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Introduction 

Samsung KNOX​TM is an umbrella name used by Samsung for a collection of security              

features deployed on its Android devices. While some of its modules are user-facing             

(such as the ​My KNOX​ TM app), others perform their tasks in the background. One such               

module, called TIMA RKP (short for Real-time Kernel Protection), is responsible for            1

defending the system in case of a successful kernel exploit. 

In this paper, we explain how a standard root exploit subverts the kernel, and explore the                

protection mechanisms of the RKP module that prevent this kind of exploitation. We then              

avoid these protections, and execute code in the ​system user context. Malicious access to              

the ​system account can be used, for instance, to replace legitimate applications with             

rogue versions, with access to all available permissions, without the user’s notice. 

Next, we delve deeper into the RKP module, to identify the specific tests performed to               

prevent privilege escalation. We leverage this newfound knowledge to subvert the RKP            

module and achieve root privileges. Furthermore, we disable additional kernel          

protections, and finish off with loading a kernel module, in order to remount the              

/system ​ partition as writable. 

A prerequisite for subverting the RKP module is a ​write-what-where kernel vulnerability.            

While any such vulnerability can be used, for this example we will be using              

CVE-2015-1805. This vulnerability in the processing of vectored pipes by the Linux kernel             

is exploitable on recent Samsung devices (such as Galaxy S6 and Galaxy Note 5), and has                

an open-source exploit implementation named ​iovyroot . 2

  

1 ARM TrustZone-based Integrity Measurement Architecture 
2 ​https://github.com/dosomder/iovyroot 
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Step 0: Adjusting ​iovyroot​  for Samsung devices 

iovyroot​  Execution Flow 

iovyroot is a pretty straightforward exploitation of a ​write-what-where vulnerability to           

achieve root: 

1. Use the vulnerability to overwrite the ​ptmx_fops­>check_flags function        3

pointer with the location of a code gadget which retrieves the current thread info              

structure. (its execution is triggered by invoking the ​fcntl(2) system call with the             

cmd​  argument set to ​F_SETFL ​). 

2. Use the vulnerability (again) to patch ​addr_info field of the thread info structure             

(which, in turn, allows arbitrary reads and writes from/to any kernel address via             

pipes). 

3. Use the access to kernel space via pipes to find the task structure, and overwrite               

the credentials structure inside with root credentials . 4

iovyroot​  Prerequisites 

While ​iovyroot is a generic Linux kernel exploit, it relies on the prior knowledge of certain                

locations in the targeted kernel. Normally, these locations are provided by the kernel at              

runtime (by reading ​/proc/kallsyms ​) - but on certain Linux systems (Android included),            

this method requires root access. Fortunately, there is an alternative approach -            

extracting the symbols offline from a kernel image (obtainable from a firmware update             

matching the version of the software running on the device). 

Since the format of the compressed kernel image differs from that of other Linux              

executables, its symbols cannot be extracted using regular tools (such as ​nm​ ). Instead, we              

use ​kallsymsprint​ , developed specifically for the extraction of symbols from a           5

compressed Linux kernel image. However, since the 64-bit Samsung kernel is loaded to a              

3 ​ptmx_fops is a structure containing function pointers, triggered when file operations are carried out               
on ​/dev/ptmx​. 
4 ​https://github.com/dosomder/iovyroot/blob/master/jni/getroot.c#L61 
5 ​https://github.com/fi01/kallsymsprint 
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non-standard address (​0xffffffc0`00205000 ​, as opposed to ​0xffffffc0`00080000 ​),       

the tool required some minor modifications to work with the Samsung kernel. 

Once we could parse the Samsung kernel properly, another obstacle became apparent.            

Oftentimes, all the kernel symbols are embedded inside the image, and the required             

locations can be easily found via ​kallsymsprint​ . However, Samsung strips all the data             

symbols from its kernels, leaving only the function names - and ​iovyroot requires the              

locations of several data structures in the kernel. 

To find those locations, we first compiled a Samsung kernel of a version similar to the                

one found on the device (and in the firmware update file). By compiling the kernel, we                

had access to the System.map file, which contains the location of all the symbols for the                

compiled kernel (including the data symbols stripped from the final image). 

Next, we disassembled the compiled kernel and found references in code to the data              

symbols we were looking for. By looking at functions which access the data right in the                

beginning, we were able to find similar accesses in the same functions in the production               

kernel. Those accesses finally provided us with the addresses of the data structures in              

the production kernel.  6

Example: Finding the location of ptmx_fops: 

Looking at the compiled kernel with symbols, we see that there are no cross-references              

to the ​ptmx_fops variable. However, it is close (16 bits away, to be exact) from another                

variable, ​ptm_driver ​. We make an assumption that this will be the case in the stripped               

kernel, as well. 

 

  

6 We later managed to find the source of the kernel matching exactly the device we’ve been working                  
on. This allowed us to compile a kernel matching the one on device perfectly, and simply look up all of                    
its symbols, making the aforementioned method obsolete. We did, however, want to include it in the                
paper, since this might not always be the case, and it might prove useful in cases where the source                   
code of the matching version is unavailable. 
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Disassembling the code that references ​ptm_driver gives us the following excerpt from            

ptmx_open ​: 

vmlinux w/symbols: 

0xFFFFFFC0004ED244​ ​(​ptmx_open​+​0x6C​): 
MOV             X0​,​ X19 
ADRP            X23​,​ ​#tty_mutex@PAGE 
ADD             X23​,​ X23​,​ ​#tty_mutex@PAGEOFF 
ADRP            X25​,​ ​#​ptm_driver​@PAGE 
BL              mutex_unlock 
MOV             X0​,​ X23 
BL              mutex_lock 
LDR             X0​,​ ​[​X25​,​#​ptm_driver​@PAGEOFF] 
MOV             W1​,​ W20 
BL              tty_init_dev 
MOV             X19​,​ X0 
CMN             X19​,​ ​#1,LSL#12 
MOV             X0​,​ X23 
B​.​LS            loc_FFFFFFC0004ED294 

Armed with this knowledge, we disassemble ​ptmx_open in the stripped kernel (its            

address is available to us via ​kallsymsprint​ ), and so we arrive at the following code: 

vmlinux w/out symbols: 

FFFFFFC0004E3214 ​(​ptmx_open​+​0x6C​): 
MOV             X0​,​ X19 
ADRP            X23​,​ ​#dword_FFFFFFC00132CDD0@PAGE 
ADD             X23​,​ X23​,​ ​#dword_FFFFFFC00132CDD0@PAGEOFF 
ADRP            X25​,​ ​#​0xFFFFFFC001795A08​@PAGE 
BL              sub_FFFFFFC0009C7750 
MOV             X0​,​ X23 
BL              sub_FFFFFFC0009C797C 
LDR             X0​,​ ​[​X25​,​#​0xFFFFFFC001795A08​@PAGEOFF] 
MOV             W1​,​ W20 
BL              sub_FFFFFFC0004DB120 
MOV             X19​,​ X0 
CMN             X19​,​ ​#1,LSL#12 
MOV             X0​,​ X23 
B​.​LS            loc_FFFFFFC0004E3264 

The code is pretty much identical to the one in the compiled version, so we can easily                 

match the symbols and calculate that ​ptm_driver is located at ​0xFFFFFFC001795A08 ​.           

Adding 16-bits, we arrive at the location of ​ptmx_fops ​, ​0xFFFFFFC001795A18 ​. 
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Step 1: Testing the limits of RKP 

After finding the required locations via our modified ​kallsymsprint​ , we could run ​iovyroot             

on a Samsung device, hoping to achieve root access (which was attainable on a multitude               

of devices from Sony, LG, Huawei and other manufacturers). We were quickly presented             

with a failed attempt - but the exploitation of the vulnerability itself worked flawlessly.              

The failure stemmed from the method for obtaining root, which is based on rewriting the               

credentials of the executing process. 

We thoroughly investigated the flow of the exploitation, and attempted to introduce            

changes to the method (such as using kernel functions to build the root credentials, copy               

the root credentials from the init process, and more), to no avail. Any attempt to               

overwrite the process credentials with UID 0 (the root UID), for that matter, any other               

credentials, failed. 

By diving into the source of Samsung’s Android kernel, we were finally able to locate the                

issue - the RKP module. 

The RKP module 

The RKP module consists of 2 layers: the first layer is interwoven with the Linux kernel,                

and simply adds or replaces code in strategic places. Meanwhile, the second layer (which              

is not open-sourced) resides in the ARM TrustZone as a hypervisor. The communication             

between the two layers is carried out via the ​rkp_call function, which is basically a               

wrapper around the ​hvc ​ opcode : 7

arch/arm64/kernel/rkp_entry.S 

ENTRY​(​rkp_call) 
hvc #0 
ret 

ENDPROC​(​rkp_call) 

 

7 The ​hvc opcode (short for Hypervisor Call) is used to jump into the TrustZone hypervisor. It can only                   
be executed in a privileged (kernel) context. 
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The idea behind RKP is to mask and protect certain areas of kernel memory (such as the                 

“cred area” of process structures). These areas are marked in the kernel source with the               

RKP_RO_AREA ​ prefix, and as the name suggests - they are stored in read-only pages: 

kernel/cred.c 

/* 
 ​*​ ​The​ initial credentials ​for​ the initial task 
 ​*/ 
RKP_RO_AREA​ ​struct​ cred init_cred ​=​ { 

.​usage =​ ATOMIC_INIT​(​4​), 
#ifdef​ CONFIG_DEBUG_CREDENTIALS 

.​subscribers =​ ATOMIC_INIT​(​2​), 

.​magic =​ CRED_MAGIC, 
#endif 

.​uid =​ GLOBAL_ROOT_UID, 

.​gid =​ GLOBAL_ROOT_GID, 

.​suid =​ GLOBAL_ROOT_UID, 

.​sgid =​ GLOBAL_ROOT_GID, 

.​euid =​ GLOBAL_ROOT_UID, 

.​egid =​ GLOBAL_ROOT_GID, 

.​fsuid =​ GLOBAL_ROOT_UID, 

.​fsgid =​ GLOBAL_ROOT_GID, 

.​securebits =​ SECUREBITS_DEFAULT, 

.​cap_inheritable =​ CAP_EMPTY_SET, 

.​cap_permitted =​ CAP_FULL_SET, 

.​cap_effective =​ CAP_FULL_SET, 

.​cap_bset =​ CAP_FULL_SET, 

.​user =​ INIT_USER, 

.​user_ns =​ ​&​init_user_ns, 

.​group_info =​ ​&​init_groups, 
#ifdef​ CONFIG_RKP_KDP 

.​use_cnt =​ ​&​init_cred_use_cnt, 

.​bp_task =​ ​&​init_task, 

.​bp_pgd =​ ​(​void​ ​*)​ ​0, 

.​type =​ ​0, 
#endif​ ​/*CONFIG_RKP_KDP*/ 
}; 

When write access is required (such as when a new process is created, and its cred                

structure is to be populated), ​rkp_call is invoked with the relevant parameters to             

provide writing services to the protected area . However, the hypervisor layer of RKP             8

does not provide simple memory write implementations. Instead, it receives more           

complex requests (such as writing new credentials into a read-only area), and therefore it              

can perform its own checks and validations, hidden and independent of the kernel. As a               

8 In 8086 architecture, bit 16 of CR0 dictates whether write-protected pages are writable by the kernel.                 
However, no mechanism for writing to write-protected pages without changing the PTEs is available on               
ARM. 
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result, code execution in kernel does not guarantee arbitrary writes, and read-only            

memory areas in the kernel are still protected. 

Step 2: Asking RKP nicely 

As we could see, both via examining the kernel source code and via actual tests, it is                 

impossible to write to the cred storage, and any such attempt has the cred storage               

remain unchanged. Furthermore, attempts to point the credentials structure to a           

different structure (such as that of the ​init process, which has root credentials), were              

futile, as well. 

However, upon further study of the kernel code, we found a special RKP function,              

rkp_override_creds ​, which replaces the regular kernel function ​override_creds ​: 

kernel/cred.c 

/** 
 ​*​ override_creds ​­​ ​Override​ the current process​'s subjective credentials 
 ​*​ ​@new​:​ ​The​ credentials to be assigned 
 * 
 ​*​ ​Install​ a ​set​ of temporary ​override​ subjective credentials on the current 
 ​*​ process​,​ returning the old ​set​ ​for​ later reversion. 
 ​*/ 
#ifdef​ CONFIG_RKP_KDP 
const​ ​struct​ cred ​*​rkp_override_creds​(​struct​ cred ​**​cnew) 
#else 
const​ ​struct​ cred ​*​override_creds​(​const​ ​struct​ cred ​*​new) 
#endif​  ​/* CONFIG_RKP_KDP */ 
{ 

const​ ​struct​ cred ​*​old ​=​ current​­>​cred; 
#ifdef​ CONFIG_RKP_KDP 

struct​ cred ​*​new​ ​=​ ​*​cnew; 
struct​ cred ​*​new_ro; 
volatile​ ​unsigned​ ​int​ rkp_use_count ​=​ rkp_get_usecount​(​new​); 
void​ ​*​use_cnt_ptr ​=​ NULL; 
void​ ​*​tsec ​=​ NULL; 

#endif​  ​/* CONFIG_RKP_KDP */ 
 

kdebug​(​"override_creds(%p{%d,%d})"​,​ ​new, 
       atomic_read​(&​new​­>​usage​), 
       read_cred_subscribers​(​new​)); 

 
validate_creds​(​old​); 
validate_creds​(​new​); 

#ifdef​ CONFIG_RKP_KDP 
if​(​rkp_cred_enable​)​ { 

cred_param_t​ cred_param; 
new_ro ​=​ kmem_cache_alloc​(​cred_jar_ro​,​ GFP_KERNEL​); 
if​ ​(!​new_ro) 

panic​(​"override_creds(): kmem_cache_alloc() failed"​); 
 

use_cnt_ptr ​=​ kmalloc​(​sizeof​(​atomic_t​),​GFP_KERNEL​); 
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if​(!​use_cnt_ptr) 
panic​(​"override_creds() : Unable to allocate usage pointer\n"​); 

 
tsec ​=​ kmem_cache_alloc​(​tsec_jar​,​ GFP_KERNEL​); 
if​(!​tsec) 

panic​(​"override_creds() : Unable to allocate security pointer\n"​); 
 

rkp_cred_fill_params​(​new​,​new_ro​,​use_cnt_ptr​,​tsec​,​RKP_CMD_OVRD_CREDS​,​rkp_use_count​);
 

rkp_call​(​RKP_CMDID​(​0x46​),(​unsigned​ ​long​ ​long​)&​cred_param​,​0​,​0​,​0​,​0​); 
 

rocred_uc_set​(​new_ro​,​2​); 
rcu_assign_pointer​(​current​­>​cred​,​ new_ro​); 

 
if​(!​rkp_ro_page​((​unsigned​ ​long​)​new​)){ 

if​(​atomic_read​(&​new​­>​usage​)​ ​==​ ​1​)​ { 
rkp_free_security​((​unsigned​ ​long​)​new​­>​security​); 
kmem_cache_free​(​cred_jar​,​ ​(​void​ ​*)(*​cnew​)); 
*​cnew ​=​ new_ro​;  

} 
} 

} 
else​ { 

get_cred​(​new​); 
alter_cred_subscribers​(​new​,​ ​1​); 
rcu_assign_pointer​(​current​­>​cred​,​ ​new​); 

} 
#else 

get_cred​(​new​); 
alter_cred_subscribers​(​new​,​ ​1​); 
rcu_assign_pointer​(​current​­>​cred​,​ ​new​); 

#endif​  ​/* CONFIG_RKP_KDP */ 
alter_cred_subscribers​(​old​,​ ​­​1​); 

 
kdebug​(​"override_creds() = %p{%d,%d}"​,​ old, 
       atomic_read​(&​old​­>​usage​), 
       read_cred_subscribers​(​old​)); 
return​ old; 

} 
#ifdef​ CONFIG_RKP_KDP 
EXPORT_SYMBOL​(​rkp_override_creds​); 
#else 
EXPORT_SYMBOL​(​override_creds​); 
#endif​  ​/* CONFIG_RKP_KDP */ 

This kernel function is usually used to achieve a temporary override of the current              

process’s credentials. And, as we can see above, this is exactly what the RKP version does,                

the difference being that the creds are not written directly, but instead copied into a               

read-only memory area, via a combination of ​rkp_cred_fill_params and ​rkp_call ​.          

Essentially, the work for invoking ​rkp_call is cut out for us, and all we need to do is call                   

rkp_override_creds ​ with a pointer to a newly allocated cred structure. 

Furthermore, and luckily for us, the RKP version of the function receives a pointer to a                

cred structure pointer (​**cnew​ ), as opposed to just a cred structure pointer (​*new​ ) in the               
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original function. This allows us to pass a user-mode pointer, which will be dereferenced              

into a kernel-mode pointer inside the function - which is crucial, since the argument we               

provide when invoking ​fcntl(2) (which triggers the kernel function) is stripped to 32             

bits. 

 

At this point, the execution flow becomes straightforward (provided that a           

write-what-where capability has been achieved as previously explained in step 0). In the             

following steps, “executing ​xxx via ​check_flags ​” refers to replacing the          

ptmx_fops­>check_flags function pointer and invoking ​fcntl(2) with the required         

argument. 

1. Execute ​prepare_kernel_cred via ​check_flags ​. This provides us with a         

pointer to a valid credentials structure in kernel space, which is writable (not             

protected by RKP). 

2. Update the above credentials with root values (UID=0, GID=0, etc.). 

3. Put the pointer to the credentials into a user-mode memory allocated at an             

address lower that 32 bits (not higher than ​0xffffffff ​). 

4. Pass the above user-mode location to ​rkp_override_creds ​, executing it via          

check_flags ​. 

5. Enjoy root, as RKP overrides the credentials with ​root​  values. 

Step 3: Finding the middle ground 

Unfortunately, the aforementioned scenario does not work. While perfect in theory, it            

assumes that the hypervisor side of RKP does not validate the overriding credentials, and              

blindly installs them in place. This assumption proved to be wrong. However, upon             

further examining both the scarce documentation available about Samsung KNOX​TM​, and           

the kernel sources, it was apparent that sometimes, ​root credentials receive a special             

treatment (see, for example, the source of ​cap_bprm_set_cred function, located in           

security/commoncap.c ​). It is, therefore, not surprising, that the hypervisor side does           

not take nicely to attempts to override process credentials with ​root​  values. 
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However, we found that replacing the ​root values with ​system values (UID=1000,            

GID=1000, etc.) works perfectly well in the execution flow described in step ​2​. Upon              

completion, our process is running with system permissions, and is capable of reading             

and writing any file that the ​system user has access to (this includes, but not limited to,                 

installed applications). 

In conclusion, while achieving ​root credentials proved impossible (so far), the defense            

mechanisms provided by RKP can be circumvented to achieve ​system permissions, and            

abuse those to install/replace applications on the device. 

Step 4: But all the cool kids have root! 

Attempts to fine-tune the code to achieve higher than ​system privileges led us to the               

conclusion that RKP only checks the UID and EUID fields of the cred structure. Therefore,               

it is possible to use the vulnerability and get into the ​root group. However, that gives us                 

little benefit, as files accessible by the ​root group and not by ​system are few. Most of them                  

are also read-only to the group, and writable only by a ​root user. It was clear that in order                   

to attempt a bypass of the limitations set in place by the RKP, we’d have to see its code. 

After a thorough search through the sources, we found a suspiciously named file,             

vmm.elf​ . The file resides in Samsung’s kernel sources, and during compilation time is             

inserted, as-is, into the kernel binary. ​init/_vmm.S includes it (and sets the symbols ​_svmm              

and ​_evmm to mark its start and end). ​init/vmm.c is responsible for using those symbols to                

copy the binary into an allocated memory and run it. The function, ​vmm_init is called               

during kernel initialization. 

init/_vmm.S 

#include​ ​<linux/vmm.h> 
 
#define​ vmm_ELF_PATH ​"init/vmm.elf" 
 
#define​ SMC_64BIT_RET_MAGIC ​0xC2000401 
 
.​global​ _vmm_goto_EL2 
_vmm_goto_EL2: 

smc ​#0 
isb 
ret 
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.​global​ _vmm_disable 
_vmm_disable: 

ldr x0​,​ ​=​SMC_64BIT_RET_MAGIC 
smc ​#0 
isb 

 
.​section ​.​vmm​,​ ​"ax" 
.​global​ _svmm 
_svmm: 
.​incbin vmm_ELF_PATH 
.​global​ _evmm 
_evmm: 
.​section ​.​text 

 

init/vmm.c 

int​ vmm_init​(​void​)​ { 
 

size_t​ size; 
char​ ​*​name; 
void​ ​*​base; 

 
printk​(​KERN_ALERT ​"%s\n"​,​ __FUNCTION__​); 

 
if​(​smp_processor_id​()​ ​!=​ ​0​)​ ​{​ ​return​ ​0​;​ } 

 
printk​(​KERN_ALERT ​"bin 0x%p, 0x%x\n"​,​ ​&​_svmm​,​ ​(​int​)(&​_evmm ​­​ ​&​_svmm​)); 

 
memcpy​((​void​ ​*)​phys_to_virt​(​VMM_RUNTIME_BASE​),​  ​&​_svmm​,​ ​(​size_t​)(&​_evmm ​­​ ​&​_svmm​)); 

 
vmm ​=​ ​(​void​ ​*)​phys_to_virt​(​VMM_RUNTIME_BASE​); 
vmm_size ​=​ VMM_RUNTIME_SIZE; 

 
printk​(​KERN_ALERT ​"ram 0x%p, 0x%x\n"​,​ vmm​,​ ​(​int​)​vmm_size​); 

 
if​(​ld_get_size​(​vmm​,​ ​&​size​))​ ​{​ ​return​ ​­​1​;​ } 

 
if​(​ld_get_name​(​vmm​,​ ​&​name​))​ ​{​ ​return​ ​­​1​;​ } 

 
printk​(​KERN_ALERT ​"%s, %d\n"​,​ name​,​ ​(​int​)​size​); 

 
if​(​ld_fixup_dynamic_relatab​(​vmm​,​ ​&​vmm_resolve​,​ ​&​vmm_translate​))​ ​{​ ​return​ ​­​1​;​ } 

 
if​(​ld_fixup_dynamic_plttab​(​vmm​,​ ​&​vmm_resolve​,​ ​&​vmm_translate​))​ ​{​ ​return​ ​­​1​;​ } 

 
if​(​ld_get_sect​(​vmm​,​ ​".bss"​,​ ​&​base​,​ ​&​size​))​ ​{​ ​return​ ​­​1​;​ } 

 
memset​(​base​,​ ​0​,​ size​); 

 
vmm_entry​(); 

 
return​ ​0; 

} 

Disassembling the file made it clear beyond any doubt that we were looking at the RKP                

module, as to our surprise, the file contained all the symbols. 
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We decided to focus our attention on the function ​rkp_assign_creds ​. As the name             

suggests (and the flow that leads to its execution supports), this function is called when               

the kernel performs an RKP call to change the cred structure of a running process.  
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It’s not a small function, but the presence of a “​Priv Escalation!​ ” string made it easy to                 

know where to look: 
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As we can see at the top of the chart, the function ​.from_zygote is called first. If it                  

returns true, the left branch is taken, and ​.rkp_check_pe is called, which can lead us to                

the bottom left branch, complaining about privilege escalation (and, upon further           

examination, simply not copying the credentials). 

The function ​.rkp_check_pe is small, and just as we’d expect, it simply checks whether              

the UID and the EUID offsets in the requested cred structure are 0. 

The really interesting function, however, is ​.from_zygote ​. That function tests whether           

one of the parents of the process, the cred structure of which is to be updated, is ​zygote                  

or ​adbd (in fact, in later versions of vmm.elf, this function is renamed to              

.from_zyg_adbd ​, to reflect that both of those cases are handled by the function). 

The function performs a loop, going up the tree of parent PIDs, and checking the               

executable path of those parents. Upon reaching ​zygote or ​adbd​ , the function stops and              

returns 1, leading us to the check of privilege escalation. Theoretically, since all the APKs               

are children of ​zygote​ , and all the commands run in ​adb are children of ​adbd​ , it seems                 

that the PE check is unescapable. 

However, a peculiar test at the beginning of ​.from_zygote makes its bypass trivial             

(given our kernel memory reading/writing capability). The function starts with the           

comparison of the current PID to 0, and if that is the case, it returns 0! 
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We can see the test at the top (the ​w2 register holds the current PID), and if it’s 0, the                    

return value (stored in ​w0 ​) is 0. 

All we have to do to overcome this test is to change our PID to 0 before the RKP call (this                     

can be done by directly writing 0 into the PID offset of our process’s). After a successful                 

RKP call (and the setting of ​root UID in our process’s cred structure), we restore the PID to                  

its previous value, to avoid any chaos in the kernel scheduling and such. 

Voila! 
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Step 5: Root is for kids. Real men run kernel modules 

Upon achieving ​root in the previous step, we found that its permissions are limited,              

nonetheless. While some of the permissions are limited by SE Linux (which can be              

disabled), other limitations are incorporated into the kernel at a much deeper level. It              

was clear that running a kernel module would be a lot more effective at this point. 

The kernel in Samsung’s Galaxy S6 comes with the option of inserting kernel modules              

into the kernel. However, the module has to be signed, and the signature verification is               

performed by an external agent (in Samsung’s case, the Mobicore micro-kernel residing            

in ARM’s TrustZone). 

Taking a look at the call to Mobicore’s signature verification, we see a peculiar test: 

kernel/module.c 

#ifdef​ TIMA_LKM_AUTH_ENABLED 
if​ ​(​lkmauth_bootmode ​!=​ BOOTMODE_RECOVERY​ ​&& 
    ​lkmauth​(​info​­>​hdr​,​ info​­>​len​)​ ​!=​ RET_LKMAUTH_SUCCESS​)​ { 

pr_err 
    ​(​"TIMA: lkmauth­­unable to load kernel module; module len is %lu.\n", 
     info​­>​len​); 
return​ ​­​ENOEXEC; 

} 
#endif 

The ​lkmauth function (which jumps into Mobicore’s signature verification) is only called            

when the ​lkmauth_bootmode variable is set to ​BOOTMODE_RECOVERY (2). However, it is a             

global variable. Using the methods described in Step ​0​, we easily found the location of               

the variable, and used the kernel writing vulnerability to overwrite it with the             

BOOTMODE_RECOVERY value, effectively disabling the signature verification. At this point,          

we could easily load any kernel module we desired. 
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Step 6: Possible solutions 

Privilege escalation to ​system​  permissions 

As was discussed before, ​system permissions provide the attacker with ample possibilities            

to compromise the device. Therefore, the RKP module should treat it similar to ​root​ , and               

deny credential updates to ​system​  level. 

Privilege escalation to ​root​  permissions 

It is not clear whether the granting of ​root privileges by RKP to processes with PID 0 is                  

necessary, or simply an overlooked mistake. It seems that neither ​zygote nor ​adbd would              

ever run with PID 0, so at the very least, the PID check (if needed) could be performed                  

later. 

Unsigned module loading 

The ​lkmauth_bootmode variable should be placed in an RKP-protected, readonly page           

(similar to the cred structures). 

SE Linux  9

The security_ops structure should be placed in an RKP-protected readonly page (similar            

to the cred structures). According to the source code, the structure is currently protected              

by RKP, but real-world tests show otherwise. 

Epilogue: Acknowledgements 

Thanks go out to ​@dosomder for the great ​iovyroot tool exploiting the iovecs             

vulnerability, as well as ​@fi01​ for the development of ​kallsymsprint​. 
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Appendix A: Better kernel-mode execution 

While the exploited vulnerability initially provides us with a ​write-what-where capability, it            

is possible to escalate that into an actual kernel-mode code execution. ​iovyroot does             

exactly that, by manipulating the ​ptmx_fops­>check_flags function pointer, and later          

invoking a system call, ​fcntl(2) ​, which ends up executing the code pointed by             

check_flags ​. 

include/linux/fs.h 

struct​ file_operations { 
struct​ ​module​ ​*​owner; 
loff_t​ ​(*​llseek​)​ ​(​struct​ file ​*,​ ​loff_t​,​ ​int​); 
ssize_t​ ​(*​read​)​ ​(​struct​ file ​*,​ ​char​ __user ​*,​ ​size_t​,​ ​loff_t​ ​*); 
ssize_t​ ​(*​write​)​ ​(​struct​ file ​*,​ ​const​ ​char​ __user ​*,​ ​size_t​,​ ​loff_t​ ​*); 
ssize_t​ ​(*​aio_read​)​ ​(​struct​ kiocb ​*,​ ​const​ ​struct​ iovec ​*,​ ​unsigned​ ​long​,​ ​loff_t​); 
ssize_t​ ​(*​aio_write​)​ ​(​struct​ kiocb ​*,​ ​const​ ​struct​ iovec ​*,​ ​unsigned​ ​long​,​ ​loff_t​); 
int​ ​(*​readdir​)​ ​(​struct​ file ​*,​ ​void​ ​*,​ ​filldir_t​); 
unsigned​ ​int​ ​(*​poll​)​ ​(​struct​ file ​*,​ ​struct​ poll_table_struct ​*); 
long​ ​(*​unlocked_ioctl​)​ ​(​struct​ file ​*,​ ​unsigned​ ​int​,​ ​unsigned​ ​long​); 
long​ ​(*​compat_ioctl​)​ ​(​struct​ file ​*,​ ​unsigned​ ​int​,​ ​unsigned​ ​long​); 
int​ ​(*​mmap​)​ ​(​struct​ file ​*,​ ​struct​ vm_area_struct ​*); 
int​ ​(*​open​)​ ​(​struct​ inode ​*,​ ​struct​ file ​*); 
int​ ​(*​flush​)​ ​(​struct​ file ​*,​ ​fl_owner_t​ id​); 
int​ ​(*​release​)​ ​(​struct​ inode ​*,​ ​struct​ file ​*); 
int​ ​(*​fsync​)​ ​(​struct​ file ​*,​ ​loff_t​,​ ​loff_t​,​ ​int​ datasync​); 
int​ ​(*​aio_fsync​)​ ​(​struct​ kiocb ​*,​ ​int​ datasync​); 
int​ ​(*​fasync​)​ ​(​int​,​ ​struct​ file ​*,​ ​int​); 
int​ ​(*​lock​)​ ​(​struct​ file ​*,​ ​int​,​ ​struct​ file_lock ​*); 
ssize_t​ ​(*​sendpage​)​ ​(​struct​ file ​*,​ ​struct​ page ​*,​ ​int​,​ ​size_t​,​ ​loff_t​ ​*,​ ​int​); 
unsigned​ ​long​ ​(*​get_unmapped_area​)(​struct​ file ​*,​ ​unsigned​ ​long​,​ ​unsigned​ ​long​,​ ​unsigned 

long​,​ ​unsigned​ ​long​); 
int​ ​(*​check_flags​)(​int​); 
int​ ​(*​flock​)​ ​(​struct​ file ​*,​ ​int​,​ ​struct​ file_lock ​*); 
ssize_t​ ​(*​splice_write​)(​struct​ pipe_inode_info ​*,​ ​struct​ file ​*,​ ​loff_t​ ​*,​ ​size_t​,​ ​unsigned 

int​); 
ssize_t​ ​(*​splice_read​)(​struct​ file ​*,​ ​loff_t​ ​*,​ ​struct​ pipe_inode_info ​*,​ ​size_t​,​ ​unsigned 

int​); 
int​ ​(*​setlease​)(​struct​ file ​*,​ ​long​,​ ​struct​ file_lock ​**); 
long​ ​(*​fallocate​)(​struct​ file ​*​file​,​ ​int​ mode​,​ ​loff_t​ offset, 

  ​loff_t​ len​); 
int​ ​(*​show_fdinfo​)(​struct​ seq_file ​*​m​,​ ​struct​ file ​*​f​); 
/* get_lower_file is for stackable file system */ 
struct​ file​*​ ​(*​get_lower_file​)(​struct​ file ​*​f​); 

}; 
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This method has the following limitations: 

● The code has to point to a kernel function (or to any location inside a kernel                

function, as long as it resides in an executable kernel memory). 

● The function has to take one 32-bit-wide argument. Due to the way the ​fcntl(2)              

system call is handled, the function pointed by ​check_flags is passed one            

argument, trimmed to 32 bits (in ​r0 ​, as per ARM64 ABI). 

● The function’s return value is also treated as a 32-bit integer. 

These limitations are not a problem for ​iovyroot​ ’s regular flow of execution. However,             

seeing as we had to beat a complex security system, we decided to look for a more                 

robust execution method, in order to overcome some of the aforementioned limitations.  

After searching through a multitude of function pointers, the execution of which could be              

triggered via a system call, we finally found the ​task_prctl pointer inside the             

security_operations ​ structure: 

include/linux/security.h 

struct​ security_operations { 
char​ name​[​SECURITY_NAME_MAX ​+​ ​1​]; 

/* … */ 
int​ ​(*​task_wait​)​ ​(​struct​ task_struct ​*​p​); 
int​ ​(*​task_prctl​)​ ​(​int​ option​,​ ​unsigned​ ​long​ arg2, 

   ​unsigned​ ​long​ arg3​,​ ​unsigned​ ​long​ arg4, 
   ​unsigned​ ​long​ arg5​); 

void​ ​(*​task_to_inode​)​ ​(​struct​ task_struct ​*​p​,​ ​struct​ inode ​*​inode​); 
/* … */ 
}; 

This function is triggered via the ​prctl(2) system call, and while the ​security_ops             

structure is marked as read-only by the RKP, to our surprise we were able to override the                 

pointer! While the ​task_prctl function still takes a 32-bit integer as its first argument, it               

additionally takes 4 64-bit arguments, which coincidentally reach it without any changes            

from the ​prctl(2) ​ system call originating in our code. 

As a result, we achieved a second method of kernel-mode code execution, which allows              

us to pass up to 5 arguments (with the 1st one being limited to 32 bits), considerably                 

expanding the selection of kernel functions available to us. 

 
20       All rights reserved to: Viral Security Group Ltd. 

http://man7.org/linux/man-pages/man2/fcntl.2.html
http://man7.org/linux/man-pages/man2/prctl.2.html
http://man7.org/linux/man-pages/man2/prctl.2.html

