SCH3U Worksheet Acid-Base Chemistry Review

1. Solutions of nitrous acid, $HNO_{2(aq)}$, and nitric acid, $HNO_{3(aq)}$, with equal concentrations are tested for their pH, conductivity, and reactivity with magnesium metal, $Mg_{(s)}$, and the results are tabulated (see **Table 1**).

Solution	Conductivity	Reactivity	рН
0.10 mol/L	low;	produces gentle bubbling around surface of metal;	3.00
nitrous acid, HNO _{2(aq)}	bulb is dim	after 20 minutes, metal is still reacting in the solution	
0.10 mol/L	high;	vigorous bubbling occurs on the surface of metal;	1.00
nitric acid, HNO _{3(aq)}	bulb glows bright	within a minute, metal has been completely consumed by reaction	

Table 1. Physical and chemical properties of aqueous hydrogen halides

- a. Explain the difference in the empirical evidence from the tests of the nitrous acid and nitric acid solutions based on Arrhenius theory.
- b. Write a net ionic equation to show the reaction of nitric acid, $HNO_{3(aq)}$, with magnesium, $Mg_{(s)}$.
- c. Using the pH value that is recorded, determine the concentration of hydrogen ions, $[H^+]$, in 0.10 mol/L nitrous acid solution, $HNO_{2(aq)}$, and find the percent ionization of this acid.
- 2. For a chemistry demonstration, an acidic solution with pH of 1.30 will be needed. In the storage room, there is a bottle containing 100.0 mL of 0.50 mol/L aqueous hydrochloric acid, HCl_(aq).
 - a. Given that HCl_(aq) is a strong acid, what final concentration will be required to prepare an acidic solution with a pH of 1.30?
 - b. Calculate the amount of water that should be added to dilute the 0.50 mol/L aqueous hydrochloric acid to the necessary pH.
- 3. Baking soda is an ionic compound with the chemical formula, NaHCO_{3(s)}. Also known as sodium bicarbonate (or sodium hydrogen carbonate), it is highly soluble in water at SATP conditions.
 - a. Write the dissociation equation to show NaHCO_{3(s)} dissolving in water.

Baking soda is known to produce basic aqueous solutions, but other sodium compounds do not (e.g. NaCl_(aq)).

- b. What ion must be present in a basic aqueous solution?
- c. Demonstrate how bicarbonate ions, $HCO_3^{-1}_{(aq)}$, produce basic aqueous solutions using a balanced chemical equation.
- 4. Students in the grade 12 chemistry class had prepared soap as part of a class project on hygiene. However, after the procedure, they had 250 mL of aqueous sodium hydroxide, NaOH_(aq), leftover. Since the solution was very concentrated at 6.0 mol/L, they were instructed not to pour this directly into the sink. Instead

they were asked to neutralize the sodium hydroxide with aqueous sulfuric acid, $H_2SO_{4(aq)}$.

- a. Write the balanced chemical equation for the reaction between sodium hydroxide and sulfuric acid.
- b. Determine what volume of 0.50 mol/L $H_2SO_{4(aq)}$ will be required to ensure complete neutralization of the remaining sodium hydroxide.