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US maize yield has increased eight-fold in the past 80 years, 
with half of the gain attributed to selection by breeders. 
During this time, changes in maize leaf angle and size 
have altered plant architecture, allowing more efficient 
light capture as planting density has increased. Through a 
genome-wide association study (GWAS) of the maize nested 
association mapping panel, we determined the genetic basis 
of important leaf architecture traits and identified some 
of the key genes. Overall, we demonstrate that the genetic 
architecture of the leaf traits is dominated by small effects, 
with little epistasis, environmental interaction or pleiotropy. In 
particular, GWAS results show that variations at the liguleless 
genes have contributed to more upright leaves. These results 
demonstrate that the use of GWAS with specially designed 
mapping populations is effective in uncovering the basis of key 
agronomic traits.

In the past century, continuing gains in grain yield of US corn have 
not been due to more grain per plant, but rather to adaptation of 
hybrids to continually higher plant densities1. The average plant den-
sity of maize in the United States has increased from 30,000 plants 
per hectare in the 1930s to >80,000 plants per hectare currently1. 
During the same period, the leaves of maize hybrids have become 
more upright1. Increasing the angle between the leaf midrib and 
the ground maintains light capture under high density2,3. Hybrids 
with vertically oriented leaves have considerable yield advantages in 
both model simulation4 and field experiments5. A study in rice has 
also shown that more upright leaves not only improve light capture 
but also improve the accumulation of leaf nitrogen for grain filling6. 
Leaf angle, together with leaf size, are important components of leaf 
architecture, influencing canopy morphology and photosynthetic 
efficiency and, as a result, overall yield. Clarifying the genetic archi-
tecture of these traits will impact trait manipulation for continued 
maize improvement.

GWAS in diverse maize is challenging, as linkage disequilibrium 
decays within 2,000 bp7. However, with the recent discovery of  

1.6 million SNPs by the maize HapMap project7 and the development 
of a large joint linkage–association panel known as the nested associa-
tion mapping (NAM) population8, effective GWAS in maize have now 
become possible. The maize NAM panel was created by crossing 25 
diverse lines of maize to one reference line, then producing ~5,000 
recombinant inbred lines (RILs)8.

Maize NAM offers several unique advantages for GWAS.  
(i) Population structure is controlled by the NAM design itself. By 
reshuffling the genomes of founders during RIL development, popu-
lation structure within each population is eliminated. Although the 
difference between populations resulting from the diverse founders 
remains, this difference is controlled by including a population term 
in the GWAS model. (ii) Because maize HapMap SNPs are accurately 
imputed in the offspring based on parental genotypes, the reduced link-
age disequilibrium in the parents owing to historical recombination and 
mutation can be used to improve mapping resolution. (iii) Phenotypic 
traits are accurately measured by growing ~50,000 plots with ~15 plants 
each over 9 environments. (iv) The joint linkage design allows ~90% 
of the background genetic variance to be controlled during GWAS.  
(v) Joint linkage and GWAS results can be directly compared.

We used this new maize NAM design to dissect the genetic archi-
tecture of upper leaf angle, leaf length and width. Using joint stepwise 
regression9 (Supplementary Note), we identified 30–36 quantitative 
trait loci (QTLs) for the three leaf traits, explaining 74.8%–80.3% of 
the phenotypic variation and >83% of genetic variance (Table 1). 
Small-effect alleles underlie all QTLs for leaf traits (Supplementary 
Fig. 1). Similar genetic architectures have been observed for other 
complex maize traits9,10, as well as in animals11, in contrast with the 
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Table 1  QTLs identified by joint linkage mapping

Trait Number of QTLs
Phenotypic variance 

explained (%)
Broad-sense  

heritability (%)

Leaf length (mm) 36 77.7 92.7

Leaf width (mm) 34 80.3 92.4

Upper leaf angle (°) 30 74.8 89.4

http://www.nature.com/naturegenetics/
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larger effects observed in self-pollinated plant species12–14. These 
results suggest that the genetic architecture of complex traits in out-
crossing and selfing species may have evolved differently.

Although 11%–50% of QTLs for leaf traits showed considerable QTL  
by environment interactions after sequential Bonferroni correction15, 
their effects are much smaller than QTL main effects (Supplementary 
Note and Supplementary Tables 1–3). No considerable epistasis was 
detected across and within populations for these traits after sequential 
Bonferroni correction15 (see Supplementary Note, which discusses 
the power issues involved in detecting epistasis). Furthermore, a joint 
linkage additive QTL model can accurately predict the phenotypes of 
NAM parents (Supplementary Fig. 2), further indicating that epistatic 
effects were relatively unimportant in determining phenotype.

The NAM design provides an opportunity to test pleiotropy, the 
genetic overlap between different complex traits (Online Methods). 
We observed low pleiotropy among different leaf traits, explaining 
the weak phenotypic correlations among them (Fig. 1). Therefore, 
different sets of genetic variants probably control the natural variation 
in these leaf traits; this facilitates the pyramiding of favorable alleles 
for different traits in selective breeding.

Joint linkage mapping with 1,106 markers produced QTL sup-
port intervals (P < 0.05) that averaged several centimorgans (cM) 
(Supplementary Tables 1–3). To further dissect these QTLs, we con-
ducted a GWAS by imputing 1.6 million HapMap SNPs discovered on 
the 27 NAM parents7 onto offspring RILs. As a result, the historical 
recombination captured by HapMap SNPs was used to improve map-
ping resolution. HapMap SNPs with missing data were first imputed 
in the parents, and then all SNPs were imputed onto the RILs based 
on a procedure described in Online Methods.

We first tested NAM-GWAS on two simple traits with a known 
genetic basis. Across a 3.4 cM (5.2 Mb) region flanking the p1 gene  
for cob color16, which is covered by 4,879 SNPs, 4 SNPs spanning 492 kb  
showed the same genotypic pattern as cob color segregation in 
founders. Owing to the presence of >300 informative recom-
binants in the NAM population, NAM-GWAS identified the  
most significant of these SNPs, located in the tandem repeats of p1 
gene16. Across a 1 cM region (4.6 Mb) flanking the y1 gene for kernel 
color17, 1 SNP of 2,110 showed the genotypic pattern that matched 
kernel color segregation in the founders. NAM-GWAS identified this 
SNP, which was located 113 bp upstream of an insertion at y1 (ref. 17)  
that is probably causative. These results showed that, as long as 
causal SNPs or SNPs in high linkage disequilibrium exist in the data 
set for large effect loci, NAM-GWAS can easily identify them from  
thousands of SNPs bracketed by flanking linkage markers.

For leaf quantitative traits, we used a subsampling-based multiple 
SNP model to carry out association mapping (Online Methods) based 
on a method successfully applied to GWAS in mice18,19 and confirmed 
to be more robust than single-locus scanning20. Briefly, a subsample 
was formed by randomly sampling 80% of the lines from each popula-
tion without replacement, and then forward regression was used to 
fit SNPs to a phenotype. The phenotypes used here were the residu-
als for each chromosome calculated from a joint linkage model. We 
conducted association analysis in 100 subsamples to sample the model 
space and measure the reliability of association position estimates. We 
used the bootstrap posterior probability (BPP), the proportion of the 
100 models in which a SNP was included, to measure the robustness 
of SNP association. By using a permutation test, we found a threshold 
BPP of 0.05 led to a type I error rate <0.05 (Online Methods).

Out of 1.6 million tested SNPs, we detected 203, 287 and 295 sig-
nificant SNPs with BPP ≥ 0.05 for upper leaf angle, leaf length and 
width, respectively (Figs. 2 and 3, Supplementary Figs. 3 and 4 and 
Supplementary Tables 4–6). GWAS results overlapped significantly  
(P  < 0.05) with joint linkage QTL but were not identical (Supplementary  
Fig. 5). For several reasons, we did not expect the results of joint linkage 
mapping and GWAS to be exactly the same. Instead of testing marker 
effects within a family, GWAS tests marker effects across families, creating 
larger allele classes and consequently making it easier to detect QTLs with  
smaller effects. With linkage mapping, neighboring QTLs or multiple 
alleles at a QTL can lead to a fused linkage signal owing to limited 
recent recombination during RIL development, whereas GWAS can 
potentially dissect the fused linkage signal into separate components 
by using the historical recombination present in parents. The fact that 
the set of 1.6 million SNPs is insufficient to capture all the haplotypes 
present in maize7 probably leads to missed QTLs. Additionally, multiple 
rare causal variants that may be separated by relatively large genomic 
distances can create synthetic associations21.

We further evaluated the proximity of significant SNPs associated with 
maize leaf length and width to candidate genes or microRNAs known 
to affect leaf shape in Arabidopsis thaliana and of SNPs significantly 
associated with leaf angle to genes known to affect the leaf blade-sheath 
boundary in maize (Supplementary Note). Although we observed 
no significant enrichment of association around candidate genes for 
leaf length and width (Supplementary Table 7), three microRNA  
genes (Supplementary Table 8) and a target gene of these microRNAs 
(Supplementary Table 9) showed significant enrichments. For upper 
leaf angle, we detected marked associations around the lg1 (liguleless1) 
and lg2 (liguleless2) genes (Supplementary Table 10), genes that have 
mutants known to affect leaf angle in maize22,23.

The ligule and auricle are the regions separating the blade and 
sheath of a maize leaf, which allow the leaf blade to bend away from 
the stem. lg1 and lg2 mutants have no ligule or auricle, leading  
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Figure 1  Low genetic overlap between leaf traits. The correlations 
of allelic effect estimates across founders for each pair of traits at 
colocalized QTLs were used to test the genetic overlap between different 
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to considerably more upright leaves than their normal counter
parts22,23. lg2 mutant alleles lead to significant grain yield 
increase in maize hybrids2,3 (Supplementary Fig. 6), whereas the 
effect of the lg1 mutant alleles depends on genetic background3  
(Supplementary Fig. 6).

The associations around lg1 and lg2 explained the two most sig-
nificant QTLs for upper leaf angle (Fig. 3a). At the QTL near marker 
m189 (4.2 Mb) on chromosome 2, two SNPs jointly captured most 
of the association signals and spanned a physical region of 120 kb 
containing lg1 (Fig. 3b and Supplementary Table 11). Furthermore, 
of 100 subsample models, 93% fitted exactly one of the two most 
significant SNPs but not both (Supplementary Table 12), suggesting 
that a single allele of major effect underlies the QTL at lg1. At the QTL 
near marker m381 (174.6 Mb) on chromosome 3, we detected a large 
cluster of associations spanning a physical region of 1.5 Mb around 
lg2 (Fig. 3c and Supplementary Table 11). Seventy-three percent of 
the subsample models included two SNPs from this cluster, suggesting 
that two alleles seem to be responsible for the phenotypic variation 
in this region (Supplementary Table 12). Three of those SNPs are 
located in lg2 introns (Supplementary Table 11), although the most 
significant SNP, with a BPP of 0.82, was ~685 kb downstream. The 
strongest association at the lg1 locus is also located outside of lg1. One 
possible explanation in both cases is that the set of 1.6 million SNPs 
does not contain a causal polymorphism for the alleles involved and 
that the SNPs identified are in linkage disequilibrium with the causal 
polymorphisms. Alternatively, the variation controlling expression 
may be located tens of kilobases24,25 to as far as 1 Mb26 from the gene. 
In addition to the SNP associations near the lg1 and lg2 loci, weaker 
associations exist with the lg4 locus, but none exist with the lg3 locus 
(Fig. 3a and Supplementary Table 11).

To further examine the associations with the liguleless genes, we 
genotyped seven SNPs identified from GWAS in a panel of 282 diverse 
lines27. Four of the SNPs were weakly associated with upper leaf angle 
(P < 0.1) (Supplementary Table 11). This result is consistent with our 
NAM-GWAS results and with the relatively low power of an associa-
tion panel of 282 lines to detect effects of <0.2 phenotypic standard 
deviations (s.d.) as shown by simulation (Supplementary Fig. 7).

The relative importance of common versus rare variants is critical 
to understanding the basis of natural variation and its application in 
medicine, agriculture and other areas of biology28. Using results from 
both joint linkage analysis and GWAS to address this question, we can 
compare the difference in allele frequency distribution between QTL 
and GWAS quantitative trait nucleotide (QTN) (Fig. 4). The number 
of NAM families containing non-B73 alleles of individual QTL tends 
to fall in the middle of the range, whereas the number of families 
containing individual GWAS QTN tends toward the lower end of 
the range. This observation reinforces the hypothesis that common  
QTL regions result from multiple underlying polymorphisms  
(Fig. 4). However, the allele frequency of GWAS QTN still differs 
from that of random SNPs, suggesting that the GWAS QTNs tend to 
be shared among lines. However, because QTNs and QTLs with very 
small effects remain undetected and because the set of 1.6 million 
SNPs probably does not contain most of the causative polymorphisms, 
the distributions observed here are probably different from the under-
lying true distributions.

We note some limitations of this NAM-GWAS. First, the set of  
1.6 million SNPs is unlikely to capture all of the haplotypes present in 
the diverse maize inbred lines7. Second, only SNPs and small insertion-
deletions are considered. However, the extensive structural variation in 
the form of copy number variation (CNV) and presence-absence varia-
tion (PAV) among maize inbreds may have functional importance and 
thus contribute to the variation that is not captured by SNPs29,30. Third, 
incorrect imputation of HapMap SNPs in NAM parents could lead to 
less accurate estimates of associations. Fourth, the moderate number of 
founders has limited resolution to dissect low-frequency QTN.

Despite these current limitations, we could use NAM-GWAS to 
identify individual genes controlling complex agronomic traits. The 
associations identified here provide a basis for further GWAS and 
fine-mapping efforts to pinpoint causal variants and to clarify how 
the implicated genes affect leaf architecture traits. These insights into 
the genetic basis of maize leaf architecture can now be used to further 
improve global maize with an optimum leaf architecture designed for 
high planting densities.
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URLs. KBiosciences, http://kbioscience.co.uk/.

Methods
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Materials and data. Details about how the NAM population was created and 
genotyped have been previously described8,9. We also included the public maize 
intermated B73-by-Mo17 (IBM) population31 in our analysis, which resulted in 
4,892 lines from 26 families. Three leaf traits (leaf length, leaf width and upper 
leaf angle) were scored in nine trials during the summer and winter of 2006 
and 2007 in six locations: Aurora, New York, Urbana, Illinois, and Clayton, 
North Carolina, USA, in 2006 and 2007; Columbia, Missouri and Homestead, 
Florida, USA and Ponce, Puerto Rico in 2006. Leaf length was measured as the 
distance from the base to the tip of the leaf below the primary ear at or near 
flowering time. Leaf width was measured as the width of the widest section of 
the leaf below the primary ear at or near flowering time. Upper leaf angle was 
measured as the angle between the horizontal and the midrib of the first leaf 
below the flag leaf. Using this definition, more upright leaves have a higher leaf 
angle. We used the angle of the first leaf below the flag leaf as the representative 
of upper leaf angle for a plant because the angles of all leaves between the flag 
leaf and ear leaf are highly correlated32. The best linear unbiased predictors 
(BLUPs) for each line were calculated with ASREML version 2.0 software33. 
BLUPs for each line across environments were used for the overall analysis. 
Separate BLUPs for each environment were used to test QTLxE interaction.  
Leaf length and leaf width were normally distributed. The Box-Cox transfor-
mation family34 was used to transform upper leaf angle to make the values 
approach normality. The subsequent analyses for leaf angle were carried out 
on the transformed data.

Joint linkage analysis. The method for joint linkage mapping has been previ-
ously described9. A brief description of joint linkage analysis used in this study 
is in the Supplementary Note. To facilitate GWAS, the method used to impute 
missing genotypes of NAM markers was modified. Instead of imputing missing 
NAM marker genotypes as the simple average of the genotype values of flank-
ing markers9, the average was weighted by the relative genetic distance of the 
missing marker from the flanking markers in this study. If the B73 genotype 
is coded as 0 and the non-B73 genotype is coded as 1, this result can be inter-
preted as the probability that a SNP comes from the non-B73 parent.

Genetic overlap between traits. The NAM design provides a unique oppor-
tunity to test the genetic overlap between different complex traits. If two traits 
share a QTL, the allele effects at that locus should be correlated. If the trait 
QTLs are different but colocalize, then the effects will be uncorrelated. Because 
there is no broadly accepted method for determining the confidence interval 
of QTL in multicross designs, we proposed a new method to calculate support 
interval of QTL (Supplementary Note). We used this method to calculate a 
support interval (P < 0.05) for each joint QTL (Supplementary Tables 1–3). 
QTLs were defined as colocalized if their support intervals (P < 0.05) over-
lapped. The correlations of effect estimates for each pair of traits at colocalized 
QTLs were tested. Those QTLs with a significant Pearson correlation coef-
ficient (P < 0.05) are probably shared loci for different traits.

HapMap SNP imputation and projection. SNPs (1.6 million) from the maize 
HapMap project discovered on the NAM parents7 were used for GWAS. 
Because 23% of the genotypes were missing in the set of 1.6 million SNPs, 
we used fastPHASE version 1.3 (ref. 35), a haplotype clustering algorithm, to 
impute the missing genotypes (Supplementary Note).

SNPs from the NAM parents were imputed onto the 4,892 RILs by first 
determining the physical position of the NAM markers by blasting them 
against a B73 reference genome (B73 RefGen_v1)36. For each SNP, its values 
for a RIL were assigned based on the SNP value of the RIL parents and on the 
genotype of the flanking NAM markers in that RIL. If the non-B73 parent 
carried the B73 allele, then the SNP was assigned a value of 0. If the non-B73 
parent carried the non-B73 allele, then the SNP was assigned a value equal 
to the average of the flanking NAM markers weighted by its relative physical 
distance between the markers, similar to the method used to impute missing 
NAM marker values.

Genome-wide association. To further dissect the joint linkage QTLs, we 
conducted a GWAS within 4,892 RILs that contain 1.6 million SNPs imputed 
from founders. In the previous stage of joint linkage mapping, we tested 

linkage marker effect within each population, where we assumed in the 
statistical model that each founder carries a specific allele at each QTL. In 
the GWAS stage, we first imputed HapMap SNPs onto RILs by using infor-
mation from linkage markers to infer the parent origin of each intermarker 
segment, and we then tested imputed SNPs across populations, where we 
assumed in the statistical model that the founder that shares the same SNP 
allele also share the same allele at the QTL. Testing imputed SNPs across 
populations amounts to testing whether a particular SNP is associated with 
phenotype independently of population (after controlling the background 
population difference). Therefore, by exploiting both recent and historical 
recombination captured by linkage markers and HapMap SNPs, respectively, 
we narrowed down QTLs to candidate SNPs. Thus, the goal of GWAS is to 
dissect QTLs into QTNs.

In this study, we conducted GWAS on the top of joint linkage analysis 
through a statistical procedure described below. For each chromosome and 
each trait, we calculated residuals from the full joint linkage model with the 
population term and QTL from that chromosome removed. In this way, ~90% 
of genetic variance was controlled in each chromosome association scan. In 
the stepwise regression model for joint linkage mapping, the population term 
was included in the model to account for the difference among populations, 
resulting in more reasonable markers within population estimates. We left 
the population term out of the model in the intermediate step of calculating a 
residual, but we included the population term in the final step of chromosome 
association scan to control the possible spurious associations caused by popu-
lation differences. We then constructed a robust subsampling-based multiple 
SNP model to carry out association mapping, a strategy successfully applied 
in GWAS in mouse18,19 and confirmed to be more robust than single-locus 
scanning20. To form each subsample, 150 lines were randomly chosen without 
replacement from each population. Forward regression was used to fit SNPs to 
the residual of each chromosome for each trait using a chromosome and trait-
specific significance threshold, determined from permutations, as the stopping 
rule. This procedure was carried out for 100 subsamples for each chromosome 
and trait. By subsampling, the order of SNPs entering the model varies, com-
pensating for the instability of model selection using forward regression and 
providing a measure of the reliability of position estimates. The BPP, defined 
as the proportion of times the SNP is included in the multiple SNP model, 
was used to measure the robustness of the support for SNP associations. The 
median of the effect size and P value of each associated SNP across all mod-
els containing that SNP was used to represent the effect size and P value of 
the associated SNP. The analysis was carried out using code written in Java, 
which is available upon request. A permutation test was used to verify that 
the significance levels used controlled false positives in the bootstrap analysis. 
Because of the time required to carry out a single bootstrap permutation, only 
two permutations were carried out for each chromosome. The resulting 20 
permutations were pooled to generate a rough estimate of expected number of 
false discoveries. Using BPP ≥ 0.05, the cutoffs for leaf length and width were 
sufficient to keep the number of false discoveries <10 for both permutations 
or an average of 0.5 per chromosome per permutation. However, for leaf angle 
the number of false discoveries was excessive. Therefore, the P-value cutoff 
used for leaf angle was adjusted downward to achieve the same level observed 
in leaf length and width.

Overlap between QTL and GWAS. To evaluate the overlap between joint 
linkage QTL support regions and GWAS results, the number of associations 
within each QTL support interval under different BPP thresholds (BPP = 0.05, 
0.1, 0.2, 0.3, 0.4 and 0.5) was calculated. Then, the proportion that would be 
expected by chance under each BPP cutoff was obtained by calculating the 
proportion of 1.6 million SNPs within QTL support intervals. Under each BPP 
cutoff, the binomial distribution was used to test the null hypothesis that both 
proportions (the actual proportion of associations within QTL support interval 
and the proportion expected by chance) come from the same distribution. 
Rejecting the null hypothesis was taken as an evidence of significant overlap 
between joint linkage QTL mapping and GWAS results.

Genotyping of SNPs identified from GWAS in association panel. To further 
examine the associations with lg1, lg2 and lg4, seven of significant SNPs identi-
fied from GWAS were genotyped in an association panel of 282 diverse maize 
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inbred lines27 using the KASPar system. Primers were designed for KASPar 
genotyping using a tool provided by KBiosciences (see URLs) based on the 
SNP locus sequence (Supplementary Table 13). To evaluate the ability of an 
assay to produce clearly distinguished clusters, artificial heterozygotes were 
created by pooling DNA from NAM parents according to the genotype at these 
HapMap SNPs (Supplementary Table 14). The detailed protocol for KASPAR 
genotyping is in the protocol provided by KBiosciences.
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