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Whereas breeders have exploited diversity in maize for 
yield improvements, there has been limited progress 
in using beneficial alleles in undomesticated varieties. 
Characterizing standing variation in this complex genome 
has been challenging, with only a small fraction of it 
described to date. Using a population genetics scoring 
model, we identified 55 million SNPs in �03 lines across 
pre-domestication and domesticated Zea mays varieties, 
including a representative from the sister genus Tripsacum. 
We find that structural variations are pervasive in the Z. mays 
genome and are enriched at loci associated with important 
traits. By investigating the drivers of genome size variation, 
we find that the larger Tripsacum genome can be explained by 
transposable element abundance rather than an allopolyploid 
origin. In contrast, intraspecies genome size variation seems 
to be controlled by chromosomal knob content. There 
is tremendous overlap in key gene content in maize and 
Tripsacum, suggesting that adaptations from Tripsacum (for 
example, perennialism and frost and drought tolerance) can 
likely be integrated into maize.

Maize nucleotide diversity is near the upper limit of that estimated  
for crops and is an order of magnitude higher than in humans1,2. 
However, this genetic diversity not only arises from SNPs and 

small insertions-deletions (indels) but also from larger structural 
 variations3–5. Additionally, homeologous segments in this paleopoly-
ploid contribute to genome complexity. Nearly 85% of the maize refer-
ence genome sequence is annotated as transposable elements6,7, and 
cycles of transposable element invasion, activity and loss8, combined  
with the ability of these elements to shuffle gene fragments, have 
undoubtedly left a profound impact on the genome. Recent estimates 
suggest that the reference B73 sequence may capture only ~70% of 
the low-copy gene fraction of maize inbred lines9, with both genes 
and transposable elements occupying the unshared sequence space10. 
Consequently, in addition to SNPs and small indels, structural vari-
ations in the form of copy-number variations, presence/absence 
variations and movement of transposable elements3–5 contribute 
substantially to the genetic diversity in maize. Characterizing this 
diversity—in particular, at a sufficient density to drive genome-wide 
association studies (GWAS) or genomic selection—has been techni-
cally challenging.

Here, through whole-genome surveys using sequencing-by- 
synthesis technology, we have conducted a comprehensive char-
acterization of genetic variation across 103 inbred lines represent-
ing a wide breadth of the Z. mays lineage, comprising 60 improved  
maize lines, including the parents of the maize nested association  
mapping (NAM) population11, 23 maize landraces and 19 wild 
relatives (17 Z. mays ssp. parviglumis and 2 Z. mays ssp. mexicana) 
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(Supplementary Table 1). We also generated sequence for a represent-
ative of the sister genus Tripsacum, T. dactyloides (Eastern gamagrass), 
as an outgroup for studying the evolutionary history of maize.

The nearly 1 trillion basepairs of DNA sequence generated from 
13 billion reads were aligned against the B73 reference genome 
(RefGenV1)7, representing ~4.2× coverage of each of the maize and 
teosinte genomes and ~8× coverage of the Tripsacum genome. Two 
complementary algorithms were used for initial variant discovery. The 
first implements a Needleman-Wunsch–based alignment method that 
provides more sensitivity in identifying indels9, whereas the second 
better models sequencing errors12. These algorithms, which separately 
perform well in human genetics13, failed to produce consistent results in 
maize—only 33% of the 93 million total segregating sites identified were 
shared between the two approaches (Supplementary Table 2). Taking 
advantage of the relative strengths of each approach, we applied a novel 
population genetics–based quality control pipeline to the combined set 
of variants. Briefly, we developed a logistic regression model based on 
patterns of linkage disequilibrium (LD) and both allele and genotype 
segregation. The model was trained on large regions of identity by 
descent (IBD) found using an independent SNP assay (Supplementary 
Table 3). Analysis of the final SNP set confirmed that the majority of 
the initial calls were likely due to paralogy (Supplementary Table 2).  
Overall, the final HapMap2 data set consisted of 55 million SNPs, 
with a 1% total error rate and a 5.6% minor allele error rate (Fig. 1, 
Supplementary Figs. 1 and 2 and Supplementary Table 2). The allele 
distribution of the calls across each line is listed (Supplementary  
Table 4). It is important to note, however, that many of the rejected 
variants are real, encoded from homeologous regions fostered by trans-
posable element invasion and loss, a fact that underscores the limita-
tions of relying on a single reference genome.

We examined the 55 million SNPs for their 
potential effects on protein-coding sequences. 
We found that 21% were associated with a 
genic region, including 825,000 synonymous, 
571,000 nonsynonymous and ~10,000 non-
sense mutations (Supplementary Fig. 3). 
More than 1,500 (7.5%) of the 20,380 high-
confidence genes (those with full-length 
cDNA support) carried a premature stop 
codon variation. The allele frequency of 
these nonsense SNPs differed between the 

improved maize lines and teosinte (8.0% versus 9.6%; Supplementary 
Table 5), and teosinte genomes carried more nonsense mutations on 
average (Supplementary Table 6). This lower genetic load in maize 
inbred lines relative to their outcrossing ancestor teosinte is consistent 
with the hypothesis that homozygosity purges recessive deleterious 
mutations, as seen in selfing taxa, such as Arabidopsis14.

We characterized structural variation in the maize genome through 
a global analysis of read-depth variants (RDVs) in both 10-kb windows 
and individual genes. Our data suggest that the entire maize genome 
is in flux: more than 90% of the 10-kb windows showed greater than 
twofold variation in read depth at a false discovery rate of 1%, and 
more than 70% of windows had such RDVs in ≥10 lines. By compar-
ing the RDVs to nearby SNPs using an LD test, 80% of the tested 
RDV intervals could be anchored locally (Supplementary Note). The 
majority (70%) of genes had an RDV in at least one line, and nearly a 
third (32%) had RDVs in ≥10 lines (Supplementary Table 7). Notably, 
as with tandemly arrayed genes in rice and Arabidopsis15, genes with 
high levels of RDVs were found more often in gene ontology (GO) 
categories of stress and stimulus responses, whereas structurally 
invariant genes more often encoded constituent biological processes 
(Supplementary Table 8).

Despite the tremendous amount of historic recombination that 
has occurred in Z. mays1,2, we found that large haplotype blocks 
were nonetheless evident throughout the genome. In the maize 
lines studied here, LD was generally low and decayed to an aver-
age r2 = 0.2 in 5,500 bp (Fig. 1), but there were still extensive 
haplotypes shared among improved lines. Across all of the maize 
lines we analyzed, we found 80 blocks of IBD larger than 10 Mb in 
size (Supplementary Table 3), which is consistent with the results 
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Figure 1 Deriving a high-quality variation map 
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from haplotype analysis of a smaller sample of Chinese inbred 
maize lines16. This lack of recent recombination in some regions of 
the genome is likely central to the pseudo-overdominance model 
of heterosis3,5,9,11. Considering teosinte and maize lines together 
reduces the decay of LD to only 1 kb (Supplementary Fig. 4), which 
is a result that helps justify the development of high-resolution 
association mapping populations that include teosinte. Notably, 
in contrast to HapMap1, in which the SNPs were in high LD in 
only 34% of pairwise comparisons9, the variants described here 
were closer to saturating the genome with polymorphic markers in 
tight LD (80% of pairwise comparisons; r2 > 0.8), finally allowing 
genome-wide association studies to be performed in maize.

We evaluated the usefulness of our data for GWAS by combining 
the SNPs and RDVs identified here with the 1.6 million SNPs from 
HapMap1 (ref. 9) in an association analysis of 5 key traits involved 
in leaf development and disease resistance17–19. Overall, we found 
better agreement of the complete marker set with linkage mapping 
peaks than with HapMap1 SNPs alone (Supplementary Fig. 5); in 
many cases, associations were much stronger with the complete set 
(Supplementary Table 9). HapMap2 SNPs contributed most to sig-
nificantly associated loci (66%), and, in terms of marker types, genic 
SNPs (from both HapMap1 and 2), comprised over 60% of significant 
markers, with RDVs comprising 7% (Fig. 2). Unexpectedly, RDVs 
were overrepresented in the GWAS results, even after taking into 
account their abundance in the genome, with genic and 10-kb RDVs 
enriched up to 11- or 18-fold, respectively (Fig. 2). Given that LD in 
maize decayed to r2 = 0.2 in 5.5 kb, we evaluated whether enrichment 
of RDVs at associated loci was present if smaller window sizes were 

used. Indeed, we still observe enrichment of RDVs in loci associated 
with traits when using smaller window sizes, and, notably, although 
2-kb RDVs made up only 3.5% of markers used in these tests, they 
contributed to 15–27% of associated loci (Supplementary Fig. 6 and 
Supplementary Table 10). This suggests that structural variation, 
captured here by RDVs, may have an important role in phenotypic 
variation. Furthermore, in species where complete reference assem-
blies are unavailable, RDVs of de novo contigs could be economical 
proxies for capturing structural variation, complementing SNP infor-
mation derived from the same primary data.

Structural variation due to transposable element expansion20 
and variation in repeat arrays21–23 has previously been suggested 
to underlie genome size variation among maize accessions. We com-
pared the abundance of knob repeats and more than 1,300 transpos-
able element families to flow cytometry estimates of genome size 
for 38 lines (27 maize and 11 teosinte; Supplementary Fig. 7). We 
found that larger genomes were not associated with increased trans-
posable element abundance, but genome size was positively corre-
lated with the abundance of total knob repeats (Fig. 3). Except for 
the relative counts of transposable elements in the RLX_osed, RLX_
sela and RLX_sari families (r = 0.77, 0.78 and 0.62, respectively),  
the majority of the most abundant families were negatively corre-
lated with genome size (Supplementary Tables 11 and 12). Previous 
work has indicated that transposable elements in the RLX_osed, 
RLX_sela and RLX_sari families are likely satellite repeats24, and 
these elements correlated nearly perfectly with the abundance of 
knob repeats (r = 0.98, 0.97 and 1.00, respectively; Supplementary 
Tables 13 and 14). Hence, whereas transposable elements are well 
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known to contribute to genetic diversity, chromosomal knob segre-
gation rather than global transposable element proliferation is likely 
to be the major cause of genome size differences within Z. mays. In 
contrast, transposable element abundance seems to explain nearly 
50% of the 1.5-fold size difference between maize and Tripsacum 
(Supplementary Tables 15–17). Multiple transposable element 
families showed higher abundance in Tripsacum (Supplementary 
Table 18), with the remaining variation in genome size likely attrib-
utable to Tripsacum-specific transposable elements and other repet-
itive elements not in the maize transposable element database6,25. 
Taken together, our results support the view that global, genome-
wide changes in transposable element content drive genome size 
difference between grass species24,26, whereas segregation of large, 
discrete blocks of heterochromatic repeats determine genome size 
differences within maize.

Knob and transposable element abundance variation, however, do 
not explain the karyotypic difference between maize and Tripsacum 
(2n = 2x = 36). To explore previous suggestions of a shared allo-
polyploid event in the history of Zea and Tripsacum lineages27,28, 
we mapped the proteins encoded by Tripsacum reads against 
those from maize and Sorghum bicolor7,29 and found that 97.8% of 
genic reads mapped to maize proteins (Supplementary Table 19).  
A mere 0.28% of all Tripsacum reads showed a closer relationship 
to Sorghum than to maize, effectively ruling out contribution from 
a non-Zea genome. Furthermore, Tripsacum reads mapped to the 
maize reference genome with notably even coverage (Supplementary 
Fig. 8), suggesting that large-scale structural variations have not 
occurred since the genera diverged and that observed karyotypic 
differences are probably the result of chromosome fission. Given that 
Tripsacum has successfully adapted to a wide range of environments 
(from South America to Iowa), the similarity between the genomes 
suggests that Tripsacum genetics should be investigated for use in 
the improvement of maize, as mining genetic variation in Tripsacum 
could be very productive.

By providing an unprecedented density of polymorphic markers, 
the HapMap2 data set we have generated here presents a significant 
resource for association mapping, genomic selection and the mining  
of genomic regions that have been selected during domestication and 
improvement30. In many plant species, highly repetitive genomes 
and structural diversity complicate access to genetic markers for 

 germplasm improvement. As maize is not only an economically 
important crop but also a model for complex genomes, it is antici-
pated that many of the methods developed here will accelerate genetic 
variation discovery in other crops.

URLs. Panzea, http://www.panzea.org/; Novoalign, http://www.
novocraft.com/.

MeThodS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Sequencing data generated in this study have 
been deposited at the NCBI Short Read Archive under the accession 
SRA051245. Maize HapMap2 genotypes and other auxiliary data can 
be found on the Panzea website (see URLs).

Note: Supplementary information is available in the online version of the paper.
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Samples and Illumina sequencing. Total genomic DNA was isolated from 
homogenized frozen ear tissue, lyophilized leaf tissue or etiolated seedling 
material of 103 inbred lines using the standard cetyltrimethyl ammonium bro-
mide (CTAB) DNA extraction protocol. Covaris-sheared total genomic DNA 
was prepared following the standard Illumina paired-end library protocol, ulti-
mately capturing fragments in the 250-nt range, and delivered for paired-end 
sequencing of 76–100 bp on the Genome Analyzer IIx platform (Illumina).

Read mapping, variant identification and scoring. Two complementary 
pipelines were used to map the reads and identify variant sites, and a scor-
ing model was developed to filter for high-quality polymorphisms resulting 
from both pipelines. Reads were mapped against the B73 reference sequence7  
(version AGPv1). The first pipeline, which was previously used to align unpaired 
short reads from HapMap1 (ref. 9), uses Bowtie31 and Novoalign for mapping 
reads. Only uniquely mapping reads were retained. The SAMtools package32 
was used to filter for PCR duplicates and identify putative variation sites.  
The second pipeline use SOAP2 for read mapping33, realSFS34 for identifying 
putative variation sites and SOAPsnp12 for calling the genotype of each indi-
vidual. At this stage, variations were filtered for alternate allele quality and 
homozygosity (Phred score of ≥20, with ≥90% of the lines homozygous and 
with heterozygous genotypes being no more than double the frequency of the 
homozygous minor allele genotypes).

A logistic regression model was used to score the SNPs. The factors in the 
model included the proportion of homozygous lines, a segregation test and 
an LD test with an anchor map. This anchor map was a small subset of the 
sites with (i) a presence in at least 50 lines, (ii) homozygosity in 90% of the 
lines, (iii) an alternate allele with average quality greater than 20, (iv) minor 
allele with homozygosity in four lines, (v) contingency test −log10 (P) > 2.5, 
(vi) LD test −log10 (P) > 5 and (vii) the imputation of the minor allele correct 
more than 80% of the time (a test of haplotype structure). The segregation 
test is a contingency test of read depth for SNP allele by line, with significance 
determined by permutations9.

Regions of IBD were used to build and test the scoring model, with the 
expectation that there should be no SNP differences within pairs of IBD 
segments. The inbred lines were previously genotyped with an Illumina 
MaizeSNP50 array (M.D.M. and J.R.-I., unpublished data), and IBD regions 
were identified from these data by identifying unbroken stretches of at least 
150 identical SNP alleles between pairs of lines. The distribution of IBD 
blocks across the genome, in relation to recombination rate, is presented 
in Supplementary Figure 9. The model coefficients were then determined 
using the 55 pairs of IBD blocks localized to the pericentromeric region along  
chromosome 10 (between positions 47–56 Mb in AGPv1), including only sites 
that could be tested in at least 20 pairs of contrasts.

After filtering and scoring, 55,061,920 variants remained, including  
3.2 million indels. The size distribution of indels is shown in Supplementary 
Figure 10. The coverage of variations across the whole genome is plotted for 
each chromosome (Supplementary Fig. 11).These scored variants agree very 
well with previous genotyping results, with disconcordant rates ranging from 
0.10–1.57% (Supplementary Tables 20–23 and Supplementary Note).

LD decay. LD (r2)35 was estimated for all pairs of sites within 300 kb of each 
other that were homozygous for at least two minor alleles and present in at least 
40 lines (minimum allele frequency of 5%). We also conducted a test to evaluate 
how close we were to complete genome coverage in LD. We did this by calculating 
the maximum LD for all SNPs within a 300-kb window (using the above position 
and minor allele cutoffs) (Supplementary Table 24).

Read-depth variation. RDVs were identified for each inbred line by first count-
ing the number of reads mapping to nonoverlapping sliding 10-kb windows 
across the B73 reference assembly (10-kb RDVs) as well as within genic loci 
(gene RDVs). Genic loci were defined by the 32,450 filtered gene set annotated 
on the B73 reference genome (release 4a.53), with an additional 2 kb included at 
both the 5′ and 3′ ends of the genes. Only mapping results from the paired-end 
libraries using the Bowtie-Novoalign pipeline were used in this analysis.

The read-depth counts of each line were then compared against a high-
coverage B73 sequence library. This B73 library consists of 362 million 76-bp 
paired-end reads, giving ~25× coverage of the genome (C.S., X.X. and G.Z., 
unpublished data). EdgeR36, a Bioconductor37 package for analyzing digital 
gene expression, was then adapted to estimate log2 coverage ratios of each line 
against this high-depth B73 library (M. Robinson, personal communication). 
A 10-kb window or gene was considered as having a significant RDV if there 
was a twofold change compared to the high-coverage B73 library with a false 
discovery rate of ≤ 0.01.

The 10% most variant and 10% least variant genes were identified and are 
listed in Supplementary Table 25. The Arabidopsis and rice orthologs for the 
most RDV-variant genes are listed in Supplementary Table 26.

RDV anchoring. To determine whether RDVs were anchored locally, we used 
LD by implementing a simple t test between the 10-kb interval of an RDV  
(a quantitative character) and the SNP genotype. Key to this contrast is that we 
looked for LD between ‘missing’ regions of the genome with SNPs that were 
‘present’, which prevents extended anomalies from appearing as LD. We only 
used SNPs that were present in more than 70% of the lines and that had the 
minor allele in more than five lines (minimum minor allele frequency of >5%). 
All SNPs within 100 kb of the RDV interval were tested. A simple Bonferroni 
correction was applied to control for the difference in the number of SNP tests 
for each interval. To investigate the importance of including SNPs from within 
the RDV interval, in one version of the test, we excluded all SNPs from within 
the interval. This yielded only a very minor difference in the results. Because 
population structure can produce significant results, even for unlinked RDVs, 
we also conducted randomization tests in which we evaluated the distribu-
tion of P values, but only for sites that were on the same chromosome but over 
500,000 bp away. This distribution identified P values that were likely the result 
of population structure from the sites that were almost likely the product of  
local LD.

GWAS in NAM. GWAS on the NAM population for five traits using the com-
bined HapMap1 and HapMap2 data sets was conducted using a previously 
described method19, with BPP—defined as the proportion of times a SNP is 
included in the model—used to evaluate the strength of detected associations. 
Associations with BPP of 0.05 or greater were used for further analysis.

Assessment of transposable element and knob content. In order to assess 
transposable element and knob repeat content across the 103 maize and 
teosinte inbred lines, we followed the SSAHA2 (ref. 38) mapping proto-
col described in a recent publication24, with the exception that additional  
comparisons were performed against 180-bp and 360-bp knob-specific tandem 
repeats (GenBank, M32522.1 and AF071124.1, respectively). The estimates of 
knob abundance in each of the 103 lines are listed in Supplementary Table 27.

Flow cytometry. The protocol for the preparation of leaf samples for flow 
cytometry used in this study is based on a previously described protocol39, 
with slight modifications (Supplementary Note). As the genome sizes were 
estimated in two separate experiments, ANOVA models were fitted sepa-
rately for each experiment with PROC MIXED in SAS statistical software 
(SAS Institute). The fitted models had genome size as the dependent variable, 
line as a fixed effect and rep nested within line as a random effect. Degrees of 
freedom were calculated via the Satterthwaite approximation. Least-square 
means were obtained with the LSMEANS statement in PROC MIXED. Then, 
these means were standardized to the mean genome size of the B73 inbred 
reference standard included in each experiment. This was necessary to permit 
joint analysis of the genome size data from both experiments.

Interspecies comparison of gene content. Tripsacum reads were matched 
using BlastX40 against maize7 and Sorghum29 proteins, with S. bicolor chosen 
to represent a non-Zea grass genome. Reads that corresponded to either maize 
or sorghum proteins were then mapped against the sorghum (v1 assembly) 
and maize (RefGenV2) reference genomes using BlastN to identify reads that 
had closer homology to sorghum than maize.
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