
Communications
in Computer and Information Science 275

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Tai-hoon Kim
Konkuk University, Chung-ju, Chungbuk, Korea

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Xiaokang Yang
Shanghai Jiao Tong University, China



Leszek A. Maciaszek Kang Zhang (Eds.)

Evaluation
of Novel Approaches
to Software Engineering

6th International Conference, ENASE 2011
Beijing, China, June 8-11, 2011
Revised Selected Papers

13



Volume Editors

Leszek A. Maciaszek
Wrocław University of Economics
Institute of Business Informatics
53-345 Wrocław, Poland
and
Macquarie University
Department of Computing
Sydney, NSW 2109, Australia
email: leszek.maciaszek@mq.edu.au

Kang Zhang
University of Texas at Dallas
Erik Jonsson School of Engineering
and Computer Science
800 W. Campbell Road
Richardson, TX 75080-3021, USA
E-mail: kzhang@utdallas.edu

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-32340-9 e-ISBN 978-3-642-32341-6
DOI 10.1007/978-3-642-32341-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012954395

CR Subject Classification (1998): D.2, F.3, D.3, C.2, H.4, K.6

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The mission of the ENASE (Evaluation of Novel Approaches to Software
Engineering) conferences is to be a prime international forum for discussing and
publishing research findings and IT industry experiences with relation to evalua-
tion of novel approaches to software engineering. By comparing novel approaches
with established traditional practices and by evaluating them against software
quality criteria, the ENASE conferences advance knowledge and research in soft-
ware engineering, identify the most hopeful trends, and propose new directions
for consideration by researchers and practitioners involved in large-scale software
development and integration.

This CCIS volume contains papers of the 6th edition of ENASE held in
Beijing, China. The previous conferences took place in Erfurt, Germany (2006),
Barcelona, Spain (2007), Madeira, Portugal (2008), Milan, Italy (2009), and
Athens, Greece (2010). There is a growing research community around ENASE,
and it is increasingly recognized as an important international conference for
researchers and practitioners to review and evaluate emerging as well as estab-
lished SE methods, practices, architectures, technologies and tools. The ENASE
conferences host also keynotes, workshops, and panels.

For the 6th ENASE in Beijing we received 75 papers from 31 countries,
of which 55 were regular papers and 20 were short or position papers. The
reviewing process was carried out by about 80 members of the ENASE 2011
Program Committee. The final decision of acceptance/rejection was taken based
on the reviews received by the PC Co-chairs Leszek Maciaszek and Kang Zhang.
Borderline papers were subjected to extra considerations and discussions before
decisions were reached.

For ENASE 2011, we finally accepted 18 full papers (with scores 4 and above;
max. 6) and 10 short papers. The relevant acceptance statistics for full papers
are: 32.7% (based on 55 submissions) or 24% (based on 75 submissions)—clearly,
the former percentage is more truthful. The acceptance rate confirms the desire of
ENASE conferences to ensure a high quality of presented papers and associated
events. All six ENASE conferences had the acceptance rate for full papers at
around or below 30%.

Papers accepted for ENASE 2011 were presented in nine categories:

1. Software Quality and Testing
2. Requirements Engineering
3. Programming
4. Software Processes and Methods



VI Preface

5. Software Tools and Environments
6. Business Process and Services Modeling
7. Software Components
8. Software Effort and Processes
9. Socio-Technical Aspects of Software Development

November 2011 Leszek Maciaszek
Kang Zhang



Organization

Conference Chair

Joaquim Filipe Polytechnic Institute of Setúbal / INSTICC,
Portugal

Program Co-chairs

Leszek Maciaszek Macquarie University, Australia / University of
Economics, Poland

Kang Zhang The University of Texas at Dallas, USA

Organizing Committee

Sérgio Brissos INSTICC, Portugal
Patŕıcia Alves INSTICC, Portugal
Helder Coelhas INSTICC, Portugal
Vera Coelho INSTICC, Portugal
Andreia Costa INSTICC, Portugal
Patŕıcia Duarte INSTICC, Portugal
Bruno Encarnação INSTICC, Portugal
Liliana Medina INSTICC, Portugal
Carla Mota INSTICC, Portugal
Raquel Pedrosa INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
Daniel Pereira INSTICC, Portugal
Cláudia Pinto INSTICC, Portugal
José Varela INSTICC, Portugal
Pedro Varela INSTICC, Portugal

Program Committee

Colin Atkinson, Germany
Farokh B. Bastani, USA
Giuseppe Berio, France
Ghassan Beydoun, Australia
Maria Bielikova, Slovak Republic
Dumitru Burdescu, Romania
Wojciech Cellary, Poland
Panagiotis Chountas, UK

Rebeca Cortazar, Spain
Massimo Cossentino, Italy
Philippe Dugerdil, Switzerland
Angelina Espinoza, Spain
Joerg Evermann, Canada
Maria João Ferreira, Portugal
Agata Filipowska, Poland
Juan Garbajosa, Spain



VIII Organization

Janusz Getta, Australia
Cesar Gonzalez-Perez, Spain
Ian Gorton, USA
Jeff Gray, USA
Hans-Gerhard Gross, The Netherlands
Brian Henderson-Sellers, Australia
Rene Hexel, Australia
Charlotte Hug, France
Bernhard G. Humm, Germany
Zbigniew Huzar, Poland
Akira Imada, Belarus
Warwick Irwin, New Zealand
Stefan Jablonski, Germany
Slinger Jansen, The Netherlands
Monika Kaczmarek, Poland
Wan Kadir, Malaysia
Robert S. Laramee, UK
Xabier Larrucea, Spain
George Lepouras, Greece
Pericles Loucopoulos, UK
Graham Low, Australia
Jian Lu, China
André Ludwig, Germany
Leszek Maciaszek, Australia
Cristiano Maciel, Brazil
Lech Madeyski, Poland

SaschaMueller-Feuerstein, Germany
Johannes Müller, Germany
Anne Hee Hiong Ngu, USA
Andrzej Niesler, Poland
Janis Osis, Latvia
Mieczyslaw Owoc, Poland
Marcin Paprzycki, Poland
Jeffrey Parsons, Canada
Oscar Pastor, Spain
Naveen Prakash, India
Lutz Prechelt, Germany
Elke Pulvermueller, Germany
Rick Rabiser, Austria
Gil Regev, Switzerland
Artur Rot, Poland
Francisco Ruiz, Spain
Krzysztof Sacha, Poland
Motoshi Saeki, Japan
Heiko Schuldt, Switzerland
Manuel Serrano, Spain
Jerzy Surma, Poland
Stephanie Teufel, Switzerland
Rainer Unland, Germany
Olegas Vasilecas, Lithuania
Igor Wojnicki, Poland
Kang Zhang, USA

Auxiliary Reviewers

Saquib Anwar, Canada
Roman Lukyanenko, Canada
Giovanni Pilato, Italy

Luca Sabatucci, Italy
Valeria Seidita, Italy

Invited Speakers

Harold Krikke Tilburg University, The Netherlands
Xuewei Li Beijing Jiaotong University, China
Kecheng Liu University of Reading, UK
Leszek Maciaszek Macquarie University / University of

Economics, Australia / Poland
Yannis A. Phillis Technical University of Crete, Greece
Shoubo Xu Chinese Academy of Engineering / Beijing

Jiaotong University, China
Yulin Zheng UFIDA, China
Lida Xu Old Dominion University, USA



Table of Contents

Papers

A Study on Software Effort Prediction Using Machine Learning
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Wen Zhang, Ye Yang, and Qing Wang

Modularizing Different Responsibilities into Separate Parallel
Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Francisco Ortin and Miguel Garcia

Steering through Incentives in Large-Scale Lean Software
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Benjamin S. Blau, Tobias Hildenbrand, Rico Knapper,
Athanasios Mazarakis, Yongchun Xu, and Martin G. Fassunge

Comparing and Evaluating Existing Software Contract Tools . . . . . . . . . . 49
Janina Voigt, Warwick Irwin, and Neville Churcher

Continuous Improvement of Business Processes Realized by Services
Based on Execution Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Andrea Delgado, Barbara Weber, Francisco Ruiz,
Ignacio Garćıa-Rodŕıguez de Guzmán, and Mario Piattini

Structure Editors: Old Hat or Future Vision? . . . . . . . . . . . . . . . . . . . . . . . . 82
Andreas Gomolka and Bernhard Humm

A Framework for Aspectual Pervasive Software Services Evaluation . . . . . 98
Dhaminda B. Abeywickrama and Sita Ramakrishnan

ABC Architecture: A New Approach to Build Reusable and Adaptable
Business Tier Components Based on Static Business Interfaces . . . . . . . . . 114

Oscar M. Pereira, Rui L. Aguiar, and Maribel Yasmina Santos

Improving Quality of Business Process Models . . . . . . . . . . . . . . . . . . . . . . . 130
Laura Sánchez-González, Francisco Ruiz, Félix Garćıa, and
Mario Piattini

Team Radar: A Radar Metaphor for Workspace Awareness . . . . . . . . . . . . 145
Cong Chen and Kang Zhang

Model-Driven Test Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Beatriz Pérez Lamancha, Pedro Reales, Macario Polo, and
Danilo Caivano



X Table of Contents

Comparing Goal-Oriented Approaches to Model Requirements for
CSCW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Miguel A. Teruel, Elena Navarro, Vı́ctor López-Jaquero,
Francisco Montero, and Pascual González

Towards Interdisciplinary Approach to SOA Implementations . . . . . . . . . . 185
Zheng Li, He Zhang, and Liam O’Brien

Formalisation of a Generic Extra-Functional Properties Framework . . . . . 203
Kamil Ježek and Premek Brada

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219



A Study on Software Effort Prediction Using Machine
Learning Techniques

Wen Zhang, Ye Yang, and Qing Wang

Laboratory for Internet Software Technologies, Institute of Software
Chinese Academy of Sciences, Beijing 100190, P.R.China

{zhangwen,ye,wq}@itechs.iscas.ac.cn

Abstract. This paper conducts a study on of software effort prediction using ma-
chine learning techniques. Both supervised and unsupervised learning techniques
are employed to predict software effort using historical dataset. The unsupervised
learning as k-medoids clustering equipped with different similarity measures is
used to cluster projects in historical dataset. The supervised learning as J48 de-
cision tree, back propagation neural network (BPNN) and näive Bayes is used
to classify the software projects into different effort classes. We also impute the
missing values in the historical datasets and then machine learning techniques are
adopted to predict software effort. Experiments on ISBSG and CSBSG datasets
demonstrate that unsupervised learning as k-medoids clustering produced a poor
performance. Kulzinsky coefficient has the best performance in measuring the
similarities of projects. Supervised learning techniques produced superior per-
formances than unsupervised learning techniques in software effort prediction.
BPNN produced the best performance among the three supervised learning tech-
niques. Missing data imputation improved the performances of both unsupervised
and supervised learning techniques in software effort prediction.

Keywords: Effort prediction, Machine learning, k-medoids, BPNN, Missing
imputation.

1 Introduction

The task of software effort prediction is to estimate the needed effort to develop a soft-
ware artifact [17]. Overestimate of software effort may lead to tight schedule of de-
velopment and faults may leave in the system after delivery, whereas underestimate of
effort may lead to delay of deliver of system and complains from customers. The im-
portance of software development effort prediction has motivated the construction of
prediction models to estimate the needed effort as accurate as possible.

Current software effort prediction techniques can be categorized into four types: em-
pirical, regression, theory-based, and machine learning techniques [2]. Machine Learn-
ing (ML) techniques learn patterns (knowledge) from historical project data and use
these patterns for effort prediction, such as artificial neural network (ANN), decision
tree, and naive Bayes. Recent studies [2] [3] provide detailed reviews of different stud-
ies on predicting software development effort.

L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 W. Zhang, Y. Yang, and Q. Wang

The primary concern of this paper is on using machine learning techniques to predict
software effort. Despite that COCOMO has provided a viable solution to effort esti-
mation by building analytic model, machine learning techniques such as näive Bayes
and artificial neural network have come up with alternative approaches by making use
of knowledge learned from historical projects. Although machine learning techniques
though may not be the best solution for effort estimation, we believe they can be used at
least by project managers to complement other models. Especially in intensely compet-
itive software market, accurate estimation of software development effort has a decisive
effect on success of a software project. Consequently, effort estimation using different
techniques, and further risk assessment of budget overrun are of necessity for a trust-
worthy software project [5].

The basic idea of using machine learning techniques for effort prediction is that,
historical data set contains many historical projects which are described by features with
their values to characterize those projects and, similar values of the features of projects
may induce almost the similar project efforts. The task of machine learning methods is
to learn the inherent patterns of feature values and their relations with project efforts,
which can be used for predicting the effort of new projects.

The rest of this paper was organized as follows. Section 2 introduce machine learn-
ing techniques to software effort prediction. Both unsupervised and supervised learning
techniques are introduced. Section 3 conducts experiments to examine the effectiveness
of machine learning techniques on software prediction. The datasets we used in the
experiments, and the performance measures for unsupervised and supervised learning
techniques are also introduced. The experimental results are illustrated with explana-
tions. Section 4 presents the threats to validity to this research. Section 5 reviews related
work of this paper. Section 6 concluds this paper.

2 Effort Prediction Using Machine Learning

2.1 Effort Prediction with Unsupervised Learning

Generally, researchers in software engineering hold the assumption that projects with
similar characteristics, such as the number of function points, application domain and
programming language, are expected to have approximately equivalent efforts (at least
they should be in the same effort class). In the standpoint of machine learning, clus-
tering software projects on the basis of a random subset can capture information on
the unobserved attributes [8]. If we regarded effort as an attribute that also character-
ize software projects in the data set, then software effort can be deduced by clustering
projects using other attributes.

To validate this assumption, k-medoids [9] is adopted for clustering the projects and
three similarity measures are used to measure the similarities of boolean vectors that
represent the software projects. k-medoids is actually evolved from k-means [9] and
their difference lies in that k-medoids assigns existing element in a cluster as cluster
center but k-means assigns mean vector of elements in a cluster as the cluster center. We
adopt k-medoids other than k-means because the mean vector of boolean vectors lacks
explainable meaning in practice nevertheless their medoid denotes a real project. The
typical k-medoids clustering is implemented by partitioning around medoids (PAM)



A Study on Software Effort Prediction Using Machine Learning Techniques 3

Algorithm 1. The k-medoids clustering implemented by PAM algorithm.
Input:
k, the number of clusters
m, Boolean vectors
Output:
k clusters partitioned from the m Boolean vectors.
Procedure:
1. Initialize: randomly select k of the m Boolean vectors as the mediods.
2. Associate each Boolean vector to the closest medoid under predefined similarity measure.
3. For each mediod d
4. For each non-medoid Boolean vector b
5. Swap d and b and compute the total cost of the configuration
6. End for
7. End for
8. Select the configuration with the lowest cost.
9. Repeat steps 2 to 5 until there is no change in the medoid.

algorithm as depicted in Algorithm 1. The computation complexity and the convergence
of PAM algorithm refers to [9].

The three adopted similarity measures are Dice coefficient, Jaccard coefficient and
Kulzinsky coefficient for binary vectors [10]. Assuming that Di and Dj are two projects
represented by two n-dimensional Boolean vectors and spq(Di, Dj) is the number of
entries in Di and Dj whose values are p and q respectively, we define A, B, C and D
in Equation 1.

A = s11(Di, Dj), B = s01(Di, Dj),

C = s10(Di, Dj), E = s00(Di, Dj)
(1)

The similarity measures of Dice, Jaccard and Kulzinsky coefficients are listed in
Table 1. We regard that E, which means that the characteristic does not exist in both
Di and Dj , might not be an important factor when measuring similarity of two projects
because, the proportion of zero in values of variables is very large in both ISBSG and
CSBSG data set.

Table 1. Three similarity measure used in k-medoids clustering

Measure Similarity Range
Dice A

2A+B+C
[0, 1

2
]

Jaccard A
A+B+C

[0,1]
Kulzinsky A

B+C
∞

2.2 Effort Prediction with Supervised Learning

The employed supervised learning techniques are those usually used in effort predic-
tion, including J48 decision tree, BPNN and naive Bayes. The J48 decision tree classi-
fier follows the following simple algorithm. In order to classify the effort of a software
project, it firstly creates a decision tree based on the values of variables in the training



4 W. Zhang, Y. Yang, and Q. Wang

data set. Whenever it encounters a set of boolean vectors (training set) it identifies the
variable that has the largest information gain [14]. Among the possible values of this
variable, if there is any value for which there is no ambiguity, that is, for which the
projects falling within this value having the same label of effort, then we terminate that
branch and assign to the terminal node the label of effort.

The back propagation neural network (BPNN) [15] is used to classify the software
projects in both ISBSG and CSBSG data sets as well. BPNN defines two sweeps of
the network: first a forward sweep from the input layer to the output layer and second
a backward sweep from the output layer to the input layer. The back ward sweep is
similar to the forward sweep except that error values are propagated back through the
network to determine how the weights of neurons are to be changed during training.
The objective of training is to find a set of network weights of neurons that construct a
model for prediction with minimum error.

A three-layer fully connected feed-forward network which consists of an input layer,
a hidden layer and an output layer is adopted in the experiments. The “tansigmod”
function is used in the hidden layer with 5 nodes and “purelinear” function for the
output layer with 3 nodes [17]. The network of BPNN is designed as shown in Figure
1.

Fig. 1. BPNN with 5 nodes in hidden layer and 3 nodes in output layer

Naive Bayes [16] is a well known probabilistic classifier in machine learning. It is
based on the Bay’s theorem of posteriori probability and assumes that the effect of an
attribute value on a given class is independent of the value of the other attributes. This
class conditional independence assumption simplifies computation involved in building
the classifier so we called the produced classifier “naive”. Compared to other traditional
prediction models, naive Bayes provides tools for risk estimation and allows decision-
makers to combine historical data with subjective expert estimates [2].

The J48 decision tree and naive Bayes are implemented using Weka (Waikato
Environment for Knowledge Analysis) (http://www.cs.waikato.ac.nz/ml/
weka/) and, BPNN is implemented using Matlab simulink tool box (http://www.
mathworks.com/products/neural-net/). Also, MINI algorithm [12] is used
to impute the missing values of Boolean vectors if necessary.

3 Experiments

3.1 The Data Sets

We employed two data sets to investigate the predictability of software effort using
machine learning techniques. The one is ISBSG (International Software Benchmarking
Standard Group) data set (http://www.isbsg.org) and the other one is CSBSG
(Chinese Software Benchmarking Standard Group) data set [7].

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.mathworks.com/products/ neural-net/
http://www.mathworks.com/products/ neural-net/
http://www.isbsg.org


A Study on Software Effort Prediction Using Machine Learning Techniques 5

ISBSG Data Set. ISBSG data set contains 1238 projects from insurance, government,
etc., of 20 different countries and each project was described with 70 attributes. To make
the data set suitable for the experiments, we conduct three kinds of preprocessing: data
pruning, data discretization and adding dummy variables.

We pruned ISBSG data set into 249 projects with 22 attributes using the criterion
that each project must have at least 2/3 attributes whose values are observed and, for
each attribute, its values must be observed on at least 2/3 of total projects. We adopt
the criterion for data selection in that too many missing values will deteriorate the per-
formances of most machine techniques thus a convincing evaluation of software effort
prediction is impossible. Among the 22 attributes, 18 of them are nominal attributes and
4 of them are continuous attributes. Table 2 lists the attributes used in the ISBSG data
set.

Data discretization is utilized to transfer the continuous attributes into discrete vari-
ables. The values of each continuous attribute are preprocessed into 3 unique partitions.
Too many partitions of values of an attribute will cause data redundancy nevertheless
too few partitions may not capture the distinction of values of continuous attributes.

For each nominal attribute, dummy variables are added according to its unique values
to make all variables having binary values [24]. As a result, all the projects are described
using 99 boolean variables with 0-1 and missing values. Only some of machine learning
techniques can handle mixed data of nominal and continuous values but, most machine
learning techniques can be used to handle Boolean values. In preprocessing, missing
values are denoted as “-1” and kept for all projects on corresponding variables. Table 3
shows the value distribution of variables of ISBSG projects after preprocessing. Most
values of the variables are zeros due to the transferring from discrete attributes to binary
variables.

Finally, software effort of those selected 249 projects in the ISBSG data set was
categorized into 3 classes. The projects with “normalized work effort” more than 6,000
person hours were categorized into the class with effort label as ”high”, projects with
”normalized work effort” between 2,000 and 6,000 person hours as ”medium” and
projects with ”normalized work effort” less than 2,000 person hours as ”low”. Table
4 lists the effort distribution of the selected projects in the ISBSG data set.

CSBSG Data Set. CSBSG data set contains 1103 projects from Chinese software in-
dustry. It was created in 2006 with its mission to promote Chinese standards of software
productivity. CSBSG projects were collected from 140 organizations and 15 regions
across China by Chinese association of software industry. Each CSBSG project is de-
scribed with 179 attributes. The same data preprocessing as those used in ISBSG data
set is used on CSBSG data set. In data pruning, 104 projects and 32 attributes (15 nom-
inal attributes and 17 continuous attributes) are extracted from CSBSG data set. Table
5 lists the attributes used in the CSBSG data set.

In data discretization, the values of each continuous attribute are partitioned into 3
unique classes. Dummy variables are added to transfer nominal attributes into Boolean
variables. As a result, 261 Boolean variables are produced to describe the 104 projects
with missing values denoted as “-1”. The value distribution of variables of CSBSG
projects is shown in Table 6 and we can see that CSBSG data set has more missing
values than ISBSG data set.



6 W. Zhang, Y. Yang, and Q. Wang

Table 2. The used attributes from ISBSG data set

Branch Description Type

Sizing technique
Count Approach Nominal

Adjusted Functional Points Continuous
Schedule Project Activity Scope Nominal

Quality
Minor Defects Continuous
Major Defects Continuous

Extreme Defects Continuous

Grouping Attributes

Development Type Nominal
Organization Type Nominal

Business Area Type Nominal
Application Type Nominal

Architecture Architecture Nominal
Documents Techniques Development Techniques Nominal

Project Attributes

Development Platform Nominal
Language Type Nominal

Primary Programming language Nominal
1st Hardware Nominal

1st Operating System Nominal
1st Data Base System Nominal

CASE Tool Used Nominal
Used Methodology Nominal

Product Attributes Intended Market Nominal

Table 3. The value distribution of variables of projects in ISBSG data set

Value Proportion
1 20% ∼ 50%
0 20% ∼ 60%
-1 5% ∼ 33%

Table 4. The effort classes categorized in ISBSG data set

Class No Number of projects Label
1 64 Low
2 85 Medium
3 100 High

Finally, the projects in CSBSG data set were categorized into 3 classes according to
their real efforts. The projects with “normalized work effort” more than 5,000 person
hours were categorized into the class with effort label as “high”, projects with “normal-
ized work effort” between 2,000 and 5,000 person hours as ”medium” and projects with
“normalized work effort” less than 2,000 person hours as “low”. Table 7 lists the effort
distribution of the selected projects in the CSBSG data set.

With supervised learning, our experiments are carried out with 10-flod cross-valida-
tion technique. For each experiment, we divide the whole data set (ISBSG or CSBSG
data set) into 10 subsets. 9 of 10 subsets are used for training and the remaining 1



A Study on Software Effort Prediction Using Machine Learning Techniques 7

Table 5. The used attributes from CSBSG data set

Branch Description Type

Basic information of projects

Count Approach Nominal
City of development Nominal

Business area Nominal
Development type Nominal
Application type Nominal

Development Platform Nominal
IDE Nominal

Programming Language Nominal
Operation System Nominal

Database Nominal
Target Market Nominal
Architecture Nominal

Maximum Number of Concurrent Users Nominal
Life-cycle model Nominal

CASE Tool Nominal

Size

Added lines of code Continuous
Revised lines of code Continuous
Reused lines of code Continuous

Number of team members in inception phase Continuous
Number of team members in requirement phase Continuous

Number of team members in design phase Continuous
Number of team members in coding phase Continuous
Number of team members in testing phase Continuous

Schedule Time limit in planning Continuous

Quality

Predicted number of Defects in requirements phase Continuous
Predicted number of Defects in design phase Continuous
Predicted number of Defects in testing phase Continuous

Number of defects within one month after deliver Continuous

Other

Number of requirement changes in requirement phase Continuous
Number of requirement changes in design phase Continuous
Number of requirement changes in coding phase Continuous
Number of requirement changes in testing phase Continuous

Table 6. The value distribution of variables for describing projects in CSBSG data set

Value Proportion
1 15% ∼ 40%
0 20% ∼ 60%
-1 10% ∼ 33%

Table 7. The effort classes categorized in CSBSG data set

Class No Number of projects Label
1 27 Low
2 31 Medium
3 46 High



8 W. Zhang, Y. Yang, and Q. Wang

subset was used for testing. We repeat the experiment 10 times and, the performance of
the prediction model is measured by the average of 10 accuracies of the 10 repetitions.

3.2 Evaluation Measures

In software engineering, the deviation of predicted effort to real effort is used to mea-
sure the accuracy of effort estimators, such as MMRE (Magnitude of Relative Error),
PRED(x) (Prediction within x) and AR (Absolute Residual) [6]. In machine learning,
the performance of classification is often evaluated by accuracy and, F-measure [13]
is usually used to evaluate the performance of unsupervised learning. Essentially, the
evaluation measures of effort predictors in software engineering and those in machine
learning do not conflict. In this paper, we adopted the measures from machine learning
to evaluate the performances of effort predictors.

Accuracy. Assuming thatD = (D1, ..., Di, ..., Dm) is a collection of software projects,
where Di is a historical project and it is denoted by n attributes Xi(1 � i � n). That
is, Di = (xi1, ..., xij , ..., xin)

T . hi denotes the label of effort for project Di.
xij is the value of attribute Xj(1 � j � n) on Dj . To evaluate the performance

of a classifier in effort prediction, the whole data set was divided into two subsets:
one is used for training the classifier and the other one is used for testing. That is,
D = (Dtrain | Dtest) = (D1, ..., Dk | Dk+1, ..., Dm)T , where k is the predefined
number of projects in training set and m is the total number of projects in D. For
instance, in 10-fold-cross validation, k should be predefined as 0.9m and the remaining
0.1m projects are used for testing the trained model. hi is known for training set but
remains unknown for testing set. By machine learning on the training set, a classifier
denoted as M is produced. If we define a Boolean function F as Equation 2, then the
performance of M is evaluated by accuracy as Equation 3.

F (M(Dj), hj) =

{
1, if M(Dj) = hj ;
0, otherwise.

(2)

accuracy =
1

m− k

∑
k<j≤m

F (M(Dj), hj) (3)

F-measure. In classification, Y was partitioned into l clusters and l is a predefined
number of clusters in the data set. That is, Y = c1, ..., cl, ci = {Di,1, ..., Di,|ci|}
(1 ≤ i ≤ l) and ci∩cj = φ. F-measure [14] is employed to evaluate the performance of
unsupervised learning (clustering). The formula of F-measure is depicted as Equations
7 with the supports of Equations 4, 5, and 6.

P (i, j) =
ni,j

nj
(4)

R(i, j) =
ni,j

ni
(5)



A Study on Software Effort Prediction Using Machine Learning Techniques 9

F (i, j) =
2× P (i, j)×R(i, j)

P (i, j) +R(i, j)
(6)

F −measure =
∑
i

ni

n
maxjF (i, j) (7)

Here, ni is the number of software projects with effort label hi, nj is the cardinality
of cluster cj , and ni,j is the number of software projects with effort label hi in cluster
cj . n is the total number of software projects in Y . P (i, j)is the proportion of projects
in cluster cj with effort label hi; Ri,j is the proportion of projects with effort label hi

in cluster cj ; F (i, j) is the F-measure of cluster cj with respect to projects with effort
label hi. In general, the larger the F-measure is, the better is the clustering result is.

3.3 Experimental Results

Results from Unsupervised Learning. PAM algorithm is used to cluster the software
projects in ISBSG and CSBSG data sets. The number of clusters is predefined as the
number of classes. That is, the parameter k in PAM algorithm for both ISBSG and
CSBSG data sets was set as 3. Without imputation, we regard the missing values in
boolean vectors as zeros. We also employed MINI imputation technique [11] to impute
the missing values before clustering. Due to the unstable clustering results caused by
initial selection of cluster centers in PAM algorithm, we repeated each experiment 10
times and ensemble clustering proposed by Zhou et al [12] was utilized to produce the
final clusters. Table 8 shows the performances of k-medoids clustering on ISBSG data
set using PAM algorithm with three similarity measures with and without imputation.

We can see from Table 8 that in similarity measure, Kulzinsky coefficient has the best
performance among the three measures and Jaccard coefficient has better performance
than Dice coefficient. In k-medoids clustering without (with) imputation, Kulzinsky co-
efficient increases the F-measure by 16.29% (17.45%) and Jaccard Coefficient increases
the F-measure by 8.6% (5.78%) using Dice coefficient as the baseline.

This outcome illustrates that the number of common entries as in Equation 7 is more
important than other indices in similarity measure of software project in effort predic-
tion using clustering. Imputation significantly improves the quality of clustering results.
This validates the effectiveness of imputing missing values of projects represented by
boolean vectors in k-medoids clustering.

To have a detailed look at the clustering results, Table 9 shows the projects in the pro-
duced clusters across the classes in Table 4. These clusters were produced by k-medoids
clustering using Kulzinsky coefficient with imputation (i.e. F-measure is 0.4624). We
can see that k-medoids clustering actually has not produced high-quality clusters in the
ISBSG data set. The results are not good as acceptable in real practice of software ef-
fort prediction. For instance, cluster 2 mixes projects in both class 1 and 2 and, most
projects in one class scatter on more than one cluster such as the projects in class 2 and
class 3.

Table 10 shows the performance of PAM algorithm on CSBSG data set. Table 11
shows the distribution of projects in clusters across classes. Similarly, k-medoids



10 W. Zhang, Y. Yang, and Q. Wang

Table 8. k-medoids clustering on ISBSG data set

Similarity Measure
F-measure

Without imputation With imputation
Dice Coefficient 0.3520 0.3937

Jaccard Coefficient 0.3824 0.4371
Kulzinsky Coefficient 0.4091 0.4624

Table 9. Clustering result using Kulzinsky coefficient with imputation on ISBSG data set

Similarity Class 1 Class 2 Class 3 Total
Cluster 1 26 23 28 77
Cluster 2 32 40 27 99
Cluster 3 6 22 45 73

Total 64 85 100 249

clustering has not produced a favorable performance on CSBSG data set. By contrast,
the performance of k-medoids clustering on CSBSG data set is worse than that on
ISBSG data set. Without (with) imputation, the average F-measure on the three coef-
ficients on CSBSG data set is decreased by 7.5% (3.7%) using the average on ISBSG
data set as baseline. We explain this outcome as that CSBSG data set has less ones and
more missing values (denoted as “-1”) in boolean vectors than ISBSG data set, as can
be seen in Tables 3 and 6. Based on the analysis, the predictability of software effort
using unsupervised learning is not acceptable by software industry.

Table 10. k-medoids clustering on CSBSG data set

Similarity Measure
F-measure

Without imputation With imputation
Dice Coefficient 0.3403 0.3772

Jaccard Coefficient 0.3881 0.4114
Kulzinsky Coefficient 0.4065 0.4560

Table 11. Clustering result using Kulzinsky coefficient with imputation on CSBSG data set

Similarity Class 1 Class 2 Class 3 Total
Cluster 1 9 11 16 36
Cluster 2 10 10 17 37
Cluster 3 8 10 13 31

Total 27 31 46 104

Results from Supervised Learning. Table 12 shows the performances of the three
mentioned classifiers in classifying the projects in ISBSG data set. On average, we can
see that BPNN outperforms other classifiers in classifying the software projects based
on efforts. J48 decision tree has better performance than naı̈ve Bayes. Using the perfor-
mance of naı̈ve Bayes as the baseline, BPNN increases the average accuracy by 16.25%
(11.71%) and J48 decision tree by 5.6% (2.5%) without (with) imputation.



A Study on Software Effort Prediction Using Machine Learning Techniques 11

We explain this outcome that BPNN has the best capacity to eliminate the noise
and peculiarities because it adopts back sweep to change the weights of neurons for
reducing errors of predictive model. However, the performance of BPNN is not robust
as other classifiers (we observe this point from its standard deviation). The adoption
of cross-validation technique may reduce overfitting of BPNN to some extent but, it
cannot eliminate the drawback of BPNN entirely. The J48 decision tree classifies the
projects using learned decision rules. Due to the adoption of information gain [15],
those variables having more discriminative power will be fetched out by J48 in earlier
branches in constructing decision rules and thus, the noise and peculiarities connotated
in the variables with less discriminative power will be ignored automatically (especially
in tree pruning).

naı̈ve Bayes has the worst performance among the three classifiers in classifying
software efforts. We explain this as that the variables used for describing projects may
not be independent of each other. Moreover, naı̈ve Bayes regard all variables as has
equivalent weights as each other in the prediction model. The conditional probabilities
of all variables have the same weight when predicting the label of an incoming project.
However, in fact, some variables of projects have more discriminative power than other
variables in deciding the project effort. The noise and peculiarities are often contained
in the variables those have little discriminative power and those variables should be
given less importance in the prediction model. We conjecture that this fact is also the
cause of the poor performance of k-medoids in project clustering projects. In the same
manner as that in k-medoids clustering, MINI technique has significantly improved the
performance of project classification by imputing missing values in Boolean vectors.

Table 12. Classification of software project efforts on ISBSG data set

Classifier
Average accuracy ± Standard Deviation
Without imputation With imputation

J48 decision tree 0.5706 ± 0.1118 0.5917 ± 0.1205
BPNN 0.6281 ± 0.1672 0.6448 ± 0.1517

naı̈ve Bayes 0.5403 ± 0.1123 0.5772 ± 0.1030

Table 13. Classification of software project efforts on CSBSG data set

Classifier
Average accuracy ± Standard Deviation
Without imputation With imputation

J48 decision tree 0.4988 ± 0.1103 0.5341 ± 0.1322
BPNN 0.1650 ± 0.1650 0.6132 ± 0.1501

naı̈ve Bayes 0.5331 ± 0.1221 0.5585 ± 0.0910

Table 13 shows the performances of the three classifiers on CSBSG data set. The
similar conclusion as on ISBSG data set can be drawn on CSBSG data set. However,
the performances of three classifiers on CSBSG data set are worse than those on ISBSG
data set. The average of overall accuracies of the three techniques without (with) impu-
tation on CSBSG data set is decreased by 6.95% (6.66%) using that on ISBSG data set
as the baseline. We also explain this outcome as the lower quality of CSBSG data set
than that of ISBSG data set.



12 W. Zhang, Y. Yang, and Q. Wang

We can see from Tables 12 and 13 that, in both ISBSG and CSBSG data sets, all
the three supervised learning techniques have not produced a favorable classification
on software efforts using project attributes. The best performance that was produced by
BPNN is with the accuracy around 60%. The accuracy as 60% is meaningless for soft-
ware effort prediction in most cases because, that means that at the probability 0.4, the
prediction results fall beyond the range of each effort class. Combined with the results
of effort prediction from unsupervised learning, we draw that the predictability of soft-
ware effort using supervised learning techniques is not acceptable by software industry,
either.

4 Threads to Validity

The threats to external validity primarily include the degree to which the attributes of
projects in ISBSG and CSBSG data set have exactly captured the characteristics of soft-
ware projects in real practice. For data quality, we only extracted a small portion of data
samples from ISBSG and CSBSG data sets. We hope these projects are representative
of the population of software projects in these two data sets. These threats could be
reduced by more experiments on more data sets of software efforts in future work. The
threats to internal validity are instrumentation effects that can bias our results. The un-
certainty of values of attributes, the ambiguity of software efforts of projects, and the
unbalanced distribution of projects with respect to attributes in the data sets might cause
such effects. To reduce these threats, we manually inspected the software projects and
their values of attributes and evaluated the reliability of the data for each project. One
threat to construct validity is that our experiments involve large amount of data prepro-
cessing, hoping that the preprocessed data can still precisely capture the characteristics
of original software projects.

5 Related Work

Srinivasan and Fisher [19] used decision tree and BPNN to estimate software develop-
ment effort. COCOMO data with 63 historical projects was used as the training data
and Kremer data with 15 projects was used as testing data. They reported that decision
tree and BPNN are competitive with traditional COCOMO estimator. However, they
pointed out that the performances of machine learning techniques are very sensitive
to the data on which they were trained. [17] compared three estimation techniques as
BPNN, case-based reasoning and regression models using Function Points as the mea-
sure of system size. They reported that neither of case-based reasoning and regression
model was favorable in estimating software efforts due to the considerable noise in the
data set. BPNN appears capable of providing adequate estimation performance (with
MRE as 35%) nevertheless its performance is largely dependent on the quality of train-
ing data as well as the suitability of testing data to the trained model. Of all the three
methods, a large amount of uncertainty is inherent in their performances. In both [17]
and [19], a serious problem confronted with effort estimation using machine learning
techniques is that huge uncertainty involved in the robustness of these techniques. That



A Study on Software Effort Prediction Using Machine Learning Techniques 13

is, model sensitivity and data-dependent property of machine learning techniques hin-
der their admittance by industrial practice in effort prediction. These work as well as
[22] motivates this study to investigate the effectiveness of a variety of machine learn-
ing techniques on two different data sets.

Park and Baek [18] conducted an empirical validation of a neural network model for
software effort estimation. The data set used in their experiments is collected from a
Korean IT company and includes 148 IT projects. They compared expert judgment, re-
gression models and BPNN with different input variables in software effort estimation.
They reported that neural network using Function Point and other 6 variables (length of
project, usage level of system development methodology, number of high/middle/low
level manpower and percentage of outsourcing) as input variables outperforms other
estimation methods. However, even in the best performance, the average MRE is nearly
60% with standard deviation more than 30%. This result makes it is very hard that the
method proposed in their work can be satisfactorily admitted in practice. For this rea-
son, a validation of machine learning methods is necessary in order to shed light on the
advancement of software effort estimation. This point also motivates us to investigate
the effectiveness of machine learning techniques for software effort estimation and the
predictability of software effort using machine techniques.

[20] proposed a neuron-genetic approach to predict software development effort
while the neural network is employed to construct the prediction model and genetic al-
gorithm is used to optimize the weights between nodes in the input layer and the nodes
in the output layer. They used the same data sets as that was used in Srinivasan and
Fisher [19] and reported that the neuron-genetic approach outperforms both decision
tree and BPNN. However, they also reported that local minima and over fitting dete-
riorate the performance of the proposed method in some cases, even make it a poorer
predictor than traditional estimator as COCOMO [21]. The focus of our study is not
to propose a novel approach to software effort estimation but to extensively review the
usefulness of machine learning techniques in software effort estimation. That is, to how
much extent the typical machine techniques can accurately estimate the effort of a given
project using historical data.

6 Concluding Remarks

In this paper, we conducted a series experiments to investigate the predictability of
software effort using machine learning techniques. With ISBSG and CSBSG data sets,
unsupervised learning as k- medoids clustering is used to cluster software projects with
respect to efforts and, supervised learning as J48 decision tree, BPNN and naive Bayes
are used to classify the projects. Our assumption for this investigation is that the efforts
of software projects can be deduced from the values of other attributes in historical data
and projects with similar values on attributes other than effort will also have approxi-
mately equivalent efforts.

The experimental results demonstrate that neither unsupervised nor supervised learn-
ing techniques can provide software effort prediction with a favorable model. Despite of
this fact, Kulzinsky coefficient has produced the best performance in similarity



14 W. Zhang, Y. Yang, and Q. Wang

measure for unsupervised learning and, BPNN has produced the best performance
among the examined supervised learning techniques. Moreover, the MINI imputation
can improve data quality and improve effort prediction significantly.

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China under Grant Nos. 71101138, 60873072, 61073044, and 60903050; the
National Basic Research Program under Grant No. 2007CB310802; the Beijing Natural
Science Foundation under Grant No. 4122087; the Scientific Research Foundation for
the Returned Overseas Chinese Scholars, State Education Ministry.

References

1. Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E.: Software Cost Estima-
tion with COCOMO II. Prentice Hall, New Jersey (2001)

2. Pendharkar, P., Subramanian, G., Roger, J.: A Probabilistic Model for Predicting Software
Development Effort. IEEE Transactions on Software Engineering 31(7), 615–624 (2005)

3. Jorgensen, M.: A Review of Studies on Expert Estimation of Software Development Effort.
Journal of Systems and Software 70, 37–60 (2004)

4. Fairley, R.: Recent Advances in Software Estimation Techniques. In: Proceedings of Inter-
national Conference on Software Engineering, pp. 382–391 (1992)

5. Yang, Y., Wang, Q., Li, M.: Process Trustworthiness as a Capability Indicator for Measuring
and Improving Software Trustworthiness. In: Wang, Q., Garousi, V., Madachy, R., Pfahl, D.
(eds.) ICSP 2009. LNCS, vol. 5543, pp. 389–401. Springer, Heidelberg (2009)

6. Korte, M., Port, D.: Confidence in Software Cost Estimation Results based on MMRE and
PRED. In: Proceedings of PROMISE 2008, pp. 63–70 (2008)

7. He, M., Li, M., Wang, Q., Yang, Y., Ye, K.: An Investigation of Software Development Pro-
ductivity in China. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007,
pp. 381–394. Springer, Heidelberg (2008)

8. Krupka, E., Tishby, N.: Generalization from Observed to Unoberserved Features by Cluster-
ing. Journal of Machine Learning Research 83, 339–370 (2008)

9. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Elsevier (2006)
10. Gan, G., Ma, C., Wu, J.: Data Clustering, Theory, Algorithmsm, and Applications. In: ASA-

SIAM Series on Statistical and Applied Probability, pp. 78–78 (2008)
11. Song, Q., Shepperd, M.: A new imputation method for small software project data sets.

Journal of Systems and Software 80, 51–62 (2007)
12. Zhou, Z., Tang, W.: Clusterer ensemble. Knowledge-Based Systems 19, 77–83 (2006)
13. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques. In:

Proceedings of KDD-2000 Workshop on Text Mining, pp. 109–119 (2000)
14. Quinlan, J.: Programs for Machine Learning, 2nd edn. Morgan Kaufmann Publishers (1993)
15. Rumelhart, D., Hinton, G., Williams, J.: Learning internal representations by error propaga-

tion. In: Proceedings of Parallel Distributed Processing, Exploitations in the Microstructure
of Cognition, pp. 318–362 (1986)

16. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. John Wiley & Sons (2003)
17. Finnie, G., Wittig, G.: A Comparison of Software Effort Estimation Techniques: Using Func-

tion Points with Neural Networks, Case-Based Reasoning and Regression Models. Journal
of Systems and Software 39, 281–289 (1997)

18. Park, H., Baek, S.: An empirical validation of a neural network model for software effort
estimation. Expert System with Applications 35, 929–937 (2008)



A Study on Software Effort Prediction Using Machine Learning Techniques 15

19. Srinivasan, K., Fisher, D.: Machine Learning Approaches to Estimating Software Develop-
ment Effort. IEEE Transactions on Software Engineering 21(2), 126–137 (1995)

20. Shukla, K.: Neuro-genetic prediction of software development effort. Information and Soft-
ware Technology 42, 701–713 (2000)

21. Boehm, B.: Software Engineering Economics. Prentice Hall, New Jersey (1981)
22. Prietula, M., Vicinanza, S., Mukhopadhyay, T.: Software-effort estimation with a case-based

resoner. Journal of Experimental & Theoritical Artificial Intelligence 8, 341–363 (1996)
23. Jorgensen, M., Shepperd, M.: A Systematic Review of Software Development Cost Estima-

tion Studies. IEEE Transactions on Software Engineering 33(1), 33–53 (2007)
24. Zhang, W., Yang, Y., Wang, Q.: Handling missing data in software effort prediction with

naive Bayes and EM algorithm. In: Proceedings of International Conference on Predictive
Models in Software Engineering, vol. 4 (2011)



L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 16–31, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Modularizing Different Responsibilities into Separate 
Parallel Hierarchies 

Francisco Ortin and Miguel Garcia 

Computer Science Department, University of Oviedo, 33007, Oviedo, Spain 
{ortin,be37378}@uniovi.es 

Abstract. When tangled inheritance hierarchies lead to code duplication, the Tease 
Apart Inheritance "big" refactoring is commonly used to create two parallel 
hierarchies, using delegation to invoke one from the other. Under these 
circumstances, the root class of the refactored hierarchy must be general enough to 
provide all its services to the other hierarchy, leading to meaningless interfaces that 
violate the Liskov substitution principle. In order to avoid this limitation, we 
propose a behavioral design pattern that allows the modularization of different 
responsibilities in separate hierarchies that collaborate to achieve a common goal. 
With this design, it is possible to use the specific interface of each class in the 
parallel hierarchy, without needing to define all the methods provided by every 
class in the hierarchy, and hence not violating the Liskov substitution principle. 
The proposed design is type safe and avoids the use of dynamic type checking and 
reflection; at compile time, the type system ensures that no type error will be 
produced dynamically. 

Keywords: Design patterns, refactoring, software design, parametric polymer-
phism, generics. 

1 Introduction 

The Tease Apart Inheritance is a "big" refactoring that separates a tangled inheritance 
hierarchy that has different responsibilities in distinct (commonly) parallel hierarchies 
that use delegation to invoke from one to the other [7]. Each hierarchy has its own 
responsibility, and all together collaborate to solve a problem. The delegation used to 
make different hierarchies collaborate is implemented with an association between the 
root classes of each hierarchy. This commonly involves too general interfaces that are 
not detailed enough to be used by the parallel hierarchy. This limitation is more 
evident with the classes below in the hierarchy, where the required interface is even 
more specific. 

As an example, consider building a retargetable compiler [1] for a high-level 
object-oriented programming language. Once the Abstract Syntax Tree (AST) has 
been built by the parser and semantic (contextual) analysis has been performed over 
the AST [2], it will be necessary to generate code for different platforms. We want the 
compiler of our high-level programming language not only to generate low-level 
code, but also to translate it to other high-level programming languages. 



 Modularizing Different Responsibilities into Separate Parallel Hierarchies 17 

Similar to semantic analysis, code generation could be implemented using the 
Visitor design pattern [3], traversing the AST –built using the Composite design 
pattern [3]– to generate the target code [4]. As shown in Figure 1, source code for 
different programming languages can be generated with different Visitor classes. 
Common strategies of high-level code generation can be factored out into a common 
VisitorHighLevelCG superclass using the Template Method design pattern [3]. 
Since many high-level programming languages share similar features, the AST 
traversal for this kind of languages could be expressed with methods in the Visitor-
HighLevelCG class. These methods can call all the abstract methods defined in their 
hierarchy level to implement the template algorithms that generate high-level source 
code. The same generalization can be done for low-level programming languages 
(and even for all the target languages, using the VisitorCG class). For instance, the 
Java Virtual Machine (JVM) assembly code [5] is quite similar to the Microsoft 
Intermediate Language (MSIL) [6] because both are based on abstract stack 
machines. Common code generation templates for both languages could be placed in 
the VisitorLowLevelCG class. 

 

 

Fig. 1. Using the Visitor and Composite design patterns to generate code for multiple languages 

 
A benefit of the inheritance hierarchy in the left part of Figure 1 is that common 

strategies to translate the source code to every target language could be placed in the 
VisitorCG class. For instance, generating the code of a class to Java, C#, JVM and 
MSIL could be defined as generating the code of its methods and fields 
(visitClassNode). This benefit is obtained with each level of the hierarchy (e.g., 
high-level or low-level target language). However, since every target language has a 
different instruction set, this polymorphic behavior needs to be specialized with the 
instruction set of each particular target language. In order to make the code 
maintainable, a parallel hierarchy of CodeGeneration classes could be defined to 
generate the specific code of each target language. This is, precisely, the Tease Apart 
Inheritance “big refactoring” [7]. The Visitor classes will use the classes of the 
parallel CodeGeneration hierarchy to generate different target languages (Figure 2). 

 



18 F. Ortin and M. Garcia 

 

Fig. 2. Tease Apart Inheritance refactoring 

Each Visitor class relies on a corresponding CodeGeneration class to achieve its 
objective. Each Visitor class traverses the AST tree, calling the parallel 
CodeGeneration class to generate the code of a particular target language. Dynamic 
binding in both hierarchies is used to override all the abstract operations used in the 
general template algorithms, defining the particular implementation of each specific 
code generation operation for every target language. For instance, the 
generateOpenClass method of the code generation hierarchy is overridden in Java, 
JVM, C# and MSIL code generators to describe how a class must be declared in each 
programming language. This generalization makes it possible to implement the 
visitClassNode method with the simple Java code in Figure 3. It is worth noting 
that this is the template of a general algorithm. If a new target language needs to be 
generated, and it does not follow this template, dynamic binding can be used to 
override the visitClassNode method for a particular Visitor subclass. 

 
public abstract class VisitorCG extends Visitor { 
 public void visitClassNode(ClassNode node) { 
   this.codeGenerator.generateClassHeader(node); 
   for(FieldNode field : node.getFields()) 
    this.codeGenerator.generateField(field); 
   for(MethodNode method : node.getMethods()) { 
    this.codeGenerator generateMethodHeader(method); 
    method.accept(this); 
    this.codeGenerator generateMethodFooter(method); 
   } 
   this.codeGenerator.generateClassFooter(node); 
  } 
} 

Fig. 3. Implementation of the visitClassNode method in the VisitorCG class 

The benefits of the generalization offered by polymorphism are counteracted by 
the necessity of recovering the specific interface of a particular CodeGeneration 
class. As an example, we can think about how to generate the code for an assignment 
expression. The Visitor design pattern traverses the AST until the visitAssignment 
is reached. The templates for generating assignment expressions to Java and the JVM 



 Modularizing Different Responsibilities into Separate Parallel Hierarchies 19 

are different. The former uses infix syntax, whereas the latter generates the code of 
the right-hand side of the assignment first, followed by a store statement indicating 
the index of the local variable (Figure 5). This difference requires the 
visitAssignment in the VisitorJVMCG class to invoke the specific generateStore 
method in the JVMCodeGeneration class, whereas the same method in 
VisitorJavaCG should call to the generateAssignmentOperator method in 
JavaCodeGeneration. Therefore, it is required to recover the specific interface of 
the corresponding code generation class in the parallel hierarchy. Notice than adding 
these specific methods to the whole code generation hierarchy might produce a design 
difficult to understand, because some methods are meaningless for specific classes, 
violating the Liskov substitution principle [8].The main contribution of this paper is 
the description of a design pattern that provides a way to make two parallel 
hierarchies collaborate to solve a problem, recovering the specific interfaces of 
classes in the corresponding hierarchy. The usage of both generalized and specific 
interfaces in a class hierarchy is obtained without violating the type safety offered by 
many statically typed programming languages. This approach can be used to solve the 
expression problem [16] and together with other design patterns such as Composite, 
Template or Visitor [3]. 

2 Related Work 

The necessity of recovering the specific interfaces of two parallel hierarchies was 
detected in the expression problem, first named by Philip Wadler in 1998 [16]. The 
issue was to obtain a modular extensibility of data structures. This problem was then 
revisited by Mads Torgersen that used the Java F-bound polymorphism to recover the 
type of inherited associations [17]. The solution was applied to the Composite and 
Visitor design patterns [3] instead of going into this topic and identifying it as a 
design pattern. 

In [18], the recovery of inherited associations is tackled using the Scala 
programming language. They emphasize the significance of solving this problem in a 
type safe way (without runtime type errors), becoming really interesting when it is 
exposed to a type system that ensures the safe execution of the code. For this purpose, 
a solution using parameterized classes (generics) is provided. They also identify the 
possibility of using Scala's virtual types: a mechanism similar to parameterized 
classes but, instead of giving the types as parameters, a class contains a type variable 
[18]. 

Erik Ernst introduced the notion of higher order hierarchies to represent 
hierarchies of hierarchies [19]. The idea is to define a hierarchy that could be later 
extended and reused in a type safe way. Although the idea seems to be suitable to 
model parallel hierarchies, higher-order hierarchies do not allow the specialization of 
inherited associations in parallel hierarchies. 

The structure of this design pattern has been previously recognized as a Big 
Refactoring by Fowler and Beck [7]. It is applied to solve the problem of tangled 
inheritance [7]. However, they do not describe how both hierarchies can collaborate 
to obtain a common objective, using the specific interfaces in each hierarchy level; 
only the generalized polymorphic behavior is described. 



20 F. Ortin and M. Garcia 

 

Fig. 4. Structure of the Parallel Hierarchies design pattern 

Parallel Hierarchies has some relation with several design patterns in the classic 
catalog [3]. Parallel Hierarchies classes commonly appear from refactoring 
behavioral design patterns that use a hierarchy for their purpose, like Template, 
Visitor or Interpreter. In the Memento pattern, originators and mementoes often form 
parallel hierarchies. If recursive polymorphic methods are added to the Composite 
design pattern, their implementation can rely on a parallel hierarchy. Finally, the 
Abstract Factory design pattern creates families of related objects, to use them later 
separately. The Parallel Hierarchies design pattern could be applied when the 
specific interfaces of these objects need to be used together for a particular purpose. 

3 The Parallel Hierarchies Design Pattern 

The proposed design pattern, called Parallel Hierarchies, allows the recovery of the 
specific interface used to connect the different hierarchies. Although this can be done 
with different programming language techniques (see Section 3.4), the use of generics 
(parametric polymorphism) is appropriate when the implementation language is 
statically typed. Generics offers the reliability of type safety, plus the runtime 
performance improvement obtained by avoiding the use of runtime reflection [9]. 
C++ implements (unbounded) parametric polymorphism (generics), whereas C# and 
Java offers F-bounded polymorphism [10] (also known as constrained genericity). 
Both kinds of parametric polymorphism can be used to implement the Parallel 
Hierarchies design pattern. Figure 4 shows how to use it in our motivating example. 



 Modularizing Different Responsibilities into Separate Parallel Hierarchies 21 

Both hierarchies are connected with one association between the VisitorCG class 
and CodeGeneration –its multiplicity varies depending on the problem. Each visitor 
object has a code generator attribute to generate code in a particular pro-gramming 
language. However, the type of this attribute would be the corresponding one in the 
parallel hierarchy if generics is used, achieving the recovery of the whole particular 
interface of the corresponding code generation class. If the language offers F-bounded 
polymorphism (e.g., Java or C#), the VisitorCG class will be declared as generic, 
parameterized with a T type –being T a subtype of CodeGeneration. The attribute’s 
type will then be T, and hence the CodeGeneration interface could be used in 
VisitorCG. This constraint (bound) of the T type is specialized in all the subclasses 
of VisitorCG. For instance, in the VisitorHighLevelCG class, T must be a 
subtype of HighLevelCodeGeneration, and a subclass of VisitorJavaCG in the 
case of JavaCodeGeneration. This modification on the constraints of T is possible 
when constraints are covariant with respect to the types they are applied to [11] –as 
happens with Java and C#. Consequently, the visitAssignment method in the 
VisitorJVMCG class will be able to invoke the generateStore method of theparticular 
interface of the JVMCodeGeneration class (its interface has been recovered) as 
shown in Figure 5. 

 

public class VisitorJVMCG <T extends JVMCodeGeneration> 
                    extends VisitorLowLevelCG<T> { 
 @Override 
 public void visitAssignment(AssignmentNode node) { 
  node.getSecondOperand().accept(this); 
  this.codeGenerator.generateStore(node.getFirstOperand().getIndex(), 
                                   node.getFirstOperand().getType()); 
 } 
 //… 
} 

Fig. 5. Implementation of the visitAssignment-Node of the VisitorJVMCG class 

3.1 Structure 

The static structure of the proposed design pattern is shown in Figure 6, where the 
participants can be identified: 

• Template hierarchy. Classes in this hierarchy describe templates of algorithms, 
defining their structure in the classes above in the hierarchy and the specific primitive 
operations in subclasses. This hierarchy is intended to have only one clear 
responsibility, delegating other possible responsibilities in parallel Interface 
hierarchies. The elements of the Template hierarchy are: 

─ AbstractTemplate (VisitorCG, VisitorHighLevelCG and VisitorLowLevelCG) 

o Defines the common structure of general algorithms. Each general algorithm is 
implemented in abstract TemplateMethod methods. 

o Declares the interface of abstract primitive operations that are used in general 
algorithms (PrimitiveOperation1 and PrimitiveOperation2). 



22 F. Ortin and M. Garcia 

o The implementations of general algorithms make use of the specific interface of 
the parallel class (GeneralInterface). 

o Each general algorithm is implemented using both primitive operations and the 
methods of the parallel Interface classes. 

o (optional) Intermediate AbstractTemplate classes (AbstractTemplateB) may 
appear to generalize the structure and behavior of ConcreteTemplate classes. 

─ ConcreteTemplate (VisitorJavaCG, VisitorJVMCG, VisitorCSharpCG and 
VisitorMSILCG) 

o Implements the primitive operations to carry out subclass-specific operations of 
each general algorithm (PrimitiveOperation1 and PrimitiveOperation2). 

o The implementation of its specific primitive operations may use the concrete 
interface of its parallel Interface classes. 

o (optional) General algorithms (TemplateMethod) may be overridden in 
specific ConcreteTemplate classes if the default implementation is not 
appropriate for a particular case. 

 

 

Fig. 6. Structure of the Parallel Hierarchies design pattern 

• Interface Hierarchy. This parallel hierarchy modularizes a responsibility that the 
Template hierarchy may require to achieve its aim. It can also be seen as a set of 
helper classes used by the Template hierarchy to accomplish its objective. In this 
design pattern, multiple parallel Interface hierarchies may be used by the same 
Template abstraction. 

─ GeneralInterface (CodeGeneration, HighLevelCodeGeneration and 
LowLevelCodeGeneration). 



 Modularizing Different Responsibilities into Separate Parallel Hierarchies 23 

o Defines operations common to all the classes in the Interface hierarchy 
(GeneralOperation). 

o (optional) Implements default behavior of these general operations, which may 
be overridden in its subclasses. 

o (optional) If intermediate AbstractTemplate classes are defined in the parallel 
Template hierarchy, another intermediate Interface class will define operations 
common to that Template hierarchy level (ConcreteOperationB1). 

─ ConcreteInterface (JavaCodeGeneration, CSharpCodeGeneration, 
JVMCodeGeneration and MSILCodeGeneration) 

o Implements concrete operations applicable only to its specific level in the 
hierarchy (ConcreteOperationA and ConcreteOperationB2). 
o Overrides general default operation implementations for a particular 
ConcreteInterface class. 

• Client 

─ Invokes the TemplateMethod methods of the AbstractTemplate class. 

3.2 Collaborations 

The sequence diagram in Figure 7 illustrates the collaborations between a client, a 
concrete template object, and its corresponding interface instance. 

 

 

Fig. 7. Example collaboration sequence diagram 

• A client that uses the Parallel Hierarchies design pattern must create a 
ConcreteTemplate object and call one of the TemplateMethod methods this class 
implements. 



24 F. Ortin and M. Garcia 

• The TemplateMethod invokes the GeneralOperation on its corresponding 
Interface class.  

• To respond to the TemplateMethod message, the Template object also makes use 
of its polymorphic primitive operations.  

• Thanks to dynamic binding, the PrimitiveOperation request is associated to the 
ConcreteTemplate object created by the client. At this moment, the particular 
Template object recovers the whole interface of its parallel class and invokes a 
specific method of its corresponding Interface type (e.g., ConcreteOperationB2).  
• GeneralOperation could be overridden in an intermediate level of the Interface 
hierarchy, and its execution may call to concrete operations of this intermediate level 
(e.g., the GeneralOperationB method could make use of the 
ConcreteOperationB1 method). 

3.3 Consequences 

The use of the Parallel Hierarchies design pattern has the following benefits and 
limitations: 

1. Parallel Hierarchies Gathers Related Operations and Separates Unrelated Ones. 
Related behavior is not spread over the classes defining the template hierarchy. 
Classes above in the hierarchy define the global structure of the algorithms, whereas 
particular and primitive cases are implemented as operations in the leaf classes. At the 
same time, the Template classes only define the skeleton algorithms in a problem; 
other responsibilities will be factored out into parallel Interface hierarchies. In our 
motivating example, the Template classes aim at traversing ASTs of source programs 
(describing both the global algorithms valid to every target language and the 
particular cases). All the issues concerned with writing code for a particular language 
are implemented in the code generation hierarchy. 

2. Parallel Hierarchies Makes Adding New Interface Hierarchies Easy. The 
implementation of the methods in the Template hierarchy could make use of more 
than one hierarchy of Interface classes. At the same time, it is also possible to use 
another different Interface hierarchy without changing the implementation of 
Template classes. For instance, the code generation hierarchy could be replaced by 
another one that creates an intermediate-representation of programs in memory, to 
execute it later by means of the Interpreter design pattern [3]. For this purpose, the 
Interface hierarchy should first be defined with interfaces, following the Bridge 
design pattern (Figure 8). In that case, each class of the Interface hierarchy should 
implement its corresponding interface. 

3. Type Safety and Runtime Performance. Although there are different possible 
implementations of the Parallel Hierarchies design pattern (see Section 3.4), the one 
that uses parametric polymorphism (generics) detects type errors (those regarding to 
the usage of the interface attribute) at compile time. However, if reflection is used 
instead, type errors will be detected at runtime. Moreover, runtime performance is 
commonly increased because no dynamic type checking needs to be done [9]. 

4. Supporting New Kinds of Templates is Difficult. The addition of a new class to the 
Template hierarchy in order to include new particular behavior is not a trivial task. 
That is because each element in the Template hierarchy should have a corresponding 



 Modularizing Different Responsibilities into Separate Parallel Hierarchies 25 

element on the parallel Interface one. Therefore, a new Interface class has to be 
created, overriding all the appropriate methods to help the new Template class achieve 
its purpose. In our example, if we want to translate the source language to a new 
target language, two new Visitor and CodeGeneration classes should be added. 
At the same time, specific operations of the Visitor class and concrete operations of 
CodeGeneration should also be implemented. 

5. Coupling between Template and Interface Hierarchies. Although one benefit of 
this design pattern is that the Template classes can use the whole interface of the 
corresponding Interface ones, the use of this particular interface produces a coupling 
between the Template classes and the implementation of the Interface ones. This 
limitation can be lessened by applying the Bridge design pattern as stated in the 
second consequence of the Parallel Hierarchies design pattern, using the structure 
shown in Figure 8. 
 

 

Fig. 8. Decoupling the Interface abstraction from its implementation 

3.4 Implementation 

Some implementation issues of the Parallel Hierarchies pattern are worth noting:  

1. Use of Access Control. The primitive operations defined in the Template hierarchy 
should be declared as protected. This ensures that they are only called by the general 
template methods. At the same time, the Template classes would reduce their 
interface, making it easier to use for the programmer. If no default implementation 
can be provided for primitive operations, they should be declared as abstract. 
When the parallel Interface hierarchy has been factored out from the Template one, 
and we do not want to it be used by another component, it could be useful to make it 
private except for the Template classes. This feature is not directly supported by most 
programming languages. In Java 6, for example, both hierarchies must be placed in 
the same package, and the Interface classes should not be declared as public. With the 



26 F. Ortin and M. Garcia 

superpackages feature to be included in Java 7 [12], the two hierarchies could be 
implemented in different packages. In C++, friend classes can be used for this 
purpose; C# provides assembly-level information hiding. 

2. Naming Conventions. Since this design pattern uses two (or more) parallel 
hierarchies, many different classes will be required and they will be connected with 
other corresponding classes in the same hierarchy level. Therefore, following a 
naming convention makes the code easier to read and more understandable. In our 
example (see Section 4), being L a particular target language, we define an 
LCodeGeneration class for each corresponding VisitorLCG class in the Interface 
hierarchy. 

3. Favor the Use of Generics. Parametric polymorphism is a statically typed 
programming language feature that promotes type safety and allows for efficient 
implementation. Dynamic casts can also be used to check whether the type of the 
associated Interface object has the appropriate type or not. Source code in Figure 9 is 
an equivalent implementation of the code shown in Figure 5 that uses dynamic type 
coercion. 

 

public class VisitorJVMCG extends VisitorLowLevelCG { 
 private JVMCodeGeneration getCodeGenerator() { 
  if (!(this.codeGenerator instanceof JVMCodeGeneration)) 
   throw new IllegalStateException("The attribute codeGenerator  
                           does not have the appropriate type." ); 
  return (JVMCodeGeneration)this.codeGenerator; 
 } 
 @Override 
 public void visitAssignment(AssignmentNode node){ 
  node.getSecondOperand().accept(this); 
  this.getCodeGenerator().generateStore(node.getFirstOperand() 
                 .getIndex(), node.getFirstOperand().getType()); 
 } 
 //… 
} 

Fig. 9. Sample implementation using dynamic type coercion 

The problem of this approach is twofold. The first one is that both the instanceof 
operation and the type cast are evaluated at runtime. Therefore, if some error occurs, 
it will occur at runtime, reducing the robustness of this approach. The second 
drawback is the runtime performance penalty that is caused by runtime type 
inspection [9]. 
4. Minimize the General Interface of the Interface hierarchy. Since a class should 
only define operations that are meaningful to its subclasses [8], only those messages 
that are meaningful for every class of the Interface hierarchy should be placed in the 
GeneralInterface class. Recall that the Parallel Hierarchies design pattern 
recovers the specific interface of each Interface class. This feature allows reducing the 
interface of these classes to the exact set of messages that are meaningful to them. 

5. Use the Bridge pattern to decouple hierarchies. As mentioned in Section 3.3, the 
Template hierarchy is coupled with the implementation of the Interface one. It could 
be necessary to add new implementations of Interface classes, or to support different 
implementations for each Template object at the same time –e.g., following the State 



 Modularizing Different Responsibilities into Separate Parallel Hierarchies 27 

design pattern [3]. If either of these scenarios occurs, the Bridge design pattern [3] 
should be used in the Interface hierarchy, resulting in the pattern structure shown in 
Figure 8. 

3.5 Applicability 

Use the parallel hierarchies design in either of the following cases: 

• The Template Method design pattern is suitable, but it is difficult to generalize a 
common interface for all the classes in the hierarchy. Although there are methods 
common to every class, others are only applicable to particular ones. 
• More than one responsibility can be identified in a hierarchy and these new 
responsibilities can be factored out and integrated in another parallel hierarchy. In 
fact, this is the Tease Apart Inheritance “big” refactoring identified by Fowler and 
Beck [7]. 

• A problem can be solved with a combination of general algorithms plus specific 
operations of different particular types. 

4 Sample Code 

We will follow the motivating example of implementing a retargetable compiler for a 
high-level object-oriented programming language. A fragment of the AST is shown in 
Figure 1. The traversal of this AST is done with the Visitor design pattern [3]. The 
specific visitors for code generation play the Template role of the Parallel 
Hierarchies design pattern. Since we are interested in generating code for different 
programming languages, the Java VisitorCG class shown in Figure 10 represents the 
AbstractTemplate class of the Parallel Hierarchies structure. 

Figure 10 only shows one visit method of the Visitor design pattern. The 
implementation of this method defines the general classNode code-generation 
template for every programming language. If this template is not appropriate for a 
specific target language, its corresponding Visitor subclass will override it.  

public class abstract class VisitorCG <T extends CodeGeneration> 
                           extends Visitor { 
 protected T codeGenerator; 
 public VisitorCG(T codeGenerator){this.codeGenerator=codeGenerator;} 
 @Override 
 public void visitClassNode(ClassNode node) { 
  this.codeGenerator.generateClassHeader(node); 
  for(FieldNode field:node.getFields()) 
   this.codeGenerator.generateField(field); 
  for(MethodNode method:node.getMethods()){ 
   this.codeGenerator.generateMethodHeader(method); 
   method.accept(this); 
   this.codeGenerator.generateMethodFooter(method); 
  } 
  this.codeGenerator.generateClassFooter(node); 
 } 
 //… 
} 

Fig. 10. VisitorCG sample code 



28 F. Ortin and M. Garcia 

The visit method makes use of two different kinds of operations: methods of the 
Interface (CodeGeneration) hierarchy, and messages of its own hierarchy (accept 
messages). The accept method is a double-dispatch implementation that actually 
represents indirect calls to visit methods. All these visit methods play the role of 
TemplateMethod in the Parallel Hierarchies design pattern. Figure 10 shows the 
template that generates the code of a classNode relying on the templates that 
generate its methods and fields. 

The other operations that the visit methods use are the messages offered by its 
corresponding parallel class. The codeGenerator field reference provides these 
services. For the VisitorCG class, only the methods in the CodeGeneration class 
can be used. This means that the general template for all the target languages can only 
use the operations of code generation defined for every target language. Source code 
in Figure 11 shows the CodeGeneration class. Its abstract methods identify the 
operations applicable to every target programming language, but they are not concrete 
enough to provide a default implementation. 

 

public abstract class CodeGeneration { 
 protected FileWriter file; 
 public CodeGeneration(String filename) { 
  file = new FileWriter(filename); 
 } 
 public abstract void generateClassHeader(ClassNode klass); 
 public abstract void generateClassFooter(ClassNode klass); 
 public abstract void generateField(FieldNode field); 
 public abstract void generateMethodHeader(MethodNode method); 
 public abstract void generateMethodFooter(MethodNode method); 
 //… 
} 

Fig. 11. CodeGeneration sample code 

Since both the JVM and the MSIL are abstract stack machines languages, we can 
factor out common code generation operations for both languages in a new 
LowLevelCodeGeneration class (Figure 12). 

 

public abstract class LowLevelCodeGeneration extends CodeGeneration { 
 public LowLevelCodeGeneration(String filename) { super(filename); } 
 public abstract void generateStackOperation(String operator, 
                                             TypeNode type); 
 //… 
} 

Fig. 12. LowLevelCodeGeneration sample code 

The specific generateStackOperation method offered by LowLevelCode-
Generation can be used by the VisitorLowLevelCG class. Therefore, it is 
possible to write the visitBinaryExpresion shown in Figure 13: for every stack-
based abstract machine, most binary expressions can be generated writing the code for 
the first and second operands, followed by the operation (postfix notation). It is worth 
noting that, thanks to Java generics, it is type safe to pass the specific 
generateStackOperation message to the inherited codeGeneration field, 



 Modularizing Different Responsibilities into Separate Parallel Hierarchies 29 

although it has been declared to be of type “T extends CodeGeneration” in the 
VisitorCG class. This shows how the Parallel Hierarchies design pattern recovers 
the original interface of the actual object used in the Template hierarchy. 

 

public abstract class VisitorLowLevelCG  
            <T extends LowLevelCodeGeneration> extends VisitorCG<T> { 
 public VisitorLowLevelCG(T codeGeneration) {super(codeGeneration);} 
 public void visitBinaryExpression(BinaryExpressionNode node) { 
  // * Postfix notation 
  node.getFirstOperand().accept(this); 
  node.getSecondOperand().accept(this); 
  this.codeGenerator.generateStackOperation( 
              node.getOperator(),node.getType()); 
 } 
} 

Fig. 13. VisitorLowLevelCG sample code 

The responsibility of the JVMCodeGeneration class is to generate JVM code 
following the Jasmin assembly syntax [13]. This class not only overrides methods of 
the general CodeGeneration class (generateClassHeader and 
generateClassFooter) and the LowLevelCodeGeneration class 
(generateStackOperation), but it also defines its particular interface 
(generateStore) that produces the store JVM instruction). Part of its 
implementation is shown in Figure 14. 

 

public class JVMCodeGeneration extends LowLevelCodeGeneration { 
 // * Methods of the CodeGeneration class 
 @Override 
 public void generateClassHeader(ClassNode klass) { 
  this.file.write(".class " + " "+ klass.getHidingLevel()+  
                   " "+ klass.getName() + "\n"); 
 } 
 @Override 
 public void generateClassFooter(ClassNode klass) { 
  this.file.write(";  end of the " + klass.getName() + " class\n"); 
 } 
 // * Methods of the LowLeveCodeGeneration class 
 @Override 
 public void generateStackOperation(String operator, TypeNode type ){ 
  if (!operatorsToJVM.containsKey(operator)) 
   throw new IllegalArgumentException("Operator '" 
                   + operator + "' not defined in the JVM."); 
  StringBuilder sb = new StringBuilder(); 
  sb.append(type.getJVMTranslation()); 
  sb.append(operatorsToJVM.get(operator)); 
  this.file.write(sb.toString()+"\n"); 
 } 
 // * Specific methods of the JVMCodeGeneration class 
 public void generateStore(int index, TypeNode type ) { 
  this.file.write(type.getJVMTranslation()+"store "+index+"\n"); 
 } 
 // … 
} 

Fig. 14. JVMCodeGeneration sample code 



30 F. Ortin and M. Garcia 

Finally, it is possible to write the VisitorJVMCG class that traverses only the 
specific nodes for which the default traversal is not appropriate (visitAssignment 
in Figure 15). The assembly syntax of assignments in the JVM is defined as the code 
that pushes the right-hand expression of the assignment, followed by a store 
instruction whose operand is the index of the variable on left-hand side of the 
assignment. In the implementation of these specific visit methods, any method of 
the particular interface of the parallel JVMCodeGeneration class can be used 
(generateStore is an example of this kind of methods). 

 

public class VisitorJVMCG <T extends JVMCodeGeneration>  
                    extends VisitorLowLevelCG<T> { 
 public VisitorJVMCG(T codeGeneration) { super(codeGeneration); } 
 @Override 
 public void visitAssignment(AssignmentNode node) { 
  node.getSecondOperand().accept(this); 
  this.codeGenerator.generateStore(node.getFirstOperand().getIndex(), 
                                   node.getFirstOperand().getType()); 
 } 
 // … 
} 

Fig. 15. VisitorJVMCG sample code 

5 Conclusions 

The association of two (or more) parallel hierarchies to solve a specific problem using 
delegation is a common design scenario. The problem is that the association in the 
root classes in the hierarchy provides too general interfaces useless for the classes 
below in the hierarchy. The Parallel Hierarchies design pattern described in this 
paper provides a type safe solution that could be used whenever the programming 
language provides either F-bound polymorphism or (unbounded) parametric 
polymorphism such as Java, C# or C++. The design pattern has been described using 
the classical sections of structure, collaborations, consequences, Implementation, 
applicability and sample code [3]. 

We have successfully used the Parallel Hierarchies design pattern in the C# 
implementation of the StaDyn programming language [14,20], to compile the StaDyn 
high-level programming language to MSIL for the CLR, ЯRotor [9,21] and the DLR 
[15] platforms, as well as produce high-level C# 4.0 source code. 

 
Acknowledgements. This work has been funded by the Department of Science and 
Technology (Spain) under the National Program for Research, Development and 
Innovation: projects TIN2008-00276 and TIN2011-25978. 

References 

1. Hanson, D.R., Fraser, C.W.: A Retargetable C Compiler: Design and Implementation. 
Addison-Wesley Professional (1995) 

2. Appel, A.W.: Modern Compiler Implementation in Java, 2nd edn. Cambridge University 
Press (2002) 



 Modularizing Different Responsibilities into Separate Parallel Hierarchies 31 

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Re-usable 
Object-Oriented Software. Addison Wesley (1994) 

4. Watt, D., Brown, D.: Programming Language Processors in Java: Compilers and 
Interpreters. Prentice Hall (2000) 

5. Lindholm, T., Yellin, F.: Java Virtual Machine Specification, 2nd edn. Prentice Hall 
(1999) 

6. ECMA 335, European Computer Manufacturers Association (ECMA). Common Language 
Infrastructure (CLI), Partition IV: CIL Instruction Set, 4th edn. (2006) 

7. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the 
Design of Existing Code. Addison-Wesley Professional (1999) 

8. Liskov, B.: Data Abstraction and Hierarchy. In: Conference on Object Oriented 
Programming Systems Languages and Applications (OOPSLA), Orlando, Florida, United 
States, pp. 17–34 (1987) 

9. Ortin, F., Redondo, J.M., Perez-Schofield, J.B.G.: Efficient virtual machine support of 
runtime structural reflection. Science of Computer Programming 74(10), 836–860 (2009) 

10. Canning, P., Cook, W., Hill, W., Walter, O., Mitchell, J.C.: F-bounded polymorphism for 
object-oriented programming. In: Proceedings of the Fourth International Conference on 
Functional Programming Languages and Computer Architecture, London, United 
Kingdom, pp. 273–280 (1989) 

11. Odersky, M., Wadler, P.: Pizza into Java: Translating theory into practice. In: Proceedings 
of the 24th ACM Symposium on Principles of Programming Languages (POPL), Paris, 
France, pp. 146–159 (1997) 

12. JSR 294 Sun Microsystems, JSR 294: Improved Modularity Support in the Java 
Programming Language (2007), http://jcp.org/en/jsr/detail?id=294  

13. Meyer, J.: Jasmin Instructions (1996), 
http://jasmin.sourceforge.net/instructions.html 

14. Ortin, F., Zapico, D., Perez-Schofield, J.B.G., Garcia, M.: Including both Static and 
Dynamic Typing in the same Programming Language. IET Software 4(4), 268–282 (2010) 

15. Hugunin, J.: Bringing dynamic languages to .NET with the DLR. In: Proceedings of the 
Symposium on Dynamic Languages, Montreal, Quebec, Canada, p. 101 (2007) 

16. Wadler, P.: The expression problem. Posted on the Java Genericity Mailing List (1998) 
17. Torgersen, M.: The Expression Problem Revisited. In: Vetta, A. (ed.) ECOOP 2004. 

LNCS, vol. 3086, pp. 123–146. Springer, Heidelberg (2004) 
18. Nielsen, E.T., Larsen, K.A., Markert, S., Kjaer, K.E.: The Expression Problem in Scala. 

Technical Report, Aarhus University (May 31, 2005) 
19. Ernst, E.: Higher-Order Hierarchies. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, 

pp. 303–329. Springer, Heidelberg (2003) 
20. Ortin, F., Garcia, M.: Union and intersection types to support both dynamic and static 

typing. Information Processing Letters 111(6), 278–286 (2011) 
21. Redondo, J., Ortin, F., Cueva, J.: Optimizing Reflective Primitives of Dynamic Languages. 

International Journal of Software Engineering and Knowledge Engineering 18(6), 759–783 
(2008) 



Steering through Incentives in Large-Scale Lean
Software Development

Benjamin S. Blau1, Tobias Hildenbrand1, Rico Knapper2, Athanasios Mazarakis2,
Yongchun Xu2, and Martin G. Fassunge1

1 SAP AG, Dietmar-Hopp-Allee 16, Walldorf, Germany
{benjamin.blau,tobias.hildenbrand,martin.georg.fassunge}@sap.com

2 Research Center for Information Technology
Haid-und-Neu-Straße 10-14, Karlsruhe, Germany

{yongchun.xu,knapper,mazarakis}@fzi.de

Abstract. The application of lean principles and agile project management tech-
niques in the domain of large-scale software product development has gained
tremendous momentum over the last decade. This results in empowerment of
individuals which leads to increased flexibility but at the same time sacrifices
managerial control through traditional steering practices. Hence, the design of
adequate incentive schemes in order to align local optimization and opportunis-
tic behavior with the overall strategy of the company is a crucial activity from a
business perspective.

Following an agent-based simulation approach with reinforcement learning,
we (i) address the question of how information regarding backlog item dependen-
cies is shared within and in between development teams on the product level sub-
ject to different incentive schemes. We (ii) compare different incentive schemes
ranging from individual to team-based compensation. Based on our results, we
are (iii) able to provide recommendations on how to design suitable incentive
schemes in order to enable a goal-oriented steering of individual behavior in or-
der to support the overall company objectives.

1 Introduction

The application of lean and agile principles in large-scale software product development
turns out as non-trivial transition and change management endeavor in most companies
[11]. This is partly due to the fact that a simple transfer of known practices from lean
manufacturing in other industries cannot be achieved due to differences between pro-
duction versus product development processes and the nature of knowledge work and
immaterial goods—such as software [37,39]. Especially breaking down bigger products
to an organization requiring multiple teams and hierarchy levels, dealing with product
dependencies, and re-integrating features and functions while keeping the overall mar-
ket and economics of decisions in mind is yet very challenging in the relatively young
software industry [31,28]. As a consequence, phenomena like queued artifacts, delayed
product deliveries, and long-tail risks occur [39].

L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 32–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Steering through Incentives in Large-Scale Lean Software Development 33

This research aims at gaining a better understanding of the information sharing and
motivation mechanics of a complex socio-technical system, such as a large-scale soft-
ware product development organization. Based on this increased understanding, we
want to derive implications for designing the development organization, and issue in-
centives for the teams in order to foster overall software product development flow by
means of more informed and economic decisions, resulting in a shorter time to market.

Based on our research goal and the complex, large-scale industrial setting (see sec-
tion 5), we follow an agent-based simulation approach with reinforcement learning.
Using this method we (i) investigate the information flow in lean large-scale software
product development systems in terms of dependency resolution between requirements,
user stories, and other software artifacts (cp. [22,47]). In this context, incentives for
individuals to share such information are of central importance. Therefore, we (ii) fur-
thermore tackle the question of how different types of incentive schemes impact infor-
mation flow and the overall performance of empowered teams. Based on our simulation
results, we (iii) provide recommendations on how to design such incentives and how
to chose an adequate development structure within an organization. For calibrating our
simulation, we rely on three years of experience from one of today’s largest lean and
agile adoption at SAP AG [41].

The remainder of this paper is structured as follows: Section 2 outlines related re-
search in the context of agile and lean software development. The agent-based simula-
tion methodology and the corresponding field of research is analyzed in Section 3. The
basic model underlaying the empirical evaluation is described in Section 4. The simu-
lation, its parametrization and the research hypotheses are specified in detail in Section
5. Evaluation results and their practical implications are discussed in Section 6. Section
7 summarizes our contribution and outlines future work.

2 Related Work

In order to model and understand a complex socio-technical system, such as a multi-
level software product development organization, the underlying design principles and
processes need to be investigated. In this work, we specifically address the application
of lean and agile principles in large software development companies (e.g. [41]). While
there is mostly narrative literature on agile principles and Scrum in large-scale enter-
prise environments “driven by practitioners and consultants” [12, p. 329]—examples
include [31,43,28,32,29], there is only little empirical evidence and rigorous research
in this field. For instance, there is only little research on the effectiveness and efficiency
gains actually achieved by introducing lean and agile principles, Scrum-based project
management etc.—in this small set less than 2% exhibit acceptable rigor, credibility,
and relevance [15, p. 851], while 75% of these studies only investigated agile projects
specifically applying eXtreme Programming (XP, [3,14]).

We close this section by giving the social psychological perspective on teams, their
structure, and incentives in team environments.

2.1 Agile Team Practices

The vast majority of research on agile methods and practices focuses on XP [3,4] as
team practice and applies a single or multiple case study methodology [56].



34 B.S. Blau et al.

Single practices crucial to XP have been examined separately regarding their impact
on software quality, e.g. pair programming is said to consume 30% more effort than
solo programming [9], resulting in 40-90% fewer defects [55,16,9]. However, with re-
spect to the broad range of agile methods and their increasing prevalence in the soft-
ware industry [53], there is only very little scientific evidence so far whether or not these
models lead to more effectiveness, efficiency, or productivity, respectively, in real-world
large-scale development environments [15].

Among the few evidence-based behavioral science contributions [21] on software
agility, Lee and Xia [30] investigated the impact of two major agile characteristics (team
autonomy and team diversity) on three productivity measures: (1) on-time and (2) on-
budget completion as well as (3) functionality provided to customers. Among their
findings, it turned out that there are conflicting goals even within the boundaries of
one team. Besides these findings, the model exhibits that the dependent productivity
variables could only be explained to a degree that leaves substantial room for future
behavioral studies.

2.2 Large-Scale Lean and Agile

Lean management or lean thinking – as underlying philosophy and common set of
values – as well as lean and agile principles are either already implemented or piloted
in many practical scenarios of different scales today, e.g. at Salesforce [18] or SAP [41].
Figure 1 visualizes how specific agile software development practices, such as XP [3],
test-driven development (TDD, [5]) and agile project management methods like Scrum
[44] build upon agile principles and lean thinking values. While the basic principles and
philosophy apply to many industries, some address a specific one more concretely, e.g.
Scrum and XP for the software industry.

Based on general principles of lean management [38] and lean thinking as well as
basic agile principles [1] and consulting experience, a set of guiding principles and prac-
tices for scaling Scrum to larger-scale scenarios evolved, see e.g. [36,38,28,29]. In the
same vein, similar large-scale Scrum models have been described by Schwaber [43] and
Leffingwell [31]. These ideas on lean management and lean software development have
been further elaborated and translated to some practical guidelines based on experience
from multiple consulting projects, see e.g. [29]. However, lean software development
in large enterprise environments requires scaling team-based approaches such as Scrum
(see section 2.1. Nevertheless, first implementation concepts and pilot approaches can
be found even for very large-scale software vendors [41]. Hence, empirical research
and evidence for complex socio-technical system in the software industry is even more
scarce than for team practices (cp. section 2.2 and [15]).

Lean and agile software development is based on lean enterprise characteristics com-
prising focus on value, synchronization, transparency, and perfection as well as Just-in-
Time (JIT) principles such as (one-piece) flow, takted development, customer pull, and
zero defects [39].

Combining the lean enterprise perspective with an agile perspective on development
teams [1], leads to short iterative development cycles, a uniquely prioritized backlog of
requirements and work items, direct customer involvement, as well as tested and poten-
tially shippable software increments.



Steering through Incentives in Large-Scale Lean Software Development 35

As a common basis for further studies on agile practices, Conboy has developed a
unified definition and formative taxonomy of agility in informations systems develop-
ment or software engineering, respectively [12, pp. 340]. Such a common definition
and/or taxonomy is required to link existing and future contributions in this very inter-
disciplinary field of research, e.g. from information systems, computer science, organi-
zational science, sociology and psychology.

In context of lean and agile software development, there are to-date only very few
related simulation-based contributions, e.g. using a system dynamics approach [9].
Moreover, [35] present potential performance indicators and visualizations for flow
simulations (cp. also [39]).

2.3 Social Psychological Aspects

The topic of work groups and teams in organizations is ongoing in social psychology,
despite (or maybe because of) the remarkable transformation of organizational struc-
tures in the last two decades [27]. Although the term ”team” is still used with different
meanings, we strike to the following definition: a group (or team) consists of two or
more members, they approach together a common goal and they need to cooperate
within social interaction [27]. Usually research considers the group development model
of Tuckman still as helpful to guide the formation and development of teams [49]. It
consists of four different phases:

– The formation phase as the first element, when the forming of a team takes place.
– The storming phase where goal setting and resolving of different problems have to

be done.
– The norming phase needs to consolidate the different opinions of the team mem-

bers.
– The performing phase finally is about doing the work in an efficient way.

The final phase (the adjourning phase, which is about breaking up the team after the
achievement of the group goal) is not in the scope of this article. Also it is important to
take into account, that teams can evolve and change after a while, e.g. that new members
need to be integrated into a team [23].

Motivational Aspects. Research about motivation to work together can be character-
ized by two different points of view: harms to motivation and incentives for motivation.
First we want to show a brief overview of different harms to motivation and later we
will discuss the issue of incentives for individuals on team level.

Harms to Motivation to Work Together. Three different harms can be distinguished:

– The sucker effect (each individual reduces its contribution if there is an unequal
distribution of workload) [24]

– Social loafing (each individual reduces its contribution, because it is not possible to
visualize the effort of each individual) [24]

– Free riding (each individual reduces its contribution, because they don’t perceive
their work as important for the team) [25]



36 B.S. Blau et al.

These three harms can be less harmful, if the team members are not new to each other
and if it is intended to work for a longer period together [17].

The mentioned effects can be found in agile and lean development environments:
The sucker effect should not be a major issue in a Scrum team abiding by the rules,

i.e. that has a good Scrum Master: collaborative planning, daily stand-up meetings, as
well as regular retrospectives on what went well in the team process and what did not,
ensure that tasks are taken on by each team member and that recurring process issues,
so-called ”impediments”, are tackled in the following sprint [42]. Some people might
still take more time for certain tasks than others; however, the daily synchronization and
retrospectives will make this transparent sooner or later.

Social loafing is a phenomenon often perceived when software companies change
their development processes towards agile methods such as Scrum: Scrum focuses on
team performance and measures the output per team per sprint, e.g. by means of story
points [10]. Despite the fact that some teams track the progress of tasks assigned to
individuals or teams of two, developers used to traditional methods often fear to ”dis-
appear” in the group.

Free riding can be seen if the team performs well on the group level with a more or
less constant output of story points, while some individuals reduce their efforts, they
might perceive their work as not so important for team. This perception might tempt
them to reduce their individual effort and take the team credit for free. In a typical
change project, this behavior usually follows resignation and adds to the social loafing
effect described above [26].

Incentives to Work Together. Again, three different issues can be distinguished:

– The Koehler effect (less skilled group members can rise their performance to sup-
port the other team members) [20]

– Social competition (comparison with other group members can motivate to com-
pete with each other and therefore raise performance) [48]

– Social compensation (better skilled group members work more to compensate for
less skilled group members) [54]

Social Psychological Feedback Considerations for Individual and Team Informa-
tion and Incentives. From a social psychological point of view, it is very important
to differentiate between giving information about individual and team performance.
One advantage of giving team feedback is that it can strengthen team building pro-
cesses and emphasize collaboration [19]. At the other hand an informational feedback
about the individual performance is important to avoid social loafing and free riding
[24,25,34,51]. Finally incentives for individuals and teams from behavioral science are
taken into account. Usually monetary and non-monetary incentives are applied to indi-
viduals, although it would be more important to distribute the incentives for achieving
different team goals. Group incentives can support team building and the identification
with the team, whereas individual incentives support competition [51,13]. Recent meta
studies show, that group incentives are not always supportive for group performance,
which can be partly attributed to social loafing [13,46]. Eventually a combination of
team and individual incentives is the best solution to achieve top performance [46].



Steering through Incentives in Large-Scale Lean Software Development 37

3 Methodology

Complementary to mere behavioral and design science studies [21], a simulation-based
approach allows to analyze and better understand complex development scenarios with
hundreds or even thousands of individuals and even more artifacts and process depen-
dencies. Besides deduction and induction, experimenting with simulations is consid-
ered a “third way of doing science” [2]. To analyze and optimize complex development
scenarios, different analytical and simulation-based approaches can be considered: dis-
crete event simulations, agent-based simulation [6,7], system dynamics etc. Simulating
software development processes to answer fundamental questions about agile and lean
practices is, though still scarce, rising in number [9, see].

The complexity arising from individual actions and interactions that arise in the real
world can be explicitly modeled in agent-based simulations in situations discrete-event
simulations or system dynamics cannot [45]. Although being relatively new, agent-
based simulations gain more and more momentum in various application areas where
the behavior of single individual actors constitute the fundamental issues [33]. An
agent-based system consists of autonomous agents following simple behavioral rules
while being a direct abstraction from their real-world counterparts. Being autonomous
and able to learn from their environment, they behave proactively following their own
rule set [45]. Thus, the interaction among the agents directly impacts the system prop-
erties [8].

This section has shown that following an agent-based approach is an optimal choice
to address the research questions. The following section will introduce, besides the
system’s structure and further artifacts, the actual model taken for implementation.

4 Assumptions and Model

This paper addresses large-scale business software development organizations with sev-
eral hundred or thousands of developers. Moreover, we take a development process
based on lean management and agile principles as a basis for our assumptions. In ad-
dition, this section describes the basic model of our agent-based simulation in a mathe-
matical notation.

4.1 Work Items and Artifacts

Iteration Backlog. This backlogs contain all the user stories (backlog items) one team
has committed to for one iteration, or sprint respectively, in Scrum. The backlog items
are permanently kept uniquely prioritized by the team’s product owner [44].

Iteration Backlog Item. User stories are containers for requirements and currently one
of the most popular requirement modeling technique in agile methods. ”User stories
are the primary currency that carries the customer’s requirements through the value
stream into code and implementation.” [32]. They briefly describe a feature from the
perspective of a certain user role, letting the team freedom in implementational details.



38 B.S. Blau et al.

Usable Software Increments each Iteration. At the end of each iteration the team pro-
duces a new software increment. This increment must be properly tested and fulfill other
criteria in order to be accepted by the responsible person with regard to prior defined
“done” (non-functional and/or meta-requirements) and functional “acceptance criteria”.
Agile methods aim at completing potentially shippable product increments, i.e. usable
software in each iteration.

4.2 Team Process and Structure

Agile methods, such as Scrum, try to attain a trade-off between pragmatism and disci-
pline, i.e. avoiding chaos on the hand and extensive bureaucracy on the other.

Team Size and Skills. The team must be ”fully capable of defining, developing, testing,
and delivering working and tested software into the system’s baseline” [32]. Usually,
such a “cross-functional” team consists of one product owner, a scrum master, 5-10
team members focussing on development, quality and testing as well as other functions
and skills [29]. Teams are typically organized around particular software components
(architectural view) or certain features (from a customer’s perspective, see [28]). In gen-
eral, features and components exhibit inherently dependent requirements, i.e. inter-team
dependencies. In practice, companies have a mixture of both, feature and component
teams, organized in a matrix (see e.g. [41]).

Inter-Team Collaboration in Large Development Organizations. In order to be able
to release complex and comprehensive software products, development organizations
of several hundred or even thousands of developers in cross-functional teams need to
be coordinated, for which hierarchy levels need to be introduced. In our research, we
follow the large-scale lean and agile model by Larman and Vodde [28,29]. This is also
the basis for the implementation with which we calibrate our model [41]. The mix of
feature and component teams (see above) is one of the reasons for occurring inter-team
dependencies, which need to be resolved for product delivery. For instance, a certain
set of master data requires multiple functional components of an enterprise resource
planning application.

4.3 Model Parameters and Behavior

Agents & Teams. Let Am represent the set of agents (e.g. developers and other cross-
functional team members) in team m (m and n are arbitrary teams in the remainder
of this article) with agents am1 , . . . , amq such that Am = {am1 , . . . , amq }. Let the agent
am1 be a special agent (“team owner”) representing the Scrum Master and the Product
Owner of team m.1 A team’s capacity cm is determined by the number of its agents n
minus the team owner, i.e. a team Am = {am1 , . . . , amq } has the capacity of cm = q−1.

1 Our model is simplified based on the assumption that both, Scrum Master or Product Owner,
can take over team tasks with approximately 50% of their capacity—therefore, one full-time
equivalent is accounted per team. The team owner parameter is also applied for Area Product
Owners and Chief Product Owner depending on the level of hierarchy and aggregation.



Steering through Incentives in Large-Scale Lean Software Development 39

Team Backlog. Let furthermore Bm denote the backlog of team m with prioritized
backlog items bm1 , . . . , bmk such that Bm = {bm1 , . . . , bml } (bx and by are arbitrary back-
log items in the remainder of this article). The index l represents the priority or rank
within the backlog – i.e. the backlog item bml−1 is the unambiguous antecessor of the
backlog item bml .

Backlog Processing. It is assumed that until all done criteria are satisfied, the processing
of a backlog item consumes a well-defined2 period of time t. The processing function
λ : B → T maps backlog items to a processing time t ∈ T .

Backlog Dependencies. It is further assumed that dependencies between backlog items
may exist such that the possibility to start processing a specific backlog item depends
on the successful processing and finalizing of another item (all done criteria fulfilled).
The dependency function d : B × B → {0, 1} maps a pair of backlog items (bmx , bmy )
to elements 0, 1 with 0 representing independent backlog items and 1 denoting that
backlog item bmx is dependent on item bmy .

d(bmx , bny ) =

{
0 , if bmx is independent of bny
1 , if bmx depends on bny

(1)

For the sake of simplicity, it is assumed that dependencies are not directed, i.e. if
backlog items are dependent, neither of them can be processed as long as the depen-
dency persists.

From a team’s perspective, it follows that there are two designated types of depen-
dencies, i.e. (i) intra-team dependencies with d(bmx , bny ) = 1 ∧ m = n, i.e. within the
team’s own backlog and (ii) inter-team dependencies with d(bmx , bny ) = 1 ∧ m �= n,
i.e. with other teams’ backlog items.

Dependency Resolution. It is further assumed that dependencies between backlog items
need to be resolved during the development process. Such a resolution is done by in-
vesting additional time and effort for analysis, communication, coordination, and in
some cases, idle time. This means that the cost for dependency resolution depends on
three factors: (i) The point in time during the development process the resolution is
conducted and (ii) the complexity of the dependent backlog items which is implicitly
represented by their processing time as well as (iii) the type of dependency (intra- or
inter-team dependency). Practically this means: The earlier a dependency is detected
and the lower the item complexity is, the less additional time is required to resolve it.
The amount of effort, i.e. the additional time to be spent for resolving the dependency,
also depends on the type of dependency (inter-team or intra-team). Thus, the resolution
function r : B×B×Θ → T (Equation 2) maps pairs of backlog items and the point of
time within the development process to the period of time that is required for resolving
their dependency (for a complete mapping, the resolution functions returns t = 0 in
case backlog items are independent).

2 As an extension of the model, the processing time might be represented by a probability
distribution.



40 B.S. Blau et al.

r(bmx , bny , θ) =

⎧
⎪⎨

⎪⎩

0 , if d(bmx , bny ) = 0

t̄intraθ
2 p(bx)+p(by)

2
, if d(bmx , bny ) = 1 ∧ m = n

t̄interθ
2 p(bx)+p(by)

2
, if d(bmx , bny ) = 1 ∧ m �= n

(2)

The resolution time at least equals the average processing time of both items, i.e.
their mean complexity and is mainly determined by the constant t̄ representing the type
of dependency (intra- or inter-dependency) and the point of time θ the resolution is
conducted.

5 Simulation

Thus, the evaluation is conducted by means of an agent-based simulation based on a
simple form of a Q-Learning model [52]. In contrast to more sophisticated variants of
Q-learning models, the simulation model at hand considers multiple actions but only a
single state. This reduction of parameter complexity is done without loss of validity and
therefore simplifies the calibration of the simulation. Simplifying the simulation model
reduces the number of assumptions, allowing for a better generalization of results.

5.1 Rounds

Reflecting the lean principles, simulation roundsΩ are mapped onto development “takts”
(or “sprints” in Scrum [44]). Each round represents a development takt that is further
discretized into a fixed number of takt units ω3.

5.2 Actions

At the beginning of each TAKT, each agent chooses an action k out of the action space
K as specified in Section 5.3. The following actions are available to each agent:

Preceding Intra-team Dependency Resolution. The agent focuses on resolving de-
pendencies between backlog items within its team at the beginning of the develop-
ment takt (preceding). If there is capacity left after this action, the agent continues
with processing backlog items.

Preceding Inter-team Dependency Resolution. The agent targets the resolution of
dependencies between backlog items that are planned in different teams at the
beginning of the development takt (preceding). If there is capacity left after this
action, the agent continues with processing backlog items.

Development without Early Dependency Resolution. No resolution of dependencies
at the beginning of the development takt are addressed by the agent, i.e. the agent
directly starts with backlog item processing. However, when processing a backlog
item that is constrained by a dependency, the agent is forced to resolve this depen-
dency at that point in time which might be time consuming due to the elapsed time
(cp. Section 4.3).

3 For the sake of simplicity, all time-related model values are discretized accordingly.



Steering through Incentives in Large-Scale Lean Software Development 41

Having chosen, the agents execute the particular action which binds their capacity
according to the defined time requirements. In case of dependency resolution actions
(k = 1, 2) the capacity is bound exactly as long as the resolution function specifies
the number of TAKT units required. If this period of time is less than the total units
within a TAKT, the agent’s capacity is free for development activities. In case of the
development action (k = 3), the agent is processing backlog items during the whole
TAKT.

5.3 Feedback and Learning Behavior

At the end of each TAKT Ω, each agent a receives a feedback πΩ
a,k as a response to the

action k chosen at the beginning of the TAKT.
To analyze the effect of different incentive schemes on the exchange of information

within and between teams, we examine three feedback mechanisms:

Individual incentives that reward value creation of the individual developer, i.e. the
number of successfully processed backlog items by a single developer.

Team incentives that reward each individual based on the value creation of the whole
team the developer belongs to, i.e. the number of successfully processed backlog
items accumulated on team-level.

At the end of each taktΩ, the feedback to a chosen action k of an agent a is incorporated
in the agent’s private fitness function fΩ

a,k. Balancing past and present experiences, the
learning parameter β ∈ [0, 1] determines to which degree past and present feedback is
incorporated into the fitness update. Thus, the fitness update evolves as follows:

fΩ
a,k := βfΩ−1

a,k + (1− β)πΩ
a,k (3)

Thus, each agent maintains a fitness value for each possible action that represents
the historical “success” of that particular action based on the cumulated feedback over
time.

At the beginning of each TAKT Ω, each agent a chooses an action k out of the
action space K (cp. Section 5.2) based on its particular probability pΩa,k that is based on
its fitness value and therefore on its historical “success”:

pΩa,k :=
fΩ
a,k∑
k f

Ω
a,k

(4)

5.4 Parametrization and Hypothesis

The simulation model as described previously is parameterized as follows: According
to lean development best practices, the team size is set to 10 agents per team. A learning
rate β = 0.5 yields an optimal trade-off between escaping local optima and achieving
a quick convergence of strategies. The first 400 rounds of 500 rounds in total are the
simulation’s training phase in order to achieve a converged state and are therefore not
considered for the statistical evaluation. As the number of variable parameters and their



42 B.S. Blau et al.

interdependencies are high, heavy statistical noise is likely to be generated. To coun-
teract the high volatility of the simulation model, a large number of 500 problem sets
is evaluated and the mean results across all agents and teams are reported. The large
size of analyzed problem sets for each observation assures robustness of the t-test to
violations of the normality assumption [40].

By means of this agent-based simulation approach we intent to verify the hypotheses
outlined in Table 1.

Table 1. Incentive schemes and corresponding hypotheses. NORES denotes the mean fitness
value of action k = 1 across all agents and teams. INTRARES denotes the mean fitness value of
action k = 2 across all agents and teams. INTERRES denotes the mean fitness value of action
k = 3 across all agents and teams.

Incentive Hypothesis
Scheme
Individual H1a: (NORES > INTRARES)
Incentives H1b: (NORES > INTERRES)

H1c: (INTERRES > INTRARES)
Team H2a: (NORES < INTERRES)
Incentives H2b: (INTERRES > INTRARES)

The set of hypotheses is derived from existing literature on the effect of incentives in
lean development [37] and practical experiences from lean projects in SAP. In settings
with individual incentives that reward agents solely on the number of backlog items that
are successfully processed on their own, the agents are likely to follow an opportunistic
strategy, i.e. they focus on processing backlog items instead of resolving dependencies
(neither within their team nor between teams) as stated in hypotheses H1a and H1b.
Resolving inter-team dependencies at a later point in time is more time consuming than
intra-team dependencies which is likely to incentivize agents to prefer the INTERRES
strategy over the INTRARES strategy at the beginning of each sprint. This argumenta-
tion holds for either incentive scheme (cp. hypotheses H1c and H2b).

On the other hand, team incentives that reward agents based on the total number of
successfully processed backlog items of the whole team are likely to implement incen-
tives for agents to follow actions which are beneficial for the team itself. As the effort to
resolve backlog item dependencies at a later point in time is exponentially higher than
at the beginning of the sprint, agents are likely to follow an early dependency resolution
(cp. hypotheses H2a).

The statistical significance of the stated hypothesis is tested using a one-tailed
matched-pairs t-test analyzing the alternative hypothesis, that is, the mean difference
of the actions’ fitness values is greater than zero. For the statistical analysis, the first
400 simulation rounds/sprints are skipped as they serve as the initial learning phase of
the agents until we observe a convergence of strategies and achieve a stable state.

6 Evaluation Results and Implications

This sections describes the main findings of the agent-based simulation for the indi-
vidual and team incentive schemes. Having been analyzed by means of a sensitivity



Steering through Incentives in Large-Scale Lean Software Development 43

0,8

1

1,2

1,4

1,6

1,8
n 

fi
tn

es
s 

(a
cr

os
s 

te
am

s 
an

d 
ag

en
ts

)

Fitness of Actions Based on Individual Rewards

0

0,2

0,4

0,6

0 50 100 150 200 250 300 350 400 450

M
ea

n 
ac

tio
n

Sprint

Inter-team dependency resolution (INTERRES) Intra-team dependency resolution (INTRARES) No dependency resolution (NORES)

Fig. 1. Mean fitness across all agents and teams with individual rewards for actions inter-team
dependency resolution (INTERRES)(mean=0.040, std=0.008), intra-team dependency resolution
(INTRARES)(mean=0.006, std=0.0004), and no dependency resolution (NORES)(mean=1.479,
std=0.012). The figure shows the training phase (rounds <= 400) as well as the convergence
phase (rounds > 400). Given values for mean and std refer only to the convergence phase.

analysis, the observations are robust against the simulation parameters “number of
agents per team“, “number of teams“, and “learning rate“.

6.1 Individual Incentives

Simulation settings with the individual incentive scheme yield the following results (cf.
Figure 1 in a setting with 5 teams consisting of 10 team members):

– The action no dependency resolution (NORES) significantly (p << 0.01) yields
the highest overall mean fitness across all agents and teams which supports Hy-
pothesis H1a and H1b

– The action inter-team dependency resolution (INTERRES) yields a significantly
(p << 0.01) higher mean fitness across all agents and teams than the action intra-
team dependency resolution (INTRARES) which supports Hypothesis H1c.

6.2 Team Incentives

In settings where agents are rewarded based on the total number of successfully pro-
cessed backlog items of the whole team, the following results can be observed (cf. Fig-
ure 2 (training and convergence phase) and Figure 3 (convergence phase) in a setting
with 5 teams consisting of 10 team members):

– The action inter-team dependency resolution (INTERRES) is strictly dominating
the action no dependency resolution (p << 0.01) which supports hypothesis H2a.



44 B.S. Blau et al.

6

8

10

12

14

n 
fi

tn
es

s 
(a

cr
os

s 
te

am
s 

an
d 

ag
en

ts
)

Fitness of Actions Based on Team Rewards

0

2

4

0 50 100 150 200 250 300 350 400 450

M
ea

n 
ac

tio
n

Sprint

Inter-team dependency resolution (INTERRES) Intra-team dependency resolution (INTRARES) No dependency resolution (NORES)

Fig. 2. Mean fitness across all agents and teams with team rewards for actions inter-team depen-
dency resolution (INTERRES), intra-team dependency resolution (INTRARES), and no depen-
dency resolution (NORES) (including training phase)

11,3

11,5

11,7

11,9

12,1

12,3

12,5

n 
fi

tn
es

s 
(a

cr
os

s 
te

am
s 

an
d 

ag
en

ts
)

Fitness of Actions Based on Team Rewards

10,5

10,7

10,9

11,1

400 410 420 430 440 450 460 470 480 490 500

M
ea

n 
ac

tio
n

Sprint

Inter-team dependency resolution (INTERRES) Intra-team dependency resolution (INTRARES) No dependency resolution (NORES)

Fig. 3. Mean fitness across all agents and teams with team rewards for actions inter-team depen-
dency resolution (INTERRES)(mean=12.0, std=0.087), intra-team dependency resolution (IN-
TRARES)(mean=11.098, std=0.068), and no dependency resolution (NORES)(mean=11.894,
std=0.090) (convergence phase)



Steering through Incentives in Large-Scale Lean Software Development 45

– The action intra-team dependency resolution (INTRARES) is significantly (p <<
0.01) outperformed by the action inter-team dependency resolution (INTERRES)
which supports hypothesis H2b.

6.3 Practical Implications

In our work, we analyzed the effect of organizational settings and incentive schemes
in large-scale lean software development on the information flow within and between
teams as well as performance aspects.

Our analysis has shown that individual rewards foster opportunistic behavior in teams,
i.e. actions that serve the team by resolving backlog item dependencies and remov-
ing impediments are not conducted by the agents. On the other hand, a team incentive
scheme that rewards agents based on the total number of successfully processed back-
log items of the whole team promote behavior that is beneficial for the whole team.
As the effort to resolve backlog item dependencies at a later point in time is expo-
nentially higher than at the beginning of the sprint, agents follow an early dependency
resolution. More precisely, resolving inter-team dependencies at a later point in time is
more time consuming than intra-team dependencies which incentivizes agents to pre-
fer a dependency resolution across team boundaries. In general, our results underline
the importance of dependency resolution—and therefore, traceability and requirements
management, in large software organizations [22].

One of the basic principles of the lean methodology states the empowerment of
the teams instead of enforcing a strictly governed process corset [30]. As a trade-off,
this implies that managerial monitoring and steering of the development process be-
comes cumbersome. Therefore, traditional methodologies and tools stemming from
well-known project management techniques are partly not applicable in agile envi-
ronments, which requires new approaches to manage a successful execution of lean
projects.

Moreover, our work has shown that a sensible and efficient design of incentive
schemes in large-scale lean software development is a promising tool to steer individual
behavior, diminish opportunism and local optimization, foster efficient communication
across team boundaries, and break silos that clash with the company’s overall objec-
tives. Hence, our results indicate that team-based rewarding can prevent opportunistic
behavior and silo thinking which is in line with recent literature [37].

7 Summary of Findings and Conclusions

The contribution of our work comprehends the following findings:

– Incentive schemes play a central role for steering large-scale lean software devel-
opment and to align individual and company objectives.

– In such complex environments, agent-based simulations are a promising method to
evaluate different incentive designs and derive practical implications.

– Rewards based on individual performance advocate selfish behavior of team mem-
bers, i.e. each individual focuses on silo work instead of removing impediments
and sharing information within and between teams to resolve dependencies.



46 B.S. Blau et al.

– Rewards directly tied to team-based value creation help to diminish opportunistic
behavior and implement incentives to foster backlog item dependency resolution
through intense communication across team boundaries.

The results of the simulation match very well the findings from social psychology.
Support for H1c and H2b can be easily found because a differentiation between an in-
group and an out-group (in this particular case between INTERRES and INTRARES)
is always in favor of the in-group for an individual. This is due to the fact that being
differentiated gives an individual a positive value, especially if someone identifies itself
with its in-group [50]. Therefore a combination of team and individual incentives might
help to achieve top performance in e.g. software development [46].

Outlook. As future work, we will validate our simulation results more systematically
with real-world data from large-scale software enterprises implementing lean and agile
practices. More specifically, we plan to analyze existing backlogs, log files, and other
documentation of work practices as well as conduct qualitative interviews with a certain
number of teams from different product areas. In doing, so we intend to (a) further elab-
orate the external validity of our simulation results and (b) gain more insights regarding
the industrial context of our research questions.

Furthermore, we intend to investigate more sophisticated incentive schemes and their
composition into hybrid patterns. We also plan to extend our model regarding hierar-
chical organizational settings and implications of distributed teams with communication
barriers. Questions like how different incentive schemes can be grouped and assessed
regarding their applicability and suitability in different organizational settings need to
be further investigated. From an economic perspective, we plan to extend the underly-
ing model to capture partly irrational behavior and to vary the feedback quality in terms
of timeliness and signal noise.

References

1. Agile Alliance: Agile Manifesto (2001), http://www.agilemanifesto.org (April
14, 2004)

2. Axelrod, R.: Advancing the art of simulation in the social sciences. Complex 3, 16–22 (1997)
3. Beck, K.: Embracing change with extreme programming. IEEE Computer 32, 70–77 (1999)
4. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley (2000)
5. Beck, K.: Test-Driven Development: By Example. Addison-Wesley (2003)
6. Blau, B., Conte, T., van Dinther, C., Weinhardt, C.: A Multidimensional Procurement Auc-

tion for Trading Composite Services. Electronic Commerce Research and Applications Else-
vier Journal. Special Issue on Emerging Economic, Strategic and Technical Issues in Online
Auctions and Electronic Market Mechanisms 9(5), 460–472 (2010); special Section on Strat-
egy, Economics and Electronic Commerce

7. Blau, B., Conte, T., Weinhardt, C.: Incentives in Service Value Networks – On Truthfulness,
Sustainability, and Interoperability (December 2010)

8. Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human sys-
tems. Proceedings of the National Academy of Science of the USA (2002)

9. Cao, L., Ramesh, B., Abdel-Hamid, T.: Modeling dynamics in agile software development.
ACM Trans. Manage. Inf. Syst. 1, 5:1–5:26 (2010)

http://www.agilemanifesto.org


Steering through Incentives in Large-Scale Lean Software Development 47

10. Cohn, M.: Agile estimating and planning. Prentice Hall (2006)
11. Cohn, M., Ford, D.: Introducing an agile process to an organization (software development).

Computer 36(6), 74–78 (2003)
12. Conboy, K.: Agility from first principles: Reconstructing the concept of agility in information

systems development. Information Systems Research 20(3), 329–354 (2009)
13. DeMatteo, J.S., Eby, L.T., Sundstrom, E.: Team-based rewards: Current empirical evidence

and directions for further research. Research in Organizational Behavior 20, 141–183 (1998)
14. Dingsoyr, T., Dybå, T., Moe, B.: Agile Software Development: Current Research and Future

Directions. Springer, Heidelberg (2010)
15. Dyba, T., Dingsoyr, T.: Empirical studies of agile software development: A systematic re-

view. Information and Software Technology 50(9-10), 833–859 (2008)
16. Erdogmus, H., Williams, L.: The economics of software development by pair programmers.

Engin. Econom. 48, 283–319 (2003)
17. Erez, M., Somech, A.: Is group productivity loss the rule or the exception? effects of cul-

ture and Group-Based motivation. The Academy of Management Journal 39(6), 1513–1537
(1996)

18. Fry, C., Greene, S.: Large scale agile transformation in an on-demand world. In: Proceedings
of the AGILE Conference 2010, pp. 136–142 (2007)

19. Hertel, G., Konradt, U., Orlikowski, B.: Managing distance by interdependence: Goal setting,
task interdependence, and team-based rewards in virtual teams. European Journal of Work
and Organizational Psychology 13(1), 1–28 (2004)

20. Hertel, G., Kerr, N.L., Mess, L.A.: Motivation gains in performance groups: Paradigmatic
and theoretical developments on the koehler effect. Journal of Personality and Social Psy-
chology 79(4), 580–601 (2000)

21. Hevner, A., March, S., Park, J., Ram, S.: Design science information systems research. MIS
Quarterly 28(1), 75–105 (2004)

22. Hildenbrand, T.: Improving Traceability in Distributed Collaborative Software
Development—A Design-Science Approach. Phd thesis, University of Mannheim,
Germany, Frankfurt (2008)

23. Katz, R., Allen, T.J.: Investigating the not invented here (NIH) syndrome: A look at the
performance, tenure, and communication patterns of 50 r & d project groups. R&D Manage-
ment 12(1), 7–20 (1982)

24. Kerr, N.L.: Motivation losses in small groups: A social dilemma analysis. Journal of Person-
ality and Social Psychology 45(4), 819–828 (1983)

25. Kerr, N.L., Bruun, S.E.: Dispensability of member effort and group motivation losses: Free-
rider effects. Journal of Personality and Social Psychology 44(1), 78–94 (1983)

26. Kotter, J.: Leading change. Harvard Business Press (1996)
27. Kozlowski, S., Bell, B.: Work groups and teams in organizations. In: Handbook of Psychol-

ogy (2003)
28. Larman, C., Vodde, B.: Scaling Lean and Agile Development: Thinking and Organizational

Tools for Large-Scale Scrum. Addison-Wesley Longman (2008)
29. Larman, C., Vodde, B.: Practices for Scaling Lean and Agile Development: Large, Multi-

site, and Offshore Product Development with Large-Scale Scrum. Addison-Wesley Longman
(2010)

30. Lee, G., Xia, W.: Toward agile: An integrated analysis of quantitative and qualitative field
data. MIS Quarterly 34(1), 87–114 (2010)

31. Leffingwell, D.: Scaling software agility: best practices for large enterprises. Addison-
Wesley (2007)

32. Leffingwell, D.: The big picture of enterprise agility by dean. Whitepaper, pp. 1–16 (2009)
33. Macal, C.M., North, M.J.: Agent-based modeling and simulation: desktop abms. In: Pro-

ceedings of the 39th Conference on Winter Simulation: 40 Years! The Best is Yet to Come,
WSC 2007, pp. 95–106. IEEE Press, Piscataway (2007)



48 B.S. Blau et al.

34. Matsui, T., Kakuyama, T., Onglatco, M.U.: Effects of goals and feedback on performance in
groups. Journal of Applied Psychology 72(3), 407–415 (1987)

35. Petersen, K., Wohlin, C.: Measuring the flow in lean software development. Software - Prac-
tice and Experience (2010)

36. Poppendieck, M., Poppendieck, T.: Lean software development: an agile toolkit. Addison-
Wesley Professional (2003)

37. Poppendieck, M.: Unjust deserts. Better Software, 33–47 (July/August 2004)
38. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From Con-

cept to Cash. The Addison-Wesley Signature Series. Addison-Wesley Professional (2006)
39. Reinertsen, D.G.: The Principles of Product Development Flow: Second Generation Lean

Product Development. Celeritas Publishing (2009) ISBN 978-1935401001
40. Sawilowsky, S., Blair, R.: A more realistic look at the robustness and type II error properties

of the t test to departures from population normality. Psychological Bulletin 111(2), 352–360
(1992)

41. Schnitter, J., Mackert, O.: Introducing agile software development at sap ag - change proce-
dures and observations in a global software company. In: Proceedings of the 5th International
Conference on Evaluation of Novel Approaches to Software Engineering, ENASE (2010)

42. Schwaber, K.: Agile project management with Scrum, vol. 7. Microsoft Press, Redmond
(2004)

43. Schwaber, K.: The Enterprise and Scrum. Microsoft Press (2007)
44. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall (2001)
45. Siebers, P.O., Macal, C.M., Garnett, J., Buxton, D., Pidd, M.: Discrete-event simulation is

dead, long live agent-based simulation! J. Simulation 4(3), 204–210 (2010)
46. Snell, S.A., Dean, J.W.: Strategic compensation for integrated manufacturing: The moderat-

ing effects of jobs and organizational inertia. The Academy of Management Journal 37(5),
1109–1140 (1994)

47. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley Longman (2010) ISBN-13:
978-0137053469

48. Stroebe, W., Diehl, M., Abakoumkin, G.: Social compensation and the koehler effect: Toward
a theoretical explanation of motivation gains in group productivity. In: Witte, E., Davis, J.
(eds.) Understanding Group Behavior: Consensual Action by Small Groups, vol. 2, pp. 37–
65. Erlbaum, Mahwah (1996)

49. Tuckman, B.W.: Developmental sequence in small groups. Psychological Bulletin 63(6),
384–399 (1965)

50. Turner, J., Tajfel, H.: Social categorization and social discrimination in the minimal group
paradigm: Studies in the social psychology of intergroup relations. In: Tajfel, H. (ed.) Differ-
entiation between Social Groups, European Monographs in Social Psychology, vol. 14, pp.
101–140. Academic Press, London (1978)

51. Wageman, R.: Interdependence and group effectiveness. Administrative Science Quar-
terly 40(1), 145–180 (1995)

52. Watkins, C., Dayan, P.: Q-Learning. Machine Learning 8(3), 279–292 (1992)
53. West, D., Grant, T.: Agile development: Mainstream adoption has changed agility. Tech. rep.,

Forrester Research (January 2010)
54. Williams, K.D., Karau, S.J.: Social loafing and social compensation: The effects of expecta-

tions of co-worker performance. Journal of Personality and Social Psychology 61(4), 570–
581 (1991)

55. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case for pair
programming. IEEE Softw. 17, 19–25 (2000)

56. Yin, R. K.: Case study research: Design and methods. Sage Publications (2007)



Comparing and Evaluating Existing
Software Contract Tools

Janina Voigt, Warwick Irwin, and Neville Churcher

Department of Computer Science and Software Engineering, University of Canterbury
Christchurch, New Zealand

jvo24@pg.canterbury.ac.nz,
{warwick.irwin,neville.churcher}@canterbury.ac.nz

Abstract. The idea of using contracts to specify interfaces and interactions be-
tween software components was proposed several decades ago. Since then, a
number of tools providing support for software contracts have been developed.
In this paper, we explore eleven such technologies to investigate their approach
to various aspects of software contracts. We present the similarities as well as
the areas of significant disagreement and highlight the shortcomings of existing
technologies. We briefly introduce PACT, a software contract tool under devel-
opment, explaining its approach to various aspects of software contracts.

Keywords: Software contracts, Design by contract, Formal software
specification.

1 Introduction

When writing software, we aim to create programs which not only work correctly, but
are also reliable, easy to use, understand and maintain. These and other factors combine
to determine the level of quality in software.

Developing high quality software is a difficult, complex and time-consuming task.
The sheer size and complexity of software contribute to these difficulties; it is not un-
usual for a single program to contain millions of lines of code, far too much for one
person to understand. To manage this size and complexity, we break large systems into
smaller components which can be developed independently. A developer working on
one component does not need to know the internal details of other components of the
system; he or she only needs to understand the other components’ interfaces in order to
use their services.

Software contracts (a subfield of formal specifications) are used to explicitly define
the interfaces of software components, specifying the responsibilities of both the client
using a service and the supplier of the service. This formalises the interactions between
components of the software and ensures that two components interact correctly [27].

When software contracts are not used, clients of a service usually have access to
information about the service’s interface, including method signatures, as well as, op-
tionally, documentation about how to use the service. Software contracts elaborate on
this by formally specifying protocols of interaction which otherwise may have remained

L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 49–63, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



50 J. Voigt, W. Irwin, and N. Churcher

implicit. Consequently, we regard contracts as a natural extension of explicit type sys-
tems; they specify interfaces fully rather than just specifying signatures.

We believe that software contracts can mitigate some of the problems surrounding
large scale software development. They not only improve the correctness of software by
explicitly specifying interaction protocols, but also serve as documentation and clarify
correct use of inheritance [27].

Further, formal specifications such as software contracts “represent a significant op-
portunity for testing because they precisely describe what functions the software is sup-
posed to provide in a form that can easily be manipulated” [31, page 119]. In particular,
software contracts describe valid inputs and outputs to methods; this information can
be used by automatic testing tools to find valid test inputs and decide if particular test
outputs are correct.

Despite the fact that the main ideas of software contracts were proposed several
decades ago, they are still not commonly used in mainstream software development.
Meyer remarks that

In relations between people and companies, a contract is a written document
that serves to clarify the terms of a relationship. It is really surprising that in
software, where precision is so important and ambiguity so risky, this idea has
taken so long to impose itself. [27, page 342]

However, more recently several different technologies supporting software contracts
have been developed, including tools for mainstream programming platforms such as
Java and .NET. Along with these technologies, a number of supporting tools are emerg-
ing. Testing tools such as AutoTest for Eiffel [28] and Pex for .NET [3,32] automati-
cally extract unit tests from contracts without the need for input from developers. Static
analysers such as Boogie for the .NET contract language Spec# [1] and ESC/Java for
the Java contract language JML [13] attempt to prove the correctness of software at
compile-time.

As more technologies supporting software contracts emerge and their usage becomes
more common, it is important for us to take stock of current developments and uncover
any issues and areas of disagreement which need to be addressed in the future. This is
what we attempt to do in this paper, as part of a wider project in which we seek both
to strengthen the theoretical underpinnings of contracts and to develop tools to support
the adoption of contracts in modern software engineering environments.

We are currently developing our own software contract tool, PACT, applying the
lessons learned from evaluating and comparing existing contract tools [34]. Although
we do not aim to describe PACT in detail here, we highlight how it approaches some
aspects of software contracts as we discuss them.

The rest of this paper is structured as follows: Section 2 explains the background of
software contracts. Section 3 presents a comparison of several contract technologies,
highlighting the similarities and differences. A discussion of the issues and criticisms
of existing approaches follows in Sect. 4 before we present our conclusions in Sect. 5.



Comparing and Evaluating Existing Software Contract Tools 51

2 Background

The roots of software contracts run very deep in the field of computer science; although
it has been little recognised in the literature, the origins of the idea can be traced as far
back as Turing, who first presented the idea of assertions to check program correctness
in 1949 [33].

In 1969, Hoare introduced Hoare triples. He used the notation P{Q}R to mean
that “If the assertion P is true before initiation of a program Q, then the assertion R
will be true on its completion” [14, p. 577]; P is commonly called the precondition,
while R is the postcondition. Three years later, Hoare also presented the concept of the
class invariant, a logical predicate I where “each operation (except initialisation) may
assume I is true when it is first entered; and each operation must in return ensure that it
is true on completion” [15, p. 275].

In the late 1980s, Meyer applied Hoare’s work in his development of Design by
ContractTM and the programming language EIFFEL which included the concepts of
preconditions, postconditions and class invariants [25]. Preconditions specify what the
client must ensure before calling the service provider; this could for example include en-
suring that the parameters are not null. Postconditions define what the service provider
promises in return, given that the client has fulfilled the preconditions.

As an example, we define the contract for a simple Stack class using pseudo code
with the standard methods push(Object obj) and pop():

class Stack {
private Object[] stack;
private static final int MAX_SIZE = 100;
private int size;

Invariant: size >= 0 && size <= MAX_SIZE;

Precondition: !isFull()
Postcondition: peek() == obj

&& size == old size + 1
public void push(Object obj){
stack[size++] = obj;

}

Precondition: !isEmpty()
Postcondition: size == old size - 1
public Object pop() {
return stack[--size];

}
}

We have defined preconditions and postconditions for push and pop. The precon-
dition for pop ensures that the methods are not called when the Stack is empty; the
precondition for pushmakes sure the method is not called if the Stack is already full.
The postconditions of the two methods check that the size of the Stack has changed
in the correct way by comparing it to the old size of the Stack; that is, the size before
the method’s execution.



52 J. Voigt, W. Irwin, and N. Churcher

The invariant of the Stack ensures that its size never drops below zero or exceeds
the Stack’s capacity. This invariant must be satisfied in all observable states of every
instance of a class [25], specifically after the constructor has finished constructing a
class instance and before and after each call to an exported method of the class; that is,
a method accessible from outside the class. This implies that while methods of the class
are executing, they may violate the class invariant, as long as it is again satisfied when
the method returns [27].

Software contracts also apply in the presence of inheritance. When using inheri-
tance, a subtype becomes substitutable for its supertype. This means, for example, that
a method expecting an object of type A may be given an object of type B as long a B
inherits from A. Whenever a client makes use of a supplier, it does not need to know
whether the supplier is an immediate instance of the specified type or an instance of
some subtype. Therefore, for contracting to continue to work, the subclass must adhere
to the contract specified by the superclass [25]. This means that

– Preconditions must be the same or weaker than in the superclass. The subclass
cannot expect more of the client, although it may expect less;

– Postconditions must be the same or stronger than in the superclass. The client ex-
pects certain results which must be delivered by the subclass. In addition, the sub-
class may choose to deliver more than promised by the superclass; and

– Class invariants are inherited from the superclass. The subclass may introduce ad-
ditional class invariants [27].

In the next section, we present different contract technologies and contrast their ap-
proaches to the implementation and interpretation of software contracts.

3 Contract Technologies

We investigated a number of technologies and programming languages which allow the
addition of software contracts to programs, with a particular focus on the following
eleven:

– Java contract tools, including
• JAVA MODELING LANGUAGE (JML) [19,21,20];
• ICONTRACT [18];
• CONTRACT JAVA [12];
• HANDSHAKE [10];
• JASS [6];
• JCONTRACTOR [16,17]; and
• JMSASSERT [23].

– .NET contract languages, including
• SPEC# [4,22]; and
• CODE CONTRACTS [11,29].

– EIFFEL [25,26,27]; and
– OBJECT CONSTRAINT LANGUAGE (OCL) [30,35]



Comparing and Evaluating Existing Software Contract Tools 53

The large number of existing software contract tools made it impractical to consider
all of them and we therefore focused our investigation on the main technologies which
add contract support to the popular programming platforms Java and .NET. In addition,
we looked at Eiffel, the original software contract language. OCL was included because
of its close links to Java technologies.

All the tools we investigated aim to support software contracts, most of them at
the implementation level. OCL is the only technology to work exclusively at the soft-
ware design level; it allows contracts including preconditions and postconditions to be
added to UML diagrams, while all other tools we looked at allow developers to augment
source code using contracts.

We have identified significant differences and shortcomings in what they deliver. Ta-
ble 1 gives an overview of the similarities and differences of the tools. In the following
section, we describe the main characteristics of the technologies, and in the subsequent
section we summarise the most important themes and highlight areas of inconsistency.

3.1 Core Contract Support

All of the technologies we looked at provide core contract support, allowing the spec-
ification of preconditions, postconditions and class invariants, with the exception of
CONTRACT JAVA which omits class invariants.

In addition to the basic contract specifications, some technologies offer additional
constructs. SPEC#, JML and JASS allow the specification of frame conditions. Frame
conditions specify which parts of the memory a method is allowed to modify. This
ensures that a method does not unexpectedly change the value of variables it should
not be allowed to modify [4,22]. A variable is deemed to have been modified if it is
accessible at the start and the end of a method and its value has been changed. This
means that newly created objects and local variables are not included in the restrictions
of frame conditions [19].

SPEC#, CODE CONTRACTS and JML further allow the definition of exceptional
postconditions, which specify conditions that need to be satisfied if the method termi-
nates with an exception.

Of the technologies we considered, JML provided the most extensive contract sup-
port. Among other constructs, it also supports history constraints which describe how
the value of a field is allowed to change between two publicly visible states. This can
for example be used to express that the value of a field may only increase [19]. JML
further introduces the concept of model fields which can be used when the inner data
representation of a class needs to be changed but the developer does not want to update
all of the contracts to the new data format. The model field of the old data format can be
used from within the contracts and a correspondence is defined between the new data
format and the model field [20].

3.2 Special Operators and Quantifiers

The different technologies also offer varying amounts of special operators and quan-
tifiers for use in contracts. All allow postconditions to refer to the return value of the
method; this functionality is usually provided by the result or return operator. In



54 J. Voigt, W. Irwin, and N. Churcher

Table 1. Overview of Contract Tools

JM
L

iC
on

tr
ac

t

C
on

tr
ac

tJ
av

a

H
an

ds
ha

ke
Ja

ss
jC

on
tr

ac
to

r
JM

S
A

ss
er

t

S
pe

c
#

C
od

e
C

on
tr

ac
ts

E
if

fe
l

O
C

L

Contract Pre / Postconditions � � � � � � � � � � �
Support Class Invariant � � � � � � � � � �

Frame Conditions � � �
Exceptional Postconditions � � �

Operators Result � � � � � � � � � � �
Old � � � � � � � � �

Contract Original Language � � � � �
Language Modified Language � � � � �

Scripting Language �
Contract Comment � � �
Placement Annotation �

With Program � � � � � � � �
Separately � � � �

Method Purity Enforced � � �
Precondition Visible Members Only � � �
Invariant After Method � � �
Check Before and After � N/A � � � � N/A

Expose Block �
Invariant All Methods �
Check Non-private Methods � N/A � � N/A � N/A

Public Methods Only � � �
Contract Enforced � � � � � � � � � N/A
Inheritance Precondition Weakening � � � � � � � � N/A
Multiple Fully Supported � �
Inheritance For Interfaces Only � � � � � � � � �
Contract Preprocessor � � �
Compilation Custom Compiler � � N/A

Standard Compiler � � �
Runtime Linking � �

addition, all except CONTRACT JAVA and HANDSHAKE also allow postconditions to
refer to the value of a variable before method execution, often through the old opera-
tor. This is important to check that the value of a field is changed correctly by a method,
as we did in our Stack example above.

Most technologies also offer some quantifiers such as for all and exists; no such quan-
tifiers are available in EIFFEL, but Meyer argues that they can be easily emulated us-
ing conventional programming language constructs [25]. Several tools, including JML,
SPEC#, JCONTRACTOR and OCL, have a sophisticated range of additional operators
including quantifiers, counting functions and predicate logic operators.



Comparing and Evaluating Existing Software Contract Tools 55

3.3 The Contract Language

Contract specifications for Java and .NET represent additions to an existing program-
ming language. Some tools, including CODE CONTRACTS and JCONTRACTOR, spec-
ify contracts in the existing language. EIFFEL and SPEC# are both languages which
natively support contracts and thus the language used to specify contracts is part of the
wider programming language. The advantage of this approach is that there is no need
for a separate compiler and contracts can be processed by standard tools along with
the remainder of the program. In CODE CONTRACTS, contracts are specified by calling
the static methods of the Contract class; for example, preconditions are defined by
calling the Requires method of the Contract class. In JCONTRACTOR, method
contracts are specified in contract methods, using standard Java. Postcondition methods
take the additional parameter RESULT, which can be used to refer to the return value
of the method. Postconditions also have access to a special object called OLD, which
contains the state of the object as it was before the method executed [17].

The remaining tools we considered take a slightly different approach: they take the
original programming language as a basis but augment it using additional keywords and
operators. This approach is taken by ICONTRACT, JML and others; it requires special
tools to translate the contracts into the original programming language.

JMSASSERT takes this approach a step further by using a full scripting language,
JMScript, for contract specification. While JMScript is similar to Java, the underlying
programming language, it differs sufficiently that developers need to learn the script-
ing language before being able to write contracts, significantly steepening the learning
curve.

3.4 Integration of Contracts into Source Code

There are several ways in which contracts can be incorporated into source code. Some
contract technologies, including JML, JASS and JMSASSERT, require contracts to be
added in the form of comments, while in ICONTRACT they are defined as annotations.
The advantage of these two approaches is that they work when the contract language is
not the same as the standard programming language; the contracts are simply ignored
by the standard compiler, meaning that no special compiler is needed when working
with contracts. Instead, the contracts are inserted into the source code by a preprocessor
and the program is then compiled using the standard compiler.

In EIFFEL, SPEC#, CODE CONTRACTS and JCONTRACTOR, contracts are defined as
an integral part of the program and are compiled and checked by the standard compiler.
This approach works for these technologies because the contracts are expressed in the
same language as the rest of the program.

The placement of contracts in the programs also varies between different technolo-
gies. In most cases, for example in JML, ICONTRACT and SPEC#, method contracts
including preconditions and postconditions are specified as part of the method header.
In CODE CONTRACTS, preconditions and postconditions are placed inside the method
body along with the method implementation. These two approaches have the advantage
of clearly showing which contracts apply to which methods.

Other technologies enforce a separation between contracts and the code to which
they apply. In HANDSHAKE, specifications are placed in separate contract files [17];



56 J. Voigt, W. Irwin, and N. Churcher

in CONTRACT JAVA they are placed in separate interfaces [12]. This approach has the
advantage of clearly separating contracts from standard code, allowing them to be con-
sidered independently of implementation. It further allows the addition of contracts
even when source code is not available, for example when working with third party
software.

JCONTRACTOR allows both of these approaches: contract methods to define precon-
ditions and postconditions may be placed in the same class as the methods to which
they apply; alternatively, they can be defined in a separate contract class named
ClassName CONTRACT, which must extend the class to which it is adding contracts
in order to inherit relevant behaviour and to make the objects with contracts substi-
tutable for objects without contracts [17].

3.5 Side Effects in Contracts

Preconditions, postconditions and invariants should not call methods which cause side
effects since this can create bugs which are difficult to trace. Some technologies, includ-
ing SPEC# and JML, enforce this and allow only methods which have been declared
free of side effects (pure methods) to be called from within contracts. Pure methods
may only call other pure methods and may not modify any part of the memory. For
example, the two query methods we used to define our Stack contract, isEmpty and
isFull, have no side effects and can therefore safely be called from within a contract.

Most of the technologies do not explicitly enforce method purity; they only rec-
ommended that no methods with side effects are called from within contracts. CODE

CONTRACTS is expected to enforce purity in the future [29]. OCL is a modeling lan-
guage and all its code is implicitly free of side effects and thus any methods called from
the contract are guaranteed to have no side effects.

3.6 Precondition Visibility

Contract theory requires clients to ensure that preconditions hold; in order to ensure
that clients can perform such checks, it is important to ensure that preconditions do not
refer to any data or methods which are not visible to clients [25,11]. Some contract
technologies enforce this restriction, while others do not.

CODE CONTRACTS ensures that anything used to define the precondition is visible
to clients. JASS and JML require anything referred to by the precondition to be at least
as visible as the method itself. Thus, the preconditions of public methods must be
defined using only public members; preconditions for protected methods may
refer to both public and protected ones.

3.7 Checking of Class Invariants

Class invariants are constraints that need to be maintained in all visible states of the
objects of a class; that is they must be true at the start and the end of each method that
can be called by a client. For this reason, Meyer asserts that each invariant essentially
represents an additional precondition and postcondition for each exported method in a



Comparing and Evaluating Existing Software Contract Tools 57

class [25]. EIFFEL, JML and JMSASSERT therefore check class invariants at the start
and end of each method execution.

However, seeing the invariant as an addition to each method’s precondition raises a
new problem:

The object invariant of class T is a condition on the internal representation of T
objects, the details of which should be of no concern to a client of T, the party
responsible for establishing the precondition. Making clients responsible for
establishing the consistency of the internal representation is a breach of good
information hiding practices. [2, page 30]

For this reason, other technologies, including CODE CONTRACTS, ICONTRACT and
JASS, check the class invariant only at the end of method executions; that is, only in the
postconditions, not the preconditions.

SPEC# takes a more complex approach to invariant checking. It allows changes to
memory only inside special expose blocks because such changes could invalidate
class invariants. At the start of each expose block, the object’s invariant is set to
false. Changes to data are now allowed and at the end of the expose block the
invariant is re-checked. This protects invariants even in the presence of concurrency
and reentrancy: an expose block can only be entered when the object’s invariant is
true; that is, it can only be entered by one thread of execution at a time [4]. While
this approach has the advantage of working in the presence of concurrency, it greatly
increases the complexity of writing programs with contracts.

Apart from the disagreement over when the invariant needs to be checked, there is
also some debate about which methods this check applies to. Strictly speaking, the class
invariant must be maintained in all externally visible states but may be broken while
internal methods are executed. For example, a recursive method needs to maintain the
invariant only for its outermost invocation. Private methods should be allowed to
break the invariant; only methods called by the client should need to maintain it.

Of the technologies we considered, only JASS checks the invariant after each method
execution, effectively forcing all methods, including private methods, to maintain
the invariant. EIFFEL, ICONTRACT, HANDSHAKE and JMSASSERT require all non-
private methods to maintain the invariant, while CODE CONTRACTS, JML and JCON-
TRACTOR only require public methods to do so.

Some of the Java technologies allow only private methods to break the class in-
variant, while others allow private, package and protected methods to do so.
The latter approach is problematic, since calls to package and protected methods
may come from a different class, and therefore should be forced to maintain the invari-
ant. On the other hand, this allows methods from the subclass to call methods in the
superclass while the invariant is broken, which may provide valuable flexibility.

3.8 Inheritance of Contracts

Inheritance is an important mechanism in object oriented programming and conse-
quently contract tools need to support it. In many technologies, including EIFFEL,
ICONTRACT, JML and JCONTRACTOR, correct contract inheritance is enforced by



58 J. Voigt, W. Irwin, and N. Churcher

disjuncting inherited preconditions and conjuncting postconditions and invariants; this
leads to a weakening of preconditions and a strengthening of postconditions and in-
variants. CODE CONTRACTS and CONTRACT JAVA take a more restrictive approach:
while postconditions and invariants may be added by subclasses, no new preconditions
may be defined. This ensures that preconditions are not strengthened, but also makes
developers unable to weaken them.

While almost all technologies we investigated always enforce correct use of contract
inheritance, JASS takes a more flexible approach. It can check for correct inheritance
using refinement checks, but this is optional and can be turned off by the developer. In
OCL, the semantics of contract inheritance are not fully specified because it is a general
purpose modelling language rather than a concrete implementation.

Multiple inheritance is often seen as more flexible and elegant than single inheritance
[9,27]. Both .NET and Java support only single inheritance of classes and consequently
none of the contract tools based on .NET and Java support multiple inheritance for
classes; however, multiple inheritance is allowed between interfaces. EIFFEL, on the
other hand, fully supports multiple inheritance, making it more flexible and expressive.
Multiple inheritance is also allowed in UML diagrams and therefore handled by OCL.

3.9 Conversion of Contracts into Runtime Checks

Once contracts have been written, they are usually turned into runtime checks that report
whenever a contract is violated. This conversion may be done in several ways.

Programs written in EIFFEL, CODE CONTRACTS and SPEC# can simply be com-
piled using a standard language compiler, since contracts are expressed in the same
language as the rest of the code. The EIFFEL and SPEC# compilers insert runtime
checks for contracts during compilation; CODE CONTRACTS uses library classes to
implement contract checking. JML and CONTRACT JAVA provide a customised Java
compiler which not only compiles the program but also generates the runtime checks.
ICONTRACT, JASS and JMSASSERT all use a preprocessor which inserts Java state-
ments into the code before it is compiled by the standard Java compiler. This has the
advantage that the standard Java compiler can be used after preprocessing is completed.
HANDSHAKE and JCONTRACTOR use a dynamic library and class loader to inject run-
time checks when the program is executed, rather than at compile time.

4 Discussion

In our investigation of existing software contract technologies we have found some
areas of significant disagreement. The approaches of the technologies vary widely and
from Table 1 it becomes clear that no two tools take exactly the same approach.

Interestingly, we have uncovered some relatively basic issues which are handled in-
consistently, for example concerning the checking of class invariants. We believe that
it is important that the inconsistencies are resolved — or at least justified — in order
to increase developers’ confidence in contract tools and the practice of using software
contracts in general.

We found good support for core contract concepts, including preconditions, postcon-
ditions and invariants, in nearly all tools. We believe that any contract tool which does



Comparing and Evaluating Existing Software Contract Tools 59

not support these basic constructs is inadequate for practical use. CONTRACT JAVA, for
example, does not support the specification of class invariants, representing a serious
gap in this tool.

In addition to preconditions, postconditions and class invariants, we find the concept
behind frame conditions useful. It is often difficult to know what data is changed when
calling a method, particularly if this method calls other methods. In some cases, unex-
pected data changes can be difficult to trace to their origins. Defining frame conditions
forces developers to think carefully about which parts of the memory a method should
be able to access and modify. They inform the programmer of inappropriate memory
modifications, reducing the incidence of unexpected data changes.

Some contract technologies provide a wide range of special operators and quantifiers;
most tools provide at least two: the result or return operator to access the return
value of a method and the old operator to refer to the value of variables before the
method execution. However, two tools, CONTRACT JAVA and HANDSHAKE, do not
provide an old operator. This is a serious omission and severely restricts what contracts
can be expressed, such as the size checks in our Stack example.

Our own contract tool, PACT, takes a different approach from the contract tools
we have considered here; it does not provide an explicit old operator but rather allow
developers to define variables in the precondition which can later be accessed in the
postcondition. In this way, a value can be stored when the precondition is executed and
evaluated in the postcondition.

Most tools we considered here declared contracts using the same programming lan-
guage as for the rest of the program, although many introduced additional operators
and quantifiers. Only one tool, JMSASSERT, used a significantly different language to
define contracts. We suggest that this is an unnecessary burden on developers and is
likely to inhibit uptake of the technology.

With the exception of CODE CONTRACTS, all of the technologies we investigated
use contract definition syntax that groups contract information with method declaration
information. CODE CONTRACTS places contracts inside the actual methods. We feel
that this approach is not ideal, since it mixes contracts with implementation code and
makes it difficult to distinguish between them. We suggest that contracts should ideally
be declared separately from the implementation as part of a type definition. This is con-
sistent with existing literature, which suggests that public interfaces, or types, should be
separated [7,8]; that is, the type definition should contain signatures of visible methods,
but no internal details. By extension, such a type definition should include contracts for
publicly visible methods since, similarly to method signatures, contracts provide vital
information to clients wanting to use a service. For these reasons, PACT explicitly dis-
tinguishes between types and implementations and includes software contracts in type
definitions.

Some tools do not allow contracts to call methods with side effects since this can
create bugs which are difficult to trace; other technologies do not impose this restric-
tion. We agree with Barnett et al., who claim that the latter approach gives developers
too much freedom and is unsound. [5] As we argued above, it can be difficult to see
which parts of the memory a method modifies; similarly, it can be difficult to determine
whether or not a method is pure, particularly when this method calls other methods,



60 J. Voigt, W. Irwin, and N. Churcher

which in turn may not be pure. This makes both frame conditions and explicit declara-
tions of pure methods useful.

Clients are responsible for ensuring that preconditions are met before calling a
method. We are therefore surprised that not more tools ensure that methods and data
referred to in preconditions are visible to clients. If this is not the case, clients may not
be able to check preconditions and may therefore fail to fulfill their responsibilities un-
der the contract. Contracts are based on the idea of shared responsibility between clients
and service providers and having potentially invisible preconditions violates the foun-
dation of software contracts. Our tool PACT forces preconditions to be fully accessible
to clients, ensuring that they can be checked correctly by clients.

In the tools we studied, we found a particularly variable approach to invariant check-
ing. Some tools check invariants after each method, others before and after; some tools
require the invariant to hold at the start and end of all methods while others only apply
this restriction to public methods. In our view, the wide range of approaches stems
from the incomplete body of theory about this aspect of contracts. We have found no
research that explains when invariants should be checked and what implications the dif-
ferent approaches have. Given the wide range of different approaches, we feel that this
is an area where further investigation is warranted.

Most of the technologies allow private methods to break the invariant temporarily.
This makes sense because the internal operations of an object may not always maintain
the invariant at all times; however, it needs to be restored before returning control to the
client to ensure that the object is left in a consistent state. We therefore argue that ideally
the invariant should be checked before and after every method call originating from
outside the object. This would allow the object to break its own invariant temporarily
(possibly while calling code in the superclass) but would also ensure that the object
remains in a consistent state when it returns control. We aim to implement such invariant
checking in PACT in the future.

In the context of invariant checking, SPEC#’s approach is far more complex than that
of any other technology we investigated. It requires the object to be explicitly exposed
whenever its state is modified to ensure that its invariant cannot be violated by opera-
tions from the outside or through the presence of reentrancy and concurrency. Although
this approach is sound, we argue that it is too complex; it requires the use of compli-
cated constructs even when writing simple programs. We believe that this complexity
is likely to alienate new users and slow the uptake of SPEC# and software contracts in
general.

Support for inheritance of contracts is essential for their use in OO programming. We
found that all the tools with the exception of JASS ensure that contracts are inherited
correctly. JASS also allows correct contract inheritance to be enforced but makes this
optional. Most tools allow only single inheritance between classes, making them less
flexible. Like OCL and EIFFEL, PACT supports more expressive multiple inheritance.

Overall, we are encouraged by the high level of support we found for correct inher-
itance. Using inheritance correctly is notoriously difficult and our intuition sometimes
leads us to use it incorrectly. This is, for example, evident in the well-known square-
rectangle problem [24]. Our own experience shows that contracts are very valuable
when creating inheritance hierarchies because they force us to ensure that an instance



Comparing and Evaluating Existing Software Contract Tools 61

of the subclass is substitutable for an instance of the superclass; problems with contract
inheritance usually signal incorrect use of inheritance.

Most of the tools we looked at enforce the correct use of contracts by allowing
weaker preconditions through disjuncting inherited preconditions and allowing stronger
postconditions through conjuncting inherited postconditions. CODE CONTRACTS uses
this approach to ensure postconditions are strengthened; however, the tool does not
allow the weakening of preconditions because “We just haven’t seen any compelling
examples where weakening the precondition is useful” [29, page 15]. CODE CON-
TRACTS forces developers to declare all preconditions on the root method of an in-
heritance chain. In our work with CODE CONTRACTS, we have found this approach
very frustrating because it does not allow for flexible precondition definition. In partic-
ular, problems arise when a class inherits the same method from multiple interfaces. In
this situation, the preconditions of this method in all ancestors must be compatible; this
is an example where we feel that allowing precondition weakening is essential.

5 Conclusions

In our investigation of existing software contract tools we have uncovered a range of dif-
ferences, clearly demonstrating a level of confusion and conflict surrounding even some
basic concepts of software contracts. This indicates to us that more work is needed in
this area to resolve these issues and create a consensus or at least a clear taxonomy of the
different semantics of software contracts. We have identified a number of shortcomings
of existing tools and areas that require more research, including:

– The checking of class invariants;
– The separation of contracts and implementation; and
– The inheritance of contracts, particularly the weakening of preconditions.

We believe that using software contracts has the potential to greatly increase the quality
of software and speed up software development. Not only do they ensure that different
components of a system know how to interact with each other correctly, but they also
serve as documentation of developers’ intentions and can be used as a basis of auto-
mated testing tools. Furthermore, we believe that they are a highly valuable tool for
creating correct inheritance hierarchies.

The results presented in this paper have motivated the design and implementation of
our own contract tool, PACT, described in detail in [34] and separately in a forthcoming
publication. No single tool has all the functionality we consider essential, and we have
identified a number of additional features which will make contracts more attractive and
practicable for mainstream software engineering. In particular, PACT aims to:-

– Fully separate types from their implementations;
– Enhance the specification of types with contracts, including preconditions, post-

conditions and class invariants;
– Enforce correct inheritance of contracts;
– Support multiple inheritance;



62 J. Voigt, W. Irwin, and N. Churcher

– Support more expressive specification of contracts by allowing variables and other
control statements to be used within contracts;

– Ensure that preconditions only make use of members which are accessible to clients;
and

– Support checking of the class invariant at the end of each method call originating
from outside the object.

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

2. Barnett, M., Deline, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-
oriented programs with invariants. Journal of Object Technology 3, 27–56 (2004)

3. Barnett, M., Fähndrich, M., Halleux, P.D., Logozzo, F., Tillmann, N.: Exploiting the syn-
ergy between automated-test-generation and programming-by-contract. In: Proceedings of
ICSE 2009, 31th International Conference on Software Engineering, Companion, pp. 401–
402 (2009)

4. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An Overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

5. Barnett, M., Naumann, D., Schulte, W., Sun, Q.: 99.44% pure: useful abstractions in specifi-
cations. In: ECOOP Workshop on Formal Techniques for Java-Like Programs, FTfJP (2004)

6. Bartetzko, D., Fischer, C., Möller, M., Wehrheim, H.: Jass - Java with assertions. Electronic
Notes in Theoretical Computer Science 55 (2001)

7. Bruce, K.B.: Foundations of object-oriented languages: types and semantics. MIT Press,
Cambridge (2002)

8. Canning, P.S., Cook, W.R., Hill, W.L., Olthoff, W.G.: Interfaces for strongly-typed object-
oriented programming. In: OOPSLA 1989: Conference Proceedings on Object-Oriented Pro-
gramming Systems, Languages and Applications, pp. 457–467. ACM, New York (1989)

9. Cardelli, L.: A semantics of multiple inheritance. Information and Computation 76(2-3),
138–164 (1988)

10. Duncan, A., Hoelzle, U.: Adding contracts to Java with Handshake. Technical Report
TRCS98-32, University of California at Santa Barbara, Santa Barbara, CA, USA (1998)

11. Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages. In: SAC 2010: Pro-
ceedings of the 2010 ACM Symposium on Applied Computing, pp. 2103–2110. ACM, New
York (2010)

12. Findler, R., Felleisen, M.: Behavioral interface contracts for Java. Technical Report TR00-
366, Rice University (2000)

13. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: PLDI 2002: Proceedings of the ACM SIGPLAN 2002 Confer-
ence on Programming Language Design and Implementation, pp. 234–245. ACM, New York
(2002)

14. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the
ACM 12, 576–580 (1969)

15. Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1, 271–281
(1972)



Comparing and Evaluating Existing Software Contract Tools 63

16. Karaorman, M., Abercrombie, P.: jContractor: Introducing design-by-contract to Java using
reflective bytecode instrumentation. Formal Methods in System Design 27, 275–312 (2005)

17. Karaorman, M., Hölzle, U., Bruno, J.: jContractor: A Reflective Java Library to Support
Design by Contract. In: Cointe, P. (ed.) Reflection 1999. LNCS, vol. 1616, pp. 175–196.
Springer, Heidelberg (1999)

18. Kramer, R.: iContract - the Java(tm) design by contract(tm) tool. In: TOOLS 1998, p. 295.
IEEE Computer Society, Washington, DC (1998)

19. Leavens, G., Baker, A., Ruby, C.: Preliminary design of JML: a behavioral interface specifi-
cation language for Java. SIGSOFT Software Engineering Notes 31, 1–38 (2006)

20. Leavens, G., Cheon, Y.: Design by contract with JML (2006)
21. Leavens, G., Cheon, Y., Clifton, C., Ruby, C., Cok, D.: How the design of JML accommo-

dates both runtime assertion checking and formal verification. Science of Computer Pro-
gramming 55, 185–208 (2005)

22. Leino, K.R.M., Monahan, R.: Program verification using the Spec # programming system
(2008), http://research.microsoft.com/en-us/projects/specsharp/
etaps-specsharp-tutorial.ppt

23. Man Machine Systems: Design by contract for Java using JMSAssert (2009),
http://www.mmsindia.com/DBCForJava.html

24. Martin, R.: The Liskov Substitution Principle. C++ Report 8, 16–17, 20–23 (1996)
25. Meyer, B.: Writing correct software. Dr. Dobb’s Journal 14, 48–60 (1989)
26. Meyer, B.: Applying “design by contract”. Computer 25, 40–51 (1992)
27. Meyer, B.: Object-oriented software construction, 2nd edn. Prentice-Hall (1997)
28. Meyer, B., Ciupa, I., Leitner, A., Liu, L.L.: Automatic Testing of Object-Oriented Software.

In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.)
SOFSEM 2007. LNCS, vol. 4362, pp. 114–129. Springer, Heidelberg (2007)

29. Microsoft Corporation: Code contracts user manual (2010),
http://research.microsoft.com/en-us/
projects/contracts/userdoc.pdf

30. Object Management Group: Object constraint language version 2.2 (2010),
http://www.omg.org/spec/OCL/2.2

31. Offutt, A.J., Xiong, Y., Liu, S.: Criteria for generating specification-based tests. In: ICECCS
1999: Proceedings of the 5th International Conference on Engineering of Complex Computer
Systems, p. 119. IEEE Computer Society, Washington, DC (1999)

32. Tillmann, N., de Halleux, J.: Pex–White Box Test Generation for .NET. In: Beckert, B.,
Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008)

33. Turing, A.: Checking a large routine. In: Report of a Conference on High Speed Automatic
Calculating Machines, pp. 67–69 (1949)

34. Voigt, J.: Improving object oriented software contracts. Master’s thesis, University of Can-
terbury, Christchurch, New Zealand (2011)

35. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

http://research.microsoft.com/en-us/projects/specsharp/etaps-specsharp-tutorial.ppt
http://research.microsoft.com/en-us/projects/specsharp/etaps-specsharp-tutorial.ppt
http://www.mmsindia.com/DBCForJava.html
http://research.microsoft.com/en-us/projects/contracts/userdoc.pdf
http://research.microsoft.com/en-us/projects/contracts/userdoc.pdf
http://www.omg.org/spec/OCL/2.2


L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 64–81, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Continuous Improvement of Business Processes Realized 
by Services Based on Execution Measurement 

Andrea Delgado1, Barbara Weber2, Francisco Ruiz3, 
Ignacio García-Rodríguez de Guzmán3, and Mario Piattini3 

1 Computer Science Institute, Faculty of Engineering 
University of the Republica, Montevideo, Uruguay 

adelgado@fing.edu.uy 
2 Quality Engineering Research Group, Computer Science Institute 

University of Innsbruck, Innsbruck, Austria 
barbara.weber@uibk.ac.at 

3 Alarcos Research Group, Technologies and IS Department 
University of Castilla-La Mancha, Ciudad Real, Spain 

{francisco.ruizg,ignacio.grodriguez,mario.piattini}@uclm.es 

Abstract. Business Process Management (BPM) is being rapidly adopted by 
organizations wanting to focus on their business processes as key elements for 
controlling and improving the way they perform their business. The realization 
of business processes by services also helps in the improvement of their 
implementation, by decoupling the definition level from the technical one. In 
this article we present an approach to the continuous business process 
improvement based on execution measurement. It comprises an execution 
measurement model defining several measures for business process and service 
execution, and a continuous improvement process to guide the introduction of 
improvements. We have integrated several different approaches, techniques and 
methodologies in a single proposal to guide the improvement effort in an 
organization, providing support for business people from the definition to the 
analysis of the execution measures defined.  

Keywords: Business process management (BPM), Continuous improvement of 
business processes, Execution measurement. 

1 Introduction 

The Business Process Management (BPM) [1][2][3] paradigm is being used 
increasingly in organizations to manage their business. The explicit modelling of 
business processes (i.e. using BPMN [4]) together with information regarding its 
execution constitute the main elements with which to compare the functioning of the 
organization as it moves towards achieving its business goals. The measurement of 
their business process execution is a key issue to be able to analyze its operation to 
see if business goals are being achieved. If they are not, the idea is to find 
improvement opportunities that would modify the business process so that it could 
reach the goals defined.  



 Continuous Improvement of Business Processes Realized by Services 65 

MINERVA framework [5][6] provides support for the business process lifecycle 
[1] and its continuous improvement, implementing them with services [7] using 
model driven development [8]. It is made up of three dimensions: conceptual [9], 
methodological [10][11] and tools [12]. It thereby integrates concepts, models, 
methodologies and processes for both development and improvement, and tools. In 
this article we extend the definition of MINERVA describing the Business Process 
Continuous Improvement Process (BPCIP) for guiding the improvement effort and 
the Business Process Execution Measurement Model (BPEMM) to guide the 
selection, implementation, collection, analysis and evaluation of execution measures 
for Business Process (BP) implemented by services. The rest of the article is 
organized as follows: in Section 2 the BPCIP is presented detailing its phases and 
activities, Section 3 describes the BPEMM along with an example of its use, Section 
4 sets out related work and in Section 5 conclusions and future work are discussed. 

2 BP Continuous Improvement Process (BPCIP) 

The Business Process Continuous Improvement Process (BPCIP) is defined in the 
methodological dimension of MINERVA, and its main objective is to guide the 
improvement effort in the organization. It integrates the phases of the business 
process lifecycle in [1] and those from the continuous improvement process 
PmCOMPETISOFT in [13]. The measures defined in the Business Process Execution 
Measurement Model (BPEMM) are used to relate the BP execution to the 
organization’s business goals explicitly, as well as to implement, register and asses 
the associated data. In Section 3 BPEMM will be described in detail. The general 
framework of BPCIP is shown in Figure 1.  
 

 

Fig. 1. MINERVA Business Process Continuous Improvement Process (BPCIP) 



66 A. Delgado et al.  

A complete execution cycle through the MINERVA framework begins with 
modeling a new BP or redesigning an existing one in BPMN, whose execution is then 
measured and evaluated, aiming to identify improvement opportunities. BPMN was 
selected for many reasons mainly as it is an OMG standard widely adopted and 
MINERVA is a standardized framework. These improvements can then be fed back 
into the business process following a systematic approach based on the continuous 
improvement process defined. Finally, the measures of the new version of the 
business process comprising the improvements made are compared with the previous 
version, to evaluate the results of the changes carried out. On the left side of Figure 1 
the business process lifecycle (bottom left circle) defines four phases: Design & 
Analysis, Configuration, Enactment and Evaluation. For each of these phases we 
show explicitly the corresponding measurement activities in which the BPEMM is 
used (outer four arrowed circle). In addition, the arrow from Design&Analysis to 
Configuration indicates the use of the Business Process Service Oriented 
Methodology (BPSOM) to guide the implementation of business processes with 
services. On the right side the continuous improvement process (upper right circle) 
defines five phases: Initiating the cycle, Diagnosing processes, Formulating 
improvements, Executing improvements and Revising the cycle. Three arrows 
indicate the navigation from one cycle to another: from the Executing improvements 
phase of the improvement process to the Design &Analysis or the Configuration 
phases to re-enter BP lifecycle, and from the Evaluation phase to the Revising the 
cycle phase to return to the improvement process. 

2.1 Process Phases and Activities 

This section sets out the particular phases and the activities in executing a complete 
BPCIP cycle of MINERVA framework, as shown in Figure 1. 
 
Design & Analysis. The cycle begins with the design and specification of a business 
process by means of BPMN models as part of the Design & Analysis phase. These 
models are then validated through simulation or analytical techniques to determine 
their relevance to the specified business goals, or to evaluate different design options 
for it. Moreover, to asses quality characteristics of the model created (i.e., complexity) 
as well as to detect potential problems in early stages, design measures not presented 
here can be used [14][15][16][17]. Finally, the BPEMM of MINERVA is used to 
select execution measures according both with the business objectives defined for the 
BP and the business strategy of the organization.  

 
Validate              

the model
Modeling BP 
with BPMN

Select 
execution 
measures

Design & 
Analysis

 

Fig. 2. Main activities in Design & Analysis phase 



 Continuous Improvement of Business Processes Realized by Services 67 

Configuration. In the Configuration phase the BPs are implemented by services with 
model driven development, guided by the BPSOM methodology (Delgado et.al, 
2009a). BPSOM defines the disciplines Business Modeling, Services Design and 
Implementation with activities, input and output deliverables, and roles needed to 
carry out the service development starting from the BP that has been defined. In 
addition, QVT [18] transformations are defined and executed to generate SoaML [19] 
service models from BPMN models. The execution measures selected are 
implemented to be integrated directly into the process engine or into software 
systems, in the form of execution logs to register the information needed. 

 
Implement  

measures 
collection

Implement BP 
with services using 
BPSOM (SOC, MDD)

Configuration

 

Fig. 3. Main activities in Configuration phase 

Enactment. In the Enactment phase the BPs are executed in an appropriate process 
engine according to their implementation (BPEL/XPDL), from which to invoke the 
services realizing BP activities, sub-process or even the complete BP. The execution 
measures implemented are collected as BP cases (instances) are executed, registering 
the events and information needed for the execution measures to be calculated later.   

 
Collect 

execution 
measures

Execute BP 
(process engine 

+ services)
Enactment

 

Fig. 4. Main activities in Enactment phase 

Evaluation. The BP execution is then assessed in the Evaluation phase analyzing the 
measurement results. For this to be done, the execution measures are calculated on the 
basis of the information registered in the execution logs using the Process Mining [20] 
framework ProM [21]. By means of several plug-ins ProM allows different views of 
the associated information to be analyzed. Using the analysis performed it is possible 
to identify improvement opportunities for redesigning the BP, which can be related to 
the BP modelling level as well as to the software realizing the BP (implemented 
services), such as bottlenecks in the BP or service execution delays. For the redesign 
of the BP several existing approaches can be used [22][23][24].    

 
Analyze    

measurement 
results

Calculate 
execution 
measures

Identify 
Improvement
opportunities

Evaluation

 

Fig. 5. Main activities in Evaluation phase 

Initiating the Cycle. Once the improvement opportunities have been identified, the 
continuous improvement process to carry out the improvement effort is undertaken, 



68 A. Delgado et al.  

executing the corresponding phases. This implies the introduction of the 
improvements in a systematic way in order to assure the achievement of the results 
specified for the improvement of some or several BP characteristics. In the Initiating 
the cycle phase the improvements to be included in this iteration are established, 
including the BPs and the characteristics to be improved, as well as the results 
expected after the introduction of the improvements that have been defined. This can 
also lead to a revision of the execution measures chosen.  
 

Review execution   
measures  

selection

Define 
improvements 

for the cycle

Initiating 
the cycle

 

Fig. 6. Main activities in Initiating the cycle 

Diagnosing Processes. In the Diagnosing processes phase other aspects of the BP 
definition (i.e., management) can be assessed using the OMG Business Process 
Maturity Model (BPMM) [25]. This standard which follows the format defined by the 
software maturity models (CMM, CMMI) includes several Process Areas and defined 
Key Activities that when performed, allows the BP to gain maturity by evolving 
through the model’s five maturity levels. Based on this diagnosis new improvement 
opportunities for the BP can be found, which can be included in this iteration. For a 
description of the BPMM and BP measuring activities we refer the reader to [26].  
 

 

Fig. 7. Main activities in Diagnosing processes 

Formulating Improvements. The Formulating improvements phase aims to define 
how (by doing what) the selected improvements for this iteration will be introduced. 
To do so, the changes have to be defined specifically, i.e., if an activity in a BP has 
been identified as a bottleneck and its execution time should be improved, it could be 
specified that for this activity several redesigns must be evaluated to obtain better 
results. The same applies if the problem detected involves the execution of services 
which realizes the BP. In any case, the improvement to be made will be set out in 
detail in the associated improvement document. 
 

Formulating 
improvements

Modify part 
of the model (or all)

Modify part 
of the service (or all)

 

Fig. 8. Main activities in Formulating improvements 

Executing Improvements. In the Executing improvements phase the BP lifecycle is 
re-entered exactly where the improvements have to be made. If the improvement 
refers to the BP model then the lifecycle is re-entered in the Design & Analysis phase, 



 Continuous Improvement of Business Processes Realized by Services 69 

where parts of the BP model or its entirety will be redesigned to introduce the 
improvements. Afterwards the whole BP lifecycle will again be executed with the 
new version of the BP. The existing traceability between the BPMN BP models and 
its implementation with services, will allow the identification of the impact of the 
changes in related services and/or other software artifacts in the Configuration phase.  

On the other hand, improvement might only refer to the implementation of the BP 
(i.e., the BP model will not be changed but only the software realizing the BP). In that 
case the BP lifecycle will be re-entered in the Configuration phase, to implement 
changes in the services. Once the BP model and/or the services realizing it are 
modified, along with the implementation of the execution measures to be collected for 
the new version of the BP, this new version of the BP is executed registering the 
associated data in the specific execution logs. Finally, the defined activities are 
executed in the Evaluation phase, along with a comparison between measurement 
results from the new version of the BP and the previous version used as the basis for 
improvements. This comparison will also allow assessing if the goals set out for the 
improvement that has been brought in have been achieved.  

 
Executing 
improvements

Redesign part of the 
model (or all)

Design & 
Analysis

Configuration Reimplement part of 
the service (or all)

Compare execution 
of new version with 

previous version
EvaluationEnactment

 

Fig. 9. Main activities in Executing improvements 

Revising the Cycle. In the Revising the cycle phase the data registered about the 
execution of the continuous improvement process itself is analyzed, to identify 
improvement opportunities in the improvement process also.  

 
Revising    
the cycle

Asses development of 
improvement cycle

 

Fig. 10. Main activities in Revising the cycle 

3 BP Execution Measurement Model (BPEMM) 

Measurement of BP execution to analyze the achievement of business goals as well as 
to detect improvement opportunities is a key aspect in MINERVA framework. 
Although the execution measurement activities are not new, it is the BPEMM model  
 



70 A. Delgado et al.  

proposal. Its goal is to define a set of pre-defined measures for BP execution based on 
services, to support the improvement effort, relating business goals for the BP to its 
real execution, and helping in finding improvement opportunities. In Figure 11 the 
relation between BPCIP and BPEMM is shown, along with the BPEMM activities. 

3.1 BPEMM Definition 

BPEMM aims to help in relating business strategy and goals to business process 
implementation and execution, thus facilitating the selection of predefined execution 
measures for each business goal. BPEMM definition focuses on organizations which 
implement their BPs with services, proposing a set of execution measures from three 
defined views: generic BP execution (i.e., generic and domain specific measures for 
domains such as medical, software, production), focus on lean philosophy (e.g., 
eliminating waste and encouraging optimization), and services execution (i.e., for 
execution of services realizing the BP). These views were defined to cover as much 
information as possible to be able to get accurate knowledge from the execution logs 
of the BP, and then focus BP improvements on the specific parts of the BP. In 
addition to the views the dimensions defined by the “Devil’s quadrant” [27][22]: time, 
cost, flexibility and quality, were taken into account. These dimensions refer to the 
trade-off that has to be taken into account when designing or redesigning a BP. For 
example, adding activities to improve the quality of the BP can have a negative 
impact on its performance. It is therefore important to collect information on the BP 
execution for each dimension, to analyze the improvements. Measures are organized 
in a three-level hierarchy. At the third level measures for the execution of each 
activity are registered. At the second level these measures are combined to calculate 
the BP case measures. Finally, in the first level case measures are combined to 
calculate the measures for the BP definition (e.g., averages, percentages, etc.). 

 

 

Fig. 11. Detailed measurement activities from BPEMM and its use in the BPCIP context 



 Continuous Improvement of Business Processes Realized by Services 71 

For the definition of the execution measures of the model, we used the Goal, 
Question, Metrics (GQM) paradigm [28] which is based on the idea that an 
organization must first specify its goals if it is to measure in a meaningful way what 
the organization does. It provides a systematic approach to establish and asses a set of 
operational goals based on measurement. It integrates goals with process models, 
products, resources and different perspectives, depending on the needs of the 
organization and project. Initially defined to evaluate defects in software projects, its 
use has been expanded to improvement efforts in software organizations. As our 
proposal includes a continuous improvement process that also comes from the 
software area, the use of GQM to define BPEMM is set in the same direction. 
BPEMM measures are then defined by three main elements: 

• Goal: it is defined for the organization, section, project or process, from various 
points of view with respect to different models. 
• Question: it is used to describe how each goal will be evaluated from the point of 
view of a quality characteristic. 
• Metric: a set of data associated with each question to be answered quantitatively. 
Measures can be objective or subjective.  

For the specification of BPEMM execution measures we use the Software 
Measurement Ontology (SMO) [29]. The SMO defines, among other concepts, 
different types of measures: base and derived measures and indicators, which are 
calculated by a measurement approach. In addition to the specification of GQM 
elements for each view and dimension in natural language, we model the execution 
measures and associated concepts in a graphical way. To do that, we use the SMTool 
[30] which implements SMO. It provides a quick overview of the measures set out to 
satisfy the information needs of the organization, helping in the communication with 
stakeholders. The execution measures views defined in BPEMM allow the measures 
to be organized according to the three relevant perspectives defined. 

 

Generic BP Execution View. In the first view defined, the Generic BP execution 
view, the measures are related to BP characteristics that are common to all processes 
regardless of the associated domain, such as their duration or the duration of their 
activities, the associated cost, the roles involved, etc. However, some of these generic 
measures have to be instantiated for the BP domain, for example when they involve 
label definitions such as “successful branch”, where activities comprising the branch 
have to be identified for each BP. Generally, these kinds of measures are specified as 
Key Performance Indicators (KPIs) by the business management area. The “Devils 
quadrant” dimensions are used to group these measures. We present as an example of 
this view of BPEMM, some execution measures defined in the Time dimension 
related to the BP performance, i.e., its Throughput Time (TT) or Cycle Time. This is 
defined, for a BP case (instance) as the total time incurred from the moment in which 
the case is initiated until it is completed [22][31]. Several different times are defined 
to calculate time measures such as: enable, start, change, suspension, queue, 
processing (or working), service, setup, waiting and completion time, for activities 
and cases [22][31][32][24]. From these we used as base measures for an activity, the 
enabled time (i.e., when an activity becomes available for execution), start time (i.e., 
when it actually starts its execution) and completion time (i.e., when an activity 
completes its execution). The explanation of the basic concepts about time measures 
defined for an activity and a BP case is shown in Figure 12.  



72 A. Delgado et al.  

 

Fig. 12. Time concepts definition for BP execution 

Based on the base measures defined the derived measures and indicators are 
calculated as shown in Table 1. In addition to throughput time (TT), the generic 
execution measures view defines other measures for this and the rest of the 
dimensions of the Devil’s quadrangle, which are not presented here. 

Table 1. Generic BP execution view, time dimension measures sub-set 

Goal G1                     Minimize the throughput time (TT) of the BP 
Question Q1    which is the actual throughput time of the BP 
Metrics M1 (base)          

M2 (base)          
M3 (base)          
M4 (derived)     
M5 (derived)     
M6 (derived)     
M7 (derived)     
M8 (derived)     
M9 (indicator)   
 
M10 
(indicator)         
M11 
(indicator)         
 
 
M12 
(indicator)         
M13 
(indicator)         
M14 
(indicator)         
M15 
(indicator) 

Enabled time of an Activity (ET) 
Start time of an Activity (ST) 
Completion time of an Activity (CT) 
Working time of an Activity (AWoT = CT – ST) 
Waiting time of an Activity (AWaT = ST – ET) 
Total Working time of a BP case (TWoT = ∑ (AWoT)) 
Total Waiting time of a BP case (TWaT = ∑ (AWaT) 
Throughput Time of a BP case (BPTT = TWoT + TWaT) 
Activity Working time vs. Waiting time index (ATI = AWaT/AWoT) 
Decision criteria=Index DC: R1: 0 <= TTI  <=L1="LOW"G; R2: L1 <= 
TTI < L2="MEDIUM"Y; R3: L2 <= TTI ="HIGH"R 
Total BP Working time vs. Waiting time index (TTI =TWaT/TWoT) 
Decision criteria = Index DC. 
Percentage of total BP Working time in total BP TT (PWoT=TWoT* 
100/BPTT). Decision criteria = Percentage DC: 
R1:0<=TTI<L1="LOW"R;R2:L1<=TTI<L2="MEDIUM"Y;R3:L2<=T
TI<=100="HIGH"G 
Percentage of Total BP Waiting time in Total BP TT (PWaT=TWaT* 
100/BPTT) Decision criteria = Inverse Percentage DC (G, Y, R) 
Average BP Throughput Time for all BP cases (ABPTT = ∑ BPTT / Total 
BP cases) Decision criteria = Inverse Percentage DC (G, Y, R) 
Average BP total Working time for all BP cases (ABPTWoT= 
∑TWoT/Total BP cases) Decision criteria = Percentage DC 
Average BP total Waiting time for all BP cases (ABPTWaT=∑TWaT /Total 
BP cases) Decision criteria = Inverse Percentage DC (G, Y, R) 

 
As can be seen in Table 1 measures have been defined for the Goal “Minimize the 

TT of the BP” at three different levels: activity, BP case and set of all BP cases. By 
analyzing the measurement results for each level, improvement opportunities can be 
detected from global BP execution measures (i.e., average, percentage) to the 



 Continuous Improvement of Business Processes Realized by Services 73 

corresponding activities or BP parts that have to be changed to improve the TT of the 
BP. For indicators decision criteria have to be defined, i.e., the different ranks to 
which the measurement result can belong. To define the ranks we use labels that have 
to be changed to actual numbers for each BP and organization when selecting the 
execution measures (e.g. 0 <= Measurement result <= L1). This allows the ranks to be 
flexible enough to be used in different contexts using different numbers instead of the 
labels. Associated with the meaning of the ranks defined, we also use semaphores as 
supported in ProM. The semaphores show the meaning of the ranks by means of 
colors, where Green (G) means “OK”, Yellow (Y) means “Warning” and Red (R) 
means “Problems”. In Figure 13 some of the measures presented in Table 1 are shown 
graphically using the SMTool, which provides special icons for each concept defined 
in the SMO, its attributes, associations and restrictions defined between the ontology 
elements (i.e., rule for base measure, rule with figures for derived measures, rule with 
figures and lamp for indicators, among others).   

 

 

Fig. 13. Some measures from Table 1 shown graphically in the SMTool [30] 

Other goals defined in the Generic BP execution view are, among others: 
“Minimize the cost of the BP” and “Minimize the use of resources for the BP” both of 
which correspond to the cost dimension, “Maximize the BP cases ending normally” 
(i.e., normal completion of the instance, successful or unsuccessful, with no abortion 
due to errors or user cancellation) corresponding to the quality dimension, and 
“Maximize the BP cases ending successfully” (i.e., executing the successful branch of 
the BP involving the execution of defined activities, such as making and paying for 
the reservation of flight, room and others in a travel agency BP) corresponding to a 



74 A. Delgado et al.  

domain specific execution measure. Table 2 shows an example of execution measures 
to be instantiated for domains. 

Table 2. Generic BP execution view, time dimension measures sub-set 

Goal G1 
                    

Maximize the BP cases ending successfully (executing BP successful 
branch) of the BP 

Question Q1    which is the actual number of BP cases ending successfully 
Metrics M1 (base)          

M2 (base)          
M3 (derived)     
M4 (derived)     
M5 (indicator)   

Successful branch execution of BP case (SB= branch with activity X) 
Unsuccessful branch ex. of BP case (USB = branch with activity Y) 
Number of BP cases ending successfully (BPSB = count of SB) 
Number of BP cases ending unsuccessfully (BPUSB = count of USB) 
Percentage of BP ending successfully in total BP cases (PBPSB= 
BPSB*100/TCBP) Decision criteria=Percentage DC:R1:0<=TTI <L1  
="LOW"R;R2:L1<=TTI<L2="MEDIUM"Y;R3:L2<=TTI<=100="HIG
H"G 

 

Lean Execution View. The second BP execution view defined focuses on the Lean 
thinking philosophy, aiming to find elements in the BP that could be unnecessary or 
replaceable, or parts of the BP that if made as efficient as possible can lead to an 
optimization and improvement of the complete BP definition [31]. Lean thinking was 
first introduced in the Toyota Production System (TPS) and is based mainly on the 
identification and elimination of waste. It defines as key principles the specification of 
value from the customer viewpoint, the removal of waste, making valuable flow, 
delivering what the customer wants when it is wanted and pursuing perfection. There 
are seven types of waste defined: overproduction, waiting, transport, extra processing, 
inventory, motion and defects. These principles and waste types have been adapted to 
several areas other than the manufacturing sphere, such as lean software development 
[33], lean information management [34] and healthcare [35], among other realms, 
thus making lean thinking usable in several BP domains. As an example the GQM for 
the goal “Minimize the rework in loops of the BP” is shown in Table 3, which focuses 
on the detection of defects on the products or services delivered by the BP. 

Table 3. Lean BP execution view measures sub-set 

Goal G1 Minimize the rework in loops of the BP 
Question Q1    which is the actual quantity of rework due to BP loops 
Metrics M1 (derived)     

M2 (derived)     
 
M3 (derived)     
 
M4 (derived)     
 
M5 (indicator)   
  

Activity rework in a loop (ARL = counts each execution in a loop) 
Activity Working time for the rework in a loop (AWoTRL = ∑(AWoTei) 
being ei each execution of the activity in the loop) 
Total Working time for the rework in a loop of the BP (TWoTRL = 
∑(AWoTRLai) where ai represents an activity in the loop) 
Total Working time for rework in all loops of BP case (BPTWoTRL = ∑ 
(TWoTRLli) where li represents a  loop in the BP) 
Percentage of rework time in BP case due to loops in the total BP TT 
(PBPTWoTRL =  BPTWoTRL*100/BPTT) 
Decision criteria =Percentage DC: R1: 0 <= TTI  <L1  = "LOW"G;  
R2:L1<=TTI<L2="MEDIUM"Y;R3:L2<=TTI<=100="HIGH"R 

 



 Continuous Improvement of Business Processes Realized by Services 75 

Table 4. Services execution view measures sub-set 

Goal G1 Guarantee response time to L1 seconds (label to be changed) for the service 

(implementing an activity/sub-process/process) 

Question Q1    which is the actual response time of the service   

Metrics M1 (derived)     

M2 (derived)     

M3 (derived)     

M4 (indicator)   

Service processing time (SPoT=CT–ST)(idem AWoT for the service) 

Service latency time (SLaT = ST – ET) (idem AWaT for the service) 

Response Time of a service in a BP case (SRpT = SPoT + SLaT)  

Average service Response Time in all BP cases (ASRpT = ∑ SRpT/ Total 

services execution in all BP cases) Decision criteria = Average 

DC:R1:0<=TTI<L1="LOW"G;R2:L1<=TTI<L2="MEDIUM"Y;  

R3:L2 <= TTI<=100="HIGH"R 

 
Services Execution View. Finally, the third view corresponding to the Services 
execution, aims to define measures to assess the execution of services realizing the 
BP. Several issues have to be taken into account to identify the most important 
features as regards Quality of Services (QoS) requirements specified in Services 
Level Agreement (SLA) [36][37]. To define these measures we used the Quality 
Attributes (QA) concepts for non-functional requirements and the taxonomies from 
[38][39][40]. Services measures then include quality attributes such as: performance 
(i.e., response time including processing time and latency, throughput, capacity), 
dependability (i.e.,availability, reliability), security (i.e., confidentiality, availability). 
Services execution measures defined for performance are related to the Generic 
execution measures for BP performance. They focus, however, on the automatic 
activities (i.e., tasks, sub-process, process) that are implemented by services, adding 
information about the execution of the specific software infrastructure. Table 4 
presents the GQM for the Goal “Guarantee response time to L1 (i.e., label to be 
changed) seconds for the service”, as an example of this. 

4 Example 

To give an example of the use of the BPEMM in the context of the BPCIP from the 
MINERVA framework we present the “Patient Admission and Registration for Major 
Ambulatory Surgery (MAS)” business process in Figure 14. 

In the following we describe the possible execution of the improvement cycle 
based on the defined measures. The organization is the “Hospital” whose business 
management area we assumed has chosen, in the Design & Analysis phase, the set of 
execution measures of the Generic execution view for the time dimension and 
services execution measures (cf. Table 1, Table 4). Further assume that guided by the 
BPSOM methodology services to realize the BP have been implemented which will 
be externally invoked by other participants, and services have been defined to be 
invoked by the Hospital from other parties. In the Configuration phase assume the 
collection of chosen measures is implemented in the software for BP execution, and 
then the defined execution information is registered in the execution logs. Based on  
 



76 A. Delgado et al.  

 

Fig. 14. “Patient Admission and Registration for MAS” specified using BPMN 

the measures defined for calculating BP Throughput Time (TT) in BPEMM, times 
corresponding to base measures for BP activities have to be logged: enabled, start and 
finish time. Table 5 shows an example of some events related to the execution of 
activities simulating two BP cases. It can be seen that as defined, the specified times 
are registered for each activity, indicating to which event the timestamp corresponds 
(enabled, start, completed). Based on this information the execution measures for the 
BP Throughput Time (TT) are then calculated. Other information that can be 
registered corresponding to other execution measures defined such as the role or  
person/system performing the activity is not shown in the table. 

Table 5. Example of execution logs information 

BP case Activity Timestamp Event 
Case 1 Receive request MAS   10-01-2010: 09:30 Enabled  
Case 1 Receive request MAS 10-01-2010: 09:30 Start  
Case 1 Receive request MAS 10-01-2010: 10:00 Completed  
Case 2 Receive request MAS 10-01-2010: 09:30 Enabled  
Case 2 Receive request MAS 10-01-2010: 09:35 Start  
Case 2 Receive request MAS 10-01-2010: 10:15 Completed  
Case 1 Assign date for MAS 10-01-2010: 10:00 Enabled 
Case 2 Assign date for MAS 11-01-2010: 10:15 Enabled  
Case 2 Assign date for MAS  13-01-2010: 12:15 Start  
Case 2 Assign date for MAS 13-01-2010: 12:45 Completed 
Case 1 Assign date for MAS 13-01-2010: 12:45 Start  
Case 1 Assign date for MAS 13-01-2010: 13:00 Completed 
Case 1 Send assigned date for MAS 13-01-2010: 13:00 Enabled  
Case 1 Send assigned date for MAS 13-01-2010: 13:02 Start  
Case 1 Send assigned date for MAS 13-01-2010: 13:05 Completed 
Case 2 Send assigned date for MAS 13-01-2010: 12:45 Enabled 
Case 2 Send assigned date for MAS 13-01-2010: 12:46 Start  
Case 2 Send assigned date for MAS 13-01-2010: 12:50 Completed 

 



 Continuous Improvement of Business Processes Realized by Services 77 

In the Evaluation phase based on the information registered in the execution logs, 
the defined execution measures can be calculated, for example:       

• Average TT (ABPTT) = 8640 minutes (6 days)  

• Case max.TT(BPTT) =21600 minutes (15 days)  

• Case min. TT (BPTT) = 2880 minutes (2 days) 

The Average TT for all BP case executions is 6 days instead of 4 days as defined by 
the business area for performing the BP. The maximum value of 15 days shows that 
there are cases which take significantly longer than 4 days. As these values are not the 
expected ones, other measurement results can be evaluated for BP case executions 
and for key activities of the BP. The M14 indicator of Average BP Working time 
(ABPTWoT) as well as the M10 indicator of the Index (TTI) between BP Total 
Working time vs. Total Waiting time, which are not shown due to space reasons, 
show that the TT of the BP is increased by waiting times in the execution of some 
activities. After analyzing the values for several BP cases, the M9 indicator of the 
index (ATI) between Working time and Waiting time of the activity “Assign date and 
hour for the surgery” is found to be in the rank “High” in 90%, i.e., the activity’s 
waiting time is unreasonably high compared to its working time. Then, the origin of 
the BP execution problem is located in the activity mentioned, so an improvement 
effort with focus on this activity is initiated, to redesign the BP model.  

The activities defined in the improvement process have to be performed then, to 
specify the improvements to be integrated in the cycle, how to integrate them into the 
BP, and finally to execute the particular improvements re-entering the BP lifecycle 
again. In this case, re-entry is in the Design & Analysis phase as the BP model has to 
be redesigned. To do so, there are approaches that propose different options 
[22][23][24]. In the example, one option could be to combine the activity with the one 
called “Send assigned date for surgery” in an activity of higher granularity, which 
performs both tasks automatically, thus eliminating the manual intervention in the 
first one. Figure 15 shows the two BP versions before and after the improvement. 

 

 

Fig. 15. Versions Comparison for “Patient Admission and Registration for MAS” 



78 A. Delgado et al.  

After selecting a redesign, a new version of the BP is generated and executed up to 
the calculation of the associated execution measures. Finally, the measures results for 
the new BP version are compared to the ones from the previous BP version, to assess 
whether the defined goals have been achieved with the improvement. In the example 
the goal is to reduce the BP Average Throughput Time (TT) from 6 to 4 days.  

5 Related Work 

Regarding BP execution measurement our definitions are based on the works on [22] 
[31][32][20] where several concepts and measures, are presented and analyzed. 
Process Mining [20] uses execution logs information to help finding BP models from 
BP execution, checking conformance between BP models and its execution, and 
extending BP models with execution information. Analytical techniques are used in 
[22][31] to analyze and predict BP performance and other BP characteristics, and 
simulation is also used in [31][24]. To redesign BP models based on improvement 
opportunities found several options are proposed in [22][24]. Using a data warehouse 
is proposed in [32] to store, analyze and evaluate BP execution. Design measures 
defined in [14][16][17] are complementary to ours and can be used to find 
improvements opportunities in earlier stages of the BP lifecycle. Several proposals 
exist from the business area but they focus mostly on the definition of Key 
Performance Indicators (KPIs) related to the flow and domain of the BP, not taking 
explicitly into account the infrastructure which realizes it. Some tools from the 
software area such as ProM [21] has a plug-in to make basic performance analysis 
based on measures defined. ARIS [42] has a Process Performance Manager (PPM) 
which also provides insight into performance and other BP execution measures, 
which have to be defined. Other techniques like Balance Scorecard [43] are proposed 
and used by the business area to align the BP with the strategic goals of the 
organization and to define the associated measures; a comparison with GQM can be 
seen in [44]. Several tools provide support to BSC. 

6 Conclusions and Future Work 

The MINERVA framework provides support for the continuous business process 
improvement based on its lifecycle management and its implementation by services 
with model driven development. It defines a BPCIP improvement process integrating 
explicit measurement activities into the BP lifecycle as well as a process to introduce 
improvements in a systematic way. Moreover, a BP execution measurement model 
(BPEMM) consisting of several BP execution measures is defined to be used in the 
BPCIP improvement process. BPEMM provides several execution measures related 
with the defined business strategy and goals, allowing the selection and 
implementation of execution measures regarding the needs of the organization. 
BPEMM execution measures are defined using the GQM paradigm, to provide 
traceability from business goals to execution measures, and visualized using SMTool. 



 Continuous Improvement of Business Processes Realized by Services 79 

Execution measures are defined for: time, cost, quality and flexibility dimensions for 
the views of generic BP and domain specific execution, lean focus and services.   

The major contribution of the approach we have defined lies in the integration of 
all the different methods presented, including existing execution measures and new 
ones defined, to support the continuous improvement of BP implemented by services 
with traceability from business goals to software implementation. We believe that the 
approach presented contributes to the academic community working on BP execution 
measurement, as well as organizations wanting to improve the way in which they 
manage their BPs, providing an integrated approach to guide their execution 
measurement, analysis, evaluation and improvement efforts. As current and future 
work we are implementing the BPEMM as a ProM plug-in allowing the import of 
execution logs, the calculation of execution measures and the visualization of the 
results. This will be presented to the business management area, thus providing 
support in finding improvement opportunities with respect to the achievement of the 
specified business goals.  

Acknowledgements. This work has been partially funded by the Agencia Nacional de 
Investigación e Innovación (ANII,Uruguay), ALTAMIRA project (Junta de 
Comunidades Castilla-La Mancha, Spain, FSE, PII2I09-0106-2463), PEGASO/MAGO 
project (Ministerio de Ciencia e Innovacion MICINN, Spain, FE Desarrollo Regional 
FEDER, TIN2009-13718-C02-01), INGENIOSO project (Junta Comunidades Castilla-
La Mancha, Spain, PEII11-0025-9533) and MOTERO project (Junta Comunidades 
Castilla-La Mancha, Spain,PEII11-0366-9449). 

References 

1. Weske, M.: BPM Concepts, Languages, Architectures. Springer, Heidelberg (2007) 
2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business Process Management: 

A Survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. 
LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003) 

3. Smith, H., Fingar, P.: Business Process Management: The third wave, Meghan-Kieffer 
4. OMG (2008a), BP Modeling Notation (BPMN) (2003)  
5. Delgado, A., Ruiz, F., García-Rodríguez de Guzmán, I., Piattini, M.: MINERVA: Model 

drIveN and sErvice oRiented Framework for the Continuous Business Process 
improVement and relAted Tools. In: Dan, A., Gittler, F., Toumani, F. (eds.) 
ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 456–466. Springer, Heidelberg (2010) 

6. Delgado, A., Ruiz, F., García-Rodríguez de Guzmán, I., Piattini, M.: A Model-driven and 
Service-oriented framework for BP improvement. Journal of Systems Integration 
(JSI) 1(3) (2010) 

7. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing: 
State of the Art and Research Challenge. IEEE Computer Society (2007) 

8. Mellor, S., Clark, A., Futagami, T.: Model Driven Development-Guest eds.int. IEEE 
Computer Society (2003) 

9. Delgado, A., Ruiz, F., García-Rodríguez de Guzmán, I., Piattini, M.: Towards an ontology 
for service oriented modeling supporting business processes. In: 4th. IC Research 
Challenges Inf. Sci. (RCIS 2010). IEEE (2010) 



80 A. Delgado et al.  

10. Delgado, A., Ruiz, F., García-Rodríguez de Guzmán, I., Piattini, M.: Towards a Service-
Oriented and Model-Driven framework with business processes as first-class citizens. In: 
2nd IC on Business Process and Services Computing, BPSC 2009 (2009) 

11. Delgado, A.: García-Rodríguez de Guzmán, I., Ruiz, F., Piattini, M.: From BPMN BP 
models to SoaML service models: a transformation-driven approach. In: 2nd Int. Conf. on 
Sw. Tech. Engineering, ICSTE 2010 (2010) 

12. Delgado, A., García-Rodríguez de Guzmán, I., Ruiz, F., Piattini, M.: Tool support for 
Service Oriented development from Business Processes. In: 2nd Int. Work. Model-Driven 
Service Engineering, MOSE 2010 (2010) 

13. Pino, F.J., Hurtado Alegría, J.A., Vidal, J.C., García, F., Piattini, M.: A Process for Driving 
Process Improvement in VSEs. In: Wang, Q., Garousi, V., Madachy, R., Pfahl, D. (eds.) 
ICSP 2009. LNCS, vol. 5543, pp. 342–353. Springer, Heidelberg (2009) 

14. Rolón, E., García, F., et al.: Evaluation Measures for Business Process Models. In: 21st 
Symposium on Applied Computing (SAC 2006) (2006) 

15. Cardoso, J.: Process control-flow complexity metric: An empirical validation. In: IEEE 
International Conference on Services Computing, SCC 2006 (2006) 

16. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error 
Prediction, and Guidelines for Correctness. Springer, Heidelberg (2008) 

17. Sánchez González, L., García, F., et al.: Assessment and Prediction of Business Process 
Model Quality. In: 18th Int. Conf. Cooperative Inf. Systems, CoopIS 2010 (2010) 

18. Object Management Group (OMG), Query/Views/Transformations (QVT) (2008) 
19. Object Management Group (OMG), Soa Modeling Language (SoaML), beta 2 (2009) 
20. van der Aalst, W.M.P., Reijers, H.A., Medeiros, A.: Business Process Mining: an 

Industrial Application. Information Systems 32(5) (2007) 
21. ProM, Process Mining Group, Eindhoven University of Technology, The Netherlands 
22. Reijers, H.A.: Design and Control of Workflow Processes. LNCS, vol. 2617. Springer, 

Heidelberg (2003) 
23. Maruster, L., van Beest, N.: Redesigning business processes: a methodology based on 

simulation and process mining techniques. Knowl. Inf. Syst. Journal (2009) 
24. Netjes, M.: Process Improvement: The creation and Evaluation of Process Alternatives. 

Eindhoven UT (2010) 
25. Object Management Group (OMG), BP Maturity Model (BPMM), v.1.0 (2008) 
26. Sánchez, G.L., Delgado, A., Ruiz, F., García, F., Piattini, M.: Measurement and Maturity 

of BP. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on BP Modeling. 
Inf. Science Ref., IGI Global (2009) 

27. Brand, N., Van der Kolk, H.: Workflow Analysis and Design (1995) 
28. Basili, V.R.: Software Modeling and Measurement: The GQM Paradigm, CS-TR-2956, 

University of Maryland (1992) 
29. García, F., et al.: Towards a Consistent Terminology for Software Measurement. Inf. and 

SW Tech. 48 (2005) 
30. Mora, B., García, F., Ruiz, F., Piattini, M.: SMML: Software Measurement Modeling 

Language. In: 8th Int. Work. Domain-Specific Modeling, OOPSLA 2008 (2008) 
31. Laguna, M., Marklund, J.: BP Modeling, Simulation and Design. Prentice Hall (2005) 
32. zur Muehlen, M.: Workflow-based Process Controlling, Foundation, Design, and 

Application of Workflow-driven Process IS. Logos Verlag (2004) 
33. Poppendieck, M.: Principles of Lean Thinking, Poppendieck. LLC (2002) 
34. Hicks, B.J.: Lean information management: Understanding and eliminating waste. Int. 

Journal of Information Management (2007) 



 Continuous Improvement of Business Processes Realized by Services 81 

35. Jimmerson, C., Weber, D., Sobek, D.: Reducing waste and errors: Piloting Lean Principles 
at Intermountain Healthcare. Journal Quality & Patient Safety (2005) 

36. Wetzstein, B., Karastoyanova, D., Leyman, F.: Towards Management of SLA-Aware BP 
Based on Key Performance Indicators. In: 9th Work. BP Modeling, Development and 
Support, BPMDS 2008 (2008) 

37. Cardoso, J., Sheth, A., Miller, J.: Workflow quality of service. In: Int. Conf. on Enterprise 
Integ. and Mod. Tech., Int. Enterprise Mod. Conf, ICEIMT/IEM 2002 (2002) 

38. O’Brien, L., Bass, L., Merson, P.: Quality Attrs. and SOA, CMU/SEI-20055-TN-014. SEI 
(2005) 

39. Clements, P., Kazman, R., Klein, M.: Evaluating SW Archs: Methods and Case Studies. 
Addison Wesley (2001) 

40. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison Wesley 
(2003) 

41. Barbacci, M., Klein, M., et al.: Quality Atributtes, CMU/SEI-95-TR-021, SEI (1995) 
42. ARIS, IDS Scheer, Software AG, Germany  
43. Kaplan, R.S., Norton, D.P.: The balanced Scorecard Measures that drive performance. 

Harvard Business Review 10(1) (1992) 
44. Buglione, L., Abran, A.: Balance Scorecards and GQM: what are the differences? In: 

FESMA-AEMES Software Measurement Conference (2000) 



L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 82–97, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Structure Editors: Old Hat or Future Vision? 

Andreas Gomolka and Bernhard Humm 

Hochschule Darmstadt – University of Applied Sciences 
Haardtring 100, 64295 Darmstadt, Germany 

andreas.gomolka@gmail.com, bernhard.humm@h-da.de 

Abstract. Structure editors emphasise a natural representation of the underlying 
tree structure of a program, often using a clearly identifiable 1-to-1 mapping 
between syntax tree elements and on-screen artefacts. This paper presents 
layout and behaviour principles for structure editors and a new structure editor 
for Lisp. The evaluation of the editor’s usability reveals an interesting 
mismatch. Whereas by far most participants of a questionnaire intuitively 
favour the structure editor to the textual editor, objective improvements are 
measurable, yet not significant. 

Keywords: Programming, Structure editor, Evaluation, Lisp, Eclipse. 

1 Introduction 

Structure editors have fascinated designers of development environments for decades 
[1, 2, 3, 4]. The idea is simple and convincing. The elements of the syntax tree of a 
program are mapped to on-screen artefacts and can be edited directly. 

The basis for this is the awareness that programs are more than just text [5]. A 
programmer designing a piece of code thinks in structures: classes, methods, blocks, 
loops, conditions, etc. Using a textual program editor he or she has to codify those 
syntactically using parentheses such as ‘{...}’, ‘(...)’, ‘[...]’ or using keywords such as 
‘begin ... end’. The compiler then parses the syntactic elements and re-creates the 
structures in the form of an abstract or concrete syntax tree – the same structures 
which the programmer originally had in mind. This just seems inefficient and not 
intuitive.  

Structure editors fill this gap: What the programmer thinks is what he or she sees in 
the editor. Surprisingly enough, structure editors, although around for decades, have 
never become mainstream. So somehow, there has to be a catch in this quite simple 
and straight forward idea. In this paper, we try to find out whether it may be possible 
to avoid the drawbacks of former implementations and whether structure editors are 
maybe more than an “old hat” – perhaps even a “future vision” of programming 
environments? 

To be able to answer this question, we analyse the requirements of a usable 
structure editor and describe layout and behaviour principles for structure editors. 
Based on this, we present a new structure editor for Lisp and an evaluation of the 
editor’s usability based on a questionnaire – with interesting results.  



 Structure Editors: Old Hat or Future Vision? 83 

The remainder of the paper is structured as follows: Section 2 describes layout and 
behaviour principles for structure editors. In Section 3, we present a new structure 
editor for Lisp via samples and screenshots and give some insights into its 
implementation. Section 4 describes how we evaluated the usability of the editor and 
in Section 5 we position our work in relation to other approaches. Section 6 concludes 
the paper with a critical discussion. 

2 Layout and Behaviour Principles 

A structure editor should improve the readability and comprehensibility of the code 
whilst not compromising useful features of textual editors. To this end, we postulate 
the following layout and behaviour principles for structure editors: 
 
1. Focus on the Net Code. The code layout should support the programmer in 
focussing on the net program code, i.e., keywords, identifiers, and literals. The 
structure of the code should be visualized in a clear but discrete manner. A look into 
the related literature reveals that there is no overall agreement, which kind of 
representation fits this intention. Dimitriev, for example, states that programmers 
always translate program text to tree structures in their mind [6] and argues that 
editors should emphasise this view. In contrast, Edwards claims that tree structures 
are not satisfying to display conditionals and therefore proposes to visualize programs 
using tables [7]. We think that the representation should emphasise the structure of 
the program, but also enable the programmer to recognise the original code. 
Therefore, we propose, similar to the approach of Ko and Myers [4], to replace 
syntactic elements for structuring the code (e.g., parentheses for block structures, 
separators like semicolons, and delimiters like double quotes for string literals) by 
graphical elements.  
 
2. Do not Restrain the Programmer. The editor should help, but not unnecessarily 
restrain the programmer. For an editor it is only possible to visualize the structure of 
the program correctly if it does not contain any syntactical errors. Some former 
approaches handled this problem by preventing the creation of syntactical errors at all 
[1, 2]. This had the effect that simple operations which change the structure of the 
program became quite complex, e.g., removing a parenthesis and inserting it 
somewhere else. It is essential for the usability of a structure editor how it handles this 
problem. 
 
3. Keep the Layout Compact. Apart from editing, a programmer uses an editor also 
for reading and understanding a piece of code. The structured representation should 
support the programmer in quickly getting an overview of the whole program. 
Therefore, the structured representation should be as compact as the plain text 
representation. 
 
4. Keep Common Look and Feel. The behaviour of the structure editor should be as 
similar as possible to the look and feel of widely used editors. Examples are shortcuts, 
colouring, and behaviour during typing. This facilitates getting accustomed with it for 
experienced programmers. 



84 A. Gomolka and B. Humm 

5. Do not Introduce New Dependencies. A structure editor is just one of many more 
tools to work with a program. The textual form of a program makes it easy to change 
between different editors. This independence should not be dismissed without a good 
reason. Thus, a structure editor should not necessitate changes to the programming 
language or the way programs are stored.  
 

6. Make the Layout Configurable. Where possible, the programmer should be able 
to configure the presentation of the code. For example, colours that are used in the 
layout should be configurable. 
 

7. Leave the Choice to the Programmer. Some programming tasks might be easier 
to achieve with a simple structure editor, some with an advanced structure editor and 
yet others with a textual editor. Therefore, the programmer should be able to freely 
and easily swap between different editors respectively editor modes.  

3 A Structure Editor for Lisp 

This section presents a new structure editor for the programming language Lisp that 
was developed as a research prototype. It follows the principles we proposed above.  

3.1 Why Lisp? 

The main reason why we decided to build the research prototype for Lisp – or, to be 
more precise, Common Lisp – is Lisp’s uniform syntax. Lisp data is expressed as a so 
called S-expressions [8]. The term S-expression means symbolic expression and 
includes symbols and nested lists. As there is no syntactical difference between data 
and code, a Lisp program also consists of S-expressions. This simplicity and 
uniformity and the ability to treat Lisp code as data make it particularly easy to 
develop a structure editor for Lisp.  

Also, in a different research context, we use Lisp as a base language for developing 
domain-specific languages (DSLs) in the context of language-oriented programming 
[9]. A structure editor may be particularly useful for developing programs using DSLs 
that are based on Lisp. 

3.2 Code Presentation 

The structure editor is based on the Eclipse plug-in CUSP [10]. CUSP already 
provides an environment for developing Lisp programs using Eclipse including a 
Navigator View for browsing Lisp projects, a REPL (Read-Eval-Print-Loop) and an 
Outline of the currently displayed Lisp file. The new structure editor has been 
integrated into this environment as an additional Editor Window (see Fig. 1). 

The Editor Window consists of two separate representations of the code. Besides 
the structured representation, we also provide a textual one. The user is able to switch 
between these two using the tabs at the lower left corner of the editor window. 

The following Figures 2-4 demonstrate the different possibilities of viewing the 
code that are provided. All three figures show the same snippet of Lisp code defining 
a new function called “hello-world” which prints a string n times.  



 Structure Editors: Old Hat or Future Vision? 85 

 

Fig. 1. Overview of the structure editor GUI 

 

Fig. 2. Textual representation 

 

Fig. 3. Default structured representation 

 

Fig. 4. Coloured structured representation 

 
 

Editor Window 

 
 

REPL 
Outline 

 
 
 
 

Navigator 
 



86 A. Gomolka and B. Humm 

Fig. 2 shows the snippet using the textual representation. The structure of the code 
is visualized by the indention of the lines and the individual symbol types (e.g., 
keywords, string literals, comments, etc.) are indicated by different colours. 

Fig. 3 shows the same snippet displayed in the structure editor. All parentheses are 
replaced by grey boxes which visualize the block structure. Also, the double quotes 
delimiting the string literals are hidden and expressed by the light orange background. 
Similarly, the leading semicolons marking the beginning of a comment are hidden and 
the comment is indicated by the light green background. All this removes syntactic 
delimiters from the code and accentuates the net code, which satisfies Principle 2 in 
Section 2. 

A slightly different representation of the same code snippet is shown in Fig. 4. 
There, in addition, coloured bars are displayed at the left side of each box and the 
boxes themselves are also coloured. The colours indicate whether a block contains a 
call to a function or macro (e.g., “defun”) or just an ordinary list (e.g., the parameter 
list of the function “hello-world”). 

According to Principle 70, the programmer may decide which representation to use 
and enable or disable the additional information expressed by those colours via the 
preferences menu. Furthermore, all colours to be used (background and foreground) 
can be configured (Principle 6). 

3.3 Editing 

The code can be edited directly in the nested block structure. There are no additional 
commands or shortcuts necessary compared to editing the code in the textual 
representation. As shown in Fig. 5, typing an opening parenthesis will open a new 
box. Typing a closing parenthesis will close the current box and move the caret 
outside. In each step, the layout rearranges itself according to the changes. This 
satisfies our claim to enable the programmer doing the same typing as using a textual 
editor (Principle 4). 

The caret can be moved around using the mouse or the keyboard. The arrow keys 
will move it one character to the left or right or one line up or down. Using <Tab> 
respectively <Shift><Tab>, it is moved one field forward backward. <Pos1> will 
place the caret at the beginning of the first field of the current line and <End> at the 
end of the last field. 

The programmer may decide about line breaks or blank lines. They will be inserted 
by typing <Return>. Each new line is inserted to the current block. Line indention is 
calculated automatically depending on the context of the current block, because this is 
part of the block structure. 

The structure editor provides code completion which also shows additional 
information about the selected symbol as shown in Fig. 6. As common in Eclipse, this 
is invoked using <Ctrl><Space>. 

Common actions like undo/redo or cut, copy and paste may be called via the “Edit” 
menu or by using the usual shortcuts, for example <Ctrl><C> for “copy” 
(Principle 4).  
 



 Structure Editors: Old Hat or Future Vision? 87 

1. Empty row: 

 
2. Inserting "(": 

 
3. Inserting the string "some": 

 
4. Inserting <Space>: 

 
5. Inserting the string "code": 

 
6. Inserting "(": 

 
7. Inserting ")": 

 
8. Inserting ")": 

 
9. Inserting <Return>: 

 

Fig. 5. Behaviour during typing 

 

Fig. 6. Code completion 

3.4 Implementation 

The implementation of the new Editor Window containing the structure editor is 
based on the Graphical Editing Framework (GEF) provided by Eclipse [11]. 

GEF applies the Model-View-Controller (MVC) design pattern that explicitly 
separates the data structures themselves and the way they are displayed in the user 
interface. GEF is designed in a generic way so that any kind of model can be used. In 
our case, the model is the syntax tree that was parsed from the Lisp code. We 
extended the parser that came with CUSP to enrich the individual tree elements (e.g., 
to distinguish between different kinds of symbols like function names and keyword 
symbols).  



88 A. Gomolka and B. Humm 

Each model element is mapped to a figure which visualizes the different type of 
expression or symbol. Each change which is done using the structured representation 
in the user interface is reflected to the model. In some cases, an operation causes more 
than one change. For example, typing an opening parenthesis changes the whole 
structure because the following elements have to be moved into a newly created box. 
These modifications are performed in the model and afterwards the affected elements 
of the view are adjusted accordingly. 

 
Fig. 7. Changing the model using the structure editor 

Fig. 7 displays the whole process of editing a piece of code using the structure 
editor. First, the text is read from the source file and directly parsed to get the 
corresponding syntax tree. This is mapped to the figures that represent the individual 
elements of the tree. As mentioned before, each change which is done by the 
programmer is reflected back to the model. The corresponding Lisp code is not 
touched until the user saves the current document or changes to the textual 
representation. This means, using the structure editor, the programmer directly works 
on the syntax tree of the program. 

The editor takes care of performing editing operations only if they result in a valid 
syntax tree. For example, it is not possible to paste code that contains unbalanced 
parentheses. If this is necessary, the programmer may circumvent this restriction 
(Principle 2) by switching to the textual representation to fix the appearing parsing 
errors. The code that was edited using the structure editor will not contain any 
structural parsing errors at all. 

The following numbers give an impression of the extent of the implementation of 
the editor. The first one describes the newly created part of the plug-in (including 
some code that was taken from GEF samples) and the second one also incorporates 
the code of the already existing CUSP-plug-in. 

Lines of code (structure editor):    8,290 
Lines of code (entire plug-in):  25,571 

4 Evaluation 

In order to evaluate the usability of the structure editor in comparison to a common 
textual editor we conducted a survey. 

4.1 Survey Preparation 

Following Dumas and Redish, we presume that “usability means that the people who 
use the product can do so quickly and easily to accomplish their own task” [12, p.4]. 

Structure Editor 

ProgrammSource File 

(foo  

  (bar)) 

Program text 

Write 

Model 

foo 

bar 

View 

Generate Change
Edit 

Read Parse Display 



 Structure Editors: Old Hat or Future Vision? 89 

We defined that the task we analyze by this evaluation is to understand the meaning 
and the structure of a piece of Lisp code – in other words: how the structure editor 
supports the readability and comprehensibility of the code. Considering that the users 
just need to read a piece of code, we decided to conduct a survey in terms of 
examining screenshots of the editor. 

In literature, there are many metrics for analyzing the usability of software such as 
effectiveness, efficiency, measures of learning, and subjective usability [13], [14]. We 
focused on measuring the efficiency and a subjective rating of the usability. 

To this end, three questionnaires were composed. Two of them show screenshots 
showing a piece of Lisp code and ten multiple-choice questions related to the meaning 
of the displayed code. We produced two versions of each questionnaire: one 
containing a screenshot of the code in textual representation and one containing a 
screenshot of the structure editor. This made the results comparable. In the third 
questionnaire, the participants were asked to rate how they experienced code reading 
in the two different representations and to give statements about things they liked or 
disliked in the screenshots of the structure editor. 

4.2 Conducting the Survey 

We conducted the survey with two different groups of participants. The first group 
consisted of second semester Bachelors’ students (37 people). They had not known 
Lisp before. The second group was a team of Masters’ students (13 people) who were 
engaged in a development project using Lisp and Prolog.  

Both groups were randomly (according to their last names) divided into two groups 
and each group got one version of the first questionnaire. After exactly five minutes 
the students were told to stop working and to mark how far they got in answering the 
questions. For the second questionnaire, the groups were swapped: the group that 
worked on a questionnaire containing screenshots of the textual editor first then got 
the ones containing screenshots of the structure editor and vice versa. Again, the 
students had five minutes time to answer the questions. Finally, the students answered 
the third questionnaire. 

 

 

Fig. 8. Efficiency results 

 



90 A. Gomolka and B. Humm 

4.3 Results 

As explained in Section 4.2, the first two questionnaires contained questions for 
comparing the efficiency in reading and understanding code in the two different 
representations.  

Fig. 8 shows the cumulated results of this part of the survey in terms of the 
percentage of correct answers. As one can see, the results using the structure editor 
are slightly better (2%) but there is no significant difference. 

We also examined how many questions the students managed to answer in the 
rather short period of five minutes. Fig. 9 shows the results. The students working 
with the structure editor did a bit better but, again, the difference is not significant. 

 

 

Fig. 9. Number of finished questions 

 

Fig. 10. Subjective rating of the structure editor 

In the third questionnaire, the participants were asked to rate the structure editor 
compared to the textual editor regarding: 

 Clarity of code 

 Perceptibility of structures 

 Perceptibility of associated code blocks 



 Structure Editors: Old Hat or Future Vision? 91 

 Perceptibility of keywords and literals 
 General readability of the code 

The rating was possible within a range from “significantly better” (1) to “significantly 
worse” (5). A value of 3 means “no difference”. Fig. 10 shows the result. All ratings 
are in the positive half of the spectrum. Most ratings are close to 2 which means 
“better”. The Master students who were already experienced in working in Lisp gave 
better rates than the Bachelor students. 

Most of the statements the participants gave about what they liked regarding the 
structure editor pointed in a similar direction. Several people wrote something like 
“code is clearly arranged” or “the structure is clearly visible”. However, a few people 
contrarily stated that they were confused by the structured representation of the code. 

In general, the diagram indicates the subjective feeling of the participants that the 
structure editor helps them reading and understanding the code better. 

As a last question, we asked the participants whether they would use such a 
structure editor if there was one for their favourite programming language. Fig. 11 
shows that the majority (61% in total, 82% of the Master students) would at least give 
it a try. Students that voted negatively argued that they got used to their current editor 
and do not want to spend time in learning how to use a different one. 

 

 

Fig. 11. Question "If there were a structure editor for your favourite programming language - 
would you use it?" 

The evaluation does not reveal significant benefits of the structure editor as one 
may have expected. Nevertheless, it shows an interesting mismatch between the 
subjective ratings of the participants in the third questionnaire and the actual results 
from the first two questionnaires. This will be discussed in Section 6.1. 

5 Related Work 

We are not the first ones thinking about visualising the structure of a program in the 
editor and directly working on the syntax tree that was created from the code. In this 
section we present other approaches that were developed to achieve these goals. 

5.1 Early Structure Editors 

The idea of an editor which visualizes the structure of the underlying code is not new. 
In 1971, Wilfred J. Hansen presented a system called “Emily” [1] which was, in fact, 



92 A. Gomolka and B. Humm 

a structure editor for PL/I. The basic idea was to create a program by recursive 
replacement of placeholders according to their role in the Backus-Naur Form (BNF) 
notation of the programming language. The structure of the program and even of 
every command was fixed by structures of placeholders. Emily physically stored the 
whole program in a hierarchical structure that supported descending into sub-
structures along the hierarchy. From the programmer’s point of view, it was 
technically not possible to create programs that contained syntactical errors.  

Other systems that follow a similar approach are “MENTOR” [15] and the 
“Cornell Program Synthesizer” [5]. Particularly in the Lisp community, programmers 
were fascinated by the idea of working directly on the structure of the code instead of 
a textual representation. An example of a structure editor for Lisp is Interlisp-D [16].  

However, these early structure editors that are mostly summarized as syntax-
directed editors could not satisfy the expectations and did not become widely 
accepted. Looking at these ancient examples which ran on terminals, restricted the 
programmers in several ways (violating Principle 2) and were quite tedious to use 
compared to a textual editor, this seems comprehensible. But what about newer 
systems based on the same idea? 

5.2 Program Tree Editor 

A more recent example of a structure editor of a different flavour is the “Program 
Tree Editor” [17]. This system visualises a piece of code written in a common 
programming language as a tree, similar to a file browser. It supports C, C++, C#, 
Java, Java Script, J#, XML, XHTML. Each tree node represents a structure from the 
underlying code and can be contracted and expanded. The tree structure is created 
upon opening a file containing source code and is translated back to the textual 
representation when a file is saved. 

The user navigates through the tree using the keyboard and is able to edit the 
individual nodes directly in the tree. Nodes can be added or removed without the need 
of a mouse. Features like auto completion are provided.  

This type of editor literally implements working on the underlying tree structure of 
the code. However, we question that this kind of visualization is particularly useful. 
We believe that programmers do not think in such file browser-like tree structures 
when they program. They more likely think in block structures. This is why we 
designed the GUI of our structure editor in a different way, consisting of nested boxes 
that emphasise the structure in a more discrete, but nevertheless clear way. 

5.3 Subtext 

A totally different approach of representing the structure of a program is presented as 
a system called Subtext [7]. Subtext is not based on an existing programming 
language. Instead, it introduces its own programming language that is not based on a 
textual representation of code any longer but stores its code in a database. 

Using Subtext, the programmer composes programs from combining so called 
schematic tables which the author of the system describes as “a cross between 



 Structure Editors: Old Hat or Future Vision? 93 

decision tables and data flow graphs” and which are intended to replace all kinds of 
conditional constructs. The basic idea behind such schematic tables is to visualize the 
structure of the program in two-dimensional way. The horizontal axis contains the 
different cases of a conditional statement (“deciding”) and the vertical axis determines 
what happens if the individual cases become active (“doing”). 

Subtext seems to be quite an interesting approach for visualizing decision 
structures such as nested case statements. The greatest drawback appears to be its lack 
of compatibility. Subtext cannot be used to visualize the structure of already existing 
programs written in a common programming language (Principle 5). 

5.4 A Structure Editor for C# 

The most similar approach to our structure editor we are aware of is a Structured 
Editor for C# [18]. We regard it as the most capable editor of the ones we compared. 
This editor also represents the structure of the code in a discreet way by coloured bars 
at the beginning of each line. The actual bounds of a code block are shown as soon as 
one clicks on it using the mouse. All syntactic delimiters like curly brackets and 
semicolons are hidden, because they are not needed any longer.  

One difference is, that the programmer is forced to change his way of typing. The 
delimiters are not only hidden, they are also not typed at all. For example, for entering 
the body of a C# class, the programmer has to press the <Return> key instead of 
typing a curly bracket. Our philosophy is that the programmer may type exactly the 
same code with the textual and the structural editor in order to minimize the learning 
curve and to easily switch between editors (Principle 4). 

5.5 Structure Editors and Language-Oriented Programming 

All structure editors that were mentioned so far try to be an alternative or extension to 
the textual editors that are normally used to read and edit programs. In different ways 
they visualize the structure of a program. In the context of language-oriented 
programming (LOP) [6, 9] there is one more step of abstraction where structure 
editors can be useful.  

One main idea of LOP is to enable domain experts to contribute more directly to 
the programmatic solution of a problem by using a suitable Domain-Specific 
Language (DSL). Such a DSL may be an extension to an existing programming 
language (internal DSL) or a new language (external DSL), not necessarily a textual 
one. In the latter case, the program is created using a special kind of structure editor 
(sometimes called a projecting editor) that also performs a mapping from the DSL to 
an executable program. In this case, the structure editor is more than just an 
alternative view on the program – it is actually part of the language workbench. 

A language workbench that provides a complete development environment for 
external DSLs is the “Meta-Programming-System” [6] by JetBrains, which includes 
an “editor language” to create structure editors for each newly developed DSL. 
Another example is the system called “Intentional Software” that was proposed by 
Simonyi [19]. 



94 A. Gomolka and B. Humm 

6 Conclusions 

In this paper we described layout and behaviour principles for structure editors and 
presented a new structure editor for Lisp. We also presented an evaluation of our 
editor. Taking this into account, we now try to answer the question: Are structure 
editors an old hat or a future vision? 

6.1 An Interesting Mismatch 

Structure editors have been around for decades. However, they have not succeeded in 
replacing classical textual program editors. We think that this is an interesting 
mismatch: on the one hand, the concept of displaying the underlying structure of a 
program and directly working on the syntax tree is intuitively attractive. On the other 
hand, this kind of editor has gained low acceptance in practice so far.  

The results of our survey revealed this mismatch, too. The majority of the 
participants had the intuitive feeling that the structure editor was superior to the 
textual editor. However, the quantitative results showed no significant improvement. 
All this seems to suggest that structure editors are rather “old hat” than “future 
vision”. 

Certainly, structure editors are no silver bullet for software engineering [20]. 
Understanding the concepts of a programming language or paradigm is far more 
difficult than coping with a particular syntax. For example, a programming novice 
who has understood the concept of classes, inheritance, and polymorphism will not 
have a major problem in getting acquainted with different syntaxes, be it curly or 
other parentheses or, instead, boxes in a structure editor. Insofar, one should not 
expect an extraordinary measurable improvement in usability. 

The structured representation even has a drawback which most of the former 
implementations of structure editors were not really able to handle: Structure editors 
require a syntactically correct program to be able to determine the structure of the 
code and to display the structured representation. So, modifications that are quite 
small but lead to a change of the structure (e.g. moving a bracket from one line to 
another) are not possible without the support of the editor. So even though the idea of 
a structure editor itself is quite simple – the implementation is not. 

Also, many programmers are reluctant to change their way of programming. Our 
survey confirmed this opinion. Some participants conceded that the structure editor 
might be useful, but they got accustomed to their favourite IDE and do not want to 
change tools without really having to. The benefit seems to be too small for most 
programmers. 

This is why we integrated the structure editor into a popular IDE like Eclipse and 
also provided the textual editor as part of the plug-in. As a result, the programmers 
may just use the structured representation where this seems helpful – and perhaps find 
out that this applies in more cases than expected. 

6.2 Structure Editors Are Still Useful 

Taking into account the arguments from the previous section, structure editors most 
likely will not be able to replace textual editors that are embedded in powerful IDEs. 
However, we still feel that they can be useful. 



 Structure Editors: Old Hat or Future Vision? 95 

A first step is, as just mentioned, to plug structure editors into an IDE like Eclipse 
and offer programmers the possibility to use it as an alternative to the textual editor. 
For example, the programmer may use the structured representation for reading and 
understanding the code because it provides a better overview. To edit the code, he or 
she then may switch to the textual perspective. Anyway, this kind of use would not 
justify describing structure editors as “future vision” of programming environments. 

However, we see a growing field of special-purpose programming issues where, 
indeed, structure editors could provide a significant improvement: configuring an 
application, defining business rules, designing the layout of a GUI, specifying a 
business process, etc. For all those special-purpose programming issues, DSLs are 
becoming more and more popular. The ever-increasing number of XML dialects is an 
indication for this. We feel that structure editors are particularly useful for 
programming DSLs, or, in general, for Language-Oriented Programming (see 
Section 5.5).  

Fig. 12 provides an example of a code snippet in some XML dialect in textual form 
and in the structure editor. The representation in the structure editor is by far more 
clearly arranged than in the textual XML syntax. This is particularly useful for 
novices or rare users of this particular XML dialect.  

(a) 

<Student> 

  <ID>708604</ID> 

  <Name> 

    <First>Andreas</First> 

    <Last>Gomolka</Last> 

  </Name> 

  <Address> 

    <City>Darmstadt</City> 

    <Country>Germany</Country> 

  </Address> 

</Person> 

(b)

 

Fig. 12. A snippet of XML code in textual (a) and structured representation (b) 

Conway et al. [21] and Myers et al. [22] have shown in comprehensive analyses 
that structure editors and graphical editors are most useful for programming novices, 
e.g., children. Since users of special-purpose DLSs are usually rare users and often 
novices we are confident that structure editors may be most useful in this context: a 
future vision for DSL editors. 

6.3 Future Work 

As future work, we plan to extend our evaluation of the structure editor towards its 
use in Language-Oriented Programming. In addition to readability and 
understandability of code we will examine the effects of the editor on the learning 
curve for DSLs as well as the effectiveness and efficiency of programming.  



96 A. Gomolka and B. Humm 

A program editor is a tool and no silver bullet. In the end, it is a matter of taste 
which kind of editor a programmer feels most appropriate for achieving a task – and 
this is a case for structure editors. 

References 

1. Hansen, W.J.: User engineering principles for interactive systems. In: Proceedings of the 
1971 Fall Joint Conference (AFIPS 1971), pp. 523–532 (1971) 

2. Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., Pascual, V.: 
Centaur: the system. In: Proceedings of the Third ACM SIGSOFT/SIGPLAN Software 
Engineering Symposium on Practical Software Development Environments, pp. 14–24 
(1988) 

3. Ballance, R.A., Graham, S.L., van de Vanter, M.L.: The Pan language-based editing 
system. ACM Transactions on Software Engineering Methodology (TOSEM) 1, 95–127 
(1992) 

4. Ko, A.J., Myers, B.A.: Barista: An implementation framework for enabling new tools, 
interaction techniques and views in code editors. In: Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems (CHI 2006), pp. 387–396 (2006) 

5. Teitelbaum, T., Reps, T.: The Cornell Program Synthesizer: A Syntax-Directed 
Programming Environment. Communications of the ACM 24, 563–573 (1981) 

6. Dimitriev, S.: Language Oriented Programming: The Next Programming Paradigm. 
onBoard 1 (2004) 

7. Edwards, J.: No Ifs, Ands, or Buts - Uncovering the Simplicity of Conditionals. In: 
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented 
Programming Systems and Applications, OOPSLA 2007 (2007) 

8. McCarthy, J.: Recursive functions of symbolic expressions and their computation by 
machine, Part I. Communications of the ACM 3, 184–195 (1960) 

9. Humm, B.G., Engelschall, R.S.: Language-oriented Programming via DSL Stacking. In: 
Proceedings of the 5th International Conference on Software and Data Technologies 
(ICSOFT 2010), pp. 279–287 (2010) 

10. Jasko, T., Ritchey, T.: CUSP. A Lisp plugin for Eclipse, 
http://www.bitfauna.com/projects/cusp/ 

11. The Eclipse Foundation: GEF and Draw2d Plug-in Developer Guide, 
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.
gef.doc.isv/guide.html 

12. Dumas, J.S., Redish, J.C.: A practical guide to usability testing. Intellect Books, Exeter 
(1999) 

13. Bevan, N.: Measuring usability as quality of use. Software Qual. J. 4, 115–130 (1995) 
14. Schalles, C., Rebstock, M., Creagh, J.: Ein generischer Ansatz zur Messung der 

Benutzerfreundlichkeit von Modellierungssprachen. In: Engels, G., Karagiannis, D., Mayr, 
H.C. (eds.) Modellierung 2010, Klagenfurt, Austria, Märch 24-26, vol. 161, pp. 15–30. GI, 
Bonn (2010) 

15. Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B.: Programming Environments based on 
Structured Editors: The MENTOR Experience. Institut National de Recherche 
d’Information et d’Automatique (INRIA), Rocquencourt (1980) 

16. Burton, R.R., Masinter, L.M., Bobrow, D.G., Haugeland, W.S., Kaplan, R.M., Sheil, B.A.: 
Overview and status of DoradoLisp. In: Proceedings of the 1980 ACM Conference on 
LISP and Functional Programming (LFP 1980), pp. 243–247 (1980) 



 Structure Editors: Old Hat or Future Vision? 97 

17. Yurov, A.: Program Tree Editor, http://www.programtree.com/ 
18. Osenkov, K.: Designing, implementing and integrating a structured C# code editor. 

Brandenburg University of Technology, Cottbus (2007) 
19. Simonyi, C., Christerson, M., Clifford, S.: Intentional software. In: Proceedings of the 21st 

Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, 
Languages, and Applications, OOPSLA 2006 (2006) 

20. Brooks, F.P.: No Silver Bullet: Essence and Accidents of Software Engineering. IEEE 
Computer 20, 10–19 (1987) 

21. Conway, M., Audia, S., Burnette, T., Cosgrove, D., Chistiansen, K.: Alice: lessons learned 
from building a 3D system for novices. In: Proceedings of the SIGCHI Conference on 
Human Factors in Computing Systems (CHI 2000), pp. 486–493 (2000) 

22. Myers, B.A., Pane, J.F., Ko, A.: Natural programming languages and environments. 
Communications of the ACM 47, 47–52 (2004) 



A Framework for Aspectual Pervasive Software Services
Evaluation

Dhaminda B. Abeywickrama and Sita Ramakrishnan

Faculty of Information Technology
Monash University, Clayton Campus, Australia

Dhaminda.Abeywickrama@gmail.com, Sita.Ramakrishnan@monash.edu

Abstract. Context-dependent information has several qualities that make per-
vasive services challenging compared to conventional Web services. Therefore,
sound software engineering practices are needed during their development, exe-
cution and validation. This establishes an evaluation framework to evaluate per-
vasive service-oriented software architectures. The framework consists of two
views: vertical, horizontal. Vertical evaluation compares several research tools to
the Aspectual FSP Generation tool developed here. They are com-
pared across the platform-independent and platform-specific levels of the archi-
tecture. The horizontal evaluation view is designed to validate several desired key
features mainly required at the platform-specific level. The vertical evaluation has
demonstrated that our tool has unique features in context-dependent behavioral
modeling and code generation. The horizontal evaluation has shown that the for-
mal methods and tools employed, and the customization approach used in the ser-
vices, are effective towards the overall objectives of this research. The approach
is explored using a real-world case study in intelligent transport.

Keywords: Pervasive services, Model-driven development, Model checking,
Aspect-oriented modeling.

1 Introduction

A pervasive service is a special type of service that adapts its behavior or the content
it processes to the context of one or several parameters of a target entity in a trans-
parent way (e.g. restaurant finder services, attractions and activities recommendation
services) [1]. With the proliferation of ubiquitous computing devices and Internet, per-
vasive services continue to evolve from simple proof of concept implementations cre-
ated in the laboratory to large and complex real-world services developed in industry.
Context-awareness capabilities in service interfaces introduce additional challenges to
the software engineer. Context information is characterized by several qualities that
make pervasive services challenging compared to conventional Web services, such as a
highly dynamic nature, real-time requirements, quality of context information and au-
tomation. The additional complexities associated with these special services necessitate
the use of solid software engineering methodologies during their development, execu-
tion and validation. Most state-of-the-art approaches to pervasive services relate to the

L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 98–113, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Framework for Aspectual Pervasive Software Services Evaluation 99

detailed design or implementation stages [2,3] of the software life-cycle, such as perva-
sive Web services. Little work focuses on the early phase of design such as architecture
design, which is of a higher level and abstract in design.

This systematic, architecture-centric approach [4,5,6,7] for modeling and verifying
pervasive services integrates the benefits of sound software engineering principles such
as model-driven architecture, aspect-oriented modeling, and formal model checking. It
adopts model-driven development to represent complex crosscutting context-dependent
functionality in service interfaces in a modular manner, and to automate the generation
of state machine-based adaptive behavior. The crosscutting context-dependent infor-
mation of the interacting pervasive services is modeled as aspect-oriented models in
UML. Aspect-oriented modeling [8] is an aspect-oriented software development exten-
sion applied to the early stages of the software life-cycle, which supports separation
of concerns at the modeling level. Using model transformations (Aspectual FSP
Generation tool), we ensure the correct separation of concerns of the crosscutting
context-dependent functionality at both semi-formal UML modeling and formal behav-
ioral specification levels. The generated context-dependent adaptive behavior and the
core service behavior for the pervasive services are rigorously verified using formal
model checking against specified system properties.

This paper establishes a framework to evaluate pervasive service-oriented software
architectures. The method of evaluation is based on key features comparison. The evalu-
ation framework consists of two dimensions or views: vertical and horizontal. The verti-
cal evaluation compares several research tools to the Aspectual FSP Generation
tool developed in the current research. The tools are compared across the platform-
independent model (PIM) and platform-specific model (PSM) levels of the
model-driven architecture (MDA). The horizontal evaluation view is designed to val-
idate several desired key features that are mainly required at the PSM level of the
aspectual pervasive software services specification. These criteria mainly cover two
aspects: formal methods and tools employed, and the context and adaptation dimen-
sions of the customization approach used in the services. The vertical evaluation has
demonstrated that the Aspectual FSP Generation tool has unique features
in context-dependent behavioral modeling and code generation. The horizontal evalu-
ation of the approach has shown that the formal methods and tools employed, and the
customization approach used in the services are indeed effective towards the overall
objectives of this research. The approach is explored using a real-world case study in
intelligent tagging for transport.

The rest of the paper is organized as follows. Section 2 provides background in-
formation on this study. An overview of the evaluation framework established here is
provided in Section 3. In Section 4 vertical evaluation of the research is discussed while
Section 5 addresses the horizontal evaluation. Section 6 concludes this paper.

2 Background

This section provides background information on (1) the overall pervasive services en-
gineering process, (2) the case study, and (3) the context-dependent adaptive behavior
generation process applied in the research.



100 D.B. Abeywickrama and S. Ramakrishnan

2.1 Pervasive Services Engineering for Service-Oriented Architectures

The overall pervasive service-oriented development process is divided into three stages
(Figure 1) [6,7]. First, using the case study we extract use cases and define a ser-
vice specification for the system under consideration using message sequence charts.
Second, the architecture for the system is defined using a component configuration
and an architecture model in Finite State Processes (FSP) using the LTSA-MSC tool.
Third, the architecture model synthesized from the previous step is modularized with
aspect-oriented models in UML called the contextual-FSP aspects (c-FSP
aspects), and automatically transformed into FSP before applying model checking
using the Labeled Transition System Analyzer tool (LTSA).

2.2 Case Study: Awareness Monitoring and Notification Pervasive Service

The research approach is explored using a real-world case study in intelligent tag-
ging for transport known as the ParcelCall project. ParcelCall [9] is a European Union
project within the Information Society Technologies program. The case study describes
a scalable, real-time, intelligent, end-to-end tracking and tracing system using radio
frequency identification (RFID), sensor networks, and services for transport and lo-
gistics. This case study is particularly appealing to the current research as it provides
several scenarios for representing software services that interoperate in a pervasive,
mobile and distributed environment. A significant subset of the ParcelCall case study is
exception handling that needs to be enforced when a transport item’s context informa-
tion violates acceptable threshold values. The reference scenario used here describes an
awareness monitoring and notification pervasive service, which
alerts with regards to any exceptional situations that may arise on transport items, pri-
marily to the vehicle driver of the transport unit. The threshold values for environment
status (e.g., temperature, pressure, acceleration) of transport items and route (location)
for the vehicle are set by the carrier organization in advance. The service alerts if items’
environment status exceeds acceptable levels or if an item is lost or stolen during trans-
port. The primary context parameters modeled in the study include item identity, loca-
tion, temperature, pressure and acceleration.

2.3 Context-Dependent Adaptive Behavior Generation

The notion of context used in this research is based on a definition provided by Ana-
lyti et al. [10] for context in information modeling. They describe context as a set of
objects, each of which is associated with a set of names and another context called its
reference. Furthermore, they enhance the definition for context by stating that each ob-
ject of a context is either a simple object or a link object (attribute, instance-of, ISA) and
each object can be related to other objects through attribute, instance-of or ISA links.
Analyti et al. [10] use traditional object-oriented abstraction mechanisms of attribution,
classification, generalization and encapsulation to structure the contents of a context.

The model transformation tool created in our study is called the Aspectual FSP
Generation tool. The transformations have been applied to the reference scenario
in intelligent transport. We use model transformations to automate the application of



A Framework for Aspectual Pervasive Software Services Evaluation 101

Fig. 1. Pervasive services engineering for service-oriented architectures

design patterns and generate infrastructure code for the c-FSP aspects using FSP
semantics. The current study explores the strengths of both semi-formal UML meta-
level extensions and formal finite state machines for representing the context-dependent
behavior of software services, and model transformation techniques are applied as a
bridge to enforce correct separation of concerns between these two design abstractions.
The main benefits of this approach are: improving the quality and productivity of service
development; easing system maintenance and evolution; and increasing the portability
of the service design for the pervasive services engineer.

This approach focuses on the application of model-driven development for engineer-
ing pervasive services at finite state machine level. An aspect in FSP can be identified
as an independent finite state machine that executes concurrently and synchronizes with
its base state machine. In general, an aspect in FSP needs to contain synchronization
events (transitions) to coordinate with its base state machine and other aspects. Also,
each aspect type (e.g. context, trigger, and recovery) contains its unique con-
structs which can be generated automatically using model transformation techniques.
For example, a trigger aspect requires constructs to alert and send notifications
while a recovery aspect needs constructs to recover from exception-handling sit-
uations. On the other hand, a context aspect has attribution, instance-of, ISA,
and reference constructs from the notion of context applied here. In Figure 2, the mod-
els and activities of the development process are represented as ellipses and square
boxes respectively. The development process is structured into three main flows of ac-
tivities. Flow 1 and Flow 2 extensively apply model transformations where Flow
1 uses a model-to-text JET transformation and Flow 2 applies an effective pipeline
of model-to-model and model-to-text JET transformations. Both Flow 1 and Flow
2 originate from the c-FSP-UML profile. Flow 3 represents activities involved
for rigorously verifying the context-dependent adaptive behavior and the core service
behavior of the pervasive software services using formal model checking.

3 Evaluation Framework

This evaluation framework [4] mainly validates the main contributions or deliverables
of this study against several key evaluation criteria. The main tools used in this study in-
clude the Aspectual FSP Generation tool created in this research, the LTSA



102 D.B. Abeywickrama and S. Ramakrishnan

Fig. 2. Context-dependent adaptive behavior generation process

model checker and the LTSA-MSC tool. First, this research has developed a custom tool
(Aspectual FSP Generation tool) applying an effective pipeline of model-
to-model and model-to-text JET transformations using the IBM Rational Software Ar-
chitect to automate the application of design patterns and generate infrastructure code
for the aspects. Second, this research has performed rigorous specification and verifica-
tion of concurrent models of pervasive software services and their compositions using
the LTSA model checker to assure the correctness and quality of the pervasive services
design. Third, in this study the interaction patterns defining the pervasive software ser-
vices of the specification have been modeled using the LTSA-MSC tool, from which a
core service model was extracted. The evaluation framework established in this paper
intends to validate the aforementioned three main deliverables against key evaluation
criteria.

The method of evaluation used here is based on key features comparison. The evalua-
tion framework developed here does not produce additions to the research methodology
but instead validates the methods and tools used in the research as a whole. The evalu-
ation framework consists of two views: vertical and horizontal. Figure 3 illustrates the
two views of the overall evaluation approach.

4 Vertical Evaluation

This section discusses the vertical view of the evaluation framework [4]. In the vertical
view of the evaluation framework, several tools on aspect-oriented modeling (AOM) are
compared with the Aspectual FSP Generation tool as a whole at the PIM and
PSM levels of model-driven development. As the Aspectual FSP Generation
tool covers several modeling layers of the MDA stack such as PIM and PSM levels,
the evaluation process is essentially vertical in nature. The vertical evaluation essen-
tially provides an analysis of several features of the Aspectual FSP Generation
tool against several aspect-oriented modeling-based tools. Like the Aspectual FSP
Generation tool, these tools have been developed using commercially available
toolchains of similar area of application such as IBM Rational Software Modeler, Bor-
land Together, Telelogic Modeller and Topcased [11]. This evaluation is based on the



A Framework for Aspectual Pervasive Software Services Evaluation 103

Fig. 3. Evaluation framework: vertical and horizontal views

following criteria: context-dependent behavioral modeling at the PIM level, explicit
joinpoint model of AOM at the PIM level, weaving performed at the PIM level or PSM
level, and context-dependent behavioral code generation from the PIM level to PSM
level. A particular evaluation criterion can be fully satisfied (complete cover), partly
satisfied (partial cover), or not supported at all (no cover). The results of this evaluation
are presented in Table 1.

4.1 Aspectual FSP Generation Tool

The Aspectual FSP Generation tool created in this research [4,5,6,11] us-
ing IBM Rational Software Architect provides for context-dependent behavioral mod-
eling at the PIM level, and context-dependent behavioral code generation from the
PIM level to the PSM level of model-driven development. This tool effectively applies
model-driven development in pervasive services engineering at the state machine level.
Context-dependent behavior at the service interface level has been modeled using a cus-
tom UML profile called the c-FSP-UML profile, and aspect-oriented UML class
models called the c-FSP aspects. The profile supports an explicit joinpoint model
of AOM at the PIM level, and towards this the profile defines several stereotypes such as
Aspect, ContextAspect, TriggerAspect, RecoveryAspect, Advice and
Pointcut. The Aspectual FSP Generation tool can be employed to gen-
erate PSMs in formal behavioral specification level in FSP using an effective chain of
model transformations. Model transformations are employed here to automate the ap-
plication of design patterns and generate infrastructure code for the c-FSP aspects
using FSP semantics. Also, using transformations the correct separation of concerns
both at UML modeling and FSP behavioral specification levels is ensured. The main
benefits of this approach are: improving the quality and productivity of service devel-
opment; easing system maintenance and evolution; and increasing the portability of the
service design. Weaving between an aspect and a base state machine is performed us-
ing an explicit weaving mechanism at the executable state machine level in FSP. The



104 D.B. Abeywickrama and S. Ramakrishnan

context modeling and transformations features of the Aspectual FSP Generation
tool have been explored using the reference scenario on intelligent transport.

4.2 Groher and Schulze’s Approach

Groher and Schulze [12] present an approach for specifying crosscutting concerns us-
ing aspect-oriented modeling and discuss the seamless integration of those models to
implementation. In their approach, UML has been customized for supporting aspect-
oriented modeling using UML’s standard extension mechanisms, such as stereotypes,
tagged values and constraints. Their design notation for aspect-oriented modeling pro-
vides a base package for modeling the business logic, an aspect package for modeling
the crosscutting concerns, and a connector (weaving rules) for linking the aspect and
the base elements. The connector includes program execution points (pointcuts), and
actions to be executed at those points (advices). The weaving in their approach is es-
sentially performed at the PIM level and not at the PSM level as in the current study.
The authors have implemented an AspectJ code generator using the CASE tool Together
from Borland. In their tool aspect-oriented validation and code generation in AspectJ
have been implemented as modules. The authors’ work [12] is not based on pervasive
services, which is a key difference to the current research. Also, the code generation
is at the implementation level with AspectJ whereas in the current research it is at the
software architectural level with FSP.

4.3 Whittle and Jayaraman’s Approach

Whittle and Jayaraman [13] present a UML-based aspect-oriented modeling tool called
MATA that applies graph transformations for specifying and composing aspect models.
Their work is different to most other approaches on aspect-oriented modeling in three
respects. First, there is no support for explicit joinpoints and composition is considered
as a special form of model transformations. Second, the use of graph transformations for
aspect composition, and third, support for statically analyzing aspect interactions using
critical pair analysis, make their approach different to other approaches. The composi-
tion of a base model and an aspect model (weaving) is specified using a graph rule. A
main difference in the authors’ approach is that graph rules have been defined over the
concrete syntax of the modeling language and not at the meta-level as in most known
approaches on model transformations. The authors use a cell phone example to demon-
strate the validity of their method and tool. Tool support for MATA has been built using
IBM Rational Software Modeler. The tool uses graph transformation as its underlying
theory for aspect composition. Similar to Groher and Schulze’s approach, MATA is not
based on pervasive services. The authors’ work [13] does not support explicit joinpoints
as provided in the current research. Also, no code generation of the models has been
provided by them.

4.4 Cottenier et al. Approach

Cottenier et al. [14] present Motorola WEAVR, which provides aspect-oriented weav-
ing for UML state charts that include action semantics. Motorola WEAVR is an indus-
trial-strength aspect weaver for UML 2.0, which is implemented as an add-in to the



A Framework for Aspectual Pervasive Software Services Evaluation 105

Telelogic TAU G2. The tool essentially performs four main functions. First, the tool’s
profile allows engineers to define aspects in UML 2.0. Second, it presents a joinpoint
visualization engine for visualizing and validating the effects of the aspects. Third, the
tool provides full aspect weaving at the modeling level. Finally, the tool’s simulation
engine allows the simulation of the aspect models without breaking their modular struc-
ture. The authors have provided several UML stereotype classes for identifying various
constructs of an aspect at the PIM level. Motorola WEAVR introduces two fundamen-
tal language constructs to support aspect-oriented modeling. First, the authors provide
constructs to specify the locations or joinpoints in the models where crosscutting be-
havior emerges. Second, the authors provide constructs to specify the actual behavior of
the crosscutting concerns using the connector stereotype. Weaving process consists of
two phases: advice instantiation and advice instance binding. As weaving is performed
at the PIM level with aspects woven into executable UML models, it allows PSMs and
source code to be generated automatically. Several examples on exception handling and
recovery have been developed by the authors to demonstrate the validity of their ap-
proach. However, the authors’ work [14] is not in the pervasive computing domain as
in the current research. Also, their PSMs are not at the formal behavioral specification
level as in our study.

4.5 Fuentes et al. Approach

Fuentes et al. [15] present an aspect-oriented executable modeling UML 2.0 profile
called AOEM for designing pervasive applications. Using the AOEM profile, they
demonstrate how aspect-oriented executable design models for context-aware pervasive
applications can be constructed and executed. These models are run and tested using
Populo, which is an eclipse plug-in created by the authors for interpreting executable
UML models. The AOEM profile aims at addressing two challenges in pervasive ap-
plications. They are the crosscutting nature of context-awareness, and the complexity
associated with reasoning about the correctness of the design model. In their approach,
weaving of aspects to core components is performed at the PIM level. Special composi-
tion rules expressed as pointcuts in the AOEM profile describe how aspects are applied
to the core components. An aspect-oriented model weaver, which is a type of compiler
or preprocessor, has been developed for weaving. The weaver essentially creates the de-
sign model by injecting the crosscutting behavior of the aspects into the core modules
that the aspects crosscut. The authors illustrate their approach using a location-aware
intelligent transportation system. Although Fuentes et al. [15] provide for modeling of
adaptive behavior at the PIM level, they do not provide any model transformations to
generate PSMs. Also, in general, their context models are at the context-aware applica-
tion and middleware levels and not at the state machine level as in the current study.

Like the Aspectual FSP Generation tool, [12], [14] and [15] support an ex-
plicit joinpoint model of aspect-oriented modeling at PIM level. Also, all the com-
pared approaches support PIM or PSM level weaving of aspects. The vertical evalua-
tion has demonstrated that the Aspectual FSP Generation tool has unique
features on context-dependent behavioral modeling and context-dependent behavioral
code generation.



106 D.B. Abeywickrama and S. Ramakrishnan

Table 1. Comparison matrix for vertical evaluation

Evaluation Criteria Groher &
Schulze

Whittle &
Jayaraman

Cottenier et
al.

Fuentes et
al.

Aspectual
FSP Gen-
eration
tool

PIM level support for context-dependent behav-
ioral modeling
PIM level support for explicit joinpoint model
of AOM

.8

PIM or PSM level support for weaving
PIM and PSM level support for context-
dependent behavioral code generation

Complete cover of a criterion
Partial cover of a criterion
No cover of a criterion

Table 1 shows that the Aspectual FSP Generation tool satisfies all the cri-
teria as opposed to the other tools which satisfy only some criteria.

5 Horizontal Evaluation

This section describes the horizontal dimension of the framework [4]. In contrast to ver-
tical evaluation discussed above, horizontal evaluation validates only particular features
at a specific level of abstraction of the MDA stack. The horizontal evaluation view is
designed to validate several desired key features that are mainly required at the PSM
level of the aspectual pervasive software services specification. These evaluation cri-
teria cover two aspects of the study. They are the formal methods and tools employed
in the study, and the context and adaptation dimensions of the customization approach
used in the services.

5.1 Formal Methods and Tools Used

In this subsection, the formal methods and tools used in the current study at the PSM
level of abstraction are evaluated. Clarke et al. [16] provide several criteria that formal
methods-based approaches and tools need to support. According to Clarke et al. [16],
although some of these criteria are ideals, it is still considered good to aim for them. As
provided in Section 2.1, the research methodology of the current study contains three
stages: service specification, architecture definition and architecture modularization. In
the present study, formal methods and tools have been applied during the service spec-
ification and architecture definition stages of the research methodology, and finally for
model checking the aspectual pervasive software services specification. The LTSA-MSC
tool has been used for specifying the software services of the service specification and
generating a behavioral model in FSP. Using this generated behavioral model, a core
service model was extracted. The formal model checker, the LTSA, has been used to
verify the aspectual pervasive software service specification against specified system
requirements. This subsection evaluates the application of the aforementioned formal



A Framework for Aspectual Pervasive Software Services Evaluation 107

methods and tools in the current research against the criteria provided by Clarke et al.
[16].

– Early Payback. Early payback is one of the key benefits of the current study. This
study is focused on the architectural level of the software life-cycle. This architec-
ture-centric approach builds models of pervasive software services and their com-
positions and verifies their behavior against specified system properties. Building
architectural models of pervasive software services allows the software engineers to
validate the actual correctness of the services before the services are implemented
later in the software life-cycle. Thus, it provides early payback or feedback to the
service engineer on the validity of the services.

– Incremental Gain for Incremental Effort. In the study, the PSMs of the aspectual
pervasive software services specification have been derived following the three in-
cremental stages of the research methodology: service specification, architecture
definition and architecture modularization. Each of these stages has its own de-
liverables such as an message sequence chart specification for software services,
architecture model for the software services in FSP, and a modularized architecture
with aspect-oriented models to represent context-dependent behavior at the service
interface level. This demonstrates that the service engineer can receive the benefits
of the methodology in an incremental manner.

– Multiple Use. The pervasive services engineering methodology established in this
research in general covers the requirements and architecture design stages of the
software life-cycle. Therefore, the benefits of this methodology can be seen in mul-
tiple stages of the software life-cycle. This design methodology effectively facil-
itates the transition from requirements-oriented scenario descriptions of pervasive
software services to architecture-centric behavioral models of aspectual pervasive
software services.

– Integrated Use. The formal methods and tools used in this research are widely
known in both academia and industry. First, this research has modeled the pervasive
software services using message sequence charts provided by the LTSA-MSC tool.
Message sequence charts are one of the most widely used sequence chart notations
for describing system behavior. Second, the model checking tool employed in this
study (LTSA tool) is widely used for behavior modeling and analysis and is well
supported with documentation [17].

– Ease of Use. This research applies three automated tools in the pervasive ser-
vices engineering process: the LTSA-MSC tool to generate the architecture model
in FSP which is later used to extract the core service model, the Aspectual
FSP Generation tool to generate context-dependent behavior in FSP, and
the LTSA tool for simulating, animating and model checking pervasive services.
The use of automated tools such as the LTSA makes the engineering process much
easier to understand and adopt for the service engineer.

– Efficiency. One of the limitations of the current study is efficiency in terms of time
and space. This is mainly attributed to the formal model checking technique used
for verifying the pervasive services specification. One of the main challenges asso-
ciated with model checking technique is the state space explosion problem. Nev-
ertheless, by using action hiding and minimization features of the LTSA model



108 D.B. Abeywickrama and S. Ramakrishnan

checker the present study has proven sufficiently efficient in modeling and verify-
ing the case study subset of this research.

– Ease of learning. The graphical interfaces provided in the LTSA-MSC tool and
the Aspectual FSP Generation tool and the automated nature of these
tools effectively reduce the need to know formal FSP to start realizing the benefits
of this research. The use of basic and high-level message sequence charts in the
service specification stage of the methodology are widely used and understood in
both academia and industry. Also, the sequence chart notion and semantics applied
in the LTSA-MSC tool are restricted to basic features. It does not include com-
plex constructs such as message queues, gates, parametric messages, or dynamic
creation and termination of instances.

– Orientation Toward Error Detection. The approach presented in this paper is
oriented towards detecting errors in the aspectual pervasive software services speci-
fication using the formal model checking technique. Aspects can introduce an addi-
tional correctness problem in software specifications because of their crosscutting
effect and obliviousness nature. Therefore, tool support if possible automatic, is
highly desirable to ensure the correctness of the specification. This research em-
ploys formal model checking to find errors concerning safety, progress, and fluent
linear temporal logic assertions in the service specification, which can be hidden
behind the individual components and aspects, or in the woven model. In the study,
two techniques - counterexamples and witness executions - have been employed to
point out any errors in the specification, which can be used by the service engineer
to improve the state models or the system properties for the aspectual pervasive
software services.

– Focused Analysis. This research is explored using a modified subset of a real-world
case study called the ParcelCall project. The case study subset focuses on excep-
tion handling that needs to be enforced when a transport item’s context information
violates acceptable threshold values. The reference scenario used in the research de-
scribes an awareness monitoring and notification pervasive
service, which alerts with regards to any exceptional situations that may arise
on transport items primarily to the vehicle driver of the transport unit. This is an
example where the research is focused on analyzing only a particular aspect of
the system and not the entire system. Also, at the PSM level only temperature and
pressure context properties have been modeled and verified. Similarly, other context
properties such as item identity, location and acceleration can also be supported.

– Evolutionary Development. The incremental and iterative nature of the activities
performed in each stage of the methodology essentially facilitates evolutionary
system development. This can be demonstrated by the fact that the engineering pro-
cess, which is initiated as a scenario-based specification expressed as message se-
quence charts, has evolved into a modularized service architecture where complex
context-dependent information has been separated from the core service behavior
as aspect-oriented models.



A Framework for Aspectual Pervasive Software Services Evaluation 109

5.2 Context and Adaptation of the Customization Approach

This subsection evaluates the customization approach used in the pervasive services of
the current study. This evaluation focuses mainly on the PSM level of abstraction. The
authors in [18,19] present a comprehensive and uniform evaluation framework, which
can be used to compare customization capabilities of approaches originating from the
mobile computing and the personalization domains. The notion of customization refers
to the adaptation of an application’s services towards the current context. Their frame-
work has two orthogonal dimensions, which are context and adaptation, and the map-
ping between context and adaptation represented by the notion of customization. The
authors [18,19] provide detailed criteria for both the context and adaptation dimensions
of the framework. Their evaluation framework aims at providing three main benefits.
First, it provides a structured and uniform view of the various aspects of customization.
Second, the framework can be effectively used as a conceptual framework for evalu-
ating existing customization approaches. Finally, the framework can be effective for
developing any future customization approaches.

Next the context and adaptation dimensions of the customization approach used in
the pervasive services are evaluated using the criteria provided in [18,19]. The results
of this evaluation are summarized in two tables respectively: Table 2 and Table 3. This
evaluation is part of the horizontal evaluation dimension of the framework, and mainly
covers the PSM level of the MDA stack. However, several examples on the PIM level
are also provided. This evaluation is presented in three logical sections as suggested
in [18,19]. First, general details of the customization approach are provided covering
issues on origin, major focus, technology, architecture and implementation (if applica-
ble) of the customization approach. Second, the context dimension of the approach is
described, and third, the adaptation dimension of the approach is discussed.

The current research originates from the pervasive computing domain in general,
and specifically from the pervasive services domain. This research is at the software
architectural level, and no implementation of services such as pervasive Web services,
has been considered in the study. The main focus of the awareness monitoring
and notification pervasive service is to alert on any exceptional situa-
tions that may arise on transport items primarily to the vehicle driver of the transport
unit. The component configuration of the architecture defined for the pervasive soft-
ware services specification is based on an event-control-action architecture pattern. The
research approach has been applied to a modified subset of a real-world case study in
intelligent transport called the ParcelCall project. As stated previously in this paper,
three automated tools have been used in the research: LTSA-MSC tool, Aspectual
FSP Generation tool, and the LTSA model checker. The customization of the
architecture can be considered internal as the system is not aware of the customization
in terms of knowing about context or adaptation.

The context dimension of the customization approach is described next (Table 2). The
primary context parameters modeled at the PIM level of abstraction comprise location,
temperature and pressure. However, at the PSM level only temperature and pressure pri-
mary context properties have been modeled (C.P.). Nevertheless, at the PSM level other
context properties such as item identity, location and acceleration can be supported as
well (C.E.). These context parameters as a whole constitute the physical context of the



110 D.B. Abeywickrama and S. Ramakrishnan

Table 2. Current study’s context characteristics

Scope of Context Representation of Context Acquisition of Context Access of Context
P

ro
pe

rt
y

(C
.P

.)

E
xt

en
si

bi
li

ty
(C

.E
.)

C
hr

on
ol

og
y

(C
.C

.)

V
al

id
it

y
(C

.V
.)

R
eu

sa
bi

li
ty

(C
.R

.)

A
bs

tr
ac

ti
on

(C
.A

b.
)

A
ut

om
at

io
n

(C
.A

u.
)

D
yn

am
ic

it
y

(C
.D

.)

M
ec

ha
ni

sm
(C

.M
.)

lo
ca

ti
on

te
m

pe
ra

tu
re

pr
es

su
re

tim
e

de
vi

ce
ne

tw
or

k
us

er
ap

pl
ic

at
io

n

hi
st

or
y

fu
tu

re

m
an

ua
l

se
m

i-
au

to
m

at
ic

au
to

m
at

ic
st

at
ic

dy
na

m
ic

pu
sh

pu
ll

Explicitly supported
Not explicitly supported
Not applicable

study. Context modeling at the PIM level is provided by the c-FSP-UML profile
and the c-FSP aspects. The profile essentially provides several stereotypes to rep-
resent the core service behavior, the context-dependent behavior, and the dependencies
between the core service behavior and the context-dependent behavior at the service
interface level. The use of stereotypes essentially supports the notion of extensibility
(C.E.). The object-oriented notions used in the profile such as generalization further
support the notion of extensibility. At the PSM level, the notions of attribution, classifi-
cation, generalization and encapsulation from the context definition have been modeled
to structure and link the objects defined in the aspects (C.E.). In the study, validity pe-
riod (C.V.), chronology (C.C.) or availability (C.Av) of context are not supported as the
time dimension of the context properties have not been considered. The explicit sup-
port provided for attribution, instance-of and ISA notions at the PSM level, facilitates
reusability of context (C.R.). The approach provides a high-level inference mechanism
to automatically derive higher-level logical context (C.Ab). Both primary and logical
context are modularized into aspects as atomic context aspects and composite context
aspects respectively. Thus, the study supports an explicit separation between physical
and logical context (C.Ab). For example, low-level temperature readings from the RFID
tags are inferred as low temperature or high temperature during the refinement step
of the pervasive service. At the PIM level, the profile is maintained manually by the
service engineer (C.Au.). At the PSM level, both physical and logical context informa-
tion are acquired automatically (C.Au.) and at run-time (C.D.). The pervasive service
engineer using the LTSA animator can select values for the temperature or pressure
readings from a range of values at run-time. The mechanism (C.M.) used to acquire
context and made accessible to the pervasive service can be considered push-based as
context readings from the RFID tags are provided based on context changes and not
on requests.



A Framework for Aspectual Pervasive Software Services Evaluation 111

Table 3. Current study’s adaptation characteristics

Kind of Adaptation Subject of Adaptation Process of Adaptation
O

pe
ra

ti
on

(A
.O

.)
E

xt
en

si
bi

li
ty

(A
.E

x.
)

E
ff

ec
t(

A
.E

f.
)

C
om

pl
ex

it
y

(A
.C

.)

L
ev

el
(A

.L
.)

E
le

m
en

t(
A

.E
l.)

G
ra

nu
la

ri
ty

(A
.G

.)

Ta
sk

s
(A

.T
.)

A
ut

om
at

io
n

(A
.A

.)

D
yn

am
ic

it
y

(A
.D

.)

In
cr

em
en

ta
li

ty
(A

.I
.)

ad
d

re
m

ov
e

tr
an

sf
or

m
si

m
pl

e
co

m
pl

ex
co

nt
en

t
hy

pe
rb

as
e

pr
es

en
ta

ti
on

ot
he

rs
te

xt
au

di
o

im
ag

e
vi

de
o

li
nk

ot
he

rs
m

ic
ro

m
ac

ro

au
to

m
at

ic
se

m
i-

au
to

m
at

ic
m

an
ua

l
st

at
ic

dy
na

m
ic

Explicitly supported
Not explicitly supported
Not applicable

The second dimension of the customization approach is provided by the notion of
adaptation (Table 3). In this study, there are two types of adaptation operations: trigger-
ing and recovery operations (A.O.). At the PSM level, both these operations have been
supported by the Trigger and Recovery c-FSP aspects (A.O.). Trigger
aspects, for example Trigger Aspect Adverse Environment Status,
effectively send notifications or alert messages to the vehicle driver when a trans-
port item’s context information violates acceptable levels. Recovery aspects, for
example Recovery Aspect Adverse Environment Status, model any re-
covery actions that need to be enforced after an exception situation is raised by a
Trigger aspect. Both these aspects have been modeled as independent state ma-
chines at PSM level, which synchronize with their base state machines using explicit
synchronization events. The adaptation operations provided by the aspects are associ-
ated with the core service model through weaving, and the behavior of these aspects
can affect the core service behavior depending on the context information (A.Ef.). This
can be, for example, executing or modifying a service based on context information
(A.Ef.). At the PIM level, adaptation operations are specified using the stereotypes:
TriggerAspect and RecoveryAspect. As the adaptation process contains a se-
ries of stages, it can be considered a complex process (A.C.). Also, a distinct separation
can be identified between the different tasks of the adaptation process (A.T.). When
an item’s context information is violated, first, the pervasive service alerts the vehicle
driver by sending an SMS. Second, the service can perform any appropriate recovery
actions to remedy the situation, such as control the refrigerator’s temperature (A.C.).
Third, the service adaptation can be extended as follows (A.Ex.). If the environment sta-
tus of items is critical the service can alert the goods tracing server and even-
tually the customer being affected through the goods information server



112 D.B. Abeywickrama and S. Ramakrishnan

(A.Ex.). In the current study, context information is represented at the service inter-
face level (A.L.) that essentially consists of operation invocations and the exchange of
respective input/output parameters. The core service elements represented at the mod-
eling level include states, transitions, processes, and services (A.El.). Any adaptation
operation, which can be a triggering operation or a recovery operation, is bound to the
transitions of the core service model. Therefore, the adaptation level and adaptation
elements of this study are the service interface level (A.L.) and transitions (A.El.) re-
spectively. As a result, different Web application levels such as content, hyperbase and
presentation are not applicable in this study nor the Web adaptation elements of text,
audio, image, video and link provided in [18,19]. The adaptation granularity (A.G.) can
be considered micro considering the number of elements affected by the adaptation
process in the study. Also, it is performed automatically (A.A.) and at run-time (A.D.).
The adaptation process can be considered incremental (A.I.) as recovery operations are
dependent on triggering operations at both PIM and PSM levels.

6 Conclusions

To summarize this paper has discussed the evaluation framework developed to validate
the main methods and tools employed in this study for engineering pervasive software
services. The method of evaluation is based on key features comparison. The evaluation
framework consists of two dimensions or views: vertical and horizontal. The vertical
evaluation of the research compared several research tools to the Aspectual FSP
Generation tool developed here. The tools were compared across the PIM and
PSM levels of the MDA stack. This evaluation was based on several criteria: context-
dependent behavioral modeling at the PIM level, explicit joinpoint model of AOM at the
PIM level, weaving performed at PIM or PSM levels, and context-dependent behavioral
code generation from the PIM level to the PSM level. The horizontal evaluation view
was designed to validate several desired key features required mainly at the PSM level
(i.e. FSP) of the aspectual pervasive software services specification. These evaluation
criteria mainly cover two aspects. They are the formal methods and tools employed in
the study and the context and adaptation dimensions of the customization approach used
in the pervasive services. The results of the evaluation are assuring. The vertical evalu-
ation has demonstrated that the Aspectual FSP Generation tool has unique
features in context-dependent behavioral modeling and context-dependent behavioral
code generation. The horizontal evaluation of the approach has shown that the formal
methods and tools employed in the research, and the customization approach used in
the services are indeed effective towards the overall objectives of this research.

Acknowledgements. The first author is currently based at the University of Modena
and Reggio Emilia, supported by the ASCENS project (www.ascens-ist.eu/).

References

1. Hegering, H.-G., Küpper, A., Linnhoff-Popien, C., Reiser, H.: Management Challenges of
Context-Aware Services in Ubiquitous Environments. In: Brunner, M., Keller, A. (eds.)
DSOM 2003. LNCS, vol. 2867, pp. 246–259. Springer, Heidelberg (2003)



A Framework for Aspectual Pervasive Software Services Evaluation 113

2. Mandato, D., Kovacs, E., Hohl, F., Amir-Alikhani, H.: CAMP: a Context-Aware Mobile
Portal. IEEE Communications Magazine 40(1), 90–97 (2002)

3. Mostefaoui, S.K., Hirsbrunner, B.: Context-Aware Service Provisioning. In: IEEE/ACS In-
ternational Conference on Pervasive Services (ICPS 2004), pp. 71–80. IEEE (2004)

4. Abeywickrama, D.B.: Pervasive Services Engineering for SOAs. Ph.D Thesis, Faculty of IT,
Clayton Campus, Monash University, Australia (2010)

5. Abeywickrama, D.B., Ramakrishnan, S.: Model-Driven Development of Aspectual Perva-
sive Software Services. In: 14th IEEE International Enterprise Distributed Object Computing
Conference Workshops, pp. 49–59. IEEE, Vitoria (2010)

6. Abeywickrama, D.B., Ramakrishnan, S.: Towards Engineering Models of Aspectual Perva-
sive Software Services. In: 3rd Workshop on Software Engineering for Pervasive Services
(SEPS 2008), pp. 3–8. ACM, Sorrento (2008)

7. Abeywickrama, D.B., Ramakrishnan, S.: A Model-Based Approach for Engineering Perva-
sive Services in SOAs. In: 5th International Conference on Pervasive Services (ICPS 2008),
pp. 57–60. ACM, Sorrento (2008)

8. Aspect-Oriented Modeling, http://www.aspect-modeling.org/ (last accessed on
July 20, 2011)

9. Davie, A.: Intelligent Tagging for Transport and Logistics: The ParcelCall Approach. Elec-
tronics & Communication Engineering Journal 14(3), 122–128 (2002)

10. Analyti, A., Theodorakis, M., Spyratos, N., Constantopoulos, P.: Contextualization as an
Independent Abstraction Mechanism for Conceptual Modeling. Information Systems Jour-
nal 32(1), 24–60 (2007)

11. VIsualize all moDel drivEn programming (VIDE), WP 11: Deliverable number D11.3, Sup-
ported by the European Commission within Sixth Framework Programme. Polish-Japanese
Institute of Information Technology,
http://www.vide-ist.eu/download/VIDE_D11.3.pdf (last accessed on July
20, 2011)

12. Groher, I., Schulze, S.: Generating Aspect Code from UML Models. In: 3rd International
Workshop on Aspect-Oriented Modeling Co-located with 2nd International Conference on
Aspect-Oriented Software Development (AOSD 2003), Boston, USA (2003)

13. Whittle, J., Jayaraman, P.: MATA: A Tool for Aspect-Oriented Modeling Based on Graph
Transformation. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 16–27. Springer,
Heidelberg (2008)

14. Cottenier, T., van den Berg, A., Elrad, T.: Motorola WEAVR: Aspect Orientation and Model-
Driven Engineering. Journal of Object Technology 6(7), 51–88 (2007)

15. Fuentes, L., Gamez, N., Sanchez, P.: Aspect-Oriented Executable UML Models for Context-
Aware Pervasive Applications. In: 2008 5th International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software, pp. 34–43. IEEE, Budapest (2008)

16. Clarke, E.M., Wing, J.M., Alur, R.: Formal Methods: State of the Art and Future Directions.
ACM Computing Surveys 28(4), 626–643 (1996)

17. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs, 2nd edn. John Wiley
and Sons (2006)

18. Kappel, G., Pröll, B., Retschitzegger, W., Schwinger, W.: Customisation for Ubiquitous Web
Applications: A Comparison of Approaches. International Journal of Web Engineering and
Technology 1(1), 79–111 (2003)

19. Schwinger, W., Grün, C., Pröll, B., Retschitzegger, W., Schauerhuber, A.: Context-Awareness
in Mobile Tourism Guides - A Comprehensive Survey. Technical report, Johannes Kepler
University, Linz, Austria (2005)

http://www.aspect-modeling.org/
http://www.vide-ist.eu/download/VIDE_D11.3.pdf


L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 114–129, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

ABC Architecture: A New Approach to Build 
Reusable and Adaptable Business Tier Components 

Based on Static Business Interfaces 

Oscar M. Pereira1, Rui L. Aguiar1, and Maribel Yasmina Santos2 

1 Instituto de Telecomunicações, University of Aveiro, 3810-193 Aveiro, Portugal 
{omp,ruilaa}@ua.pt 

2 Centro Algoritmi, University of Minho, 4800-058 Guimarães, Portugal 
maribel@dsi.uminho.pt 

Abstract. Currently, programmers of database applications use standard API 
and frameworks as artifacts to develop business tiers aimed at integrating the 
object-oriented and the relational paradigms. These artifacts provide 
programmers with the necessary services to develop business tiers. In this paper 
we propose a new architecture based on general Call Level Interfaces from 
which reusable and Adaptable Business tier Components (ABC) may be 
developed. Each individual ABC component is able to manage SQL statements 
of any complexity, deployed at run-time, and also to provide tailored services to 
each SQL statement. To accomplish this goal, the only requirement is that the 
schema of each deployed SQL statement must be in conformance with one of 
the pre-defined static schemas (interfaces) of the recipient ABC component. 
The main contributions of this paper are threefold: 1) to present the new 
architecture based on general Call Level Interfaces on which ABC components 
are based, 2) to show that the source code of ABC components may be 
automatically built by a tool and 3) to present a concrete example of ABC based 
on JDBC. The main outcome of this paper is the evidence that the presented 
architecture is an effective approach to build reusable and adaptable business 
tiers components to bridge the object-oriented and the relational paradigms. 

Keywords: Component-based software, Adaptability, Business tiers, 
Impedance mismatch. 

1 Introduction 

Good programming practices advise the development of database applications relying 
on a multi-tier architecture. The three tier architecture is the most widespread one 
comprising the application tier, the database tier and the middle tier known as the 
business tier. The business tier may provide a clear separation (technological, 
business and administrative/administration) between host databases and client 
applications. When database tiers and application tiers rely on different paradigms, as 
the relational and object-oriented, respectively, business tiers are responsible for 
relieving programmers of client applications from several critical issues being 



 ABC Architecture: A New Approach to Build Reusable 115 

impedance mismatch [1] the most noticeable one. Impedance mismatch is an outcome 
of the diverse foundation of both paradigms raising a major hindrance for their 
integration, being an open issue for more than 50 years [2]. Despite their advantages, 
business tiers present some weaknesses. Among them we emphasize their inertia to 
evolve in consequence of maintenance needs. These needs may have their origin in 
the need for new queries, the need to update existent queries or changes in the 
database schema. Inertia may reach increased relevancy if SQL statements are 
wrapped into classes with improved usability to ease their usage by programmers of 
client applications. In this case,  maintenance activities will not only comprise lower-
level issues as writing or re-writing the SQL queries but will also comprise the 
development or maintenance of the involved wrappers to keep their usability 
(examples: getter and setter methods).  The difficulties to build and maintain business 
tier components may have a shelter on the Component-Based Software Engineering 
(CBSE) [3] subject. CBSE is widely recognized as a sub-discipline of Software 
Engineering to build complex systems. The main goals of CBSE are threefold: 1) to 
provide guidelines for the development of systems as assemblies of components; 2) to 
provide guidelines for the development of components as reusable artifacts and finally 
3) to provide guidelines for the maintenance of systems through the adaption and 
replacement of their constituent components. Using commercial off-the-shelf (COTS) 
software components to build software systems may be seen as a goal for many 
system architects. Unfortunately, components reutilization may raise several 
technological difficulties and, not less important, may easily gather voices against its 
adoption. In fact, despite the relevancy of the CBSE postulates, several issues are 
difficult to tackle such as the replacement and adaptation of components. Component 
replacement has some disadvantages conveying an impact on the overall system. 
Some of the disadvantages are [4]: 1) the state of the replaced component may be  
lost; 2) component or even system availability may be  affected; 3) performance may 
decay during the replacement process – additional power computation is required. In 
order to avoid the replacement of components, components must be able to adapt 
dynamically at run-time, which is one of the crucial aspects of CBSE [5]. The 
adaptation of components should comprise not only the configuration process but 
mainly the replacement of old services and also the definition of new services in a 
seamlessly way. 

In this paper we are focused on an architecture for reusable business tier 
components where client applications are developed in the object-oriented paradigm 
and the host database relies on the relational paradigm. The components based on the 
presented architecture are herein known as Adaptable Business Components (ABC). 
The ABC architecture pretends to achieve the following three main goals: to comply 
with full expressiveness of SQL, to provide an enhanced usability from client 
applications point of view and to provide supervised adaptability to SQL statements 
deployed in run-time. Full SQL expressiveness is achieved by using Call Level 
Interfaces (CLI) [6] as a low-level API to communicate with the host database. Call 
Level Interfaces will be addressed with some detail in Section 4. Usability is assured 
by the implemented interfaces to communicate with client applications. These 
interfaces are based on the schema of the SQL statements and are also type-safe. This 
issue will be addressed with more detail in Section 5. Supervised adaptability is 
assured by the ability to dynamically, in run-time, as a server component, receive 



116 O.M. Pereira, R.L. Aguiar, and M.Y. Santos 

messages from “authorized” entities to accept new, remove existent and update 
existent SQL statements of any complexity and, on behalf of client applications, 
manage their execution. The results of their execution are at the disposal of client 
applications through the aforementioned interfaces. This issue will be addressed with 
more detail in Section 5 and Section 6. Fig. 1 presents a general view of the 
interaction between ABC components and client applications (CA). Authorized 
entities may create and update a pool of SQL statements in run-time and delegate 
their management to the ABC component. Then client applications may ask the 
execution of SQL statements through the interfaces provided by ABC components. 

 

 

Fig. 1. General view of CA and ABC interactions 

It is expected that the outcome of this paper will contribute to open a new 
approach to the development of business tier components. The paper is structured as 
follows. Section 2 presents the motivation; Section 3 presents the related work; 
Section 4 concisely presents the Call Level Interfaces; Section 5 presents the ABC 
architecture; Section 6 presents the ABC Life-Cycle and Section 7 present the final 
conclusion and future work. 

2 Motivation 

Database applications of some complexity may comprise hundreds of SQL statements 
to deal with business requirements. Very often they cannot be inferred from any data 
model that may eventually be available (ex: O/RM).  This leads to situations where 
the development and maintenance processes of business tiers are very tedious and 
exhaustive. Programmers are pushed to write similar source code for each SQL 
statement, mainly for Select statements with a long select-list. There should exist a 
methodology to relieve programmers from these tedious, exhaustive and error-prone 
processes. 

SQL statements may be classified into two orthogonal dimensions: by complexity 
and by schema. Complexity says if a SQL statement is simple or complex. The 
schema characterizes each SQL statement in terms of the schema of its parameters 
and the schema of the returned relation (only for Select statements). A SQL statement 
may be simple and have a simple or a complex schema or a SQL statement may be 
complex and have a simple or a complex schema. Moreover, several SQL statements, 
simple or complex, may share the same schema. The two following queries share a 



 ABC Architecture: A New Approach to Build Reusable 117 

simple schema. The first query is very simple and the second is not so simple. The 
code to execute the query and to read the returned data is the same for both queries. 
This evidence raises the following question: if several SQL statements may share the 
same schema why not make use of it to optimize the source code editing and 
maintenance processes? The first question to be put is: “Have we been spreading 
boilerplate code in business tiers?”. Another relevant issue is the access 
 

-- a simple query 
Select p.id,p.fName,p.lName 
  From pilot p 
 
-- a more complex query 
select p.id,p.fName,p.lName  
  From pilot p,circuit c,classif f  
  Where p.id=f.id and f.date=c.date and f.position between 1 and 3 
  Group by p.id,p.fName,p.lName  
  Having count(f.position)= (select count(*) from ...) 
Union 
Select ...  
   ... 

Order by ... 

 
and manipulation of data kept in databases. While the issue previously discussed was 
essentially technological, the access and manipulation of data concerns the soul of 
companies. Very often data are the most important asset in companies conveying an 
unavoidable need to completely control and protect them. 

In this paper we present an architecture for ABC components aimed at coping 
with two important features: 1) Re-use of source code to manage different SQL 
statements, simple or complex, defined after ABC deployment; 2) To follow the 
separation of concerns regarding the use of ABC components by programmers of 
client applications from all other issues related to the development, configuration and 
administration processes. 

3 Related Work 

In [7] it is presented a model-typed interfaces concept relying on generic interface 
parameters. These parameters are characterized as Model-defined Types whose 
schema is defined by a Data Model. The authors claim that by this way complex data 
structures (based on Data Models) may be transferred between components in a single 
method invocation avoiding successive calls to accomplish the same task. This 
methodology is very useful when two conditions occur simultaneously: 1) the 
involved components do not share the same working address space and 2) the 
component playing the client role has full control and knowledge about the amount of 
data being transferred. In the work proposed is this paper, ABC components share the 
same address space as client applications and the access to the returned data (from 
Select statements) is to be implemented in an attribute by attribute and a row by row 
basis. This work could profit from [7] if or when ABC components and client 
application run in different address spaces.  

Data Transfer Objects [8] is a design pattern used whenever an entity gathers a 
group of attributes that must be accessed in a swift way. Accessing those attributes 



118 O.M. Pereira, R.L. Aguiar, and M.Y. Santos 

one by one through a remote interface raises several disadvantages such as the 
increase of the network traffic, latency is increased, performance is negatively 
affected, demand on server and client processing is increased. Data Transfer Objects 
are tailored to address these situations. They are organized in serializable classes 
gathering the related attributes and forming a composite value. An entire instance of 
the serialized object is transferred from the server to the client. This approach is quite 
similar to the previous conveying the same disadvantages.  

O/RM tools (Hibernate [9], TopLink [10], LINQ [11]) are powerful tools to 
integrate object-oriented applications with relational databases. Their extended 
functionalities are mostly used to build persistent business tiers relying on object to 
relational mapping techniques. They may also support native queries, proprietary 
SQL language, language extensions and other relevant tools to ease programmers’ 
work. Their scope is too wide and deeply diverges from the scope of this work. 
Anyway, if required, ABC components may be developed with and above O/RM 
frameworks. Their services have to be coordinated, integrated and wrapped by the 
architecture herein presented. 

4 Call Level Interfaces 

One of the key requirements of ABC component is the ability to execute SQL 
statements of any complexity. Before this requirement, the option for an API to access 
the host databases is a key issue. The choice felt upon low-level APIs being Call 
Level Interfaces an important candidate. Call Level Interfaces are considered 
important options whenever performance and SQL expressiveness are considered key 
issues [2]. Call Level Interfaces provide mechanisms to encode Select, Insert, Update 
and Delete SQL expressions inside strings, easily incorporating the power and the full 
expressiveness of SQL. JDBC [12] and ODBC [13] are two of the most relevant Call 
Level Interfaces. Statements are executed against the host database and the possible 
results they produce (only for Select statements) are locally managed by local 
memory structures (LMS) – (ResultSet for JDBC and RecordSet for ODBC). LMS 
provide two orthogonal functionalities: scrollability and updatability. Scrollability 
defines the ability to scroll over the LMS. There are two possibilities: forward-only – 
in this case cursors may only move forward one row at a time; scrollable – in this 
case cursors may move in any direction and jump several rows at a time. Updatability 
defines the capacity to change the in-memory data of LMS and therefore the content 
of the host database. There are two possibilities: read-only – the content of the LMS 
is read-only and, no changes are allowed; updatable – changes may be performed 
over the in-memory data of LMS (insert new rows, update current rows and delete 
rows). 

5 ABC Architecture 

The main goal of this paper is to present an architecture for general a ABC, with the 
ability to manage and execute a pool of SQL statements on behalf of client 
applications. The pool of SQL statements is dynamically updated in runtime by an 
external authorized entity. From client applications point of view, ABC components 



 ABC Architecture: A New Approach to Build Reusable 119 

always play the role of server components. From the host database point of view, 
ABC components always play the role of client components. The static architecture of 
ABC components comprises three main blocks: Business Manager (BM), Business 
Entities (BE) and the Database Driver (DB Driver), see Fig. 2. 
 

 

Fig. 2. ABC main blocks 

DB Drivers are standard API and they are responsible for providing internal services 
to ABC components in order to ease their communication with the host DBMS. The 
choice for the specific DB Driver depends on several issues, as the host DBMS and 
the host programming language of the client application. 
 

Business Entities (BE) are software artifacts (classes) responsible for the 
implementation of contracts (interface) between ABC components and client 
applications. Each Business Entity implements one contract which is specified by an 
interface known as Business Interface (BI).  The correspondent dynamic artifacts are 
the Business Workers (BW).  Fig. 3 presents the basic relation between BI, BE and 
BW. BW are active entities, in other words, are running instances of Business 
Entities. A Business Worker accepts any SQL statement, at run-time, whose schema 
is in accordance to the Business Interface implemented by its source Business Entity. 
Thus, Business Entities address the key issue of reuse of computation [14]. SQL 
statements are defined  through  the setSQL allowing that the definition and updating 
processes be carried out after Business Workers instantiation. 
 

 

Fig. 3. Relationships between BI, BE and BW 

These processes are managed by the Business Manager in a transparent way for 
client applications. Business Interface is a contract that a Business Entity is 
committed to implement. Business Interfaces define how client applications and 
Business Entities may communicate. The schema of a Business Interface is directly 
dependent on the queries to be processed and, in case of Select statements, on the 
functionalities to be made available (scrollability and updatability). In order to 
comprise all LMS functionalities, three types of Business Interfaces were defined: 1) 
Alter Business Interface (A-BI) – for Insert, Update and Delete SQL statements; 2) 
Select Active Business Interface (SA-BI) – for Select SQL statements that create 



120 O.M. Pereira, R.L. Aguiar, and M.Y. Santos 

updatable LMS and 3) Select Passive Business Interface (SP-BI) – for Select SQL 
statements that create read-only LMS. Select Active Business Interfaces and Select 
Passive Business Interfaces implement one of the two scrollability facets: forward-
only or scrollable. Before delving into the Business Interfaces details, let’s consider a 
table with the following schema: 

 
Table(SqlDT1 att_1,
      SqlDT2 att_2, 
      ..., 

      SqlDTn att_n) 

where SqlDTn is the SQL data type of the attribute att_n. The correspondent data type 
of SqlDTn in the host programming language is represented by DTn. This table will 
be used as the basis for Business Interfaces specification. Each Business Interface 
may be considered as aggregations of super-interfaces. Therefore, we will begin the 
description of Business Interfaces by their elementary super-interfaces, see Fig. 4. 
 

 

Fig. 4. Super-interfaces of BI 

Super-interface IExecute is shared by all Business Interfaces. It comprises only 
one method. This method is invoked by client applications to trigger the execution of 
the associated SQL statement. The method execute may be invoked as often as 
necessary to re-execute the SQL statement. The argument args comprises all the 
arguments to be used in conditions inside the SQL statement and also as values to be 
inserted or updated on tables of the host database. As an example, the next SQL 
statement leads to the next method signature. 
 

// SQL statement
Update Table 
  Set (att_1=@v_1,  
       att_n=@v_2) 
  Where (att_2=@v_3); 

// method signature
void execute(DT1 v_1,
             DTn v_2,
             DT2 v_3) 

Super-interface IResult comprises a single method to return the execution result of 
Insert, Update and Delete statements. Basically, its returns the number of rows 
affected by the statement execution. 

Super-interface IGet gathers all necessary methods to read all attributes of one row 
from the in-memory data of LMS. The IGet interface shown in Fig. 4 may be used 
with the following query: Select * from Table. The method signatures are based on the 
schema of the Select statement and are also type-safe. These features improve ABC 
component usability when compared with the standard CLI API. Users of ABC 



 ABC Architecture: A New Approach to Build Reusable 121 

components are before signatures type-safe and schema oriented easing both the 
understanding of their meaning and the associated data-type.  

Super-interface ISet gathers all necessary methods to update, insert and delete data 
in the LMS. It is only used with updatable LMS. The ISet interface shown in Fig. 4 
may be used with the statement Select * from Table. The signatures of setter methods 
are based on the schema of the Select statement and are also type-safe as happened 
with the IGet interface. The remaining methods are used to implement the protocols 
to update, to insert and to delete rows. 

Super-interface IFowardOnly comprises all methods associated to the scrolling 
policy of forward-only LMS. Fig. 4 only presents the main method which allows the 
cursor to move one row forward at a time. 

Super-interface IScrollable gathers all methods associated to the scrolling policy 
of scrollable LMS. Fig. 4 presents only four of the main methods. 
All super-interfaces of Business Interfaces have been individually presented. Fig. 5 
presents the three general Business Interfaces: A-BI, SP-BI and SA-BI. A-BI 
comprises two interfaces (IExecute, IResult), SP-BI comprises three interfaces 
(IExecute, IGet and, depending on the LMS functionality, IForwardOnly or 
IScrollable). SA-BI comprises four interfaces (IExecute, IGet, ISet and, depending on 
the LMS functionality, IForward or IScrollable). 
 

 

Fig. 5. A-BI, SP-BI and SA-BI sub-interfaces 

Business Workers are running instances of Business Entities. Each Business Worker 
is identified by its type (parent Business Entity) and the SQL statement to be executed. 
Each SQL statement is uniquely identified by a token. There cannot exist two tokens with 
the same value in the same ABC component instance. Business Workers instantiated 
from the same Business Entity are called sibling Business Workers. Business Workers 
running the same SQL statement are called true sibling Business Workers and Business 
Workers running different SQL statements are called false sibling Business Workers. 
Examples of two SQL statements managed by the same Business Entity and, therefore, 
running on false sibling Business Workers could be: 

Select * 
  From Table 
  Where att_1=@v_1 

 

Select t1.*
  From Table t1, Table t2 
  Where t1.att_1=@v_1 and 
        t1.att_2=t2.att_2 and  

        t2.att_3=1 

Despite some restrictions, each Business Entity may support an unlimited set of SQL 
statements. The restrictions are only centered on the implemented Business Interface. 
Particularly the interface IExecute, execute(args), may eventually convey a significant 
weakness on the Business Entity adaptability. This weakness is felt at the level of the 



122 O.M. Pereira, R.L. Aguiar, and M.Y. Santos 

SQL statements where and having clauses. Anyway, if required, this weakness may 
be avoided by using the following signature void execute(). From now on, SQL 
statement parameters, if required, must be set by the client application as shown in the 
next example. This strategy may improve Business Entities’ flexibility but forbids the 
use of parameterized queries as pre-parsed queries (prepared statements) this way 
provoking decrease in performance. Another important drawback of this approach is 
the decrease of ABC usability: IExecute may no longer be used to help programmers 
on setting up the parameters of SQL statements. 

 
Select *                  
  From User 
  Where Grade>10 and Grade<16 and      
        Substring(FName,1,1) like ‘A’  

Business Manager is the entry point of all ABC components. ABC’s administrators 
and programmers of client applications access ABC components functionalities 
through their entry static methods. Business Manager has a static method for each 
Business Entity that creates a singleton instance of its factory class, as shown in Fig. 
6.  Business Entities factories implement two interfaces: one is only at administrator’s 
disposal to update the pool of SQL statements and is known as IAdm; the other 
interface  is at  common  programmers’ disposal to  create  Business Workers  and  is 

 

Fig. 6. Class diagrams of: business manager, factories and, IAdm and IUser 

known as IUser. Each SQL statement to be used by any Business Worker is uniquely 
identified by a token and is defined by administrators in the add method. The class 
diagrams for IAdm and IUser interfaces are also shown in Fig. 6. The next block of 
code depicts examples of source code to add SQL statements to the pool and source 
code to create and use a Business Worker. 
 
// add SQL statement 
IAdm a=Manager.factory_BE_a(); 
a.add(tk_a1,sql_a1); 
a.add(tk_a2,sql_a2); 

// create Business Worker
IUser u=Manager.factory_BE_a(); 
BI_ai a=u.createBusinessWorker(tk_a1); 

6 ABC Life Cycle 

ABC components comprise two types of software sources: outsource (software from 
other suppliers – DB Driver) and insource (software specifically developed to ABC 
components – Business Manager, Business Entities and Business Interfaces). The 
catalog of ABC components is defined within the context of idealized component life 
cycle   [15]. The life cycle is based on the development for reuse and development 



 ABC Architecture: A New Approach to Build Reusable 123 

with re-use processes in agreement with CBSE principles and considers three phases: 
design, deployment and runtime. 

6.1 Design Phase 

The design phase is focused on the development of ABC components. Developers of 
ABC components may follow three distinct approaches: global approach, the activity 
approach or the entity approach. The entity approach is based on the development of 
ABC components with only one business entity. The activity approach is based on the 
development of ABC components by each activity such as accounting, clients, 
suppliers, data warehouse and OLAP. The global approach is based on the 
development of a single ABC component for all activities. It is also possible to follow 
any combination of the three approaches. The decision is up to the system 
administrator. Regardless the chosen approach, each ABC component may be 
accessed by several actors where each one plays a specific role conditioned by the 
queries he may execute. Different instances of the same ABC component may run a 
different set of SQL statements for each Business Entity this way promoting its reuse 
by different actors. Moreover, every software subsystem (SS), such as warehouse 
management, gathers several activities such as clients, suppliers and orders this way 
promoting the component reutilization. There is a wide range of possibilities for 
component reuse: by activity, by actor or any by other combination. Nevertheless, 
Business Interfaces cannot be modified, added or removed after the design phase. 
They materialize the contract between each individual ABC component and the final 
client applications. Client applications trust ABC components to manage SQL 
statements since each SQL statement is in conformance with one of the implemented 
Business Interfaces. Any change in the contract after the design phase of ABC 
components compels the re-opening of the design phase. After the design phase SQL 
statements may be created as needed (this is the degree of freedom they have) but 
each SQL statement must be in conformance with one of the available Business 
Interfaces (this is the restriction they must obey). The insource code for each ABC 
component may be automatically built by a tool as the one shown in Fig. 7. Only the 
GUI used to create Select Business Interfaces is shown. We may see 3 Business 
Interfaces in the pool (BI_Course, BI_Subject, BI_Degree) and a new one is being 
edited (BI_Student) and ready to be inserted in the pool. This Business Interface 
supports, for example, the next SQL statement: Select id, firstName, lastName,crdId, 
grade from Student where id=@id. Other additional features defined at the design 
phase for Select Business Interfaces are its scrollability and its updatability. 
Alternatively, the insource source may be derived from a general model herein known 
as the Business Component Model (BCM). In order to automatically generate the 
insource code the Business Component Model requires the following information: 
 

 For each Business Interface: 1) Its type: alter, select passive or select active; 2) the 
Business Interface schema; 3) the scrollability policy. 
 The source code programming language. 
 The host database management system. 
 The DB Driver to be used. 

These two approaches, a tool or the BCM, relieve programmers from writing any 
source code and therefore to avoid the deployment of ABC components with 



124 O.M. Pereira, R.L. Aguiar, and M.Y. Santos 

undesirable errors. The final stage of the design phase is attained when ABC 
components are compiled and packed as components ready to be deployed. 

As a summary, the design phase embodies the process of development for reuse 
and is focused on the definition of Business Interfaces to be implemented by reusable 
ABC components. The concrete SQL statements to be deployed in each instance of an 
ABC component are not defined in the design phase but in a later phase. 

 

 

Fig. 7. Widget to create S-BI 

6.2 Deployment Phase 

In the deployment phase, developers use ABC binary components to develop each 
subsystem of their database applications. Developers may play the role of an 
administrator developer or the role of a common developer.  The former role is used to 
write source code to update the pool of SQL statements to be made available. The latter 
role is used to write source code for subsystems. Database applications may incorporate 
one or more subsystems, each subsystem may incorporate one or more activities and each 
activity may support one or more actors. System administrators must define the strategy 
for the ABC components reutilization in the deployment phase. Common developers 
may not know anything about the SQL statements made available in each ABC 
component. All they need to know is the location of the required SQL statement in terms 
of ABC component instance, the Business Entity and its token. As summary, the 
deployment phase embodies the process of development with reuse. 

6.3 Runtime Phase 

In this phase all components are running. Fig. 8 concisely presents a possible running 
scenario with two subsystems, SS_a and SS_b. Fig. 8 a) shows two instances of SS_a 
(SS_a1, SS_a2). Both share the same ABC components, ABC_y and ABC_w. 



 ABC Architecture: A New Approach to Build Reusable 125 

Eventually, if SS_a1 and SS_a2 correspond to two different actors, the sets of SQL 
statements made available in each component may be different. Fig. 8 b) shows one 
instance of SS_b (SS_b1) which is a different component from SS_a. It comprises 
three ABC components, ABC_y ABC_w, ABC_z, two of them shared with SS_a 
(ABC_y and ABC_w), probably with their own sets of SQL statements. Remenber 
that SQL statements are deployed at run-time through the IAdm interface which is not 
shown in this figure. The administrator role may or may not be protected by some 
security policy such as authentication and/or authorization to grant access to the 
configuration process. This topic is out of scope of this work. 
 

 

Fig. 8. Client application and ABC deployment 

6.4 Seamless Operation 

SQL statements updating process is executed in a seamless way. This means that the 
process to insert, update or delete SQL statements from the pool of ABC components 
may be executed without any restrictions. Actually, ABC components assume a 
passive attitude. They do not provide any service to inform client applications from 
any relevant or critical occurrences. These occurrences should be coordinated 
between client applications and the component that plays the administrator role. 
Inserting new SQL statements does not raise any critical question. Subsystems are not 
allowed to use what still does not exist. The identification token should only be made 
available after inserting the SQL statement into the pool.  Updating and removing 
SQL statements that are being used by one or more Business Workers are the critical 
situations. When a SQL statement is being used and it is updated or removed, 
Business Workers keep their states unchanged. This assures that client applications 
may continue their work. Business Workers’ state will only be updated when client 
applications re-invoke the execute method. Then, Business Workers will re-execute 
the most recent SQL statement. The execute() method should not be invoked if the 
SQL statement has been removed from the pool. To prevent any undesirable situation, 
it is advisable that client applications become aware of the actions taken by the 
administrator in order to proceed with the most convenient measures. Business 
Manager does not interfere or change the state of any Business Worker. The state of 



126 O.M. Pereira, R.L. Aguiar, and M.Y. Santos 

Business Workers are always under sub-systems’ control. Therefore, each application 
should define its own protocol between administrator and application components. 

6.5 ABC Example Based on JDBC API 

This section presents a concrete example of an ABC component based on JDBC API. 
The example is based on the Business Interface BI_Student presented in Section 6.1, 
which is type SA-BI. The following scenario has been implemented: 1) the 
administrator adds two queries; 2) a user creates one Business Worker using one of 
the queries, iterates over the LMS and, under certain condition, updates and insert 
some rows into the LMS. The example is based on Java, SQL Server 2008 and JDBC 
for SQL Server (sqljdbc4.jar). Code may not execute properly since we only show the 
relevant parts for the points under discussion. 

Fig. 9 presents a possible use of ABC from administrators’ point of view: two 
queries are defined, an instance of the Business Entity factory is created and, finally, 
the two queries are added to Business Entity BE_Student. From now on, users may 
instantiate Business Workers from BE_Student and choose the desired queries to be 
executed. 

 

 

Fig. 9. Usage of ABC from administrators’ point of view 

 

Fig. 10. Usage of ABC from users’ point of view 



 ABC Architecture: A New Approach to Build Reusable 127 

Fig. 10 presents a possible use of ABC from users’ point of view. A BE_Student 
worker has been instantiated for the query identified with token2. Then the program 
scrolls the ResultSet (JDBC LMS implementation) and, when condition1 is true the 
current row is updated, and, when condition2 is true a new row is inserted.  

Fig. 11 depicts a partial view of BE_Student source code. Java objects used in this 
example: Connection – to connect to the host database,  PreparedStatement (ps) – to 
execute SQL statements  and ResultSet (rs) to manage LMS. beginUpdate is an empty 
method because JDBC has no explicit method to start updating a row. The JDBC 
updating protocol is automatically started when a first update action is performed in 
any attribute. 
 

 

Fig. 11. Partial view of BE_Student source code 

7 Conclusions 

In this paper an architecture based on general CLI for reusable and adaptable business 
components was presented. It is focused on bridging object-oriented applications and 
relational databases. ABC components are in line with the context of CBSE 
supporting the process of development for reuse and development with reuse. The 
reutilization intensity is determined by the chosen approach for the development of 
ABC components (global, activity, entity or mixed) and also by the intensity of reuse 
of computation.  The ABC component main architecture relies on Business Entities 



128 O.M. Pereira, R.L. Aguiar, and M.Y. Santos 

created during ABC design phase. Business Entities define the contracts, based on 
Business Interfaces, between ABC components and client applications. Each Business 
Entity is able to manage any set of SQL statements that conform to its associated 
Business Interface. Moreover, SQL statements may be deployed to each running 
instance of ABC component in an unbalanced way. This means that the same 
Business Entity may have different sets of SQL statements in two different running 
instances of the same ABC component. The SQL statements updating process is 
accomplished at run-time, at any moment and as often as necessary by authorized 
entities. 

All Business Interfaces were designed to improve, from programmers’ point of 
view, the usability of ABC components when compared to traditional Call Level 
Interfaces. The most significant improvement has been achieved around getter and the 
setter methods. Their signatures are type-safe and syntactically based on the schema 
of SQL statements. 

The development of ABC components is completely decoupled from the 
development of client applications. Moreover, the process of definition and 
deployment of SQL statements on each running instance of ABC component may be 
completely controlled by authorized entities. These two issues allow the separation of 
concerns through the definition of two main actors: administrator programmers and 
common programmers. 

Source code of ABC components may be automatically built by a tool, relieving 
programmers from their manual development and their maintenance processes. 

As an outcome of this work, it is expected that this work may open new approaches 
to the development of business components for database applications. Future work 
may be divided in two stages: short term and long term. 
Short term: Assess and compare ABC performance with a solution based on a 
standard JDBC. In spite of not being equivalent or even comparable solutions it is 
advisable to have an idea about the induced overhead in order to promote, if 
necessary, a finer performance tuning. 
Long term: Investigate the possibility of creating new architectures for other reusable 
and adaptable business tier components. These new architectures should address 
different requirements such as components with a single wide range Business 
Interface. This wide Business Interface should eventually support and integrate all 
known individual Business Interfaces. 

References 

1. David, M.: Representing database programs as objects. In: Bancilhon, F., Buneman, P. 
(eds.) Advances in Database Programming Languages, pp. 377–386. ACM, N.Y (1990) 

2. Cook, W., Ibrahim, A.: Integrating programming languages and databases: what is the 
problem? (May 2011) http://www.odbms.org/experts.aspx#article10 

3. Heineman, G.T., Councill, W.T.: Component-Based Software Engineering: Putting the 
Pieces Together, 1st edn. Addison-Wesley (2001) 

4. Costa, C., Pérez, J., Carsí, J.Á.: Dynamic Adaptation of Aspect-Oriented Components. In: 
Schmidt, H.W., Crnković, I., Heineman, G.T., Stafford, J.A. (eds.) CBSE 2007. LNCS, 
vol. 4608, pp. 49–65. Springer, Heidelberg (2007) 



 ABC Architecture: A New Approach to Build Reusable 129 

5. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation. Journal of 
Systems and Software 74(1), 45–54 (2005) 

6. ISO. ISO/IEC 9075-3:2003 (2003), 
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34134 
(2010/May 2011) 

7. Schmoelzer, G., et al.: Model-typed Component Interfaces. In: 32nd EUROMICRO 
Conference on Software Engineering and Advanced Applications, SEAA 2006 (2006) 

8. Flower, M.: Patterns of Enterprise Application Architecture. Addison-Wesley (2002) 
9. Christian, B., Gavin, K.: Hibernate in Action. Manning Publications Co. (2004) 

10. Oracle TopLink (May 2011), 
http://www.oracle.com/technetwork/middleware/toplink/overvie
w/index.html 

11. Kulkarni, D., et al.: LINQ to SQL: .NET Language-Integrated Query for Relational Data. 
Microsoft 

12. Microsystems, S.: JDBC Overview (May 2011), 
http://www.oracle.com/technetwork/java/overview-141217.html 

13. Microsoft. Microsoft Open Database Connectivity (May 2011), 
http://msdn.microsoft.com/en-us/library/ms710252(VS.85).aspx 

14. Elizondo, P.V., Lau, K.-K.: A catalogue of component connectors to support development 
with reuse. Journal of Systems and Software 83(7), 1165–1178 (2010) 

15. Kung-Kiu, L., Zheng, W.: Software Component Models. IEEE Transactions on Software 
Engineering 33(10), 709–724 (2007) 



L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 130–144, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Improving Quality of Business Process Models 

Laura Sánchez-González, Francisco Ruiz, Félix García, and Mario Piattini 

Alarcos Research Group, TSI Department, University of Castilla La Mancha 
Paseo de la Universidad, nº4, 13071, Ciudad Real, Spain 

{Laura.Sanchez,Francisco.RuizG,Felix.Garcia, 
Mario.Piattini}@uclm.es 

Abstract. Business process improvement is a key aspect for organizational 
improvement. We focus the business process improvement in the first stage of 
process lifecycle, design stage, because it is a means to avoid the propagation of 
errors to later stages, in which their detection and correction may be more 
difficult. Since business process improvement is centered in business process 
models, a proposal of certain steps based on measurement activities on 
conceptual models (measurement, evaluation and redesign) is described. The 
application of these steps in business process models produces an increase of 
the quality of them. Quality is defined as the level of understandability and 
modifiability, subcharacteristics of the usability and maintainability in ISO 
9126. The steps for model improvement have been applied to a real hospital 
business process model. The model was modified by following expert opinions 
and modeling guidelines, thus leading to the attainment of a higher-quality 
model. Our findings clearly support the practical utility of measurement 
activities for business process model improvement. 

Keywords: Business process, Measurement, Continuous improvement, BPMN. 

1 Introduction 

In recent years, business process (BP) modelling and improvement has become an 
important means of ensuring changes in an organization’s structure and functioning, 
thus leading to the creation of a more competitive and successful enterprise [1]. BP 
influences product quality and customer satisfaction, which are fundamental aspects 
in a market environment, and enterprises are therefore forced to improve their 
processes in order to improve products and services [2]. 

The first step towards improving business processes is to collect any data 
regarding their design, deadlocks, bottlenecks, etc. Measurement is a good means of 
collecting this kind of data, and serves at least the following three purposes: 
understanding, control and improvement [3]. The use of measurement information 
therefore makes it possible for organizations to learn from the past in order to 
improve their performance and achieve better predictability over time.   

A business process is a complex entity with a characteristic lifecycle. In our work 
we consider the approach defined by Weske [4], who organizes the lifecycle in a 



 Improving Quality of Business Process Models 131 

cyclic structure with logic dependences between the design and analysis, 
configuration, enactment, and evaluation stages. We focus on the first stage, design 
and analysis, in which the principal activity is that of process modelling. The main 
purpose of design and analysis is to capture the business schema and general 
procedures [5].  The conceptual models produced in this stage are first required to be 
intuitive and easily understandable in order to facilitate communication among 
stakeholders. Measuring and improving BP models has several advantages, 
principally that of avoiding the propagation of errors or bad-structures to later 
lifecycle stages, in which corrections and modifications may involve a high economic 
cost and effort [6]. 

Measures for conceptual models deal with the static properties of BP and are 
defined upon the BP model at the time of the design. Several initiatives concerning 
the measurement model have recently been published, owing to the advantages of 
improving business processes in this stage. Most of the measures published to date 
have been collected in [7]. This work shows that there is no consensus among 
researchers as to which measurable concepts it is most interesting to measure 
(complexity, structuredness, cohesion, coupling, etc). It also highlights that most of 
the proposals have not been empirically validated. This lack of validation particularly 
emphasises the need for research in this area. The work presented herein contributes 
to the maturity of BP measurement through the collection of measures and the 
demonstration of their practical utility in an experience report.  

The principal idea behind our proposal is to apply measurement during the early 
stages of the lifecycle, the design and analysis stage, in order to obtain feedback 
controlled by measures and thereby achieve a higher-quality implementation of the 
process, with a lower value of complexity, therefore making it easier to maintain [8]. 
The measurement process is divided into three activities: applying measures, 
evaluating measurement results and redesigning the model. The pragmatic idea of 
these activities is to discover unsafe design, hazardous structures or unexpected. 
Finally, one critical aspect of the improvement activities is to demonstrate that they 
are potentially useful in practice. We therefore present an experience report of the 
application of improvement activities to a real hospital business process. 

The remainder of the paper is as follows. In Section 2 we describe the 
improvement activities in which measures were applied, evaluate the measurement 
results and redesign the model. In Section 3 we present an experience report of the 
application of these activities to a real business process, specifically a hospital 
business process. In Section 4, we describe some implications and limitations of this 
research. Finally, Section 5 shows our conclusions and presents topics for future 
research. 

2 Business Process Model Improvement 

In this article, we propose certain activities for business process model improvement. 
The principal idea is to collect as much information as possible about the static 
properties of the business process. The activities are: applying measures collected in 



132 L. Sánchez-González et al. 

previous works, evaluating measurement results against threshold values and 
redesigning the model. These three activities can be executed in a cyclic manner, 
signifying that multiple iterations can be run to obtain a high-quality model. This idea 
is depicted in greater detail in Figure 1. 

In Figure 1 the lifecycle stages are represented as a square and the improvement 
activities as ellipses. The design and analysis stage initially produces a conceptual 
model. This model serves as input for the improvement activities. The improvement 
of the model can be carried out in several iterations of the 3 activities (measurement, 
evaluation and redesign). These activities can be introduced in the BP lifecycle as an 
extended stage, which can enrich the final product. After the configuration stage, the 
execution model is enacted through the generation of log files, which describe all the 
steps followed to achieve the business goals. These log files can be measured 
(processed) in order to discover certain important aspects such as execution time, 
deadlocks, etc. The measurement initiatives for improvement in the execution stage 
are described in [9]. The evaluation of these execution reports implies the generation 
of new business requirements which had not previously been considered.  

 

 

Fig. 1. Improvement activities in BP lifecycle 

2.1 Measurement of Business Process Conceptual Models 

In recent years, the number of measurement approaches for conceptual models has 
grown considerably owing to the advantage of improving business processes in the 
early phases. BP model measures are used to quantify structural aspects of models, 
which signifies measuring their internal quality. This internal quality is understood as 
the model’s total number of characteristics from an internal view, and this is 
measured and evaluated against the internal quality requirements [10]. Internal quality 
(quality in general) can be seen from different points of view, and should therefore be 
quantified with more than one measure in order to obtain as much information as 
possible with regard to the model. For example, model complexity cannot be 
measured solely with the Control-flow Complexity (CFC) measure, because this 
measure only takes into account decision node elements. 



 Improving Quality of Business Process Models 133 

As we mentioned, various measures are found in literature [7], and Table 1 
specifically shows references to their measurement initiatives and provides a brief 
description of them. 

However, it is also important to consider external quality in conceptual models. 
External quality refers to the total number of characteristics in the model from an 
external view [10], such as how understandable the models are, how difficult it is to 
modify them, etc. Several authors tried to define a group of quality characteristics for 
conceptual models [11-13]. However, there is no a consensus about what makes a 
good model and the list of quality characteristics is not still defined. In this paper, we 
highlighted the quality characteristics of understandability and modifiability because 
one of the most important purposes of business process models is the communication 
between stakeholders. Since a business process models is a communication vehicle, 
the correct understandability of them is a key aspect in business process development. 
From the point of view of a top-down quality SEQUAL framework [14], 
understanding is an enabler of pragmatic quality, which relates to model and 
modelling and its ability to enable learning and action. On the other hand, a business 
process models should be easy to modify, for example for adding new business 
requirements, so it is considered modifiability as another important quality 
characteristic in this context. In order to clarify this idea, Figure 2 shows the 
relationship between internal and external quality and some examples of measurable 
attributes. Both dimensions (internal and external quality) are related though the 
cognitive complexity, as it was indicated in [15]: “cognitive complexity is the mental 
burden of the persons who have to deal with the model, so high cognitive complexity 
of a model causes it to display undesirable external qualities. The external quality 
attributes are therefore indicators of the cognitive complexity”. 

Most authors have carried out experiments focused on the relationship between 
measures and external quality attributes: understandability and modifiability. These 
belong to the more general concepts of usability and maintainability respectively [10]. 

Table 1. Proposals of measures for business process models 

Measure Description 

Coupling, cohesion and connectivity 

level [16, 17] 

Cohesion and coupling between activities and cross 

connectivity in the relationship between nodes and directed 

arcs. 

Structural complexity [18] Measures related to the number of different elements of BPMN 

models. 

Error probability [8] Number of nodes, diameter, gateway mismatch, depth, density, 

average and max connector degree, cyclicity, sequentiality and 

separability. 

Control flow complexity [2] Related to the number of OR-split, AND-split and XOR-split 

Entropy [19] Uncertainty or variability of workflow process models 

Structuredness [20] Number of unstructured parts 

Complexity [21] Activity, control-flow, data-flow and resource complexity 

Goodness [22] Goodness of models regarding execution logs 



134 L. Sánchez-González et al. 

INTERNAL 
QUALITY
STRUCTURAL 
MEASURES

*COMPLEXITY
*DENSITY

EXTERNAL 
QUALITY

*UNDERSTANDABILITY
*MODIFIABILITY 

COGNITIVE 
COMPLEXITY

AFFECTS
AFFECTS

INDICATE

 

Fig. 2. Internal and external quality in conceptual models 

Table 2. Empirically validated measures and their relationship with understandability and 
modifiability 

Measure Description U* M* 
Measures of Rolón [18] 

TNSF Total Number of sequence flows X  
TNE Total Number of events X  
TNG Total Number of gateways X  
NSFE Number of sequence flows from events X  
NMF Number of message flows X  
NSFG Number of sequence flows from gateways X X 
CLP Connectivity level between participants X  
NDOOut Number of data objects which are outputs of 

activities  
X  

NDOIn Number of data objects which are inputs of 
activities 

X  

CLA Connectivity level between activities  X 
Measures of Cardoso [2] 

CFC Control flow complexity. Sum over all gateways 
weighted by their potential combinations of states 
after the split 

X X 

Measures of Mendling [8] 

Number of nodes Number of activities and routing elements in a 
process model 

X  

Gateway mismatch Sum of gateway pairs that do not match each 
other, e.g. when an AND-split is followed by an 
OR-join 

X X 

Depth  Maximum nesting of structured blocks in a 
process model 

X  

Connectivity 
coefficient 

Ratio of total number of arcs in a process model 
to its total number of nodes 

X  

Density Ratio of total number of arcs in a process model 
to the theoretically maximum number of arcs 

 X 

Sequentiality Degree to which the model is constructed from 
pure sequences of tasks 

X X 

 
To the best of our knowledge, very few articles concerning the relationship 

between measures for internal quality and measures for external quality have been 
published to date, although some research has been published in [23-25], and these 
works obtained a subgroup of measures which can be considered as good indicators 



 Improving Quality of Business Process Models 135 

for understandability and modifiability. This subgroup of measures is shown in Table 
2. The application of this subgroup of measures is produced in a pair (measure, 
result), which should be reported in a document in order to be used in next activity: 
evaluation. 

Table 3. Thresholds for business process model measures 

 

1:
 v

er
y 

in
ef

fi
ci

en
t 

2:
 f

ai
rl

y 
in

ef
fi

ci
en

t 

3:
 f

ai
rl

y 
ef

fi
ci

en
tt 

4:
 v

er
y 

ef
fi

ci
en

t 

Understandability 
Nºnodes 65 50 37 31 

GatewayMismatch 29 16 6 1 
Depth 4 2 1 1 

Coefficient of connectivity 1,7 1,1 0,6 0,4 
Sequentiality 0,1 0,35 0,6 0,7 

TNSF 72 49 34 20 
TNE 20 12 7 2 
TNG 17 10 5 0 
NSFE 28 13 4 0 
NMF 27 15 7 1 
NSFG 40 22 11 0 
CLP 7,5 4,23 2,2 0,2 

NDOIN 31 44 4 0 
NDOOUT 23 11 3 0 
CFCxor 30 17 8 1 
CFCor 9 4 1 0 

CFCand 4 2 0 0 
Modifiability  

GatewayMismatch 46 22 4 1 
Densitiy 0,6 0,22 0,001 0 

Sequentiality 0 0,18 0,6 0,86 
NSFG 25 13 9 0 
CLA 0,53 0,875 1,1 1,3 

CFCxor 27 16 8 1 
CFCor 9 4 1 0 

CFCand 6 2,3 0 0 

 

2.2 Evaluation of Measurement Results 

The evaluation of measurement results involves providing an objective assessment of 
them. Numerical results only offer information in terms of comparison between 
models rather than an independent interpretation. For example, given two process 
models, it is possible to discover not only which of them is best in the relative terms 
of a specific measure, but whether the values are acceptable or not. It is therefore 
necessary to consider the threshold or limit values in order to indicate for what 
specific value the measure’s quality begins to decline. 
 



136 L. Sánchez-González et al. 

Various proposals for the extraction of threshold values exist in literature, 
principally in the Software Engineering field. Some proposals for thresholds are 
derived from experience [26-28], but the lack of scientific support has led to disputes 
about their values. Some authors, on the other hand, have used statistical techniques 
to obtain thresholds. For example, Shatnawi [29] extracted thresholds for Object 
Oriented (OO) code measures in order to study the relationship between OO and 
error-severity categories. This author also validated the Bender method [30] and 
found that there are effective thresholds for the measures analyzed. 

With regard to business process measurement, we have attempted to extract 
threshold values for some measures in previous works. This is the case of Control-
flow complexity measure, structural complexity and error probability measures, which 
were used to apply the Bender method in order to extract thresholds. These works 
were published in [31, 32]. Table 3 shows extracted thresholds for some empirically 
validated measures. This table divides the domain of the measure into 4 different 
groups, depending on the level of efficiency: “very efficient”, “fairly efficient”, 
“fairly inefficient” and “very inefficient”. 

2.3 Redesign of Business Process Models 

In this section, we focus on modifying some parts of the model in order to improve its 
general quality. Those parts that are candidates for alteration have been identified 
through the use of measures. For example, let us imagine that we are analyzing the 
results of the CFC measure in a specific model, and we obtain a numerical value 
which is higher than the threshold: “If CFC is higher than 44, the model is difficult to 
understand”. These results indicate that the number of decision nodes must be reduced 
in the model, since it may be difficult for stakeholders to understand.  

Nevertheless, modifying the model using only the information collected from 
measures and thresholds can be quite difficult. Some guidelines therefore exist to 
assist modellers in this task. In literature, it is possible to discover various guidelines 
for inexpert modellers, whose purpose is to obtain higher-quality models that can 
ensure a more reliable execution. Mendling et al. [33] proposed seven pieces of 
advice for modellers (denominated as 7PMG) which are built on strong empirical 
insight. This advice is related to the maximum number of nodes before 
decomposition, number of events, OR-routing elements, routing paths per element or 
the use of a verb-object activity label. On the other hand, Becker et al. [34] define 
certain guidelines of modelling (GoM), which are specifically six general techniques 
for adjusting models to the perspectives of different types of user and purposes. To 
illustrate the used of these guidelines, let us imagine the following example. If the 
measure “total number of events” is higher than 20 (very inefficient), 7PMG advises 
that the use of “one start and one end event” is the best way to reduce the measure 
value. 

Redesign therefore involves changing those specific parts of the model with low 
quality detected by measures. Modelling guidelines can also help to ensure the quality 
of the model but a previous measurement effort is necessary to identify any potential 
problems. 



 Improving Quality of Business Process Models 137 

3 Experience Report: Hospital Process 

In order to demonstrate the practical utility of this proposal, we describe an 
experience report which was developed in the General Hospital of Ciudad Real 
(GHCR) in Spain. First, a specific work group was created, consisting of specialists in 
modelling tasks (Software Engineers) and health professionals at the hospital: 

a) Those responsible for processes: the assistant director of nursing and the person 
responsible for hospital’s admissions units. 

b) Collaborators: head of human resources and finances, head of computer services 
and head of out-patients’ healthcare. 

The work group then modelled various processes which had previously been selected 
by the hospital’s managerial and quality staff, although in this paper we shall focus on 
the “Incorporation of a new employee” (INE) process, which includes the training 
plan, information and suitability of those people involved in the hospital in order to 
facilitate their integration into the new job. The process model is shown in Figure 3. 

 

 

Fig. 2. BPMN model for the Incorporation of the New Employee (INE) hospital process 

This process was selected as a low-complexity process, although the services 
provided are very important. It is a purely administrative process (it is not related to 
patient care), but moves a large number of users (in 2007, the hospital staff consisted 
of 2.600 workers, and 6989 new contacts were made with regard to substitutions and 
new incorporations). This process involves different professional categories: doctors, 
pharmacists, nurses, psychologists, administrative and technical staff and others. 
Specific process characteristics were the following: 



138 L. Sánchez-González et al. 

a) Mission: to promote the organization of the INE process, which includes a plan for 
training, information and adaptation of the people involved to the hospital 
requirements in order to facilitate their integration into the new job. 
b) Limits: the INE process starts when the professional comes to the hospital and 
finishes when he/she is incorporated into the new job. 
c) Clients: new professionals 
d) People responsible: those responsible for nursing, medical aspects and 
management. 
e) Participants: new professionals in hospital, human resources, computer services, 
lingerie, pharmacy, prevention services, nursing and management service. 
f) Suppliers: human resources, provisions, maintenance, training and information 
systems. 

The results of the application of the improvement activities are described in the 
following sub-sections: 

3.1 Applying Improvement Activities 

The design of the INE process model is represented in BPMN [35] (Figure 3), the de 
facto standard for BP modelling. This conceptual model was a candidate for 
improvement. We therefore applied the three measurement activities previously 
presented. 

A) Measurement. We applied most of the measures published to date, particularly 
those measures which had been empirically validated. It was not possible to apply all 
of them owing to the absence of certain elements in this specific model. The results 
obtained are shown in Table 4 (pair measure/result). 

B) Evaluation. After obtaining the measurement results, we evaluated them by 
following the threshold values shown in Table 3. The conclusions were as follows: 
 Number of nodes is 59, so the model is fairly inefficient in understandability tasks 
 Density is 0.02, so the model is fairly efficient in modifiability tasks 
 Sequentiality is 0.396, so the model is fairly inefficient in understandability and 
modifiability tasks 
 Connectivity coefficient is 1.54, so the model is very inefficient in 
understandability tasks 
 Mismatch connector is 16, so the model is fairly inefficient in understandability 
and modifiability tasks 
 Control flow complexity is 22, so the model is fairly inefficient in 
understandability and modifiability tasks 
 CLA is 0.61, so the model is very inefficient in modifiability tasks 
 CLP is 3, so the model is fairly efficient in understandability tasks 
 TNE is 5, so the model is fairly efficient in understandability tasks 
 TNSF is 73, so the model is very inefficient in understandability tasks 
 NMF is 18, so the model is fairly inefficient in understandability tasks 

After the evaluation, we detected some potential parts for alteration. For example, 
number of nodes was a very high value, and could have compromised the 



 Improving Quality of Business Process Models 139 

understandability of the model. The same applies to connectivity coefficient, control-
flow complexity, CLA and TNSF, which obtained the worst results of the 
measurement activity. On the other hand, density, CLP and TNE obtained acceptable 
results and did not need to be analyzed for further improvement initiatives. These 
results guided us in our definition of some proposals for redesign. 

Table 4. Measurement results for the INE process 

Measure Result Understandability Modifiability 

Nº of nodes 59 Fairly inefficient - 

Density 0,02 - Fairly efficient 

Sequentiality 0,396 Fairly inefficient Fairly inefficient 

Connectivity coefficient 1,54 Very efficient - 

Mismatch connector 16 Fairly inefficient Fairly inefficient 

Control flow complexity 22 Fairly inefficient Fairly inefficient 

CLA 0,61 - Very inefficient 

CLP 3 Fairly efficient - 

TNE 5 Fairly efficient - 

NSF 73 Very inefficient - 

NMF 18 Fairly inefficient - 

 
C) Redesign. After the selection of those parts of the INE model that are potential 
elements for modification, the redesign activity is carried out. This is the most critical 
activity, since it depends on the successful implementation of improvement activities.  

Redesign was classified into two different groups: changes proposed by specialists 
in modelling tasks following guidelines of modelling and changes proposed by health 
professionals. 
 

Changes Proposed by Health Professionals: 
Professionals at the hospital proposed certain modifications which implied some 
differences in the way in which some parts of the model were designed.  

The work group created to model tasks proposed changes which produced several 
semantically equivalent models. The Dephy method [36], was used to allow the work 
group to select the most suitable changes. Each of these changes produces a different 
version to the original, specifically 4 different versions are generated: 
A) The “belongs to a nursing unit with medical dispenser” decision node was 
eliminated in the immediately superior lane. 
B)  Some activities were added: “complete pharmacy report” “send registration 
request to pharmacy services”, “receive registration in computer services”, “inform 
the employee” in the immediately superior lane. 
C) The “belongs to a nursing unit” decision node was eliminated and another decision 
node was added in order to distinguish two categories: planned or urgent in specific 
superior lane. 

D) Combination of version B and C. 

 



140 L. Sánchez-González et al. 

The work group’s opinion and a first application of the measures revealed that version 
D is the best option, and we selected it as the candidate for the improved conceptual 
model. The results of these changes are depicted in Figure 4. This change obtained 
better results with regard to measures in comparison to the original model. Table 5 
shows the measures analyzed and the results obtained. The measurement values for 
the original model are shown in brackets for the purpose of comparison. This 
comparison shows an evident improvement in the model quality. 

Table 5. Measure values of the improved model generated by health professionals 

Measure Result 

Mismatch connector 16 (15) 

Control flow complexity 22 (21) 

CLA 0,61(0,64) 

NSF 73 (71) 

 

 

Fig. 3. Model of INE process applying changes proposed by health professionals 

Changes Proposed Following Guidelines of Modeling: 
On the other hand, the changes proposed by modelling experts was based on the 
guidelines for modellers published in [33]. The following modifications were 
therefore applied to the INE process model: 
1. To reduce number of nodes: 

a. Decompose a model with more than 50 elements. 
b. Use one start and one end event. 

2. To reduce TNF: 
a. The elimination of some nodes reduces the number of sequence flows. 

3. To reduce NMF:  
a. The grouping of activities in a subprocess reduces the number of messages.  

4. To reduce control-flow complexity and mismatch connector: 
a. Avoid OR routing elements. 

5. A further improvement that is not taken into account in the measures is “use verb 
object activity labels”. 

The proposed changes to the model are depicted in Figure 5, and the measures’ 
improved results are described in Table 6. 



 Improving Quality of Business Process Models 141 

Table 6. Measure values of the improved model generated by IT expert 

Measure Result 

Nº of nodes 48(59) 

Sequentiality 0,47(0,396) 

Mismatch connector 10(16) 

Control flow complexity 19(22) 

TNE 3(5) 

NSF 63(73) 

 

 

Fig. 5. Version of INE process, including changes proposed following guidelines of modeling 

E) Selection of the Improved Business Process Design. The application of measures 
in both alternatives allowed us to discover that the most acceptable design is that 
obtained by professionals in modelling. Specifically, 35% of the measures analyzed 
improved their values when following guidelines for modelling, as opposed to 23% of 
the measures obtained when following the advice of professionals in the health sector.  
This signifies that the conceptual model depicted in Figure 5 obtained better 
measurement results, thus suggesting that the model is a good choice and can increase 
the probability of obtaining a correct process enactment. 

4 Implications and Limitations 

In this section we highlight some of the implications and limitations of our research. 
In the previous section, we described the process used to improve conceptual models. 
In the first part, some measures were applied to an INE process model, obtaining 



142 L. Sánchez-González et al. 

certain measurement results. One limitation is related to applied measures. Although 
more measurement initiatives have been published, it is not possible to apply them 
because of their lack of empirical validation. This is an important disadvantage in 
business process measurement and may have limited our research. 

On the other hand, measurement values were assessed by following thresholds in 
order to guide us in redesigning tasks. In a real situation (Incorporation of a new 
employee) we had two different initiatives for redesigning. One of them was based on 
the opinion of health experts. After seeing some business issues as a conceptual 
model, represented in BPMN, they discovered that some parts can be realised in a 
different way with the same results. These changes to the original model were made, 
and some improvements were made to the measures (i.e. Control flow complexity 
was 21 rather than 22 in the original model). Nevertheless, some improvement 
initiatives can be also be made by following theoretical guidelines, with which even 
better results are obtained (nº of nodes, sequentiality, mismatch connector, control 
flow complexity, TNE and NSF). These results reveal that theoretical guidelines 
produce better modification proposals than changes based on experience. Despite this 
result, we believe that the changes proposed by guidelines should not be applied in 
isolation, but should be accompanied by the opinions of domain experts. If the BP is 
modified by domain experts in a controlled manner, it will be possible to avoid the 
rejection of changes in the lifecycle enactment stage. 

5 Conclusions and Future Work 

We conclude this article by summarizing its contributions and by providing an 
overview of future research. We have discussed the importance of measuring business 
processes, specifically in the design and analysis stage, because it is known that 
improving conceptual models in the first stage implies several advantages in the case 
of avoiding the propagation of errors to later stages, in which their elimination might 
be more difficult and expensive. This finding has a strong implication for the way in 
which business process improvement is confronted. A high-quality conceptual model 
can therefore ensure an acceptable execution.  

The experience report allows us to demonstrate the practical utility of 
measurement activities, obtaining a higher-quality model. The application of 
measurement to conceptual models detected some potential parts for alteration 
(number of nodes, reducing sequence and message flow, reducing decision nodes, or 
reducing number of events). Guidelines of modelling also assisted us in making these 
modifications. Finally, we obtained an improved quality model which can ensure a 
better execution. 

As a future work, we wish to provide more empirically validated measures in 
order to make the measurement process more reliable. We also intend to design more 
guidelines for inexpert modellers. Finally, our idea is to apply measurement activities 
in other real business processes at the hospital and in other real organizations in order 
to ensure their practical utility. 



 Improving Quality of Business Process Models 143 

Acknowledgements. This work was partially funded by the following projects: 
INGENIO (Junta de Comunidades de Castilla-La Mancha, Consejería de Educación y 
Ciencia, PAC 08-0154-9262); ALTAMIRA (Junta de Comunidades de Castilla-La 
Mancha, Fondo Social Europeo, PII2I09-0106-2463), ESFINGE (Ministerio de 
Educación y Ciencia, Dirección General de Investigación/Fondos Europeos de 
Desarrollo Regional (FEDER), TIN2006-15175-C05-05) and PEGASO/MAGO 
(Ministerio de Ciencia e Innovación MICINN and Fondo Europeo de Desarrollo 
Regional FEDER, TIN2009-13718-C02-01). 

References 

1. Damij, N., et al.: A methodology for business process improvement and IS development. 
Information and Software Technology 50(11), 1127–1141 (2008) 

2. Cardoso, J.: Process control-flow complexity metric: An empirical validation. In: SCC 
2006: Proceedings of the IEEE International Conference on Services Computing, pp. 167–
173 (2006) 

3. Park, R.E., Goethert, W.B., Florac, W.A.: Goal-Driven software Measurement: A 
Guidebook. Handbook CMU/SEI-96-HB-002 (1996) 

4. Weske, M.: Business Process Management: Concepts, Languages, Architectures, 1st edn. 
Springer, Heidelberg (2007) 

5. Sparks, G.: An Introduction to UML, The Business Process Model. Enterprise Architect 
(2000) 

6. Wand, Y., Weber, C.: Research commentary: Information systems and conceptual 
modeling–a research agenda. Info. Sys. Research 13(4), 363–376 (2002) 

7. Sánchez-González, L., et al.: Measurement in Business Processes: a Systematic Review. 
Business Process Management Journal 16(1), 114–134 (2010) 

8. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error 
Prediction, and Guidelines for Correctness. Springer Publishing Company, Incorporated 
(2008) 

9. Delgado, A., Ruiz, F., García-Rodríguez de Guzmán, I., Piattini, M.: MINERVA: Model 
drIveN and sErvice oRiented Framework for the Continuous Business Process 
improVement and relAted Tools. In: Dan, A., Gittler, F., Toumani, F. (eds.) 
ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 456–466. Springer, Heidelberg (2010) 

10. ISO/IEC, 9126-1, Software engineering - product quality - Part 1: Quality Model (2001) 
11. Moody, D.: Theoretical and practical issues in evaluating the quality of conceptual models: 

current state and future directions. Data and Knowledge Engineering 55, 243 (2005) 
12. Lindland, O.I., Sindre, G., Solvberg, A.: Understanding Quality in Conceptual Modeling. 

IEEE Software 11(2), 42–49 (1994) 
13. Shanks, G., Tansley, E., Weber, R.: Using ontology to validate conceptual models. 

Commun. ACM 46(10), 85–89 (2003) 
14. Krogstie, J., et al.: Process models representing knowledge for action: a revised quality 

framework. Eur. J. Inf. Syst. 15(1), 91–102 (2006) 
15. Briand, L.C., Wüst, J., Ikonomovski, S., Lounis, H.: A Comprehensive Investigation of 

Quality Factors in Object-Oriented Designs. An Industrial Case Study. Technical Report 
ISERN-98-29 (1998) 

16. Vanderfeesten, I., et al.: Quality Metrics for Business Process Models. In: BPM and 
Workflow Handbook (2007) 



144 L. Sánchez-González et al. 

17. Vanderfeesten, I., Reijers, H.A., Mendling, J., van der Aalst, W.M.P., Cardoso, J.: On a 
Quest for Good Process Models: The Cross-Connectivity Metric. In: Bellahsène, Z., 
Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 480–494. Springer, Heidelberg 
(2008) 

18. Rolón, E., García, F., Ruiz, F.: Evaluation Measures for Business Process Models. In: 
Simposioum in Applied Computing, SAC 2006 (2006) 

19. Jung, J.Y.: Measuring entropy in business process models. International Conference on 
Innovative Computing. Information and Control, 246–252 (2008) 

20. Laue, R., Mendling, J.: Structuredness and its Significance for Correctness of Process 
Models. Information Systems and E-Business Management (2009) 

21. Meimandi Parizi, R., Ghani, A.A.A.: An Ensemble of Complexity Metrics for BPEL Web 
Processes. In: Ninth ACIS International Conference on Software Engineering, Artificial 
Intelligence, Networking, and Parallel/Distributed Computing, pp. 753–758 (2008) 

22. Huan, Z., Kumar, A.: New quality metrics for evaluating process models. In: Business 
Process Intelligence Workshop (2008) 

23. Rolon, E., et al.: Prediction Models for BPMN Usability and Maintainability. In: BPMN 
2009 - 1st International Workshop on BPMN, pp. 383–390 (2009) 

24. Sánchez González, L., et al.: Assessent and Prediction of Business Process Model Quality. 
In: CoopIS 2010 - 18th International Conference on Cooperative Information Systems, pp. 
78–95 (2010) 

25. Rolón, E., et al.: Analysis and Validation of Control-Flow Complexity Measures with 
BPMN Process Models. In: The 10th Workshop on Business Process Modeling, 
Development, and Support (2009) 

26. McCabe, T.J.: A Complexity Measure. IEEE Transactions on Software Engineering SE-
2(4), 308–320 (1976) 

27. Nejmeh, B.A.: NPATH: a Measure of Execution Path Complexity and its Applications. 
ACM 31(2), 188–200 (1988) 

28. Coleman, D., Lowther, B., Oman, P.: The Application of Software Maintainability Models 
in Industrial Software Systems. Journal of Systems and Software 29(1), 3–16 (1995) 

29. Shatnawi, R.: A Quantitative Investigation of the Acceptable Risk levels of Object-
Oriented Metrics in Open-Source Systems. IEEE Transactions on Software 
Engineering 36(2), 216–225 (2010) 

30. Bender, R.: Quantitative Risk Assessment in Epidemiological Studies Investigatin 
Threshold Effects. Biometrical Journal 41(3), 305–319 (1999) 

31. Sánchez-González, L., et al.: Towards Thresholds of Control Flow Complexity Measures 
for BPMN Models. In: 26th Symposium On Applied Computing. SAC, vol. 10 (in press, 
2011) 

32. Sánchez-González, L., et al.: Quality Assessment of Business Process Models Based on 
Thresholds. In: CoopIS 2010 - 18th International Conference on Cooperative Information 
Systems, pp. 78–95 (2010) 

33. Mendling, J., Reijers, H.A., Van der Aalst, W.: Seven Process Modeling Guidelines 
(7PMG). Information and Software Technology 52(2), 127–136 (2010) 

34. Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of Business Process Modeling. In: 
van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. 
LNCS, vol. 1806, pp. 30–49. Springer, Heidelberg (2000) 

35. OMG. Business Process Modeling Notation (BPMN), Final Adopted Specification (2006), 
http://www.omg.org/bpm 

36. Linstone, H.A., Turoff, M.: The Delphi Method: Techniques and Applications. Addison-
Wesley (2002) 



L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 145–154, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Team Radar: A Radar Metaphor  
for Workspace Awareness 

Cong Chen and Kang Zhang 

Department of Computer Science, University of Texas at Dallas 
800 West Campbell Road, Richardson, U.S.A. 
{congchen,kzhang}@utdallas.edu 

Abstract. In distributed software teams, awareness information is often lost due 
to communication restrictions. Researchers have attempted to retain team 
awareness by sharing change information across workspaces. The major 
challenge is how to convey information effectively while avoiding information 
overload. In this paper, we propose a radar metaphor for distributing and 
visualizing workspace awareness information. A prototype implementation, 
Team Radar, is presented and its design is also discussed. 

Keywords: Collaboration, Workspace  awareness, Visualization, Software  
con-figuration management. 

1 Introduction 

Software development is in general a collaborative activity. The complexity of the 
code itself and the complexity of the activities and process of producing it make such 
collaboration difficult [7]. One of the most frequently reported causes of these 
problems is the lack of awareness [16], which is typically defined as “an 
understanding of the activities of the others, which provides a context for one’s own 
activities” [4]. 

In co-located teams, such information is maintained either through informal 
interactions among developers, such as monitoring each other's activities, informal 
conversations, pair programming sessions, and expert assistance [11], or through 
inspecting documents and source code, shared in software configuration management 
(SCM) systems [16]. 

When direct communication is restricted, e.g., the team is geographically 
distributed; people often struggle with coordination and collaboration because 
awareness information is lost. Moreover, studies show that loss of awareness even 
affects developers’ willingness to collaborate and enthusiasm of work [12]. In such a 
setting, people have to take various alternative approaches to obtain awareness. One 
of the most common sources of awareness information is software repository, such as 
SCM repository. Developers traditionally used an SCM system to track and control 
changes of artifacts by imposing concurrency control and version control regulations. 
As it stores all relevant changes and events in the project, researchers now find SCM 
repository valuable to work as an organizational memory that can be accessed to find 
out what other developers have done [12]. 



146 C. Chen and K. Zhang 

SCM systems, however, fail to offer sufficient level of awareness, because their 
asynchronized propagating strategy isolates local changes until developers manually 
submit them. In order to alleviate this problem, and “break bad isolation while 
retaining good isolation” [20], a number of researchers have argued that the key to 
promote coordination among de-located teams is increasing the level of awareness 
and providing real-time information of ongoing changes [15].  

We claim that awareness in SCM could be enhanced with additional 
communication mechanism that continuously exchanges information between 
workspaces. We could also enrich the team memory by supplying the existing 
software repository with additional awareness information, and promote mining 
software repositories (MSR) research to a fine-grained level. 

The main challenge we are facing now is how to convey sufficient amount of 
information to team members while avoiding information overload. Our solution is a 
visualization that intuitively shows the most useful information to team members, and 
appeals to them as much as possible. We developed Team Radar, a workspace 
awareness supporting tool based on Qt Creator [18], an open source C++ IDE from 
Nokia. Team Radar monitors and captures changes in local workspaces and in SCM 
repository, extracts and analyzes the embedded awareness information, distributes it 
to other workspaces, and finally presents it in a visually attractive fashion. 

The major innovation of our approach is that by applying afterimage technique 
and radar metaphor, we create a continuous and coherent team memory, which blends 
past with present, and more efficiently promote users’ interests.  

2 Related Work 

There are a number of approaches in the community attempting to improve 
workspace awareness by enhancing existing SCM systems. 

Palantir [21] is an SCM enhancement that takes awareness into account. Palantir 
informs a developer of which other developers change to which artifacts, calculates a 
severity measure of potential conflict, and graphically displays the information. 
Palantir does not intend to solve conflict problem by itself. It simply makes 
developers aware of potential conflict and relies on them to avoid it before it happens.  

An important aspect of software project is its evolution. Gource [3] is a recent 
project on evolution visualization, which differs from previous work by clearly 
showing the structure of the code and the relationships between artifacts and authors. 
Gource takes a qualitative approach and uses animation to visualize the flowing 
history of a project mined from SCM repositories. It renders the project structure as a 
dynamic tree, rendered by a force-directed tree layout algorithm [10]. Nodes represent 
files, and are connected to the tree by edges. Currently contributing authors fly close 
to the files, sending out beams to indicate their relations.  

Recent researches by Fitzpatrick et al. [6] reflect a move away from managing 
activities and workflow to providing visualizations of information that already exists 
in tools. Syde [11] follows this trend by integrating awareness information 
visualization tightly into existing IDEs. The author claims that despite of prolific 
applications of supporting workspace awareness, there is still no such a tool that 
provides enough fine-grained change information, and maintains a non-intrusive 



 Team Radar: A Radar Metaphor for Workspace Awareness 147 

approach. Scamp [15], built upon the communication infrastructure offered by Syde, 
extends Syde by delivering awareness information with three lightweight 
visualizations. 

Our work is inspired by some of the previous approaches. We use an architecture 
similar to that of Palantir. The tree presentation of project structure comes from 
Gource. We employ an informal approach as Gource and Syde do. However, our 
approach differs from them in the following ways: our visualization is based on 
several new visual effects and metaphors, which stimulate users’ imagination and 
engagement. We support both real-time monitoring and offline review, which is 
beneficial to both development and management. 

3 Team Radar 

Team Radar is an infrastructure aiming at enhancing workspace awareness. It is a 
client-server application. The client is a Qt Creator plug-in, which monitors local 
events, distributes them to all other workspaces, and finally renders them on a virtual 
radar screen. The server side acts as a communication center and a standalone team 
memory, which complements conventional SCM system’s function of supporting 
awareness information. 

3.1 Design Rationale 

There are several important decisions we have made in designing Team Radar, which 
reflect the rationale and philosophy of our understanding of awareness support. When 
automating software development, some previous work tends to offer all-in-one 
solutions. That is why their tools automatically inform users of their inference and 
give exact instructions. While our philosophy is that since most failures in computer 
systems are caused by human mistakes [19], it is more appropriate to let human make 
the final judgment. We believe that informal awareness information helps formal 
processes to work [8]. Hence, Team Radar takes an informal and qualitative approach, 
and simply visualizes extracted awareness information without distracting developers 
from their main work. 

Another important issue of designing an awareness supporting system is whether 
the system is intended for retrospective analysis of historical data, or it is used to 
analyze a project currently in progress. Of course, each approach has its own 
advantages. Most previous work, however, focuses more on either aspect of the 
project over the other. In our solution, we attempt to offer users a consistent and 
coherent team memory by unifying both past and present information in one 
visualization. Developers can use Team Radar to monitor coworkers’ activities and 
coordinate collaboration, while managers may review and analyze the project by 
replaying the event scripts stored in Team Rader. 

3.2 Architecture 

Fig. 1 shows the architecture of Team Radar, which adopts the design of previous 
work [21]. The system is an extension of Qt Creator. The client is a Qt Creator  



148 C. Chen and K. Zhang 

plug-in with five major modules. Qt Creator relies on signals to propagate events. The 
Collector is such a module that connects to its interested signals, and is notified when 
these signals are emitted. The Viewer is the visualization module that presents 
awareness information to users with animations. On the server side, typically on a 
separated site, the Receiver listens and accepts events from clients’ Collectors, stores 
them into an extra Repository, and then asks the Distributor to broadcast them to 
other clients’ Viewers. The Viewer can also retrieve the event scripts in the repository 
and replay them offline. Offline playback enables managers to inspect daily activities, 
review the process and analyze collaboration issues. 
 

 

Fig. 1. Team Radar architecture 

3.3 Capturing Local Events 

Based on Gutwin’s knowledge elements of awareness [9], workspace should track 
several types of awareness information, categorized by “how, when, who, where, and 
what” questions. In addition, a survey conducted in Microsoft shows that the majority 
of information needs are about discovering, meeting, and keeping track of people, not 
just code [2]. Hence, our work focuses more on tracing what developers are working 
or have worked on, rather than what specific changes they have made. In more detail, 
we address these aspects of collaboration: 

• Working Mode. As a typical software development scenario, developers switch 
back and forth among several activities, or working modes in Qt Creator, including 
designing, coding, testing, debugging, reading documents, etc. Working mode could 
also label current progress of the project. No matter what process model the project 
follows, in different phases of the project, developers carry out each type of activity 
with various emphasis and intensity. In earlier phases, developers may take more time 
in designing and coding mode, while in later phases, more effort might be put to 
testing and debugging [16]. 

• Current Changes. It is important for developers to be aware of who else is 
working on the same artifacts or those artifacts closely related. Failing to acquire such 
information may lead to duplicated work, merge conflicts, and perhaps build failure 
[11]. Showing developers what artifacts others are changing gives them an early 
warning of potential conflict.  

• Past Changes. In a software project, knowledge of others' activities, both past and 
present, has equal value for assisting the overall cohesion and effectiveness of the 
team. Observation of the evolution of a project helps to understand the history and 

 
Collector

Viewer 

Receiver 

Distributor
Repository

Signals 

Client Server

Qt Creator 



 Team Radar: A Radar Metaphor for Workspace Awareness 149 

rationale behind the code. Knowing who has worked most often or most recently on a 
particular file aids to identify members’ contribution and locate expert assistance [22]. 

Though the significance of fine-grained information in tracing and coordinating 
activities is largely accepted, the granularity still needs to be tuned based on its 
particular application. In our case, we take an informal and qualitative approach, 
which do not require highly detailed information. Thus, Team Radar does not capture 
atomic changes, such as what character the developer has inputted, which line of code 
was edited, or any changes to the abstract syntax tree [17]. It simply captures some 
basic events in local workspaces, including client logging in and out, opening and 
closing project, editing file, and changing working mode. Editing file refers to any 
write operations to artifacts, because usually developers are not interested in others’ 
read-only activities.  

3.4 Visualization 

Fig. 2 illustrates our animated visualization. Team Radar adopts a similar tree 
structure used by Gource [3] to present the structure of a project. The tree is 
dynamically generated by a force-directed layout algorithm [10]. Non-leaf nodes 
represent directories and are connected to the tree by edges. Leaf nodes denote files 
colored by their types. Each online developer is shown as an icon. When a developer 
is making changes to a file, his/her icon flies close to the corresponding tree node and 
indicates the artifact he/she is working on. When an icon moves, its afterimage stays, 
and a light trail shows its track. The tag beside developer’s icon shows the 
developer’s current working mode. All local events are stored in the central repository 
as event scripts, which drive the animation and allow user to retrieve and replay. 

3.5 Metaphors 

We believe that metaphor is a key factor to successful software visualization. In order 
to create a virtual environment that promotes the user’s perception and engagement, 
as well as to increase information density, Team Radar adopts two metaphors in its 
visualization based on afterimage technique. 

• Afterimage, or visual aftereffect, is an optical illusion that refers to an image 
continuing to stay in one's vision after the original image is removed.  Neural 
biologists now generally agree that aftereffects are not mere by-products of “fatiguing 
neurons”, but reflect neural strategies for optimizing perception [23]. There is also 
evidence that afterimage stimulates eyes to track motion smoothly [13]. Afterimage is 
a critical technique to implement our metaphors. We argue that afterimage technique, 
which embodies past and present information in our visualization, helps to stimulate 
the user’s interests and engagement. 

• Radar is an important component of battlefield awareness, a similar problem to 
workspace awareness, which refers to knowledge of everything occurring on the 
battlefield [5]. On a typical radar screen, positions of targets are displayed as moving 
blips, typically with light trails showing their courses and directions. Similarly, Team 
Radar alerts developers where others were and are working on. We use the radar 
metaphor to create a notion that monitoring software team is just like observing a 



150 C. Chen and K. Zhang 

radar screen. In Team Radar, the tree layout mimics the polar coordinates of a radar 
system, icons simulate the blips of radar targets, and more interestingly, when an icon 
moves, its light trail shows the afterimage of the course.  

• Memory metaphor refers to a common-sense that the older the memory is, the 
vaguer the image appears in the mind [1]. As mentioned above, when the icon flies to 
a new position, the afterimage of the icon and the light trail remains on the screen and 
blurs out through time, mimicking a passing memory. The afterimage eventually 
disappears, and how long this process takes is configurable, depending on how much 
past information the user intends to observe. Memory metaphor produces an illusory 
environment that allows users to traverse between past and present.  
 

 

Fig. 2. Team Radar visualization. The developer’s icon represents the location of a developer. 
Afterimages and light trials show the path the developer has gone through. Tags show the 
working mode of a developer. Conflict warning indicates a potential conflict when multiple 
developers are working on the same artifact. 

3.6 Visualization Implementation 

There are some challenges we are facing when implementing Team Radar. Major 
issues we concern are performance, scalability, and privacy. 

The performance concern stems from the layout algorithm we choose. Though 
aesthetically appealing and flexible, the classic force-directed layout algorithm does 
not scale well, with the worse running time of O(|V|3), |V| being the number of 

 

 

Working mode 

Conflict warning 

Afterimage 

Light trail 

Playback controls 



 Team Radar: A Radar Metaphor for Workspace Awareness 151 

vertices [10]. In our application, however, since the graph is a hierarchical tree, we 
utilize the local nature of the sub-trees and develop a simplified multi-scale force-
directed layout algorithm [10], which takes into account only siblings in the same 
sub-tree and ancestors when relocating a node. Furthermore, Team Radar can cache 
the layout of the tree and load it faster the next time, which means the layout delay 
only bothers the user for the first time he joins the project. The following is the 
pseudo code of the improved layout algorithm. 

force-directed-layout() { 
  while(!converged()) { 
    Queue queue; 
    queue.enqueue(root); 
    while(!queue.isEmpty()) { 
      target = queue.dequeue(); 
      for all nodes that are ancestors of target) { 
        pull(target, node); 
        push(target, node); 
      } 
      for(all nodes that are siblings of target) { 
        push(target, node); 
      } 
      queue.enqueue(target.getChildren()); 
    } 
  } 
} 

The most effective measure we take to handle performance issue is along-the-path-
expansion. Programmers’ behavior also exhibits certain local nature [14]: no matter 
how the project scales, one programmer usually works on a small subset of the 
artifacts. Therefore, there is no need to expand the whole tree. Initially, Team Radar 
only loads the root of the tree. When a user opens a file, Team Rader will 
automatically expand the nodes in the path from the root to the file, and keep other 
nodes folded. 

The scalability of a visualization is often affected by excessive information. 
Along-the-path-expansion could significantly improve the scalability of the system by 
showing a minimal subset of the nodes. Labeling is another factor to the viewability 
of our visualization. Displaying all the names of the nodes would overwhelm the 
screen, as some of the names could be very long. Team Radar only shows the labels 
of the nodes in the path from the root to the file currently being edited. 

Developers can protect their privacy using two types of event filters: incoming 
filter and outgoing filter. The incoming filter defines what kind of events and whose 
events will be received, which helps the user to concentrate on his interested events 
and coworkers. The outgoing filter defines what kind of events will be broadcasted. 
Developers can make an agreement on the configuration of filters based on their 
organizational cultures. Fig. 3 shows the interface of Qt Creator with the Team Radar 
plug-in. Fig.4 is a screenshot of Team Radar server that logs all the traffic. 



152 C. Chen and K. Zhan

Fig. 3. Qt Creator with the T
bottom corner 

Fig

4 Conclusions 

This paper has reported ou
collaboration in the cont
implementation has been b

ng 

Team Radar plug-in shown as an embedded window at the l

 

. 4. A screenshot of Team Radar server 

ur ongoing work to promote team awareness and stimu
text of distributed software development. A protot
built and tested. The novelty of our approach is that w

 

left-

late 
type 
with 



 Team Radar: A Radar Metaphor for Workspace Awareness 153 

afterimage technique and radar metaphor, our visualization integrates both past and 
present information at the same time, which we believe would achieve a better 
balance of the tradeoff between providing more information and avoiding information 
overflow. As our future work, an experiment will be conducted to further evaluate the 
effectiveness of the approach. 

References 

1. Atkinson, R.C., Shiffrin, R.M.: Human Memory: A Proposed System and Its Control 
Processes. In: Spence, K.W., Spence, J.T. (eds.) The Psychology of Learning and 
Motivation: Advances in Research and Theory, vol. 2, pp. 89–195. Academic Press, New 
York (1968) 

2. Begel, A., Khoo, Y.P., Zimmermann, T.: Codebook: Discovering and Exploiting 
Relationships in Software Repositories. In: 32nd ACM/IEEE International Conference on 
Software Engineering, vol. 1, pp. 125–134. ACM, New York (2010) 

3. Caudwell, A.H.: Gource: Visualizing Software Version Control History. In: ACM 
International Conference Companion on Object Oriented Programming Systems 
Languages and Applications Companion, pp. 73–74. ACM, New York (2010) 

4. Dourish, P., Bellotti, V.: Awareness and Coordination in Shared Workspaces. In: 1992 
ACM Conference on Computer-Supported Cooperative Work, pp. 107–114. ACM, New 
York (1992) 

5. Fennell, M.T., Wishner, R.P.: Battlefield awareness via Synergistic SAR and MTI 
Exploitation. IEEE Aerospace and Electronic Systems Magazine 13, 39–43 (1998) 

6. Fitzpatrick, G., Marshall, P., Phillips, A.: CVS Integration with Notification and Chat: 
Lightweight Software Team Collaboration. In: 20th Anniversary Conference on Computer 
Supported Cooperative Work, pp. 49–58. ACM, New York (2006) 

7. Froehlich, J., Dourish, P.: Unifying Artifacts and Activities in a Visual Tool for 
Distributed Software Development Teams. In: 26th International Conference on Software 
Engineering, pp. 387–396. IEEE Computer Society, Washington (2004) 

8. Grinter, R.E.: Using a Configuration Management Tool to Coordinate Software 
Development. In: Conference on Organizational Computing Systems, pp. 168–177. ACM, 
New York (1995) 

9. Gutwin, C.A.: Workspace Awareness in Real-Time Distributed Groupware, p. 250. 
University of Calgary (1998) 

10. Hadany, R., Harel, D.: A Multi-Scale Algorithm for Drawing Graphs Nicely. In: 
Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 262–277. 
Springer, Heidelberg (1999) 

11. Hattori, L.: Enhancing Collaboration of Multi-developer Projects with Synchronous 
Changes. In: 32nd ACM/IEEE International Conference on Software Engineering, Vol.2, 
pp. 377–380. ACM, New York (2010)  

12. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: Distance, Dependencies, and 
Delay in a Global Collaboration. In: 2000 ACM Conference on Computer Supported 
Cooperative Work, pp. 319–328. ACM, New York (2000) 

13. Heywood, S., Churcher, J.: Eye Movements and the Afterimage—I. Tracking the 
Afterimage. Vision Research 11, 1163–1168 (1971) 

14. Kersten, M., Murphy, G.C.: Using Task Context to Improve Programmer Productivity. In: 
14th ACM SIGSOFT International Symposium on Foundations of Software Engineering, 
pp. 1–11. ACM, New York (2006) 



154 C. Chen and K. Zhang 

15. Lanza, M., Hattori, L., Guzzi, A.: Supporting Collaboration Awareness with Real-time 
Visualization of Development Activity. In: 14th IEEE European Conference on Software 
Maintenance and Reengineering, pp. 207–216. IEEE Computer Society, Los Alamitos 
(2010) 

16. LaToza, T.D., Venolia, G., DeLine, R.: Maintaining Mental Models: A Study of Developer 
Work Habits. In: 28th International Conference on Software Engineering, pp. 492–501. 
ACM, New York (2006) 

17. Neamtiu, I., Foster, J.S., Hicks, M.: Understanding Source Code Evolution Using Abstract 
Syntax Tree Matching. In: 2005 International Workshop on Mining Software Repositories, 
pp. 1–5. ACM, New York (2005) 

18. Qt Creator, http://qt.nokia.com/products/developer-tools/ 
19. Sandom, C.: Success and Failure: Human as Hero – Human as Hazard. In: 12th Australian 

Workshop on Safety Critical Systems and Software and Safety-related Programmable 
Systems, pp. 79–87. Australian Computer Society, Inc., Darlinghurst (2007) 

20. Sarma, A., Noroozi, Z., van der Hoek, A.: Palantir: Raising Awareness among 
Configuration Management Workspaces. In: 25th International Conference on Software 
Engineering, pp. 444–454. IEEE Computer Society, Washington, DC (2003) 

21. Sarma, A., van der Hoek, A.: Palantir: Coordinating Distributed Workspaces. In: 26th 
Annual International Computer Software and Applications Conference, pp. 1093–1097. 
IEEE Computer Society, Washington, DC (2002) 

22. Schneider, K.A., Gutwin, C., Penner, R., Paquette, D.: Mining A Software Developer’s 
Local Interaction History. In: IEE Seminar Digests 2004, pp. 106–110 (2004) 

23. Thompson, P., Burr, D.: Visual Aftereffects. Current Biology 19, 11–14 (2009) 



Model-Driven Test Code Generation

Beatriz Pérez Lamancha1, Pedro Reales2, Macario Polo2, and Danilo Caivano3

1 University of Republic, Montevideo, Uruguay
bperez@fing.edu.uy

2 University of Castilla-La Mancha, Ciudad Real, Spain
{pedro.reales,macario.polo}@uclm.es

3 University of Study, Bari, Italy
caivano@di.uniba.it

Abstract. Model-driven Testing (MDT) refers a model-based testing that
follows Model Driven Engineering paradigm, i.e., the test cases are automated
generated using models extracted from software artifacts through model trans-
formations. In previous work, we developed a model to model transformation
that takes as input UML 2.0 sequence diagrams, and automatically derive test
cases scenarios that conforms the UML Testing Profile. In this work, these test
case scenarios are automatically transformed using model to text transformation.
This transformation, which can be applied to obtain test cases in a variety of pro-
gramming languages, is implemented with MOFScript, which is also an OMG
standard.

1 Introduction

Currently, new technologies, new tools and new development paradigms exist that help
to reduce software development time. Increasingly, software development models are
being used to a greater or lesser degree.

These models can be used for requirements elicitation, to achieve a common under-
standing with stakeholders or to build and share the architecture solution. Model-Driven
Engineering (MDE) considers models for software development, maintenance and evo-
lution through model transformation [1]. Testing must support software development,
reducing testing time but ensuring the quality of the product generated. Model-based
testing (MBT) provides techniques for the automatic generation of test cases using
models extracted from software artifacts (Dalal et al., 1999). Several approaches ex-
ist for model-based testing [2,3]. Nonetheless, adoption of model-based testing by the
industry remains low and signs of the anticipated research breakthrough are weak [4].
In this work, we use the term model-driven testing to refer to a model-based testing
approach that follows the MDE paradigm, i.e., using model transformations.

In previous work [5,6], we defined an automated model-driven testing framework.
This framework uses two types of transformations, the first of which is model-to model-
transformation to generate test models from design models. This transformation takes
UML 2.0 models as input and through QVT, produces UML Testing Profile models
(this can be consulted in [6]). The second type of transformations is test model to test
code transformation, which is the main contribution of this paper. Figure 1 describes

L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 155–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



156 B.P. Lamancha et al.

Fig. 1. Test model to test code transformations

the transformation from test model to test code. The transformation is developed using
the MofScript tool1, which implements the OMG’s MOF model-to-text transformation
[7]. In this work, the transformation generates JUnit code , which makes it possible
to automate the coding of Java test cases and their management. It is also possible to
generate other testing code, for example, NUnit to test .Net systems.

Once the test code is obtained by the transformation, it can be compiled and executed
to test the system under test (SUT) and to obtain the test case verdict, i.e., whether it
fails or passes. Section 2 presents the metamodels and standards used in this paper.
Section 3 describes the approach for model-driven testing and presents the automated
testing framework. Section 4 summarizes the model to model transformations defined in
the framework. Section 5 describes transformations from test models to test code using
MofScript in detail. Section 6 summarizes the work related to our approach. Finally,
Section 7 presents conclusions and future work.

2 Metamodels and Standards

One of the central parts of MDE is model transformation, defined as the process of
converting one model to another model of the same system [8]. Even with the source
code, programs are expressed in a programming language; if we make the correspon-
dence between a grammar and a metamodel explicit, programs may be converted into
equivalent MDA-models [9]. A transformation requires: (i) source and target models,
(ii) source and target metamodels and (iii) the definition of the transformation [8]. In
this work the metamodel used is the UML Testing Profile.

UML 2.0 Testing Profile (UML-TP) [10] defines a language for designing, visualiz-
ing, specifying, analyzing, constructing and documenting the artifacts of test systems. It

1 http://www.eclipse.org/gmt/mofscript/



Model-Driven Test Code Generation 157

Fig. 2. Metamodel

extends UML 2.0 with specific concepts for testing, grouping them in test architecture,
test data, test behavior and test time. Figure 2 shows an excerpt of the UML-TP meta-
model. The test architecture in UML-TP is the set of concepts to specify the structural
aspects of a test situation. It includes the TestContext, which contains the test cases
(as operations) and whose composite structure defines the test configuration. The test
behavior specifies the actions and evaluations necessary to evaluate the test objective,
which describes what should be tested. The TestCase specifies one case to test the sys-
tem, including what to test it with, the required input, result and initial conditions. It
is a complete technical specification of how a set of TestComponents interacts with a
System Under Test (SUT) to realize a TestObjective and returns a Verdict value [10].

We use two transformations: for model to model transformation (M2M) we se-
lected the OMG’s Queries, Views and Transformations (QVT) standard [11]. The QVT
standard describes three languages for transformations: Relations, Operational and Core.
Of these, we used the Relations language, where each relation specifies how an element
(or set of elements) from the source models is transformed into an element (or set of
elements) of the target model. The Operational language can be used to implement one
or more Relations from a Relations specification when it is difficult to provide a purely
declarative specification of how a Relation is to be populated. QVT Core is a low-level
language into which the others can be translated [11]. One of the advantages of the
QVT standardization is its adoption by tool vendors, which also entails the possibility
of interchanging models across different platforms.

For model to code transformation (M2C), we use the MOFScript tool, an implemen-
tation of OMG’s MOF Model to Text transformation language (MOF2Text) [7]. Each
transformation defined with this language is composed of a texttransformation element.
A texttransformation is the main element that transforms a model into text. These mod-
els are specified as inputs in the transformation. Also, a texttransformation can import
other previously defined transformations. A texttransformation is composed of rules. A
rule is basically the same as a function. Each rule performs a sequence of operations or
calls to other rules in order to analyze the input models and generate the desired text.
Each rule has a context type, which is a type of input metamodel. This represents the
type of elements to which the rule can be applied. Also, a rule can have a return ele-
ment, which can be reused in other rules and input parameters to perform the operations
defined in the rule. Both the return and the input parameter have a type of input meta-
model or basic type, which is defined by MOFScript language. A texttransformation



158 B.P. Lamancha et al.

element can also have an entry point rule. This is a special type of rule called main.
This rule is the first rule to be executed when the transformation is executed and has the
responsibility for executing the rest of the transformation rules.

The M2C transformation in our case generates xUnit code. xUnit is a family of
frameworks, which enable the automated testing of different elements (units) of soft-
ware. Such frameworks are based on a design by Kent Beck, originally implemented
for Smalltalk as SUnit [12]. Gamma and Beck ported SUnit to Java, creating JUnit2.
From there, the framework was also ported to other languages, as NUnit 3for .NET.

3 Model-Driven Testing Approach

Our proposal for model driven testing automatize the generation of test cases from
design models using model transformations. We have defined an automated framework,
based on Dai’s idea [13].

Fig. 3. Model-driven testing approach

Figure 3 shows the models involved in the framework, which is divided vertically
into System models (left) and Testing models (right). For System models, the frame-
work follow the MDA [8] levels. MDA defines three viewpoints of a system [14]: (i)
the Computation Independent Model (CIM), which focuses on the context and require-
ments of the system without considering its structure or processing; (ii) the Platform
Independent Model (PIM), which focuses on the operational capabilities of a system
outside the context of a specific platform; and (iii) the Platform Specific Model (PSM),
which includes details relating to the system for a specific platform.

The philosophy of MDA can be applied to test modeling. As Figure 3 shows, the
same abstraction levels (PIM, PSM) can be applied to test models. The Test levels
defined are [13]: (i) platform independent test model (PIT), (ii) platform specific test
model (PST) and (iii) executable test code.

Furthermore, with the adequate transformations, test models can directly proceed
from system designs. The arrows in Figure 3 represent transformations between models.

The main characteristics of the automated framework for model-driven testing that
we have defined and implemented are [5]:

2 http://www.junit.org/
3 http://www.nunit.org/



Model-Driven Test Code Generation 159

– Standardized. The framework is based on Object Management Group (OMG)
standards, where possible. The standards used are UML, UML Testing Profile as
metamodels, and Query/View/Transformation (QVT) and MOF2Text as standard-
ized transformation languages.

– Model-driven Test Case Scenario Generation. The framework generates the test
cases at the functional testing level (which can be extended to other testing levels);
the test case scenarios are automatically generated from design models and evolve
with the product until the test code generation. Design models represent the system
behavior using UML sequence diagrams.

– Framework Implementation using Existing Tools. No tools have been developed
to support the framework: existing market tools that conform to the standards can
be used. The requisite is that the modeling tool can be integrated with the tools that
produce the transformations.

Fig. 4. Metamodels involved in the testing framework

Figure 4 shows the UML diagrams used in the framework. For each functionality rep-
resented as a sequence diagram at PIM level, the test case is automatically generated
using QVT (arrow 1). The transformation generates the test case behavior as another
sequence diagram and a class diagram representing the test architecture. Both mod-
els conform to the UML Testing Profile (UML-TP). Earlier work [6,5], presented this
transformation, summarized in Section 4.

In this paper, the transformation from test models to test code is described. This
transformation corresponds to arrow (2) in Figure 3 and Figure 4. With this transforma-
tion the entire cycle is closed, and the framework is completed. As result, an executable
test code is generated from a test model, which in turn proceeds from the design model.
For the transformation in arrow (2), test models represented using UML-TP are the in-
put, and the test code is the output. This test code can be written according to several
testing frameworks (for example JUnit, the unit testing framework for Java). This trans-
formation is done using MOF Model-to-Text [7]. Once the test code is obtained, it can
be compiled and possibly executed. With this executable test code, the system can be
tested (arrow 3 in Figure 4).



160 B.P. Lamancha et al.

4 Test Model Generation

This section explains how the test cases can be derived from sequence diagrams at
functional test level, corresponding to arrow 2 in Figure 4. A UML Sequence diagram
is an Interaction diagram, focused on the message interchange between lifelines. A
sequence diagram describes sequences of events. Events are points on the lifeline, such
as the sending of a message or the reception of a message [15]. A sequence diagram
can be used to show the system behavior for a use case scenario in a design model as
well as to show the behavior of a test case in a test model.

Fig. 5. UML sequence diagram for “Login”

Figure 5 shows the main scenario of the “Login” use case, where a user gives his/her
user name and password and the system checks whether both parameters are valid; if
they are, the system creates a new session for that user. To generate the test case for a
sequence diagram, from a functional testing point of view, the system must be consid-
ered as a black box and the stimulus from the actor to the system must be simulated and
vice versa. Using the UML-TP, actors are represented with TestComponents, whilst the
System is represented with the SUT.

In our proposal, each message between the actor and the SUT must be tested. For
this, the following steps in the test case behavior are generated:

– Obtaining the test data: To execute the test case, the required test data is stored
in the DataPool. The TestComponent asks for the test data using the DataSelector
operation in the DataPool.

– Executing the test case in the SUT: The TestComponent simulates the actor and
stimulates the SUT. The TestComponent calls the SUT functionality to be tested:
i.e., TestComponent calls the message to test in the SUT.



Model-Driven Test Code Generation 161

– Obtaining the test case verdict: The TestComponent is responsible for checking
whether the value returned for the SUT is correct, and uses the Validation Action
for that.

Fig. 6. Test case automated generated using QVT transformation from Login sequence diagram

Figure 6 shows the test case generated to test the functionality of Figure 5.
The TestComponent (Student_TComponent) simulates the Student actor in Figure

5. It obtains the test data necessary from the DataPool, executes the operations of the
system, and finally uses a ValidationAction to check the correct running of the system.
The first message in Figure 6 calls the loginUser(uid,psw):Boolean. To test this, first,
the arguments are taken from the DataPool using a DataSelector for each argument;
the DataPool retrieves the user (uid), password (pwd) and the expected result (result).
The TestComponent executes the loginUser method in the SUT (message labelled 3 in
Figure 6), and the return from the SUT is the real result (logged). Finally, the Validation
Action is responsible for the test case verdict: the test case passes if the expected result
is equal to the actual result; otherwise, it fails.

Figure 7 shows the resulting test architecture derived for this example, which con-
forms to the UML-TP metamodel. Since the UML-TP is a UML Profile, the classes
defined in the test architecture are stereotyped.

The main concepts generated are:

– Login_TestContext: Stereotyped as <<TestContext>>, includes the operation Lo-
gin_test for executing the test.

– Login_DataPool: Stereotyped as <<DataPool>> contains the test data. Operations
in this class are stereotyped as <<DataSelector>> and will be used in the tests to
obtain the test data. Includes the operation DataSelector ds_loginUser.

– Student_TComponent: Stereotyped as <<testComponent>> is responsible for initi-
ating the test case and interchanging events with the SUT to test the functionality.

More information about the semantic of the transformations from design to test models
and about how QVT transformations were developed can be consulted in [6].



162 B.P. Lamancha et al.

Fig. 7. Test architecture generated

Fig. 8. Transformation rules semantic for test architecture (adopted from UML-TP)

5 Transformations from Models to Code

This section presents the main contribution of the paper: transformations from test mod-
els to test code, which corresponds to the arrow labelled 2 in Figure 5.

Our approach applies the idea of MDA development to testing. MDA separates busi-
ness complexity from the implementation details, by defining several software models
at different abstraction levels [16,17].

Once the test cases and the test architecture are obtained, the next step is to obtain
the test code to test the system. Table 8 shows how the test model is transformed to
test code. We use JUnit test code to exemplify the transformation. The transformation



Model-Driven Test Code Generation 163

Fig. 9. Transformation rules semantic for test behavior

takes UML-TP models as input and generates JUnit Code as output. Table 8 shows
the semantic of the transformation rules to generate the test code. The first column
shows the UML-TP artifact, the second shows the JUnit element generated and the
third describes the semantic of the transformation. UML-TP specification describes the
transformations to JUnit for the test architecture. However, transformation rules for
behavioral test cases are defined by us, taking into account the characteristics of the
sequence diagrams generated (see Table 9).

5.1 MOFScript Transformations

Two MofScript transformations have been implemented to perform the transformations
in Table 8 and Table 9. These MofScript transformations are TextContextMapping and
DataPoolMapping. TestContextMapping transformation is responsible for generating
the JUnit code that contains the test cases, and the body of the test cases. This transfor-
mation has a set of rules that can be split into two:

1. rules to create the architecture (the test suite class and the test case methods) and
2. rules to create the body of the test cases (in the next section).

The first kind of rule analyzes the packages, classes and sequence diagrams that repre-
sent test cases and create a specialization of TestSuite class for each class stereotyped
as <<TestContext>>. Parameters and methods in the model are in turn translated into
Java parameters and methods (excepting the operations which are realized by sequence
diagrams stereotyped as <<TestCases>>).

The second kind of rule creates the test cases. They analyze the sequence diagrams
stereotyped as <<TestCase>>. Each time an operation of a test context is carried out, a
new method is created in a test suite (previously generated from the text context). The
method name starts with the word “test” and it has not returned value to the parameters.
Then, the rules generate the body of the method analyzing the sequence of messages
inside the sequence diagram. The transformations performed by this kind of rule are
described in details in the following section. The DataPoolMapping transformation is
responsible for creating the Java classes that represent DataPools for the tests. This



164 B.P. Lamancha et al.

Fig. 10. MofScript rule: MapAsAMethod to transform an iteration into a method

transformation is only composed of rules to create the architecture, because the body of
the methods simply returns a value.

5.2 An Example of MofScrip Rule: uml:Interaction::mapAsAMethod

This section presents an example of a transformation rule using MofScritp. Rule
uml:Interaction::mapAsAMethod of the transformation TextContextMapping is shown
in Table 3.

This rule transforms a UML Interaction stereotyped as “TestCase” into a JUnit test
method that belongs to the resulting test suite class. Basically, the rule creates the header



Model-Driven Test Code Generation 165

of the method and searches sequences of three elements (as shown in Table 3: i) a call
to the DataPool, ii) a call to the SUT and iii) a state invariant, in order to create the body
of the method. Statement 2 creates the method header. Then statement 5 creates a loop
that goes all over the messages, searching the messages for the DataPool, SUT and the
stateinvariant. When a message to the DataPool is found, it searches for the remaining
calls described above.

At this point the execution of two iterations is required. The first iteration creates the
calls to the DataPool and stores the required information for the next iteration. State-
ments 11-16 translate the message to the DataPool into a set of calls to the DataPool,
one for each parameter passed by the reference. This division is required because in
UML a method can have many parameters by reference but in Java the parameters are
passed by value and there is only a return parameter. Another possibility would be to
create a method that returns a vector in order to contain all the parameters by reference,
but for simplicity’s sake, we chose to create several calls. To create these calls, the aux-
iliary function addVariableDeclaration is used. This function creates the declaration of
the variable that will contain the value retuned by the DataPool.

The second iteration creates a call to the SUT. Statements 18-34 deal with the trans-
lation of the message to the SUT into a call to the SUT. These statements can be split
into two parts. The first part is composed of statements 18-23. These statements check
when the call to the SUT has a return value, and in that case create a variable declara-
tion using the addVariableDeclaration function that will contain the value returned by
the SUT. Statements 24-34 compose the second part. These statements create the call
to the SUT using the variables that contain the data obtained from the DataPool.

At the end of the second iteration, an assertion with the information stored in the
state invariant element is generated, which is just after the message element that rep-
resents the call to the SUT. Statements 35-43 deal with translating the state invariant
elements into JUnit assertions. The statements simply create an assertion and compare
the expected result obtained from the DataPool with the result obtained from the SUT.

5.3 JUnit Code Generated

Once MofScript transformations are executed, the JUnit test case is obtained. Figure 11
shows the JUnit test code generated.

This test code could be compiled and executed. After this compilation, JUnit shows
its execution results (Figure 12).

5.4 Model-Driven Testing Framework implementation

The implementation of the framework requires the selection of a modeling tool from
those on the market, as well as the identification of the tools to perform transforma-
tions between the models and from model to code. Our selected tool was IBM Rational
Software Architect (IRSA). This tool graphically represents the sequence diagrams and
exports them to UML2 through XMI.

The Eclipse IDE makes it possible to use modeling tools in an integrated way, us-
ing extensions in the form of plug-ins. Eclipse plug-ins, which are used to perform



166 B.P. Lamancha et al.

Fig. 11. JUnit test code generated

Fig. 12. JUnit test case execution

modeling tasks, exist. The Eclipse Modeling Framework (EMF) plugin allows the de-
velopment of metamodels and models: from a model specification described in XMI,
it provides tools and runtime support to produce a set of Java classes for the model,
along with a set of adapter classes that enable viewing and command-based editing of
the model. UML2 is an EMF-based implementation of the UML 2.0 OMG metamodel
for the Eclipse platform. UML2 Tools is a Graphical Modeling Framework editor for
manipulating UML models.

The transformation between models (arrow 1 in Figure 4) uses QVT language, which
requires the tool that implements the standard. medini QVT is a plugin for eclipse that



Model-Driven Test Code Generation 167

implements OMG’s QVT Relations specification in a QVT engine. We used it to de-
velop and execute the QVT transformations [6]. The model-to-text transformations have
been defined with MofScript language, and it thus requires a tool that supports this lan-
guage. The MOFScript tool is a plugin for Eclipse that makes it possible to develop
transformations with the language MofScript. This tool has been used to develop and
perform the transformations presented in this paper. It has a code editor to define the
transformations, which brings out the reserved word of the language and has autocom-
pletion features. This tool also has a MofScript checker and an execution engine to
check the syntax of the defined transformations and execute them.

6 Related Work

Many proposals for model-based testing exist [2,3], but few of them focus on automated
test model generation using model transformations.

Dai [13] describes a series of ideas and concepts to derive UML-TP models from
UML models, which are the basis for a future model-based testing methodology. Test
models can be transformed either directly to test code or to a platform specific test de-
sign model (PST). After each transformation step, the test design model can be refined
and enriched with specific test properties. However, to the best of our knowledge, this
interesting proposal has no practical implementation for any tool.

Baker et al. [15] define test models using UML-TP. Transformations are done man-
ually instead of using a transformation language.

Naslavsky et al. [18] use model transformation traceability techniques to create rela-
tionships among model-based testing artifacts during the test generation process. They
adapt a model-based control flow model, which they use to generate test cases from
sequence diagrams. They adapt a test hierarchy model and use it to describe a hierarchy
of test support creation and persistence of relationships among these models. Although
they use a sequence diagram (as does this proposal) to derive the test cases, they do not
use it to describe test case behavior.

Javed et al. [19] generate unit test cases based on sequence diagrams. The sequence
diagram is automatically transformed into a unit test case model, using a prototype tool
based on the Tefkat transformation tool and MOFScript for model transformation. This
work is closed to ours, but they don’t uses the UML-TP. We generate the unit test case in
two steps and they in only one. We think that use a intermediate model using UML-TP
as PIT is more appropiate to follow a MDE approach.

7 Conclusions

We have presented our framework for automated model-based testing using standard-
ized metamodels such as UML and UML-TP. In this paper the complete transformations
cycle defined in the framework is implemented, obtaining executable test cases proce-
dures in JUnit code. To obtain complete test cases we also need to define the way in that
test data are generated: at this moment, both the test data and the expected result (which
are required for the test oracle) are manually stored in the datapool. Our ongoing work
uses UML State Machines to define the test oracle. Future work includes implementing



168 B.P. Lamancha et al.

MOFScript transformations to generate NUnit test cases, the application of the entire
framework in an industrial project and, as we have pointed out, to take advantage of
state machine annotations to automatically include the oracle in the test cases.

Acknowledgements. This research was financed by the projects: DIMITRI (Ministe-
rio de Ciencia e Innovación, grant TRA2009_0131) and the project PEGASO/MAGO
(TIN2009-13718-C02-01) from MICINN and FEDER. Pérez has a doctoral grant from
JCCM, Orden de 13-11-2008. Reales has a doctoral grant from the “Ministerio de Ed-
ucación”, Real Decreto 63/2006.

References

1. Mens, T., Van Corp, P.: A taxonomy of model transformation. Electronic Notes in Theoretical
Computer Sciences 152, 125–142 (2006)

2. Prasanna, M., Sivanandam, S., Venkatesan, R., Sundarrajan, R.: A survey on automatic test
case generation. Academic Open Internet Journal 15, 1–5 (2005)

3. Dias Neto, A., Subramanyan, R., Vieira, M., Travassos, G.: A survey on model-based testing
approaches: A systematic review, pp. 31–36 (2007)

4. Bertolino, A.: Software testing research: Achievements, challenges, dreams. In: Internation
Conference on Software Engineering, pp. 85–103. IEEE Computer Society (2007)

5. Perez Lamancha, B., Polo, M., Piattini, M.: An automated model-driven testing framework
for model-driven development and software product lines, pp. 112–121 (2010)

6. Perez Lamancha, B., Reales Mateo, P., Garcia, I., Polo Usaola, M., Piattini, M.: Automated
model-based testing using the uml testing profile and qvt. In: Workshop on Model-Driven
Engineering, Verification and Validation, pp. 1–10. ACM, Denver (2009)

7. OMG: Mof model to text transformation language. Technical Report Formal/2008-01-16,
OMG (2008)

8. Miller, J., Mukerji, J.: Mda guide version 1.0.1. Technical Report OMG/2003-06-01 (2003)
9. Bezivin, J.: On the unification power of models. Software and Systems Modeling 4, 171–188

(2005)
10. OMG: Uml testing profile version 1.0. Technical Report formal/05-07-07 (2005)
11. OMG: Mof query/view/transformation specification. Technical report (2007)
12. Beck, K.: Kent Beck’s guide to better Smalltalk: a sorted collection. Cambridge University

Press (1999)
13. Dai, Z.: Model-driven testing with uml 2.0. In: Workshop on Model Driven Architecture with

an emphasis on Methodologies and Transformations, EWMDA (2004)
14. Harmon, P.: The omg’s model driven architecture and bpm. Newsletter of Business Process

Trends (2004)
15. Baker, P., Dai, Z., Grabowski, J., Schieferdecker, I., Haugen, O., Williams, C.: Model-Driven

Testing: Using the UML Testing Profile. Springer, Heidelberg (2007)
16. Kleppe, A., Warmer, J., Bast, W.: MDA Explained; The Model Driven Architecture: Practice

and Promise. Addison-Wesley, Reading (2003)
17. Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven Archi-

tecture. Addison Wesley (2004)
18. Naslavsky, L., Ziv, H., Richardson, D.: Towawrds traceability of model-based testing ar-

tifacts. In: Workshop on Advances in Model-based Testing, pp. 105–114. ACM, London
(2007)

19. Javed, A., Strooper, P., Watson, G.: Automated generation of test cases using model-driven
architecture. In: International Workshop on Automation of Software Test (2007)



L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 169–184, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Comparing Goal-Oriented Approaches to Model 
Requirements for CSCW 

Miguel A. Teruel, Elena Navarro, Víctor López-Jaquero, Francisco Montero, 
and Pascual González 

LoUISE Research Group, I3A, University of Castilla-La Mancha, Castilla-La Mancha, Spain 
{miguel,enavarro,victor,fmontero,pgonzalez}@dsi.uclm.es 

Abstract. Collaborative systems are becoming increasingly important, because 
they enable several users to work together and carry out collaboration, 
communication and coordination tasks. We have to highlight that, to perform 
these tasks, the users have to be aware of other users’ actions, usually by means 
of a set of awareness techniques. Usually, the specification of this set of 
techniques has to be done by means of Non-Functional Requirements, related to 
quality factors such as ease of use or helpfulness. Therefore, choosing a 
technique to model the requirements of this kind of systems is an important 
issue. In previous works, we analyzed different Requirements Engineering (RE) 
techniques, and we concluded that Goal-Oriented is the most promising one for 
modeling collaborative systems. Based on these conclusions, in this paper we 
compare three Goal-Oriented approaches, namely NFR framework, i* and 
KAOS, in order to determine which one is the most suitable to model CSCW 
stakeholder requirements. 

Keywords: Goal-oriented, KAOS, NFR, i*, Collaborative systems, CSCW, 
Awareness, Requirements engineering, Non-functional requirements, Quality. 

1 Introduction 

A collaborative system (a.k.a. Computer Supported Cooperative Work system, CSCW 
system) is software whose users can perform collaboration, communication and 
coordination tasks. Unlike conventional single-user systems, a CSCW system has to 
be specified by using a special set of requirements of a non-functional nature. These 
requirements usually result from the users' need of being aware of the presence and 
activity of other remote or local users with whom they perform the above mentioned 
tasks, that is, the Workspace Awareness (WA) [1]. 

Workspace Awareness is “the up-to-the-moment understanding of another 
person’s interaction within a shared workspace. Workspace awareness involves 
knowledge about where others are working, what they are doing now, and what they 
are going to do next” [1]. Gutwin et al. presented a conceptual framework to establish 
what information makes up workspace awareness. This information is obtained by 
answering the questions “who, what and, where” (see Table 1). That is, when we 
work with others users in a physical shared space, we know who we are working with, 
what they are doing, where they are working, when various events happen, and how 
those events happen. 



170 M.A. Teruel et al. 

Table 1. Elements of Workspace Awareness 

Category Element Specific questions 
Who Presence 

Identity 
Authorship 

Is anyone in the workspace? 
Who is participating? Who is that? 
Who is doing that? 

What Action 
Intention 
Artefact 

What are they doing? 
What goal is that action part of? 
What object are they working on? 

Where Location 
Gaze 
View 
Reach 

Where are they working? 
Where are they looking? 
Where can they see? 
Where can they reach? 

 
In this context, a proper specification of the system, identifying clearly the 

requirements of the system-to-be, specially the awareness requirements, is one of the 
first steps. The awareness requirements can be considered non-functional 
requirements (NFR) or extra-functional requirements (EFR), because they are usually 
constraints regarding quality (e.g. functionality, usability) [2]. However, the 
specification of this kind of requirements is not a trivial issue, because of the high 
number and diversity of requirements they are related to, and their high impact in 
terms of the final architecture of the system. Therefore, the proper selection of the 
requirement specification technique becomes a challenging and important decision. 

In a previous work [3] it was analyzed which technique, Goal-Oriented (GO), Use 
Cases or Viewpoints is more appropriate to specify the requirements of collaborative 
systems and it was determined that GO provides more facilities for this kind of systems. 
In this paper, we study the applicability of three Goal Oriented (GO) approaches (NFR 
Framework [4], i* Framework [5] and KAOS Methodology [6]) for the specification of 
collaborative systems, paying special attention to the awareness requirements. In order to 
carry out this study, the awareness requirements of a real system (Google Docs [7]) were 
specified. After modeling the system, an empirical analysis was conducted in order to 
compare these different techniques goal-oriented techniques. 

This paper is structured as follows. After this introduction, in Section 2, the 
selection of GO techniques for modeling this kind of systems is justified. In Section 3, 
three GO approaches applicable to awareness requirements for collaborative systems 
are analyzed. In Section 4, an example of a widely known collaborative system is 
presented: Google Docs. In Section 5, an empirical evaluation of the previous 
techniques for modeling awareness requirements in Google Docs is presented. 
Finally, some conclusions and future works round up this work. 

2 Related Works 

This paper is a follow-up of the work presented in [3], where we analyzed different 
Requirement Engineering techniques applied to collaborative systems. The main 
result of this evaluation was that the most appropriate technique for this kind of 
systems is Goal Oriented (GO). Nevertheless, in [3] the evaluation did not focus on a 
specific GO proposal. 



 Comparing Goal-Oriented Approaches to Model Requirements for CSCW 171 

In the context of Requirements Engineering, the GO approach [6] has proven its 
usefulness for eliciting and defining requirements. More traditional techniques, such 
as Use Cases [8], only focus on establishing the features (i.e. activities and entities) 
that the system-to-be should support. Nevertheless, GO proposals focus on why 
systems are being constructed by providing the motivation and rationale to justify the 
software requirements specification. They are not only useful for analyzing goals, but 
also for elaborating and refining them. 

A GO model can be specified in a variety of formats, by using a more or less 
formally defined notation. These notations can be informal, semi-informal or formal 
approaches. Informal approaches generally use natural language to specify goals; 
semi-formal use mostly box and arrow diagrams; finally, in formal approaches goals 
are expressed as logical assertions in some formal specification language [9]. No 
matter its formality, a goal model is built as a directed graph by means of a refinement 
of the systems goals. This refinement lasts until goals have enough granularity and 
detail so as to be assigned to an agent (software or environment) so that they are 
verifiable within the system-to-be. This refinement process is performed by using 
AND/OR/XOR refinement relationships. 

There are a wide number of proposals ranging from elicitation to validation 
activities in the RE process (see [9] for an exhaustive survey). However, some 
concepts are common to all of them: 

• Goal describes why a system is being developed, or has been developed, from the 
point of view of the business, organization or the system itself. In order to specify it, 
both functional goals, i.e., expected services of the system, and softgoals related to the 
quality of service, constraints on the design, etc should be determined. 
• Agent is any active component, either from the system itself or from the 
environment, whose cooperation is needed to define the operationalization of a goal, 
that is, how the goal is going to be provided by the system-to-be. This 
operationalization of the goals is exploited to maintain the traceability throughout the 
process of software development. 
• Refinement Relationships: AND/OR/XOR relationships allow the construction of 
the goal model as a directed graph. These relationships are applied by means of a 
refinement process (from generic goals towards sub-goals) until they have enough 
granularity to be assigned to a specific operationalization. 

It must be pointed out that one of the main advantages exhibited by this approach is 
that it introduces mechanisms for reasoning about the specification. It facilitates the 
process of evaluating designs or alternative specifications of the system-to-be [3,10]. 
In this work, three different GO proposals are used to model the requirements of a 
collaborative system: Google Docs. This system will allow us to evaluate which 
proposal is the most useful to describe the requirements of the so called workspace 
awareness. 

3 Goal-Oriented Proposals: An Analytical Background 

This Section presents briefly the GO proposals, NFR, i* and KAOS, analyzed to 
determine which one is the most appropriate for specifying collaborative systems. 



172 M.A. Teruel et al. 

They are used in Section 5 to describe the running example in order to perform the 
evaluation. 

3.1 NFR Framework 

This GO proposal was proposed by [4] and aims at dealing with Non-Functional 
Requirements (NFRs), also known as Quality Requirements. Unlike Functional 
Requirements, NFRs specify constraints for the system, as well as particular notions 
of quality factors a system should meet, such as, accuracy, usability, safety, 
performance, reliability or security. Hence, it can be stated that while functional 
requirements describe “what” the system will do, NFRs constraint “how” the system 
will accomplish the “what”. As a consequence, NFRs are always linked to a 
Functional Requirement. 

To elicit NFRs, the authors propose the use of a strategy anchored in Language 
Extended Lexicon (LEL) [11]. LEL is based on a controlled vocabulary system made 
up of symbols being each one of them an entry expressed in terms of notions and 
behavioural responses. A notion records the meaning of a symbol and its fundamental 
relationships to other entries. A behavioural response specifies the connotation of a 
symbol in the universe of discourse. Each symbol may also be represented by one or 
more aliases and will be classified as a subject, a verb or an object. Once the Lexicon 
is finished, it is enriched with NFRs by using a knowledge base, presented as 
catalogues, to guide the analyst to select the likely needed NFRs and their related 
operationalizations. 

 

 

Fig. 1. Elements of the NFR Framework model 

According to the NFR Framework, NFRs goals can conflict among them and must 
be represented as softgoals to be satisfied. Each softgoal is decomposed into sub-goals 
represented by a graph structure inspired by the And/Or trees used in problem solving. 
This decomposition is done by using contribution links. Contribution links can be 
categorized as either or contributions or and contributions. Contribution links allow 
one to decompose NFRs to the point that one can state that the operationalizations of 
the related NFR have been met. Operationalizations are decisions about the system to 
meet NFRs. The elements of the NFR GO model can be seen in Fig. 1. 

3.2 i* Framework 

The i* Framework [5] consists in an approach for dealing with requirements in 
various phases of the software development process (Early and Late Requirements 
Analysis, Architectural and Detailed Design). 

During early requirements analysis, the requirements engineer gathers and 
analyzes the intentions of stakeholders. These are modeled as goals which, through 
some form of a goal-oriented analysis, eventually lead to the functional and non-
functional requirements of the system-to-be. In i*, early requirements are assumed to 



 Comparing Goal-Oriented Approaches to Model Requirements for CSCW 173 

involve social actors who depend on each other for goals to be achieved, tasks to be 
performed, and resources to be furnished. The i* framework includes the strategic 
dependency model for describing the network of relationships among actors, as well 
as the strategic rationale model for describing and supporting the reasoning that each 
actor goes through concerning its relationships with other actors. The model elements 
can be seen in Fig. 2. 

 

 

Fig. 2. Elements of the i* Framework model 

Late Requirements Analysis results in a requirements specification which 
describes all functional and non-functional requirements for the system-to-be. In 
Tropos [12], a framework for requirements-driven software development, the 
information system is represented as one or more actors who participate in a strategic 
dependency model, along with other actors from the system’s operational 
environment. In other words, the system comes into the picture as one or more actors 
who contribute to the fulfillment of stakeholder’s goals. 

During architectural design we have to select among alternative architectural 
styles by using as criteria the desired qualities identified earlier in the process. The 
analysis involves refining these qualities, represented as softgoals, to sub-goals that 
are more specific and more precise and then evaluating alternative architectural styles 
against them. 

The detailed design phase is intended to introduce additional details for each 
architectural component of a system. To support this phase, the authors propose to 
adopt existing agent communication languages and message transportation 
mechanisms among other concepts and tools. 

3.3 KAOS Methodology 

The KAOS modelling language is part of the KAOS framework [6] for eliciting, 
specifying, and analysing goals, requirements, scenarios, and responsibility 
assignments. A KAOS model entails six complementary views or sub-models (goal, 
obstacle, object, agent, operation and behaviour model) all of them related via 
traceability links [13]. 

 

Fig. 3. Basic constructs of the KAOS framework 



174 M.A. Teruel et al. 

Fig. 3 depicts the basic constructors for documenting agents’ responsibilities for 
goals provided by the KAOS framework. KAOS has the following elements: 

• Goal: A goal describes a set of admissible system behaviors. Goals should be 
defined in a clear-cut manner so that one can verify whether the system satisfies a 
goal or not. 

• Softgoal: In KAOS, softgoals are used to document preferences among alternative 
system behaviors. In a similar way to i*, there is no clear-cut criterion for verifying 
the satisfaction of a softgoal. Softgoals are hence expected to be satisfied within 
acceptable limits. 

• While i* focuses primarily on agents within organizational structures, the agents 
defined in KAOS primarily relate to users and components of software-intensive 
systems. Therefore, an agent is defined as an active system component which has a 
specific role for satisfying a goal. An agent can be a human agent, a device or a 
software component. 

Dependencies between goals are represented in the KAOS goal model by using 
AND/OR-decompositions and conflict links. In KAOS, goals can be assigned to 
agents by means of responsibility assignment links. We briefly explain these goal 
dependencies: 

• AND/OR-decomposition: An AND-OR decomposition link relates a goal to a set 
of sub-goals, documenting that the goal is satisfied if all, or at least one sub-goal, is 
satisfied. 

• Potential conflict: This link documents that satisfying one goal may prevent the 
satisfaction of other goal under certain conditions. 

• Responsibility assignment: This link between a goal and an agent means that this 
agent is responsible for satisfying the goal. 

4 Running Example 

As running example to assess how these GO approaches perform for collaborative 
system, Google Docs [7] has been used from now on in this paper. Google Docs is a 
free, Web-based word processor, spreadsheet, presentation and form editor whose 
data storage service is provided by Google. Google Docs serves as a collaborative 
tool for editing documents so that they can be shared, opened, and edited by multiple 
users at the same time. This system was selected for our analysis because it is widely-
known and it features a clear collaborative focus as its main goal. 

As a starting point for our evaluation of the requirements techniques, we identified 
those design solutions for awareness requirements in Google Docs from the set of 
techniques proposed by Gutwin [14]. These techniques, which are commented in the 
following Subsections, can be found also as patterns for user collaboration in [15]. 

4.1 Remote Cursors 

This technique, based in Gutwin’s telepointers [14], allows us to be aware of the other 
user’s cursor position and whether they have selected a text fragment or not (see  



 Comparing Goal-O

Fig. 4). Thus, when a rem
Close to the cursor the user
if the user selects some text

4.2 Participant List and

Google Docs does not imp
shows a list of participants
Fig. 4). By using this list, 
which can be shown or hid
can notice the color assigne
 

Fig. 4. Remote cursor and rem
the participant list (b) 

4.3 Revision History 

The techniques identified b
the past [14] are used to ma
They have been implement
the system to keep track of 
documents being edited (se
to review the changes mad
made by each user are den
made is a deletion, then the
can be activated or deactiv
detail, depending on the am
these two levels of detail at 

Fig. 5

Oriented Approaches to Model Requirements for CSCW 

mote user is writing other users can notice it in real-tim
r’s nickname appears overlapped with the text. In additi
t, it is highlighted by marking it with the user's color. 

d Chat 

plement Gutwin’s avatar [14] technique itself. Instea
s that are editing simultaneously the same document (
users can communicate with each other by using a ch

den at any time. In addition, by using this chat view, us
ed to each one of their collaborators. 

motely selected text fragment (a) and two users chatting thro

by Gutwin expressing information about authorship / ab
ake available to the users the history of changes carried o
ted by Google Docs by using a revision history. It allo

f all the changes made by the users to the different type
ee Fig. 5). This revision history provides a mean for us
de to the documents. In this revision history the chan
noted by using different colors. In addition, if the cha
e text will be also in strikethrough style. This functiona
vated at anytime. This revision history has two levels

mount of shown information. The user may switch betw
anytime. 

 

. Revision story showing text elimination 

175 

me. 
ion, 

d it 
(see 
hat, 
sers 

 

ough 

bout 
out. 
ows 
s of 
sers 

nges 
ange 
ality 
s of 

ween 



176 M.A. Teruel et al. 

5 Empirical Evaluation 

To evaluate the different GO approaches mentioned in Section 3, each one of the 
above mentioned awareness features is modeled in the following by using the 
different techniques. First, we have to distinguish what Google Docs characteristics 
can be modeled by using functional or non-functional requirements. The telepointer 
and avatar techniques result in NFRs because they contribute to increase some 
operability, such as ease of use and helpfulness. Nevertheless, the third characteristic 
(Expressing information about authorship / about the past), despite contributing 
positively to the above mentioned quality features, it should be considered functional, 
due to the historical information storage and the rollback function. In addition, we 
have also associated the awareness functionalities both with the three characteristics 
of the collaborative systems (collaboration, communication and coordination) and, 
with the characteristics of the ISO/IEC 25010 [16]. This standard has been used to 
organize properly the specification of the system following the recommendations of 
Moreira et al. [17]. Next, the evaluation is presented following the chronological 
order it was carried out. First, in Section 5.1 it is described how the case study was 
modeled by applying the three approaches. Second, in Section 5.2, the results of the 
evaluation are presented. 

5.1 Modeling the Running Example 

After analyzing the characteristics of Google docs described in Section 4, and 
according to Gutwin's framework for collaborative systems, we have specified the 
systems’ FRs (Table 2 illustrates a partial description of the system). Next, as can be 
observed in Table 3, each awareness functionality feature detected in the system has 
been related to some quality factors in the SQuaRE standard, in order to identify the 
NFRs of Google Docs. For the sake of clarity, and understanding of the evaluation, 
only some requirements of Google Docs are described. 

Table 2. Relation between awareness elements and FRs 

Category Element Functional Requirement 
Who Presence Know who is participating 

What 
Where 

Action 
Location 

See other user’s actions 

Who 
When 

Authorship 
Event history 

Keep the changes’ authorship 

Table 3. Relation between quality factors and awareness functionalities 

Quality Factor Awareness Functionality 
Functional Suitability Revision History, Telepointers, Participant List 

Reliability Revision History 

Performance Efficiency Telepointers 

Operability Telepointers, Participant List 

Security Revision History 



 Comparing Goal-Oriented Approaches to Model Requirements for CSCW 177 

NFR Framework. In this approach, the SQuaRE quality factors have been 
modelled by using softgoals. Nevertheless, the SQuaRE standard was used instead of 
the NFR collections proposed by [4] definition to create the NFR hierarchy. Thus, it 
can be observed the impact that the quality sub-characteristic has on main 
characteristic by means of contribution links. In the same way, each characteristic 
contributes to achieve the software product quality (see Fig.8 ). 

The problem here is that we are not able to represent the Functional Requirements 
(because this model aims only at non-functional ones), therefore the three general 
tasks of collaborative systems (collaboration, communication and coordination) 
cannot be defined. This lack of expressiveness led us to have an incomplete 
representation of system's requirements, so that we have to use additional models or 
extend this framework. 

 
i* Framework. In order to carry out the specification of Google Docs, the i* notation 
was used. Using this notation, we specified each one of the SQuaRE quality factors 
previously identified in Table 3, as root softgoals of the system as shown in Fig. 9. These 
softgoals were refined into other softgoals by selecting those SQuaRE quality factors 
more appropriate for the system. Each one of the awareness functionalities were specified 
as resources provided by the system that contribute positively to satisfy some of the 
softgoals, that is, some quality factors. However, it can be noticed that also some of them 
contribute negatively because the constraints they impose. This is the case of remote 
cursors, because they increase the resource utilization. Moreover, the ease of use 
depends, among other factors, on the user’s experience with this kind of systems. In 
addition, the three FR identified in Table 3 have been specified as goals of the system 
that have dependency relationships with the resources. It has been also specified how the 
awareness techniques contribute positively to the functional aspects of collaborative 
systems specified as tasks in the goal model. 

 

Fig. 6. NFR Goal-Oriented model 

KAOS Methodology. To model the system using this methodology, and unlike i*, 
the model was decomposed in three sub-models as can be seen in Fig. 6. Hence, the 
individual models represent (a) awareness goals, (b) collaborative systems goals and 
(c) software quality goals. 

Quality
Criteria

Quality
Factor

Operationalization



178 M.A. Teruel et al. 

F

Fig. 8

Fig. 7. i* Strategic Rationale Model 

8. KAOS Goal and Responsibility Model 

Quality
Criteria

Quality
Factor

Goals, Task
and resourc  

 

ks
es



 Comparing Goal-Oriented Approaches to Model Requirements for CSCW 179 

These diagrams (Fig. 6) show three main goals and its decomposition in its sub-
goals. The implemented awareness techniques have been represented here by using 
agents, because this element is used to represent responsibility assignment when using 
KAOS. 

In addition, Fig. 6c illustrates a potential conflict between two softgoals related to 
two quality sub-factors: avoid resource utilization and achieve attractiveness. 
Usually, a very attractive user interface will cause higher resource utilization. This 
conflict is denoted in the graph by using a red ray. 

5.2 Evaluating GO Approaches 

Using as input the different specifications of the system, the evaluation of the 
different RE techniques was carried out by using DESMET [18]. It is a set of 
techniques applicable to evaluate both Software Engineering methods and tools. We 
have used the method based on a qualitative case study that describes a feature-based 
evaluation. Following the guidelines of this technique, an initial list of features was 
prepared that a GO approach for collaborative systems should provide (see Table 4). 
As can be observed, some of those features are directly related to the specification of 
NFRs. 

Table 4. List of Features for approaches evaluation 

Feature Description 
FR and NFR Representation The model should be able to represent graphically FR and NFRs and 

differentiate them 

Collaborative Systems 
Characteristics 

The model has to represent the collaboration, communication and 
coordination characteristics 

Awareness Representation The model should allow one to represent the awareness characteristics 
of the system 

Quality Factors 
Representation 

The model must represent the SQuaRE characteristics and sub-
characteristics 

Importance of Requirements The model should represent the importance and preference between 
requirements 

Hierarchical Representation The relation between the model elements should be hierarchical 

Model Complexity The model complexity should not be too high 

Quantitative Model The model must allow one to quantify the relations between 
represented elements 

Traceability The represented requirements should be traceable throughout the 
software development process 

 
Once Table 4 is filled in, DESMET establishes that an importance degree should 

be assigned to each identified feature. Specifically, the degrees to apply are 
Mandatory (M), Highly Desirable (HD), Desirable (D) and Nice to have (N) 

By using these degrees, Table 5 was filled in. As can be noticed, the most 
important features to be supported are both the NFR representation and the 
traceability required by collaborative systems. 

 



180 M.A. Teruel et al. 

Table 5. Importance of the features 

Feature Importance 
FR and NFR Representation (RR) M 

Collaborative Systems Characteristics (CSC) M 

Awareness Representation (AR) M 

Quality Factors Representation (QFR) HD 

Importance of Requirements (IR) HD 

Traceability (T) HD 

Quantitative Model (QM) D 

Hierarchical Representation (HR) D 

Model Complexity (MC) N 

 
Next, according to DESMET, a scale to evaluate each one of the described 

features should be provided. The scale proposed by DESMET (see Table 6) was 
applied to evaluate each feature according to the following factors: Conformance 
Acceptability Threshold (CAT) and Conformance score obtained for candidate 
method (CSO) 

Table 6. Judgement scale to assess support for a feature 

Generic 
scale point 

Definition of Scale point Scale Point 
Mapping 

Makes 
things worse 

Cause Confusion. The way the feature is represented makes 
difficult its modelling and/or encourage its incorrect use 

-1 

No support Fails to recognise it. The approach are not able to model a certain 
feature 

0 

Little 
support 

The feature is supported indirectly, for example by the use of other 
model/approach in a non-standard combination 

1 

Some 
support 

The feature is explicitly in the feature list of the model. However, 
some aspects of feature use are not catered for. 

2 

Strong 
support 

The feature is explicitly in the feature list of the model. All aspects 
of the feature are covered but its use depends on the expertise of the 
user 

3 

Very strong 
support 

The feature is explicitly in the feature list of the model. All aspects 
of the feature are covered and the approach provides a guide to 
assist the user 

4 

Full support The feature appears explicitly in the feature list of the model. All its 
aspects are covered and the approach provides a methodology to 
assist the user 

5 

 
Once each feature was evaluated, the difference between CAT and CSO factors 

was computed as shown in the column Difference (Dif) in Table 7 
Next, we should highlight that a variation of the DESMET method was used. The 

importance (Imp) of each feature has been weighted in a scale from 1 to 4 (Nice to 
have – 1, Desirable – 2, Highly Desirable – 3, Mandatory – 4).  The importance was 
used to compute the final score of each feature by multiplying the Importance by the 



 Comparing Goal-Oriented Approaches to Model Requirements for CSCW 181 

Difference. This computation is shown in the column Score (Sco) in Table 7. Lastly, 
the final score of each technique (Total) was obtained by adding the scores of all the 
features. This framework has been used to evaluate all the different GO approaches 
studied. 

Fig. 7 shows graphically the scores obtained by each one of the GO approaches. 
As can be observed, the i* approach is the only one that has a positive score. Despite 
this positive score, it has been negatively evaluated for the Quantitative Model 
feature, since i* only provides a partial support for quantifying the relations among 
requirements when using contribution links. The i* approach also fails in representing 
the requirements importance, giving no support to determine which requirements are 
more important than others. Nevertheless, the other two GO approaches also share 
this lack of representation of the importance of each requirement. KAOS also fails in 
the same features than i* but, unlike this approach, KAOS obtains a lower (or the 
same) score in almost all features except for the Hierarchical Representation feature, 
thanks to its tree-based representation. Finally, the NFR framework is the less suitable 
approach, obtaining a very low score, because of both the lack of expressiveness to 
specify FRs and its lack of adaptability to represent Collaborative Systems 
Characteristics. 

Table 7. Results of approaches evaluation 

Approach NFR Framework i* KAOS 
Feature Imp CAT CSO Dif Sco Imp CAT CSO Dif Sco Imp CAT CSO Dif Sco 
RR 4 5 3 -2 -8 4 5 5 0 0 4 5 5 0 0 
CSC 4 4 1 -3 -12 4 4 5 1 4 4 4 4 0 0 
AR 4 4 4 0 0 4 4 5 1 4 4 4 4 0 0 
QFR 3 3 5 2 6 3 3 5 2 6 3 3 4 1 3 
IR 3 3 0 -3 -9 3 3 0 -3 -9 3 3 0 -3 -9 
T 3 3 3 0 0 3 3 3 0 0 3 3 4 1 3 
QM 2 2 1 -1 -2 2 2 1 -1 -2 2 2 0 -2 -4 
HR 2 2 3 1 2 2 2 3 1 2 2 2 4 2 4 
MC 1 1 3 2 2 1 1 1 0 0 1 1 2 1 1 
Total     -21     5     -2 

 

 

Fig. 9. Empirical analysis results 

In addition, as DESMET suggests, we have performed a comparative of the 
percentage of each feature satisfied by each analyzed GO approach. Fig. 8 illustrates 
that the NFR approach only exceeds its competitors in the Model Complexity feature, 

-25

-20

-15

-10

-5

0

5

10
NFR i* KAOS



182 M.A. Teruel et al. 

due to the simplicity their models have. Similarly, KAOS supersedes i* in this feature 
because i* has more modeling elements for the sake of expressiveness. In addition, 
the evaluation of Hierarchical Representation and Traceability features for KAOS is 
better than for i* because i* models are usually defined following a network structure 
and do not provide a sophisticated support for traceability. Other meaningful fact is 
that no approach is able to represent the importance of the requirements, something 
that should be considered in future works. Another significant result is that, despite i* 
and KAOS have the same score for the feature FR and NFR Representation, i* 
supersedes KAOS in the most important features (mandatory and high desirable ones) 
except for the Traceability feature. Nevertheless, KAOS obtains a better score in the 
less valuated features, like Hierarchical Representation and Model Complexity. 

 

 

Fig. 10. Results relative to distinct features 

6 Conclusions and Further Works 

Collaborative systems are highly demanding in terms of NFRs. Therefore, the 
selection of a RE technique with proper support for their successful specification is a 
must. In this sense, the exploitation of the GO approach emerges as the most 
appropriate proposal [3]. However, up-to-date several RE techniques have been 
proposed that follow this approach. In order to select the most suitable one, in this 
paper the results of an empirical experiment of several GO techniques considering the 
special needs of CSCW systems have been conducted. 

After this empirical experiment, we can conclude that the analyzed GO 
approaches are not fully appropriate to model collaborative system characteristics and 
its relationships with awareness and quality requirements. Among the analyzed GO 
techniques, the i* approach is the only one that has a positive score for the analyzed 
features related to CSCW systems. In addition, i* is the only one that provides 
(partial) support for quantifying the relations among requirements when using 
contribution links. However, this technique also exhibits some shortcomings, such as 
the lack of a hierarchical representation or support for specifying the importance of 
the requirements. But perhaps, the most significant shortcoming is that the 
comprehensibility of the awareness requirements is not appropriate. For instance, i* 

0%

50%

100%

150%

200%

250%

300%

350%

FR and NFR 
Representation

Collaborative 
Systems 

Characteristics

Awareness 
Representation

Quality Factors 
Representation

Importance of 
Requirements

Traceability Quantitative 
Model

Hierarchical 
Representation

Model 
Complexity

NFR

i*

KAOS



 Comparing Goal-Oriented Approaches to Model Requirements for CSCW 183 

does not provide support to specify when a task is carried out by several roles, what is 
very common in a CSCW system.  

These conclusions, along with the results shown in [3], support our initial 
hypothesis: current Requirement Engineering techniques should be enriched to 
address the issues identified during this study regarding CSCW systems. As was 
shown in this study, i* is the most promising technique to be used as the foundation 
for this improvement.  This constitutes one of our ongoing and challenging works: to 
adapt/extend i*for this kind of systems [19,20]. 

In addition, a future work is the definition of techniques that support that the 
defined models can be used for validation purposes. That is, its conformance with the 
SQuaRE Quality in Use factors (usability, flexibility and safety) should be evaluable 
in an easy and intuitive way, once the system is fully developed. 

. 
Acknowledgements. This work has been partially supported by a grant (DESACO, 
PEII09-0054-9581) from the Junta de Comunidades de Castilla-La Mancha and also 
by a grant (TIN2008-06596-C02-01) from the Spanish Government. 

References 

1. Gutwin, C., Greenberg, S.: A Descriptive Framework of Workspace Awareness for Real-
Time Groupware. Computer Supported Coop. Work 11, 411–446 (2002) 

2. Hochmuller, H.: Towards the Proper Integration of Extra-Functional Requirements. 
Australasian Journal of Information Systems 6, 98–117 (1999) 

3. Teruel, M.A., Navarro, E., Jaquero, V.L., Montero, F., González, P.: An Empirical 
Evaluation of Requirement Engineering Techniques for Collaborative Systems. In: 15th 
Int. Conf. on Evaluation and Assessment in Software Engineering, Durham, UK (2011) 

4. Cysneiros, L.M., Yu, E.: Non-Functional Requirements Elicitation (Perspectives on 
Software Requirements). Springer, Heidelberg (2003) 

5. Castro, J., Kolp, M., Mylopoulos, J.: A requirements-driven development methodology. In: 
Dittrich, K.R., Geppert, A., Norrie, M. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 108–123. 
Springer, Heidelberg (2001) 

6. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: Fifth 
IEEE International Symposium on Requirements Engineering, pp. 249–263 (2001) 

7. Google, “Google Docs” (2001), http://docs.google.com 
8. Cockburn, A.: Writting Effective Use Cases. Addison-Wesley (2000) 
9. Kavakli, E., Loucopoulos, P.: Goal Modeling in Requirements Engineering: Analysis and 

Critique of Current Methods. Information Modeling Methods and Methodologies, 102–124 
(2004) 

10. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: No Non-Functional Requirements in 
Software Engineering. Kluwer Academic Publishers (1999) 

11. Sampaio do Prado Leite, J.C., Franco, A.P.M.: A Strategy for Conceptual Model 
Acquisition. In: First Int. Symposium on Requirements Engineering, pp. 243–246 (1993) 

12. Mylopoulos, J., Castro, J., Kolp, M.: Tropos: A Framework for Requirements-Driven 
Software Development. In: Inf. Systems Engineering: State of the Art and Research 
Themes, pp. 261–273 (2000) 

13. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer, 
Heidelberg (2010) 



184 M.A. Teruel et al. 

14. Gutwin, C., Greenberg, S., Roseman, M.: Workspace Awareness in Real-Time Distributed 
Groupware: Framework, Widgets, and Evaluation. In: HCI on People and Computers XI, 
pp. 281–298. Springer, Heidelberg (1996) 

15. Schümmer, T., Lukosch, S.: Patterns for Computer-Mediated Interaction. John Wiley & 
Sons Ltd. (2007) 

16. ISO/IEC 25010:2011, Systems and soft. engineering - Systems and soft. Quality 
Requirements and Evaluation (SQuaRE) - System and soft. quality models (2011) 

17. Moreira, A.M.D., Araújo, J., Rashid, A.: A Concern-Oriented Requirements Engineering 
Model. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 293–
308. Springer, Heidelberg (2005) 

18. Kitchenham, B.: A methodology for evaluating software engineering methods and tools. 
In: Experimental Software Engineering Issues: Critical Assessment and Future Directions, 
pp. 121–124. Springer, Berlin (1993) 

19. Teruel, M.A., Navarro, E., López-Jaquero, V., Montero, F., González, P.: CSRML: A 
Goal-Oriented Approach to Model Requirements for Collaborative Systems. In: Jeusfeld, 
M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 33–46. Springer, 
Heidelberg (2011) 

20. Teruel, M.A., Navarro, E., Jaquero, V.L., Montero, F., González, P.: Assesing the 
Understandability of Collaborative Systems Requirements Notations: an Empirical Study. 
In: 1st Int. Workshop on Empirical Requirements Engineering, Trento, Italy (2011) 



L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 185–202, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Towards Interdisciplinary Approach  
to SOA Implementations 

Zheng Li1,2, He Zhang1,4, and Liam O’Brien2,3 

1 NICTA, Sydney, Australia 
{Zheng.Li,He.Zhang}@nicta.com.au  

2 School of CS, ANU, Canberra, Australia 
3 CSIRO, Canberra, Australia 
Liam.Obrien@csiro.au 

4 School of CSE, UNSW, Sydney, Australia 

Abstract. Driven by the requirement of environment-adaptable business, 
Service-oriented Architecture (SOA) emerges with promising goals such as 
agility, flexibility, reusability and efficiency. Before reaching the goals, 
however, numerous and various challenges are still obstructing the success of 
SOA implementation. To efficiently deal with existing challenges, we can use 
an interdisciplinary approach to explore technology independent strategies as 
valuable and necessary supplements to technical concerns when implementing 
SOA. Through presenting an organizational view to comprehend SOA and 
treating SOA implementations as organizational activities, this paper employs 
useful knowledge in the organization theory area to inspire the research into 
technology independent strategies of SOA implementation. As a result, four 
preliminary strategies that can be applied to human organizations are identified 
to support building SOA systems. Furthermore, the interdisciplinary approach 
to investigating the success of SOA implementation is revealed, which 
encourages interdisciplinary research across service-oriented computing and 
organization theory. 

Keywords: Service-oriented architecture (SOA), SOA implementation; 
organization theory, Organization design, Interdisciplinary approach. 

1 Introduction 

1.1 Challenges of Successful SOA Implementation 

Service-Oriented Architecture (SOA) emerges with the requirements of quick 
response to the rapid and often unpredictable changes in business environment for 
modern enterprises. Motivated by the expectations of the people who are engaged in 
SOA activities, SOA has goals such as reusability of software assets across multiple 
platforms and applications, agility of support to business processes, efficiency in 
terms of development time and cost, and flexible integration of existing and legacy 
information systems. Unfortunately, there are numerous challenges of successful SOA 



186 Z. Li, H. Zhang, and L. O’Brien 

implementation before reaching the promising goals of SOA. For example, Gu and 
Lago’s [15] systematic literature review on Service-Oriented Software Engineering 
identified 413 challenges in total under 45 topics, eight types, and two dimensions; 
Papazoglou, et al. [29] investigated the Service-Oriented Computing research road 
map, and drew 3 planes plus 1 other aspect each of which comprised 4 or 5 major 
challenges; and Kontogiannis, et al. [21, 22] used four domains to cover 86 challenges 
by exploring the landscape of Service-Oriented Systems. To deal with those 
challenges, some strategies have been proposed and developed over the past decade. 
For example, Newcomer and Lomow [26] use Web services to concrete the 
conceptual SOA; Krafzig, Banke and Slama [23] focus on the practical application of 
SOA in enterprises with discussion of the roadmap of relevant technologies; Erl [9, 
10] summarizes a full scope of implementation strategies through eight principles of 
service design and 17 SOA design patterns. To the best of our knowledge, however, 
most of existing strategies for SOA implementation only pay attention on the 
technology aspect, particularly relying on the current state of the art of Web 
technology. As we know, technology is a necessary but not a sufficient condition for 
successful SOA implementations [31]. In other words, technology cannot guarantee 
the success of building an SOA system. Thus, the factors other than technology could 
be also vital for successfully implementing SOA. To efficiently address technology 
independent factors, we can try to resort to interdisciplinary approaches. 

1.2 Interdisciplinary Research 

As one of the most productive and effective method of solving complex questions and 
problems, Interdisciplinary Research (IDR) has been defined as “a mode of research 
by teams or individuals that integrates information, data, techniques, tools, 
perspectives, concepts, and/or theories from two or more disciplines or bodies of 
specialized knowledge to advance fundamental understanding or to solve problems 
whose solutions are beyond the scope of a single discipline or area of research 
practice.” [6] In general, unfolding an IDR project may be a systematic and complex 
action particularly for those topics established through a top-down way: (1) Research 
questions are defined under predetermined interdisciplinary issues like world hunger, 
biomedical ethics, or sustainable resources; (2) Supportive environment is built up 
including both academic and industry resources; (3) Researchers with suitable 
interdisciplinary skills are employed; (4) IDR outcomes are finally described and 
evaluated. However, IDR can also evolve from a single and small problem through 
knowledge borrowing between different disciplines. Although it has been claimed that 
true IDR is not just pasting two disciplines together to achieve one goal, knowledge 
borrowing can be viewed as the initial step of a bottom-up approach to IDR. For 
example, biology gradually imports mathematical and physical sciences after 
becoming more quantitative, which eventually brings new interdisciplinary fields. 
Considering we are not building up a specific IDR project, we can start from 
knowledge borrowing to deal with SOA challenges in this case. 



 Towards Interdisciplinary Approach to SOA Implementations 187 

1.3 Seeking Interdisciplinary Strategies to Deal with SOA Challenges 

Given the previous discussion, the question is where we can borrow useful knowledge 
to deal with SOA challenges. As we know, “SOA is a concept for large distributed 
systems” [18], which supposes services are decentralized and may be under the 
control of different owners. When it comes to the research into distributed systems, 
we can generally adopt two different approaches [12]: one is learning by doing 
(building real distributed systems), while the other is learning by analogy (drawing 
upon ideas from other research areas). In fact, the organization theory is usually 
employed to inspire the research in distributed systems. To the best of our knowledge, 
the use of organizational theory to guide technology research has proven significantly 
beneficial particularly in the multi-agent system community. For example: 

• Well-known human organizational structures are used for the deployment of 
multi-agent systems [1]; 

• Social laws are chosen to simplify multi-agent systems [11]; 

• Dependency theory of social interaction is used to explain how to achieve social 
goals of multi-agent systems [34]. 

Therefore, this paper also presents an organization-based view to comprehend SOA, 
and treats SOA implementations as organizational activities. Based on the traditional 
consensus of the organization concept, thinking of SOA organizationally becomes 
reasonable. Moreover, the parallels are identified between organization design and 
SOA implementation in general, which follows a pentagonal process with five steps 
focusing on the Goal and Strategy, Environment and Scope, Structure, Process and 
Coordination and Control. Note that the “SOA implementation” we discuss here 
refers to common SOA implementation practices rather than any particular case. 
Enlightened by existing work of organization design in the organization theory 
domain, we have initially identified four strategies as a demonstration to meet four 
predetermined issues of service-oriented software engineering [22]. These four 
strategies are independent and each can improve SOA implementations depending on 
real circumstances. In other words, the strategies can be employed both individually 
and all together for an SOA implementation instance. 

The remainder of the paper is organized as follows. Section 2 justifies thinking of 
SOA from an organizational perspective. Section 3 analogizes the procedure of SOA 
implementation with that of organization design. Section 4 introduces four 
interdisciplinary strategies enlightened by organization design for SOA 
implementation. Section 5 uses an example to demonstrate how these four strategies 
are applied to improve SOA implementation. Conclusions are drawn and some future 
work is proposed in Section 6.  

2 SOA: An Organizational Perspective 

Organizations emerged as early as ancient civilizations appeared. Today, 
organizations have become indispensable and pervasive components of human 
beings’ society, for example, from schools to hospitals and from armies to 



188 Z. Li, H. Zhang, and L. O’Brien 

governments. When it comes to the SOA area, we can similarly regard service-
oriented systems as virtual organizations that are composed of services.  

Viewing SOA systems as organizations is to use the organization concept to cover 
SOA systems, as shown in Fig. 1. Under the same umbrella of organization concept, 
both traditional organizations and SOA systems consist of organizational units. 
Organizational units in an SOA system are services, while that in a traditional 
organization are individuals. Furthermore, different organizational units have 
different skills and play different roles in an organization. For example, composite 
services play integrative roles in an SOA system, which parallels the responsibilities 
of managers in a traditional organization. Although there is no single agreement on 
the definition of an organization, theorists have traditionally consented that 
organizations are collectivities of people who are socially arranged to pursue specific 
purposes and achieve explicit goals [25]. This classical consensus makes it possible to 
think of SOA from the organizational perspective due to two reasons. 

 

Organization

SOA 
System

Hospital Governmen

Company University

Other human 
organizations

 

Fig. 1. View SOA system as an instance of organization 

First, it is suitable to think of SOA representing organization architecture. The 
Organization for the Advancement of Structured Information Standards (OASIS) [27] 
defines SOA as “a paradigm for organizing and utilizing distributed capabilities that 
may be under the control of different ownership domains. It provides a uniform 
means to offer, discover, interact with and use capabilities to produce desired effects 
consistent with measurable preconditions and expectations.” When it comes to 
implementation, SOA is used to build up a collection of independent services that can 
be quickly and easily integrated into different, high-level business services and 
business processes to create business value and achieve business strategies [31]. To 
summarize, SOA both in theory and in practice is proposed for organizing services to 
attain some particular goals. Therefore, SOA can be set under the umbrella of 
organization theory in terms of the suggestion of traditional organization concept: if 
the organizing process is about goal attainment, the organization theory could be 
followed to conceptualize, explain and ultimately guide individuals’ activities that 
should be united together to achieve desirable, common organizational goals [25]. 



 Towards Interdisciplinary Approach to SOA Implementations 189 

Second, it is reassuring to think of SOA from the organizational perspective. In 
fact, conceptual challenge might appear when talking of organizations based on 
having a goal, because the agreement about an organization’s purpose amongst 
members may not exist. In the SOA area, however, this disagreement issue can be 
ignored. Within SOA systems, a service is a well-defined unit of functionality 
realized by a service interface and a service implementation [28]. A service interface 
identifies a service and exposes the semantic description of the service’s invocation. 
A service implementation realizes the work that the service is designed to perform. 
Unlike people in social organizations, services in SOA do not have mental or 
psychological attributes. Consequently, services will always obey the control from the 
“senior management” of the whole SOA system, and may even not be aware of the 
“organizational goal”. When thinking of SOA organizationally, the blind obedience 
characteristic of services can naturally avoid the challenge of defining organizations 
in terms of having a goal while not all members freely agree to that goal [2]. 

Moreover, according to a set of general characteristics of the organizations 
identified by Campbell and Craig [4], we can find more similar features between SOA 
system and organization, as listed in our previous work [37]. Benefitting from 
thinking of SOA from the organizational perspective, we can use organization 
concept to comprehend SOA systems, and further use organization theory to inspire 
SOA implementations. 

3 Analogies between SOA Implementation and Organization 
Design 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The pentagonal process of SOA implementation / organization design 

Coordin-
ation and 
Control 

Goal 
and 

Strategy 

Environ-
ment and 

Scope 

StructureProcess 



190 Z. Li, H. Zhang, and L. O’Brien 

The similarity between SOA systems and organizations is not a coincidence. We can 
find common ground on a pentagonal process of SOA implementation [18, 23, 24, 31] 
and organization design [3, 7, 8, 19], which is identified through refining the waterfall 
process of organization design [3]. In the pentagonal process, five steps focusing on 
the Goal and Strategy, Environment and Scope, Structure, Process and Coordination 
and Control are executed generally along the clockwise sequence arrowed in Fig. 2. 
Meanwhile, each step has influence on as well as is under influence of the other four 
steps. For example, the goal and strategy together determine the whole process of 
organization design or SOA implementation, while they will be refined gradually as 
the process is unfolded. 

3.1 Goal and Strategy 

As mentioned previously, an organization must have a collective goal according to the 
traditional consensus of organization concept. Although different parts of the 
organization may have their own objectives, an overall collective goal can be 
established by aggregating all the separated objectives together. The overall goal is a 
desired direction that the organization will head. In practice, an organization’s overall 
goal embodies a set of specified goals, each of which focuses on different aspect of 
the organization. Daft [7] distinguishes organization’s goals into official goals and 
operative goals. The official goals formally define the business, values and outcomes 
that the organization attempts to achieve, while the operative goals are more explicit 
and scattered in different facets such as performance, efficiency, innovation and 
profit. 

Goals of an organization introduce the target that the organization wants to pursue, 
while strategies define how the organization can pursue its target. Therefore, 
strategies can be treated as the operationalization of organization’s goals [3]. 
Following the analysis of organization’s goals, we can also distinguish organization’s 
strategies into official strategies and operative strategies. The official strategies are 
essential plans of actions that can realize the corresponding official goals, for example 
the cost-leadership strategy or differentiation strategy. On the other hand, the 
operative strategies will aim at different detailed tasks like how to improve working 
efficiency or increase product profits. As different tasks may have resource conflict 
with each other, the strategy set should be carefully balanced. 

Goals and strategies are in the first phase of organization design and essentially 
influence how an organization should be designed. Similarly, the first step of SOA 
implementation is to identify the business strategies and goals, and we can adopt the 
technique, namely business value chain, to help identify the specific goals and 
strategies for certain SOA projects [31]. Since service-oriented computing emerged 
from the requirement of addressing the rapid and usually unpredictable changes that 
modern enterprises are confronting, SOA systems contribute more promises than the 
traditional software infrastructures. Therefore, common goals and strategies can be 
extracted among general SOA implementations, which are emphasized in Section 4. 



 Towards Interdisciplinary Approach to SOA Implementations 191 

3.2 Environment and Scope 

The environment is the surroundings of a system, and the system influences and is 
influenced by its environment. Meanwhile, the environment is not static but can be 
changing continuously and dynamically. Generally, there are five environment 
patterns interacting with any system, including asymptotic variation, interfering 
variation, periodic variation, phase-transition variation, and random variation [30]. 

Both SOA systems and organizations cannot be isolated from their external 
environments. The environment surrounding an SOA system or organization has a set of 
factors relating to resources or vulnerabilities. For example, the suppliers, customers, 
competitors, culture and government are organizations’ environmental factors, while the 
developers, users, legacy system, existing service pool and state of current technology are 
SOA systems’. Building organization and implementing SOA are highly dependent on 
the environmental factors. In practice, the number of factors that constitute environment 
might be considerable. All these factors together reflect the boundary that an organization 
or SOA system, and then outline a scope, which determines the capability, applicability, 
competitive advantages and business range for the organization or SOA system. 

For organization design, environment restricts organizations within certain scopes, 
and further influences their processes, structures and controls. For SOA implementation, 
analyzing the external environment and determining the applicable scope are particularly 
significant. SOA-based software infrastructure is supposed to be adaptive within an 
increasingly changing and complex environment. However, the loosely coupled 
asynchronous SOA systems are inherently more complex than the traditional architecture 
based systems. Josuttis [18] has pointed out that distributed processing would be 
inevitably more complicated than non-distributed processing, and any form of loose 
coupling increases complexity. In practice, building a true heterogeneous SOA for a wide 
range of operating environments may take years of development time if the company 
does not have sufficient SOA experience and expertise [17]. Since the more complexity 
involved in a system, the more difficulty the designers or engineers have to understand 
the implementation process and thus the system itself [5], SOA should be adopted only in 
the suitable environment and only when its benefits outweigh any extra costs due to the 
increased complexity. 

3.3 Structure 

Structures of both organizations and SOA systems are established to divide up the 
work into manageable and measureable units with clear responsibility boundaries. 
Organization’s structure is normally a hierarchy that allocates roles, power, 
authorities and responsibilities, and determines working relationships and 
communication channels. Generally, organizational units are arranged around 
functions, products/services, customers/geographies, or business processes. Therefore, 
the organization structures can be typically divided in five basic styles: functional, 
product- or service-based, customer- or geographical area based, business process 
based, and matrix structure [8]. Each kind of structure has specific advantages and  
 



192 Z. Li, H. Zhang, and L. O’Brien 

disadvantages. Unsuitable organization structure will result in formidable obstacle to 
align the other design elements with the organization’s strategy [19]. Consequently, 
large organizations always build hybrid structures to achieve the combination of the 
advantages. 

SOA systems normally adopt a matrix structure, which simultaneously groups 
services in two directions: functional direction and business process based direction, 
as shown in Fig. 3. The functional direction is to classify services according to the 
type of logic they encapsulate. Although there are quite a few service classifications 
that we can identify from the literature, most of the existing classifications can be 
unified and layered as Basic Services, Business Entity Services, Process-centric 
Services, and Enterprise Services. The Basic Services, settled at the bottom layer of 
SOA systems, provide reusable, technical, and foundational functionalities. The 
Business Entity Services represent the entities in business activities, such as 
employee, customer, contract, and product. Through composing relevant Business 
Entity Services, a Process-centric Service encapsulates a sequence of activities to 
complete a specific business task. The Enterprise Services provide endpoints to access 
the corresponding SOA systems, which could have less reuse potential but enable 
cross-enterprise integrations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The matrix structure of SOA systems 

Meanwhile, to obtain the reuse of services in multiple business processes, the 
landscape of different services within different business process contexts should be 
described to show how the services work together [31]. The business process based 
direction of SOA systems’ structure can then be outlined. Along the business process 
based direction, the overall services are grouped according to different roles and 
responsibilities within the real business. Each group may contain single service or 
multiple services. Moreover, the relationships to each other among the groups and the 
places of these groups in the business processes are also described.  

… … … 
… … …

Business 
process 
context n

Business 
process 
context 2 

Business 
process 
context 1 

Enterprise Services layer 

Process-centric Services layer 

Business Entity Services layer 

Basic Services layer 



 Towards Interdisciplinary Approach to SOA Implementations 193 

3.4 Process 

The organization design has been viewed from an information processing perspective 
[13]. The term process herein means not only business processes that produce 
products or services for customers, but also non-profit routines that constitute 
organizational actions. Generally, a process in an organization is a series of connected 
activities that transfer and transform information and resources through the 
organization [19], for example approving an application, submitting a report, and 
managing work progress. From the mid-1990s, many modern enterprises began to 
evolve into process-focused organizations in order to achieve higher performance and 
survive the market competition [33]. Currently, a process-focused organization has 
become the new organizational form with business process as the core concern. As a 
result, the design of processes significantly impacts on how well the organizational 
goals can be achieved. 

Moreover, processes in an organization have close relationships with the 
organization’s structure and coordination. All kinds of organization’s structures 
inevitably create barriers to collaboration, because boundaries will appear as soon as 
organizational units are grouped under the structure. To fulfill the effective 
collaboration targets in organization, however, processes are required to flow cross 
the boundaries. Therefore, processes can glue the related organizational units to work 
together. 

Like process-focused organizations, SOA systems can also be regarded as 
process-focused systems comprising of processes such as management process, 
coordination process, and traditional work process. Among all kinds of processes, 
SOA inherently concentrates on business process. Essentially, SOA is aligned with 
business process management (BPM) in business firms in which the criticality of 
business processes is concerned [24]. The emphasis of SOA is the functional 
infrastructure and the business services instead of the technical infrastructure and 
technical services. A business service encapsulates a piece or an entity of a business 
process. When implementing SOA, it is crucial to analyze business processes before 
identifying and developing services [31]. Following the analysis of business process, 
those potentially and even partially suitable services should be identified first. These 
existing services provide constraints that frame the future SOA system. The business 
processes are then broken down into business pieces that can be implemented by 
developing new services.  

3.5 Coordination and Control 

The coordination problem is one of the central topics in organizational studies [16]. 
As mentioned previously, individual actions of large numbers of interdependent roles 
and specialists must be coordinated to constitute processes to fulfill global tasks in an 
organization. On the other hand, the coordination will increase organizations’ 
information processing capabilities when encountering increasing amount of 
uncertainty [13]. In practice, the activity of coordinating overlaps the activity of 
controlling, because the appearance of coordination usually implies the occurrence of 



194 Z. Li, H. Zhang, and L. O’Brien 

some control [8]. To coordinate and control organizational work, organizations should 
adopt suitable techniques and mechanisms. Unfortunately, there is not a fixed 
prescription of methods for coordinating and controlling work. The coordination and 
control, for example, can be simply related to the structures [19], be utilized by goal 
setting, hierarchy, and rules [13], or be executed by using four basic techniques: 
Supervision, Standardization, Building employee commitment, and Teams [8]. 
However, the principle of these techniques and mechanisms is uniform: to make sure 
organizational units work appropriately and find out to what extent they are reaching 
the goals and targets. 

When implementing SOA, services must be composed to fully realize the benefits 
of SOA [32], which also relies on the coordinating and controlling activities. 
According to the cooperation fashions among component services, the mechanism of 
coordination and control can be distinguished between Orchestration and 
Choreography. Orchestration describes and executes a centralized process flow that 
normally acts as an intermediary to the involved services. Choreography describes 
multi-party collaboration and focuses on the peer-to-peer message exchange. In 
particular, if comparing Orchestration and Choreography with the two classical 
organization types – Mechanical and Organic organizations, we can find that the 
fundamental ideas and notions behind these different concepts in two disciplines are 
nearly the same. 

4 Interdisciplinary Strategies for SOA Implementation 

Inspired by existing research into aforementioned organization design, we can hereby 
explore interdisciplinary strategies to facilitate SOA implementation. Following four 
research topics of service-oriented software engineering [22], we have initially 
identified four strategies respectively (S1~S4). 

4.1 S1: Applying TQM to SOA Implementation 

Under the Engineering research topic of service-oriented computing, we propose to 
use Total Quality Management (TQM) to accommodate to the quality assurance of 
SOA implementation. Just as the name implies, TQM is a holistic level management 
for quality, because it can be achieved only if the total quality concept is utilized from 
the acquisition of resources to the customer satisfaction [20]. When it comes to SOA, 
the quality management has been emphasized to satisfy the unique characteristics of 
service-oriented computing. Nevertheless, to the best of our knowledge, existing 
research into quality management in SOA area is mainly at the service level, which is 
limited around the Quality of Service (QoS). The overall QoS of an SOA system is 
determined by all the QoS of component services who compose the SOA system [36]. 
Based on the QoS management, SOA systems generally replace component services 
with higher quality services to realize adaptations. Hence, the focus of QoS 
management is on individual services in an SOA environment. 



 Towards Interdisciplinary Approach to SOA Implementations 195 

When applying TQM to the SOA domain, Deming’s 14 points [35] can be used as 
a framework to guide SOA implementations. For example, service suppliers and SOA 
system users should be taken into account when measuring the total quality of an 
SOA implementation. Here we focus on the quality of interaction and cooperation 
process among services. With reference to the explanation of TQM by Deming, in any 
circumstance, processes should be constantly analyzed to determine what changes can 
be made to bring improvement. Therefore, TQM introduces a new angle of view to 
SOA systems when adapting environment. However, employing TQM does not 
indicate abandoning QoS management. There is no conflict between TQM and QoS 
management. On the contrary, they are two complementary approaches for SOA to 
accommodate the changing environment: (1) TQM can be used to adjust the process 
of interaction and cooperation among services. (2) QoS management can be used to 
switch services based on the latest quality requirement. 

4.2 S2: Flattening the Structure of SOA Systems 

Under the Operations research topic of service-oriented computing, we propose to 
flatten the structure of SOA systems when considering service composition. In human 
organizations, every level in a hierarchy will inevitably involve more operating costs 
[14]. In a higher level, integrative roles are full-time managers who are in charge of 
orchestrating work across units [19]. These managers have accountability for results 
but are not directly responsible for the resource achieving and specific work that 
should be accomplished by staff. Considering a flat organizational structure can help 
reduce the number of integrative roles, organizations may increase efficiency by 
keeping their structures as flat as possible. Furthermore, a flat structure can 
decentralize responsibility and control to lower-level employees to take greater 
advantage of the skills and experience of organization members. 

In an SOA system’s hierarchy, the number of levels can increase along with the 
growing cascade of service composition. In general, a composite service is recursively 
defined as an aggregation of elementary and composite services. When thinking of 
SOA from the organizational perspective, composite services play integrative roles in 
an SOA system. Similarly, we can flatten the system’s structure and move the 
additional functionality of original composite services upward, to reduce the 
composition cost and lower the complexity of the business process implementation.  

However, we should keep the tall structure if the composite service already exists 
or its reusability is to be achieved. In other words, when applying this strategy, the 
value and cost should be well balanced to determine the extent of flattening structure.  

4.3 S3: Taking Measurements at Interim Steps in Business Process 

Under the Cross-Cutting research topic of service-oriented computing, we propose to 
take measurements at interim steps in business process to govern SOA 
implementation. When generating products following certain working processes or  
 



196 Z. Li, H. Zhang, and L. O’Brien 

designing the working processes in an organization, it has been proven valuable to 
take measurements at interim steps in those processes. The research and practice in 
organizations during the past decades reveal that it is increasingly important to ensure 
the work finishes properly the first time instead of having to be redone [8]. The 
inspections and measurements can be applied to different steps in processes to save 
the cost of rework and avoid flaws in the end product. 

When applying this strategy to SOA implementation, the inspiration is to confirm 
the individual work of each service in business processes. The idea behind this 
strategy is to clearly define connected subtasks in a business process, and specify and 
measure the result of each subtask. It should be noted that measuring interim task 
mainly concerns the result rather than how the task is performed. Considering a 
service is such an entity that performs some task while hiding technical details, we 
can use the interim task measurement to help identify the most suitable services. Once 
all the services are determined, the relevant business process can then be correctly 
implemented. 

4.4 S4: Building Virtual Business Process Teams 

Under the Business research topic of service-oriented computing, we propose to build 
business process teams to facilitate mapping between business structure and service-
oriented environment. In human organizations, teams are cross-functional structures 
that bring people outside the scope of traditional departments to work together and 
share collective responsibility for special and complex assignments. A business 
process team is established around one business process and includes people who can 
collectively perform all the major activities to carry out the business process from 
beginning to end.  

Building business process teams in an SOA system should be a virtual division 
without many real actions. All the services involved in a business process logically 
constitute a team without changing the existing structure of the SOA system. Through 
virtual business process teams, the focus of coordination and control can be balanced 
between inward IT and outward business during SOA implementations. Furthermore, 
considering one service can be involved in different business process teams like the 
same scenario of organizational teams, we can identify and scale services’ 
dependency of business processes in an SOA system. The more dependency a service 
has, the more carefully it should be controlled especially when planning to modify or 
replace this service.  

5 An Example Case 

Here we use a simplified case to demonstrate how those interdisciplinary strategies 
can be applied to improve an SOA implementation. The example case is an SOA-
based application in a travel agency, as illustrated in Fig. 4.  

 
 



 Towards Interdisciplinary Approach to SOA Implementations 197 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. An SOA-based application of hotel booking in a travel agency 

The travel agency books hotel through BPay on behalf of a group of tourists, and 
will rent a car by money transfer if the number of the tourists is more than ten. 
Suppose there are three online banking services, two hotel booking services and one 
car rental service. Each service can fulfill its corresponding business function, while 
Online Banking Service B1 and Hotel Booking Service H1 are selected according to 
their reliability and response time. Moreover, the business rule “rent a car by money 
transfer if the number of the tourists is more than ten” is encapsulated in a composite 
service composed by Hotel Booking Service H1 and Car Renting Service. The 
composite service is implemented as a Reinforced Hotel Booking Service following 
the technology based strategy of using service composition to “fulfill a large extent of 
future business automation requirements” [9].  

After a period of operation, the travel agency received some complaints. For 
example, small groups of tourists feel inconvenient without cars. Hence, the travel 
agency decides to thoroughly optimize the system. After applying the four proposed 
strategies, the evolution of this travel agency application can be illustrated in Fig. 5~8. 

5.1 Applying TQM (S1) 

When applying TQM to the SOA system to check the cooperation among services, we 
can find that the invocation of Car Rental Service is inflexible because an old 
business rule is hardcoded in the Reinforced Hotel Booking Service. Therefore, the 
number of tourists should be set as a variable and exposed as an input parameter of 
the composite service. The operation of this composite service is then adjusted by 
accepting one threshold parameter to improve the flexibility of the SOA system. As 
such, the business rule can be easily changed into “rent a car by money transfer if the 
number of the tourists is more than five”. By using the red color to indicate the 
changed logic, the system is evolved as shown in Fig. 5. 

Reinforc-
ed Hotel 
Booking 
Service

Travel Agency Application

Hotel 
Booking 
Service 

H1 

Car Rental 
Service 

Online 
Banking 
Service 

B1



198 Z. Li, H. Zhang, and L. O’Brien 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The travel agency application after applying the first proposed strategy 

5.2 Flattening the Structure (S2) 

When analyzing the structure of the travel agency’s SOA system, we find that the 
Reinforced Hotel Booking Service does not have any reuse opportunity. Furthermore, 
the encapsulated business rule can be easily transformed into control flow logic of 
invoking two component services, and moving the control flow logic into upper 
business logic will have little increase complexity for the latter. Therefore, we can 
flatten the structure by removing the Reinforced Hotel Booking Service to reduce the 
service maintenance effort. Fig. 6. shows the evolution after applying this strategy.  

 
 
 
 
 
 
 
 

 

Fig. 6. The travel agency application after applying the second proposed strategy 

5.3 Measuring Interim Steps in Process (S3) 

Suppose both BPay and money transfer will result in commission charges, and the 
charges vary depending on different bank and transaction time.  We can then use the 
criterion “choose bank with the lowest commission charges” to constantly and 
simultaneously measure the three candidate online banking services. The service of 

Reinforc-
ed Hotel 
Booking 
Service

Travel Agency Application

Hotel 
Booking 
Service 

H1 

Car Rental 
Service 

Online 
Banking 
Service 

B1

Travel Agency Application

Hotel 
Booking 

Service H1
Car Rental 

Service Online 
Banking 

Service B1



 Towards Interdisciplinary Approach to SOA Implementations 199 

the bank that charges the lowest fee will be dynamically employed by the SOA 
system to help the travel agency save money. This evolution is illustrated as Fig. 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. The travel agency application after applying the third proposed strategy 

 

Selected 
Online 

Banking 
Service

Travel Agency Application

Hotel 
Booking 

Service H1 
Car Rental 

Service 

Online 
Banking 

Service B2

Online 
Banking 

Service B1 

Online 
Banking 

Service B3

Hotel Booking 
Team

Car Rental Team 

Measure      and Replace 

 

Fig. 8. The travel agency application after applying four proposed strategies 

5.4 Building Virtual Teams (S4) 

Based on the business logic behind the travel agency application, we can identify 
there are two atomic business processes: one is hotel booking through BPay, and 
another is car rental through money transfer. Consequently, the selected Online 
Banking Service, Hotel Booking Service and Car Rental Service can be logically 
grouped into two business process teams. The coordination and control among 

Travel Agency Application

Hotel 
Booking 

Service H1
Car Rental 

Service Selected 
Online 

Banking 
Service 

Online 
Banking 

Service B2

Online 
Banking 

Service B1 

Online 
Banking 

Service B3

Measure      and Replace 



200 Z. Li, H. Zhang, and L. O’Brien 

services in the hotel booking business process team follows the BPay rules, while in 
the car rental business process team obeys the money transfer rules. Through the team 
building, we can naturally arrange different cooperation for services in different 
teams, and in this case we may further identify the Online Banking Service is the key 
service when implementing the SOA system. 

6 Conclusions and Future Work 

The emergence of SOA has been considered a feasible opportunity for modern 
enterprises to leverage the capabilities of quickly adapting to competitive and 
changing environment. Compared with systems based on traditional architecture, 
however, SOA systems are inherently more complicated. Since the more complexity 
involved in a system, the more difficulty the designers or engineers have to 
understand the implementation process and thus the system itself [5], it is vital to find 
a set of implementation strategies to help achieve the promises of SOA. Based on the 
review of the relevant literature, we can identify a suite of technical strategies based 
on the current state of the art of Web technology. However, technology based 
strategies cannot guarantee the success of SOA implementations [31]. We therefore 
notice that the interdisciplinary strategies could also be emphasized as the 
supplements in implementing SOA. 

By presenting an organization-based view to comprehend SOA, and treating SOA 
implementations as organizational activities, this paper delivers three main 
contributions. First, interdisciplinary research opportunities are suggested across the 
SOA area and the organization theory area. Second, the methodology of investigating 
strategies for implementing SOA is proposed by analogizing organization design with 
SOA implementation. Last, benefiting from existing work of organization design in 
the organization theory domain, four preliminary strategies conforming to the general 
goals of SOA are identified and suggested at this stage. 

In particular, the evaluation for our work is different from traditional research 
topics. Although an example case has been elaborated to show the applicability of 
those identified interdisciplinary strategies for SOA implementation, their value and 
effectiveness still need to be further and widely investigated in practice. As we know, 
the strategies highlighted in this paper can be applied to different human 
organizations in general. Therefore, it is improper to use one SOA project or two to 
justify that the strategies are also generally suitable for SOA implementations. 
Consequently, our future work is to spread and apply these strategies in real scenarios 
and try to broadly collect the empirical results, as well as to explore other 
interdisciplinary strategies for SOA implementation. 

References 

1. Argente, E., Julian, V., Botti, V.: Multi-agent System Development based on 
Organizations. Electron. Notes Theor. Comput. Sci. 150(3), 55–71 (2006) 

2. Bakan, J.: The Corporation: The Pathological Pursuit of Profit and Power. Free Press, New 
York (2005) 



 Towards Interdisciplinary Approach to SOA Implementations 201 

3. Burton, R.M., DeSanctis, G., Obel, B.: Organizational Design: A Step-by-Step Approach. 
Cambridge University Press, Cambridge (2006) 

4. Campbell, D., Craig, T.: Organisations and the Business Environment, 2nd edn. Butter 
worth-Heinemann, Burlington (2005) 

5. Cardoso, J.: How to Measure the Control-flow Complexity of Web Processes and Work-
flows. In: Fischer, L. (ed.) Workflow Handbook 2005, pp. 199–212. Layna Fischer (2005) 

6. CFIR and CSEPP: Facilitating Interdisciplinary Research. The National Academies Press, 
Washington, DC (2005) 

7. Daft, R.L.: Organization Theory and Design, 10th edn. South-Western College Pub., 
Mason (2009) 

8. Davis, M.R., Weckler, D.A.: A Practical Guide to Organization Design. Crisp 
Publications, Inc., Menlo Park (1996) 

9. Erl, T.: SOA Principles of Service Design. Prentice Hall PTR, Boston (2007) 
10. Erl, T.: SOA Design Patterns. Prentice Hall PTR, Boston (2009) 
11. Fitoussi, D., Tennenholtz, M.: Choosing Social Laws for Multi-agent Systems: Minimality 

and Simplicity. Artif. Intell. 119(1-2), 61–101 (2000) 
12. Fox, M.S.: An Organizational View of Distributed Systems. IEEE Trans. Syst. Man 

Cybern. 11(1), 70–80 (1981) 
13. Galbraith, J.R.: Organization Design: An Information Processing View. Interfaces 4(3), 

28–36 (1974) 
14. George, J., Jones, G.: Understanding and Managing Organizational Behavior, 5th edn. 

Prentice Hall, Boston (2007) 
15. Gu, Q., Lago, P.: Exploring Service-Oriented System Engineering Challenges: A 

Systematic Literature Review. Serv. Oriented Comput. Appl. 3(3), 171–188 (2009) 
16. Heath, C., Staudenmayer, N.: Coordination Neglect: How Lay Theories of Organizing 

Complicate Coordination in Organizations. Res. Organ. Behav. 22, 153–191 (2000) 
17. Jamil, E.: SOA in Asynchronous Many-to-one Heterogeneous Bi-directional Data 

Synchronization for Mission Critical Applications. WeDoWebSphere (2009), 
http://wedowebsphere.de/node/30604 

18. Josuttis, N.M.: SOA in Practice: The Art of Distributed System Design. O’Reilly Media, 
Inc., Sebastopol (2007) 

19. Kates, A., Galbraith, J.R.: Designing Your Organization: Using the STAR Model to Solve 
5 Critical Design Challenges. Jossey-Bass, San Francisco (2007) 

20. Kaynak, H.: The Relationship between Total Quality Management Practices and Their 
Effects on Firm Performance. J. Oper. Manag. 21(4), 405–435 (2003) 

21. Kontogiannis, K., Lewis, G.A., Smith, D.B., Litoiu, M., Muller, H., Schuster, S., Stroulia, 
E.: The Landscape of Service-Oriented Systems: A Research Perspective. In: 1st 
International Workshop on Systems Development in SOA Environments (SDSOA 2007). 
IEEE Computer Society (2007) 

22. Kontogiannis, K., Lewis, G.A., Smith, D.B.: A Research Agenda for Service-Oriented 
Architecture. In: 2nd International Workshop on Systems Development in SOA 
Environments (SDSOA 2008), pp. 1–6. ACM Press (2008) 

23. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture Best 
Practices. Prentice Hall, Upper Saddle River (2004) 

24. Lawler, J.P., Howell-Barber, H.: Service-Oriented Architecture: SOA Strategy, 
Methodology, and Technology. Auerbach Publications, Boca Raton (2007) 

25. McAuley, J., Duberley, J., Johnson, P.: Organization Theory: Challenges and Perspectives, 
1st edn. Prentice Hall, England (2007) 



202 Z. Li, H. Zhang, and L. O’Brien 

26. Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison-Wesley 
Professional, Upper Saddle River (2004) 

27. OASIS: A Reference Model for Service-Oriented Architecture. White Paper, Billerica, 
MA (2006) 

28. Papazoglou, M.P., Heuvel, W.-J.: Service Oriented Architectures: Approaches, 
Technologies and Research Issues. VLDB. J. 16(3), 389–415 (2007) 

29. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing: 
State of the Art and Research Challenges. Computer 40(11), 38–45 (2007) 

30. Peng, Y., Liu, H., Tao, H.: Analyzing the Pathway of Organizational Change based on the 
Environmental Complexity. In: 2009 International Conference on Electronic Commerce 
and Business Intelligence (ECBI 2009), pp. 463–466. IEEE Computer Society (2009) 

31. Rosen, M., Lublinsky, B., Smith, K.T., Balcer, M.J.: Applied SOA: Service-Oriented 
Architecture and Design Strategies. Wiley, Indianapolis (2008) 

32. Sarang, P., Jennings, F., Juric, M., Loganathan, R.: SOA Approach to Integration: XML, 
Web Services, ESB, and BPEL in Real-World SOA Projects. Packt Publishing, 
Birmingham (2007) 

33. Seltsikas, P.: Organizing the Information Management Process in Process-based 
Organizations. In: 34th Hawaii International Conference on System Sciences (HICSS 34), 
p. 8066. IEEE Computer Society (2001) 

34. Sichman, J., Demazeau, Y.: On Social Reasoning in Multi-agent Systems. Rev. 
Iberoamericana. de I. A 13, 68–84 (2001) 

35. Walton, M.: The Deming Management Method. Perigee Books, New York (1988) 
36. Yau, S.S., Ye, N., Sarjoughian, H., Huang, D.: Developing Service-based Software 

Systems with QoS Monitoring and Adaptation. In: 12th IEEE International Workshop on 
Future Trends of Distributed Computing Systems (FTDCS 2008), pp. 74–80. IEEE 
Computer Society (2008) 

37. Li, Z., Zhang, H., O’Brien, L.: Towards Technology Independent Strategies for SOA 
Implementations. In: 6th International Conference on Evaluation of Novel Approaches to 
Software Engineering (ENASE 2011), pp. 143–154. SciTePress (2011) 



Formalisation of a Generic Extra-Functional Properties
Framework�

Kamil Ježek and Premek Brada

Department of Computer Science and Engineering, University of West Bohemia
Univerzitni 8, 30614 Pilsen, Czech Republic

{kjezek,brada}@kiv.zcu.cz

Abstract. Approaches to improve software composition become remarkably
important with the gradual enlargement of software systems. Together with adap-
tation of component-based programming to cope with software complexity, extra-
functional properties are playing a more important role. The problem addressed
in this paper concerns an insufficient adoption of extra-functional properties into
practise that consequently limits approaches to modularised software. As a so-
lution this paper presents a comprehensive framework which enables the use of
extra-functional properties in existing systems with the promise to improve com-
ponent application consistency. The framework is described in a formal manner
and its practical application is shown on the Spring and OSGi component models.

Keywords: Software components, Extra-functional properties, Compatibility,
Repository, Inter-component binding, Framework.

1 Introduction

With today’s need for large software systems both industry and the research community
invest considerable effort into improving component programming. Despite noticeable
benefits of the components, new issues keep to arise. One of the important ones concern
the usage of extra-functional properties (EFPs).

Extra-functional properties provide means to assess the applicability and compatibil-
ity of components considering (1) qualitative properties such as speed, response time,
memory consumption or (2) user requirements such as marketability, price, regular up-
dates, technical support or (3) behavior properties such as synchronisation, concurrent
access, deadlock free computation.

Research and industrial efforts range from describing EFPs [1,2] through their
application in specialized component models [3,4] to usage in quality of service specifi-
cations [5,6]. Although these works have already shown the directions, industrial frame-
works such as Spring or OSGi do not support EFPs.

In this paper we present a different approach. Rather than creating a native EFP sup-
port for a given component model, we propose a structural EFP framework applicable
to many existing component frameworks.
� The work was partially supported by the UWB grant SGS-2010-028 Advanced Computer and

Information Systems and by the Czech Science Foundation project 103/11/1489 Methods of
development and verification of component-based applications using natural language specifi-
cations.

L.A. Maciaszek and K. Zhang (Eds.): ENASE 2011, CCIS 275, pp. 203–217, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



204 K. Ježek and P. Brada

1.1 Structure of the Paper

We first introduce the proposed extra-functional framework with its modules in Section
2. An introduction of the concept is followed by formalisations of key parts of the
framework in Section 3. Section 4 presents examples of the applicability of the approach
to selected industrial frameworks.

2 Extra-Functional Framework Modules

The proposed framework aims at covering the activities related to the use of extra-
functional properties in component-based development; namely the definition, attach-
ment and evaluation of EFPs.

The conceptual structure of the framework consists of four modules as depicted in
Figure 1. The Repository stores EFP definitions and is accessed by other modules. The
EFP Assignment part uses the Repository so it can attach the declared EFPs to each
component. Once components are enriched by EFPs the Evaluator takes care of com-
paring of EFPs to verify the compatibility during their binding.

All these modules are tied together by EFP Types which defines the structure (type
and values) of individual EFPs [7].

Fig. 1. Framework Overview

The result is a loosely coupled framework applicable to a wide set of component
models. The only assumption is that the targeted models recognize required and pro-
vided counterpart elements used when creating inter-component bindings [8].

In the following subsections we respectively describe the details of the EFP Types,
the Repository, how the EFP Assignment module achieves component framework link-
ing, and EFP evaluation.

2.1 Extra-Functional Properties Types

The interchange of extra-functional properties between the modules of the framework
requires a shared understanding of EFP data. This is realized by the EFP Types module
which is the implementation of the model of extra-functional properties presented in



Formalisation of a Generic Extra-Functional Properties Framework 205

[7] and formalized in [9]. It defines individual EFPs, their structure and relations to a
system of registries.

Getting some inspiration in NoFun [10], we distinguish between simple and derived
extra-functional properties. The semantics is that a derived property is based on a set of
other (simple or derived) properties and its value is computed according to a deriving
formula.

We formally define a collection of extra-functional properties as a set

E = {e | e = (n, T,Ed, γ,M)} (1)

where n is the name of a property,
T ∈ Ttypes = Tc ∪ Ts is the type of a property,

Ts is a set of simple (primitive) types; Ts = {real, integer, boolean, enum,
set, ratio, string},

Tc = {(T1, · · · , TN) | N > 1, Ti ∈ Ttypes} is a set of complex types containing
non-primitive values,

Ed ⊂ E, e /∈ Ed is a (possibly empty) set of other composing EFPs in case e is a
derived EFP,

γ : T ×T → Z; Z = integer ∪ {“n/d”} is a function which compares two instances
x, y ∈ T of the property with type T , stating which of the two values is better. The
meaning of the return values is: negative integer: x is worse than y, 0: x is equal to
y, positive integer: x is better than y, “n/d”: not-defined. A natural default function
(e.g. x− y) is used for primitive types.

M is a record with additional information. It currently contains the items unit, names,
where unit is a measuring unit and names is an ordered enumeration containing
all names for the values of this property used in the Local Registries from Section
2.2.

For instance, two simple properties and a derived one are defined as follows:

(time_to_process, integer, empty-set, default-gamma,
M {unit:‘‘ms’’, names: {low, average, high}} )

(data_transferred, integer, empty-set, default-gamma,
M {unit:‘‘MB’’, names: {low, average, high}} )

(performance, enum {sufficient, insufficient},
{time_to_process, data_transferred}, default-gamma,
M {} )

2.2 Universal EFP Repository

In component development, the components are typically developed by many organi-
zations. If two vendors work with the same EFPs, the same understanding of these
properties is needed. The role of the repository is to guarantee such understanding. Fur-
ther, since a given component or service can be run in different environments, an EFPs
mechanism must handle this heterogeneity.

We therefore use a layered design of the repository [9]. The upper layer called Global
Registry (GR) is a storage of EFP definitions. It collects definitions of EFP types from



206 K. Ježek and P. Brada

Section 2.1. Let us highlight that Global Registry does not contain concrete values of
EFPs because they may differ widely among runtime and application environments.

The lower layer of the repository is called Local Registry (LR). For a subset of EFP
Types defined in a GR, it stores concrete values pertinent to a particular computational
environment.

Formally, the Global and Local Registries are tuples:

GR = (id, name,E) (2)

LR = (id, name,GR, idparent, S,D) (3)

id : Integer is the registry’s unique identifier,
name : String is its human readable name,
E is a set of extra-functional properties (see Section 2.1 above),
GR is the Global Registry this LR is linked to,
idparent : Integer is the identifier of an (optional) parent LR; the semantics is that a

value from a parent is inherited unless overriden by this LR.
S = {(e, value name, v) | e ∈ E ∧ value name ∈ String ∧ v ∈ VLR} is a set

defining context dependent values for simple properties, where
e is a property from GR,
value name is a name assigned to the value v such that value name ∈ e :: M ::

names i.e. it must be selected from the list of names given in the definition of
e in GR,

VLR = {vi}i∈I set holds all values for the given EFP assigned in this LR or its
parents; I is the set indexing these values.

D = {(e, value name, v, r) | e ∈ E ∧ value name ∈ String ∧ r ∈ R∧ v ∈ VLR} is
a set of values for derived properties, where R is a set of rules (formulas) deriving
an EFP value from other EFPs and their values; i.e. R = {f(x) | f : E × VLR →
VLR}.

Local Registry holds context-dependent values with assigned names, so the names re-
main the same while concrete values differ. The key advantage is that a developer may
think of the semantics of the EFP value denoted by the name rather than about a con-
crete number. In addition, this solution partitions continuums of values into disjunctive
named intervals where all values in one partition may be treated as equivalent. For ex-
ample, memory consumption in the interval {1,+∞}GB may be considered too high
for resource constrained devices.

The first example below shows a LR for smartphones with GPRS-only connection
while second one shows a LR for wifi-connected tablets:

(1) time_to_process: low = 10, high=5000, ...
data_transferred: low = 1, high=100, ...

(2) time_to_process: low = 1, high=1000, ...
data_transferred: low = 10, high=500, ...



Formalisation of a Generic Extra-Functional Properties Framework 207

Fig. 2. EFP Assignment Module

2.3 Assigning EFPs to Components: Applicability of EFPs to Variety of
Component Models

The assignment of EFPs to components actually consists of two phases: (1) a developer
attaches EFPs to components, loading the properties from the repository, (2) the EFP
Assignment module shown in Figure 2 provides the previously attached EFPs to other
systems in a form of so called EFP Assignment Types.

The EFP Mirror sub-module represents the component framework-independent part
of the EFP Assignment module. In the phase of attaching EFPs to a component, a
developer loads EFPs from the remote EFP repository to mirror them on the component
for a later phase when this module is disconnected from the repository.

Hence, this approach provides component frameworks with a transparent access to
the EFP data in an independent format of the EFP Assignment Types.

The Data Storage Sub-module provides an extension point where implementations
for supported component models are plugged. This sub-module brings the desired flex-
ibility and applicability for different component models in a form of lightweight plug-
ins. Each implementation of this sub-module decides (1) where and how to store EFP
data, and (2) how to link the data with concrete features of the component.

2.4 EFP Assignment Types

Since the framework aims at generality, data exchanged between its modules must cover
a wide spectrum of component models. For that reason it uses a generic representation
of EFPs attached to components, called EFP Assignment Types. It aggregates the EFP
Types and the information about the assignment of EFP values to components.

EFP Assignment Types is formally defined as a set AT = F × E × V where F is a
set of generic representations of all component features (see also [11]):

F = {f | f = (name, type, role,mandatory)} (4)

where name : String is the name of the feature,
role ∈ {“required”, “provided”} expresses whether the feature is put on the re-

quired or the provided side of a component,
mandatory : Boolean determines whether this feature must be bound to another fea-

ture in the matching process, and



208 K. Ježek and P. Brada

type represents type information of the feature including a meta-type (for instance
“interface” or “package”) and parameters (e.g. inputs and outputs of methods). The
type can be extended with a version identifier.

Two features are bound to each other by a function:

μ : F × F → Boolean (5)

where μ is a matching function on F taking two features as its input and returning true
if they can be bound, false otherwise.

A default behavior of the function uses the following rules: (1) names are equal for
both features, (2) a provided feature matches only with a required one or vice versa,
(3) mandatory required feature must have a provided counterpart, (4) features are com-
patible in terms of their types (e.g. parameters of interfaces are of the same types). A
required feature must be a sub-type of the provided feature. If the type compatibility is
explicitly expressed as versions, then a version on the provided side is equal or greater
than a version on the required side or vice versa.

However a more sophisticated matching μ function can be provided. For example,
compatibility on interfaces using subtype relation [12] would reach more accurate re-
sults. Since instances of the features come from the EFP Assignment module, the ex-
tension is straightforward: the re-implementation of a component-specific sub-module
in the assignment module provides different μ function while the algorithm of the eval-
uator remains unchanged.

Continuing with the definition of EFP Assignment Types, E is a set of extra-func-
tional properties from Section 2.1 and V is a set of values [7] assigned to the properties
which has three forms:

V = Vdirect ∪ VLR ∪ Vformula (6)

v ∈ Vdirect is a directly assigned value; this assignment is used when the value remains
constant independently on a runtime environment.

v ∈ VLR is a value defined by a local registry of the EFP repository (LR) typically
holding values dependent on a context of usage and varying among contexts. A
component can thus reference multiple values of a given property for different con-
texts. When evaluating components, one must select which context a result should
be computed for and the evaluator then uses only values valid for the selected con-
text.

v ∈ Vformula is a mathematical formula, declared directly at the component, deter-
mining the value of an EFP from other EFPs. This kind of assignment allows to
compute EFPs on the provided side of component based on those on the required
side, including the ones specified for the deployment environment. For instance, a
component may declare its speed-up by the Amdahl’s law 1

(1−P )+P
S

. P expresses

the amount of a code which may be parallelized and for a particular component it
is constant (e.g. 30%). S is a number of processors depending on a runtime envi-
ronment. Hence the component claims its speed-up based on the input parameter
from the runtime.



Formalisation of a Generic Extra-Functional Properties Framework 209

The following example uses an EFP from Section 2.1 to show assignment of EFP
values to a feature using all the above forms:

( # feature
("DataAccess", "interface", "provided",

true, "matched-by-name"), # EFP, values
(time_to_process, (LR.1::low, LR.2::average, direct::20,

math::(2 * DataAccess::data_transferred))))

The matched-by-name denotes a μ function which matches two features with the
same names. LR.1 and LR.2 are two local registries identified by their IDs, direct
is a direct value – 20ms in this example, math defines a math formula. There must
also be an assignment for the data_transferred extra-functional property, which
we omit here for space constraints. This artificial example is used to show all options;
typical cases have only one type of value (LR, direct or math-formula one) defined in
the assignment.

2.5 EFP Evaluation and Binding

The final part of the framework is the Evaluator. Its main purpose is to load a set of
components and verify their compatibility in terms of extra-functional properties.

The module first obtains EFPs of components by calling the EFP Assignment mod-
ule for each component. The received data are then composed to a graph representing
components and their bindings, which serves the evaluator to find problems in com-
ponent compatibility. Shortly, binding problems have the form of missing edges in the
graph while EFP incompatibilities show as mismatches on respective edges; see Section
3 below for more details.

Unlike other modules the Evaluator is not customizable because it works on a generic
model of EFPs and component application architecture.

3 EFP Evaluator Algorithms and Formalizations

The following sections detail the process of the evaluation using more formal means.
Formal definitions of data used by the evaluator and the algorithm verifying compati-
bility of components are also introduced.

3.1 Structure of EFPs Graph

Once the EFP Evaluator obtains a set of EFP Assignment Types, it can compose a graph
representing the application structure annotated with properties.

The graph which is created by the EFP Evaluator is an oriented graph
−→
G = (V,E)

where V is a set of vertexes and E is a set of edges, with specialized types of vertexes
and edges:

V (
−→
G ) = Vcomponent(

−→
G ) ∪ Vfeature(

−→
G) ∪ Vefp(

−→
G)

E(
−→
G ) = Ebelong(

−→
G ) ∪ Ematch(

−→
G )

The following rules hold for each vertex v:



210 K. Ježek and P. Brada

v ∈ Vcomponent(
−→
G) if v represents a component. It is a root meta-vertex which pur-

pose is to simply aggregate all features of a component.
v ∈ Vfeature(

−→
G) if the vertex represents a feature. It expresses one type of feature

depending on concrete implementation for a particular component model. It may
express e.g. “interface”, “service” or whole “component”.

v ∈ Vefp(
−→
G ) if the vertex represents an EFP. These vertexes are connected with

Vfeature(
−→
G ) vertexes to express EFPs on concrete features of a component.

The Ebelong edges expresses how components, features and EFPs are connected:

e ∈ Ebelong(
−→
G ) :⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(vx, vy) | vx ∈ Vcomponent(

−→
G ) ∧ vy ∈ Vfeature(

−→
G ) : required feature,

(vx, vy) | vx ∈ Vfeature(
−→
G ) ∧ vy ∈ Vcomponent(

−→
G ) : provided feature,

(vx, vy) | vx ∈ Vfeature(
−→
G ) ∧ vy ∈ Vefp(

−→
G) : required EFP,

(vx, vy) | vx ∈ Vefp(
−→
G) ∧ vy ∈ Vfeature(

−→
G) : provided EFP.

The Ematch edges expresses how features are bound and EFPs are matched. While fea-
tures are bound by the function μ defined above, EFPs are matched via their names and
their relation to a feature. It means that one EFP may be attached to multiple features,
but only once to the same feature:

e ∈ Ematch(
−→
G ) :{

(vx, vy) | vx ∈ Vfeature(
−→
G ) ∧ vy ∈ Vfeature(

−→
G) : binding features,

(vx, vy) | vx ∈ Vefp(
−→
G) ∧ vy ∈ Vefp(

−→
G) : matching EFPs.

Using this model, the Evaluator generates the graph in several steps. It first creates com-
ponent vertexes (Vcomponent(

−→
G)) from a set of components a user desires to evaluate.

Secondly, the EFP Assignment Types are added for each component and vertexes for
features (Vfeature(

−→
G)) and EFPs (Vefp(

−→
G)) are created. Furthermore, the vertexes are

connected using the “belong” edges (Ebelong(
−→
G)) to express which features and EFPs

are attached to the components.
Finally, isolated graphs, representing individual components, produced by the pre-

vious steps are connected by matching all pairs of corresponding provided-required
features as well as EFPs. Hence, “match” edges of the type Ematch(

−→
G) complete the

graph. These edges denote the connections of features among components and pairs of
EFPs attached to the features.

The final graph completely represents components and their bindings together with
their EFPs.

3.2 Evaluation of EFPs

Having a graph representation of component connections, the evaluation is quite straight-
forward. The evaluator must go through the graph and find possible problems in vertex
connections first, then it uses the values attached to EFPs to compare the value pairs of
two connected EFPs.



Formalisation of a Generic Extra-Functional Properties Framework 211

Fig. 3. Example Graph

The algorithm which computes the values of attached EFPs as well as checks the
connection of components with each other uses a modified depth first search algorithm.
It has the following steps (let us use a notation vx to denote a particular vertex, exy to
denote an edge from vx to vy where x, y ∈ I and I is a finite index set for indexing
vertexes and edges respectively):

1. Input sets of vertexes Vcomponent(
−→
G), Vfeature(

−→
G) and Vefp(

−→
G) are established

and the first vertex vi ∈ Vcomponent(
−→
G) is selected, temporary vertexes vj , vk, vl =

null, previous vertex vi−1 = null.
2. Find a first feature vertex finding the first edge eij ∈ E(

−→
G) where vj ∈ Vfeature(

−→
G).

The direction of the edge is from a component to the feature which symbols a
required feature. If there is no such edge, the component has no required element
and a new input set is specified Vcomponent(

−→
G) = Vcomponent(

−→
G)− {vi} and the

algorithm goes to step 5. Otherwise, proceed.

3. Find the first edge ejk ∈ E(
−→
G ) where vk ∈ Vfeature(

−→
G ). A direction is from a

feature to another feature representing a connection of required feature to a match-
ing provided one. If the edge is not found and the feature is mandatory, it means
that a requirement of the component is not fulfilled → ERROR. For non-mandatory
features, the algorithm goes back to step 2. Otherwise, set vi−1 = vi.

4. An edge ekl ∈ E(
−→
G ) where vl ∈ Vcomponent(

−→
G) is selected. The new first vertex

vi = vl is set and the algorithm goes back to step 2.

5. If vj , vk �= null then two sets of vertexes Vefpk
= {vo | ∃k : eok ∈ E(

−→
G) ∧ vk ∈

Vfeature(
−→
G ) ∧ vo ∈ Vefp(

−→
G )} and Vefpj = {vp | ∃j : ejp ∈ E(

−→
G) ∧ vj ∈

Vfeature(
−→
G ) ∧ vp ∈ Vefp(

−→
G)} are selected. Vefpk

is a set of EFPs on the feature
vk and their values are computed first, then EFPs Vefpj on the feature vj are also
computed. The vertexes are removed from the input set Vfeature = Vfeature −
{vj , vk}. The values are computed as follows:

– Direct value: a concrete value assigned to the EFP is directly used;
– Local value: a value for a context of usage a user aims to compute is used;
– Mathematical formula: computed using values on connected components which

must be certainly known at this time (because the depth first search algorithm
must have already visited connected components).

In addition, the following must hold: ∀p∃o : epo ∈ E(
−→
G)∧ vo ∈ Vefpk

(
−→
G)∧ vp ∈

Vefpj (
−→
G ) meaning that all EFPs on the required side must be connected to their

provided counterparts, otherwise → ERROR.



212 K. Ježek and P. Brada

6. If vi−1 �= null a new initial vertex is set vi = vi−1 else if the set Vcomponent �= ∅,

select another vertex vi ∈ Vcomponent(
−→
G ). Then go back to step 2. Otherwise, the

graph evaluation ends.

The algorithm verifies any inconsistency in the graph in terms of component bindings.
The verification finds missing provided component elements connected to the required
sides of other components. It furthermore finds missing EFPs on the provided sides
matching EFPs on the required sides attached on bound components.

Once the components are bound and the EFPs are in matching pairs, as a result of
the algorithm, it is possible to compare values on the EFPs. This step verifies whether
a quality demanded on the required side is guaranteed by the EFPs on the matching
provided side.

The verification of values must first select a sequence of required-provided EFP pairs
from the graph. The sequence P (V (

−→
G), V (

−→
G )) = {(vx, vy) | ∀x∃y : exy ∈ E(

−→
G) ∧

vx ∈ Vefp(
−→
G) ∧ vy ∈ Vefp(

−→
G)} contains EFP vertexes to be compared. A sequence

of EFP values attached to these vertexes is obtained applying the function value :

V (
−→
G) × V (

−→
G) → T × T where T is a set of EFP value instances computed on

respective vertexes.
Furthermore the function γ : T × T → Z (Section 2.1, equation 1) compares value

pairs returning a numeric result. Taking it together, the sequence of vertex pairs is trans-
formed to a set of numbers.

γ ◦ value : V (
−→
G)× V (

−→
G) → Z (7)

Using the functions, vertexes from the input sequence are finally compared:

zk = γk(valuek(P (V (
−→
G ), V (

−→
G))k)),

k = 1..|P (V (
−→
G ), V (

−→
G))|

The resulting sequence of numbers is checked. A non-negative number means that
a quality has been satisfied. For that reason the evaluator verifies that ∀k∃zk : zk ∈
[0,∞) ⊂ Z holds. Otherwise the evaluator signals an error for the EFP wrapped in the
respective vertex.

For instance, let us assume the property time_to_process with numeric values
and a γ function γ(x, y) = x − y (shorter processing time is better). Following Fig-
ure 3 with values assigned to vertexes vp := 10 and vo := 30 the evaluation returns
γ(value(vp, vo)) = γ(value(10, 30)) = 10 − 30 = −20. The result of the evalua-
tion for these vertexes leads to incompatible EFPs. For different values vp := 40 and
vo := 30 the evaluation would succeed.

4 Application to Industrial Frameworks

This part will demostrate the presented approach on the Spring IoC Container and the
OSGi framework. They have been selected as two widely used component frameworks
with no EFP support to show the strenghts of the proposed EFP approach to enrich
existing systems with EFPs.



Formalisation of a Generic Extra-Functional Properties Framework 213

4.1 Spring IoC Container

Components in Spring [13] have forms of so called Beans expressed as Java classes
with dependencies written in configuration XML files1 together composing Application
Context.

One of the approaches to connect communicating Beans is by setters. For that reason
each setter of a Bean denotes the required side of the Bean and the binding of the
provided to required side is equivalent to the examination of values (objects) injected
into the Bean.

Since Spring does not handle extra-functional properties, they must be explicitly
added by the EFP framework. The EFP Assignment module must therefore be ex-
tended to attach EFPs to Spring Beans. This may for instance be achieved by extending
Spring’s XML configuration files using additional XML name-spaces to include the
EFP declarations – this way, new XML tags do not clash with the existing ones and
the configuration separates concerns. We suggest a solution in which the EFP data are
mirrored in a stand-alone XML file and the links between the mirror and Spring Beans
are stored in the extended Spring XML files.

Here is an example of the solution based on the extended XML files:

<bean id="data" class="cz.zcu.kiv.example.DataAccess" >
<property name="jdbc" ref="jdbcDriver" />
<efp:name="response-time" property="jdbc" gr_id="1">

<efp:values>
<efp:lr id="1" value="average" />
<efp:direct value="100" />

</efp:values>
</efp:name>

</bean>

In order to evaluate EFPs attached on Spring Beans, the EFP evaluator may obtain Bean
binding directly from the container life-cycle using so called Bean Post Processors. It
provides developers with a rich spectrum of call-back methods allowing to observe the
container life-cycle.

For the purposes of component matching, the InstantiationAwareBeanPostProcesso-
rAdapter class is useful to monitor bindings of Bundles with one another. Its imple-
mentation prepares the pairs of matching Beans for the μ function when other Beans
are injected into the current one.

An application of the EFP Evaluator for Spring is straightforward. Using the strategy
with Bean Post Processors, the evaluator is invoked as a new Bean is instantiated first,
then the attached EFPs are evaluated (Section 3.2). Depending on particular needs, the
evaluator can be invoked for each change in the Application Context or only once when
the system starts. Any errors found in the evaluating process may cause the Application
Context to stop as well as the errors to be logged.

1 For the purposes of clarity, this paper targets only the Spring’s XML based configuration.
Other means such us the Spring’s annotation driven configuration is avoided without a loss of
generality.



214 K. Ježek and P. Brada

4.2 OSGi

The OSGi framework [14] packs components called Bundles as Java JAR files. Each
Bundle consists of a set of services (Java classes) communicating with services of other
Bundles. A specification of each Bundle is written in a text form as a part of the man-
ifest file. Bundle services are grouped into packages which in OSGi must be explicitly
imported (required) or exported (provided) in the manifest file to allow communication
with other Bundles.

Hence, a first option to extend OSGi by EFPs is to supplement the content of the
manifest file. For instance, a database layer of an application may be enriched with
extra-functional information as follows:

Manifest-Version: 1.0
Bundle-Name: Data
Export-Package: cz.zcu.kiv.osgi.example.dao;

efp:=1.db_engine=LR.2.memory

meaning that a property db_engine from GR with the identifier 1 has been assigned
a name memory from the context of a LR with the identifier 2. It is assumed that the
meaning of this name is stored separately, in the EFP data mirror attached to the Bundle.

This concept is similar to OSGi capabilities (OSGi release 4 specification [14])
which use name-spaces in similar manner to LR value names. However the capabili-
ties lack unification such as provided by the Registries. Moreover both approaches may
be too coarse-grained since the provided and the required elements are on the package
level. Therefore, this EFP assignment option does not necessarily prevent incompatible
services (Java classes in practice) to be run.

Another innovative concept of the OSGi 4 are Declarative Services (DSs). DSs pro-
vide Bundles with a fine tuned declaration of particular services stored in XML files.
Hence, EFPs can be in detail defined for services using an idea equivalent to name-
spaces, developed in this paper for Spring, applied to DSs.

Extending the manifest file with a link to a Declarative Service specification

Manifest-Version: 1.0
Bundle-Name: Data
Service-Component: OSGI-INF/dao.xml

the dao.xml file contains the declaration of one particular service DataAccess imple-
mented by a DAImplHSQL class. This can be enhanced with EFPs:

<component name="dao">
<implementation class="cz.zcu.kiv.osgi.app.dao.DAImplHSQL"/>

<service>
<provide interface="cz.zcu.kiv.osgi.app.dao.DataAccess"/>
<efp:name="response-time" gr_id="1">

<efp:values>
<efp:lr id="2" value="average" />

</efp:values>
</efp:name>

</provide> </service> </implementation>
</component>



Formalisation of a Generic Extra-Functional Properties Framework 215

According to the principles mentioned already for Spring, the evaluation process of
Bundles enriched with EFPs would take part in a component life-cycle. OSGi provides
a BundleListener which may be used by any Bundle to observe changes (starting,
stopping, installing, etc.) of other Bundles. Hence a Bundle invoking EFP framework
modules for each Bundle will determine compatibility in the phase of starting or in-
stalling other Bundles [15].

5 Related Work

This work has been partly based on our previous research. Namely, the structure of data
stored in the EFP repository is an implementation of our formal definitions published
in [9]. EFP Types has been implemented using meta-models detailed in [7]. Hence, the
repository part of the framework is mostly a complement of our previous work while
the other part is a new contribution.

There are a lot of other approaches targeting extra-functional properties. They usu-
ally cover a rich spectrum of issues, from formal definitions to practical implementa-
tions.

An often addressed issue is the description of extra-functional properties. One of
the expressing means are specialized languages, for example CQML [16] that serves
as a complete extra-functional language, CQML+ [17] that explicitly takes a runtime
environment dependency into account, or NoFun [10] that distinguishes between sim-
ple and derived extra-functional properties. Furthermore there exist rather specialized
languages such as TADL [18] which is a language describing architectures of systems
with a concern of EFPs, HQML [19] as a language targeted to web-development, or
the SLAng language suited especially for service-level agreement specifications [20].
A general advantage of such approaches is that they provide an answer of what an
extra-functional property should stand for. On the other hand they do not address the
question of how the properties should be evaluated. Developing our approach, we use
these languages to consolidate typical features of extra-functional properties into our
model.

Other works propose component frameworks taking extra-functional properties into
account as a part of their component models. Let us name at least Palladio [21] that
targets mainly performance characteristics, Robocop [3,4] for real-time characteristics,
or ProCom [22]. These approaches typically lack modularity in terms of the peculiar
ways of using extra-functional properties which prevents their EFPs to be used in other
component frameworks.

Comparing these approaches to our contribution, we aim at a system which is not tied
with a concrete component framework, is not intrusive and provides easy integration
with other frameworks.

6 Conclusions

This paper has presented a generic approach to address the need for improving current
component based development by extra-functional properties. The key contribution of
this paper lies in the definition of core EFP model structures and algorithms for working



216 K. Ježek and P. Brada

with EFPs in a comprehensive manner. Furthermore, their implementation in the form
of an independent framework has been described which includes a layered repository
of extra-functional properties, a module for assigning the properties to components and
an evaluator of the properties to determine EFP-based component compatibility.

Moreover, a problem of applicability of extra-functional properties to practice has
been identified, in particular the discrepancy of industrial and research component
frameworks together with slow adoption of extra-functional properties in practice. The
presented approach seamlessly enriches current industrial component frameworks with
EFPs and aims at filling the gap between the extra-functional properties research and
the practically used component frameworks.

We have created a set of tools to manage the EFP repositories and interact with the
Assignment and Evaluator modules of the framework; the implementation is presented
in [23]. Future work on the EFP model and framework includes integration with further
component models and investigation of its interplay with standard component binding
algorithms.

References

1. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. International Series in Software Engineering. Springer, Heidelberg (1999)

2. ISO/IEC: Informational technology – product quality – part 1: Quality model. International
standard ISO/IEC 9126, International Standard Organization (2001)

3. Muskens, J., Chaudron, M.R.V., Lukkien, J.J.: A Component Framework for Consumer Elec-
tronics Middleware. In: Atkinson, C., Bunse, C., Gross, H.-G., Peper, C. (eds.) Component-
Based Software Development for Embedded Systems. LNCS, vol. 3778, pp. 164–184.
Springer, Heidelberg (2005)

4. Bondarev, E., Chaudron, M.R., de With, P.H.: Compositional performance analysis of
component-based systems on heterogeneous multiprocessor platforms. In: Proceedings of
Euromicro conference on Software Engineering and Advanced Applications, pp. 81–91.
IEEE Computer Society (2006)

5. Yan, J., Piao, J.: Towards QoS-Based Web Services Discovery. In: Feuerlicht, G., Lamers-
dorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp. 200–210. Springer, Heidelberg (2009)
ISBN: 978-3-642-01246-4

6. Garcı́a, J.M., Ruiz, D., Ruiz-Cortés, A., Martı́n-Dı́az, O., Resinas, M.: An Hybrid, QoS-
Aware Discovery of Semantic Web Services Using Constraint Programming. In: Krämer,
B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 69–80. Springer,
Heidelberg (2007)

7. Ježek, K.: A complex meta-model for extra-functional properties concerning common data
types their comparing and binding. In: 2nd World Congress on Software Engineering (WCSE
2010), vol. 2, pp. 71–74 (2010) ISBN:978-0-7695-4303-1

8. Szyperski, C.: Component Software, 2nd edn. ACM Press, Addison-Wesley (2002)
9. Jezek, K., Brada, P., Stepan, P.: Towards context independent extra-functional properties de-

scriptor for components. In: Proceedings of the 7th International Workshop on Formal En-
gineering approaches to Software Components and Architectures (FESCA 2010). ENTCS,
vol. 264, pp. 55–71 (2010) ISSN: 1571-0661

10. Franch, X.: Systematic formulation of non-functional characteristics of software. In: Pro-
ceedings of International Conference on Requirements Engineering (ICRE), pp. 174–181
(1998)



Formalisation of a Generic Extra-Functional Properties Framework 217

11. Snajberk, J., Brada, P.: ENT: A generic meta-model for the description of component-based
applications. In: Proceedings of the 8th International Workshop on Formal Engineering ap-
proaches to Software Components and Architectures, Satellite event of ETAPS 2011, Saar-
brcken, Germany (2011)

12. Bauml, J., Brada, P.: Automated versioning in OSGi: A mechanism for component software
consistency guarantee. In: Proceedings of the EUROMICRO-SEAA Conference, pp. 428–
435. IEEE Computer Society Press (2009)

13. Spring Comunity: Spring Framework, Reference Documentation. ver. 3 edn. (2010),
http://static.springsource.org/spring/docs/3.0.x/
spring-framework-reference/html/

14. The OSGi Alliance: OSGi Service Platform, Release 4 (2005), http://www.osgi.org/
15. Brada, P.: Enhanced OSGi bundle updates to prevent runtime exceptions. In: Proceedings of

the 34th Euromicro SEAA Conference. IEEE CS, Parma (2008)
16. Aagedal, J.Ø.: Quality of Service Support in Development of Distributed Systems. PhD the-

sis, University of Oslo (2001)
17. Röttger, S., Zschaler, S.: CQML+: Enhancements to CQML. In: Bruel, J.M. (ed.) Proc. 1st

Int’l Workshop on Quality of Service in Component-Based Software Engineering, Toulouse,
France, Cépaduès-Éditions, pp. 43–56 (2003)

18. Mohammad, M., Alagar, V.S.: TADL - an Architecture Description Language for Trustwor-
thy Component-Based Systems. In: Morrison, R., Balasubramaniam, D., Falkner, K. (eds.)
ECSA 2008. LNCS, vol. 5292, pp. 290–297. Springer, Heidelberg (2008)

19. Gu, X., Nahrstedt, K., Yuan, W., Wichadakul, D., Xu, D.: An XML-based quality of service
enabling language for the web. Journal of Visual Language and Computing, Special Issue on
Multimedia Language for the Web 13, 61–95 (2001)

20. Lamanna, D.D., Skene, J., Emmerich, W.: Slang: A language for defining service level agree-
ments. In: The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems,
FTDCS 2003. IEEE Computer Society, Los Alamitos (2003)

21. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-driven
performance prediction. Journal of Systems and Software 82, 3–22 (2009); Special Issue:
Software Performance - Modeling and Analysis

22. Sentilles, S., Štěpán, P., Carlson, J., Crnković, I.: Integration of Extra-Functional Properties
in Component Models. In: Lewis, G.A., Poernomo, I., Hofmeister, C. (eds.) CBSE 2009.
LNCS, vol. 5582, pp. 173–190. Springer, Heidelberg (2009)

23. Ježek, K., Brada, P.: Correct matching of components with extra-functional properties – a
framework applicable to a variety of component models. In: Evaluation of Novel Approaches
to Software Engineering (ENASE 2011). SciTePress (2011) ISBN: 978-989-8425-65-2

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/
http://www.osgi.org/


Author Index

Abeywickrama, Dhaminda B. 98
Aguiar, Rui L. 114

Blau, Benjamin S. 32
Brada, Premek 203

Caivano, Danilo 155
Chen, Cong 145
Churcher, Neville 49

Delgado, Andrea 64

Fassunge, Martin G. 32

Garćıa, Félix 130
Garcia, Miguel 16
Gomolka, Andreas 82
González, Pascual 169
Guzmán, Ignacio Garćıa-Rodŕıguez de

64

Hildenbrand, Tobias 32
Humm, Bernhard 82

Irwin, Warwick 49

Ježek, Kamil 203

Knapper, Rico 32

Lamancha, Beatriz Pérez 155
Li, Zheng 185
López-Jaquero, Vı́ctor 169

Mazarakis, Athanasios 32
Montero, Francisco 169

Navarro, Elena 169

O’Brien, Liam 185
Ortin, Francisco 16

Pereira, Oscar M. 114
Piattini, Mario 64, 130
Polo, Macario 155

Ramakrishnan, Sita 98
Reales, Pedro 155
Ruiz, Francisco 64, 130

Sánchez-González, Laura 130
Santos, Maribel Yasmina 114

Teruel, Miguel A. 169

Voigt, Janina 49

Wang, Qing 1
Weber, Barbara 64

Xu, Yongchun 32

Yang, Ye 1

Zhang, He 185
Zhang, Kang 145
Zhang, Wen 1


	Title
	Preface
	Organization
	Table of Contents
	Papers
	A Study on Software Effort Prediction Using MachineLearning Techniques
	Introduction
	Effort Prediction Using Machine Learning
	Effort Prediction with Unsupervised Learning
	Effort Prediction with Supervised Learning

	Experiments
	The Data Sets
	Evaluation Measures
	Experimental Results

	Threads to Validity
	Related Work
	Concluding Remarks
	References


	Modularizing Different Responsibilities into Separate Parallel Hierarchies
	Introduction
	Related Work
	The Parallel Hierarchies Design Pattern
	Structure
	Collaborations
	Consequences
	Implementation
	Applicability

	Sample Code
	Conclusions
	References


	Steering through Incentives in Large-Scale Lean Software Development
	Introduction
	Related Work
	Agile Team Practices
	Large-Scale Lean and Agile
	Social Psychological Aspects

	Methodology
	Assumptions and Model
	Work Items and Artifacts
	Team Process and Structure
	Model Parameters and Behavior

	Simulation
	Rounds
	Actions
	Feedback and Learning Behavior
	Parametrization and Hypothesis

	Evaluation Results and Implications
	Individual Incentives
	Team Incentives
	Practical Implications

	Summary of Findings and Conclusions
	References

	Comparing and Evaluating Existing Software Contract Tools
	Introduction
	Background
	Contract Technologies
	Core Contract Support
	Special Operators and Quantifiers
	The Contract Language
	Integration of Contracts into Source Code
	Side Effects in Contracts
	Precondition Visibility
	Checking of Class Invariants
	Inheritance of Contracts
	Conversion of Contracts into Runtime Checks

	Discussion
	Conclusions
	References


	Continuous Improvement of Business Processes Realized by Services Based on Execution Measurement
	Introduction
	BP Continuous Improvement Process (BPCIP)
	Process Phases and Activities

	BP Execution Measurement Model (BPEMM)
	BPEMM Definition

	Example
	Related Work
	Conclusions and Future Work
	References


	Structure Editors: Old Hat or Future Vision?
	Introduction
	Layout and Behaviour Principles
	A Structure Editor for Lisp
	Why Lisp?
	Code Presentation
	Editing
	Implementation

	Evaluation
	Survey Preparation
	Conducting the Survey
	Results

	Related Work
	Early Structure Editors
	Program Tree Editor
	Subtext
	A Structure Editor for C#
	Structure Editors and Language-Oriented Programming

	Conclusions
	An Interesting Mismatch
	Structure Editors Are Still Useful
	Future Work

	References

	A Framework for Aspectual Pervasive Software Services Evaluation
	Introduction
	Background
	Pervasive Services Engineering for Service-Oriented Architectures
	Case Study: Awareness Monitoring and Notification Pervasive Service
	Context-Dependent Adaptive Behavior Generation

	Evaluation Framework
	Vertical Evaluation
	Aspectual FSP Generation Tool
	Groher and Schulze's Approach
	Whittle and Jayaraman's Approach
	Cottenier et al. Approach
	Fuentes et al. Approach

	Horizontal Evaluation
	Formal Methods and Tools Used
	Context and Adaptation of the Customization Approach

	Conclusions
	References


	ABC Architecture: A New Approach to Build Reusable and Adaptable Business Tier Components Based on Static Business Interfaces
	Introduction
	Motivation
	Related Work
	Call Level Interfaces
	ABC Architecture
	ABC Life Cycle
	Design Phase
	Deployment Phase
	Runtime Phase
	Seamless Operation
	ABC Example Based on JDBC API

	Conclusions
	References


	Improving Quality of Business Process Models
	Introduction
	Business Process Model Improvement
	Measurement of Business Process Conceptual Models
	Evaluation of Measurement Results
	Redesign of Business Process Models

	Experience Report: Hospital Process
	Applying Improvement Activities

	Implications and Limitations
	Conclusions and Future Work
	References


	Team Radar: A Radar Metaphor for Workspace Awareness
	Introduction
	Related Work
	Team Radar
	Design Rationale
	Architecture
	Capturing Local Events
	Visualization
	Metaphors
	Visualization Implementation


	Conclusions
	References


	Model-Driven Test Code Generation
	Introduction
	Metamodels and Standards 
	Model-Driven Testing Approach
	Test Model Generation
	Transformations from Models to Code
	MOFScript Transformations 
	An Example of MofScrip Rule: uml:Interaction::mapAsAMethod 
	JUnit Code Generated 
	Model-Driven Testing Framework implementation 

	Related Work
	Conclusions
	References


	Comparing Goal-Oriented Approaches to Model Requirements for CSCW
	Introduction
	Related Works
	Goal-Oriented Proposals: An Analytical Background
	NFR Framework
	i* Framework
	KAOS Methodology

	Running Example
	Remote Cursors
	Participant List and Chat
	Revision History

	Empirical Evaluation
	Modeling the Running Example
	Evaluating GO Approaches

	Conclusions and Further Works
	References


	Towards Interdisciplinary Approach to SOA Implementations
	Introduction
	Challenges of Successful SOA Implementation
	Interdisciplinary Research
	Seeking Interdisciplinary Strategies to Deal with SOA Challenges

	SOA: An Organizational Perspective
	Analogies between SOA Implementation and OrganizationDesign
	Goal and Strategy
	Environment and Scope
	Structure
	Process
	Coordination and Control

	Interdisciplinary Strategies for SOA Implementation
	S1: Applying TQM to SOA Implementation
	S2: Flattening the Structure of SOA Systems
	S3: Taking Measurements at Interim Steps in Business Process
	S4: Building Virtual Business Process Teams

	An Example Case
	Applying TQM (S1)
	Flattening the Structure (S2)
	Measuring Interim Steps in Process (S3)
	Building Virtual Teams (S4)

	Conclusions and Future Work
	References


	Formalisation of a Generic Extra-Functional Properties Framework
	Introduction
	Structure of the Paper

	Extra-Functional Framework Modules
	Extra-Functional Properties Types
	Universal EFP Repository
	Assigning EFPs to Components: Applicability of EFPs to Variety of Component Models
	EFP Assignment Types
	EFP Evaluation and Binding

	EFP Evaluator Algorithms and Formalizations
	Structure of EFPs Graph
	Evaluation of EFPs

	Application to Industrial Frameworks
	Spring IoC Container
	OSGi

	Related Work
	Conclusions
	References



	Author Index



