$ 2,335.25$ | 29.8% | 27.3% |
| Uber
 $(\mathrm{n}=179)$ | $\$ 2,505.62$ | $\$ 1.84$ | $\$ 1,687.83$ | $\$ 39.00$ | $\$ 1,726.83$ | 32.6% | 32.1% |
| All Trips
 $(\mathrm{n}=416)$ | $\$ 5,440.20$ | $\$ 1.86$ | $\$ 3,747.08$ | $\$ 315.00$ | $\$ 4,062.08$ | 31.1% | 29.4% |

* Earnings include prime and guarantee bonus per hour but does not include initial sign-up bonus.
** Earnings in Year 2016 U.S. dollars

Gross Earnings - Lyft vs Uber

	Gross Earnings (before tip) (\$/hr)	Gross Earnings (with tip) (\$/hr)	Gross Eamings (before tip) (\$/mile)	Gross Earnings (with tip) (\$/mile)
Lyft $(\mathrm{n}=237)$	$\$ 14.38$	$\$ 16.31$	$\$ 0.77$	$\$ 0.87$
Uber $(\mathrm{n}=179)$	$\$ 14.60$	$\$ 14.93$	$\$ 0.75$	$\$ 0.76$
All Trips $(\mathrm{n}=416)$	$\$ 14.48$	$\$ 15.69$	$\$ 0.76$	$\$ 0.82$
* Earnings based in Totals $\left(\mathrm{t}_{\mathrm{T}} \& \mathrm{~d}_{\mathrm{T}}\right)$ ** Earnings in Year 2016 U.S. dollars				

DRIVER STUDY

Expenses

Item	$\begin{aligned} & \text { Basic Added Cost } \\ & \hline \text { 1-15hr/week, } \\ & \sim 11 \mathrm{k} \text { miles/year } \\ & \hline \end{aligned}$	Most Drivers 16-49hr/week, ~33K miles/year	U.S. Federal Standard Mileage Rate (2016)	Average Mileage Rate
Ownership				
Depreciation	\$1,320.00	\$3,960.00		
Finance Charge	-	\$500.00		
License, Registration \& Tax	-	\$350.00		
Insurance	-	\$1,500.00		
Operating				
Gas	\$1,015.38	\$3,046.15		
Maintenance	\$589.60	\$1,768.80		
Miscellaneous	\$150.00	\$2,000.00		
Total	\$3,074.98	\$13,124.95		
\$/mile	\$0.28	\$0.40	0.54*	\$0.41
\$/hr	\$5.34	\$7.60	\$10.31	\$7.75

Assumptions: Car value: \$18,000; Lifetime mileage: 150,000; Work: 50 weeks/year; Gas price: $\$ 2.40 /$ galon (Average in 2015); Gas efficiency: 26 MPG; Maintenance: 5.36 cents/mile; Miscellaneous include car wash \& cleaning, mobile device \& data fees, parking \& traffic violations, risk of crash or injury

* 2016 U.S. Federal Standard Mileage Rate

Expenses

Item	$\begin{aligned} & \text { Basic Added Cost } \\ & \hline \text { 1-15hr/week, } \\ & \sim 11 \mathrm{k} \text { miles/year } \\ & \hline \end{aligned}$	Most Drivers 16-49hr/week, ~33K miles/year	U.S. Federal Standard Mileage Rate (2016)	Average Mileage Rate
Ownership				
Depreciation	\$1,320.00	\$3,960.00		
Finance Charge	-	\$500.00		
License, Registration \& Tax	-	\$350.00		
Insurance	-	\$1,500.00		
Operating				
Gas	\$1,015.38	\$3,046.15		
Maintenance	\$589.60	\$1,768.80		
Miscellaneous	\$150.00	\$2,000.00		
Total	\$3,074.98	\$13,124.95		
\$/mile	\$0.28	\$0.40	0.54*	\$0.41
\$/hr	\$5.34	\$7.60	\$10.31	\$7.75

Assumptions: Car value: \$18,000; Lifetime mileage: 150,000; Work: 50 weeks/year; Gas price: $\$ 2.40 /$ galon (Average in 2015); Gas efficiency: 26 MPG; Maintenance: 5.36 cents/mile; Miscellaneous include car wash \& cleaning, mobile device \& data fees, parking \& traffic violations, risk of crash or injury

* 2016 U.S. Federal Standard Mileage Rate

Expenses

Item	$\begin{aligned} & \text { Basic Added Cost } \\ & \hline \text { 1-15hr/week, } \\ & \sim 11 \mathrm{k} \text { miles/year } \end{aligned}$	Most Drivers 16-49hr/week, ~33K miles/year	U.S. Federal Standard Mileage Rate (2016)	Average Mileage Rate
Ownership				
Depreciation	\$1,320.00	\$3,960.00		
Finance Charge	-	\$500.00		
License, Registration \& Tax	-	\$350.00		
Insurance	-	\$1,500.00		
Operating				
Gas	\$1,015.38	\$3,046.15		
Maintenance	\$589.60	\$1,768.80		
Miscellaneous	\$150.00	\$2,000.00		
Total	\$3,074.98	\$13,124.95		
\$/mile	\$0.28	\$0.40	0.54*	\$0.41
\$/hr	\$5.34	\$7.60	\$10.31	\$7.75

Assumptions: Car value: \$18,000; Lifetime mileage: 150,000; Work: 50 weeks/year; Gas price: $\$ 2.40 /$ galon (Average in 2015); Gas efficiency: 26 MPG; Maintenance: 5.36 cents/mile; Miscellaneous include car wash \& cleaning, mobile device \& data fees, parking \& traffic violations, risk of crash or injury

* 2016 U.S. Federal Standard Mileage Rate

Expenses

Item	$\begin{aligned} & \text { Basic Added Cost } \\ & \hline \text { 1-15hr/week, } \\ & \text { ~11k miles/year } \end{aligned}$	Most Drivers 16-49hr/week, ~33K miles/year	U.S. Federal Standard Mileage Rate (2016)	Average Mileage Rate
Ownership				
Depreciation	\$1,320.00	\$3,960.00		
Finance Charge	-	\$500.00		
License, Registration \& Tax	-	\$350.00		
Insurance	-	\$1,500.00		
Operating				
Gas	\$1,015.38	\$3,046.15		
Maintenance	\$589.60	\$1,768.80		
Miscellaneous	\$150.00	\$2,000.00		
Total	\$3,074.98	\$13,124.95		
\$/mile	\$0.28	\$0.40	0.54*	\$0.41
\$/hr	\$5.34	\$7.60	\$10.31	\$7.75

Assumptions: Car value: \$18,000; Lifetime mileage: 150,000; Work: 50 weeks/year; Gas price: $\$ 2.40 /$ galon (Average in 2015); Gas efficiency: 26 MPG; Maintenance: 5.36 cents/mile; Miscellaneous include car wash \& cleaning, mobile device \& data fees, parking \& traffic violations, risk of crash or injury

* 2016 U.S. Federal Standard Mileage Rate

Net Earnings (Gross minus expenses)

	Net Earnings	
	Range (Low to High)	Average
$\$ / \mathrm{hr}$	$\$ 5.38-\$ 10.36$	$\$ 7.94$
$\$ /$ mile	$\$ 0.28-\$ 0.54$	$\$ 0.41$
$\mathrm{n}=416$. Earnings include tips (Year 2016 U.S. dollars)		

	Net Earnings (before tip) $\mathbf{(\$ / h r)}$	Net Earnings (with tip) $\mathbf{(\$ / h r})$	Tip Percent
Lyft $(\mathrm{n}=237)$	$\$ 6.63$	$\$ 8.56$	29.1%
Uber $(\mathrm{n}=179)$	$\$ 6.85$	$\$ 7.18$	4.9%

DRIVER STUDY

VII. VMT Study

$>$ Mode Replacement

 $>$ VMT Impacts
Mode Replacement (Specific Trip)

Q5. For this trip, how would you have traveled if Lyft/Uber wasn't an option?

VMIT STUDY

PMT and VMT

> Passenger Miles Traveled (PMT)
> Vehicles Miles Traveled (VMT)

Mode	PMT:VMT	PMT/VMT
Drive (SOV)	$1: 1$	100%
Bike/Walk	$1: 0$	∞
Get a ride	$1: 2$	50%
Ridesourcing?		

PMT/VMT, before and after

PMT	VMT Replaced or $\mathrm{VMT}_{\text {Before }}$	Ridesourcing VMT or VMT $_{\text {AFIER }}$	Efficiency Replaced	Ridesourcing Efficiency
	Total (Σ d)		$\frac{P M T}{V_{M T} T_{\text {BEFORE }}}$	$\frac{P M T}{V M T_{A F T E R}}$
2,200.03	1,959.58	3,617.68	112.3\%	60.8\%

VMIT STUDY

PMT and VMT

> Passenger Miles Traveled (PMT)
> Vehicles Miles Traveled (VMT)

Mode	PMT:VMT PMT/VMT	
Drive (SOV)	$1: 1$	100%
Bike/Walk	$1: 0$	∞
Get a ride	$1: 2$	50%
Ridesourcing	$1: 1.6$	60.8%

PMT/VMT, before and after

PMT	VMT Replaced or VMT Before	Ridesourcing VMT or VMT ${ }_{\text {AFIER }}$	Efficiency Replaced	Ridesourcing Efficiency
	Total (Σ d)		$\frac{P M T}{V M T_{\text {BEFORE }}}$	$\frac{P M T}{V M T_{\text {AFTER }}}$
2,200.03	1,959.58	3,617.68	112.3\%	60.8\%

VMTT STUDY

VMT Impact

Mode Replaced	n	PMT		VMT Re VMT $_{\text {B }}$ Total ($\Sigma \mathrm{d}$)	laced or EFORE Median	$\begin{array}{\|c} \text { Ridesourci } \\ \text { or VMT } \\ \text { Total }(\Sigma d) \end{array}$	ing VMT $\mathrm{T}_{\text {AFIER }}$ Median	$\frac{\text { VMT }_{\text {BEFORE }}}{\text { PMT }}$	$\frac{\mathrm{VMT}_{\text {AFTER }}}{\text { PMT }}$	$\frac{\text { VMT }_{\text {AFTER }}}{\text { VMT }_{\text {BEFORE }}}$
Public transportation	69	419.6	3.50	27.2	0.00	768.9	7.54	0.065	1.832	2826.7\%
Drive alone	59	661.3	5.17	661.2	5.17	935.5	10.97	1.000	1.415	141.5\%
Wouldn't have traveled	38	194.0	3.67	0.0	0.00	370.2	8.00	0.000	1.908	∞
Bike or Walk	37	74.3	1.65	0.0	0.00	195.9	4.95	0.000	2.638	∞
Taxi	30	364.2	5.77	639.5	14.41	568.3	10.74	1.756	1.560	88.9\%
Carpool (ride)	19	132.1	3.87	82.2	1.82	227.7	7.64	0.622	1.724	277.1\%
Other ridesourcing	17	52.8	3.00	143.3	7.58	143.3	7.58	2.713	2.713	100.0\%
Get a ride	14	132.6	5.67	265.3	11.33	140.5	9.75	2.001	1.060	53.0\%
Car rental	13	54.6	3.71	54.6	3.50	119.7	6.52	1.000	2.191	219.1\%
Carpool (drive)	10	77.1	2.74	77.1	2.74	93.6	5.51	1.000	1.215	121.5\%
Other	5	37.5	2.55	9.2	2.28	54.1	6.09	0.244	1.441	589.8\%
Total	311	2200.0	3.50	1959.6	1.82	3617.7	7.56	0.891	1.644	184.6\%

VMT STUDY

VMT Impact

Mode Replaced	n	PMT		$\begin{gathered} \text { VMT Rep } \\ \text { VMT }_{\text {B } 1} \\ \text { Total }(\Sigma d) \\ \hline \end{gathered}$	laced or EFORE Median	$\begin{array}{\|c} \text { Ridesourci } \\ \text { or VMT } \\ \text { Total }(\Sigma d) \end{array}$	ing VMT AFIER Median	$\frac{\text { VMT }_{\text {BEF ORE }}}{\text { PMT }}$	$\frac{\mathrm{VMT}_{\text {AFTER }}}{\text { PMT }}$	$\frac{\text { VMT }_{\text {AFTER }}}{\text { VMT }_{\text {BEFORE }}}$
Public transportation	69	419.6	3.50	27.2	0.00	768.9	7.54	0.065	1.832	2826.7\%
Drive alone	59	661.3	5.17	661.2	5.17	935.5	10.97	1.000	1.415	141.5\%
Wouldn't have traveled	38	194.0	3.67	0.0	0.00	370.2	8.00	0.000	1.908	∞
Bike or Walk	37	74.3	1.65	0.0	0.00	195.9	4.95	0.000	2.638	∞
Taxi	30	364.2	5.77	639.5	14.41	568.3	10.74	1.756	1.560	88.9\%
Carpool (ride)	19	132.1	3.87	82.2	1.82	227.7	7.64	0.622	1.724	277.1\%
Other ridesourcing	17	52.8	3.00	143.3	7.58	143.3	7.58	2.713	2.713	100.0\%
Get a ride	14	132.6	5.67	265.3	11.33	140.5	9.75	2.001	1.060	53.0\%
Car rental	13	54.6	3.71	54.6	3.50	119.7	6.52	1.000	2.191	219.1\%
Carpool (drive)	10	77.1	2.74	77.1	2.74	93.6	5.51	1.000	1.215	121.5\%
Other	5	37.5	2.55	9.2	2.28	54.1	6.09	0.244	1.441	589.8\%
Total	311	2200.0	3.50	1959.6	1.82	3617.7	7.56	0.891	1.644	184.6\%

VMT STUDY

VMT Impact

Mode Replaced	n	PMT		$\begin{gathered} \text { VMT Rep } \\ \text { VMT }_{\text {BI }} \\ \text { Total }(\Sigma d) \end{gathered}$	laced or EFORE Median	Ridesourci or VMT Total ($\Sigma \mathrm{d}$)	ing VMT $\mathrm{T}_{\mathrm{AFIER}}$ Median	$\frac{\text { VMT }_{\text {BEFORE }}}{\text { PMT }}$	$\frac{\text { VMT }_{\text {AFTER }}}{\text { PMT }}$	$\frac{\mathrm{VMT}_{\text {AFTER }}}{\mathrm{VMT}_{\text {BEFORE }}}$
Public transportation	69	419.6	3.50	27.2	0.00	768.9	7.54	0.065	1.832	2826.7\%
Drive alone	59	661.3	5.17	661.2	5.17	935.5	10.97	1.000	1.415	141.5\%
Wouldn't have traveled	38	194.0	3.67	0.0	0.00	370.2	8.00	0.000	1.908	∞
Bike or Walk	37	74.3	1.65	0.0	0.00	195.9	4.95	0.000	2.638	∞
Taxi	30	364.2	5.77	639.5	14.41	568.3	10.74	1.756	1.560	88.9\%
Carpool (ride)	19	132.1	3.87	82.2	1.82	227.7	7.64	0.622	1.724	277.1\%
Other ridesourcing	17	52.8	3.00	143.3	7.58	143.3	7.58	2.713	2.713	100.0\%
Get a ride	14	132.6	5.67	265.3	11.33	140.5	9.75	2.001	1.060	53.0\%
Car rental	13	54.6	3.71	54.6	3.50	119.7	6.52	1.000	2.191	219.1\%
Carpool (drive)	10	77.1	2.74	77.1	2.74	93.6	5.51	1.000	1.215	121.5\%
Other	5	37.5	2.55	9.2	2.28	54.1	6.09	0.244	1.441	589.8\%
Total	311	2200.0	3.50	1959.6	1.82	3617.7	7.56	0.891	1.644	184.6\%

Legend:
Worst VMT
Better VMT

VMTT STUDY

VIII. Parking

> Parking Demand
> Locations, Trip Purpose, Transit Stations
> Parking as a stated reason

Each theme was explored for:
$>$ Specific trip
> General use

Parking Demand (Specific Trip)

Mode Replacement (Specific Trip)

Parking Not Needed
 (Percentage of all rides replaced by ridesourcing)

Q5: "How would you have traveled if Lyft/Uber wasn't an option?"

Parking Demand (General Use)

Parking: Locations (Specific Trip)

O-D Matrix (Driving Trips Replaced)

DESTINATION	Home	Work	School	Shopping/ Errands	Going Out/ Social	Airport	Hotel/ Airbnb	Family/ Friend	Other	Totals
ORIGIN	0	5	1	1	19	13	0	1	2	42
Home	2	2	1	0	0	0	4	0	1	10
Work	1	0	0	0	0	0	0	1	0	2
School	1	0	0	0	0	0	0	0	0	1
Shopping/Errands	8	0	0	0	2	0	0	2	1	13
Going Out/Social	0	0	0	0	0	0	1	0	0	1
Airport	0	2	0	0	0	0	0	0	2	4
Hotel/Airbnb	2	0	0	0	1	0	1	0	0	4
Family/Friend	1	1	0	0	0	1	2	0	0	5
Other	15	10	2	1	22	14	8	4	6	82
Totals										

Trip Purpose (General Use)

Parking: Connectivity to Transit

Q9. Ride connecting with other mode ($\mathrm{n}=311$)		
No	294	94.5\%
Yes	17	5.5\%
If yes, number of rides replacing driving and connecting to transit	3	1.0\%
Q22. Have you ever connected with other mode? (n=293)		
No	233	79.5\%
Yes	60	20.5\%
If yes, number of passenger that stated driving less and public transportation (e.g. bus, rail) as the connection mode	21	7.2\%

Stated reason (Specific Trip)

Q8: For this trip, what is the main reason that led you to choose Lyft/Uber over other options?

Driving Frequency and Reasons to take ridesourcing

IX. Travel Behavior

> Travel Demand Framework

$>$ Mode Frequency
> Travel Behavior Changes
> Trip Purpose
Reasons
$>$ Modality Style

Travel Demand Framework

Mode Frequency

Changes

25. For the next few questions, complete the sentence based on your travel today compared to the past

	A lot less	A bit less	About same	A bit more	A lot more
Because of ridesourcing, Igo to places...	$\begin{aligned} & 3 \\ & 1.0 \% \end{aligned}$	$\begin{aligned} & 2 \\ & 0.7 \% \end{aligned}$	$\begin{aligned} & 144 \\ & 50.0 \% \end{aligned}$	$\begin{aligned} & 121 \\ & 42.0 \% \end{aligned}$	$\begin{aligned} & 18 \\ & 6.3 \% \end{aligned}$
Because of ridesourcing, Idrive...	$\begin{aligned} & 41 \\ & 14.3 \% \end{aligned}$	$\begin{aligned} & 57 \\ & 19.9 \% \end{aligned}$	$\begin{aligned} & 182 \\ & 63.4 \% \end{aligned}$	$\begin{aligned} & 4 \\ & 1.4 \% \end{aligned}$	$\begin{aligned} & 3 \\ & 1.0 \% \end{aligned}$
Because of ridesourcing, I use public transport...	$\begin{aligned} & 38 \\ & 13.2 \% \end{aligned}$	$\begin{aligned} & 86 \\ & 30.0 \% \end{aligned}$	$\begin{aligned} & 146 \\ & 50.9 \% \end{aligned}$	$\begin{aligned} & 14 \\ & 4.9 \% \end{aligned}$	$\begin{aligned} & 3 \\ & 1.0 \% \end{aligned}$
Because of ridesourcing, I bike or walk...	$\begin{aligned} & 10 \\ & 3.5 \% \end{aligned}$	$\begin{aligned} & 77 \\ & 26.7 \% \end{aligned}$	$\begin{aligned} & 187 \\ & 64.9 \% \end{aligned}$	$\begin{aligned} & 7 \\ & 2.4 \% \end{aligned}$	$\begin{aligned} & 7 \\ & 2.4 \% \end{aligned}$
Because of ridesourcing, Itake taxis...	$\begin{aligned} & 88 \\ & 31.5 \% \end{aligned}$	$\begin{aligned} & 25 \\ & 9.0 \% \end{aligned}$	$\begin{aligned} & 165 \\ & 59.1 \% \end{aligned}$	$\begin{aligned} & 1 \\ & 0.4 \% \end{aligned}$	$\begin{aligned} & 0 \\ & 0.0 \% \end{aligned}$

Driving Change vs Public Transport Change

Driving Change vs Public Transport Change

Driving Frequency and Trip Purpose

Driving Frequency
TRAVEL BEHAVIOR

Driving Frequency and Trip Purpose

Driving Frequency
TRAVEL BEHAVIOR

Driving Frequency and Reasons

Driving Frequency and Reasons

"Drive Frequency" versus "Public Transportation + Bike/Walk Frequency"

Modality Style

X. Overall Results

$>$ Driver Perspective
> VMT
> Parking
> Travel Behavior

X. Overall Results

Ridesourcing Times and Distances

> Overall efficiency rate for the study is 39.3% based on time, and 59.2\% based on distance
> In terms of distance, drivers have to travel 69 extra miles in dead-heading for every 100 miles with a passenger

X. Overall Results

RIDESOURCING EARNINGS

> The gross earnings is $\$ 15.69 /$ hour but discounting expenses is less than minimum wage, with an average of \$7.94/hr (tips included).

X. Overall Results

Vmt IMPACT

$>$ Ridesourcing provides more mobility:

- 12.2\% of passengers stated that they "wouldn't have traveled"
$>$ But PMT/VMT efficiency goes from 112.3\% to 60.8\%
> Current ridesourcing VMT is 185% what would have been before, which has significant implications for our cities in terms of congestion and environmental concerns

X. Overall Results

Vmt IMPACT

Based on Lyft/Uber current rate of 1 billion rides per year in the U.S. and assuming the results hold true for the country:

Lyft and Uber rides per year in the U.S.	$1,000,000,000.00$
$\mathrm{t}_{\mathrm{T} \text { mean }}=(\Sigma \mathrm{d}) /$ ride (Table IV.1)	11.90
$\mathrm{VMT}_{\mathrm{AFTER}}=$ Rides per year * 11.90	$11,900,707,268.24$
$\mathrm{VMT}_{\text {AFTER }} / \mathrm{VMT}_{\text {BEFORE }}($ Table V.3)	1.85
$\mathrm{VMT}_{\text {BEFORE }}=\mathrm{VMT}_{\text {AFT ER }} / 1.85$	$6,446,228,741.23$
$\mathrm{VMT}_{\text {EXT RA }}=\mathrm{VMT}_{\text {AFT ER }}-\mathrm{VMT}_{\text {BEFORE }}$	$5,454,478,527.02$

Estimated VMT impact from Lyft/Uber is around 5.5 billion extra miles per year in the U.S.

X. Overall Results

PARKING

High potential to decrease car dependency
$>$ Ridesourcing is replacing driving modes, reducing the need for parking
> Parking difficulty/expense is one of the main reasons for passengers to use ridesourcing instead of driving.

X. Overall Results

TRAVEL BEHAVIOR

$>$ Three common groups of ridesoucing:

1. Drivers
2. Multimodals
3. Non-drivers

- Drivers become bi-modal based on trip purpose
$>$ For typical drivers, ridesourcing is mostly replacing social trips (e.g. go out), to/from airport, and when out of town
> For typical non-drivers, it's replacing work/school trips

XI. Summary Conclusions

> Opportunities and Barriers
> Policy Recommendations
> Future Applications
> Future Research

Limitations

This study doesn't come without limitations:
> Trip sample size
> Denver metro area
> Driver strategy

WE NEED DATA

$>$ Cities and agencies need data - REAL, USEFUL DATA

Highly touted Boston-Uber partnership has not lived up to hype so far

-Robert Galbraith/ Reuters

By Adam Vaccaro June 16, 2016

It was hailed as a milestone for both Boston and Uber in January 2015, when the increasingly ubiquitous ride-for-hire service agreed to share data with City Hall on trips conducted in the city.

IBER'S IILDILY IIELPFIL DATA TOOL COLLLD IIELP CITILSS FIX STREETS

回 uber

POLICY DECISIONS

$>$ Cities and agencies need data

- REAL, USEFUL DATA
- BE CAREFUL WITH INFRASTRUCTURE DECISIONS (TRANSIT)

LYFT AND UBER

> Uber and Lyft are great and could be part of the solution for better transportation systems

- LYFTLINE, UBERPOOL
- DESTINATION FILTER
- PARTNERSHIPS

Ly

- CAR-OWNERSHIP
- EQUITY (PASSENGERS \& DRIVERS)
> Changing business models
- CAR INDUSTRY
- TAXI INDUSTRY
- STAKEHOLDERS

THE FUTURE

> Autonomous Vehicles
> Infrastructure Changes
> Transportation as a service

The Future of Autonomous Vehicles

Robin Chase

ACADEMIA AND RESEARCH

> NEED MORE EMPIRICAL STUDIES
> BETTER RESEARCH METHODS
> BETTER IMPLEMENTATION IN MODELS

- Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., \& Rus, D. (2017). On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National Academy of Sciences.

FUTURE STUDIES

> Equity Study using the Uber/Lyft API

- Hughes \& McKenzie (2016): Equity study in Seattle
- Yanbo Ge et al. (2016): Discrimination study in Seattle and Boston. African American sounding names.
$>$ Deeper analysis of travel demand models
- Demographics
- Modality resources
- Modality Style
- Mode Choice

FUTURE STUDIES

$>$ More interesting things on the data

- Parking (extra time and cost)
- Passenger side
- Geographical Variations (e.g. density, urban-suburban)
- Uber/Lyft Estimated Arrival Time (EAT)
- LyftLine/UberPool user characteristics
- Value of Transit increase
- Value of Time
$>$ Austin, Texas

Impacts of Ridesourcing - Lyft and Uber - on Transportation including VMT, Mode Replacement, Parking, Equity, and Travel Behavior

Alejandro Henao
Doctoral Candidate, Civil Engineering alejandro.henao@ucdenver.edu www.alehenao.com

Doctoral Dissertation Defense January 19, 2017

[^0]: 2011-2015 ACS 5-Year Estimates, Denver County
 ${ }^{\mathrm{b}}$ Age 1st Range is $15-24$ for ACS
 ${ }^{\text {c }}$ Income Range for ACS slighly different

[^1]: n=416 (Lyft: 198, LyftLine: 39, UberX:164, UberPool: 15)

 * Commute based on 65 shifts

