Self-Train Seismic data
to reveal Your traps

Smaller harder to get targets imply more targets require
replacing traditional time and cost consuming
play, lead and prospect mapping methods

Lower the risk and make cost savings - Big time
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CHALLENGE OF
SEISMIC DATA INTERPRETATION

3D replaces 2D domain seismic interpretation in a larger degree than before.

More data types creates data and attribute overload, not possible to manually screen
properly with high degree of confidence and reliability.

Multiple surveys over same areas require governance and comparison/ calibration
which is time-consuming and full of potential traps.

4D domain seismic interpretation introduces a full suite of new parameters to take
into consideration.

Amount of attributes and lack of clarity in their inter-dependencies and importance
to describe the geology or reservoirs have become overwhelming.
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Importance of Seismic Attribute

Seismic attributes are any measurable property of seismic data. In turn, these
attributes are input to self-organizing-map (SOM) training. Efforts distilling
numerous seismic attributes into volumes that are easily evaluated for their geologic
significance and improved seismic interpretation. Commonly used categories of
seismic attributes include instantaneous, geometric, amplitude accentuating,
amplitude-variation with offset, spectral decomposition, and inversion.

Principal component analysis (PCA), a linear quantitative technique, has proven to
be an approach for use in understanding which seismic attributes or combination of
seismic attributes has interpretive significance. The PCA reduces a large set of
seismic attributes to indicate variations in the data, which often relate to geologic
features of interest. PCA, as a tool used in an interpretation workflow, can help to
determine meaningful seismic attributes
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Typical Seismic Attributes

CATEGORY

Instantanecns
Aftributes

Geometric
Aftributes

Amplitude
Accentuating
Aftributes

AVO Attributes

Seismic Inversion
Aftributes

Spectral
Decomposition

TYPE

Reflection Strength, Instantanecus Phase,
Instantanecws Frequency, Quadrature,
Instantaneons Q

Semblance and Eizen-Based
Coherency/Similarity, Curvature
(Maximuom, Minimum, Most Positive,
Most Wegative, Strike, Dip)

EMS Amplinde, Relative Acoustic
Impedance, Sweetness, Average Energy

Intercept, Gradient, Intercept/Gradient
Derivatives, Fluid Factor, Lambda-
Mu-Eho, Far-Near, (Far-INear)Far
Colored inversion Sparse Spike Elastic
Impedance, Extended Elastic Impedance,
Prestack Simultaneous Inversion,
Stochastic Inversion

Continnous Wavelet Transform, Matching
Purzuit, Exponential Pursuit

Seismic attribute categories and corresponding types and interpretive uses.

INTERPRETIVE USE

Lithology Contrasts,
Bedding Continuity,
Porosity, DHIs, Stratigraphy,
Thickness

Faults, Fractures, Folds,
Anizotropy, Regional Stress
Fields

Porosity, Stratigraphic and
Lithologic Variations, DHIs

Pore fluid, Lithology, DHIs

Lithology, Perozity, Fluid
Effects

Layer Thicknesses,
Stratigraphic Variations
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Workflow handling Seismic Data
in a statistical method.

Seismic facies classification genenc workflow: PUA s the stafishical meftod agplied for downsizing
Input Data the amount of available date, especially anplied on 30 seismic volume atfribufes.
3D seismic volumes
or traces

Y

Principal Component Analysis

v

Classification
Neural Network OR Hierarchical

v

Output Data
3D seismic facies
volume or map
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Unsupervised Classification of Attributes

Classification without supervision of patterns into groups is formally called
clustering.

Depending on the application area these patterns are called data lists, observations
or vectors.

For exploration geophysicists, these patterns are usually associated with seismic
attributes, seismic waveforms or seismic facies.

The main objective here is to show how one of the most popular clustering
algorithms - Kohonen Self-Organizing Maps (KSOM), can be applied to enhance
seismic interpretation analysis associated with one and two-dimensional color maps.
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Kohonen Self-Organizing Map (KSOM)

The KSOM (Kohonen, 2001) clustering is one of the most commonly used tools for
non-supervised seismic facies analysis, with KSOM providing ordered clusters that
can be mapped to a gradational color bar (Coléou et al., 2003).

KSOM is closely related to vector quantization methods (Haykin, 1999).

We assume input variables, i.e., the seismic attributes, can be represented by
vectors in the space ®n, aj = [ajl, aj2, ..., ajN],j =1, 2, ..., J; where N is the
number of seismic attributes and J is the number of seismic traces when KSOM is

applied to surface attributes or is the number of voxels (Matos et al., 2005) when
KSOM is applied to volumetric attributes.

The objective of the algorithm is to organize the dataset of input seismic attributes,
a geometric structure called the KSOM.



Iteration to create Clustering

If we assume that the Self-Organizing Map has P units, defined as prototype vectors,
then, there will exist P N-dimensional prototype vectors mi, mi = [mil, ..., miN], i =
1, 2, ..., P; connected to its neighbors by a grid of lower dimension than P. Usually,
this grid has dimension one or two and is related to KSOM dimensionality. 2D KSOM
is most commonly represented by hexagonal or rectangular structural grids. After
initializing the KSOM prototype vectors to reasonably span the data space, the next
training step in KSOM is to choose a representative subset of the J input vectors.
Each training vector is associated with the nearest prototype vector. After each
iteration of the training, the mean and standard deviation of the input vectors
associated with each prototype vector is accumulated, after which the prototype
vectors are updated using a function of the distance between it and its neighbors
Kohonen, 2001). This iterative process stops either when the KSOM converges or
training process reaches a predetermined number of iterations.
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Classification according to KSOM

KSOM places the prototype vectors on a regular low-dimension grid in an ordered
fashion (Kohonen, 2001) and after training, the prototype vectors form a good
representation of the input dataset of seismic attributes. Next, we label each input
seismic attribute vector by the index of the closest KSOM prototype vector, i.e., the
KSOM index with highest cross-correlation to the input data vector. This labeling
process is called classification (Kohonen, 2001). KSOM can be considered an
unsupervised classification algorithm because no previous information is used to
generate the prototype vectors. KSOM can easily be supervised also (Kohonen,
2001).
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Training the Data

The number of prototype vectors in the map determines both its effectiveness and
generalization capacity. During the training, KSOM forms an elastic net that adapts
to the "cloud" formed by the input seismic attribute data.

Data that are close to each other in the input space will also be close to each other
in the output map. Since KSOM can be interpreted as a reduced version of the input
n-dimensional data ruled by a lower dimensional grid that attempts to preserve the
original topological structure and since seismic data measures the changes in
geology.

KSOM approximates the topological relation of the underlying geology.
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Cluster Formation of Attributes

Although the prototype vectors represent the input data very well they have the
same dimension of the input data making visualization difficult. For this reason, we
exploit the topological relation among the prototype vectors as a visualization tool to
display the different data characteristics and structuring. One way to visualize
cluster formation of the KSOM prototype vectors is by computing the distance
among the vectors thereby generating a U-matrix (Ultsch, 1993). Another way is by

mapping continuous 1D, 2D or 3D color bars to the SOM topology to represent the
location of each prototype vector.

KSOM can be applied to volumetric or surface attributes.
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Color Maps of KSOM

These attributes are input to Self-Organizing-Map (SOM) training. The SOM, a form
of Unsupervised Neural Networks (UNN), has proven to take many of these seismic
attributes and produce meaningful and easily interpretable results.

SOM analysis reveals the natural clustering and patterns in data and has been
beneficial in defining stratigraphy, seismic facies, direct hydrocarbon indicator
features, and aspects of shale plays, such as fault/fracture trends and sweet spots.
Visualization and application of 2D color maps, SOM routinely identifies meaningful
geologic patterns. Recent work using SOM and PCA has revealed geologic features
that were not previously identified or easily interpreted from the seismic data.

The ultimate goal in this multi-attribute analysis is to enable the geoscientist to

produce a more accurate interpretation and reduce exploration and development
isk.
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Instantaneous Q

KSOM of Seismic Attributes

FREEREE Instantaneous Q and Bandwidth have similar patterns.
% 12x12 and 8x8 cells have comparable shapes.
12x12  12x12 cells have slightly clearer clusters.

B
e
Bx Bx
-
B
Bx

Similar weight patterns, but opposite trend should reveal
different trend in N dimensional space

8x8
» Keep both attributes for classification

B
Band vidth (Octave)

Bandwidth

* Use high number of classes to give greater discrimination

* Clustering maximas/ minimas indicate ability for strong
discrimination

* Similar weight patterns favors Neural Network solution with
one attribute based on other criteria
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Color Map of KSOM result

Linear Color Bar, based on Values
obtained in weight diagrams

>roportional Move (1 HSV R l G I B [—

2D Color Bar map in the linear scheme

12

Seismic Attributes; AVO slope, Seismic Time and Velocity.
AVO Slope exhibits high clustering degree, as for time and velocity attributes both mimic depth
trend only.
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Applied Color Map on Seismic Data

2D color bar
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Simulated Annealing

Simulated Annealing (SA) based classification systems can be used in seismic
mapping. SA has been shown to be able to overcome the local minimum problem
that is typical with many unsupervised classification approaches.

SA-based classification systems could help overcome the local minimum problem in
one of such approaches, K-means, and thus improve the classification performance.
We have two SA based classification systems, the Single SA-based (S-SA) system is
developed based on the standard SA algorithm and the Integrated SA-based (I-SA)
system developed by combining the standard SA algorithm and K-means into a two-
level classification system. Experimental results have demonstrated that the SA-
based systems significantly improved the classification accuracy over that of the K-
means algorithm when appropriate parameters were chosen. The I-SA system was
shown to produce a satisfactory classification more efficiently than the S-SA system.
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WHAT ABOUT THE TRAPS?

So far, we have talked about how to reveal the most important attributes of seismic
data, regardless of data types, and then how to then use these in an unsupervised
manner to classify the Seismic data.

This should assist us in @ more robust and timely manner a seismic dataset which
should be able to assist us in better identify traps to search for hydrocarbons.

As the new classified data set now should have the ability to better reveal geological
and potentially fluid and rock properties, the interpreter is now standing in front of
the task to be able to identify traps, or should we use the word geometries.
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Reveal the traps with help of
Convergent Neural Network

So far, we have talked about how to reveal the most important attributes of seismic
data, regardless of data types, and then how to then use these in an unsupervised
manner to classify the Seismic data.

This should assist us in @ more robust and timely manner a seismic dataset which
should be able to assist us in better identify traps to search for hydrocarbons.

As the new classified data set now should have the ability to better reveal geological
and potentially fluid and rock properties, the interpreter is now standing in front of
the task to be able to identify traps/ geometries.



TRAINYOUR DATATO SEE THE TRAPS

The current excitement about Artificial Intelligence (Al) stems, in great part, from
groundbreaking advances involving what are known as Convolutional Neural Networks (CNN).

This machine learning technique promises dramatic improvements in things like computer
vision, speech recognition, and natural language processing.

You probably have heard of it by its more layperson-friendly name: "Deep Learning."
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MASSIVE AMOUNT OF DATA IN NEED OF
TRAINING

You have Terabytes upon Terabytes of various seismic data, either in its raw, amplitude or
derivative formats. Most of the time it lies there idle, and waiting for the geoscientist to log in
and take it into use.

Why not let the data work when it is not used by the geoscientist, and outside working hours
for the poor geoscientist being home an getting a well deserved sleep?

The data can in the meantime do its exercise and training and get ready for the geoscientist
logging in and begin his/her work with a more intelligent data set than last time.

A dataset which now can tell the geoscientist much more, and reveal much more, making it
possible to make the next discovery of hydrocarbons with larger chance of success at a much
lower cost and less time efforts.
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RECOGNISE SEISMIC FACIES WITH IMAGE
RECOGNITION PLATFORMS

The rapid rise of computer vision technology and the increasing number of companies
developing image recognition platforms are enormous.

Until recently, computer vision technology has been used primarily for detecting and
recognizing faces in photos. While facial recognition remains a popular use of this
technology, there has been a rapid rise in the use of computer vision for automatic photo
tagging and classification.

This increase is largely due to recent advances in artificial intelligence (Al), specifically
the use of convolutional neural networks (CNNSs) to improve computer vision methods.

So far, this technology has not won any major terrain within the Oil and Gas Industry.
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PATTERN RECOGNITION

Stratigraphic interpretation of seismic data is a time consuming and highly subjective
methodology where the result is highly dependent upon the operators skills, training and
mostly experience to recognize depositional environments and their associated geometrical
attitude and occurrence.

Combine this with varying quality of the data foundation, seismic data quality and type, there
are many ways this could go wrong.

The task at hand is to identify geometric patterns in the data, generate image captions/
descriptions
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CONVOLUTIONAL NEURAL NETWORKS
AND SEISMIC FACIES

Why not use computer vision algorithms to analyze digitized images of seismic data (original or
attribute versions, does not matter). The algorithms could be trained to detect and understand visual
similarities in seismic facies pattern and automatically classify these based on style, occurrence etc.

Utilize Convolutional Neural Networks (CNN) that are able to learn complex visual concepts using
massive amounts of data,, could save time and efforts, but not only that; create a more objective
analysis of the data.

The use of machine learning and image processing algorithms to analyze, recognize and understand
visual content could prove to be a ground breaking way to analyze large amount of data, both in
Supervised Neural Networks (SNN), but also as Unsupervised Neural Networks (UNN), like the CNN.

The computer gets trained to find patterns within the data with the use of deep learning-based
computer vision technology to analyze, recognize and understand the content of an image.
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COMPUTERVISION TECHNOLOGY COMES
TO AID SEEING THE SEISMIC FACIES

The concept of CNN has been around since the 1940s, it is only within the last few years that the use
of CNNs has really taken off.

CNNs are being used to significantly improve computer vision, speech recognition, natural language
processing and other related technologies.

Companies are doing amazing research in the field of artificial intelligence, and democratizing
breakthroughs in Al.

With so many advances in deep learning-based computer vision technology happening just within
the last few years, it will be exciting to see how we can use this field of computer vision in the not-
too-distant future within Seismic Stratigraphy applications.
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WHAT IS SEISMIC STRATIGRAPHY
AND WHY IS IT SO IMPORTANT?

Seismic Stratigraphy is basically a geologic approach to the stratigraphic interpretation of
seismic data.

Seismic reflections allow the direct application of
geologic concepts based on physical stratigraphy.

Primary seismic reflections are generated by physical surface in
the rocks, consisting mainly of strata surface and unconformities with velocity-density contrasts.

Therefore, possible to identify primary seismic reflections parallel strata surface and
unconformities.

A seismic section is a record of chronostratigraphic (time-stratigraphic) depositional and
structural patterns and not a record of the time-transgressive lithostratigraphy (rock-stratigraphy)



SEISMICSTRATIGRAPHIC INTERPRETATION IS A
MASSIVE PATTERN RECOGNITION EFFORT

It is possible to make the following types of stratigraphic interpretation from the geometry of
seismic reflections correlation patterns:

» geologic time correlations

» definition of genetic depositional units

» thickness and depositional environment of genetic units
» paleo bathymetry

 Dburial history

 relief and topography on unconformities

» paleogeography and geologic history
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SEISMIC STRATIGRAPHICINTERPRETATION
PROCEDURE

To accomplish these geologic objectives you follow three step interpretational procedure:
* seismic sequence analysis

* seismic facies analysis

« analysis of relative changes of sea-level

Seismic sequence analysis is based on the identification of stratigraphic units composed of a
relatively conformable succession of genetically related strata termed depositional sequence

The upper and lower boundaries of depositional sequences are unconformities or their
correlative conformities.
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CONVOLUTIONAL NEURAL NETWORKS (CNN) TO
IMPROVE IDENTIFYING DEPOSITIONAL
SEQUENCES
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Depositional sequence boundaries are recognized on seismic data by identifying
reflections caused by lateral terminations of strata
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TRAINING THE LEARNING COMPUTER
THROUGH ARTIFICIAL INTELLIGENCE

Depositional sequence boundaries are recognized on seismic data by identifying reflections caused
by lateral terminations of strata termed:

UPPER BOUNDARY

* onlap =
» downlap
* toplap

 truncation
@ —— ———
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USE OF VISION TECHNOLOGY TO PERFORM
CLASSIFICATION OF SEISMIC STRATIGRAPHIC
GEOMETRIES

MAJOR SEQUENCE STRATIGRAPHIC AND CHRONOSTRATIGRAPHIC SURFACES
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AUTOMATIC IDENTIFICATION
OF
PLAY TYPES

NW PLAY TYPES, OFFSHORE VARNA, BULGARIA SE SOUTH PLAY TYPES, OFFSHORE OBAIYED, EGYPT NORTH

EXISTING 3D SURVEY — PROPOSED 3D SURVEY ; OUTER HINGE ZONE

\ SYRIAN ARC UNCONFORMITY

w MESSINIAN UNCONFORMITY
&0 RoASH HERODOTUS MEDITERRANEAN
Al ABYSSAL PLAIN RIDGE —»
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HINGE ZONE
SINIAN

MES @ ¢
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CRETACEOUS
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[ post-messivian
I vessivian saut

OUTER
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QUATERNARY / PLIOCENE
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MIOCENE [ Pre-MESSINIAN TERTIARY
OLIGOCENE / EOCENE / ?
PALEOCENE [ post-riFT cretaceous
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AUTOMATICIDENTIFICATION OF
PLAY TYPES, LEADS and PROSPECTS

Prograding - Coastal Deposition Molnded structiifes Listric growth faults Carbonate shelge build-up

. | _afGe. ""m;
—'
Toe thrusts Horst structure Proximal Fans
h /Ki\\ & =
NG

Dome structure Growth fault with drape Inverted structures

Retrograde system

Train your data towards well-known play types, trap types in the region and part of the
stratigraphy. In addition have a library of known types from other areas,
you never know, you might find it in your data too.
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TAGYOUR play types, LEADS and PROSPECTS
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You give input to the unsupervised training of your data. It will automatically identify
similar ones and/or give you a choice of places it finds similar, and you choose to tell
its right or wrong.
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