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Male mating success in a North American pitviper:
influence of body size, testosterone, and spatial metrics
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Males with enhanced traits relative to conspecifics often show increased mating and reproductive success and thus
have a fitness advantage. The opportunity or potential for sexual selection is predicted to occur under these
conditions. Here, we investigated proximate determinants of mating success in male copperhead snakes
(Agkistrodon contortrix), a medium-sized pitviper of North America. Specifically, we investigated the relationships
of body size (snout-vent length, body mass), body condition index, spatial metrics (total distance moved, home range
size), and plasma testosterone concentration on mating success in males. The single mating season lasts from
August through September. We compared a set of candidate linear mixed models and selected the best-fitting one
using the adjusted Akaike Information Criterion (AICc). The AICc-selected model (model 2), with testosterone,
body condition index, and home range size as predictor variables, showed that male mating success was positively
correlated with testosterone. To our knowledge, this is the first report to show the relationship of testosterone and
individual mating success in any snake species. A parallel study conducted on male fitness in A. contortrix of the
same population used microsatellite markers to assign parentage of fathers (known mothers). Unlike our study,
they found that snout-vent length was positively correlated with reproductive success and that males were
experiencing greater sexual selection. This relationship has been detected under natural conditions in other species
of snakes. Although behavioural data are important in any mating system analysis, they should not stand alone
to infer parentage, relationships or selection metrics (e.g. Bateman gradients). Long-term sperm storage by
females, female cryptic choice, and other factors contribute to the complexity of mating success of males.
Accordingly, we thus conclude that estimates of reproductive success and fitness in cryptic species, such as
copperheads and other snakes, require robust molecular methods to draw accurate conclusions regarding proxi-
mate and evolutionary responses. © 2015 The Linnean Society of London, Biological Journal of the Linnean
Society, 2015, 115, 185-194.

ADDITIONAL KEYWORDS: Agkistrodon contortrix — copperhead — male reproductive success — mating
systems — reptiles — sex steroid hormones — sexual selection — snakes.

INTRODUCTION the primary mate searching sex (Darwin, 1871,
Bateman, 1948; Trivers, 1972; Emlen & Oring, 1977;
Thornhill & Alcock, 1983; Kokko & Wong, 2007).
Furthermore, male mating success is often correlated
with visible phenotypic traits (e.g. horns, ornaments,
body size) that increase priority-of-access to females.
*Corresponding author. E-mail: smithcf@wofford.edu These traits are used in competitive fights with

Theoretical and empirical studies of animal mating
systems have repeatedly demonstrated that males are
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conspecifics, mate-searching tactics, and attracting
females, hence mate choice (Thornhill & Alcock, 1983;
Andersson, 1994; Emlen, 2001; Shuster & Wade,
2003; Smith et al., 2008; Klose, Welbergen & Kalko,
2009). However, mating success can also be influenced
by non-visible traits such as performance ability
(Arnold, 1983; Husak & Fox, 2008; Careau &
Garland, 2012), personality (Dall et al., 2012; Wolf &
Weissing, 2012), sexual and fighting experience
(Riechert, Chastel & Becker, 2012), and concentra-
tions of circulating sex hormones (Sinervo et al., 2000;
Adkins-Regan, 2005; John-Alder et al., 2009; Neff &
Knapp, 2009). In males, elevated levels of plasma
testosterone (T) can increase aggression, vigilance at
territories, quality of traits (e.g. colours of feathers
and song type), courtship skills, and whole-body per-
formance, including locomotor capacity during mate
searching (Husak et al., 2006; Hau, 2007; Careau &
Garland, 2012). Males with enhanced traits relative
to conspecifics often show differential reproductive
success (progeny) and thus a fitness advantage
(Shuster & Wade, 2003). Under the aforementioned
conditions, the opportunity is present for sexual selec-
tion to act on males (Darwin, 1871; Arnold & Duvall,
1994; Shuster & Wade, 2003; Jones, 2009).

Among terrestrial vertebrates, most research on
mating systems and traits associated with mating
success has concerned birds and mammals, with far
fewer studies on amphibians and non-avian reptiles
such as lizards and snakes. Taxon biases are even
found within reptiles, with far less information avail-
able on snakes, for instance, than in other lineages
(Bonnet, Shine & Lourdais, 2002; Shine, 2003). Secre-
tiveness, cryptic habits, rarity, and small body size
play a significant role in explaining this historic gap
of information in snakes (Bonnet et al., 2002; Clark
et al., 2014). Nonetheless, in recent years, radio-
telemetry has circumvented many logistical problems
in locating and observing wild individuals for
extended periods (Reinert, 1992; Dorcas & Willson,
2009). Several lineages in particular, the viperids
(Jellen et al., 2007; Glaudas & Rodriguez-Robles,
2011; Clark et al., 2014), several species of colubrids
(Blouin-Demers, Gibbs & Weatherhead, 2005; Dubey
et al., 2009), boids (Rivas & Burghardt, 2005) and
pythonids (Slip & Shine, 1988) have proved particu-
larly valuable in radiotelemetric studies of mating
systems of snakes (Duvall, Arnold & Schuett, 1992;
Aldridge & Duvall, 2002; Clark et al., 2014). This
success is largely due to large body size, high visibil-
ity, spatial predictability, and high population densi-
ties (Duvall et al., 1992; Duvall, Schuett & Arnold,
1993), which have permitted the field study of their
mating systems, reproductive success, and sexual
selection (Duvall & Schuett, 1997; Coupe, 2002;
Greene et al., 2002; Rivas & Burghardt, 2005; Jellen

et al., 2007; Dugan, Figueroa & Hayes, 2008; Glaudas
& Rodriguez-Robles, 2011; Schuett, Repp & Hoss,
2011; Schuett et al., 2013; Clark et al., 2014).

Here, we tested hypotheses concerning the mating
system of copperhead snakes (Agkistrodon contortrix),
a medium-sized pitviper of North America (Fitch,
1960; Gloyd & Conant, 1990) using linear mixed
models (Burnham & Anderson, 2004). Specifically, we
asked the following questions: (1) Is body size (snout-
vent length, body mass) and body condition index
(BCI) in males correlated with their mating (copula-
tion) success? This taxon exhibits male-biased sexual
size dimorphism (Fitch, 1960). (2) Do males that move
greater distances and have larger home ranges locate
and copulate with more females? and (3) Are concen-
trations of plasma testosterone in males correlated
with their mating success (which we define as the
frequency of copulations with unique mates)?

MATERIAL AND METHODS
RESEARCH SITE

The study site was located in a 485 ha parcel of basalt
trap rock ridge ecosystem situated 4.75 km NW of
Meriden, Connecticut. Details of the topography and
climate of this region are presented elsewhere (Smith,
2007; Smith et al., 2009).

SUBJECTS

After their initial capture in spring (April), subjects
were transported to the laboratory for processing.
Under Isoflurane anesthesia, body mass (+ 0.5 g) was
determined using a triple beam balance, and snout-
vent length (SVL: cm + 0.2) was measured using a
non-stretchable cloth measuring tape. Ten adult
males were surgically implanted with standard radio-
transmitters (per Smith et al., 2009; Smith, Schuett &
Schwenk, 2010). Using procedures of Waye & Mason
(2008), the BCI of each male we selected to radio-
track was calculated as the residual score from the
general linear regression of In-transformed mass
against In-transformed SVL.

Regardless of size, all copperheads encountered at
the field site were permanently marked for future
identification using passive integrated transponder
(PIT) tags (125 kHz 12 mm, Biomark, Boise, Idaho,
USA; Gibbons & Andrews, 2004). PIT tags were
injected one-third of the body length anterior from the
cloaca and the last three characters of the
10-character PIT code were used as an identification
code for all records pertaining to an individual.

RADIO-TRACKING AND BEHAVIOURAL OBSERVATIONS

The ten male subjects implanted with radio-
transmitters were located every 48-72 h in August
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and September on foot using radio-tracking equip-
ment described in Smith et al. (2009). Reproductive
behaviours (i.e., bisexual pairings, courtship, and
coitus) were determined by direct observation (Smith
et al., 2009, 2010). Only observations involving coitus
were used in the present analysis.

SPATIAL MEASUREMENTS

Subjects implanted with radio-transmitters were
located and observed in the field on 17 occasions
during August and 19 times during September (Smith
et al., 2009). Movement distances and home range
sizes for males were calculated using the Animal
Movement Extension option in ArcView 3.2 (Hooge,
Eichenlaub & Solomon, 1999). Home range size was
estimated using 100% minimum convex polygon
(MCP) and kernel 95% and 50% contour intervals as
determined by ArcView. Because a single point lying
outside the normal range of an animal can artificially
inflate activity range size, range estimates were recal-
culated after removing 5% and 10% of outliers using
the Animal Movement harmonic mean outlier
removal procedure (Hooge et al., 1999). Comparisons
of values prior to and following outlier removal
showed no significant outlier effect; therefore, only
values prior to outlier removal were used in the
statistical analyses. For kernel estimates of home
range size, smoothing values were determined using
least-squares cross-validation (Seaman et al., 1999).

We were unable to monitor every movement made
by each male; hence, we relied on analyzing their
movements as straight-lines. Although straight-line
estimates of movement can underestimate the actual
distance moved by as much as 50% (Madsen, 1984;
Tiebout & Carey, 1987; Secor, 1992), based on our

tracking protocol we assumed underestimation of
straight-line movement to be equivalent for all indi-
viduals (Secor, 1994; see Table 1 herein).

COLLECTION OF BLOOD FOR MEASURING HORMONES

Blood for subsequent hormone analysis was sampled
from all radio-tracked males at four equally spaced
times; twice during August and twice during Septem-
ber. From these samples, radio-immunoassays (RIAs)
were conducted for testosterone (T). Measurement of
T in this copperhead population is detailed in Smith
et al. (2010). Briefly, following their capture, blood
was collected immediately in the field. Collection of
blood samples to obtain plasma for sex steroid analy-
sis was accomplished by gently restraining subjects in
a clear acrylic tube. A small volume of blood (0.5-
1 mL; less than 4% of total blood volume) was col-
lected via heart-puncture (cardiocentesis) using a
sterile-disposable 1 mL tuberculin syringe (coated
with sodium heparin), fitted with a sterile-disposable
26-gauge needle. Sampling typically required < 60 s
from initial capture until the blood sample was
obtained (Schuett et al., 2004a) and the subject
released (or held for further processing). Blood was
transported in individual 1.5 mL centrifuge tubes at
ambient (~20 °C) temperature. Steroid levels are
unaffected when blood is maintained at ambient tem-
peratures for short (< 24-h) periods (Taylor & Schuett,
2004).

In the laboratory, the blood samples were placed in
disposable microcentrifuge tubes (1 mL) and centri-
fuged at 13 000 g at room temperature (21-23 °C) for
5 min to separate plasma. Plasma was collected using
a micropipette fitted with a sterile-disposable tip and
transferred to another microcentrifuge tube that was

Table 1. Mating success variables used in linear mixed models (Table 2) involving ten adult male copperhead subjects
(Agkistrodon contortrix). Measurements were obtained in the mating season (August and September, 2003)

ID SVL BM BCI T (ng mL™) TDM HRS MS
15a 76.2 322.8 0.4598 35.90 817.70 0.29 1
e36 68.5 194.1 —-0.0003 35.73 962.03 1.04 1
d54 95.1 347.8 0.4340 27.27 1985.69 2.92 5
96¢ 60.4 160.2 -0.1351 32.31 2068.30 3.03 2
T1lc 78.0 321.9 0.4466 26.74 2761.87 7.54 5
4gh 71.6 274.5 0.3260 41.32 2741.11 6.96 3
06a 62.1 166.0 -0.1121 39.96 2460.16 8.03 5
825 78.2 361.0 0.5599 34.79 1481.10 1.96 4
263 75.4 283.1 0.3344 28.35 4658.69 14.91 5
104 83.2 468.1 0.7916 35.92 1438.27 1.97 2

ID = male subject; SVL = snout-vent length (cm); BM = body mass (g); BCI = body condition index; T = mean plasma
testosterone (ng mL™?) level for the mating season; TDM = total distance moved (m); HRS = home range size (minimum
convex polygon, hectare); MS = frequency of male mating success (coitus) with unique females for the mating season.
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permanently labeled with the specimen identification
code and date. Plasma samples were placed in an
ultra-low freezer (-80°C) wuntil RIAs could be
performed.

RADIO-IMMUNOASSAY OF TESTOSTERONE

Procedures for conducting radio-immunoassays
(RIAs) of testosterone (T) followed Schuett et al.
(1997, 2004a, b, 2005, 2006). Briefly, in quantifying T,
we used commercial RIA kits but with several appro-
priate modifications (e.g. use of snake plasma rather
than rat plasma for validation procedures) to measure
steroid concentrations from the collected plasma of
subjects. Validation included both quantitative recov-
ery and parallelism. All values for plasma T concen-
trations are in ng mL™!. Two different RIAs were
performed for T and all samples were run in duplicate
(duplicate reactions from a single extraction). The
intra-assay coefficients of variation (CVs) were 9.1%
and 11.1 %, and the inter-assay CV was 11.9%. Tes-
tosterone data (Table 1) represent the arithmetic
means of four samples for each of the ten males
during the mating season (August and September).

VARIABLES OF MALE MATING SUCCESS

The influence of body length (SVL), BCI, testosterone
(T), total distance moved (TDM), and home range size
(HRS) on male mating success (number of unique
copulated females) were compared with five linear
mixed models using the R statistical program (R Core
Team, 2014) and packages lme4 (Bates et al., 2014),
ImerTest (Kuznetsova, Brockhoff & Christensen,
2014), and MuMIn (Barton, 2014). We included
month (to account for serial autocorrelation) and ID
(to account for non-independence of multiple records
of individuals) as random variables, male mating
success as a response variable, and SVL, BCI, TDM,
HRS, and T as predictor variables. To select the
best-fitting, most parsimonious model from among
the five candidate models, we used Akaike’s Informa-
tion Criterion adjusted for small sample sizes (AICc)
(Burnham & Anderson, 2004; Bolker, 2008).

RESULTS
SUBJECTS

Variables (SVL, BCI, TDM, HRS and T) analyzed in
this study are presented in Table 1. Snout-vent length
(SVL) and body mass (BM) were highly correlated
(F=15.47, P=0.004, R*=0.66, N =10); therefore,
owing to the stability of SVL (e.g. mass can change
instantaneously with food or water consumption), it
was used as the metric of male body size in all
subsequent analyses. The SVLs of the ten radio-

tracked males ranged from 62.1-85.2cm (SVL
mean = 74.87 cm, + 3.21 SE, N =10). Mean SVL of
the radio-tracked males was not significantly differ-
ent from mean SVL of all other adult males we
measured (SVL mean = 75.20 cm = 1.58 SE, N =47,
P =0.46).

Adult males were significantly larger (SVL, BM)
than females (SVL: F =18.8677, P <0.0001; body
mass: F'=3.9757, P = 0.0256), a phenomenon termed
male-biased sexual size dimorphism (SSD). This rela-
tionship has been reported in copperheads (Fitch,
1960, 1981) and many other snake species (Shine,
1994; Amarello et al., 2010).

RADIO-TRACKING AND BEHAVIOURAL OBSERVATIONS

During August and September, mating was recorded
in the ten males with radio-transmitters on 33 occa-
sions involving 18 females (14 females fitted with
radio-transmitters for a related concurrent study and
4 ‘incidental’ females that were not fitted with radio-
transmitters) (Table 1). Highly significant correla-
tions were detected among the three parameters used
to estimate male HRS (MCP, 95% kernel, 50% kernel
home range, R? > 0.63, P < 0.006, but for reasons dis-
cussed by others (Row & Blouin-Demers, 2006), MCP
was selected for all statistical comparisons. Total dis-
tance moved (TDM) and HRS were also highly corre-
lated (R?=0.96, P = 0.0001).

MALE MATING SUCCESS VARIABLES

The AICc-selected model (model 2) included HRS, T,
and BCI as predictor variables (Fig. 1, Table 2). The
frequency of male mating success was significantly
correlated with T (f=0.051+0.02, t=2.99, P=
0.013), but not BCI (B=0.588+0.94, t=0.63,
P=0552) or HRS (f=0.125+0.06, t=2.03,
P =0.079). None of the other candidate models were
equally parsimonious (AAIC < 4), but model 1, which
included HRS, T, and SVL as predictor variables, was
close based on AAIC (AAIC =5). In model 1, male
mating success was significantly correlated with HRS
(3=0.137+0.06, t=2.45 P=0.026) and T (=
0.054 £ 0.02, t=3.35, P=0.0004), but not SVL
(B=0.045 +£0.03, t = 1.75, P = 0.10). Unlike model 2,
HRS was significant in model 1, and in both models T
was significant.

DISCUSSION

The AICc-selected model (model 2), with T, BCI, and
HRS as predictor variables, showed that the fre-
quency of male mating success was positively corre-
lated only with T. Of our three hypotheses, we did not
anticipate rejecting large body size (SVL) and BCI.
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Figure 1. Relationship of plasma testosterone and mating
success (frequency of copulation involving new females) in
ten male copperheads (Agkistrodon contortrix). Gray
circles denote August, and black circles denote September.
See Table 1.

Table 2. Model selection criteria (Akaike’s Information
Criterion, AIC) and fitted parameters. Each model
included month to account for serial autocorrelation and
ID to account for non-independence of multiple records of
individuals as random variables, and male mating success
as a response variable. AICc = Akaike’s Information Cri-
terion adjusted for small sample sizes, AAICs = difference
between AICc and most parsimonious model’s AlCc.
HRS = home range size; T = testosterone; BCI = body
condition index; TDM =total distance moved; and
SVL = snout-vent length. See Table 1. For further details
see Methods

Model AlCc AAICc Predictor variables
2 91 0 HRS, T, BCI
1 96 5 HRS, T, SVL
4 101 10 TDM, T, BCI
3 106 15 TDM, T, SVL
0 116 24 HRS, T, SVL, TDM

Schuett (1997), for example, reported that large body
size in male copperheads was important in winning
fights and obtaining priority-of-access to mates
under laboratory conditions. Other studies concerning
snakes support these results (Madsen et al., 1993;
Madsen & Shine, 1994; Shine, 2003; Jellen et al.,
2007; Dubey et al., 2009). Presumably, large males
also are capable of moving greater distances
and having larger home ranges (Glaudas &
Rodriguez-Robles, 2011). Nonetheless, several field
studies of pit vipers and other snakes corroborate our

current findings with respect to SVL and male mating
success (Duvall & Schuett, 1997; Blouin-Demers
et al., 2005; Jellen et al., 2007; Dubey et al., 2009;
Ursenbacher, Erny & Fumagalli, 2009).

We also predicted that total distance moved (TDM)
and HRS would be positively correlated with male
mating success, but under model 2 TDM was not
selected and HRS was rejected though approached
significance (P =0.079). In model 1, however, HRS
was significant (P = 0.026). Other studies of snakes
have shown a positive relationship with movements,
HRS and mating (coitus) success in males (Duvall &
Schuett, 1997; Prosser et al., 2002; Weatherhead
etal., 2002; dJellen etal, 2007; Glaudas &
Rodriguez-Robles, 2011).

In model 2 we found support for our hypothesis that
plasma testosterone levels of males would be signifi-
cantly correlated with frequency of mating success
(the number of copulations with unique mates).
Studies investigating the relationship of T and
mating success in wild snakes are essentially nonex-
istent, but studies of other vertebrates show that
males with high levels of circulating androgens (e.g.
T) often secure more mates and have greater mating
success through displays and colour patterns influ-
encing female choice, successfully holding territories,
or by winning fights, challenges and guarding mates
(Wingfield, 1984; Alatalo et al., 1996; Ketterson &
Nolan, 1999; Westneat & Stewart, 2003; Hau, 2007;
Ouyang et al., 2011). Furthermore, males with higher
T levels show greater locomotor and whole-body per-
formance (Irschick et al., 2008; Higham & Irschick,
2013), which can lead to increased encounters with
females (Garamszegi et al., 2005) and greater repro-
ductive success (Sinervo etal., 2000; Gowan,
McBrayer & Rostal, 2010). Importantly, Garland,
Bennett & Daniels (1990) showed that locomotor per-
formance in garter snakes (Thamnophis s. fitchi) is
heritable and thus a target of selection (Husak et al.,
2006, 2009; Irschick et al., 2008). In general, high
levels of activity coupled with mate searching and
interactions with females, a sort of endurance rivalry,
can often predict male mating and reproductive
success (Keogh et al., 2012).

King and colleagues (King, 2002; King, Cline &
Hubbard, 2004; King & Bowden, 2013) provide
groundbreaking research on the inheritance of testos-
terone (T) levels in North American natricine snakes
(genus Thamnophis). Importantly, significant effects
were detected with respect to heritability estimates
(h?) and family differences. However, whether greater
T levels in adult male Thamnophis translates to
increased reproductive success remains for future
studies (King & Bowden, 2013). Though not known in
non-avian reptiles, selection can act on testosterone
production in wild birds (McGlothin et al., 2010).
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Heritability, family differences, and selection on T
levels and production have not been studied in cop-
perheads or other snakes and is thus a rich area for
future research.

Finally, with few exceptions (Schuett & Grober,
2000), most studies concerning steroid levels in
snakes report only means and standard errors rather
than individual values for individuals (Taylor &
DeNardo, 2011). Our previous work on copperheads
from the population we report here, for example, only
provided means and standard errors (Smith et al.,
2010). Accordingly, we support the view that a full
understanding of variance in reproductive success
and endocrinological metrics will need to incorporate
the shifting paradigm of individual differences and
animal personalities (Kempenaers, Peters & Foerster,
2007; Zera, Harshman & Williams, 2007; Dall et al.,
2012; Wolf & Weissing, 2012). Instead of abandoning
altogether the ‘tyranny of the Golden Mean’ (Bennett,
1987; Williams, 2008), we suggest also presenting
data on individuals.

MEASURING SEXUAL SELECTION

In other species of snakes, including viperids, stand-
ard variances on mating frequencies (Is=c%/y?,
Wade, 1979; Wade & Arnold, 1980) have been used as
estimates of the potential for sexual selection
(Madsen & Shine, 1994; Duvall & Schuett, 1997;
Prosser et al., 2002). For example, based on our
mating data in Table 1, we found that Is for copper-
heads showed no sex differences (Kolmogorov—
Smirnov two-sample test, ¢ =0.45 @ =0.40,
P =0.61; Zar, 1999). However, based on Arnold &
Duvall (1994) and Shuster & Wade (2003), mating
success and the potential for sexual selection is best
expressed as a function of the number of progeny
produced by an individual in a given reproductive
season. Furthermore, methods have been generated
to overcome statistical biases associated with
analyzing sexual selection gradients in open popula-
tions (Mobley & Jones, 2012).

Our research group (Levine et al., 2014) conducted
a parallel study on male fitness in A. contortrix from
the population discussed herein, but analyzed mating
success per Arnold & Duvall (1994) using 22
microsatellite markers to assign the parentage of
fathers (all mothers were known) and the methods
outlined in Mobley & Jones (2012) for open popula-
tions. Unlike the results of this study, Levine et al.
(2014) found that SVL was positively correlated with
male reproductive success (progeny) and males were
experiencing greater sexual selection than females.
With a range of alternative reproductive tactics oper-
ating in copperheads and other snakes, such as long-
term sperm storage, cryptic female choice, sneaky

males, and mate mimicry (Schuett, 1992; Zamudio &
Sinervo, 2000; Booth & Schuett, 2011; Jellen &
Aldridge, 2011; Clark et al., 2014; Levine et al., 2014),
the relationship of male body size, copulation success
and production of progeny to individual fitness is
complex and requires further investigation.
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