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Quantitative resistance to plant pathogens, controlled by multiple
loci of small effect, is important for food production, food security,
and food safety but is poorly understood. To gain insights into the
geneticarchitectureofquantitative resistance inmaize,weevaluated
a 5,000-inbred-line nested association mapping population for resis-
tance to northern leaf blight, a maize disease of global economic
importance. Twenty-nine quantitative trait loci were identified, and
most had multiple alleles. The large variation in resistance pheno-
types could be attributed to the accumulation of numerous loci of
small additive effects. Genome-wide nested association mapping,
using 1.6million SNPs, identifiedmultiple candidate genes related to
plant defense, including receptor-like kinase genes similar to those
involved in basal defense. These results are consistent with the
hypothesis that quantitative disease resistance in plants is condi-
tioned by a range of mechanisms and could have considerable
mechanistic overlap with basal resistance.

Zea mays | Setosphaeria turcica | Exserohilum turcicum | quantitative trait
loci mapping

Resistance to diseases inmany plant and animal systems is based
on complex inheritance. Complex or quantitative disease re-

sistance in plants (QDR), conditioned by numerous genes of small
effect, is of practical importance in agriculture because it is less
readily overcome by the evolution of pathogen populations than
simply inherited forms of resistance (1). Resistance-gene alleles
providing complete or near-complete resistance are typically in-
volved in direct or indirect recognition of the pathogen (2). Mu-
tation or loss of the recognition target in the pathogen renders one
or more resistance alleles at these genes ineffective. On the other
hand, QDR tends to be associated withmore durable resistance, as
a pathogen strain that overcomes a single allele of small effect does
not gain a large selective advantage, and loss of effectiveness of
a single gene does not leave the host completely susceptible (1, 3–
5). For some important plant diseases, including most caused by
necrotrophic pathogens, resistance genes of large effect are un-
known and QDR is the only available form of resistance.
Race-specific resistance genes have been found to largely fall

into few classes of genes, the most common being the group
containing nucleotide binding and leucine-rich repeat (NB-LRR)
motifs (2). In maize, major race-specific resistance genes are
limited mainly to the rust diseases (6) and to a lesser extent
northern leaf blight (7). Although it appears that only a limited
number of mechanisms provide plants with potentially complete
resistance against pathogens, it is likely that a wider range of
mechanisms allow plants to reduce the success of their pathogens.
Indeed, several types of novel defense-related genes conditioning
quantitative resistance have been recently identified (8–11), sup-
porting the proposition that a range of genes and mechanisms
are involved in QDR (3).
Northern leaf blight (NLB) is an endemic disease in maize-

growing regions throughout the world, where it can cause epi-
demics of moderate to severe yield losses (12–14). Caused by the
hemibiotrophic fungal pathogen Setosphaeria turcica (anamorph
Exserohilum turcicum), NLB is of particular concern in the trop-
ical highlands, where conditions favor disease development and
subsistence farming and food insecurity are prevalent. Previous
research on resistance to NLB has suggested a complex ge-
netic architecture, with quantitative trait loci (QTL) dispersed

throughout the genome (6, 15, 16). Three genes conferring race-
specific, although incomplete, resistance have been mapped for S.
turcica: Ht1, located in maize bin 2.08 (17), and Ht2 (18–20) and
Htn1 (21), located in maize bin 8.06. Due to low resolution of
previous QTL mapping studies, it has been difficult to use this
information in breeding programs, to identify positional candi-
date genes or to make strong inferences on the linkage relation-
ships among these and other QTL. In light of the economic
importance of resistance to NLB and the availability of advanced
genetic resources in maize, we have used this pathosystem as
a model for understanding the genetic architecture of QDR in
plants while gaining valuable information for maize resistance
breeding.
A large nested association mapping (NAM) population con-

sisting of 25 recombinant inbred-line (RIL) populations has been
developed in maize for dissection of complex traits (22–24). The
25 NAM founder lines were selected to maximize diversity from
a larger panel of diverse maize inbreds (25), and each was crossed
in a half-sib design to the common reference parent B73. The half-
sib design enables joint analysis of the full population and narrows
the physiological maturity range, which is beneficial for disease
resistance evaluations. RILs from the intermated B73 x Mo17
population (IBM) were included as a 26th family (26). The NAM
RILs are genotyped with 1,106 SNPmarkers (23) and are publicly
available (http://www.panzea.org).

Results and Discussion
We evaluated 4,630 of the NAM RILs, along with each of the
founder inbred lines, over three seasons for resistance to NLB (SI
Appendix, Table S1) in nurseries artificially inoculated with a sin-
gle isolate of S. turcica race 1. Lines were scored at three time
points each season, and RIL best linear unbiased predictions
(BLUPs) were predicted from a multivariate mixed model for
each rating and an NLB index was calculated by averaging the
three BLUPs for each line. The founder lines showed a wide range
of phenotypic variation for resistance to NLB (Fig. 1A and SI
Appendix, Table S1 and Fig. S1). The common reference parent,
B73, was moderately susceptible, with 34% diseased leaf area
(DLA) at the third disease rating (rating 3). At rating 3, the NAM
founders varied over a 10-fold range (5–60% DLA), whereas the
RIL progeny varied over nearly a 40-fold range (2.5–80% DLA).
Although NLB resistance is a complex trait, phenotypic ob-

servations were very consistent under our field conditions and
we were able to produce very repeatable phenotypes. Broad-
sense heritability estimates on a line mean basis within individual
families averaged 0.63, 0.71, and 0.68 for the three ratings, re-
spectively, and 0.77 for the NLB index (SI Appendix, Table S2).
The NLB index averaged all three ratings, leading to more ac-
curate phenotypic values and increased repeatability. As NAM
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captures variation across diverse founder lines as well as progeny
segregation within families, the heritability for the population as
a whole (0.87) was higher than for any of the individual families.
There were large differences observed among families (SI Ap-

pendix, Table S1 and Fig. S1), with family means for rating 3
ranging from 15.7 to 48.9% DLA. The average family perfor-
mance was highly correlated (R2 = 0.80) with the phenotype of
that family’s respective founder (SI Appendix, Fig. S2), supporting
the observation that NLB resistance is primarily conditioned by
additive genetic variance (7, 27). We observed minimal genotype-
by-environment interaction (GxE) for NLB resistance in NAM.
GxEwas on average 20%, 13%, and 14%of the genotype variance
for the three ratings, respectively. There was very little GxE for
family means, as the family-by-environment variance was less than
5%of the family genetic variance for all ratings. It should be noted
that this study was conducted at a single location, and it is possible
that GxE would be higher if the analysis had included more di-
verse locations. Because the population was inoculated with a
single isolate of S. turcica race 1, inference cannot be made re-
garding possible genotype-by-pathogen interaction or the race
specificity of the QTL identified.

We observed a strong negative correlation between flowering
time (days to anthesis; DTA) and NLB resistance in the founder
lines (r = −0.59), which is consistent with previous reports (7, 16,
28). Across NAM, this correlation was weaker (r = −0.32), al-
though the family means for DTA and NLB resistance were still
strongly correlated (r = −0.63). The correlation between DTA
and NLB resistance within families was much lower. Of the
26 NAM families, only 8 had a significant correlation (P < 0.05)
between DTA and NLB resistance. The strongest correlation
(r= −0.26) was found in the CML322 x B73 family. This indicates
that, although NLB resistance and relative maturity are con-
founded in the NAM founder lines, much of this correlation was
lost due to genome shuffling during RIL development, and the
modest negative correlation that remains is largely due to dif-
ferences between families rather than within-family covariance.
We used a fixed-effects model with a main effect for family and

marker effects nested within families in a joint linkage mapping
strategy to identify QTL for the NLB index across NAM (22).
Nesting markers within families restricted the analysis to esti-
mating unique allele effects at each locus for each family, giving
an estimated effect for each founder line at each QTL (26
founders × 29 QTL= 754 modeled allele effects). Although most
founder lines did not have an allele effect significantly different
from that of B73 at most QTL, this nested model allowedmultiple
allelic effects to be modeled for each QTL. As relatively maturity
was correlated with NLB resistance, DTA was included as a
covariate to reduce the confounding impact of flowering time on
estimating allele effects for the NLB resistance index. Stepwise
model selection identified 29 QTL that accounted for 77% of the
variance in the BLUPs (SI Appendix, Table S3). After fitting the
full QTL model, however, DTA was not a significant covariate.
The reduced marginal effect of DTA in the full QTL model
indicates that the markers identified for NLB resistance also ex-
plain variation in DTA (possible linkage or pleiotropy). This issue
is examined in further detail below.
Although a few QTL with relatively large allele effects were

detected, most of the QTL had small estimated effects. Only 24
of the 754 modeled QTL alleles were estimated to give an in-
crease or decrease of more than 3% DLA, and only 3 QTL
alleles had an estimated effect larger than ±5% (SI Appendix,
Fig. S3). Most of the individual QTL allele effects were esti-
mated as too small to be visually distinguished (a trained scorer
can see a difference of about 4% DLA) without statistical in-
ference. This is consistent with results obtained for flowering
time in maize, for which most alleles had effect sizes that were
smaller than the observation unit of 1 d (22).
Reflecting the continuum of the resistance phenotypes in

NAM, the founder genomes were found to be a mosaic of loci for
resistance and susceptibility. Most founders had alleles for both
resistance and susceptibility (Fig. 1B), and individual families had
between 3 and 14 segregating QTL, with an average of 8.7. Even
the very susceptible inbred line Oh7b had three alleles for re-
sistance, whereas the most resistant genotypes incorporated fa-
vorable alleles at only 5–8 of theQTL.At 21 of the 29QTL (72%),
estimated allele effects were higher, lower, and equivalent to that
of the reference B73 allele, indicating that at least three alleles are
present at these QTL in the founder lines (SI Appendix, Fig. S4).
This supports the hypothesis that multiple alleles are present at
many QTL (22). We tested epistasis as two-way marker inter-
actions and did not detect epistatic effects between QTL markers
with additive effects or between QTL markers with additive
effects and all other marker loci. To evaluate the impact of en-
vironment on the identified QTL, we fit a similar fixed-effects
model with main effects for family and environment, markers
nested within families, and additional QTL-by-environment in-
teraction terms for each QTL. There were no significant QTL-by-
environment interactions detected by this model, again confirm-
ing that NLB resistance in NAM can be largely attributed to
simple additive genetic variance.
We hypothesized that incubation period (IP), a resistance

component for NLB measured as the number of days after in-
oculation when disease lesions first appear, could be used to
identify resistance that is effective during the early stages of

A

B

Fig. 1. Allelic component and observed phenotype for founder lines of the
NAM population. (A) Representative ear leaves from each founder inbred
line and B73, the NAM reference parent. S. turcica, the causal agent of NLB,
produces large cigar-shaped lesions that may coalesce, leading to complete
blighting of the leaf in more susceptible inbred lines. (B) Heat map showing
estimated allele effects for NLB resistance at 29 QTL identified in the NAM
population for each founder inbred line. The large variation in the resistance
phenotype results from the accumulation of alleles for resistance or sus-
ceptibility at multiple QTL in each founder line. Alleles for resistance are
colored in red and alleles for susceptibility are in blue. The scale is shown on
a square root transformation of percentage diseased leaf area.
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pathogenesis. We measured IP for NAM during the first year of
this study and modeled these data with a Cox proportional haz-
ards model, because IP is analogous to survival data from clinical
trials. Using stepwise model selection, four QTL for IP were
identified in NAM. The three most significant QTL for IP colo-
calized with large-effect QTL for DLA on chromosomes 1, 6, and
8. The remaining QTL for IP was identified on chr. 3 (m352; 61.8
cM; 132.3 Mb) at a location not associated with disease severity.
This QTL could therefore be effective during initial pathogen
infection but not during the later stages of pathogen development.
Presumably due to greater statistical power in NAM as well as

the ability to survey a broad range of germplasm, additional QTL
were identified (8.7 per family) compared with previous studies
(6.4 per biparental population) (6). We identified a large-effect
QTL on chr. 8 at 152.2Mb segregating in multiple families. This is
likely to be Ht2, as this position is consistent with the physical lo-
cation identified through finemapping (19).Ht2 is race-specific but
does not condition complete immunity, and can be observed as
a large-effect QTL. A bimodal phenotypic distribution was not
observed even in the family segregating for the largest-effect allele
at this QTL (Ki11 x B73), and there was no other phenotypic ev-
idence of a “major” gene. The S. turcica isolate used in this study
was virulent on Ht1, and no large QTL were observed at the Ht1
region of chr. 2.
The numerous QTL identified here, each with small allelic

effects, explained a substantial proportion of the observed phe-
notypic variance in the founder lines. There was a strong and
significant correlation between the empirical phenotypic obser-
vations and the predicted founder phenotypes calculated as the
sum of all QTL effects for each founder (SI Appendix, Fig. S5).
The coefficient of determination for the regression of the BLUP
phenotype on the sum of significant allele effects (P < 0.05)
was 0.60. Including all allele effects, both significant and non-
significant, increased the correlation (R2 = 0.71), indicating that
very small (nonsignificant) allele effects at QTL contributed to the
resistance phenotype. The broad-sense heritability of the NLB
index for the NAM founders was 0.74, and the full QTL model
was able to explain 96% (0.71/0.74) of this variation.
We examined each QTL for correlated allele effects between

DTA and NLB resistance but did not find evidence of pleiotropic
effects of DTA on NLB resistance. Only one QTL was found to
have correlated effects for NLB resistance and DTA (P < 0.05).
This QTL (m25; 17.5 Mb on chr. 1) had a positive correlation
between NLB allele effects and DTA allele effects, in contrast to
the negative phenotypic correlation seen between the traits in
NAM.Allele effects for the large-effect QTL identified on chr. 8 in
the region of Vgt1, a flowering-time QTL in maize (29), did not
show a correlation between DTA and NLB resistance, indicating
that the resistance is not the result of a pleiotropic effect of Vgt1.
These observations, along with the observation of reduced phe-
notypic correlations within families, support the conclusion that
the strong phenotypic association between NLB resistance and
relative maturity in the founder lines is predominantly due to
confounding population structure for NLB resistance and DTA,
and to a limited extent genetic linkage within families, rather than
pleiotropic effects of flowering time on NLB resistance.
Most tropical maize lines have a higher level of NLB re-

sistance (and disease resistance in general) than their temperate
counterparts, which likely reflects the favorable conditions for
disease development in the tropics and high incentive for breeders
to select for resistance in these environments. We examined the
relationship between allelic effects at each QTL and quantitative
measures of allelic origin. There were five QTL that correlated
with tropical/subtropical estimates of inbred-line origin. The trop-
ical allele conditioned resistance for four of these QTL, whereas
the alternate allele was resistant at one QTL (SI Appendix, Fig.
S6). We observed that one QTL was correlated with nonstiff-stalk
origin, and the nonstiff-stalk allele at this locus was associated
with increased susceptibility. These correlations were not strong,
and lend only limited support to the hypothesis of preferential
selection for disease resistance alleles in tropical material.
We used a nested association mapping approach, leveraging the

linkage disequilibrium (LD) among founder lines for a genome-

wide association study (GWAS) of NLB resistance (30). We im-
puted 1.6 million SNPs from the first-generation maize HapMap
scored on the NAM founder lines to RIL progeny using pedigree
and linkage marker information (24, 30, 31). Trait–marker associ-
ations were then evaluated by chromosome.On a per-chromosome
basis, we used residual phenotypic values after accounting for all
QTL on other chromosomes, and fit 100 stepwise linear models
using bootstrap samples (32). The bootstrap posterior probability
(BPP) was calculated as the number of bootstrap samples in which
an SNP was selected out of the 100 total. Through bootstrap
analysis, 208 SNPs were identified as significantly associated with
the NLB index (BPP > 0.05; Fig. 2), and 56 of these had posterior
probabilities of greater than 0.2. Thirty-nine percent (82 of 208) of
the SNP associations were withinQTL confidence intervals, and 28
of 29 QTL had one or more SNP associations. Exact overlap of
linkage mapping and GWAS is not expected, as linkage mapping
tests markers within a family whereas GWAS tests marker effects
across families, leading to different strengths and weaknesses in
each approach (30). Predicted genes containing or directly adjacent
toSNPassociationswere evaluated as potential candidate genes for
QDR (Table 1 and Dataset S1).
There were five SNP associations in or adjacent to LRR

receptor-like kinase (RLK) genes and gene clusters and one ad-
ditional association with a sixth LRR-related gene. LRR domains
have long been implicated in plant disease resistance and are
considered a hallmark of canonical (NB-LRR) “R-genes,” which
also contain NB domains missing in RLKs (2). Other notable
examples of RLKs include the “atypical” resistance genes Xa21
and Xa3/Xa6 (33, 34), as well as pattern-recognition receptors in-
volved in basal resistance such as FLS2 (35), CERK1 (36, 37), and
EFR (38). It has been hypothesized that quantitative resistance
could share mechanisms with basal defense in the form of RLKs
(2, 3), which is supported here and by recent GWAS for southern
leaf blight resistance (39).Multiple associations (n=11) identified
candidate genes with antifreeze domains. This type of gene has
high similarity to pathogenesis-related (PR) proteins and has
been shown to enhance disease resistance (40–42). PR proteins
both with (41, 43, 44) and without (45) antifreeze activity have
been identified, and include β-1,3-glucanases, chitinases, and
thaumatin-like and polygalacturonase inhibitor proteins (41, 44–
46). The candidate genes identified here support the overlap in
both form and function between PR and antifreeze proteins (40).
Several other candidate genes identified by GWAS included

genes with recognizable roles in plant defense (Table 1). Several
serine-threonine protein kinase genes were implicated; this family
of genes is known to be involved in plant defense responses (47).
A germin-like protein was associated with a QTL on chr. 6;
germin-like proteins have been shown to be involved in QDR
(11). A phytochrome P450 was implicated; P450 genes are known
to be involved in phytoalexin production and other defense
responses (48, 49). Several transcription factors were found to be
associated with NLB resistance, including two PR transcription
factors of the ERF (ethylene response factor) family. ERFs are
activated at the convergence of the ethylene and jasmonate
pathways and are involved in defense signaling for necrotrophic
pathogens (50, 51). We identified two classes of genes known to
interact with NPR1, including two basic leucine zipper transcrip-
tion factors (52) and two BTB/POZ-like genes (53). An associa-
tion on chr. 2 (1.2 Mb) contained an Mlo-like gene and a second
gene with multiple transmembrane domains. The recessive mlo
mutation in barley confers broad-spectrum resistance to bio-
trophic Erysiphe graminis f. sp. hordei, the causal pathogen of
powdery mildew disease (54, 55). There was also an association
with a multiantimicrobial extrusion protein (56).
On chr. 8, at the QTL that colocalizes with Ht2 (19), an associ-

ation was found with posterior probability of 0.90. This resistance-
associated SNP fell outside the QTL confidence interval, in a 160-
kb region that has no predicted genes, but ∼73 kb upstream of
a predictedMAP-kinase gene (GRMZM2G007848), a typeof gene
involved in defense signaling (57, 58). Causal polymorphisms may
be distant from the functional gene, as in the case of vgt1 in maize,
a QTL for flowering time located in a noncoding sequence 70 kb
upstream of the functional transcription factor (29). Within the
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confidence interval of this QTL, however, there were associations
adjacent to an ABC transporter/ATPase domain-containing gene
and anRLKgene (GRMZM2G316907), both ofwhich are credible
candidate genes (9, 35–38).
GWAS using NAM has recently been demonstrated as an ef-

fective tool for gene identification in maize (30). Although many
compelling candidate gene associations with defense-related
genes were identified, it should be recognized that there are
limitations for using NAM in gene finding. Given the very low LD
in maize and the relatively limited number of SNPs used for this
study, we are likely to miss associations. An order-of-magnitude
higher SNP coverage (>10 M) will be needed to sufficiently cap-
ture LD throughout the maize genome (30, 31), improving power
and reducing false positives. Polymorphisms for copy-number
variation and presence–absence variation were also not tested
here but are ubiquitous in maize (59, 60), and likely contribute to
functional variation in QDR.
Limited knowledge of QDR restricts the power of candidate

approaches. It is expected that the genes conditioning QDR will
cover a broad range of mechanisms, including classes of genes
previously unassociated with disease resistance (3). As little is
known about the molecular basis of QDR, it is difficult to assess
the plausibility of many of the gene associations identified for NLB
resistance. Furthermore, experience has shown that the causal
polymorphism for a QTL can be distant from the functional gene
(29). While recognizing these limitations, it is nonetheless notable
that several previously known pathogen defense-related genes,
particularly genes involved in basal resistance, were associated
with QDR using genome-wide nested association mapping (39,
this study). This raises questions concerning the pathogen speci-
ficity of QDR. Indeed, several lines of evidence point to multiple
disease resistance of disease QTL (9, 11, 15, 61, 62). Nonetheless,

many or most QTL have pathogen-specific resistance. Thus,
a complementary hypothesis can be presented that pathogen fea-
tures that are conserved within a species correspond to QTL that
are race-nonspecific but effective against only a single disease.
Detailed characterization of QTL in near-isogenic backgrounds
can allow these and other hypotheses to be addressed (39, 63).
Despite the importance ofQDR in crop production and ecology,

the genetic basis of QDR remains largely unknown. With the ge-
netic resources available in maize, we see this important crop
species emerging as amodel system for the study ofQDR.Coupled
with a history of robust, large-scale field trials and community ex-
pertise in quantitative genetics, maize pathosystems can serve as an
excellent tool for dissection of the genetics underlying QDR while
providing valuable information for resistance breeding in this
staple crop. Uncovering the molecular mechanisms of complex
disease resistance in plants will assist in the development of durably
resistant crop cultivars, increasing food and economic security.

Materials and Methods
Plant Materials. The maize nested association mapping population is de-
scribed in detail by Yu et al. (24), Buckler et al. (22), and McMullen et al. (23).

Phenotypic Evaluation for Resistance to NLB. Field trials were conducted
during 2007, 2008, and 2009 at Cornell University’s Robert B. Musgrave
Research Farm in Aurora, NY. Trials were planted on May 15, 2007; May 14,
2008; and May 18, 2009. Lines were planted as single-row plots 2.1 m in
length with 0.76 m between rows. Plots were overplanted and thinned to 10
plants per row. Trials were laid out in an augmented incomplete block de-
sign with one replication in each year. For each trial, lines were grouped by
family with augmented incomplete blocks within each family. Each in-
complete block consisted of 20 RILs and two checks: B73 and the second
parent for the respective family. All trials were artificially inoculated with
E. turcicum race 1 as described by Chung et al. (19) for field experiments.
Individual plants were inoculated at the six- to eight-leaf stage, which cor-
responded to July 2, 2007; June 27, 2008; and July 16, 2009.

In 2007, two disease phenotypes were evaluated: incubation period (IP)
and disease severity (DS). In 2008 and 2009, only DS was evaluated due to the
extreme time requirements for evaluation of IP. For the evaluation of IP, all
plots were evaluated daily. IP was measured as the number of days after
inoculation that the first water-soaked lesion was observed on 50% of the
plants in a plot. For DS, all plots were evaluated at three time points during
the season at 10-d intervals, with the first rating corresponding to shortly
after anthesis for B73. DS ratings were conducted by visually evaluating each
plot and rating the percentage of total DLA using a 0–100% rating scale with
1% increments. DTA was measured as the number of days from planting
when 50% of the plants in a row were shedding pollen.

The trait distribution for DLA was skewed toward resistance, so a square
root transformation was used to normalize the trait distribution before
further analysis was conducted. To account for year and field effects,
a multivariate mixed model was run in ASReml (VSN International) with
a unique unstructured covariance for each family. The model solution gave
BLUPs for each NAM RIL at each rating. For each RIL, the BLUPs were then
averaged to give an NLB index. Broad-sense heritabilities for the line BLUPs
were estimated for NAMand for each individual family.With themultivariate
response, heritability was calculated on a line mean basis for each rating and
for the NLB index (64).

Joint General Linear Model. A joint general linear model (GLM) was selected
using stepwise model selection with Proc GLMselect in SAS v9.1.3 software as
described by Buckler et al. (22). Stepwise selection was conducted with effect
selection/removal set at P = 1 × 10−4. To determine this threshold, permu-
tation analysis was conducted by randomizing the NLB index values within
each population and then identifying the most significant marker effect
using stepwise selection as described above. This was repeated for 1,000
iterations to determine an experimental α of 0.05, which corresponded to
a selection threshold of P = 10−4. DTA was included as a covariate in model
selection to reduce the confounding effect of relative maturity on disease
resistance (22). A fixed-effects model was used with a main effect for family
and marker effects nested within families. This nested model estimates
a unique allele effect for each family. This approach gives increased power
by allowing modeling of multiple alleles at each QTL across NAM. Although
it is unlikely that there is a unique QTL allele for each family at every QTL,
this nested model provides a statistical framework for modeling multiple
alleles at any given QTL. Therefore, based on this model, multiple allelic

Fig. 2. Using the NAM reference design, 1,606,526 SNPs were imputed from
the NAM founders and tested for association with resistance to NLB. A boot-
strap permutation of stepwise SNP selection for each chromosomewas run for
100 iterations and the bootstrap posterior probability for each SNP was cal-
culated. The BPP is shown on the y axis, with red and blue circles showing the
position and BPP of SNP associations that increase and decrease resistance,
respectively, comparedwithB73. Thediameter of eachbubble circle represents
the size of the estimated effect of that SNP on NLB. Regions within confidence
intervals of QTL are shown as solid lines under the SNP profile.
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effects, as opposed to only two, are reported for each QTL. Selected marker
effects were then fit into a GLM and dropped individually to confirm sig-
nificance. A final GLM was fit using R statistical software (65).

To examine the impact of QTL-by-environment interaction, a fixed-effects
model incorporating environment-by-population-by-marker effects was
modeled in R. For this model, actual phenotypic observations from each
environment were used, as the previous models were fit using line BLUPs that
averaged phenotypes across environments. The model was as before with
amain effect for family, a covariate for DTA, andmarker effects nestedwithin
family. Additional terms for environment, family by environment, andQTL by
family by environment for each QTL were included. Marginal F tests were
used to determine the significance of each term.

A Cox proportional hazards model was fit in R statistical software (65) for IP.
As with disease severity, DTA was included as a covariate to reduce the effect
of maturity. Markers were again nested within population. Stepwise model
selection was conducted with the selection of marker effects determined by
the P value from aWilk’s F test. The threshold for effect selection was P = 10−4.

For each QTL position identified, confidence intervals were constructed by
sequentially examining flanking markers. This procedure was conducted in
bothdirections from theQTLmarker todetermine the full confidence interval.
Startingwith thefirstflankingmarker inonedirection, theQTLmarkerandthe
flanking marker were both fit into the full linear model. The P value from the
marginal F test for the QTL marker was then determined. If the QTL marker
did not have a significant contribution to the model (P < 0.05), the flanking
marker was considered equivalent to the QTL marker and within the 95%

confidence interval. The flanking marker was then moved outward and the
test repeated until the QTL marker significantly contributed to the model.
This procedure was then repeated on the other side of the QTL marker. To
compensate for regions of lowmarker density, pseudomarkers were imputed
where consecutive markers were farther apart than 1 cM.

To examine the possible pleiotropic effects of flowering time on disease
resistance, the QTL model using markers identified for NLB resistance was fit
to DTA (after removing DTA as a covariate in the QTL model). The estimated
DTA allele effects for each founder line were then determined and compared
with the estimated allele effects for NLB from corresponding founders at each
of the QTL markers.

Genome-Wide SNP Association. Single-nucleotide polymorphisms from the
first-generation maize HapMap (http://www.panzea.org) for the 25 founder
lines, Mo17 and B73, were tested for association with NLB resistance (31).
Missing SNP genotypes were imputed using fastPHASE software (30, 66). SNP
positions were referenced to the B73 AGP v.1 physical map, and the com-
plete SNP dataset was then imputed to the NAM RILs using pedigree in-
formation and the 1,106 reference SNPs on the genetic map. Trait–marker
association was conducted by chromosome after accounting for QTL on
other chromosomes. One hundred nonparametric bootstrap samples, each
sampling 80% of each family, were analyzed by stepwise regression. SNPs
detected in more than 5% of the samples (BPP > 0.05) were examined as
polymorphisms in LD with potential candidate genes from the B73 filtered
gene set (MaizeSequence release 4a.53; http://www.maizesequence.org).

Table 1. A subset of the 208 SNP loci found to be associated with resistance to NLB by nested association mapping

SNP no.
Chromo
some

Physical position
(AGP v.1) BPP

Average SNP
effect cM

Inside
QTL CI Candidate gene

4 1 12136678 0.17 −0.346 24.26 Yes Serine-threonine protein kinase (47)
6 1 16387974 0.06 −0.395 32.85 Yes Germin (11)
8 1 21699987 0.13 0.490 38.21 No Antifreeze (41, 44–46)
10 1 76772901 0.19 −0.260 80.13 Yes Cytochrome P450 (48, 49)
12 1 88927678 0.12 −0.277 84.11 Yes Serine-threonine protein kinase (47)
19 1 183754852 0.28 −0.299 98.87 Yes Mov34/MPN/PAD-1
33 1 264713872 0.08 −0.418 159.29 No Antifreeze (41, 44–46)
35 1 280343673 0.10 0.300 174.88 No Basic leucine zipper transcription factor (52)
40 1 289465566 0.08 0.239 186.39 No Antifreeze (41, 44–46)
43 2 1210644 0.40 −0.265 −0.05 No Mlo (54, 55)
44 2 1221350 0.06 −0.233 0.00 No Mlo (54, 55)
49 2 3852515 0.12 0.253 10.67 Yes Serine-threonine protein kinase (47)
52 2 4500004 0.13 0.251 12.73 No Serine-threonine protein kinase (47)
55 2 9394756 0.27 −0.276 27.58 Yes RLK (35)
64 2 160834095 0.20 0.607 82.36 Yes RLK (35)
66 2 179024847 0.27 0.760 89.43 No BTB/POZ-like (53)
71 3 3382179 0.15 0.389 11.08 No Antifreeze (41, 44–46)
72 3 3382266 0.39 0.356 11.08 No Antifreeze (41, 44–46)
93 4 177670891 0.75 0.572 89.12 Yes Antifreeze (41, 44–46)/PR transcriptional

factor and ERF (50, 51)
111 5 13659256 0.11 0.174 41.49 No Antifreeze (41, 44–46)
125 5 190880589 0.07 0.251 100.08 No PR transcriptional factor and ERF (50, 51)
126 5 191109424 0.06 0.267 100.26 No Serine-threonine protein kinase (47)
129 5 203735206 0.12 0.305 114.14 No RLK (35)
130 5 203735229 0.09 0.307 114.14 No RLK (35)
132 5 204103356 0.08 0.442 114.92 No Antifreeze (41, 44–46)
139 6 116055358 0.11 −0.222 41.88 Yes RLK (35)
143 6 138675782 0.07 −0.274 53.79 Yes Antifreeze (41, 44–46)
144 6 138675953 0.08 −0.289 53.79 Yes Antifreeze (41, 44–46)
145 6 148066145 0.08 −0.395 59.98 Yes RLK (35)
159 7 125153323 0.10 −0.554 65.62 No Peptidase/serine-threonine protein kinase (47)
162 7 135130480 0.10 0.412 73.54 No Basic leucine zipper transcription factor (52)
173 7 153450268 0.07 −0.252 93.05 No Antifreeze (41, 44–46)
187 8 151397247 0.06 −1.365 80.16 Yes ABC transporter (9)
193 9 12502229 0.28 −0.324 21.56 Yes RLK (35), CERK1 (36, 37), EFR (38)
205 10 136256827 0.24 −0.291 62.36 Yes Multiantimicrobial extrusion protein (56)

The gene associations listed are those with plausible roles in plant defense based on the published literature. A complete list of resistance-associated SNPs
with further details and corresponding genes is given in Dataset S1. cM, centimorgan imputed on NAMmap; QTL CI, quantitative trait locus confidence interval;
BPP, bootstrap posterior probability.
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