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ABSTRACT

Summary: Software programs that conduct genome-wide associa-
tion studies and genomic prediction and selection need to use
methodologies that maximize statistical power, provide high predic-
tion accuracy, and run in a computationally efficient manner. We
developed an R package called Genomic Association and Prediction
Integrated Tool (GAPIT) that implements advanced statistical meth-
ods including the compressed mixed linear model (CMLM) and
CMLM-based genomic prediction and selection. The GAPIT pack-
age can handle large data sets in excess of ten thousand individuals
and one million single nucleotide polymorphisms with minimal com-
putational time, while providing user-friendly access and concise
tables and graphs to interpret results.

Availability: http://www.maizegenetics.net/GAPIT.

Contact: zhiwu.zhang@cornell.edu

Supplementary information: Available at Bioinformatics online.

1 INTRODUCTION

Advances in high-throughput single-nucleotide polymorphism
(SNP) genotyping are enabling powerful genome-wide association
studies (GWAS), thereby enhancing the ability to identify causal
mutations that underlie human diseases and agriculturally im-
portant traits. The resulting SNPs are also valuable for genomic
prediction and selection (GS), which provides criteria for disease
risk management in humans and expedited selection in animal and
plant breeding (Heffner, et al., 2009; Meuwissen, et al., 2001).
Before the full potential of GWAS and GS are realized, inflated
false positive rates, extensive computational requirements, and
suboptimal prediction accuracies need to be addressed.

Newly developed GWAS statistical methods based on the mixed
linear model (MLM) hold great promise to overcome these chal-
lenges. They are flexible because they incorporate fixed and ran-
dom effects. To address the spurious associations that arise from
population structure, covariates from either STRUCTURE
(Pritchard, et al., 2000) or principal components (PCs) can be in-
cluded as fixed effects. The cryptic relationships between individ-
uals are accounted for through a kinship matrix in the unified
MLM (Yu, et al., 2006). The more computationally efficient and
powerful compressed MLM (CMLM) (Zhang, et al., 2010) uses a
group kinship matrix calculated from clustered individuals.

Because the typical number of genotypic data points is exceeding
hundreds of millions, solving MLMs using the traditional restricted
maximum likelihood (REML) approach is computationally inten-
sive. Therefore, the efficient mixed model association (EMMA)
algorithm (Kang, et al., 2008) was developed to reduce this com-
putational burden by reparameterizing the MLM likelihood func-
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tions. EMMA eXpedited (EMMAX) (Kang, et al., 2010) and popu-
lation parameters previously determined (P3D) (Zhang, et al.,
2010) were independently developed to further reduce computing
time by eliminating the need to re-estimate variance components at
each marker.

Most GS methods make predictions with the sum of the effects
from all available SNPs or gBLUP (Genomic Best Linear Unbi-
ased Prediction) based on a kinship matrix derived from these
SNPs. The former approach offers higher prediction accuracies for
simpler traits, while the latter approach is more accurate for com-
plex traits (Daetwyler, et al., 2010). Our work implements an im-
proved gBLUP method that increases accuracy, especially for sim-
ple traits.

Most software packages were developed for a particular GWAS
or GS approach. For example, packages were written exclusively
for the EMMA and EMMAX algorithms, respectively. Other soft-
ware such as the Trait Analysis by aSSociation, Evolution, and
Linkage (TASSEL) (Bradbury, et al., 2007) and PLINK (Purcell,
et al., 2007) make multiple GWAS approaches available in one
package. We continue these software development efforts by creat-
ing Genome Association and Prediction Integrated Tool (GAPIT),
which integrates the most powerful, accurate, and computationally
efficient GWAS and GS methods into a single R package.

2 IMPLEMENTATION

The GAPIT program accepts several combinations of genotypic
data, phenotypic data, externally obtained kinship matrices, and
covariates such as population structure and age. Multiple traits can
be stored in a single phenotypic data set, which allows sequential
analysis of each trait. The genotypic data may be stored in Hap-
Map or numerical formats. If genotypic data are absent, then phe-
notypic data and a kinship matrix are required to perform GS.

By default, GAPIT uses the CMLM approach with
P3D/EMMAX for GWAS. GS is performed using the same opti-
mization settings as GWAS (Supplementary Sections I&II and
Figure S1). There is an option to perform GS only by specifying
“SNP.test=FALSE”. Seven algorithms are available to cluster in-
dividuals into groups. GAPIT can also perform the MLM and
GLM approaches by adjusting the “group.to” and “group.from”
input parameters. When the kinship matrix is not provided, it will
be calculated with the methods of VanRaden (VanRaden, 2008),
Loiselle (Loiselle, et al., 1995), or EMMA (Kang, et al., 2008).
GAPIT can also perform principal component analysis (PCA) of
the genotypic data to control for population structure (Zhao, et al.,
2007).

GAPIT has several strategies for analyzing large SNP data sets.
One is to import genotypic data stored in multiple smaller files. If

Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions @ oup.com

2702 ‘0z AIne uo Areagi AlsiaAlun [1auloD 1e /B10°s[euinolplofxo°soliewlouiolg//:dny woiy papeojumoq



these files still exceed memory limits, the “file.fragment” parame-
ter can be used to sequentially load fragments within each file. If
there is not enough memory to use all SNPs to calculate the kin-
ship matrix and PCs, then the “SNP.fraction” input parameter will
select a random sample of the SNPs for these calculations (Yu, et
al., 2009).

Results from GAPIT are accessed as both objects within the R
workspace and as external files. The R objects, which include
GWAS and GS results, may be used for follow-up analyses in R.
The external files include publication-ready summaries of GWAS
and GS results. GWAS results are summarized by Manhattan plots,
Quantile-Quantile plots, and a table. Similarly, GS results are pre-
sented in a heat map and a table. Graphs of the heritability esti-
mates and the likelihood function at various compression levels are
included. A subset of the graphs and tables produced by GAPIT
are presented in Figure 1.
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Figure 1. Gallery of GAPIT output. (a) Plot of the first two principal com-
ponents (PC1 and PC2). (b) Plot of twice the negative log likelihood (-2LL,
smaller is better) at various number of groups. (¢) Graph showing the opti-
mum cluster algorithm, method to calculate group kinship, group number, -
2LL, and the proportion of genetic variance (group heritability) and residu-
al variance. (d) Distribution of best linear unbiased predictors (BLUPs) and
their prediction error variance (PEV) (¢) Genomic prediction and selection

output summary. The individual id (taxa), group, RefInf which indicates
whether the individual is in the reference group (1) or not (2), the group ID
number, the BLUP, and the PEV of the BLUP. (f) Manhattan plot.—log P-
values are plotted against physical map position of SNPs. Chromosomes
are alternatingly colored. (g) Quantile-quantile (QQ)-plot determines how
GWAS results compare to the expected results under the null hypothesis of
no association. (h) Output table of GWAS results. The SNP id, chromo-
some, bp position, P-value, minor allele frequency (maf), sample size
(nobs), R? of the model without the SNP, R? of the model with the SNP,
and adjusted P-value following a false discovery rate (FDR)-controlling
procedure (Benjamini and Hochberg, 1995).

3 PERFORMANCE TESTS

EMMA and TASSEL were compared with GAPIT. These two
packages were selected because both use the EMMA algorithm,
while TASSEL also implements the CMLM approach with P3D.
When the same approach was used, identical results were obtained
(Figures S2 and S3). The computing time of all three packages
increases linearly with the number of SNPs (Figure S4). However,
the average computing time per SNP in GAPIT is 7-fold and 180-
fold faster than TASSEL and EMMA, respectively (Figure S4). It
took 69.5 hours to analyze a data set with 11,000 individuals and
500,000 SNPs, which extrapolates to 7,195 SNPs/CPU hours or
less than 6 days to analyze one million SNPs.

4 CONCLUSIONS

This R package uses state-of-the-art mixed model methods to con-
duct GWAS and GS. GAPIT analyzes large data sets with mini-
mum computational time and produces comprehensive results
including R objects and high quality graphs.
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