ABSTRACT

Aims To test the relationship between early cognitive ability and major changes in smoking habits across adulthood, and test whether educational attainment mediates these associations. Design Prospective observational study to examine the link between cognitive ability and smoking initiation, relapse and cessation at multiple time-points throughout adulthood in a pooled analysis of two cohorts. Setting Great Britain 1981–2013. Participants A total of 16 653 participants from two British cohorts: 7191 from the 1970 British Cohort Study (BCS) and 9462 from the 1958 National Child Development Study (NCDS). Participants were 52.9% female and 27.3% were smokers, 24.8% were ex-smokers and 47.9% reported never smoking. Measurements Cognitive ability was assessed at age 10 years in the BCS and 11 years in the NCDS. Outcomes were smoking initiation, relapse and cessation derived from changes in smoking status observed across five time-points between ages 26–42 in the BCS and six time-points between ages 23–55 in the NCDS. Educational attainment was examined as a mediating variable. Controls were age, gender, social class, self-control, psychological distress, parental smoking and a study indicator (BCS/NCDS). Findings In adjusted regression models, a 1 standard deviation increase in cognitive ability predicted a 0.5 percentage point (95% CI = -0.9 to -0.1) reduced probability of smoking and a 2.9 percentage point (95% CI = 2.1–3.7) higher probability of smoking cessation throughout adulthood, but did not change the likelihood of smoking relapse significantly. Differences in educational attainment explained approximately half the association between childhood cognitive ability and smoking initiation/cessation. Conclusions Lower cognitive ability, measured in childhood before smoking is initiated, appears to predict a higher likelihood of taking up smoking and a lower likelihood of quitting in adulthood. Educational attainment appears to mediate this effect: children with higher cognitive ability tend to become more highly educated adults which, in turn, predicts lower rates of smoking initiation and increased rates of smoking cessation.

Keywords Cigarettes, cognitive ability, cohort study, intelligence, longitudinal research, smoking.

INTRODUCTION

Despite widespread public health warnings detailing the adverse health effects of smoking, many people continue to smoke tobacco throughout life. There is now convincing evidence that low levels of childhood cognitive ability predict an increased risk of smoking in adulthood [1–6]. While the prospective relationship between cognitive ability and subsequent smoking has been confirmed, the pathways that explain this association remain unclear. We suggest two key paths.

First, there is strong evidence that cognitive ability shapes the uptake of smoking in adolescence [6,7]. For example, a study of more than 20,000 Israeli males found that adolescent smokers scored markedly lower than non-smokers on tests of cognitive ability reported effect size = 0.41 [6]. Furthermore, in that study cognitive ability showed a clear negative relationship with levels of tobacco use among adolescent smokers [6]. Given that adolescent smoking and nicotine dependence tend to persist into adulthood [8] this path is likely to explain, in part, why childhood cognitive ability predicts smoking later in life.

A second less well-explored possibility is that cognitive ability could shape the behaviours that maintain or break smoking habits across adulthood: smoking initiation,
smoking relapse and smoking cessation. There is some evidence that those with lower levels of cognitive ability are more likely to take up smoking in early adulthood [6] and also have difficulty quitting smoking in young adulthood and middle age [5,9,10]. However, a subsequent longitudinal study found no link between cognitive ability and smoking cessation [7]. While prior research has linked individual difference characteristics, such as high trait neuroticism and low self-control [11,12], to higher rates of relapse the link between early life cognitive ability and relapse to smoking among ex-smokers has not yet been examined.

Although some previous studies have linked cognitive ability to smoking initiation and cessation in adulthood, the measures and designs employed in those studies have been limited in several respects. For example, Weiser et al. [6] examined adult smoking initiation prospectively, but only from ages 18 to 21 years. Batty et al. [5] relied upon showing higher levels of cognitive ability among ex-smokers compared to current smokers at a single time-point to demonstrate a link between cognitive ability and giving up smoking. Taylor et al. [9] and Batty et al. [10] used retrospective accounts of participants’ history of smoking behaviour recalled over decades to link higher levels of cognitive ability to an increased rate of smoking cessation. Such retrospective measures of smoking behaviour are likely to be affected by recall bias [13], which may be greatest among those with lower levels of cognitive ability [14].

To summarize, prior studies aiming to understand the role of cognitive ability in shaping changes in smoking behaviour have been hampered by a reliance upon measures of smoking derived from cross-sectional snapshots, short periods of follow-up and retrospective accounts. The present study therefore set out to test systematically, for the first time, whether individual differences in childhood cognitive ability predict prospectively each of the major changes in smoking habits that can occur across adulthood: smoking initiation, cessation and relapse. We used two large-scale population-based studies, the 1970 British Cohort Study (BCS) and the 1958 National Child Development Study (NCDS). Information on participant smoking was elicited at multiple time-points, removing the need to rely upon potentially inaccurate recollections of smoking history.

The NCDS and BCS data have been minimally exploited to examine the link between childhood cognitive ability and changes in smoking behaviour across life. Previous research has shown that higher levels of cognitive ability predict a reduced risk of smoking in young adulthood and during pregnancy in the NCDS and the BCS [3,5]. Further, higher cognitive ability has been linked to an increased likelihood of being an ex-smoker at age 30 in the BCS [5]. The current study aims to capitalize more fully on the NCDS and BCS data by examining the relationship between cognitive ability and changes in smoking habits over more than three decades of adult life. This study also aims to extend prior work by incorporating controls for previously neglected background variables that have been assessed in the cohort studies. Specifically, we include controls for parental smoking, childhood self-control and early psychological distress; three key potentially confounding factors which covary with cognitive ability and predict smoking habits [12].

Furthermore, while prior studies have considered the role of social background in explaining the link between cognitive ability and changes in adult smoking habits [6,9,10], the specific role of educational attainment as a potential mediator of this association has not been clarified. Cognitive ability is a powerful determinant of educational attainment, explaining approximately a quarter of the variation in school grades [15–17]. Public health campaigns have detailed the dangers of smoking since the 1960s, and since then more educated adults have shown lower smoking rates and greater success in smoking cessation across a variety of contexts [18–21]. It is possible that education predicts smoking behaviour because it acts as a ‘proxy’ for psychological (e.g. self-control, cognitive ability, psychological distress) or social background variables (e.g. childhood social class) [22]. However, we suggest an alternative explanation: that educational attainment acts as a mechanism in its own right by helping to translate higher levels of cognitive ability into changes in smoking habits.

In the current study, we hypothesized that those with high levels of childhood cognitive ability would be more successful at quitting smoking, relapse to smoking at lower rates and be less likely to take up smoking as adults. We also hypothesized that educational attainment would act as a mediating pathway through which cognitive ability could enhance the likelihood of smoking cessation and reduce the risk of relapse to smoking and smoking initiation.

MATERIALS AND METHODS

Participants

This study used data from two prospective British birth cohort studies: the BCS, a multi-disciplinary study of children born in a single week in 1970 and followed-up across multiple waves throughout adulthood from 1996 to 2012, and the NCDS, a study of those born in a single week in 1958 and traced longitudinally across adulthood from 1981 to 2013. We used the BCS data to examine links between childhood cognitive ability at age 10 and changes in smoking behaviour between ages 26, 30, 34, 38 and 42. In the NCDS, cognitive ability was measured at age 11 and changes in smoking behaviour between ages 23, 33, 42, 46, 50 and 55. In both cohorts, we included those with complete data on childhood cognitive ability and educational attainment and at least two waves of adult smoking data in order to allow smoking initiation, relapse and
cessation to be examined. This produced a total sample size of 16 653 (7191 in the BCS and 9462 in the NCDS) across the three (initiation/relapse/cessation) models. All data sets used are listed in the Supporting information, Section S1.

Measures

Childhood cognitive ability

In the BCS, cognitive ability was measured at age 10 using the British Ability Scales (BAS). The BAS consists of two verbal (word definitions, word similarities) and two non-verbal tests (digit-span, matrices) [23]. The word definition test involved indicating the meaning of 37 words and the word similarities test involved producing a word consistent with each of 21 three-word lists. The digit-span test required participants to repeat 34 different sets of digits and the matrices test required participants to fill in a missing section of 28 incomplete patterns. The BAS items show high levels of internal reliability (Cronbach’s α = 0.93) and convergent validity with other measures of cognitive ability such as the Wechsler Intelligence Scale for Children and the Stanford–Binet Intelligence Test [23, 24]. To produce an overall measure of cognitive ability we summed correct responses for each test, standardized these four test scores, summed the four variables and standardized the resulting variable to have a mean of 0 and standard deviation SD of 1.

In the NCDS, cognitive ability was measured at age 11 using an 80-item general ability test composed of 40 verbal and 40 non-verbal items [25]. The verbal test involved selecting a missing item to complete a set of words and the non-verbal test selecting a missing item to complete a set of shapes. This test has shown high levels of reliability (Cronbach’s α = 0.94) and convergent validity with a contemporaneous IQ test (r = 0.93) used for secondary school selection [25]. To produce an overall measure of cognitive ability we summed correct responses for both tests and standardized the resulting variable to have a mean of 0 and standard deviation of 1.

Adult smoking initiation, relapse and cessation

Participants rated their smoking status at each survey wave across adulthood in both cohorts. Consistent with the UK Office for National Statistics (ONS) smoking classification system, smokers were defined as those who indicated that they ‘smoke cigarettes every day’ or ‘smoke cigarettes occasionally but not every day’. Ex-smokers were defined as those who indicated they ‘used to smoke cigarettes but don’t at all now’ and never smokers were those who reported that they have ‘never smoked cigarettes’. Smoking initiation was defined as reporting being a never smoker at one survey wave and a smoker or ex-smoker at the next recorded time-point. Relapse is examined typically in the context of smoking cessation treatment evaluation trials, and refers to ‘a period of several days or more of continuous smoking after a period of abstinence or an attempt at abstinence’ [26]. The current study follows recent epidemiological studies that have examined relapse prospectively using multi-wave population data [11, 12]. In these studies relapse is defined as reporting being an ex-smoker at one wave and a smoker at the next recorded time-point. This measure aims to capture the change from a period of smoking abstinence to a period of regular smoking. Smoking cessation was defined as reporting being a smoker at one wave and an ex-smoker at the next recorded time-point. The questions used to measure smoking in both cohorts are detailed in the Supporting information, Section S2.

Educational attainment

Educational attainment was measured via self-report at age 26 in the BCS (age 30 if age 26 was unavailable) and age 23 in the NCDS (age 33 if age 23 was unavailable) and was indexed by National Vocational Qualification (NVQ) rankings, which capture a range of academic achievement from second-level or vocational qualifications (NVQ-1) to postgraduate degrees (NVQ-5). Because those without formal qualifications were coded as 0, the resulting education variable ranged from 0 to 5, where 0 = no formal qualifications, 1 = NVQ-1 (low ordinary (O)-levels/certificate of secondary education (CSE)), 2 = NVQ-2 (high O-levels/advanced subsidiary (AS)-levels/1 advanced (A)-level), 3 = NVQ-3 (1+ A-levels), 4 = NVQ-4 (Diploma/Degree/Postgraduate Certificate in Education (PGCE) and 5 = NVQ-5 (higher degree).

Covariates

In both cohorts, we adjusted our analyses for age, gender, self-control, psychological distress, social class, parental smoking and a study indicator (BCS/NCDS). In the BCS, childhood self-control was measured at age 10 using nine teacher-rated items gauging attentional control and perseverance. In the NCDS, self-control was measured at ages 7 and 11 using 13 teacher-rated items from the Bristol Social Adjustment Guide (BSAG) measuring attentional control and impulsive behaviour [27]. The two self-control measures used correspond (r > 0.7) with ratings of childhood self-control on contemporary self-control measures [28]. Psychological distress was assessed at age 10 in the BCS using five teacher-rated items from the neuroticism/anxiety subscale of the Child Developmental Behaviors scale and at ages 7 and 11 in the NCDS using a teacher-rated measure of psychological distress from the BSAG. The individual items used to measure self-control and distress are detailed in the Supporting information, Section S3.
Social class was derived at birth from a measure of the father’s occupation, which was classified, based on the Registrar General’s Social Classes, into five categories: I = professional occupations, II = managerial and technical occupations, III = skilled occupations, IV = partly skilled occupations and V = unskilled occupations. Additional categories were included to code for ‘other’ occupational categories, such as the father being unemployed or absent, and for missing data.

Parental smoking was measured when the participant was aged 10 in the BCS and 16 in the NCDS. In both cohorts, maternal and paternal smoking behaviour was coded as 0 = non-smoker, 1 = one to 10 cigarettes per day, 2 = 11–20 per day, 3 = 21+ per day and 4 = missing data. The NCDS also included a category for parental pipe/cigar smoking. In instances where information on maternal smoking was unavailable at age 16 in the NCDS, we used maternal smoking levels prior to pregnancy. The individual parental smoking items used are detailed in the Supporting information, Section S2.

Statistical analysis

Changes in smoking status across adulthood

In our regression analyses we pooled data from both cohorts and used probit\(^1\) regressions to test the association between childhood cognitive ability and smoking initiation, relapse and cessation (model 1). We pooled the data from both cohorts because we found no evidence of a statistically significant interaction between cognitive ability and cohort study (BCS/NCDS) in predicting the three smoking outcomes, suggesting that the association between cognitive ability and changes in smoking habits did not differ substantially between studies. We tested the probability of changes in smoking status from one wave to the next between ages 26 and 42 in the BCS and ages 23 and 55 in the NCDS. For the initiation analyses we tested whether never smokers at an initial time-point \(T−1\) go on to become smokers or ex-smokers at in the next recorded wave \(T\) (outcome coded 0 = never smokers and 1 = smoker/ex-smoker). For the relapse analyses we examined whether ex-smokers (at \(T−1\)) become smokers (outcome coded so that 0 = ex-smoker and 1 = smoker) in the next recorded wave (T). Finally, for the cessation analyses we estimated the likelihood that smokers at one wave (\(T−1\)) went on to become ex-smokers (outcome variable coded 0 = smoker and 1 = ex-smoker) in the next recorded wave (T). We estimated these associations across all waves of available data simultaneously and used the Stata `margins` command [29] to present our results in terms of percentage point changes in the probability of initiation, relapse and cessation. Standard errors were clustered by individual to account for repeated observations across the waves.

Model 1: Smoking initiation/relapse/cessation

\[
\text{initiation/relapse/cessation}_i = \beta_0 + \beta_1 \text{cognitive ability}_i + \beta_2 \text{age}_i + \beta_3 \text{sex}_i + \beta_4 \text{self-control}_i + \beta_5 \text{psychological distress}_i + \beta_6 \text{parental smoking}_i + \beta_7 \text{social class}_i + \beta_8 \text{study(BCS/NCDS)}_i + \epsilon_i
\]

Our analysis gauges changes in smoking status from one recorded time-point to the next at multiple time-points throughout life and allows multiple changes in smoking status to occur for a given individual. We are therefore capturing the general propensity to change smoking habits in a certain way (i.e. initiation/relapse/cessation) rather than examining single changes in habits that individuals experience from a specific initial time-point (e.g. whether a smoker at age 26 ever reports becoming an ex-smoker in the future). To test whether the estimates from an alternative individual-based design would differ from our ‘propensity analysis’ we supplemented our main analysis with an analysis of never smokers/ex-smokers/smokers at a specific initial time-point (age 23 NCDS/age 26 BCS) and subsequent changes in smoking status (i.e. initiation/relapse/cessation) after that time-point. The results of this approach correspond closely to our main findings and are described in the Supporting information, Section S4.

Educational attainment mediation

To investigate whether educational attainment explained the link between childhood cognitive ability and changes in smoking status we added a measure of education (indexed by NVQ rankings) to model 1 and used the Stata `khb` command [30] to estimate the mediation effect. The Stata `khb` procedure can estimate indirect effects for a binary outcome measured repeatedly over several waves of data, as in the current study. It also allows the total effect of cognitive ability on smoking initiation/relapse/cessation to be decomposed into a direct effect, not attributable to education, and an indirect pathway from cognitive ability through educational attainment to changes in smoking status. The procedure also performs the necessary decomposition to identify the specific contribution of each NVQ level to explaining the indirect effect of cognitive ability on smoking initiation, relapse and cessation.

\(^1\)Our results were essentially identical when using logistic regressions (analyses available upon request). We did not use logistic regressions in our main analysis, as these are not supported currently in the `khb` procedure used in our mediation analysis.
Table 1: Descriptive statistics and correlations for key variables in the British Cohort Study (BCS) and the National Child Development Study (NCDS).

<table>
<thead>
<tr>
<th>Variables</th>
<th>BCS (n = 7191)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% / M (SD) (n)</td>
<td>CA</td>
<td>SC</td>
<td>PD</td>
<td>S</td>
<td>PS</td>
<td>E</td>
<td>CA</td>
<td>SC</td>
<td>PD</td>
</tr>
<tr>
<td>Smoking cessationa</td>
<td>24.8% (3055)</td>
<td>0.14</td>
<td>0.11</td>
<td>-0.07</td>
<td>-0.08</td>
<td>-0.15</td>
<td>0.17</td>
<td>23.9%</td>
<td>0.17</td>
<td>0.11</td>
<td>-0.10</td>
<td>-0.10</td>
<td>-0.11</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Smoking relapsea</td>
<td>19.5% (2107)</td>
<td>-0.04</td>
<td>-0.07</td>
<td>0.05</td>
<td>0.05</td>
<td>0.09</td>
<td>-0.08</td>
<td>13.7%</td>
<td>-0.04</td>
<td>-0.02</td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
<td>-0.06</td>
<td></td>
</tr>
<tr>
<td>Smoking initiationa</td>
<td>6.6% (3682)</td>
<td>-0.02</td>
<td>-0.06</td>
<td>-0.01</td>
<td>-0.03</td>
<td>-0.04</td>
<td>-0.02</td>
<td>6.1%</td>
<td>-0.04</td>
<td>-0.06</td>
<td>0.03</td>
<td>0.04</td>
<td>-0.05</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>Cognitive ability</td>
<td>77.3 (14.0) (7191)</td>
<td>1</td>
<td>0.42</td>
<td>-0.22</td>
<td>-0.29</td>
<td>-0.20</td>
<td>0.43</td>
<td>44.7 (15.6) (9462)</td>
<td>1</td>
<td>0.37</td>
<td>-0.37</td>
<td>-0.27</td>
<td>-0.13</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>Self-control</td>
<td>31.8 (9.9) (7191)</td>
<td>1</td>
<td>0.39</td>
<td>-0.14</td>
<td>-0.16</td>
<td>-0.29</td>
<td>0.11</td>
<td>11.7 (1.0) (9462)</td>
<td>1</td>
<td>0.44</td>
<td>-0.12</td>
<td>-0.10</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>Psych. distress</td>
<td>18.8 (6.2) (7191)</td>
<td>1</td>
<td>0.06</td>
<td>0.03</td>
<td>0.12</td>
<td></td>
<td></td>
<td>0.9 (1.2) (9462)</td>
<td>1</td>
<td>1.3</td>
<td>0.13</td>
<td>0.09</td>
<td>-0.29</td>
<td></td>
</tr>
<tr>
<td>Social class b</td>
<td>3.0 (0.8) (6754)</td>
<td>1</td>
<td>0.20</td>
<td>-0.28</td>
<td></td>
<td></td>
<td></td>
<td>3.1 (0.9) (8688)</td>
<td>1</td>
<td>0.13</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Parental smokingc</td>
<td>0.8 (0.9) (6660)</td>
<td>1</td>
<td></td>
<td>-0.23</td>
<td></td>
<td></td>
<td></td>
<td>0.8 (0.9) (9337)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Educationd</td>
<td>2.5 (1.4) (7191)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4 (1.5) (9462)</td>
<td></td>
</tr>
</tbody>
</table>

Correlations shown in bold type are significant at P < 0.01. aSmoking cessation, relapse and initiation take the average prevalence for all available waves. bSocial class at birth is based on father’s occupational social class ranges from I (highest: professional/managerial occupations) to V (lowest: unskilled occupations) and excludes ‘other’ and ‘missing’ categories in order to include this variable in the correlation matrix. cParental smoking takes the average of father smoking and mother smoking variables and was rated on a 0–3 scale, where 0 = not a smoker, 1 = one to 10 cigarettes per day, 2 = 11–20 per day, 3 = 21+ per day. It excludes ‘pipes/cigars’ and ‘missing’ categories for the purpose of including this variable in the correlation matrix. If usable data were not available for both parents, we used data on one parent to maximize sample size. dEducational attainment was indexed using National Vocational Qualifications (NVQ) rankings, where 0 = none, 1 = NVQ 1 (the lowest qualification) and 5 = NVQ 5 (the highest). CA = cognitive ability; SC = smoking cessation; PD = psychological distress; S = self-control; PS = parental smoking; E = educational attainment.
survey wave to the next compared to just 21.3% of smokers with low cognitive ability (−1 SD).

Educational attainment mediation

Next, we aimed to identify if educational attainment mediated the association between cognitive ability and smoking initiation/cessation. As expected, childhood cognitive ability strongly predicted subsequent educational attainment. Across the two cohorts a 1 SD increase in cognitive ability predicted a 0.56 unit increase in educational attainment (measured from 0 = none to 5 = NVQ level 5), with similar associations identified in fully adjusted analyses of both samples [BCS (n = 7191): $b = 0.44$, 95% CI = 0.40–0.47, $P < 0.001$; NCDS (n = 9462): $b = 0.67$, 95% CI = 0.64–0.69, $P < 0.001$]. Higher educational attainment, in turn, predicted a greater likelihood of smoking initiation/cessation, as shown in Table 2. Compared to those with no formal educational qualifications, those with the highest qualifications were 2.3 percentage points (95% CI = −4.1 to −0.6) less likely to take up smoking and 15.4 percentage points (95% CI = 11.0–19.8) more likely to quit smoking as adults.

Formal mediation analysis found that educational attainment explained 48.7% of the link between cognitive ability and smoking initiation ($b = −0.02$, 95% CI = −0.03 to −0.01, $P < 0.01$) and 51% of the link with cessation ($b = 0.05$, 95% CI = 0.04 to 0.06, $P < 0.001$), as shown in Table 3. For both outcomes, decomposing this indirect effect revealed that the vast majority (more than 80%) of these mediation effects were concentrated among those with the two highest levels of educational attainment (NVQ levels 4 and 5, equivalent to diploma level and above).

DISCUSSION

This study tested the association between childhood cognitive ability and changes in smoking habits across adulthood. Using data from two large population-based UK birth cohorts we found consistent evidence that lower levels of cognitive ability predicted a reduced likelihood of smoking cessation across adult life. While the current study uncovered evidence that strengthens and expands upon prior work linking cognitive ability and smoking cessation, our findings in relation to smoking relapse and initiation were equivocal. Those who had never smoked were slightly more likely to start smoking in adulthood if they had low levels of cognitive ability. Furthermore, cognitive ability did not appear to influence whether ex-smokers would relapse to become smokers in either cohort. These results suggest that cognitive ability may shape changes in adult smoking habits chiefly by increasing the likelihood of successfully stopping smoking.

The close association between cognitive ability and smoking cessation was consistent across both cohorts, and could not be accounted for by established predictors of smoking habits such as parental smoking, social class and childhood distress and self-control [11,12,31,32]. On average, a 1 SD increase in cognitive ability was linked with approximately a 3 percentage point increased likelihood of cessation between one recorded time-point and the next across several waves of follow-up in both cohorts. This finding is in line with previous research linking cognitive ability to smoking cessation [5,9,10]. However, the current study is the first to use multi-wave prospective data to demonstrate that cognitive ability is associated closely with the likelihood of transitioning from being a smoker to being an ex-smoker across adulthood.

To date, there has also been little research formally testing the potential mediating factors linking cognitive ability to smoking cessation. Across both samples we found that approximately half the prospective association...
between cognitive ability and both smoking initiation and cessation was explained by educational attainment; children with higher levels of cognitive ability went on to become more highly educated adults which, in turn, predicted lower rates of smoking initiation and increased rates of smoking cessation. Taken together, these findings underscore the key role of schooling in protecting against smoking behaviours and further highlight the need for tobacco control efforts to target those without a third-level qualification in order to reduce health disparities. There are many potential pathways through which lower levels of education may have promoted smoking initiation and cessation.

Table 2 Childhood cognitive ability and percentage point change in probability of smoking initiation, relapse and cessation in the British Cohort Study and National Child Development Study, before and after adjustment for educational attainment levels.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Smoking initiation</th>
<th>Smoking relapse</th>
<th>Smoking cessation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive ability</td>
<td>−0.5** (−0.9 to −0.1)</td>
<td>−0.3 (−0.7 to 0.1)</td>
<td>2.9*** (2.1 to 3.7)</td>
</tr>
<tr>
<td>NVQ 1</td>
<td>−0.7 (−1.5 to 0.1)</td>
<td>−0.3 (−1.3 to 0.6)</td>
<td>1.4** (0.5 to 2.2)</td>
</tr>
<tr>
<td>NVQ 2</td>
<td>−0.9 (−1.2 to 1.2)</td>
<td>−0.7 (−1.2 to 1.1)</td>
<td>1.5 (−0.7 to 3.8)</td>
</tr>
<tr>
<td>NVQ 3</td>
<td>−0.7 (−1.2 to 0.7)</td>
<td>0.9 (−1.2 to 2.2)</td>
<td>4.6** (2.6 to 6.5)</td>
</tr>
<tr>
<td>NVQ 4</td>
<td>−1.8 (−1.3 to 1.2)</td>
<td>−1.8 (−1.3 to 1.2)</td>
<td>9.8*** (7.2 to 12.4)</td>
</tr>
<tr>
<td>NVQ 5</td>
<td>−2.3 (−1.4 to −1.2)</td>
<td>−3.8 (−2.3 to −1.3)</td>
<td>15.4*** (11.0 to 19.8)</td>
</tr>
</tbody>
</table>

Cognitive ability is standardized. Data from both cohort studies are pooled into combined analyses. Columns contain probit marginal effects clustered by the individual participant identifier and converted to percentage point probabilities. Analyses control for age, gender, social class, self-control, psychological distress, parental smoking and study (British Cohort Study or National Child Development Study); 95% confidence intervals in parentheses. Educational attainment was measured using National Vocational Qualifications (NVQ) levels where none = no formal qualifications; NVQ 1 = low O-levels/certificate of secondary education (CSE); NVQ 2 = high O-levels/advanced subsidiary (AS)-levels/1 advanced (A)-level; NVQ 3 = 1+ A-levels; NVQ 4 = Diploma/Degree/Postgraduate Certificate in Education (PGCE); NVQ 5 = higher degree. Educ. = educational attainment. *P < 0.05; **P < 0.01; ***P < 0.001.

Table 3 Decomposition of the total effect of childhood cognitive ability on smoking initiation and smoking cessation via the indirect effect of educational attainment in the British Cohort Study (BCS) and the National Child Development Study (NCDS).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Smoking initiation</th>
<th>Smoking cessation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education*</td>
<td>Coefficient (95% CIs)</td>
<td>P-value</td>
</tr>
<tr>
<td>Total effect</td>
<td>−0.042 (−0.073, −0.012)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Direct effect</td>
<td>−0.022 (−0.055, 0.011)</td>
<td>0.19</td>
</tr>
<tr>
<td>Indirect effect</td>
<td>−0.021 (−0.033, −0.008)</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mediation effect</th>
<th>P-value</th>
<th>Mediation effect</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>−6.9%</td>
<td>0.41</td>
</tr>
<tr>
<td>NVQ 1</td>
<td>−7.9%</td>
<td>0.19</td>
<td>−4.0%</td>
</tr>
<tr>
<td>NVQ 3</td>
<td>5.9%</td>
<td>0.05</td>
<td>9.9%</td>
</tr>
<tr>
<td>NVQ 4</td>
<td>17.7%</td>
<td>0.02</td>
<td>19.8%</td>
</tr>
<tr>
<td>NVQ 5</td>
<td>39.8%</td>
<td>< 0.01</td>
<td>20.2%</td>
</tr>
<tr>
<td>Total mediation effect</td>
<td>48.7%</td>
<td>< 0.01</td>
<td>51.0%</td>
</tr>
<tr>
<td>n</td>
<td>8552</td>
<td>7132</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>27 505</td>
<td>17 444</td>
<td></td>
</tr>
</tbody>
</table>

Top part of the table presents probit coefficients produced using the khb method. Bottom part of the table presents mediation effect of childhood cognitive ability on adult smoking by levels of educational attainment by age 30 (BCS) or 33 (NCDS). Analyses control for age, gender, social class, self-control, psychological distress, parental smoking and study (BCS or NCDS). *Educational attainment was measured using National Vocational Qualifications (NVQ) levels where none = no formal qualifications; NVQ 1 = low O-levels/certificate of secondary education (CSE); NVQ 2 = high O-levels/advanced subsidiary (AS)-levels/1 advanced (A)-level; NVQ 3 = 1+ A-levels; NVQ 4 = Diploma/Degree/Postgraduate Certificate in Education (PGCE); NVQ 5 = higher degree. CI = confidence interval.
hampered quit attempts. For example, low levels of education have been linked with social and work environments where smoking is more socially acceptable and cessation is less well-supported [33–35]. Conversely, higher levels of education could foster a better understanding of the health consequences of taking up smoking and the potential benefits of smoking cessation treatments, leading potentially to a lower likelihood of smoking initiation and a greater readiness to quit and to seek support in doing so [35,36].

Limitations

In the present work we focused upon two cohorts born in 1970 and 1958, so we cannot say whether the same pattern of results would be observed among younger cohorts. Further, while the link between cognitive ability and smoking initiation and cessation was not found to differ significantly between the two cohorts, we cannot rule out the possibility that differences between the cohorts in how cognitive ability was measured (120-item British Abilities Scale in the BCS; 80-item general ability test in the NCDS) and in the timing of the assessment of smoking behaviour (ages 26/30/34/38/42 in the BCS; ages 23/33/42/46/50/55 in the NCDS) may have influenced the results [23,25]. Our samples were also comprised exclusively of UK citizens, so the extent to which our findings are consistent across countries remains unclear. A final limitation of the present work is that smoking was self-reported which, while linked to low rates of misclassification [37], could underestimate smoking prevalence [38].

CONCLUSIONS

We investigated whether cognitive ability predicted changes in three adult smoking habits: smoking initiation, relapse to smoking after quitting and smoking cessation. Our analysis of two large cohorts showed that low levels of childhood cognitive ability were associated with a raised risk of taking up smoking and with substantial difficulties in smoking cessation throughout adulthood. Further, our mediation analyses found that educational attainment explained half of these prospective links. The risk of smoking throughout adulthood associated with low cognitive ability [1–6] may partially reflect problems in successfully quitting smoking experienced by this group.

Declaration of interests

None.

Acknowledgements

We are grateful to The Centre for Longitudinal Studies, Institute of Education, for their management of these data and to the UK Data Archive for making them available. However, these organizations bear no responsibility for the analysis or interpretation of the data.

References

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Section S1 Details of data sets used.
Section S2 Questions used to elicit smoking behaviour.
Table S1 Description of parental and smoking status variables elicited in both studies.
Section S3 Details of the measures used to assess self-control and psychological distress.
Section S4 Individual-level analysis of the association between childhood cognitive ability and changes in adult smoking behaviour.
Table S2 Individual-based analysis examining the association between childhood cognitive ability and percentage point change in probability of smoking initiation, relapse and cessation in the British Cohort Study and National Child Development Study.