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Despite many studies on selective attention, fundamental questions remain about its nature and neural
mechanisms. Here I draw from the animal andmachine learning fields that describe attention as amechanism
for active learning and uncertainty reduction and explore the implications of this view for understanding
visual attention and eye movement control. I propose that a closer integration of these different views has
the potential greatly to expand our understanding of oculomotor control and our ability to use this system
as a window into high level but poorly understood cognitive functions, including the capacity for curiosity
and exploration and for inferring internal models of the external world.
Introduction
LongagodefinedbyWilliamJamesas ‘‘the focusingof themind,’’

selective attention is simultaneously one of our most pervasive

and most baffling cognitive functions. On one hand attention

is recruited for nearly every behavior and has been investigated

in humans, monkeys, mice, and rats. On the other hand despite

this wealth of research, significant questions remain about

the nature of attention, its purpose and neural mechanisms.

In humans and nonhuman primates, much of our knowledge of

the mechanisms of attention comes from the system of vision

and eye movement control. Intensive research into this system

has shown that attention affects sensory representations at all

levels of the visual hierarchy, starting from low-level areas such

as the lateral geniculate nucleus, through high-level cortical

areas in the inferior temporal lobe (Reynolds and Heeger,

2009; Saalmann and Kastner, 2011). These studies also suggest

that the source of attentional modulations lies, at least in part,

in sensorimotor areas associated with rapid eye movements

(saccades). Two areas that have been particularly well investi-

gated are the lateral intraparietal area and the frontal eye field

(shown in Figure 1A for the macaque monkey brain). Neurons

in these areas have spatial receptive fields and saccade-related

responses and respond selectively to stimuli that are likely to

attract attention in a variety of tasks. Not specifically sensory

or motor, these cells seem to encode the specific act of target

selection, and can provide feedback regarding this selection

both to earlier visual areas and to downstream movement struc-

tures that generate shifts of gaze.

Important questions remain however, about the significance

and computations underlying this target selection response.

Historically, two frameworks have been used to explain this

response. One line of research describes target selection in

motor decision terms, as the integration of evidence toward,

and eventual commitment to a shift of gaze (Gold and Shadlen,

2007; Kable and Glimcher, 2009). An alternative interpretation

describes it as stimulus selection—the act of focusing on a

sensory cue that may drive attentional modulations of the

sensory response (Bisley and Goldberg, 2010; Gottlieb and

Balan, 2010). While earlier studies have attempted to dissect
the visual versus the motor components of target selection,

more recent studies have emphasized the decision—free

choice—aspect of the saccadic response.However, thedecision

framework has remained largely separate from an attentional

interpretation and it is unclear to what extent the two frameworks

are compatible or distinct (Maunsell and Treue, 2006).

In this perspective, I propose a broader approach that inte-

grates elements of both explanations and considers the cogni-

tive aspects of eye movement control. Consistent with the

decision framework, I propose that the neural response to target

selection can be viewed as an internal decision that seeks to

maximize a utility function (i.e., increase a benefit and minimize

a cost). However, consistent with an attention interpretation I

emphasize that, as a system controlling a sensory organ—the

eye—this decision must be optimized for sampling information.

Therefore, the distinction between visual and motor selection,

which may seem trivial in sensorimotor terms, becomes highly

significant in a decision perspective. To understand oculomotor

decisions we must tackle the complex and little understood

question of how the brain ascribes value to sources of informa-

tion, and how this may differ from value determined by primary

reward.

The question of active information selection is rarely studied as

a distinct topic (and even more rarely in individual cells), but

it arises repeatedly in learning and memory research. Recent

evidence from computational and behavioral studies makes it

clear that processes of information selection tap into some of

our highest cognitive functions, involving, among others, intrinsic

curiosity and the ability for advance planning and forming

internal models of complex tasks (e.g., Gershman and Niv,

2010; Johnson et al., 2012). My goal in this perspective is to

consider these processes and their relevance to vision and eye

movement control. I begin with a brief overview of target selec-

tion responses in monkey frontal and parietal cortex and their

relation with attention and eyemovement control. I then consider

the possible relation between target selection and informa-

tion selection, drawing particularly on three areas that have

been traditionally separate from oculomotor research—namely,

studies on associative learning in humans and rats (Holland
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Figure 1. Current Approach to Attention
Research
(A) Cortical areas investigated in relation to atten-
tion. Lateral view of the macaque monkey cortex
showing some of the areas that have been
investigated in relation with attention, including
primary visual cortex (V1), area V4, the middle
temporal area (MT), and two sensorimotor areas,
the lateral intraparietal area (LIP) and the frontal
eye field (FEF).
(B) Normalization model of attention. The model
includes two populations of cells: feature selective
neurons that are sensitive to stimulus location
and features (e.g., orientation) and respond to a
stimulus with both excitatory and suppressive
drives (black panels, lower row) and attention
neurons that are selective only for location and
provide a selective multiplicative gain (gray, top
row). Reproduced with permission from Reynolds
and Heeger (2009).
(C) Reward sensitive target selection activity in
a decision task. Monkeys were trained to direct
gaze to one of two possible targets for receipt of

a juice reward, and the targets were placed so as to fall inside or opposite the receptive field of an intraparietal cell (dashed oval). Traces show the average
responses of a cell population, aligned on the time of target presentation and the monkeys’ subsequent choice. The neurons encoded the direction of the chosen
saccade, responding more for saccades directed toward versus away from the receptive field (blue versus green). Directional selectivity however became
stronger as a function of the difference in expected reward (dotted, thin solid, and thick solid traces show progressively larger differences in expected reward).
Reproduced with permission from Sugrue et al. (2004).
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and Maddux, 2010; Le Pelley, 2010; Pearce and Mackintosh,

2010),, studies of eye movement control in natural behaviors

(Hayhoe and Ballard, 2005; Tatler et al., 2011), and computa-

tional studies in the machine learning field (Dayan and Daw,

2008; Dayan et al., 2000; Oudeyer et al., 2007).

Because of the complexity and vastness of the topic, my

discussion will be necessarily incomplete. I will eschew circuit-

level mechanisms (most of which are currently unknown), and

detailed mathematical considerations (for which excellent

descriptions can be found elsewhere [Dayan and Daw, 2008;

Dayan et al., 2000; Oudeyer et al., 2007]). Despite these limita-

tions however, I hope that it will become clear in the forthcoming

discussion that appreciating the cognitive dimensions of eye

movement control is both a necessity and a source of strength.

Gaining this appreciation is necessary for explaining a range of

observations regarding the neural responses to target selection,

which have no good explanation in sensory or motor terms.More

importantly perhaps, broadening our perspective will strengthen

the field of oculomotor research and allow us to use the full

power of this system as a window into high-level but poorly

understood cognitive functions.

From Vision to Eye Movements, and an Intermediate

Stage

Research on selective attention in humans and nonhuman

primates spans numerous studies, using a vast array of psycho-

physical and neurophysiological techniques. While these studies

differ widely in their specific details, many share the common

feature that they direct subjects to attend to a specific item—

be it an object, feature, or location—and measure the effects

of attentional selection on perception or action. These studies

have shown that attention produces widespread effects

throughout early and late visual areas, which collectively in-

crease the signal from the attended item and suppress noise

from unattended distractors (Reynolds and Heeger, 2009). A

shift of attention can remain covert—generating only an im-
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provement in perceptual discrimination—or can be accompa-

nied by saccades—rapid eye movements that place the fovea

on the attended item. The oculomotor component of an atten-

tional response is generated by a network of cortical and subcor-

tical structures that includes portions of the basal ganglia, the

superior colliculus, and the frontal eye field (Schall et al., 2011;

Stanford et al., 2010).

Neurophysiological studies have also shown that, interposed

between visual processing and saccade production is an in-

termediate layer of target selection, which has been most

intensively investigated in the frontal eye field and the lateral

intraparietal area (Figure 1A). A large fraction of neurons in these

areas have spatial receptive fields and respond both to visual

stimuli and/or to a planned saccade. Rather than being selective

for a visual features, these cells encode a more abstract quantity

of target selection—i.e., discriminate between targets and dis-

tractors in a variety of tasks (Gottlieb and Balan, 2010; Thomp-

son and Bichot, 2005). Experiments that manipulate the salience

or relevance of visual cues show that target selection cells

respond very selectively to stimuli that are likely to be attended,

either because of their physical salience or behavioral relevance

(Gottlieb et al., 1998; Thompson and Bichot, 2005). Experiments

that dissociate visual selection from motor output show that

neural responses to target selection can be flexibly linked with

action—for example, being coupled with a shift of gaze, with

a skeletal response or with no immediate motor action (Balan

et al., 2008; Bisley and Goldberg, 2003; Schall et al., 2011).

Experiments involving direct manipulations (i.e., through micro-

stimulation or reversible inactivation) show that these two areas

produce both feedforward effects—specifying potential plans

for a saccadic response—and feedback influences—driving

the perceptual effects of attention that are expressed either in

visual neural responses (Moore and Armstrong, 2003; Noudoost

and Moore, 2011) or in psychophysical reports (Balan and Got-

tlieb, 2009; Wardak et al., 2006; Wardak et al., 2004).
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The Missing Link

Having thoroughly characterized the target selection response,

these studies set the stage for tackling the next critical question:

how does the brain generate this selective response, and how do

parietal and frontal cells ‘‘know’’ where to attend (Baluch and Itti,

2011)? Surprisingly, despite thewealth of attention research, few

studies have addressed this question. To appreciate this gap, let

us consider three classes of computational models that synthe-

size empirical findings on various aspects of selective attention.

One substantial body of investigation has examined the sen-

sorimotor transformation for eye movement control—the chain

of events through which visual selection generates an eyemove-

ment response. Recent models synthesizing these findings have

proposed a process of gated accumulation, whereby the accu-

mulation of information in saccade movement cells is insulated

from visual selection unless (or until) an eye movement becomes

appropriate (Lo andWang, 2006; Purcell et al., 2012; Schall et al.,

2011). Themodel captures a host of findings related to visual and

motor selection and the brain’s ability flexibly to link attention

with action. However, the model does not attempt to explain

target selection itself; it simply asks how visual selection, once

it has been generated, gives rise to an overt saccade.

A similar stance is adopted by models focusing on sensory

responses, which ask how parietal or frontal signals of target

selection may produce sensory attentional effects. A recent

‘‘normalization’’ model of attention has been particularly suc-

cessful in explaining a large number of sensory effects using

a simple biologically-plausible circuit (Reynolds and Heeger,

2009). As illustrated in Figure 1B, the model proposes that

a spatially selective ‘‘attention field’’ is fed back to the visual

system and multiplicatively scales visual inputs in spatially

specific fashion. Followed by divisive normalization based on

local competition with other visual inputs (‘‘suppressive drive’’),

this attentional influence results in a biased visual representation

where the attended stimulus ismore strongly represented (‘‘pop-

ulation response’’). The ‘‘attention field’’ conforms to the proper-

ties of the target selection response—i.e., it is sensitive to spatial

location but not visual features. However, this drive is portrayed

as a box with an output but no inputs; in other words, the model

focuses on its sensory effects, but not on how the drive is itself

generated.

And finally, a similar stance is adopted by models describing

the links between attention and decision formation. A common

theme in these models is that attention influences the accumula-

tion of evidence toward the attended option, making the subject

more likely to select that option (Krajbich et al., 2010). These

models begin by assuming that attention exists, but do not

explain how it may come to be—e.g., why subjects may attend

to a specific object in the first place.

These computational efforts therefore, reflecting the state of

the art in empirical research, uniformly treat attention as an

external bias term. They portray attention as a ‘‘cognitive force’’

that has widespread influences on perception and action but

which is itself external to, rather than emergent from, these latter

functions.

Target Selection as a Value Representation

A notable exception to this theoretical stance comes from an

unexpected source—a line of studies that have not addressed
attention per se but have used the eye movement system as

an experimental platform for studying decision formation. These

studies start from the premise that the ultimate goal of any act of

selection is to maximize an organism’s biological fitness. There-

fore it seems likely that, as specific types of selection, eye move-

ments and attention would also satisfy a utility function—i.e.,

seek to maximize a benefit and minimize a cost. Guided by this

idea, decision studies have trained monkeys to choose between

eye movement targets that deliver various amounts of juice

reward. By placing the targets inside and opposite the receptive

field of a target selective cell, these studies evoke the target

selection response and study its properties to gain insight into

decision formation.

A consistent outcome revealed by these investigations (which

have been typically carried out in the lateral intraparietal area) is

that the signal of target selection is not stereotyped but

increases as a function of the relative desirability of the alterna-

tive options (Kable and Glimcher, 2009; Sugrue et al., 2005).

An example of this result is shown in Figure 1C in a task where

monkeys had to choose between two alternative targets whose

payoffs varied dynamically from trial to trial (Sugrue et al., 2004).

Monkeys apportioned their choices in proportion to the recent

history of reward, and neurons in the lateral intraparietal area

increased their selective responses in proportion with the

target’s expected reward: firing for a saccade directed toward

the receptive field increased monotonically (blue traces, dashed

to solid), while firing for a saccade to a different location

decreased monotonically as a function of reward expectation

(green traces). Similar results are obtained in tasks that manipu-

late the desirability of a target using different methods, for

example by controlling the relative magnitude, probability or

delay of its expected reward (Bernacchia et al., 2011; Louie

et al., 2011; Sugrue et al., 2004; Yang and Shadlen, 2007). Taken

together these studies suggest the powerful hypothesis that

target selection neurons encode the relative value of alternative

actions, and that they integrate multiple sources of evidence

pertinent to this estimation.

This utility-based view of target selection is particularly attrac-

tive not only because of its parsimony and elegance, but also

because it has straightforward theoretical interpretations in

economic and reinforcement learning terms. The computational

framework of reinforcement learning, originally developed in the

machine learning field (Sutton and Barto, 1998), has been partic-

ularly successful in explaining behavioral and neuronal results.

The core idea in this framework is that agents (be they animals

or machines) constantly estimate the values of alternative

options based on their repeated experience with these options.

This intuition is captured in the Rescorla-Wagner equation,

which states that the estimated value at time t (Vt) is based on

the estimate at the previous step (Vt-1) plus a small learning

term (b)d):

Vt =Vt�1 + b � d (Equation 1)

As described above, parietal neurons encoding target selec-

tion are thought to report an action value representation—the

term V in the Rescorla-Wagner equation—and to update this

representation in dynamic fashion (Sugrue et al., 2004). This
Neuron 76, October 18, 2012 ª2012 Elsevier Inc. 283



Figure 2. Attention as Information Selection
(A) Gaze behavior in naturalistic tasks where a
subject fills a kettle for preparing tea (top) or
prepares a peanut butter sandwich (bottom). Gaze
is directed to task relevant locations that reduce
the subject’s uncertainty, and precede the skeletal
actions. Reproduced with permission from Land
(2009).
(B) Three putative attentional mechanisms that
assign associability according to the reliability
(left), uncertainty (middle), or reward probability
(right) predicted by a cue.
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value response could then be used by downstreammotor mech-

anisms such as those in the basal ganglia or the superior collicu-

lus, to select optimal (reward maximizing) actions.

The right-hand—learning—term in the equation in turn has

been more closely linked with modulatory systems, in particular

noradrenaline and dopamine, and is composed of two quanti-

ties. One quantity, b, is a learning rate that takes values between

0 and 1 and determines how quickly the agent updates its

predictions. This rate may depend on global task properties

such as the volatility or uncertainty of a given task and could

be conveyed through neuromodulation (Cohen et al., 2007; Nas-

sar et al., 2012).

The second quantity is the prediction error term (d), which

describes how ‘‘surprised’’ the agent is by a particular out-

come—i.e., how well or poorly it had predicted that outcome.

This quantity, defined as the difference between the agent’s esti-

mate and the actual outcome at the previous step (d = r-Vt�1),

provides a trigger for learning—updating expectations so as to

reduce future errors in prediction. A by-now classic series of

results suggests that the reward prediction error is encoded by

midbrain dopamine cells (Glimcher, 2011; Schultz, 2006; Waelti

et al., 2001). An example of this prediction error response is

shown in Figure 3B, in an experiment in which monkeys were

initially uncertain about the size of a reward and at the time

marked ‘‘Cue’’ received a visual signal that conveyed information

about the expected reward (Bromberg-Martin and Hikosaka,

2009). Dopamine cells had a transient excitatory response to

a stimulus that signaled a larger-than-expected reward (‘‘Info-

big’’) and a transient inhibition to a stimulus that signaled

a lower-than-expected reward (‘‘Info-small’’) but had nearly

no response to a stimulus that provided no new information

(‘‘Rand,’’ blue traces). When the actual reward was delivered

(‘‘Reward’’) the cells again had excitatory and inhibitory re-

sponses to, respectively, high or low reward, but only if these
284 Neuron 76, October 18, 2012 ª2012 Elsevier Inc.
reward were unexpected (‘‘Rand,’’ but

not ‘‘Info’’ conditions) precisely as ex-

pected from a prediction error term. As

shown by the Rescorla-Wagner equation,

such a signal of unexpected outcomes

can drive an agent to increase or

decrease its value estimates if the

outcome it has experienced was, respec-

tively, higher or lower than expected.

Taken together, these findings reveal

a remarkable confluence between com-
putational and empirical results. They suggest an integrated

account of learning and decision formation, whereby value

representations are maintained in cortical and sensorimotor

structures and are dynamically updated based on feedback

from dopaminergic cells (Kable and Glimcher, 2009; Sugrue

et al., 2005).

Eye Movements Select Information
Casting target selection as an internal value estimation would

seem to bridge the conceptual gap in attention research. A

straightforward implication of this idea is that, to decide where

to shift gaze or where to attend, the brain may simply keep track

of the values of the alternative options and make choices ac-

cording to this value representation. A key challenge in making

this link however, concerns the specific value that has been

considered in the decision field. As I described in the preceding

section, in all current studies of decision formation ‘‘value’’ is

defined in terms of primary reward: the value of a saccade target

in a laboratory task is defined by the juice that the monkey

obtains by making the saccade (Figure 1C). In natural behavior

however, eye movements rarely harvest primary reward. In-

stead, they sample information.

Consider for example the eye movements made by a subject

in two everyday tasks—preparing a peanut butter sandwich or

filling up a kettle to prepare some tea (Figure 2A). Like the

monkey in a decision experiment, these subjects seek a

reward—i.e., a sandwich or a cup of tea. Unlike the monkey,

however, their rewards will not be realized by merely looking at

a spot, no matter how intense their attention may be. Rather,

the subjects use attention and gaze as intermediate steps that

allow them to acquire information, which will only indirectly guide

their future actions.

Computational studies of naturalistic behaviors show that the

act of acquiring information—whether it is overt or remains
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internal to the brain—may indeed have material value, as it

increases the chance of success of a future action (Tatler

et al., 2011). However, these studies also show that the

processes required to compute information value differ markedly

from those that have been so far considered in decision tasks. A

salient property of this process is that information value depends

critically on the subjects’ uncertainty and, in the Rescorla-Wag-

ner equation is more closely related with the right side of the

equation—the act of learning or modifying expectations. As

a simple illustration of this distinction, consider again the tea-

making task in Figure 2B. To prepare and consume her tea,

the subject must make both arm and leg actions, and in the rein-

forcement equation both actions would be assigned a high value

term (V). The subject’s gaze, however, is very selectively allo-

cated to the targets of the arm and not the leg actions. This

selectivity cannot be explained in terms of action value alone

but reflects the fact that the arm movements have higher uncer-

tainty and thus more to gain from new information. Thus, the

drive that motivates a shift of gaze is not value per se but the

need to learn—i.e., to update one’s predictions through new

information.

Independent support for a view of attention as a learning

mechanism comes from an area of research that has been

mostly separate from the oculomotor field (but see Le Pelley,

2010) but has directly addressed the cognitive aspects of infor-

mation selection—namely, the question of how subjects learn

from and about sensory cues (Pearce and Mackintosh, 2010).

A central finding emerging from these studies is that subjects

estimate the reliability of a sensory stimulus based on their prior

experience with that stimulus and use this knowledge to modu-

late their future learning based on that cue. In the Rescorla-Wag-

ner equation this process is implemented using an associability

parameter, a, which is a stimulus-specific learning rate (Pearce

and Mackintosh, 2010):

Vt =Vt�1 +a � b � d (Equation 2)

While, as we have seen above, the standard learning rate b is

applied globally to a context or task, associability is a property of

an individual cue and can differentially weight the available cues.

As I discuss in detail in the following sections, this apparently

simple modification entails a complex, hierarchical learning

mechanism. It entails an executive process which, having previ-

ously learned the predictive validity of a sensory cue, guides the

moment by moment information selection—i.e., has in effect

learnt how to learn.

A final line of evidence for the information-bound nature of eye

movement control comes from single-neuron studies of target

selection that dissociate shifts of attention from overt shifts of

gaze (Gottlieb and Balan, 2010). An example of such a study is

the experiment shown in Figure 4A, in which we trainedmonkeys

to report the orientation of a peripheral target (a right- or left-

facing letter ‘‘E’’) by releasing a bar (Oristaglio et al., 2006).

Monkeys had to perform the task while maintaining their gaze

straight ahead (on the central fixation point), so that overt

saccades had no value and would have been punished with

a loss of reward—and indeed, monkeys actively suppressed

the saccades. Nevertheless the informative cue had value, and
neurons in the lateral intraparietal area continued selecting the

cue, showingmuch higher activity if the ‘‘E’’ rather than a distrac-

tor was in their receptive field (Balan and Gottlieb, 2009; Balan

et al., 2008; Oristaglio et al., 2006; Figure 4B). These neural

responses are in some respect not surprising because the

capacity for covert attention has been well-established in

psychophysical research, and its correlates are found also in

the frontal eye field (Schall et al., 2011; Thompson et al., 2005).

However the findings are highly significant from a decision

perspective: they highlight the fact that the decision variable

for target selection hinges not on the value of a motor action,

but on the properties of a sensory cue.

In sum, three lines of investigation conducted in very different

fields—studies of eye movement control in natural behaviors,

associative learning in humans and rats and target selection in

the frontal and parietal lobes—converge on a common point.

All these studies indicate that to understand oculomotor deci-

sions we must describe how the brain assigns value to sources

of information. What might this process entail?

Three Types of Attention
Ausefulway of organizing thediscussion starts from theproposal

advanced in the associative learning field that the brain has

several types of attention mechanism. These systems are

thought to have different neuronal substrates and to serve

different behavioral roles and are dubbed, respectively ‘‘attention

for action,’’ ‘‘attention for learning,’’ and ‘‘attention for liking.’’

To gain an intuitive understanding of these types of attention,

consider a hypothetical experiment in which you have a 50%

prior probability of receiving a reward, and on each trial are

shown a sensory cue that provides information about the trial’s

reward (Figure 2B). Some cues bring perfect information, indi-

cating that you will definitely receive or not receive a reward

(100%or 0% likelihood). Other cuesmake uncertain predictions,

e.g., that you have a 50% chance of reward. This set of sensory

cues can be characterized along two dimensions. One is the

expected reward of the cue, which is defined as the product of

reward magnitude and probability, and increases monotonically

along the x axis. The second dimension is the variance or reli-

ability the cue’s predictions. Variance is an inverted V-shaped

function with a peak for the 50% cue (Figure 2B, center). The

inverse of variance (reliability) has an upright-V profile, with

a minimum at the 50% cue and maxima for 0% or 100% predic-

tors (Figure 2B, left).

The associability hypothesis postulates that the systems of

‘‘attention for action’’ and ‘‘attention for learning’’ assign weight

based, respectively, on the reliability and variance of a cue’s

predictions (Pearce and Mackintosh, 2010). As shown in the

left panel of Figure 2B, the system of ‘‘attention for action’’ is

thought to assign low weight (associability) to cues that predict

an uncertain reward, but a high weight for cues that make

consistent predictions. This system would enable an animal to

attend to a familiar cue that makes consistent predictions,

such as a traffic light at an intersection. The system of ‘‘attention

for learning’’ on the other hand (Figure 2B, center) has the oppo-

site weighting and assigns priority to an uncertain or variable cue

(Pearce and Mackintosh, 2010). This system would enable an

animal to attend to novel and uncertain stimuli such as a new
Neuron 76, October 18, 2012 ª2012 Elsevier Inc. 285
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sign in a storefront. Importantly however, both systems are

value-neutral in the sense that they do not depend on expected

reward: they give equal weight to stimuli predicting low or high

reward, provided these make equally reliable predictions.

The third system of ‘‘attention for liking’’ differs qualitatively

from the first two because it assigns priority simply in proportion

to the associated reward, directing more resources to a ‘‘good

news’’ (100%) relative to a ‘‘bad news’’ (0%) cue (Figure 2B,

right). Although not originally proposed in associative learning

research, converging behavioral and neural observations bring

strong evidence supporting this system (Hogarth et al., 2010;

Vuilleumier, 2005).

In the following sections I discuss each system in turn, consid-

ering questions related to their implementation and contrast-

ing the associability-based explanation with related proposals

from the reinforcement learning field.

Attention for Action: Reliability, Relevance, and Reward
Although not typically discussed in relation with eye movement

control, the system of ‘‘attention for action’’ that is proposed in

studies of associative learning maps naturally on the purposive,

task-related eyemovementsmade by subjects in everyday tasks

(e.g., Figure 2A). Quantitative studies show that practically all the

eyemovementsmade in naturalistic goal-directed behaviors can

be interpreted as acquiring information to guide a forthcoming

action (Tatler et al., 2011). According to the associability idea,

to achieve this type of control, the brain will explicitly learn

(and potentially represent) the reliability of the predictions gener-

ated by a cue (Pearce and Mackintosh, 2010). An alternative

explanation, however, emerges from studies of eye movements

in natural behaviors, which suggest that the value of an eye

movement lies in reducing uncertainty and increasing the ex-

pected reward (probability of success) of a future action (Ballard

and Hayhoe, 2009; Hayhoe et al., 2012; Rothkopf et al., 2007;

Tatler et al., 2011). I consider the relationship between these

ideas and their possible neural implementation.

Reliability

While support for the reliability hypothesis comes from behav-

ioral and neuropsychological studies in humans and rats

(Holland and Maddux, 2010; Pearce and Mackintosh, 2010),

a key open question at the present time is whether (and how)

reliability is encoded in individual cells. Perhaps the strongest

neural evidence supporting this idea comes from studies of

sensory perception, which show that the strength (signal to

noise) of a sensory input can mediate a reliability-based form

of sensory integration. For example, in tasks where monkeys

are trained to estimate their heading direction based on a combi-

nation of vestibular and visual motion cues, the relative influence

of the visual cue increases in proportion with the signal to noise

of its motion signal. A number of studies have proposed ways in

which stimulus strength, reflected in the width and strength of

its sensory responses, can mediate optimal reliability-based

cue integration (Fetsch et al., 2012; Ma et al., 2008; Vilares and

Kording, 2011).

It is unclear, however, whether the brain encodes the more

cognitive type of reliability that is postulated by the associative

learning field, which is not embedded in the stimulus itself but

requires learning of complex relationships between the stimulus
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and the predicted events. This is the type of reliability that we

may ascribe, for example, to a weather forecast, to the advice

we receive from our physician or to an economic indicator. While

a recent study using an ‘‘information choice task’’ proposed that

this type of reliability is encoded in midbrain dopaminergic cells

(Bromberg-Martin and Hikosaka, 2009), the findings remain

open to alternative interpretations.

In the ‘‘information choice task’’ used byBromberg-Martin and

Hikosaka, monkeys began each trial with a 50% probability of

obtaining a largeor a small rewardandweregiven theopportunity

to obtain advance information about the size of the reward. As

shown in Figure 3A, if the monkeys shifted gaze to one of the

available targets (dubbed the ‘‘informative’’ target), this target

gave way to one of the cues that reliably predicted whether the

trialwill yield a large rewardor in a small reward (‘‘Info’’). However,

if monkeys shifted gaze to the unreliable target (‘‘Rand’’ in

Figure 3A), this target produced a distinct set of subsequent

cues that conveyed only uncertain (50%) information about the

future reward. Notably, the reward outcomes themselves were

on average equal and fixed in all conditions, so that monkeys

could not increase their physical reward with a specific choice.

Nevertheless, monkeys reliably selected the informative target

suggesting that they had an intrinsic preference for information.

Dopamine neurons (Figure 3B) had two types of responses

on the task. At the time of the actual information (marked

‘‘Cue’’) in Figure 3B, the neurons emitted the customary predic-

tion error response which, as described above, was excitatory

for a ‘‘good news’’ (big reward) cue and inhibitory for a ‘‘bad

news’’ (small reward) cue. Of particular interest however was

a response that preceded the actual cue and seemed to signal

the expected information. This response arose at the time of

the monkeys’ selection (marked ‘‘Target’’ in Figure 3B) and

was slightly stronger if the trial included an informative rather

than an uninformative cue (red versus blue traces). This early

response seems to signal a superordinate property of ‘‘informa-

tiveness’’ (or reliability) that is independent of a specific mes-

sage, and to correspond to the monkeys’ behavioral preference

for the informative cue.

Unfortunately however, because the information in this task

was about a primary reward, the results do not conclusively

rule out alternative explanations based on this reward. It is well

known that monkeys modulate their anticipatory licking based

on stimulus-reward associations and will stop licking when

observing a low-reward cue (Fiorillo et al., 2003). In addition as

I mentioned above, subjects direct attention based on stim-

ulus-reward associations, and may have gazed for longer

periods at the high-reward versus the low-reward cue (e.g., the

green cross versus green wave in Figure 3A; Hogarth et al.,

2010). It remains therefore possible that by selecting the informa-

tive cue the monkeys did not specifically seek information but

simply sought to minimize their effort (by avoiding having to

lick for or look at a low-reward pattern) or perhaps to bring about

the motivationally salient, high-reward pattern (Beierholm and

Dayan, 2010). At this time therefore it remains an open question

whether the brain has a bona fide reliability representation.

Internal Models, Uncertainty, and Information

Rather than searching for an ‘‘intrinsic’’ preference for informa-

tion, studies of eye movements in natural behaviors have



Figure 3. Dopamine Neuron Responses in
an Information Choice Task
(A) On each trial after achieving central fixation
monkeys viewed a target prefacing an informative
(green) or uninformative (orange) cue. Single target
trials (top and bottom) were interleaved with two-
target trials where monkeys were free to select the
target they wished to view. If monkeys shifted
gaze to the informative target (green) they were
shown two subsequent cues that were consis-
tently associated with, respectively, a large or
small water reward. If monkeys shifted gaze to the
uninformative target (orange) theywere shown two
other cues that were inconsistently associated
with the large or small reward (50% predictive
validity). The large and small reward were equally
likely to occur, so that the informative and unin-
formative targets had equal expected reward.
(B) Neural responses of DA cells on the information
choice task The traces show average activity in
a population of DA cells, aligned on the time of
target presentation, appearance of the reward
cues and delivery of the final reward. At the time
of target presentation the neurons had stronger
responses when the display contained an infor-
mative target (dark and light red traces) than when
it only contained the uninformative target (blue).
After the information was revealed (cue) DA
neurons had the expected reward prediction
response. At the time of cue presentation they had
excitatory and inhibitory responses to, respec-
tively, the high and low reward predictive pattern,
and small excitatory responses to the uncertain
pattern announcing a 50% probability of reward.
At the time of the reward, the neurons had excit-
atory and inhibitory responses upon receipt of,
respectively, the large and small reward, but only if
this rewardwas unpredicted (i.e., upon selection of
the uninformative cue). Reproduced with permis-
sion from (Bromberg-Martin and Hikosaka, 2009).
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adopted a more pragmatic approach and attempt to estimate

the material value that an eye movement may bring (Hayhoe

and Ballard, 2005; Tatler et al., 2011). The studies make use of

so-called Markov decision chains—mathematical methods that

allow one to formulate a task description as a sequence of steps

and estimate the cumulative future reward that can be expected

by traversing these steps. By including an estimate of the uncer-

tainty that arises at each step, one can further calculate the costs

of this uncertainty and the benefits of reducing it by obtaining

information (Dayan and Daw, 2008; Rothkopf and Ballard,

2010; Sprague and Ballard, 2005; Tatler et al., 2011). For

instance, in the tea-making task, one can calculate howuncertain

one is about one’s position and distance from the faucet, and

what the benefit would be of reducing that uncertainty through

a shift of gaze. These studies have shown how, when applied

to complex tasks (such as an agent walking through an environ-

ment while avoiding obstacles and picking up litter) these

methods can be applied to identify the uncertainty and informa-

tional requirements of intermediate steps (Rothkopf and Ballard,

2010; Sprague and Ballard, 2005).

However, even as they demonstrate the feasibility of this

computation, the studies show that information selection can

be remarkably complex. Most of the complexity derives from

the fact that, because the benefits of information are only indi-

rect, computing its value requires planning across a sequence
of steps. Moreover, this planning requires not only a simple

knowledge of the order of various steps, but a sophisticated

model of the task structure that specifies the hidden (causal)

relationships between consecutive steps. Consider for example

the simple act of directing gaze to the water faucet while

preparing a tea (Figure 2A). To generate this apparently trivial

act, the brain must know not only that the faucet is associated

with the task (after all, so are the kitchen floor and the walls)

but that lifting the handle will cause the water to flow, which in

turn will have a determining influence on preparing the tea. In

other words, to determine which sources of uncertainty should

be optimally resolved, the brain must know which steps are

causal or predictive of the future outcome (Gershman and Niv,

2010). In a simple scenario such as making a tea this computa-

tion may be greatly aided by extensive practice. In other behav-

iors, however, it requires much more difficult inferences on

longer time scales. It can be prohibitively complex for example,

to determine which one of the available stimuli is informative if

one lands on Mars, or which economic indicator is truly conse-

quential for a future outlook.

Converging evidence shows that humans indeed infer hidden

models of complex tasks (Acuña and Schrater, 2010; Braun

et al., 2010; Daw et al., 2011; Gershman and Niv, 2010; Yakush-

ijin and Jacobs, 2011), and indirect evidence from tasks involv-

ing schemas or contextual associations suggests that lower
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animals may also possess this capacity (Balan and Gottlieb,

2006; Braun et al., 2010; Johnson et al., 2012). Building internal

models that identify the relevant steps is critical for specifying

what subset of a very high-dimensional information stream

should be considered at a given time. Such models, in other

worlds, are necessary for deciding to what to attend. As

mentioned above in relation with the associability equation

(Equation 2), this process entails an executive mechanism that

learns how to learn—that is, decides how to organize the

moment by moment sampling of sensory information. The

need for hierarchical learning has been discussed in relation to

motor control and cognitive tasks (Braun et al., 2010; Johnson

et al., 2012) and, as it is clear from this discussion, is also at

the heart of attention control.

Given an appropriate model of a task structure, informative

options (stimuli or actions) may be identified through a prediction

error mechanism as those options which, by reducing uncer-

tainty, increase the expected future reward. Importantly,

however, the reward prediction errors that have been tradition-

ally considered in dopamine cells are model-free quantities

that only register changes in value between consecutive time

steps (Niv and Schoenbaum, 2008). Such a mechanism can be

prohibitively slow in complex tasks, and may erroneously assign

credit to irrelevant steps (Rothkopf et al., 2007). A model free

system for example may conclude that the decision to wear

a white shirt was critical for obtaining a high grade on a test,

simply because this decision was closer in time to the actual

exam relative to the earlier act of studying for the exam. Recent

evidence from functional imaging experiments in humans

suggests that dopamine cells and their recipient structures

also encode model-based prediction errors that take into

account future actions (Daw et al., 2011; Morris et al., 2006; Ta-

kahashi et al., 2011) suggesting a potential involvement in

model-based mechanisms. As I discuss in the final section, the

distinction between model-free and model-based computations

is fundamental and may explain key differences between an

‘‘attention for action’’ and ‘‘attention for liking’’ mechanism.

Executive Control and Target Selection

Although the neural mechanisms computing relevance are very

poorly understood, lesion studies in monkeys and rats suggest

that they depend on the frontal lobes. The studies implicate the

dorsolateral prefrontal cortex, the anterior cingulate cortex, and

the orbital frontal cortex in this computation (sometimes referred

to as a ‘‘credit assignment’’ computation) (Kolling et al., 2012;

Rossi et al., 2009; Rushworth et al., 2011; Walton et al., 2011)

and suggest that these areas may convey the results to dopa-

minergic cells (Takahashi et al., 2011). Interestingly, converging

evidence suggests that the parietal target selection response,

which reflects the moment by moment deployment of attention,

has a number of complex properties that may reflect an interface

with executive mechanisms (Gottlieb and Snyder, 2010).

A good illustration of these complex properties comes from an

experiment that I mentioned above, where we trained monkeys

to report the orientation of a visual target by releasing a bar

(Oristaglio et al., 2006). The task required monkeys to find a rele-

vant target using covert attention as described above (Figure 4A)

and in addition to apply a learnt stimulus-action association

namely, to release a bar held in their right paw if the instructive
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cue was oriented to the right (an ‘‘E’’) or a bar held in the left

paw if it was oriented to the left (a ‘‘3’’). The task therefore did

not require monkeys to orient to the attended location but

rather report the information at that location using an arbitrary

(symbolic) action, much as one would step on the brake when

seeing a red traffic light or step on the gas when seeing a green

light.

As I mentioned in the previous section, parietal neurons en-

coded the location of the relevant cue, and some of the cells

had only a target selection response, responding more if the

cue rather than a distractor was in the RF regardless of the

manual release (Figure 4B). These simple spatial responses are

consistent with the traditional view of attention control, whereby

the top-down drive contains only spatial and not non-spatial

information (e.g., Figure 1B). A sizeable fraction of cells however

showed a combinatorial coding of both the attended location

and the bar release. Some of the cells, like that shown in Fig-

ure 4C, responded selectively if the ‘‘E’’ was in their receptive

field and instructed release of the left bar; other cells had

the complementary preference, responding best if the ‘‘E’’ was

in their receptive field and instructed release of the left bar

(not shown). These manual modulations were not free-standing

limb motor responses but modulatory effects on visual selection

(i.e., the effects were not seen if a distractor appeared in the

receptive field; Figure 4C, right), a conclusion consistent with

the later finding that reversible inactivation produced visual but

not skeletal motor defects (Balan and Gottlieb, 2009).

These findings are difficult to explain in a purely visual frame-

work that casts target selection as a disembodied bias term (Fig-

ure 1B). They are also puzzling in an action based framework that

asks whether parietal areas are involved in skeletal or ocular

actions (Snyder et al., 2000). However, neural responses with

combinatorial (mixed) properties are hallmarks of goal-directed

cognitive control (Rigotti et al., 2010), and in the context of

information selection may embody the bank of knowledge that

is necessary for selecting cues. These results therefore raise

the important question of how target selection interfaces with

frontal processes of executive control and with visual learn-

ing mechanisms that assign meaning to visual cues (Albright,

2012; Freedman and Assad, 2011; Mirabella et al., 2007). One

important question is what these complex responses imply for

the nature of top-down control. Is the attentional feedback

from the parietal lobe only carried by neurons with simple spatial

responses, consistent with current assumptions that it only

carries spatial information (e.g., Figure 1B)? Or, alternatively,

does the top-down feedback carry higher bandwidth information

regarding both stimuli and actions, conveyed by neurons with

combined responses (Baluch and Itti, 2011)? A second question

concerns the sophistication of the information conveyed by this

combinatorial code: does this code reflect only coincidental

associations between stimuli and contexts or actions, or do

they reflect internal models of multielement tasks?

In sum, the preceding discussion has highlighted some of the

complexities that can be entailed by a shift of gaze. Far from

requiring a mere direct or habitual sensorimotor link, computing

an effective scan path for sampling information requires an exec-

utive mechanism that infers the relevant steps in an extend

task, and uses this inference to determine points of significant



Figure 4. Lateral Intraparietal Neurons Combine Responses to Visual Selection and Visuomanual Associations
(A) Search task. An array of several figure-8 placeholders remained stable on the screen at all times. To begin a trial monkeys directed their eye to the central
fixation point (dot) and grabbed two response bars. The search display was then revealed, and contained a cue (a right or left-facing letter ‘‘E’’) that appeared at an
unpredictable location in among letter-like distractors. Monkeys were trained to continue holding central fixation and release a bar held in the right or left hand to
indicate whether the ‘‘E’’ was facing, respectively, to the right or to the left.
(B) A parietal neuron that was sensitive only to cue location. The panels show the activity of a lateral intraparietal neuron aligned on the time of target onset. In each
row of action potential, the time of the manual release marked by a black dot. Left and right panels are sorted according to the location of the ‘‘E.’’ Blue and red
traces refer to trials in which the ‘‘E’’ required release of, respectively, the left or right bar.
(C) A neuron sensitive to both cue location and manual release The neuron encoded ‘‘E’’ location but was modulated by the manual release, responding more
strongly if the monkey released the left rather than the right bar. Reproduced with permission from (Oristaglio et al., 2006).
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uncertainty and sources of information that may reduce that

uncertainty.

Attending to the Unknown
While the preceding discussion has focused on target selection

in familiar tasks, an equally important and possibly more difficult

role of attention is to discover new information – learn about new

predictors that were previously unknown. We almost instinc-

tively orient to a new sign in a store front or to a strange bird

perched on a tree, and in laboratory tasks, gaze is drawn to

novel or uncertain stimuli in familiar scenes (Brockmole and

Henderson, 2005a, 2005b; Yang et al., 2009). As described

in Figure 2B, studies of associative learning propose that

exploratory attention is mediated by a separate system of

‘‘attention for learning’’ which, in contrast with ‘‘attention for

action,’’ allocates resources to uncertain rather than reliable

cues (Figure 2B, center panel). Model-based accounts however,

suggest that this distinction may not be quite as clear cut, and

that, even when the brain orients toward uncertain cues, it is

with the goal of learning or reducing the uncertainty regarding

that cue.

It has been previously noted that to generate adaptive explo-

ration the brain must distinguish between at least two types of

uncertainty (Oudeyer et al., 2007; Payzan-LeNestour and Bos-

saerts, 2011; Yu and Dayan, 2005). Reducible uncertainty is

due to the observer’s imperfect knowledge and can be elimi-

nated by acquiring information—for example when we hear an
ambulance siren and turn to find out where it is. Irreducible

uncertainty by contrast is built into a task and cannot be reduced

through the observers’ effort—as in the case of white noise on a

television screen. If ‘‘attention for learning’’ is specifically guided

by reducible uncertainty (as it would optimally be) its goal need

not be fundamentally different from that of an action-based

mechanism. Neither form of attention values uncertainty per se.

Instead, both may be information-seeking mechanisms that

detect the presence of uncertainty and devise strategies for

reducing that uncertainty (Dayan and Daw, 2008).

A difficult question however is how the brain distinguishes

between reducible and irreducible uncertainty, as this is not a

priori specified. When conducting scientific research, for

example, humans are faced with vast sources of uncertainty

which, despite significant effort, we are yet to resolve. What

determines whether we continue our search or conclude that

this is a fruitless task?

Several intriguing solutions have been proposed to this ques-

tion in the machine learning field. One solution, emerging from

the field of developmental robotics, is that the brain generates

intrinsic reward when it senses learning progress (i.e., a decline

in prediction errors over time) (Oudeyer et al., 2007). This mech-

anism may motivate learning even in the absence of an external

reward, and has been very effective in producing curiosity-like

behaviors—whereby robots remain spontaneously interested

in activities of intermediate complexity where they improve their

predictions but disengage from random (unlearnable) or from
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overlearned and ‘‘boring’’ tasks. An alternative account is that

goal directed exploration is not motivated by learning progress

but by reward expectations that are generalized based on prior

experience (P. Dayan, personal communication). For example,

when deciding which experiment to pursue we may infer based

on past knowledge that a particular approach will be more effec-

tive. Interestingly, this form of generalization may call upon the

same executive mechanisms of ‘‘learning to learn’’ that we dis-

cussed the previous section: to generalize effectively the brain

must recognize and compare the relevant (significant) aspects

of the different tasks (Bavelier et al., 2012).

In addition to processes that generate targeted information

search, exploratory mechanisms almost invariably include

simpler strategies, based on random action selection or hard-

wired heuristics. For instance, novelty has been proposed to

act as an exploration bonus in reward seeking tasks (Wittmann

et al., 2008) and to be encoded in dopamine cells as an intrinsic

bonus for exploration (Redgrave and Gurney, 2006). This raises

the possibility that other forms of automatic attention that are

produced by salience or surprise (Boehnke et al., 2011; Karacan

andHayhoe, 2008;Wittmann et al., 2008), rather than beingmere

weaknesses of a control mechanism, are vital heuristics for allo-

cating resources in very uncertain conditions, when the brain has

not yet learnt how to learn.

Neuropsychological studies in rats suggest that task-related

and exploratory attention rely on separate neural circuits that

involve, respectively, the medial frontal cortex (Maddux and

Holland, 2011) versus the substantia nigra, amygdala and the

parietal lobe (Maddux et al., 2007). It would be of great interest

to know whether this distinction also holds in the monkey and

how it is expressed in individual cells—i.e., whether the frontal

eye field mediates a system of ‘‘attention for action’’ while the

parietal lobe is more closely related with an exploratory mecha-

nism. Neural responses to uncertainty or surprise have been

reported in multiple structures (den Ouden et al., 2010; Fiorillo

et al., 2003; Kepecs et al., 2008; McCoy and Platt, 2005; O’Neill

and Schultz, 2010; Preuschoff et al., 2006, 2008; Schultz et al.,

2008; So and Stuphorn, 2012; Tobler et al., 2009) and have

been linked with variables such as arousal, anxiety, risk prefer-

ence, or global learning rates (Nassar et al., 2012; Preuschoff

and Bossaerts, 2007). An important question is how these

responses are related with selective attention and with the

processes computing the uncertainty or information value of

specific cues.

Attention for Liking
The final system shown in Figure 2B is the system of ‘‘attention

for liking,’’ whereby subjects preferentially direct attention to

pleasurable or high reward cues. Although not guided by

reliability or expected information, this form of attention is a

powerful mechanism, which automatically draws resources to

stimuli that have intrinsic emotional or conditioned associations

(Damaraju et al., 2009; Flagel et al., 2011; Hickey et al., 2010a,

2010b; Hogarth et al., 2010; Della Libera and Chelazzi, 2009;

Vuilleumier, 2005). These attentional influences are difficult to

overcome andmay underlie maladaptive reactions in psychiatric

disorders, such as the enhanced susceptibility of addicted

patients to drug-related cues (Flagel et al., 2011).
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The neural substrates of emotional attention are not very well

understood, but a recent experiment in our laboratory suggests

that they include the parietal lobe. The experiment, illustrated in

Figure 5, tested how attention and parietal activity are influenced

by stimuli that convey positive or negative reward information

but do not instruct the monkey as to an appropriate action

(Peck et al., 2009).

Monkeys began each trial with a 50% prior probability of

reward and, at the onset of a trial were shown a reward cue—

a conditioned stimulus that signaled whether the current trial

will end in a reward (CS+) or a lack of reward (CS�) (Figure 5A).

However, while the CS reliably signaled a 50% increase or

a decrease in expected reward relative to prior expectations,

they did not indicate the required action. To successfully

complete the trial and progress to the next, monkeys had to

make a saccade to an independent target that appeared

after the disappearance of the CS and was located randomly

either at the same or at the opposite location. An incorrect trial

(where monkeys did not look at the target) was immediately

repeated until correctly completed. This allowed us to distin-

guish between attentional orienting to the relevant target or

to the initial, reward-predicting CS. An attention system that

directs resources in goal-directed fashion would assign priority

to the target regardless of the CS; by contrast, a system of

‘‘attention for liking’’ may automatically orient based on the value

of the CS.

The behavioral and neural results revealed the influence of

both mechanisms. In most trials monkeys accurately directed

gaze to the target, showing that they had learnt its significance.

This learning however was not perfect, and saccades were also

biased by the preceding CS. The strongest effect was for

saccades following a low-reward cue (CS�) (Figure 5D). If the

target happened to appear at the location that had been occu-

pied by a CS�, the monkeys’ saccades had longer reaction

times and lower accuracy relative to saccades to other locations.

Notably, this interference was not due to lower motivation but

was spatially specific, showing that attention was inhibited

specifically at the CS� location.

This behavioral bias in the monkeys’ saccades was correlated

with CS evoked responses in the parietal lobe (Figures 5B and

5C). After presentation of a CS+ or CS� in their receptive field,

lateral intraparietal neurons had a transient visual response

that was higher for a positive relative to a negative cue, consis-

tently with previously reported reward modulations (Figure 5B,

blue versus red trace). Surprisingly, however—given that the

CS had no action relevance—the neurons maintained a sus-

tained response to the CS during the ensuing delay. Moreover,

as seen for the behavioral effect, this persistent response did

not reflect global changes in arousal or motivation, but a spatial

bias toward or away from the CS location. Sustained activity

following a CS+ was higher at the cue location relative to the

opposite location, suggesting that attention lingered at the

CS+ location (Figure 5C, top, black versus gray trace). By

contrast, sustained activity following a CS� was lower at the

cue’s location relative to the opposite location (Figure 5C,

bottom), consistent with the behavioral suppression at the CS�
location. The CS� evoked inhibition interfered with themonkeys’

performance and lowered their rate of reward. Nevertheless, the



Figure 5. Pavlovian Attention in the Lateral Intraparietal Area
(A) Behavioral task. Each trial has a 50% prior probability of ending in a reward. After monkeys achieved central fixation a peripheral cue was flashed for 300 ms
either inside the neuron’s receptive field (dashed oval) or at the opposite location. Cues were abstract colored patterns that signaled with certainty whether the
trial will receive a reward (CS+) or no reward (CS�). After a 600 ms delay period a second target appeared unpredictably at the same or opposite location relative
to the CS andmonkeys have tomake an immediate saccade to this target to receive the outcome announced by theCS. An error trial is immediately repeated until
correctly completed, so that monkeys have to perform each trial to progress in the task.
(B) Parietal responses to the reward cues. When a CS appeared in the receptive field the population of cells showed transient and sustained responses that were
selective for cue value, being stronger for a positive cue predicting a reward (CS+, blue) relative to a negative cue predicting no reward (CS�, red). The stars show
time bins with a significant difference between the two conditions. The bottom dashed line shows the pre-cue level of activity. Shading shows the standard error
of the mean.
(C) CS-evoked responses were spatially specific. The dark traces in each panel show responses when the CS appeared in the receptive field and the gray traces,
responses when the CS appeared at the opposite location. (The dark traces are the same as, respectively, the blue and red traces in A, but are shown on an
expanded vertical axis.) Responses evoked by a receptive field cue are higher than (CS+) or lower than (CS�) those at the opposite, non-stimulated location,
showing that they reflected a spatial bias, and not a global change in motivation.
(D) Saccadic effects of CS� cues. Eyemovements in a representative session on unrewarded trials when the saccade target was spatially congruent with a CS�.
The location of the CS and target is normalized as if falling horizontally on the right (coordinates of (1,0)) and each gray dot shows the endpoint of a single saccade.
The bottom panel shows saccades that followed highly familiar, overlearned CS� (corresponding to the neural responses shown in B). The top panel shows
responses on trial with newly learned CS� that were introduced and trained within a single session. Measurement of anticipatory licking showed that monkeys
learned the value of the novel CS within the first 5–10 trials, and data collection began after this learning was complete. Presentation of a CS� impaired saccade
accuracy if the target happened to be congruent with the CS� location, and the impairment was stronger for overlearned relative to newly learned CS�.
(E) Overtraining produces plastic changes in the visual response Bottom-up responses to the trained CS were tested in a separate control condition where
the previously trained CS were flashed as task-irrelevant probes. In this condition a first predictive CS and the saccade target appeared opposite the receptive
field (top panel). Simultaneous with presentation of the saccade target a previously trained CS (the probe) was flashed briefly in the receptive field. The probes
had prior reward associations but did not predict reward on these trials. For an overtrained pattern, the bottom-up response remained selective to previous
reward associations (bottom left). This value dependent visual response produced differential interference with the saccade, as shown in the bottom right
panel. Saccade reaction times (RT) were longer in the presence of a positive relative to a negative probe (blue versus red), reflecting the stronger interference
by the positive pattern. Note that RT were longer on unrewarded relative to rewarded trials, showing that monkeys correctly inferred reward probability based
on the first predictive CS (that had appeared opposite the receptive field) and not based on the irrelevant probe. Modified with permission from Peck et al.
(2009).
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effects grew rather than abating with training and, in both neural

responses and behavior, were larger after familiar relative to

novel CS (Figure 5D, bottom versus top). Moreover, after pro-

longed training theeffects seemed to involveplasticity of theearly

visual response, since they became insensitive to context and

automatically transferred to a different task in which the pre-

trained CS no longer predicted reward (Figure 5E).
These findings describe a correlate of ‘‘attention for liking’’

phenomena described in behavioral research, whereby attention

is automatically biased by the reward (conditioned) stimulus

associations. The findings are consistent with several—not

mutually exclusive—mechanisms. One possibility is that they

are related to the phenomenon of inhibition of return, whereby

attention is inhibited from revisiting recently examined locations
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(e.g., Mirpour et al., 2009). A related possibility is that they reflect

specific reinforcement mechanisms. The value-dependent ori-

enting described in Figure 5 may arise through a modulation of

visual activity by a dopamine reward prediction error response

(e.g., Figure 3B) which, like the responses in the parietal lobe,

is excitatory for a positive and inhibitory for a negative reward

predictive cue. This modulation may also differ from that under-

lying goal-directed control in that it acts in model-free rather than

model-based fashion. As I discussed in the previous section,

a model-based allocation would assign priority to the target in

the Peck et al. (2009) task, since this was the stimulus that was

informative for the future action. A model-free mechanism by

contrast would assign priority to the initial CS, since this was

the stimulus that signaled a change in reward expectations.

Regardless of the specific answers to these questions (which

remain to be determined by future research), the findings high-

light the critical point that rewardmay influence attention through

several distinct mechanisms. A goal-directed mechanism

assigns value to stimuli based on their relevance to future

actions, while an agnostic system simply prioritizes stimuli that

signal changes in reward expectation.

Why would the brain possess an automatic ‘‘attention for

liking’’ mechanism, if this can produce maladaptive effects?

This question, which arises here in the context of emotional

attention, can be equally applied to other forms of automatic

orienting such as those based on salience, novelty or surprise,

which can also interfere with ongoing tasks. The answer to this

question is not fully known, but an important consideration

may be the difficulty of an optimal (model-based) computation.

As we have seen in the preceding sections, computing informa-

tion value optimally is a costly and time-consuming operation

that requires inference and advance planning for multiple future

steps, and can itself be suboptimal in complex tasks (Wilson and

Niv, 2011). Automatic forms of attention by contrast are based on

much simpler heuristics. Therefore, the brain may have retained

these systems as vital and useful tools for rapidly allocating

resources to potentially significant information.

Conclusion: Who Needs Attention?
While all living organisms take actions that bring biological

reward, a unique hallmark of higher intelligence is a vast capacity

for learning and prediction (Friston, 2010). Here, I proposed that

selective attention is intimately linked with these prediction

mechanisms. I have argued that attention is the core cognitive

system thatmediates our active search for information—whether

information is sought for a foreseeable, well-practiced action or

in a more open-ended, exploratory fashion.

While this view is consistent with reinforcement learning

research, it is not well integrated with studies of oculomotor

control. A closer integration would be beneficial on several

counts. First, as I described in the earlier sections, this integra-

tion has become necessary for understanding core open ques-

tions in attention control—i.e., how the brain decides when and

to what to attend. To understand this question—as well as

complex properties of the target selection response—we will

need to understand the visual learning mechanisms by which

the brain assigns meaning to visual cues, and the cognitive

systems that assign value to these cues.
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Second, by appreciating the cognitive dimension of eyemove-

ment control we can begin use the full power of this system as

a window into cognitive function. As mentioned in the opening

sections, existing research has used the oculomotor system to

study cognitive variables involved in decision formation but

have interpreted the results in a highly simplified framework of

sensorimotor transformation. For example in a well-known

motion discrimination paradigm, the direction of motion of

a sensory cue is thought to be discriminated by cells in the

middle temporal area, while lateral intraparietal cells select the

appropriate action (e.g., a specific saccade) (Gold and Shadlen,

2007). This framework therefore explains oculomotor decisions

as a sensory-to-motor transfer without invoking the concept of

selective attention.

The need for selective attention, however, becomes clear

whenwe consider that, in addition to analyzing visual information

the brain must solve another highly complex task—namely,

determine the significance and value of that information. As I

have discussed above, this requires the brain to estimate its

uncertainty and the ability of sensory cues to reduce that uncer-

tainty. The processes involved in this selection include building

internal models of external events, guiding behavior based on

curiosity and exploration, and generating (and controlling)

emotional biases in information processing. Some of these

processes have been studied in behavioral paradigms and, by

recognizing their tight links with selective attention we can use

the oculomotor system to gain insight into their cellular

substrates.
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