Appendix 2

Identifier implementations in the digital content network

This appendix 2 to the LCC **Principles of Identification** document provides an overview of the main current implementations of identifiers relevant to linked content. It summarises the conceptual frameworks for considering identifiers in the digital network (section 1); internet use of identifiers (section 2); and major implementations of identifiers for specific entities or groups of entities (section 3). It is recommended that this Appendix 2 be read in conjunction with the underlying principles discussed in *Appendix 1: Identification in the digital network*.

1. Frameworks

1.1 Data models for context

An underlying ontology-based analysis is a pre-requisite to express the full dynamic, contextual, nature of managing content.¹ Many different data models have been developed in different content sectors, some deeper than others. Linking content may bring these different sectors into the same application; mapping to a common model, as done within LCC, is the only way to precisely determine if material defined under one data model is "the same" as that from a different model when linking material from different sources. Identifiers are required for each entity; necessarily, these models are infinitely extensible.

In the 1990s three frameworks emerged which have provided the analytical and practical basis for the main metadata developments for media and content which are currently implemented. These were the Functional Requirements for Bibliographic Records report (FRBR) in the library world; the indecs metadata framework (indecs) among media/content providers; and the CIDOC Reference Model (CRM) for museums and archives. The process of FRBRization is underway across the library world, promising greatly improved discovery and access to items and collections. The indecs framework underpins the multimedia content standards of ONIX (from the text publishing domain), DDEX (music), DOI , LCC, and LCC implementations such as RDI. CRM is being introduced in its domain.

Developed independently of one another, these three reached some strikingly similar conclusions:

- They recognise non-material entities as key in content management.
- All three start from an analysis of the process by which things come into being, rather than the things themselves (the "model of making", in indecs terms).
- FRBR and indecs share core terms such as "expression" and "manifestation".
- CRM and indecs share a detailed modelling of events, developed independently.
- Ontologically, all three agree on the priority of relationships as the basis for metadata.

However, these models also have some important differences, not least in the specific meaning attached to the names of terms they employ. Each was informed by different functional requirements, and so has evolved different mechanisms for dealing with the issues that seemed most important to them. Broadly, they are compatible, and effective integration of metadata from schemes based on them should be achievable, but they must be handled with care; notably terms

¹ J. F. Sowa, "Knowledge Representation: Logical, Philosophical and Computational Foundations" Brooks/Cole, Pacific Grove, CA, 2000. <u>http://www.jfsowa.com/krbook/index.htm</u>

like *performance, manifestation, fixation, expression* and *work* need to be carefully mapped to ensure they are being used compatibly. The approach taken by LCC is derived from indecs but encompasses the wider mapping necessary to interoperate with other frameworks.

The indecs ("interoperability of data in e-commerce systems") project, part funded by the European Community Info 2000 initiative and by several organisations representing the music, rights, text publishing, authors, library and other sectors in 1998-2000, has since been used in a number of metadata activities. The indecs Metadata Framework document "Principles, model and data dictionary"² is a summary³. indecs provided an early analysis of the requirements for metadata for e-commerce of content (intellectual property) in the network environment, focussing on semantic interoperability. It built on a simple generic model of commerce (the "model of making") which shares its underpinnings in the contextual approach of the RRM. This foundation work has been developed, proven, and built on over the last decade in several significant content industry specifications which are aligned with the LCC approach, for example:

- RDA/ONIX Framework for Resource Categorization;
- Vocabulary Mapping Framework for major bibliographic and cultural heritage standards;
- DDEX (Digital Data Exchange) music industry messaging and data dictionary applications;
- ONIX (Online Information Exchange) standards for the use of publishers in distributing digital metadata about their products;
- Digital Object Identifier System metadata schemes;
- ISO/IEC 21000-6 (MPEG) Rights Data Dictionary (RDD)

The approach also has much in common with, and can be mapped consistently to, the CIDOC Conceptual Reference Model (CRM), an ontology for cultural heritage information, and the Functional Requirements for Bibliographic Records (FRBR) model in the library world.

We have not discovered any further underlying statements of principle which are not already encompassed in indecs or which meet the requirements of the Digital Identifier Network. Other proposals we have reviewed include:

- ISO TR 21449⁴: now outdated and does not add anything to the LCC analysis;
- URN Functional requirements (also now outdated and being reviewed in the light of developments since their original inception⁵);
- URI principles (see below under "Resolution"; also under potential review).
- Dublin Core: devised as a metadata set for searching for bibliographic resources on the internet, this has been called "fifteen terms in search of a data model". From the beginning its scope was limited; it is of some value for managing basic descriptive terms, but even there its limitations in terms of vagueness and ambiguity cause some serious problems (e.g. arbitrary distinction of "dc:creator" and "dc:contributor" which will be interpreted quite differently by different users, or the extreme vagueness of "dc:date"). Very few serious content metadata standards developed since Dublin Core have built on it, in both the content creator/publisher world (ONIX, DDEX, PRISM, PLUS etc.) and recent major bibliographic developments (FRBR and RDA).

² *The <indecs> metadata framework Version 2.0,* June 2000: G. Rust & M. Bide. http://www.doi.org/topics/indecs/indecs_framework_2000.pdf

³ In addition a useful brief independent overview can be found at <u>http://www.slaw.ca/2014/02/24/applying-</u> <u>the-indecs-model-to-interoperability-of-legal-data/</u>

⁴ ISO/TR 21449, Content Delivery and Rights Management — Functional requirements for identifiers and descriptors for use in the music, film, video, sound recording and publishing industries

⁵ <u>http://datatracker.ietf.org/wg/urnbis/charter/</u>

indecs proposed four principles as key to the management of identification:

- *The principle of Unique Identification:* every entity should be uniquely identified within an identified namespace.
- The principle of Functional Granularity: it should be possible to identify an entity whenever it needs to be distinguished
- *The principle of Designated Authority:* the author of an item of metadata should be securely identified.
- The principle of Appropriate Access: everyone requires access to the metadata on which they depend, and privacy and confidentiality for their own metadata from those who are not dependent on it.

The indecs framework document notes that "It is rare that any of these is fully realised; but the extent to which they are realised largely determines the ultimate usefulness and resilience of any given metadata schema in terms of its effective interoperability with other domains."

indecs also produced a useful definition of metadata:

• An item of metadata is a relationship that someone claims to exist between two referents (entities).

The indecs framework stresses the significance of relationships, which lie at the heart of the indecs analysis and also of the LCC's remit. It underlines the importance of unique identification of all entities (since otherwise expressing relationships between them is of little practical utility). Finally, it raises the question of authority: the identification of the person making the claim is as significant as the identification of any other entity. indecs was therefore a significant step in recognising the major improvements needed in the Digital Identifier Network⁶ which are essential for the success of rights information exchange.

Independently, but wholly consistent with the indecs principles, the ontology expert John Sowa has noted that "Identifiers must be associated with sufficient metadata to specify (1) the permissible string of bits for an the identifier, (2) the naming scheme that determines how those bits are resolved to some entity, and (3) the ontological assumptions for determining how to interpret anything that may be found by this process", and has also provided a concise but incisive analysis of fundamental issues of identification on the Web⁷.

1.2 Digital Object Architecture

The Digital Object Architecture is an implementation of the three-component logical model for implementation of first-class identifiers on digital networks described in Appendix 1: a registry of identifiers; a resolution mechanism to link the identifier to some data; and repositories where data may be found. ITU standard ITU-T X.1255 "Framework for Discovery of Identity Management Information" (2013)⁸ lays out an architecture, including types and type registries, as the underpinning of the 'Framework' as a citable technical standard. It also includes a number of useful

 ⁶ See the LCC Document "The Digital Identifier Network", published simultaneously with this document.
 ⁷ John Sowa, at <u>http://ontolog.cim3.net/forum/ontolog-forum/2007-04/msg00030.html</u>; see also the in depth analysis in his book *Knowledge Representation: Logical, Philosophical, and Computational Foundations*, Brooks

Cole Publishing Co., Pacific Grove, CA, 2000. (summary at <u>http://www.ifsowa.com/krbook/</u>)⁸ available free of charge at <u>http://www.itu.int/rec/T-REC-X.1255-201309-I</u>; ITU announcement: http://newslog.itu.int/archives/137

definitions. While the Recommendation is focused specifically on identity management information, it is applicable more generally to many different types of information in digital form.

The Digital Object Architecture (DOA)⁹ on which ITU ITU-T X.1255 is based is a logical evolution of the internet's fundamental architecture¹⁰. It is a framework combining resolution, registry and repositories in an integrated approach and tools; using persistent, globally unique identifiers, as provided by the Handle System, it offers enhanced flexibility in how objects are stored, moved, replicated, and referenced¹¹. The DOA provides a mechanism for the creation of, and access to, digital objects as discrete data structures with unique, resolvable identifiers. These digital objects provide a foundation for representing and interacting with information on the Internet. CNRI make available implementations of DOA components for download, installation, and use by any organization or community, as an open-specification and software. The Handle System is an implementation of the DOA resolution component. It is used by DOI (ISO 26324). The DO Registry¹² enables users to provide their own metadata schemas, after which objects are registered with their metadata and that metadata is indexed and made searchable (each such DO Registry is, in effect, a specialized index over a collection of digital material in one or more repositories). Some (but not all) DOI applications also use the registry component¹³. The DOA is logically independent of the underlying "wiring" DNS but fully compatible with it (e.g. DOA resolution may be mapped to DNS via proxy servers).

In 2014, the Digital Object Architecture will reach a significant juncture with a change in the administration of one of its key components, the Global Handle Registry (GHR). CNRI has maintained control over the administration of the GHR since it was first made available in the Internet by CNRI in 1994. Plans are now well underway to transfer overall administration of the GHR to the DONA Foundation, a non-profit organization based in Geneva. The Foundation will be responsible for determining the set of system administrators, for digitally signing critical system information, and for establishing the overall policies and procedures governing the GHR's operation. Multiple independent parties, which are authorized and credentialed by the Foundation, will be responsible for the distributed operation of the GHR¹⁴.

2. Internet use of identifiers

2.1 Assumptions

As far as possible the "set of requirements for identification to provide a uniform approach to accessing rights data" called for by LCC has been cast as technology-neutral. There is, however, one exception since it is necessary to assume some level of implementation: as the Digital Identifier Network the digital network to which LCC applies substantially relies upon is the Internet an LCC-conformant identifier should be Internet Protocol compatible, as the digital network to which LCC

¹² www.doregistry.org

⁹ www.cnri.reston.va.us/papers/OverviewDigitalObjectArchitecture.pdf

¹⁰ Kahn, Robert E. "The Architectural Evolution of the Internet". Corporation for National Research Initiatives, November 17, 2010. hdl:4263537/5044

⁽⁼ http://www.cnri.reston.va.us/papers/Architectural_Evolution_Internet_17Nov10.pdf)

¹¹ See e.g. "Digital Object Repository Server: A Component of the Digital Object Architecture": Sean Reilly & Robert Tupelo-Schneck. D-Lib Magazine, January/February 2010, Volume 16, Number 1/2 http://www.dlib.org/dlib/january10/reilly/01reilly.html

¹³ "Using the DOI System with Digital Object Registry technologies": www.doi.org/doi handbook/5 Applications.html#5.7

¹⁴ Interview with Dr Robert Kahn: http://itu4u.wordpress.com/2014/01/06/lost-something-on-the-internetnever-again-with-new-digital-object-do-architecture/

applies substantially relies upon is the Internet¹⁵. We have avoided recommendations at a higher technology layer – for example, http content negotiation on the web - so as to provide recommendations which can accommodate changes to adjacent "layers" and be useful for multiple access streams (web, mobile, XML, etc.).

2.2 Resolution, content management, and access methods

Identifier resolution is the process of going from an identifier to information about the identified entity and in some cases the entity itself. Identifiers that can be resolved over the Internet are sometimes described as 'actionable' and resolution is sometimes also called de-referencing¹⁶. In current practice, the main focus of LCC work is currently on the use of http (hypertext transfer protocol) built on the underlying internet. That in turn uses the http (hypertext transfer protocol) and related developments, generally running on top of the Domain Name System (DNS) layer for resolution. DNS was never intended to be a persistent identifier system, and it has some fundamental issues relating to persistence and security when used for that^{17 18}. Protocols other than http may become increasingly important through mobile devices, etc.: "On the internet, web pages are only one of the many kinds of traffic that run on its virtual tracks. Other types of traffic include music files being exchanged via peer-to-peer networking, or from the iTunes store; movie files travelling via BitTorrent; software updates; email; instant messages; phone conversations via Skype and other VoIP (internet telephony) services; streaming video and audio;and there will undoubtedly be other kinds of traffic, stuff we can't possibly have dreamed of yet, running on the internet in 10 years' time"¹⁹.

We specify URI as a general concept as an identifier common format in which identifiers should be expressible as a pragmatic choice; http URIs are predominant on the Web. However some areas of content linkage may rely on http more than others: for example, Skype, Facetime, e-mail, most instant messaging, etc. are non-http. Of particular interest for content linking is the growth of mobile access: a reputable survey claims that mobile devices already account for 13% of all internet traffic; in 2012, 24% of all online shopping on "black Friday" (23 November) in the US was done via mobiles (up from 6% two years ago); and that in May 2012 mobile internet traffic in India overtook

http://www.isi.edu/newarch/iDOCS/final.finalreport.pdf

¹⁵ Internet" refers to the global information system that --

⁽i) is logically linked together by a globally unique address space based on the Internet Protocol (IP) or its subsequent extensions/follow-ons;

⁽ii) is able to support communications using the Transmission Control Protocol/Internet Protocol (TCP/IP) suite or its subsequent extensions/follow-ons, and/or other IP-compatible protocols; and

⁽iii) provides, uses or makes accessible, either publicly or privately, high level services layered on the communications and related infrastructure described herein."

^{(&}lt;u>http://www.cnri.reston.va.us/what_is_internet.html#xv</u>). What Is The Internet (And What Makes It Work) - December, 1999: Robert E. Kahn and Vinton G. Cerf

¹⁶ We note also that the term "resolution" is used in some areas (but not in LCC) to denote what we would call disambiguation: e.g. OYSTER (Open sYSTem Entity Resolution:

<u>http://sourceforge.net/p/oysterer/home/Home/</u>) "is an entity resolution system that supports probabilistic direct matching, transitive linking, and asserted linking"; the term "resolution" here (resolving conflicting data records) is not the same as "resolution" as used in network de-referencing. Both disambiguation (ensuring that we identify each unique entity, and associate a record for each identified entity) and network resolution (deploying the unique identifiers to look up the current state of the record) are necessary parts of an identification system; but need to be distinguished.

¹⁷ DARPA: "New Arch:Future Generation Internet Architecture"; D Clark et al.

¹⁸ John Naughton: "Is it time for the internet to get the plumber in?". The Observer, 13 January 2013. http://www.guardian.co.uk/technology/2013/jan/13/internet-needs-to-get-rebuilders-in

¹⁹ John Naughton: "The internet: Everything you ever need to know".

http://www.guardian.co.uk/technology/2010/jun/20/internet-everything-need-to-know

PC-based traffic²⁰. Most mobile apps probably use http to exchange data but there is really no easy way to tell, since the app hides everything; in addition, mobile devises use technology which is less open than the web²¹. It is likely that most apps that display information that could be on a web page are using http (since much of the composition and display engine is already done as a combination of http and html).

We can further distinguish between native apps and mobile web: a user can download a specific app (for e.g. an iPad) or can take any given web page and make an icon of it: they both look like apps on the screen but the web page needs connectivity and can only do whatever the web stuff can do; by contrast the 'native' app can anything it is programmed to do (though budgets may dictate a specific path for content providers who have to consider Apple, Android in many varieties, Microsoft, etc.). In theory the mobile web in HTML5 will be "write once run everywhere" but so far the native apps (less open technology) have the advantage and the lead; they can access things like the camera and other apps and the advantage that security is easier to manage with a dedicated app rather than relying on what the web browser and web site give you.

2.3 Resolution and internet protocols

A technical definition is in IETF RFC 3404: identifier resolution is "a process by which an identifier string is employed to access its associated object and/or descriptive information about the object (metadata). This usually involves one or more intermediate mapping operations". More usefully, resolution is the process in which an identifier is the input — a request — to a network service to receive in return a specific output of one or more pieces of *current information* (state data) related to the identified entity (e.g., a location URL): that is, the associated state data may be dynamic (change over time) yet still be associated with the identifier. *Multiple resolution* (as in the Handle System²²) is the return as output of several pieces of current information related to an identified entity: specifically at least one URL plus defined data structures. These may be configured so as to return only the most appropriate value for the given context²³, and thus multiple resolution is one option for facilitating contextual management of identifiers.

Note the distinction of the referent (the thing that is identified by an identifier) from the result of a resolution request: resolution may return the referent (or more likely an instance or representation of it as a digital object), but more often will return some data about the referent.

It is important to understand the role, and limitations, of current internet resolution deployments especially the Doman Name System in relation to identifier management. This: <u>www.acme.com</u> is a domain name, which DNS resolves to an IP address, while this <u>http://www.acme.com/BigChart</u> is not a domain name: it is a URL, invented for hyperlinking. It relies on DNS resolution as the first step to find the IP address for an http server. DNS is an excellent resolution mechanism for domain names. This does not make it a resolution mechanism of any kind for other names or identifiers until you add something else. So using DNS and URLs for identifiers requires that you design some approach to using them consistently and coherently. In the same way that DNS and http URLs have not

²⁰ Mary Meeker: 2012 KPCB Internet Trends Year-End Update (Dec 03, 2012):

http://www.slideshare.net/kleinerperkins/2012-kpcb-internet-trends-yearend-update

²¹ http://www.guardian.co.uk/technology/2012/dec/09/smartphones-boom-bad-for-internet

²² www.handle.net The Handle System was designed as a resolution system for digital objects and it serves as a level of indirection to any sort of current state data that you care to associate with the object through the identifier resolution mechanism. The Handle System provides a way to use DNS and URLs for identifiers, which simultaneously provides an identifier that can be resolved without using DNS and URLs, if you choose to use it like that. Most uses of the Handle System involve DNS, either as a way to get common web browser clients to communicate with handle servers (e.g. http://dx.doi.org/10.1037/0003-066X.59.1.29 or as the current state data returned from that resolution (e.g. http://psycnet.apa.org/?&fa=main.doiLanding&doi=10.1037/0003-066X.59.1.29).

²³ For an example using DOI, see <u>http://www.doi.org/doi_handbook/5_Applications.html</u>

replaced databases but give you an easy way to reference databases, they will not replace wellstructured identifier systems but can give you an easy way to reference those identifier systems.

2.4 DOI system

The Digital Object Identifier [DOI[®]] system²⁴ (ISO 26324) provides a technical and social infrastructure for the registration and use of "*persistent interoperable identifiers for use on digital networks*". It was specifically developed for the content industries with the aim of rights management at the forefront (though not the only application), initiated by the publishing community in 1998 and since adopted by other sectors for persistent unique identification of objects of any type. It places special emphasis on persistence and on semantic interoperability.

DOI is an acronym for "digital object identifier", meaning a "digital identifier of an object" rather than an "identifier of a digital object". It has so far been widely adopted for the identification of creations in some content sectors, notably the scholarly publishing, scientific data, and entertainment industries, with 100 million DOIs assigned by the end of 2014. The DOI system implements the Handle System²⁵ (a persistent identifier system which runs alongside, but does not require, DNS and is Unicode compliant) and the indecs Framework; a governance and management body oversees a federation of Registration Agencies providing DOI services and registration, and is the registration authority for the ISO standard (ISO 26324).

The DOI system may be used with existing standard identifiers such as ISBN²⁶, (either by inclusion in DOI metadata and/or in a DOI syntax)²⁷, or DOIs may be assigned to entities which are not otherwise already identified. The DOI system complies with the proposed LCC specification.

2.5 URI

Uniform Resource Identifier (IETF RFC 3986) provides an extensible means for identifying a resource within the World Wide Web. Each URI begins with a scheme name that refers to a specification for assigning identifiers within that scheme; each scheme's specification may further restrict the syntax and semantics of identifiers using that scheme. The commonly seen "http:" URI is only one such scheme among some 75 defined (and a further 100 or so "provisional") URI assignments²⁸ forming a broad church of mainly technical protocols (mailto, ftp, telnet, file etc.) with little relevance to linking of content, with a few exceptions.

The URI specification defines (1) an implementation to access a location on a file server, commonly accessed using the http protocol though other protocols are allowed; (2) a syntax for referencing, through which e.g. ISBNs can be specified as URIs. The network path of the URI is implicitly DNS based; the formal URI specification that allows the URI to be opaque following the scheme name, e.g., 'http:' or 'mailto:', has been generally overtaken by practical usage which assumes that the initial URI parser will look for meaningful characters (such as dot and slash).

The use of URIs as identifiers that don't actually identify network resources (for example, they identify an abstract object, or a physical object) was recognised as an unanswered problem in RFC 3305. This usage is important in any semantic application. To address this, the info URI scheme²⁹ (see further discussion 2.4.6 below) was developed by library and publishing communities for "URIs of

²⁴ Digital Object Identifier system: <u>www.doi.org</u>

 ²⁵ Handle System: <u>www.handle.net</u>. The Handle system provides "efficient, extensible, and secure resolution services for unique and persistent identifiers of digital objects," and may also be used for non-digital referents.
 ²⁶ DOI System and the ISBN System: <u>http://www.doi.org/factsheets/ISBN-A.html</u>

²⁷ DOI System and Standard Identifier Schemes: <u>http://www.doi.org/factsheets/DOIIdentifiers.html</u>

²⁸ http://www.iana.org/assignments/uri-schemes.html

²⁹ IETF RFC 4452: <u>http://info-uri.info</u>

information assets that have identifiers in public namespaces but have no representation within the URI allocation". OpenURL³⁰ adopted it and was a key the motivation for it. InfoURI registrations can be made by anyone, not necessarily the authority for a particular namespace.

URIs may be used as "abstract" URIs (under the namespace "tag:" as an example³¹) for semantic web uses (RDF, some ontologies); therefore it is possible for any identifier to be cast as a URI, though whether this is useful will depend upon context of use.

2.6 URI in relation to URL and URN

There is commonly some confusion and misunderstanding about the term URI and related terms, which is entirely understandable given the historical ambiguity and confusion in their use. RFC 3986 (2005) aimed to end this by stating that a URI can be classified as a locator, a name, or both. In this view, the term URL refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource; the term URN has been used historically to refer to both URIs under the "urn" scheme (RFC 2141) which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. RFC 3986 requires that the terms URL and URN be deprecated. This brings a uniformity to the technical treatment of all URIs; however the risk of confusion remains, from:

- cited documents which rely on earlier, now superseded, statements of the position;
- the use of one simple top level term (URI) may hide useful distinctions which some users, e.g., librarians, may wish to make between a unique name and a location, for example when a named resource is available at multiple locations;
- considerations of how widely used non-web identifiers (such as ISBNs, RFIDs, social security numbers, etc.) relate to URIs, which can lead to:
- confusions of identifier, representation, and access mechanism;
- lack of appreciation of identifier usage outside the WWW;
- use for non-digital referents; and
- the requirement to perceive the web as only part of the Internet and the Internet as only part of information.

In the view now considered by RFC 3986 to be obsolete, URIs have two subclasses: URN (identifying names) and URL (identifying single locations). In the RFC 3986 view, web-identifier schemes are all URI schemes, as a given URI scheme may define subspaces; some of these may be access mechanisms (e.g., "http:") whilst others may be namespaces (e.g., "urn:").

W3C state: "The vulnerability of any digital material to unexpected or unintended changes in Internet domain name assignment, and hence to the outcome of domain name resolution, is widely recognised. The fact that domain names are not permanently assigned is regularly cited as one of the main reasons why http:URIs cannot be regarded as persistent identifiers over the long term".³²

³⁰ OpenURL is a mechanism for transporting metadata and identifiers describing a content item (typically a text publication) for the purpose of context-sensitive linking through a local link resolver.

³¹ IETF RFC 4151: <u>http://www.rfc-editor.org/rfc/rfc4151.txt</u>

³² Domain names and persistence: Report on a W3C workshop: Henry S. Thompson, Jonathan Rees, January 2012: <u>http://www.w3.org/2001/tag/2011/12/dnap-workshop/report.html</u>

2.7 Possible revision of URI specification

A post³³ to the W3C URI list by Larry Masinter (a long-term member of the W3C Technical Architecture Group and one of the co-authors of the URI syntax RFC 3986) proposed creating a new RFC that "obsoletes 3986 (URI) with a document that combined it with 3987 (IRI, Internationalized Resource Identifier, a generalization of URI allowing the use of Unicode), reverts to the "URL" name, and gave updated parsing advice"; he also posits the possibility of "removing any basis for support of using http URLs to "mean" abstractions or people", on the grounds that there is confusion over "whether *http://larry.masinter.net#the_person* could identify, locate, or name me rather than a paragraph of my home page"; and "including URN". It seems that the confusion between a referent and what an item resolves to is still not sufficiently appreciated. Any such URI re-definition is unlikely to happen in the near future; such a move would appear to be a significant change in the development of W3C's approach to URL.

2.8 URN

Uniform Resource Name (RFC 2141, 1997) is a specification for defining names (identifiers) of resources for use on the Internet. In this RFC locations are assumed to be independent of names. URN resolution is still an active topic of discussion, and has active use, especially in the library community (e.g. for treatment of National Bibliography Numbers as URN in RFC 3188). RFC 2141 defines (1) a formal registration process as a urn namespace, and (2) accompanying specifications to implement a series of functional requirements for such namespaces. Existing identifiers may thereby be specified as a URN: e.g. an ISBN as *urn:isbn:9789521061547*; such identifiers may be implemented using a specially written URN plug-in and resolved to URLs: functionally this gives nothing beyond that achieved by coherent management of the corresponding URLs.

Currently URN is under review: an IETF Working Group, "Uniform Resource Names, Revised", has undertaken the task of reworking and updating the key URN RFCs (the so-called "URN-bis" process"), including RFC 2141, which date from 1997-2001, to reflect the URN implementation experience gained since that time. Proposed changes include updating the syntax specification, a formal IANA registration for the 'urn' URI scheme, revised URN examples, and updated descriptions of how URNs are resolved based on current practices. The outcome of this revisiting of the URN scheme is currently awaited³⁴.

URN architecture assumes a DNS-based Resolution Discovery Service (RDS) to find the service appropriate to the given URN scheme. However no such widely deployed RDS schemes currently exist: browsers cannot action URN strings without some additional programming in the form of a "plug-in". These carry no guarantee of ready interoperability with other deployments, which may require a different plug-in for each implementation and may use conflicting data approaches. Therefore most existing URN implementations embed the URN as a http URI which contains the URL of the relevant resolution service (e.g. for the URN form of the ISBN shown above, resolved via the Finnish national URN service http://urn.fi, the actionable form of the URN is http://urn.fi/URN:ISBN:978-952-10-6154-7). There is no global service aware of national and/or regional URN resolution services, but there are some proposals to provide one (e.g. http://www.persid.org).

The set of URNs, of the form "*urn:nid:nnnnn*", is a URN namespace ("nid" is here a URN namespace identifier, neither a "URN scheme", nor a "URI scheme"). The official IANA list of registered NIDs³⁵ at

³³ Nov 2, 2012: http://lists.w3.org/Archives/Public/uri/2012Nov/0000.html

³⁴ Latest drafts, including a reworking of the specifications for ISBN and NBN as URN, were published in October 2012 at http://datatracker.ietf.org/wg/urnbis/

³⁵ <u>http://www.iana.org/assignments/urn-namespaces</u>

lists 40 registered NIDs; however many of these are not widely used as URNs, including some content identifiers (e.g., ISSN, ISBN). URN registration currently requires an additional layer of administration for defining a URN namespace (e.g. the string urn:doi:10.1000/1 rather than the simpler doi:10.1000/1) and redirection to access the resolution service.

2.9 Info URI

The "info" URI initiative was launched in 2003 *"to fill a requirement for using identifiers on the Web that derived from public namespaces but that had no canonical URL form"*. Info URI was originated in 2003 by NISO³⁶ and became IETF RFC 4452³⁷. According to that RFC "3.3. Maintenance of the "info" Registry: The public namespaces that may be registered in the "info" Registry will be those of interest to the communities served by NISO, and therefore NISO is committed to act as Maintenance Authority for the "info" Registry and to assign a Registry Operator to operate it."

In May 2010, the "info" URI Registry (info-uri.info/) posted this notice: "When work on the "info" URI scheme began, the W3C 'Architecture of the World Wide Web' (2004) had yet to be published, and the currently emerging framework for Linked Data was scarcely in its infancy. Using the HTTP protocol for both access and persistent identity can be seen to be problematic in certain respects, although it has the undeniable virtue of requiring no additional registration infrastructure. Also, the need to guide and validate registrations of "info" URI namespaces created an approval process bottleneck that is inimical to the rapid and flexible progress that is seen to be the hallmark of the Web. The Linked Data idiom is currently ascendant, and accommodates both resource resolution and identification, which is different than the simple "info" premise of URI identification alone. This approach to resource identity is likely to conform more closely to evolving practice. For these reasons, it has been deemed appropriate to close the registry to further "info" namespace registrations. The "info" registry will continue to be supported for the foreseeable future, although prudent adopters should consider migrating their resource identity requirements towards mainstream Web practices over the long term."

Viewed from within the world of http, as in the statement above, all first class identifier must all become second class identifiers - because the world is only http. If you accept that premise, then `all http's become first class because the "http://" namespace is immanent (e.g., if ISBN were invented now, it presumably would face claims that the syntax has to be something like ""http://www.isbn-international.org/1234561234567". We note that there exists a case of actively used non-http resolution (Handle), and there exists a set of internet protocols allowing other resolution mechanisms to be invented.

2.10 Non-ASCII characters, internationalisation, Unicode

The issue of non-English characters and special characters in identifiers is a complex one which can only be briefly summarised here. In theory (and ideally, from the point of view of local language use), identifiers could incorporate any printable characters from the Universal Character Set (UCS-2), of ISO/IEC 10646, which is the character set defined by Unicode v2.0. The UCS-2 character set encompasses most characters used in every major language written today. In practice, the treatment of non-standard characters across Internet applications varies: because of specific uses made of certain characters by some Internet technologies (the use of pointed brackets < > in xml for example), there are effective restrictions in day-to-day use and special encoding may be required, which cannot always be guaranteed to be understood. Despite the proposed development of

³⁷ http://www.ietf.org/rfc/rfc4452.txt

³⁶ NISO press release 28 Nov 2005

http://www.niso.org/news/pr/view?item_key=4b8a9e2d84fe28e5559d725eb6acd6fd9b1eb53d

Internationalised URIs (IRIs), in practice the use of foreign language symbols cannot be guatrnteed to be widely supported.

Even an apparently trivial issue such as case sensitivity is not simple: DNS is not, the rest of URLs may or may not be (this depends on the server), Unix and PC/Mac file names differ (Microsoft Windows in general is not case-sensitive, Unix operating systems are always case sensitive). Mark-up language tags, etc. can all cause unexpected problems and one cannot guarantee that any particular piece of software will respect case sensitivity and not conflate two identifiers intended to be different. Some search engines and directories are partially case sensitive. Different web browsers may differ in case sensitive handling (web browser developers have advised that "authors should not rely on case-sensitivity as a way of creating distinct identifiers, unless they are designing solely for a truly standards-compliant browser").

This argues in favour of case insensitivity and simple alphanumeric (ASICII) characters being the safer, and more robust, option for future evolution and development of identifiers on digital networks. Note that even then, traps remain, e.g. names with leading digits may cause problems in certain applications.

2.11 Fragment identification

A fragment identifier is a string that refers to a resource that is subordinate to another, *primary* resource. The fragment is not a first class object³⁸ but instead its identity is defined as a sub-set of the primary resource. A problem raised by fragment identifiers is the existence of an infinite set of possible ad hoc identifiers from one base primary resource (e.g., time ranges in a video). And of course for most people today "fragments" is used in one specific sense (http) - the piece of a URL that the server doesn't really know about and that the client hangs on to and then processes the html returned to get there or do the right thing (this is a function of the hypertext model that was initially selected for http/html – it is at the file level so to get to some specific point required a second mechanism). In the internet, fragment identifiers are well understood in principle, but not uniformly dealt with³⁹: among proposals of particular interest are:

• IETF RFC 5147 "URI Fragment Identifiers for the text/plain Media Type". http://www.rfcarchive.org/getrfc.php?rfc=5147 "This memo defines URI fragment identifiers for text/plain MIME entities. These fragment identifiers make it possible to refer to parts of a text/plain MIME entity, either identified by character position or range, or by line position or range. Fragment identifiers may also contain information for integrity checks to make them more robust". RFC 5147 proposes a fragment identifier for text/plain documents based on character and line positions and ranges within the document using the keywords "char" and "line": e.g. http://example.com/document.txt#line=10,20 identifies lines 11 through 20 of a text document. Hence it has more affordance⁴⁰ than the ISMC proposal, but is more limited as it deals only with text. RFC 5147⁴¹ is therefore not identical in scope, but somewhat similar in concept to the idea of the ISMC.

 $^{^{38}}$ First class = "one that has an identity independent of any other item".

³⁹ <u>http://en.wikipedia.org/wiki/Fragment_identifier</u>

⁴⁰ Affordance = "the ability to generate a syntactically correct identifier from content-in-hand".

⁴¹ RFC 5147 is a "Standards track" RFC from April 2008, but as far as I can tell it's actually no more developed than an "informational" RFC and so has no particular special standing. Unlike ISO, the RFC process has many "standard track submissions" that are never taken further. I cannot find any evidence of RFC 5147 being adopted or supported. The RFC Standards track is not a particularly rational process: TCP/IP, for example, never was a standard and it is used trillions of times every day. RFC 5147 purports to update 2046, which is

- W3C has a draft specification for Media Fragments: http://www.w3.org/TR/media-frags/ this is restricted in two senses: (1) it specifies only use of http; and (2) the specified addressing schemes apply mainly to audio and video resources the spatial fragment addressing may also be used on images. The Media Fragments 1.0 specification, still a working draft, specifies the syntax for constructing media fragment URIs and how to handle them when used over the HTTP protocol. The syntax is based on the specification of particular field-value pairs that can be used in URI fragment and URI query requests to restrict a media resource to a certain fragment. Because of its restrictions, this W3C draft does not appear to be directly relevant to ISMC, but as it will no doubt be widely promoted it would be helpful to make clear the differences if ISMC goes forward.
- The Handle System deals with potentially infinite fragments by introducing a delimiter, with the base as a registered handle [an identifier of the primary resource], and defining a transformation on any possible tail. The *template handle* construction makes use of <template> tags in XML-structured handle values. When a server receives a resolution request for a handle which is not in its database, it determines if there is template for constructing the handle values; if so the server looks up the base handle (i.e. the part before the delimiter) and adds the part after the delimiter from the template XML <value> tags defining the handle values of the result. Hence infinite fragments can be managed as they are created, through templates built on the primary resource. It is possible that MPR codes could be optionally managed "behind the scenes" in this way but it is probably not part of any standard.

2.12 Linked data

The adoption of URI in the LCC identifier specification conforms to the W3C Linked Data principles⁴². LCC takes the view that linked data needs to go further: linking is only as good as the quality of the data being linked to. LCC builds on the basic principles of linked data to address other issues such as the quality and typing of the values returned. URIs can be resolved to retrieve metadata about a content item, transaction, rights agreement, etc.

In the W3C Linked Data summary, it is noted that "an opportunity to make data interconnected... limits the ways it can later be reused in unexpected ways. It is the unexpected re-use of information which is the value added by the web..... Of course, this means that you have to get your data right, so it can be used in a reliable and automated way, as you write." LCC is about such *reliable* and *automated* use of information: to see the Web and other networks behave as far as possible in the reliable way that a single database does so that transactions can be made across it automatically and with confidence, using the Digital Identifier Network as a virtual database.

"Linked Data" alone is not sufficient to establish a trustworthy industry-standard data exchange. A significant advantage of applying Linked Data principles and technologies to identifier-registered material is that it is 'data worth linking to': it is curated, value-added, data, which is managed, corrected, updated and consistently maintained by registration authorities and agencies. It is also ideally persistent, so avoiding 'bit-rot'. In practice, the quality of Linked data implementations is only as good as the data you are linking to, and the meaning and contextualisation of the link you use. The LCC system should enable "curated data", i.e. consistent, managed, linking so you can link to other "quality data" with confidence, while still using the standard Linked Data technologies.

the MIME standard from 1996 and its still listed in Proposed Standards despite the fact that it is used in every http header every day.

⁴² <u>http://www.w3.org/DesignIssues/LinkedData.html</u>

There are still many first class identifiers (ISBN, DOI, ISRC, social security numbers, etc.) which might need to be referenced in linked data by internet applications (first class in this case also means independent of any protocols used to resolve it). A list of registered infoURI schemes⁴³ contains several well-known ones: the info scheme allows them to remain as first class identifiers, whereas expressing them in a http URL enforces fragility through use of the domain name system. It is unfortunate that all these existing schemes have lost the ability to reference easily a first class identifier (the info URI scheme and registry still exists but clearly is deprecated). The only proffered alternative is to have each of the identifier schemes register as its own URI scheme, which surely was not the intent. It is worth noting the fundamental issue of internet-based content identification, as analysed by the ontologist John Sowa⁴⁴, and his conclusion:

- "For physical objects, names are not unique because two different objects can have the same name.
- However, the laws of physics guarantee that no two physical objects can fill the same physical volume at the same time. Therefore, space-time coordinates can serve as unique identifiers.
- But we still have controversies between those who claim that terms such as "vase" and "lump of clay" represent only one individual at any given space-time location and those who claim that they represent two distinct individuals.
- The URLs and URIs of the WWW are based on a naming scheme that ultimately resolves to physical devices. It guarantees that an identifier will determine a unique storage location at a given point in time⁴⁵.
- However, the policies of the WWW and of each domain on the WWW permit the same identifiers to be resolved to different physical locations at different times.
- The nature of data allows multiple copies to be replicated at different locations very quickly, and it allows the same location to contain different data at different times.
- Those same issues make it very difficult to generalize a naming system designed for data to a naming system for physical entities and vice versa.
- These characteristics imply that the URIs of the WWW are important for certain kinds of resources, but they are just one scheme among many other "universal" schemes, such as social-security numbers, ISBNs, geographical co-ordinates, DUNS numbers, etc."

An opportunity appears to exist to take action to help with this problem: to develop a scheme and methodology for confidently and predictably associating a given existing non-internet registry scheme with a URI and associated structured metadata (the DOI system provides a clear example). The URN scheme and infoURI scheme, each devised to provide in part a solution, seem to have gained little practical uptake and traction in this space.

⁴³ http://en.wikipedia.org/wiki/Info URI scheme

⁴⁴ John Sowa, at <u>http://ontolog.cim3.net/forum/ontolog-forum/2007-04/msg00030.html</u>

⁴⁵ Although not destroying the main argument, it should be noted that this point is not precisely true, although it is an approximation which most users would accept (and was closer to the truth in 2007): the domain name piece of a URL may point to multiple IP addresses, which roughly correspond to multiple 'unique storage' locations at a given point in time (although to add to the complexity, that is also a little fuzzy as a given physical server can easily be the end point for routing to multiple IP addresses). The Sowa analysis is still very useful in considering the Internet as a collection of connected devices, but it continues to get more complicated; and this reinforces the point that identifiers require a specific dedicated mechanism beyond DNS.

2.13 Identifier interoperability schemes

Several initiatives focusing on aspects of identifier interoperability are noted:

(1) The DOI System has a focus on ensuring interoperability both with other DOI applications and with non-DOI identifiers. $^{\rm 46}$

(2) The 2011 *Den Haag Manifesto* on persistent identifiers (PIDs) and Linked Open Data (LOD)⁴⁷ aimed to provide a base set of commonality among common persistent identifier schemes:

- Make sure PID's can be referred to HTTP URI's including content negotiation
- Use LOD vocabularies, for schema elements
- Identify the minimum common set of schema elements across identifiers in scholarly communication space.
- Use same-as relations to help PID interoperability across PID systems/schema's
- Work with the LOD community on simple policies/procedures to improve persistence of HTTP URI's.

However, the content community sees a very high need for interoperability at the semantic and community level within the Digital Identifier Network, but little demand for PID interoperability at the syntactic level (applications gathering information from URN, PURL, ARK, DOI etc.), and hence the LCC places a low priority on this issue. The simplistic view that "same as" relations will suffice is inadequate for the Digital Identifier Network. The Den Haag manifesto has had little practical impact.

(3) APARSEN (The Alliance for Permanent Access to the Records of Science Network) is currently developing a *Persistent Identifier Interoperability Framework* which aims to build on the Den Haag Manifesto. However this focusses on Persistent Identifier interoperability at the syntactic level (applications gathering information from URN, PURL, ARK, DOI etc.), and has little relevance to interoperability at the semantic and community level.

(4) The Corporation for National Research Initiatives⁴⁸ (CNRI), developer of the Handle System, is developing an open source *Digital Object Based Interoperability Platform* (in collaboration with the Alfred P. Sloan Foundation⁴⁹). This is focussing initially on two different use cases, both outside the immediate scope of LCC (science data, and financial entity data), but the underlying principles may be useful for future LCC applications, as this will offer an open source suite for a distributed registration system linking to data and services across multiple existing information management systems, and thus enabling software clients to navigate and query multiple systems without detailed knowledge of those systems.

Of particular note in the context of resolution of identifiers (specifically multiple resolution), the CNRI project will build and deploy one or more data type registries, including information about services. The type registry would contain metadata about a certain data type as well as metadata about available services that could be used to process data of a certain type. The combination would allow either humans or machines to encounter data of a certain type, consult a type registry to understand the structure of the data so as to be able to parse it and to find relevant processing services, e.g., visualization. This approach is common and usually implicit within proprietary closed systems but is not yet generally recognised as an inevitable requirement of open linked data. This type registry would provide one means of supporting multiple resolution, by adding basic and

⁴⁶ See DOI Handbook, 2.7 <u>Relationship between the DOI system and other ISO identifier schemes</u> and 2.8 <u>Relationship between the DOI system and other (non-ISO) identifier schemes</u>

⁴⁷ <u>http://www.ncdd.nl/blog/?p=144</u>

⁴⁸ http://cnri.reston.va.us/

⁴⁹ Alfred P. Sloan Foundation <u>http://www.sloan.org/</u>

extensible standard typing of resolution so that different services (e.g. different metadata types) can be automatically located.

The capability of resolving an identifier to more than one location or repository is gradually becoming recognised as an inevitable requirement of open linked data. There are work-arounds to this problem such as content negotiation on the web, but usually ad hoc per implementation; multiple resolution of an identifier should be possible without special knowledge except for the ability to communicate using standard technical protocols. Multiple resolution requires a basic and extensible standard "typing" vocabulary of resolution so that different services (based on different metadata types) can be automatically located: work on this approach is under way under the auspices of the Research Data Alliance and other efforts. Specific typing would enable a common resolution approach for specific applications, e.g. a type to openly make a "Digital Content Declaration".

2.14 Compliance tools

Content identifiers should be accessible to users, whether by being embedded within the item of content or its message sidecar during interchange, or published in metadata on webpages to support resolution to various services. Either or both approaches are useful for different purposes. We cannot solve the problems of rights and licensing without consistently applied identification systems. Both approaches assume that the identifier is the correct one, (i.e. has not been corrupted deliberately or accidentally by someone that one doesn't recognise the need for this). Compliance with identifier and metadata requirements, in particular preventing the removal of identifiers and metadata from content, has been identified as an important issue by the Hooper Report , which notes that some sectors need less work in terms of standards (in the sense that the standards already exist) but more in terms of compliance. In other words, using embedded identifiers works for some applications but not others. The current LCC Identifier workstream views compliance as outside its remit, but it is likely to be an important part of the LCC implementations (RDI and especially the Copyright Hub).

The book industry standards body Editeur compared best practice, (un)available identifiers and compliance risks in four media sectors (books, film & TV, music, photography) in a report as part of the Linked Heritage project. The question of in-band vs. sidecar communication is a particular issue in digital photography, where the supply chain is somewhat different from that in the other three sectors. Much comes down to the degree of control or trust around the messaging used: the LCC has a role to play in reinforcing this point and so assisting in making Linked Data applications more authoritative.

Without some kind of protected "layer" of trust, either through the protocol, the application, or certification of compliance, transactions of value may be compromised. This is widely understood but not always provided for. URIs may be resolved using HTTP, or optionally HTTPS can be used to provide a layer of security (trust).

3. Entity identifier implementations

3.1 Types of entities to be identified in the RRM

The LCC Rights Reference Model includes a list of entities to be identified – three well known ones (*Party, Place, Creation*), one other general entity (*Context*), and four specific rights entities, the definition and use of which LCC is pioneering (*Right, RightsAssignment, Assertion, RightsConflict*).

EntityType	Definition	Examples
Party	A human or other animate being (real or imaginary), or a legal person or organization capable of playing a role as an agent in a Context.	Tom Brown, Coldplay, Microsoft Inc, Warner Music, the Boston Symphony Orchestra, Shrek
Creation	Something made, directly or indirectly, by a human being(s).	The textual work "Moby Dick"; a particular printed edition of "Moby Dick"; Mozart's 22 nd Symphony; a photograph; the film Star Wars; a fragment of dialogue from "Star Wars"
Place	A localizable or virtual place.	Belgium; San Diego, CA; 15 High Street, Woking, Surrey, UK; Everywhere; TomjBrown999@hotmail.com; 020- 8567-1047; Account No 1245265; Lat. 32027', Long. 65° 88'; Outside London; Next to Jim's desk; www.anysite.org/thispage; Room 101, BBC Television Centre
Context	An intersection of Time and Place in which Entities may play Roles.	Earth during the Triassic Period; Europe in the Middle Ages; 1958 in Philadelphia; From 5.45pm to 7.13pm on May 5th, 2005 in Studio 1, Abbey Road Studios, London; 2006-06-0614:26 at www.anysite.org; Paying a license fee; Having breakfast at Tiffany's; Somewhere, Sometime; Here and now; Always and everywhere; Writing an article; Owning a car; Publishing a journal
Right	A State in which a Party is entitled to do something in relation to a Creation, as a consequence of a law, agreement or policy.	"Party A controls all rights in Creation C"; "Party A may copy, keep and view Creation C; but not on a computer of Type T and only after Payment P has been made by Party A to Party B"
RightsAssignment	A decision as a result of which a Right comes into existence.	An agreement in which Party A delegates control of European rights in Creation C to Party B; A license in which Party A permits Party B to make printed copies of Creation C; a corporate RightsPolicy granting user access privileges to people according to their employee roles and grades.
Assertion	A claim made about the truth or falsehood of a statement.	A statement by Party A that it is true that Party B controls rights in Creation B
RightsConflict	A State of disagreement or dispute over a Right.	Party A and Party B both claim Rights for Creation C in Germany
Attribute Type	Definition	Examples
Party	A human or other animate being (real or imaginary), or a legal person or organization capable of playing a role as an agent in a Context.	John Smith, Coldplay, Microsoft Inc, Warner Music, the Boston Symphony Orchestra, Shrek

From The LCC Rights Reference Model v1.0: Table 2: RRM Entity Types

Creation	Something made, directly or indirectly, by a human being(s).	The textual work "Moby Dick"; a particular printed edition of "Moby Dick"; Mozart's 22 nd Symphony; a photograph; the film Star Wars; a fragment of dialogue from "Star Wars"
Place	A localizable or virtual place.	Belgium; San Diego, CA; 15 High Street, Woking, Surrey, UK; Everywhere; johnjsmith999@hotmail.com; 020-8567- 1047; Account No 1245265; Lat. 32027', Long. 65° 88'; Outside London; Next to Jim's desk; www.anysite.org/thispage; Room 101, BBC Television Centre
Context	An intersection of Time and Place in which Entities may play Roles.	Earth during the Triassic Period; Europe in the Middle Ages; 1958 in Philadelphia; From 5.45pm to 7.13pm on May 5th, 2005 in Studio 1, Abbey Road Studios, London; 2006-06-0614:26 at www.anysite.org; Paying a license fee; Having breakfast at Tiffany's; Somewhere, Sometime; Here and now; Always and everywhere; Writing an article; Owning a car; Publishing a journal
Right	A State in which a Party is entitled to do something in relation to a Creation, as a consequence of a law, agreement or policy.	"Party A controls all rights in Creation C"; "Party A may copy, keep and view Creation C; but not on a computer of Type T and only after Payment P has been made by Party A to Party B"
RightsAssignment	A decision as a result of which a Right come into existence.	"Party A delegates control of European rights in Creation C to Party B"; "Party A permits Party B to make printed copies of Creation C"
Assertion	A claim made about the truth or falsehood of a statement.	A statement by Party A that it is true that Party B controls rights in Creation B; a corporate RightsPolicy granting user access privileges to people on certain management grades.
RightsConflict	A State of disagreement or dispute over a Right.	"Party A and Party B both claim Rights for Creation C in Germany"

The RRM acknowledges one other Entity Type for which Identifiers are critical (Time), and one other set of essential identifiers (Category Values),

Also within the RMM are **controlled vocabularies** for *Categories* and *Times*: controlled vocabularies do not require new identifiers as a key *per se* (though many of the same principles apply) but where standards for these are available they need to be recognised and used appropriately, and so we mention these below.

3.2 Identification of Creations

Creations are the class of entity where identification standards and procedures are best understood and established. In the digital world, this results from two different yet converging trends: (a) the

launch in the 1960s of the ISBN, and subsequent ISO family of related supply chain focussed identifiers of specific types of content; (b) the popularisation in the 1990s of digital location referencing through hypertext linking (the WWW).

3.2.1 ISO TC46 identifier schemes

A main group of content identifiers comes from ISO, through ISO TC46/SC9 (Information and Documentation). The list of SC9 standards⁵⁰ includes (dates are of the latest revision):

- ISO 2108:2005
 International Standard Book Number (ISBN)
- ISO 3297:2007 International Standard Serial Number (ISSN)
- ISO 3901:2001 International Standard Recording Code (ISRC)
- ISO 10957:2009 International Standard Music Number (ISMN)
- ISO 15706-1:2002 International Standard Audiovisual Number (ISAN) Part 1 work identifier
- ISO 15706-2:2007 International Standard Audiovisual Number (ISAN) Part 2: version identifier
- ISO 15707:2001 International Standard Musical Work Code (ISWC)
- ISO 21047:2009
 International Standard Text Code (ISTC)
- ISO 26324:2012 Digital object identifier system⁵¹
- ISO 27729:2012 International Standard Name Identifier (ISNI)
- ISO 27730:2012 International Standard Collection Identifier (ISCI)

Note that the ISNI is a Party, not a Creation, Identifier and is described more fully in section 3.3.

These standards all have (or will have on next revision) a defined set of descriptive associated metadata. However each metadata set is independent of the other, with no common underlying data model or common vocabularies, so the mapping of these through a tool such as VMF is necessary to ensure effective and extensible interoperability. Many of these are not yet expressible as URIs in a standard way and this may require additional steps by some of the registries. The ISO identifier registration authorities have held informal group discussions on collaboration re interoperability and re "identifier integrity" (trust issues re registration), but no formal steps have resulted.

3.2.2 ISO TC46 Identifier schemes reviewed by content type

Intellectual content is often categorized in four broad groups: music, text, audiovisual and still images. While this is a rough and ready approach which causes problems when pushed too far, it is a useful way to review the status of development of creation identifiers.

First though the distinction needs to be noted between abstract **works** and their **manifestations**, and the individual **items** which are distributed around the network. These distinctions are described elsewhere in the indecs and FRBR data models, but they have a particular significance for creation identifiers. None of the standard IDs listed above apply to *individual* physical or digital items (such as copies of a printed book, or a digital file): they are all identifiers of manifestations or works, which represent classes of items, The ISBN, for example, does not identify an individual printed book, but the entire **class** of books which form a specific published edition, each copy of which is considered to be an instance of the same manifestation. The same is true for ISRC and ISMN. A particular user

⁵⁰

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc browse.htm?commid=48836&published=on

⁵¹ Note that unlike the other SC9 standards listed "The scope of the DOI system is not defined by reference to the type of content (format, etc.) of the referent, but by reference to the functionalities it provides and the context of use" (ISO 26324, Introduction)

such as a library may of course wish to assign a further identifier to their own copy of a manifestation, for various reasons, but there is no ISO standard for these.

Most of the other identifiers identify an abstract **work** - the underlying content which may be realised in any number of different manifestations. So the novel "Moby Dick" is a single abstract work which may be manifested in many different physical or digital editions: the work will be identified with an ISTC, while the manifestations may attract ISBNs or ISRCs (or both) according to their attributes.

Works and manifestations are different kinds of abstractions. A work is a single creation which may have any number of manifestations, while a manifestation is class of functionally identical items which typically originated with a single item which may then have been replicated any number of times. The work comes into existence along with its first manifestation, but the two are distinct and are commonly subject to different rights and may have different rightsholders.

3.2.2.1 Music/Audio

The ISWC (International Standard Musical Work Code, ISO 15707:2001)⁵² was the first clearly recognized widespread application of an abstract work identifier, as a unique, permanent and internationally recognized ISO standard number for the identification of musical works . For example, the first ISWC "T-000.000.001-0" issued in 1995 to the song "Dancing Queen" identifies the song written by Andersson/Andersson/Ulvaeus, as distinct from any specific performances, recording, scores, arrangements, etc. made by Abba or any other party. Those "manifestations" will have other identifiers such as ISRC, ISBN or ISMN appropriate to their type.

In principle, the ISRC can be applied to audio content of any kind, including radio programmes or webcasts, but as yet there is no significant use beyond "traditional" commercial recordings.

3.2.2.2 Text publishing

More recently a corresponding concept for text-based works (ISTC = International Standard Text Code, ISO 21047:2009) has been standardised. The ISTC is a numbering system for the unique identification of text-based works; the term "work" can refer⁵³ in ISTC to any content that is predominantly text-based appearing in conventional printed books, braille books, audio-books, static e-books or enhanced digital books, as well as content which might appear in a newspaper or journal. As with the ISWC, it identifies the underlying content and is not dependent on the manifestation of that work. For example, in the case of John Smith, author of "John's Smith's book of jokes", the following base identifiers may be used:

- ISNI, to uniquely identify the author John Smith
- ISBN, to identify a particular manifestation of "John's Smith's book of jokes", and
- ISTC, to identify the content of "John's Smith's book of jokes" which may appear in other manifestations.

While a combination of all three (ISNI, ISBN and ISTC) may give a complete identification of the elements of a particular manifestation, the basic elements of creator and content may be separately and unambiguously identified by the ISNI and the ISTC.

Note that the ISTC, as with other Creation identifiers, may be applied at any level of granularity, so if necessary individual jokes in John Smith's book may have their own unique ISTCs. That may become necessary, for example, if specific jokes were reproduced in another collection.

⁵² http://www.iswc.org/

⁵³ The term "work" must be used with care, as it may have different applications and implications in e.g. legal copyright discussion than in standards application.

There are two other standard and globally established work identifiers in the text publishing sector: the ISSN for serials/journals, and the DOI, which may be used to identify anything but whose largest application to date is for journal articles at the work level through the Registration Agency Crossref⁵⁴.

3.2.2.3 Audiovisual

Audiovisual works have two established standard identifiers: ISAN (including its derivative the V-ISAN) and the more recent EIDR identifier, which is an implementation of the DOI. In late 2012 the registration authorities of both agreed on a collaborative approach which would enable ISANs and EIDR-IDs to link and interoperate, which exemplifies the fact that it is not necessary for all parties to adopt the same standard identifier type provided they are "shared".

3.2.2.4 Still Images

At this point the most significant gap in the set of standard Creation identifiers is for still images (including photographic works): there is no standard. Initiative on this has been taken in recent years by the PLUS Coalition⁵⁵, and definitive work with the aim of reaching a globally-acceptable identifier and registry standard is to be undertaken by a number of parties under the leadership of the European picture libraries consortium CEPIC⁵⁶ within the Rights Data Integration project⁵⁷.

3.2.3 Other (non ISO TC46) creation identifiers

The ARROW⁵⁸ project, "a tool to facilitate rights information management in any digitisation project involving text and image based works" developed "ARROW infrastructure [which] allows streamlining the process of identification of authors, publishers and other rightsholders of a work, including whether it is orphan, in or out of copyright or if it is still commercially available"). As part of the project ARROW developed an inventory or "map of standards⁵⁹ with relevance to the ARROW project". This includes in its scope standards both for identifiers and for related themes (commercial messaging; conceptual models; metadata (generic, library, and rights); search; and technical protocols). Contributors included several of the current LCC technical workstream participants, with a one- or two-page data sheet for each standard. The last edition is relatively recent (2010); while it is not (we believe) being updated, so lacks more recent data (e.g. notably on EIDR, the entertainment industry registry⁶⁰), it is still highly useful. We do not propose to repeat the ARROW analysis here but direct readers to it as a source.

3.2.4 Links between Identifiers

At the heart of the LCC, and the Digital Identifier Network itself, is the need for expressing standardised relationships between standardised identifiers. Between creations, these are generally of four kinds:

- "same as" links ID1 denotes the same things as ID2
- "part" links the entity denoted by ID1 is a part of the entity denoted by ID2
- "version" links the entity denoted by ID1 is some kind of adaptation of the entity denoted by ID2

60 www.eidr.org

⁵⁴ www.crossref.org

⁵⁵ www.useplus.com/

⁵⁶ www.cepic.org/

⁵⁷ www.cepic.org/tags/tags/rights_data_integration

⁵⁸ www.arrow-net.eu/

⁵⁹ D4.4 State of the art and guidelines on applicable standards Edition.2 (July 2010)

www.arrow-net.eu/sites/default/files/D4_4_State%20of%20the%20Art%20and%20guidelines_edition2.pdf in containing page: www.arrow-net.eu/resources/arrow-project-public-reports-deliverables.html

• "abstraction" links - the entity denoted by ID1 is an abstraction of the entity denoted by ID2

The last three of these link types has its counterpart ("whole", "source", "manifestation") when the link is looked at in the other direction.

A multimedia work (such as a website, for example) is likely to contain a large number of "parts", which in turn may be subject to relationships of any of these types. Rights may exist in any of these "part" creations, and the management of rights in the Digital Identifier Network is therefore critically dependent on the accuracy and accessibility of the links between them. If a website contains video clips, music, still images and a variety of text, then it may represent a manifestation of any number of ISANs, EIDRs, ISRCs, ISWCs, ISTCs, DOIs and (as yet unstandardised) image identifiers. At present these connections are managed in partial, unauthorised and often opaque⁶¹ ways, and the goal of LCC is to see these connections much more efficiently declared and managed for the benefit of all.

A necessary step towards this is to establish standard "relators" for the various Link types which can be used or mapped across all sectors, and this should be an important part of the ongoing work of the LCC.

3.3 Identification of Parties

The unique identification of Parties is the basis of an automated rights data supply chain. Party IDs are needed to identify creators, publishers, rightsholders, licensors, licensees, users, asserters and parties in rights conflicts: they are the "alpha and omega" of the supply chain, allowing rights holders and users to be linked – imagine an online retail or banking system without a user login and password and the value of a Party ID is clear. The indecs model of "people make stuff, people use stuff, people do deals about stuff" underlines the simple primacy of parties: everything begins with a party, and without robust public or shared party IDs the foundations of the Digital Identifier Network are seriously compromised.

Within proprietary systems, Parties are routinely issued with IDs for rights management and trading of all kinds. However, there is no generally established standard for Party IDs for rightsholders, and to date only one real success story.

Parties also play roles across sectors: for example, John Lennon was a composer, lyric writer, musical performer, actor, producer, artist, illustrator, text author, poet and photographer, among other things. Therefore if there is no single global Party ID for all interoperability (which there won't be) then various IDs must be authoritatively mapped. There are several initiatives worth noting as a basis for building a network of party identifiers within the Digital Identifier Network. Several of these inherit ideas from the Interparty project⁶², a spin-off from the indecs project. The identification of a Party has three common layers:

the identification of a unique human being or organization

- the identification of different names by which a human being or organization is known
- the identification of different *personae* or *aliases* adopted by a human being (or, less commonly, an organization).

One Party may have any number of names and personae which may need unique identification according to local functional requirements. For example, the performer known as David Bowie is a single human being with several names (including *David Bowie* and *David Jones*) and personae

⁶¹ Of course, it is not always necessary for links to be "public", and at present many of them are established within the private databases of organizations such as publishers with interests in some of the content. The indecs principle of Appropriate Access applies here.

⁶² <u>http://www.interparty.org/</u>

(including Ziggy Stardust). Each of these may require unique identification according to the purposes to which data is being put⁶³. Some standards such as ISNI and IPI support this granularity. The registration and identification of some abstract works is dependent on Party IDs. The administration of the ISWC, for example, is dependent on the CISAC IPI code. A party cannot get an ISWC for an abstract musical work unless its creators are all identified by IPI codes – otherwise anyone could go along and register "I love you" by "John Smith". This is one of the questions for registries for creations: in the absence of a governance mechanism for authorising and assigning the identifiers (similar to that for IPI, discussed below) how do agencies prevent multiple and ambiguous registrations? The same is true for Rights: without Party IDs, a Rights ID would be crippled.

3.3.1 The IPI code

Among the BIEM/CISAC collecting societies is there an established and ubiquitous Party ID (the IPI code⁶⁴, formerly the CAE number), and for over thirty years it has formed the basis of the relative success of international collaboration on licensing and royalty distribution within collecting societies and publishers for musical works (and to a lesser degree certain other CISAC-administered rights).

IPI has a number of features which explain its success, first in governance:

- An IPI code is allocated by the society of which a party is a member this provides excellent verification of identity (linked directly to the party's commercial interests) and more or less removes the risk of duplication.
- The IPI registry in Switzerland records the society of each Interested Party so that the ID is extremely useful as the default for royalty payment ("I don't know the identity of the song, but I know it was written by Paul McCartney")
- All societies have online access to the IPI registry.

and in structure:

- It is an "unintelligent number"
- It is a "name ID" each different name, pseudonym or alias has its own ID, and these are linked to a single underlying "Party ID"
- Pseudonym links are confidential and known only to those two whom a party wishes them known (there is one case of more than 100 pseudonyms of the same person)

IPI has weaknesses. It doesn't deal well with out-of-copyright and orphan works. Because (for example) Beethoven is not a member of a CISAC society, no-one has the formal recognised authority for uniquely identifying his works. It was suggested in the 1990s that societies "adopted" public domain creators on the basis of nationality, gave them IPI codes and oversaw the identification of their works, but this has not happened systematically, which is what is needed. The number of confusing and ambiguous "registrations" of public domain or arranged public domain works is correspondingly very large: this parallels the "orphan works" problems everywhere.

3.3.2 Activity in other sectors

⁶³ The distinctions between different names, personae/aliases and roles played are "soft" and complex and the drawing of a line between them will be done in different ways by different parties. For example, is "Cliff Richard" just another name for the person originally known as "Harry Webb", or is it a different persona? Is "Ali G" a persona of the actor/comedian known as Sacha Baron Cohen, or just a role occasionally played by him? Is the fictional character of Winston Churchill depicted in a film the same person as the human being who was Prime Minister of the UK? and so on. There are ultimately no "right" answers to these questions and the LCC is concerned only that whatever criteria are applied by one party or sector can be mapped as accurately as their semantics allow to the criteria used elsewhere. As with creations, this requires "link" relators.

⁶⁴ <u>http://www.ipisystem.org/</u>

In text, there has been nothing comparable to the IPI code: the ISNI (see below) is being introduced as the standard.

Elsewhere in music, performers have developed their own identifier (through the International Performer Database Association (IPDA) but plan to adopt ISNI. The labels are looking at options including but not limited to ISNI.

For still images there is no standard, although the PLUS Coalition has begun to issue IDs to registering Parties. Party Identification is one of the issues to be tackled by CEPIC within the proposed LCC/RDI project.

In the audiovisual sector there is no formal standard, though EIDR⁶⁵ now issue party identifiers (as DOIs) to audiovisual producers.

In the early 1990s there was discussion about opening up the IPI system to all, but it never got going because of political/commercial concerns, understandable when different groups of rightsholders were discussing collaboration. However, after a protracted process, there is now a promising ISO standard in ISNI.

3.3.3 ISNI

The ISNI (International Standard Name Identifier: ISO 27729:2012)⁶⁶ standard recently ratified was driven originally by the text publishing sector but backed by others including CISAC and the performers' associations (the International Performers Database Association). ISNI was developed as a standard for a "name" identifier for public parties "involved throughout the media content industries in the creation, production, management, and content distribution chains". OCLC, the US not-for-profit library co-operative, is managing the global registry database, and there will be multiple registration agencies. To date there are two (Bowker and Ringgold) who are respectively dealing with creators (predominantly in the text domain) and institutions. Both are just getting going. ISNI is focussed on identifying creators, not rightsholders:

"...new ISO standard that will finally allow users to definitively identify contributors, across all forms of content. The **International Standard Name Identifier (ISNI)** is an ISO-certified global standard for the identification of contributors to creative works." (from the Bowker website).

However, the standard says "An ISNI can be assigned to all parties that create, produce, manage, distribute or feature in creative content—including human beings, legal entities (such as a company), or fictional characters" which clearly embraces rights management. Bowker confirms this, so ISNI can be a Rightsholder Identifier. ISNI is being established as an interoperable identifier: a core part of its function is to map other standard or proprietary identifiers. CISAC societies, for example, will not abandon the IPI code, but IPI codes will be mapped to corresponding ISNIs.

ISNI has particular issues with verification and duplication. Unlike the IPI code, ISNIs will not be registered by a single method, pre-validated and de-duplicated by unique society membership criteria. Any organisation can, in effect, apply for ISNIs for any parties in which it has an interest – for example, a publisher or society registering all its authors. Data quality management and de-duplication is therefore a critical issue. ISNI is tackling this by having a single global database at OCLC, and building its initial database substantially from library authority records from the VIAF (Virtual International Authority File)⁶⁷ which enables the database to store a large amount of supporting metadata (especially linked works) to support unique identification. "Registration" of ISNI will be as much about mapping to existing ISNIs as it will be about creating new ones – quality control is paramount, and drawing on centuries of bibliographic work and expertise is a wise and

 ⁶⁵ Entertainment Identifier Registry: A universal unique identifier for movie and television assets <u>www.eidr.org</u>
 ⁶⁶ http://www.isni.org

⁶⁷ www.viaf.org

necessary step (very good to see the bibliographic and publishing communities collaborating in a major way on data issues for the first time).

ISNI is a "name number" which uses the same successful approach to pseudonyms as the IPI code, described above.

Because of its approach to authority data, ISNI is likely to have better success than the IPI code in dealing with unique identification of public domain creators (and by extension, supporting orphan work identification).

At the outset ISNI will be biased to the text and musical works/performance sectors, but there is no systemic barrier to other sectors participating. Not everyone is necessarily convinced or committed yet, and there are cost issues (as there were in the early years of DOI) which may be a problem for some. ISNI appears however to be currently "the only game in town" with a fundamentally sound methodology.

3.3.4 NISO Institutional Identifiers Working Group

NISO (US National Information Standards Organisation) established an I2 Working Group⁶⁸ "to develop a robust, scalable, and interoperable standard for identifying a core entity in any information management or sharing transaction-the institution. The I2 Working Group did extensive community needs assessment with the publishing, library and repository use sectors". With the emergence of ISNI, NISO reached an agreement to use ISNI for institutional identification, and I2 contributed further recommendations to the ISNI-IA that were incorporated into the ISNI standard. The I2 Working Group is now "finalizing a Recommended Practice, expected to be published in the next few months. This document will provide information on a profile that can be used by appropriate Registration Agencies to apply ISNI to institutions". It remains to be seen how well this proposed profile fits into the bigger picture, but the fact that I2 teamed up with ISNI rather than creating yet another standard is commendable.

3.3.5 ORCID

ORCID, the Open Researcher and Contributor ID initiative, was established in 2010 and launched its service in October 2012⁶⁹: "ORCID is an international, interdisciplinary, open, and not-for-profit organization created for the benefit of all stakeholders, including research institutions, funding organizations, publishers, and researchers to enhance the scientific discovery process and improve collaboration and the efficiency of research funding. ORCID aims to solve the name ambiguity problem in scholarly communications by creating a registry of persistent unique identifiers for individual researchers and an open and transparent linking mechanism between ORCID, other ID schemes, and research objects such as publications, grants, and patents"

ORCID was seen as a possible alternative to ISNI by some, but Bowker (as lead ISNI registration agency) and ORCID have now agreed that they are complementary, and further discussion of common aims is understood to be under way. ORCID is a specialized ID and may be mapped to ISNIs like other sectoral Party IDs.

3.3.6 Legal Entity Identifier

ISO 17442 Financial Services – Legal Entity Identifier is to be launched in 2013⁷⁰ and is under development. The stated scope of LEI is on institutions holding financial assets, for the financial services sector. If implemented and extended this might play a role as a Party ID in rights agreements, but again LEI is a specialized ID and could in theory be mapped to ISNI.

⁶⁸ http://www.niso.org/publications/newsline/2012/wgconnectionoct2012.html#bi2

⁶⁹ http://about.orcid.org/news/2012/10/16/orcid-launches-registry

⁷⁰ http://www.financialstabilityboard.org/publications/r 121024.pdf

3.3.7 Commercial/open source IDs

"Global" party identifiers are emerging as potentially powerful features in linked data in the likes of Google and Wikipedia, and with social/communications media IDs (such as Facebook, Skype and Twitter) becoming increasingly important for networked identity.

Google's new linked data initiative means that they will in due course have millions of party identifiers. However, these are effectively proprietary systems identifiers whose governance is not accountable and so their potential role in rights management is highly questionable without further authorization or warranty. Other self-issued social media IDs like those of Facebook and Skype suffer the same problem. Self-issued party IDs are self-evidently subject to very little governance, though it may be feasible, for example, for a person to map their own social media ID against their ISNI at some point if there is value in it (that is, if that ID is used elsewhere in accountable rights transactions).

Wikipedia IDs (and those from other large indexes like the Library of Congress Subject indexes) have more potential value to the Digital Identifier Network, as the IDs are not self-issued and there are editorial governance controls.

There are some pockets of potentially re-usable identifiers in specific sectors: for example, IMDB⁷¹ for AV contributors (actors, directors, etc.) is semi-curated (user-contributed, but reviewed by staff before being accepted on the site) and is thus somewhat different from Wikipedia.

3.3.8 WebID

The W3C provides a specification for Web ID, "a way to uniquely identify a person, company, organisation, or other agent using a URI"⁷². The specification of WebID has been worked on since 2005, the latest specification being 2011⁷³. The WebID page notes that "since you aren't a Document, a Web Page URL cannot be used to construct an Identifier that uniquely identifies you. It cannot be the Naming mechanism used by other Web users to accurately reference you. A Web ID looks similar to a home page URL, but it specifically identifies Entity You of Type: Person. Typically, the definition of Type: Person, comes from a vocabulary or ontology or data dictionary. One such vocabulary is FOAF, which is the basis of this effort."

As implied by the use of FOAF (Friend of a Friend project⁷⁴), WebID focusses on social networking and does not have significant uptake in a structured way across content industries. Some social networking sites assign a WebID to participants automatically; some of these sites export (some of) the data which the participant has put into them. It is normally a subset -- perhaps just the social graph (i.e., who knows whom on the site). This is of very limited use beyond the site since the metadata may be uncontrolled and not mapped to a fuller content and/or rights ontology.

3.4 Identification of places

In the RRM, a place is defined as "a geographical or virtual place", and so includes not only any physical location but anywhere that a creation, party or data may be located or referenced, including

⁷¹ <u>http://www.imdb.com/</u>

⁷² http://www.w3.org/wiki/WebID

⁷³ http://www.w3.org/2005/Incubator/webid/spec/

⁷⁴ <u>http://www.foaf-project.org/</u> : "FOAF defines an open, decentralized technology for connecting social Web sites, and the people they describe"

the places or nodes identified by telephone numbers, URLs, IP addresses, email addresses or bank accounts). As is noted below in connection with GLN, geographical locations and the entities found there are often used interchangeably, with consequences for persistence and interoperability.

For the wide range of examples given in the RRM has relatively few globally applicable standards for physical locations:

- ISO 3166-1 standard country codes ("Codes for the representation of names of countries and their subdivisions") is probably the best known and established. It defines three sets of country codes:
 - ISO 3166-1 alpha-2 two-letter country codes which are the most widely used of the three, and used most prominently for the Internet's country code top-level domains (with a few exceptions).
 - ISO 3166-1 alpha-3 three-letter country codes which allow a better visual association between the codes and the country names than the alpha-2 codes.
 - ISO 3166-1 numeric three-digit country codes which are identical to those developed and maintained by the United Nations Statistics Division, with the advantage of script (writing system) independence, and hence useful for people or systems using non-Latin scripts.

ISO 3166-1 is widely used, implemented in other standards and used by international organizations. It is not the only standard for country codes (other country codes used by international organizations are partly or totally incompatible with ISO 3166-1) but appears to be the most likely basis for LCC use in e.g. defining national licensing territories.

- The Standard Address Number (ANSI/NISO Z39.43) is a unique identification code for each address of an organisation in the publishing supply chain it is administered by RR Bowker and in use widely in the USA though less so elsewhere. For an overview see a recent article in ISQ⁷⁵.
- The Global Location Number (GLN) is part of the GS1⁷⁶ supply chain system of standards (which also includes bar codes). GLN is broader in application than SAN, and is also used to identify legal entities (hence GLN crosses over into party identification). The GS1 Identification Key is used to identify "physical locations or legal entities" in a hierarchy consisting of a GS1 Company Prefix and subsidiary location reference. Locations identified with GLN may be a physical location such as a warehouse or a legal entity such as a company or customer or a function that takes place within a legal entity. It can also be used to identify something as specific as a particular shelf in a store. Some physical supply chain and accounting systems may use GLN and these may need to interface with LCC in back office functions.
- AFNOR XP Z44-002-1997 code for the representation of names of historical countries⁷⁷

is important for archives and may be used to increase the value and correctness of historical descriptive metadata.

Standards exist ubiquitously for virtual locations, as by definition they are normally unlocatable without a unique identifier. For example, the following all operate under effective global identification systems:

 ⁷⁵ The Use of the Standard Address Number (SAN) in the Supply Chain. Louise Timko. Information Standards Quarterly Summer 2011: Vol 23 No 3. www.niso.org/apps/group.../SP Timko SAN isqv23no3.doc.pdf
 ⁷⁶ http://www.gs1.org/

⁷⁷ http://www.freestd.us/soft/339586.htm

- telephone numbers (ITU governance)
- email addresses, URLs, IP addresses (ICANN governance)
- bank sort codes/account numbers (industry bodies governance)

among others.

There are of course many proprietary or internal place "standards" used in internal sales information systems etc., plus national address zip codes etc., GPS locations, etc. which will have application in specific territories for deeper sub divisions, which may need to interface with rights systems in any future automated "rights world".

It is worth noting that several of the examples given in Table 11 of "place" are not precise, nor do they necessarily need to be. Recalling the indecs definition of metadata as linking two referents, an unambiguous piece of metadata has to relate to precise enough things - referents - at each end of a link; e.g. the example given "Next to Jim's desk" (i.e., free form text, not in a defined registry) might be a perfectly precise enough referent as a localised description, but not if dealing with a geographically defined licence. This point applies to all entities.

3.5 Identification of rights entities

We are not aware of any international or national standards for identification of three types of entity which LCC has delineated in the RRM: **Context, Assertion** and **RightsConflict**.

3.5.1 Identifiers of Rights Assignments

There are many proprietary identifiers of **Rights Assignments** (Licenses and Policies). There is some work in rights and rights assignments in the audiovisual sector, though the two are usually jumbled together – the assignment describes the right, rather than having a reference to the right. For example Avails⁷⁸ provides information about the time, location and business rules relating to offering an asset; MovieLabs in conjunction with others has developed metadata definitions for content recognition metadata, including but not limited to digital fingerprint⁷⁹.

In the music sector, the DDEX consortium⁸⁰ of leading media companies, music licensing organisations, digital service providers and technical intermediaries has standardised the format in which information is represented in XML messages and the method by which the messages are exchanged between business partners. These standards are developed and made available for industry-wide implementation. DDEX, as mentioned earlier, is consistent with the indecs approach of a contextual ontology (data model) with defined entities requiring identification.

A proposed European Legislation Identifier (ELI) standard⁸¹ was outlined in EU Council Document no. 17554/11 (metadata describing the document was posted on the EU official document register, but the full text of the document itself was not made public). Our understanding is that this will be used to identify laws, which in some cases (Copyright Law, for example) are RightsAssignments according to the RRM and may therefore be referened in rights declarations. There appear to have been few public developments over the year since a slide presentation about the European Legislation Identifier was made public in December 2011. There is considerable interest in this document in the legal informatics community, particularly since new efforts, such as OASIS LegalDocumentML, are underway to harmonize legislative information systems across national boundaries.

3.5.2 Identifiers of Rights

⁷⁸ <u>http://movielabs.com/md/avails/</u>

⁷⁹ http://www.movielabs.com/crmd/

⁸⁰ http://www.ddex.net/

⁸¹ http://legalinformatics.wordpress.com/2012/03/07/european-legislation-identifier/

In the image sector the PLUS Coalition is in the process of implementing a public "Asset Claim" identifier which denotes the LCC **Right** entities (it has corresponding identifiers for Creation, Party and RightAssignment). Whether a more generally applicable Right ID or Rights Assignment ID will emerge or be required will to some extent be dependent on the success of the LCC in introducing its Rights model into the Digital Identifier Network.

It seems unlikely and unnecessary that a general Context ID will ever be required: there are many different specialized, proprietary Context IDs in use within the Rights Data Supply Chain (including License IDs, Usage IDs, Invoice Numbers and identifiers of any kind of performance). Whether any of these require a more widely used standard is not evident at this point.

3.6 Times

If all types of entity had identifier standards as robust and widely established as Times, most of the challenges of the Digital Identifier Network would have been met.

The most commonly used standard for time is *ISO 8601 "Data elements and interchange formats – Information interchange – Representation of dates and times"*⁸² which provides an unambiguous and well-defined method of representing dates and times, so as to avoid misinterpretation of numeric representations of dates and times, particularly when data is transferred between countries with different conventions for writing numeric dates and times.

ISO 8601:2004 is applicable whenever representation of dates in the Gregorian calendar, times in the 24-hour timekeeping system, time intervals and recurring time intervals or of the formats of these representations are included in information interchange. It includes calendar dates expressed in terms of calendar year, calendar month and calendar day of the month; ordinal dates expressed in terms of calendar year and calendar day of the year; week dates expressed in terms of calendar year and calendar day of the year; week dates expressed in terms of calendar year, calendar day of the year; week dates expressed in terms of calendar year, calendar day of the week; local time based upon the 24-hour timekeeping system; Coordinated Universal Time of day; local time and the difference from Coordinated Universal Time; combination of date and time of day; time intervals; recurring time intervals.

ISO 8601:2004 does not cover dates and times where words are used in the representation and dates and times where characters are not used in the representation.

Note that there may still be complexities in the implementation of ISO 8601: ISO 8601 is referenced by several specifications, but the full range of options of ISO 8601 is not always used. For example, the various electronic program guide standards for TV, digital radio, etc. use several forms to describe points in time and durations; the ID3 audio meta-data specification also makes use of a subset of ISO 8601.⁸³

On the internet ISO 8601 is used in a profile of the standard that restricts the supported date and time formats to reduce the chance of error and the complexity of software. IETF RFC 3339 (" Date and Time on the Internet: Timestamps") defines a profile of ISO 8601 for use in Internet protocols and standards, and begins with the observation that "Date and time formats cause a lot of confusion and interoperability problems on the Internet". The more complex formats such as week numbers and ordinal days are not permitted and the RFC has minor technical deviations from the ISO specification; LCC implementers will need to note this restriction.

3.7 Categories and controlled vocabularies

⁸² Latest edition 2004 (first published 1988): <u>http://www.iso.org/iso/catalogue_detail?csnumber=40874</u>

⁸³ <u>http://en.wikipedia.org/wiki/ISO 8601 usage</u>

Category values (as defined in the RRM) are a particular kind of Identifier critical to the success of the Digital Identifier Network.

The RRM defines a **Category** Attribute (RRM, v0.2, section 4.2 and especially Table 5: Logical model of a Category) as a fully controlled data value denoting a classification, role or association of an Entity (for example, *Use Type=Play*). The category has two basic elements: the **Category Type** (eg *Use Type*) and the **Category Value** (eg *Play*) which may be any term from any code list, taxonomy or controlled vocabulary. There are myriad such lists (some are more useful than others⁸⁴), and any of them may be used within the Digital Identifier Network,. Any value in such a list is an Identifier, as it must be unique within its namespace and it denotes a defined⁸⁵ entity or concept.

Individual values of identifiers in a code list or controlled vocabulary should be clearly defined and its management under the control of a recognised authority or registry. A comprehensive single "meta-catalogue" registry (catalogue of catalogues) does not exist.

A Category Value may denote any kind of entity or concept, and so straddles the whole range of entity types. There are many controlled vocabularies for every entity type defined in the RRM. In general, Categories represent classes or types of things (for example, Party Type, Right Type, License Type, Format), but a controlled vocabulary may also be used for identifying individual entities (such as Territories or Languages) where these are of limited and manageable scope, and where there is obvious value in the existence of a public identifier.

Categorisation has a long history through e.g. library classification (though it dates back to Aristotle, whose methods are still generally used). For an analysis of principles see the book by E. Svenonius⁸⁶.

3.7.1 Mapping of controlled vocabularies

Because Category Values may be minted and deployed by anyone, their accurate mapping is critical to the success of the Digital Identifier Network. In general, mappings are done on a one-to-one, proprietary and as-needed basis, typically to enable one party to translate the values from an incoming message into values that its own system can recognize. This happens within organizations with multiple information silos (and therefore different vocabularies) as well as across organizations.

Mappings are not always precise, because the values recognised by one vocabulary may not be fully mirrored by those in another. It is also not uncommon for data to have to be restructured, as a single element in one system may be represented by a more complex set of identifiers in another. Within the rights data supply chain in the wider Digital Identifier Network there is are two further dimensions to the vocabulary mapping problem.

First, **authority**. Within a network, a party may be reliant on mappings carried out by an unknown third party: how can these be trusted, and how are they being maintained?

Second, **scale.** Many different vocabularies need to be mapped to many others. The number is increasing all the time, and the vocabularies themselves are changing and growing increasingly quickly in response to change (ONIX, for example, has more than 100 different code lists and issues revisions at least twice a year).

 ⁸⁴ For a memorable discussion see J.L.Borges, "The analytical language of John Wilkins", in Jorge Luis Borges,
 'Other inquisitions 1937-1952'; 1964 (ISBN 0-292-76002-7).

⁸⁵ Standards of definition of controlled vocabularies and code lists vary enormously, and a vocabulary which simply uses controlled names without textual definition or description will be more open to ambiguity and abuse, but its values are still identifiers, even if the supporting metadata for them is inadequate.

⁸⁶ Elaine Svenonius: The intellectual foundation of information organization. Cambridge, Mass: MIT, 2000 (6th printing 2009) ISBN: 9780262512619 0262512610

An obvious solution to these issues is the existence of "hub-and-spoke" mapping processes, where many different vocabularies can be mapped to single "hub" vocabulary, supporting many-to-many translation. For this to work, the hub vocabulary must be richer in structure than all of the vocabularies to be mapped. The Vocabulary Mapping Framework (VMF) was created for this purpose VMF is a downloadable tool, originally developed with funding from the Joint Information Services Committee (JISC), currently voluntarily hosted and administered by the International DOI Foundation (IDF) under the guidance of an independent multi-stakeholder Advisory Board. It is a tool for semantic interoperability across communities by providing extensive and authoritative mapping of vocabularies from content metadata standards and proprietary schemes. VMF is an expansion of the existing RDA/ONIX Framework into a comprehensive vocabulary of resource relators and categories, and currently comprises a superset of some of the vocabularies used in major standards from the publisher/producer, education and bibliographic/heritage communities (CIDOC CRM; DCMI; DDEX; DOI; FRBR; MARC21; LOM; ONIX; RDA). It is not intended as a replacement for any existing standards, but as an aid to interoperability, whether automatic or human-mediated.. Subject to the terms of the VMF licence, VMF may be freely used to map and transform controlled vocabularies whether for commercial use or otherwise; and to inform the content of controlled vocabularies.87

VMF has not been extensively tested and used yet, but the support of several existing communities, plus the underlying use of the same contextual approach used in the RRM, makes VMF an obvious choice as a tool for LCC work such as a following Rights Data Integration project and perhaps the Copyright Hub. If VMF becomes more active, it will need active maintenance, and thus a more developed governance structure.

3.8 Links

Primary entity identifiers provide the material for the basic "building blocks" of a Digital Identifier Network: Links (discussed in section 4 below). We note some current activities in this area that are clearly relevant to LCC.

Conceptually the idea of a link identifier is important as we are beginning to see a whole class of "predicate identifiers" coming into use, without a full recognition that this is what they are. In ISO TC46 these include the ISSN-L (which defines a link between two related ISSNs) and the ISNI (probably).

ISO have recently issued a ballot to review a new TC46/SC9 Committee Draft standard, *ISO/CD 17316, Information and documentation — International standard document link (ISDL)* which states that "this proposed standard specifies the International standard document link (ISDL) identifier for the identification of links between objects. These objects may be media resources or more abstract items such as times or places." This is a development from a Chinese initiative which was specifying a specific link (for use with a proprietary pen technology and a printed mark to resolve to a URL – in essence turning a piece of print into a hyperlink) which has now been generalised. Members of the LCC technical workstreams have offered comments and feedback on the proposal, which currently seems to have critical problems but which are not hard to fix. In its current form ISDL would not be usable by LCC, but it is possible that a revised version might map well (or even mimic) the *logical model of a Link* in the RRM. The name "International standard document link (ISDL) identifier" is inappropriate, as it is not linking only documents but resources of any kind (it can be used to link times to times, places to places etc. as specified).

⁸⁷ http://www.doi.org/VMF/index.html