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Abstract 

Most English words are polysyllabic, yet research on reading aloud typically focuses on 

monosyllables. Forty-one skilled adult readers read aloud 915 disyllabic nonwords that shared 

important characteristics with English words. Stress, pronunciation, and naming latencies were 

analyzed and compared to data from three computational accounts of disyllabic reading, including a 

rule-based algorithm (Rastle & Coltheart, 2000) and connectionist approaches (the CDP++ model of 

Perry, Ziegler, & Zorzi, 2010, and the print-to-stress network of Ševa, Monaghan, & Arciuli, 2009). 

Item-based regression analyses revealed orthographic and phonological influences on modal human 

stress assignment, pronunciation variability, and naming latencies, while human and model data 

comparisons revealed important strengths and weaknesses of the opposing accounts. Our dataset 

provides the first normative nonword corpus for British English and the largest database of its kind for 

any language; hence, it will be critical for assessing generalization performance in future 

developments of computational models of reading.  
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        Research on the mental processes involved in visual word recognition and reading aloud has 

flourished in the past 30 years. This advancement is demonstrated most clearly by the fact that precise 

accounts of how people recognize printed words and read them aloud are now available in the form of 

computational models that seek to mimic human reading behaviour (Coltheart et al., 2001; Perry, 

Ziegler, & Zorzi, 2007; Plaut, McClelland, Seidenberg, & Patterson, 1996). These models have been 

remarkably successful in explaining how skilled readers translate print into sound, and have also 

offered fresh insights into our understanding of typical and atypical reading development (e.g., 

Jackson & Coltheart, 2001), acquired impairments of reading (e.g., Coltheart, 2006), and the genetic 

and neural basis of reading (Bates, Lind, Luciano, Montgomery, Martin, & Wright, 2010; Taylor, 

Rastle, & Davis, 2013).   

        However, most empirical and computational work in this domain has focused on 

monosyllables, which constitute only a very small minority of the words in English and are practically 

absent from many of the world’s other languages. Moving beyond the monosyllable presents more 

than a problem of scale – at least for theories concerned with reading aloud. Indeed, English 

polysyllables present not only greater opportunities for inconsistency in the spelling-to-sound 

mapping than monosyllables, but also raise special additional challenges such as syllabification, stress 

assignment, and vowel reduction that are not relevant to monosyllables.   

        This article seeks to advance our understanding of how skilled readers process letter strings 

with more than one syllable. We report a mega-study in which 41 adults read aloud 915 disyllabic 

nonwords (yielding over 37,000 reading aloud responses). Our analyses seek to identify the cues to 

stress assignment in English, and to uncover the factors that influence pronunciation variability and 

reading aloud latencies across adult readers. We also use these data to assess for the first time the 

adequacy of opposing computational accounts of disyllabic reading aloud, namely the CDP++ model 

(Perry et al., 2010), the rule-based disyllabic algorithm of Rastle and Coltheart (2000), and the 

connectionist print-to-stress network of Ševa et al. (2009). In doing so, our data further offer an 

insight into the question of whether the print-to-stress and print-to-sound mapping is best described in 

terms of rules or learned statistical relationships. Finally, we make available this entire database of 

human and model data to facilitate rapid theoretical advancement in the area of reading.  
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Monosyllabic Models of Reading Aloud 

        There is now strong agreement amongst reading theorists that two kinds of procedures are used 

in the translation of orthography to phonology (Taylor et al., 2013; Woollams, Lambon Ralph, Plaut, 

& Patterson, 2007). One of these procedures is particularly important for supporting the reading aloud 

of irregular/inconsistent words that do not respect typical spelling-to-sound relationships (e.g., pint, 

yacht). The other procedure specialises in the computation of phonology using sublexical information 

and is particularly important for supporting the reading aloud of unfamiliar words or nonwords (e.g., 

vib, slint), which are not stored in lexical memory. There is strong evidence that both pathways are 

routinely used in parallel in skilled reading (Paap & Noel, 1991; Rastle & Coltheart, 1999).   

 Though all models of reading aloud subscribe to this general dual-pathway architecture, they 

differ in important ways. The DRC model (Coltheart et al., 2001) proposes that the lexical pathway 

consists of local orthographic and phonological representations of known words, while the sublexical 

pathway consists of rules that relate graphemes to phonemes. Conversely, the ‘triangle model’ (Harm 

& Seidenberg, 2004; Plaut et al., 1996) comprises learned mappings between orthographic, 

phonological, and semantic units; lexical knowledge in this model is represented in a distributed 

manner and the learned mappings between representations are probabilistic rather than rule-based. 

The more recent CDP+ model (Perry et al., 2007) combines features of these two types of models. Its 

lexical pathway is identical to that of the DRC model while its sublexical pathway consists of a two-

layer network that learns the mappings between graphemes and phonemes, as well as a grapheme 

identification and parsing procedure.   

Different approaches have been adopted to adjudicate between these models. One such 

approach involves investigating their generalization performance (i.e., the models’ ability to read 

aloud nonwords). Besner, Twilley, McCann, and Seergobin (1990) were the first to use this approach 

in relation to models of reading, demonstrating that an early version of the triangle model (Seidenberg 

& McClelland, 1989) showed far worse generalization performance than human readers. 

Subsequently, investigating nonword reading performance has become a key aspect of model 

evaluation. Most recently, Pritchard, Coltheart, Palethorpe, and Castles (2012) used this approach to 
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evaluate the reading performance of the sublexical pathways of the DRC (Coltheart et al., 2001) and 

CDP+ (Perry et al., 2007) models. They selected 412 monosyllabic nonwords for which the models 

disagreed on pronunciation, and compared these model responses to the pronunciations given by 45 

adult readers. Results showed that the modal human pronunciation matched the DRC pronunciation in 

74% of cases, whereas it only matched the CDP+ pronunciation in 12% of cases. However, one could 

argue that models should not be expected to behave as the average human participant, but rather as an 

individual participant within the normal distribution. This is because many nonwords yield more than 

one pronunciation when read aloud by different people (Andrews & Scarratt, 1998; Glushko, 1979; 

Masterson, 1985; Seidenberg et al., 1994). Hence, in considering what counts as an acceptable 

response in the models, Pritchard et al. (2012) considered not only the most frequent response given 

by participants, but also whether the model pronunciations matched any human response. Results 

showed that the DRC model produced a response that was unlike any human response for 2% of the 

nonwords; for the CDP+ model, this figure was far higher, at 49% of the nonwords. 

 

Disyllabic Models of Reading Aloud 

 Rastle and Coltheart (2000) claimed that the dual-pathway framework is ideally suited to 

consider the problem of disyllables, in particular, with respect to the assignment of stress. They 

argued that there are many examples in which stress cannot be predicted by rule (e.g., camel versus 

canal), and thus, that it must be stored in lexical memory along the lexical pathway. However, in a 

small-scale nonword reading aloud study, they found that individuals assign quite consistently first- or 

second-syllable stress to nonwords – for example, 100% of their participants gave first-syllable stress 

to the nonword ‘laifun’ while 93% gave second-syllable stress to the nonword ‘itesque’ – suggesting 

that stress computation must also be arising along the sublexical pathway. This dual-pathway 

approach to stress assignment is consistent with previous research on Italian reading aloud (Colombo, 

1992).   

 Rastle and Coltheart (2000) considered how this dual-pathway theory of disyllabic word 

reading could be implemented in the DRC model. They argued that while it would be straightforward 

to add entries with stress information for disyllabic words to the lexical pathway, implementing a set 
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of spelling-to-sound and spelling-to-stress rules suitable for disyllables along the sublexical pathway 

poses a greater challenge. As an initial step, they proposed a partial implementation of a rule-based 

sublexical pathway that translates printed disyllables to sound and applies a stress marker. This partial 

implementation calls on the grapheme-to-phoneme translation rules used by the DRC model (Rastle & 

Coltheart, 1999; and later, Coltheart et al., 2001), and in addition, identifies orthographic strings 

corresponding to prefixes and suffixes to determine stress placement. Evaluation of the algorithm 

revealed good performance in stressing disyllabic words and nonwords. It accurately predicted stress 

for nearly 90% of disyllabic words in the CELEX database (Baayen, Piepenbrock, & van Rijn, 1993). 

Further, in an experiment in which participants read aloud 210 disyllabic nonwords, the algorithm 

accurately predicted modal human stress for 84% of the items. The algorithm is presented in Figure 1.  

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The rule-based algorithm of Rastle and Coltheart (2000). 
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        Despite its relative success in predicting stress assignment for words and nonwords, Rastle and 

Coltheart’s (2000) algorithm has some substantive limitations. For example, the algorithm expresses a 

set of hypotheses about the rules relating spelling to sound and spelling to stress for disyllabic letter 

strings. Yet, in order to be fully tested, it would need to be implemented as part of a processing model 

(e.g., the DRC model) that produces reaction times in addition to pronunciations and stress. However, 

Rastle and Coltheart (2000) identified significant difficulties in implementing this algorithm as part of 

the DRC model. These difficulties arise because the proposed algorithm requires information from all 

parts of the printed stimulus, from beginning to end, to compute a pronunciation and stress marker. 

For example, the algorithm looks for a suffix at the end of the word prior to the application of 

grapheme-to-phoneme translation rules. However, the sublexical pathway of the DRC model 

computes a pronunciation serially, from left to right (Rastle & Coltheart, 1999). Thus, Rastle and 

Coltheart (2000) argued that further work would be required to understand how the hypotheses 

advanced in their algorithm could be reconciled with the serial left-to-right operation of the sublexical 

pathway of the DRC model.   

         In more recent years, researchers have considered the problem of polysyllabic word reading 

within models that consist of a learned mapping of the spelling-to-sound and spelling-to-stress 

relationship. The best developed of these is the CDP++ model (Perry et al., 2010), which is a dual-

pathway model of reading aloud comprising lexical and sublexical processes for mapping print-to-

sound. It is very similar to the CDP+ model (Perry et al., 2007), except for a number of minor 

modifications, including an increase in the number of letter and phoneme slots to accommodate longer 

words, a change to the input coding template to accommodate disyllables, the introduction of the 

schwa phoneme to deal with vowel reduction, the introduction of stress nodes to represent the position 

of stress, and the use of a far larger training corpus and lexicon. Unlike the algorithm presented by 

Rastle and Coltheart (2000), the CDP++ model is a full processing model that produces a 

pronunciation, stress marker, and reaction time. The model is presented in Figure 2.  
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Figure 2. The CDP++ model (Perry, Ziegler, and Zorzi, 2010). 

 

 The evaluation of the CDP++ model showed very good performance against the available 

datasets on word reading (Perry et al., 2010). The model accurately read aloud over 32,000 words in 

its lexicon (with an error rate of less than 1%), and it simulated a number of key benchmark effects in 

the monosyllabic domain. The model also showed very strong performance in capturing variance in 

reading aloud latency in large-scale studies of word reading (e.g., Balota et al., 2007), explaining over 

49% of variance in reading aloud latencies in a selection of monomorphemic monosyllables and 

disyllables (e.g., Yap & Balota, 2009), after variance due to phonetic onset was taken into account. 

However, the model’s performance on reading nonwords aloud appears to be more mixed. Perry et al. 

(2010) reported that the model correctly read aloud approximately 95% of the monosyllabic nonwords 

in the corpus of Seidenberg, Plaut, Petersen, McClelland, and McRae (1994), but this was using a 

lenient scoring criterion in which responses were considered as correct if they contained any 

grapheme-phoneme or body-rime response that exists in English words. Evaluating the model’s 

generalization performance using the Pritchard et al. (2012) monosyllabic corpus (which offers the 

range of possible pronunciations across a sample of participants) gave a very different picture. 

Although the performance of CDP++ was better than that of CDP+ for this set of nonwords (see 

above), the CDP++ model gave the modal human pronunciation in only 38% of cases. Further, the 
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model gave a pronunciation unlike any human response in 27% of cases. Robidoux and Pritchard 

(2014) further analysed the Pritchard et al. (2012) dataset using hierarchical clustering techniques, 

which involved grouping participants on the basis of the overall similarity of their pronunciations. In 

particular, they compared individual subjects’ reading profiles and they then examined whether the 

DRC and CDP++ models fitted any of the participants’ profiles. They observed that while the DRC 

model fitted other participants’ reading profiles at least as well as participants’ fitted one another, the 

CDP++ model did not match the reading profile of any of the 45 participants that took part in the 

study. It is worth noting that the CDP++ model has not been tested extensively against disyllabic 

nonword reading aloud data, though Perry et al. (2010) tested the model’s performance on stress 

assignment against the small nonword reading aloud dataset of Rastle and Coltheart (2000). These 

simulations showed very good capture of the human data, yet the CDP++ model was slightly more 

biased toward first-syllable stress than was the case for human readers.   

         Ševa et al. (2009) also investigated whether stress placement in disyllables could be determined 

through orthographic regularities using a distributed-connectionist framework. They developed a 

model that learns to map an orthographic input onto a stress pattern. However, this model does not 

provide a pronunciation or reaction time. The architecture of the model consists of 364 orthographic 

input units (26 letters * 14 slots), 100 hidden units, and 1 output unit. The activation of the output unit 

is graded, but for the purposes of the simulations reported by Ševa et al. (2009), activations below 0.5 

were treated as first-syllable stress while activations above 0.5 were treated as second-syllable stress. 

The network’s performance was tested on the set of words and nonwords used by Rastle and Coltheart 

(2000). The model performed slightly better than the rule-based algorithm on assigning stress to 

disyllabic words. However, it showed substantially inferior performance to the rule-based algorithm 

when assigning stress to nonwords. This inferior performance was due to the model assigning first-

syllable stress to nonwords that were given second-syllable stress by a majority of participants. The 

model of Ševa et al. (2009) is shown in Figure 3.  
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Figure 3. The Ševa et al. (2009) network of stress assignment. 

 

Other connectionist approaches to disyllabic reading include the Junction model (Kello, 2006; 

Sibley, Kello, & Seidenberg, 2010), which was benchmarked against naming latency data from the 

English Lexicon Project (Balota et al., 2007). However, the first of these models showed very poor 

generalization performance on the monosyllabic nonwords used by Seidenberg et al. (1994) and the 

monosyllabic and disyllabic nonwords used by Sibley, Kello, Plaut, and Elman (2008). The 

generalization performance of the second model on the Seidenberg et al. (1994) nonwords was 

significantly better; however, its ability to read nonwords decreased substantially as their length 

increased. As the authors acknowledge, “it is likely that performance would not decrease as much as 

in the present simulation if skilled readers were to name bisyllabic pseudowords from our corpus. 

Thus an important task for future modeling work will be to investigate methods of improving 

pseudoword naming.” (Sibley et al., 2010, p. 664). The multiple-trace memory model (Ans, 

Carbonnel, & Valdois, 1998) is another connectionist approach to simulating polysyllabic reading in 

French. However, this model does not have a component in its architecture that allows it to deal with 

stress assignment. This is not a problem in a fixed-stress language like French, in which stress is 

always placed on the last syllable; however, this model cannot offer an account for polysyllabic 

reading in a language with variable stress such as English. For all of the above-mentioned reasons, we 

did not consider any of these models in the present work.  

Finally, in order to account for polysyllabic reading in languages with variable stress patterns, a 

probabilistic approach to stress assignment within the Bayesian framework has recently been 

considered in Russian (Jouravlev & Lupker, 2015). According to a Bayesian model of stress 
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assignment in reading, readers compute probabilities of stress patterns by assessing prior beliefs about 

the likelihoods of stress patterns in a certain language, and combining this information with sublexical 

cues to stress that are language-specific. In this approach then, readers are thought to be sensitive to 

the frequency with which various stress patterns occur in their language (for example, in the English 

language, approximately 75% of disyllabic words are stressed on the first syllable and 25% are 

stressed on the second syllable), and language-specific sublexical cues to stress that are present in the 

orthographic input. The idea that skilled readers may integrate sublexical orthographic cues to stress 

with prior beliefs about stress patterns in their language to decide about stress placement is worth 

exploring. However, this approach has not been tested so far in the English language, and the 

language-specific sublexical cues to stress in English are as yet unknown. For this reason, we did not 

consider this approach in the present study.  

 In summary, while most empirical and theoretical work on reading aloud has been undertaken 

using monosyllables, there has been some progress in modelling the reading aloud of disyllables. 

However, of the three models that propose to simulate disyllabic reading aloud in English, only the 

CDP++ model is a full processing model that provides a reaction time, pronunciation, and stress 

marker. The rule-based algorithm of Rastle and Coltheart (2000) provides a pronunciation and stress 

marker, and the distributed-connectionist model of Ševa et al. (2009) provides only a stress marker. 

Similarly, just as the number of available models of reading aloud that can handle disyllables is small, 

the empirical database needed to test these models is very limited. For example, the few large-scale 

studies on English disyllabic reading aloud include only monomorphemic words (Chateau & Jared, 

2003; Yap & Balota, 2009), which constitute less than 30% of disyllabic words in the English 

language (CELEX; Baayen, Piepenbrock, & Gulikers, 1995). Further, neither of these large-scale 

reading aloud studies investigated how people assign stress to disyllables. Most importantly, the only 

available dataset of disyllabic nonword reading that can be used to test generalization performance in 

models of reading is that of Rastle and Coltheart (2000). However, this dataset is small in size, the 

nonwords used have critical limitations (as outlined below), and their characteristics are not fully 

representative of the characteristics of English disyllabic words.  
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Cues to Stress Assignment in English 

 The fact that people are relatively consistent when assigning stress to disyllabic nonwords 

(Rastle & Coltheart, 2000) suggests that stress can be computed along the sublexical pathway. One 

possibility that has been considered is that the sublexical pathway simply assigns a default stress 

pattern corresponding to the most frequent stress pattern in a given language (Colombo, 1992; 

Colombo & Tabossi, 1992). For example, because most Italian words are stressed on the penultimate 

syllable (e.g., tacchina), Italian nonwords may also attract stress on that syllable; similarly, because 

approximately 75% of English disyllabic words are stressed on the first syllable, English disyllabic 

nonwords may also attract first-syllable stress. On this type of distributional rule, words that follow 

the rule are considered ‘regular’ while words that do not follow the rule are considered ‘irregular’. 

Colombo (1992) and Colombo and Tabossi (1992) found that Italian words stressed on the 

penultimate syllable were read aloud more quickly than words stressed on the antepenultimate 

syllable. However, this effect was limited to low-frequency words, while Burani and Arduino (2004) 

failed to observe such an effect. Other studies in Italian also failed to observe a reading aloud latency 

advantage for ‘regularly-stressed’ words compared to ‘irregularly-stressed’ words (see Colombo & 

Zevin, 2009; Sulpizio, Job, & Burani, 2012). Hence, the available empirical evidence from Italian 

does not support the notion that knowledge about the distribution of stress patterns in a language 

influences stress assignment (see also review by Sulpizio, Burani, & Colombo, 2015). Accordingly, 

Rastle and Coltheart (2000) did not find support for the distributional rule in English word reading 

aloud; English disyllabic words stressed on the first syllable were read aloud as fast as those stressed 

on the second syllable. Further, though most English words take first-syllable stress, there were 

instances in which people routinely assigned second-syllable stress to nonwords (e.g., emvoke -

>/ɛm‘vəʊk/), arguing against the notion that the sublexical pathway implements a default stress 

pattern (Rastle & Coltheart, 2000). 

 Various other kinds of proposals have been put forward as to the sublexical cues that readers 

use to assign stress. These include phonological cues such as vowel length (i.e., the syllable with the 

long vowel takes stress; Baker & Smith, 1976) and phonological weight (i.e., syllables with more 

phonemes draw stress; Guion, Clark, Harada, & Wayland, 2003). Research has also suggested that 
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there might be strong orthographic cues to stress assignment. Kelly, Morris, and Verrekia (1998) and 

Kelly (2004) suggested that syllables with many letters tend to attract stress, in particular in those 

cases where these letters are redundant for pronunciation. For example, the word ‘succumb’ does not 

require the final ‘b’, and the word ‘gazelle’ does not require the final ‘le’, because both words would 

be pronounced in the same way had they not contained these ‘extra’ letters. Similarly, Arciuli and 

Cupples (2006) analyzed 340 orthographic word endings and found clear correlates of stress 

assignment to which readers appear to be sensitive. In addition to orthographic cues, Rastle and 

Coltheart (2000) have argued that morphological cues provide an important cue to stress, namely, that 

prefixes and suffixes typically repel stress, except for a handful of ‘stress-taking suffixes’ (e.g., –een, 

–ique, –oo) as defined by Fudge (1984). Finally, Burani and Arduino (2004) argued that an important 

cue to stress assignment is the stress neighborhood in which a stimulus resides. In Italian, the stress 

neighborhood is defined as those words that share the nucleus of their penultimate syllable and their 

final syllable, such as the –ola in ‘pistóla’ (see Sulpizio & Colombo, 2013). Burani and Arduino 

(2004) showed that irrespective of whether an Italian word had the typical penultimate stress pattern, 

reading aloud latency was influenced by the consistency of a stimulus within its stress neighborhood. 

Words with many stress ‘friends’ were read aloud more quickly than words with many stress 

‘enemies’. However, these cues have often been confounded in investigations of stress assignment in 

the literature. Hence, it is unclear whether readers take into account some or all of these cues when 

assigning stress to disyllables. Determining the cues to stress assignment in English and assessing 

their relative importance is critical for understanding how people read the vast majority of words in 

the English lexicon, and for evaluating the next generation of computational models of reading. Our 

study is the first to examine the combined influence of several cues on stress assignment and their 

relative importance while taking into account potential confounds of previous studies. 

 

The Present Study 

 The present article reports a large-scale study in which 41 participants read aloud 915 disyllabic 

nonwords. For each response, we report stress placement, phonemic transcription, and reaction time. 

One major aim of the study was to determine the factors that influence stress, pronunciation, and 
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naming latency, and thus to learn more about the operation of the sublexical pathway in reading 

disyllables aloud. We anticipated that like similar studies of monosyllabic nonword reading (Andrews 

& Scarratt, 1998; Pritchard et al., 2012), we would uncover a range of permissible responses for each 

nonword. We quantified this pronunciation variability using the H-statistic (e.g., Shannon, 1949; 

Treiman, Mullennix, Bijelac-Babic, & Richmond-Welty, 1995), a measure of entropy that takes into 

account the proportion of participants producing each alternative pronunciation.  

 The other major aim of the study was to test the adequacy of the three computational models of 

disyllabic reading aloud discussed previously – the CDP++ model (Perry et al., 2010), the rule-based 

algorithm of Rastle and Coltheart (2000), and the distributed-connectionist model of stress assignment 

(Ševa et al., 2009) – against the obtained human data. Our study is the first to provide stress, 

pronunciation, and naming latency data on a large number of disyllabic nonwords whose 

characteristics are representative of the characteristics of English disyllabic words in the lexicon. 

Further, our dataset forms the largest corpus of nonword pronunciation data generated to date. Hence, 

it will be critical for assessing generalization performance in future developments of computational 

models of reading.  

 

Method 

Participants. 

 Forty-one monolingual native speakers of Southern British English (11 males) participated in 

the study for £20. Participants were undergraduate students at Royal Holloway, University of London. 

They were 21 years old on average (range [19, 27], SD = 1.6), had normal or corrected-to-normal 

vision, and reported no reading impairments.  

 

Materials. 

The experimental stimuli consisted of 915 disyllabic nonwords. These nonwords were derived 

by submitting a subset of disyllabic words from the English Lexicon Project (Balota et al., 2007) to 

the Wuggy algorithm (Keuleers & Brysbaert, 2010), a program that generates nonwords by 

maintaining the subsyllabic structure and transition frequencies of the base words. The nonwords that 
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we selected for the present study were 5 to 8 letters long, with an average neighborhood size of 0.5, 

taking into account substitution, addition, and deletion neighbors (CLEARPOND database; Marian, 

Bartolotti, Chabal, & Shook, 2012). Nonword stimuli had an average orthographic weight of 0.9 

(orthographic weight was defined as a ratio of number of letters in the first syllable to number of 

letters in the second syllable).   

To overcome limitations of previous studies (Pritchard et al., 2012), we ensured that our stimuli 

had characteristics that mirrored those of disyllabic English words. According to the CELEX database 

(Baayen et al., 1995), 71% of disyllabic words in the English language are morphologically complex. 

Hence, to approximate the morphological structure of English disyllables, 60% of our nonwords 

contained affixes (546 items, of which 396 were prefixed and 150 were suffixed). We further ensured 

that only genuine affixes were used by (a) selecting from the ELP (Balota et al., 2007) disyllabic base 

words that were denoted as morphologically-complex; (b) verifying the status of these stimuli as 

comprising ‘stem + affix’ or ‘affix + stem’ using the CELEX database (Baayen et al., 1995); and (c) 

selecting nonwords generated by Wuggy that preserved the affix of the base word. The prefixed and 

suffixed items in our set are indicated in the supplementary materials.  

 We subsequently ran the 915 nonwords through the CDP++ model (Perry et al., 2010), the rule-

based algorithm for pronouncing disyllables (Rastle and Coltheart, 2000), and the distributed-

connectionist network (Ševa et al., 2009). The CDP++ model and the rule-based algorithm (hereafter 

referred to as RC00) agreed on pronunciation and stress assignment for 21% of the nonwords (N = 

192), and disagreed on pronunciation and stress assignment for 20% of the nonwords (N = 183). 

These models agreed on pronunciation only for 13% of the nonwords (N = 123), and on stress 

assignment only for 46% of the nonwords (N = 417). The Ševa et al. (2009, hereafter referred to as 

SMA09) model produced the same stress as the RC00 algorithm for 83% of the nonwords (N = 756); 

it produced the same stress as the CDP++ model for 77% of the nonwords (N = 702). The 915 items 

and their corresponding pronunciations and stress assignments by the three models are provided in the 

supplementary materials.  

 

Design and Procedure. 
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 Eight experimental lists were created. The order of presentation of the nonwords in each list 

was pseudo-randomised based on the following criteria: (a) nonwords on two successive trials were 

not phonologically related (i.e., they did not share their initial phoneme or rime), and (b) affixed and 

non-affixed nonwords were equally distributed across each experimental list. Participants were 

randomly assigned to one of the eight experimental lists.  

 Participants were tested individually, seated in front of a CRT monitor in a quiet room. 

Stimulus presentation and data recording were controlled via DMDX software (Forster & Forster, 

2003) and verbal responses were recorded by a head-worn microphone. Each trial started with a 

fixation cross displayed at the center of the computer screen for 500 ms. Nonwords were presented in 

the same position, in lowercase (Courier New, 14-point font), in white on a black background, and 

remained on the screen for 3000 ms or until participants responded, whichever happened first. The 

inter-stimulus interval randomly varied between 400 and 600 ms. 

 The experiment consisted of five practice trials followed by five blocks of 183 nonwords each. 

A break was administered between the blocks. Participants were instructed to read aloud the nonwords 

as naturally as possible, as if they were real words, at their own pace and without hesitation. An 

experimenter monitored participants’ performance throughout the session. In addition to the main 

experiment, we collected demographic information and standard measures of participants’ vocabulary, 

spelling, and reading ability to ensure that participants did not have language impairments, which 

could potentially affect their reading performance. The whole session, including breaks, lasted 

approximately 90 minutes. 

 

Data Preparation. 

        Reaction times, stress, and pronunciation. The main experiment generated 37,515 digitized 

sound files (915 items * 41 participants). If any one of the three main measures – stress, 

pronunciation, or reaction times (RTs) – could not be obtained, then the trial as a whole was excluded 

from any further analysis. This process yielded the exclusion of 693 trials (1.8% of the data).   

  The acoustic onsets of verbal responses were hand marked using CheckVocal (Protopapas, 

2007), following the criteria specified by Rastle, Croot, Harrington, and Coltheart (2005). In addition, 
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the full set of sound files were phonetically transcribed by one of the authors (R.L.), who had been 

trained to use the coding scheme of the RC00 algorithm and the CDP++ model for expressing English 

phonemes. To facilitate transcription of this very large dataset, the transcriber was provided with the 

pronunciations produced by the CDP++ model and the RC00 algorithm for each item (note that for 

315 of the items the models produced the same pronunciations). The transcriber’s task was to record 

whether the speaker’s pronunciation matched the pronunciation of the CDP++ model or that of the 

RC00 algorithm (or both, in cases where models agreed on pronunciation), or was a different 

pronunciation. In the latter case, the transcriber documented the alternative pronunciation. The 

transcriber was naïve to the purposes of the study.  

Stress judgements were made by one of the authors (K.R.) who had previous training and 

experience in this task (Rastle & Coltheart, 2000). Responses where primary stress could not be 

detected (e.g., where nonwords were given two stressed syllables) were coded as missing. Such 

responses were also non-fluent (i.e., produced with clear syllabification). Even though the rater was 

blind to the predictions of the CDP++ and RC00 models during transcription, we sought to verify her 

judgments using an independent measure of stress for a proportion of trials. Stressed syllables have 

been associated with longer vowel duration, higher pitch, and greater intensity than unstressed 

syllables (Lehiste, 1970), though the relative importance of each of these cues to stress perception is 

still unknown. More recently, Kochanski, Grabe, Coleman, and Rosner (2005) conducted a study on a 

large corpus of natural speech, which demonstrated that prominent syllables were louder and longer 

compared to non-prominent syllables. Of the two acoustic cues, loudness (intensity) was the stronger 

predictor. For this reason, a trained research assistant, who was naïve to the purposes of the 

experiment, labeled the acoustic boundaries of the vowels in each syllable for a random subset of 

nonword responses (5.2%, 1932 trials) using the criteria established in the ANDOSL database (Croot, 

Fletcher, & Harrington, 1992). The vowel intensity values were subsequently extracted using Praat 

(Boersma, 2001). The syllable with the highest vowel intensity value within each nonword was 

assigned primary stress. When comparing the stress judgements of the rater to those yielded by the 

acoustic measure, the match between the two was 79%. In order to reassure ourselves of the quality of 

the human ratings, we inspected all instances of disagreement between the human ratings and the 
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acoustic measure. In all of these cases, we judged that the human ratings provided a better 

approximation to the actual stress position. 

We also assessed K.R.’s stress judgements against the stress judgements of 10 undergraduate 

students who had no previous training or experience of similar nature. In particular, these students 

listened to the reading aloud responses of 10 out of our 41 participants, with each student listening to 

the responses of a different participant. Despite the fact that the students were untrained, the kappa 

inter-rater reliability between K.R. and the students (listeners) was very high in most cases, with 

values between 0.81 and 1 indicating ‘almost perfect agreement’ (4 cases), values between 0.61 and 

0.80 indicating ‘substantial agreement’ (5 cases), and values between 0.21 and 0.40 indicating ‘fair 

agreement’ (1 case). All values were highly significant (p <.001). The kappa inter-rater reliability 

values between the stress judgements made by K.R. and those made by each listener are reported in 

Table 1. 

 

Table 1. Kappa (k) inter-rater reliability values between stress judgements of K.R. and stress 

judgements of 10 listeners. 

Listener 1 2 3 4 5 6 7 8 9 10 

k .81 .37 .95 .79 .87 .92 .66 .75 .76 .78 

 

  Mean reaction time and modal human stress and pronunciation for each of the 915 nonwords, 

as well as the full dataset of every response are provided in the supplementary materials. 

  

Results 

       We analyzed stress placement, pronunciation, and reaction time for the human data and (where 

possible) for the three computational models under investigation: CDP++ (Perry et al., 2010), RC00, 

and SMA09. These three models vary substantially in their completeness, with only CDP++ yielding 

pronunciation, stress assignment, and reaction time (measured in cycles). The RC00 algorithm outputs 

pronunciation and stress assignment but no reaction time, and the SMA09 network only outputs stress 

assignment. Therefore, the analyses that we were able to conduct on each model varied substantially. 
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The outputs of the CDP++ model, the RC00 algorithm, and the SMA09 network, for each stimulus, 

are provided in the supplementary materials.  

 

Stress Assignment 

        We conducted two sets of analyses on the stress data. In the first set, we used chi-square 

analyses to assess the success of each model in capturing the modal stress assigned to each item 

across participants. In the second set, we conducted logistic regression analyses at the item level to 

probe the factors that influence stress assignment in human readers. These same analyses were then 

conducted on the model responses to determine whether the models were sensitive to the same factors 

as human readers. Thus, the analyses allowed us to determine whether the three models under 

investigation successfully predicted modal human stress.    

 

Model Performance in Capturing Human Stress Assignment 

        The modal stress produced by human participants was calculated for each item, and these 

values were compared with the stress placements provided by each model. Participants produced 77% 

of the items with first-syllable stress and 23% of the items with second-syllable stress, thus mirroring 

the distribution of stress in the English language. Eight items were produced with first- and second-

syllable stress an equal number of times. Table 2 shows model performance in assigning stress against 

the modal human stress. Percentages are derived by dividing counts by 907 items, in which 

participants favoured first- or second-syllable stress.     
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Table 2. Counts of items (with percentages in parentheses) that predominantly received first- and 

second-syllable stress by human readers and were correctly assigned first- and second-syllable stress 

by CDP++, RC00, and SMA09.  

 Human modal stress CDP++ RC00 SMA09 

1
st
 syllable 694 (77%) 588 (65%) 508 (56%) 555 (61%) 

2
nd

 syllable 213 (23%) 148 (16%) 150 (17%) 161 (18%) 

Total model match  736 (81%) 658 (73%) 716 (79%) 

 

CDP++. The CDP++ model stressed 81% of the items in line with the modal stress given by 

participants, a result that was highly significant, χ
2
(1) = 237.55, p < .001. Importantly, although the 

model has a strong bias toward initial stress, it also performed reasonably well for those items that 

were given second-syllable stress by most participants.  

       In addition to reporting the ultimate stress given to a disyllabic stimulus, CDP++ reports the 

activation levels of the stress nodes for the first and second syllables at the point at which the stimulus 

is read aloud. Using these activations, we computed a measure of CDP++ stress certainty, consisting 

of the absolute value of the difference between the activations of the two stress nodes. The higher the 

value of this measure the greater the model’s certainty of the given stress. Similarly, we computed 

human stress certainty, expressed as the absolute value of the difference between the percentage of 

people that assigned 1
st
-syllable stress and 2

nd
-syllable stress to each item, with a bigger difference 

reflecting higher stress certainty for a certain item. We then compared the CDP++ stress certainty 

measure against human stress certainty and found a strong positive correlation between them, r = .56, 

p < .001. In other words, items that yielded high certainty about which syllable to stress across the 41 

participants also yielded high stress certainty in the model. 

 

RC00.  The RC00 algorithm stressed 73% of the items according to the modal stress given by human 

participants, a result that was highly significant, χ
2
(1) = 132.98, p < .001. A close inspection of the 
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stress errors made by the model revealed that these were mainly due to producing second-syllable 

stress in response to prefixed nonwords.  

 

SMA09. The SMA09 network stressed 79% of the items according to the modal stress given by 

participants, a result that was highly significant, χ
2
(1) = 227.26, p < .001. A close inspection of the 

stress errors made by SMA09 revealed that these were mainly due to incorrectly assigning second-

syllable stress to prefixed nonwords.  

       The SMA09 network outputs both stress placement and the activation of the stress node scaled 

between 0 and 1, with values above 0.5 denoting second-syllable stress and values below 0.5 denoting 

first-syllable stress. As for the CDP++ model, we computed stress certainty in SMA09 and compared 

it with stress certainty across participants. Model stress certainty for items with second-syllable stress 

was the activation value of the stress node; for items with first-syllable stress, it was 1 minus the 

activation value of the stress node. For example, the item ‘abast’ yielded a stress value of 0.998, 

which denotes high certainty (in this case, for second-syllable stress). The item ‘burbam’ yielded a 

stress value of 0.002. We calculated the network’s stress certainty for this item as 1 - 0.002 = 0.998, 

which denotes high certainty (in this case, for first-syllable stress). Analyses of the model and human 

stress certainty measures revealed a strong positive correlation between them, r = .44, p < .001; hence, 

items that yielded high certainty about which syllable to stress across participants also yielded high 

stress certainty in the SMA09 network.  

 

Factors Influencing Stress Assignment       

  In order to determine the factors that influence human stress assignment, we conducted logistic 

regression analyses at the item level, with modal human stress as the outcome variable (first- versus 

second-syllable stress). The predictors consisted of variables that are thought to influence stress 

assignment. These include the orthographic weight (Kelly, 2004; Kelly et al., 1998) and vowel length 
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(Baker & Smith, 1976) of a syllable as well as the stress pattern of word neighbours (Burani & 

Arduino, 2004; Sulpizio & Colombo, 2013).
1
  

  Morphology has also been suggested as a cue to stress assignment in English (Ktori, Tree, 

Mousikou, Coltheart, & Rastle, 2016; Rastle and Coltheart, 2000). However, this cue is unavoidably 

confounded with other potentially important cues to stress, including orthographic and phonological 

weight, and vowel length. In particular, items containing prefixes tend to have more letters and 

phonemes in the second syllable than the first, while the vowel in the second syllable is likely longer 

than the vowel of the prefix. Similarly, items containing suffixes tend to have more letters and 

phonemes in the first syllable than the second, while the vowel in the first syllable is likely longer 

than the vowel of the suffix. Such confounds were apparent in the stimuli used by Rastle and 

Coltheart (2000). For example, in their study, all prefixed nonwords (49 in total) had more letters in 

the second syllable compared to the first, while the majority of suffixed nonwords (48/88) had more 

letters in the first syllable compared to the second. Because the nonwords in our study were modeled 

on English disyllabic words, we hypothesized that prefixation and suffixation were likely confounded 

with other sublexical cues to stress. For this reason, we first examined the relationship between 

affixation and orthographic weight in our items. We observed that all except one of our prefixed 

nonwords had more letters in the second syllable than the first while 69% of our suffixed nonwords 

had more letters in the first syllable than the second.
2
 Similarly, we examined the relationship between 

                                                           
1
 As we mentioned in the introduction, the phonological weight of a syllable is also known to influence stress 

assignment (Guion et al., 2003). However, we cannot reliably count the number of phonemes in our set of 

nonwords, because each nonword may receive a number of alternative pronunciations, and so the number of 

phonemes in each syllable varies as a function of its pronunciation. Also, vowel length is typically confounded 

with number of vowel letters in English (i.e., long vowels are usually spelled with two letters). This was also the 

case in our study, so it could be that any observed effects of vowel length on stress assignment denote effects of 

number of vowel letters. 

2
 Indeed, after extracting all of the disyllabic words in CELEX that had either a prefix or a suffix contained in 

one or more of our nonwords, we observed that 95% of those prefixed words had more letters and phonemes in 
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affixation and vowel length in our items; while almost half of the prefixed nonwords (48%) had a long 

vowel in the second syllable, only 25% of the suffixed nonwords had a long vowel in the second 

syllable.  

To avoid potential confounds in our analyses while still being able to assess how morphological 

properties of printed letter strings may influence stress assignment, we calculated a graded metric of 

spelling-to-stress consistency that expressed the consistency with which orthographic onsets and 

rimes in the first and second syllable map to a particular stress pattern in the lexicon. We considered 

that this metric would capture morphological effects on stress because (a) the CELEX database of 

disyllables that we used to calculate this metric comprises a very high proportion of morphologically-

complex words (Baayen et al., 1995), and (b) the syllabic units in our affixed nonwords always 

corresponded to a prefix or a suffix. Further, the hypothesis that prefixes and suffixes repel stress 

(Rastle & Coltheart, 2000) is derived from the observation that the vast majority of prefixes and 

suffixes in English words do not take stress. Thus, we predicted that the sublexical orthographic units 

in the first syllable of prefixed items (i.e., the onset and rime units that make up prefixes) would likely 

map consistently onto second-syllable stress, while the sublexical orthographic units in the second 

syllable of suffixed items (i.e., the onset and rime units that make up suffixes) would likely map 

consistently onto first-syllable stress. 

The calculation of this metric required us to syllabify our items. There is no consensus on the 

syllabification of English words (Treiman & Danis, 1988). However, in our case, we wanted to derive 

sublexical units that would allow us to compare our nonwords to similar words in the CELEX 

database (Baayen et al., 1995). For this reason, we closely followed the method for orthographic 

syllabification used in CELEX. These syllabifications generally follow the Maximum Onset Principle 

(Kahn, 1976; Selkirk, 1982), whereby the phonological onset of the second syllable is maximized 

(e.g., kelvin -> kel-vin instead of kelv-in). However, orthographic constraints are also respected (e.g., 

afford -> af-ford instead of a-fford). Following these syllabifications allowed us to derive onset and 

                                                                                                                                                                                     
the second syllable than the first, while 98% of those suffixed words had more letters and phonemes in the first 

syllable than the second. 
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rime units from our nonwords that matched the onset and rime units of similar words in CELEX, thus 

increasing the validity of our spelling-to-stress consistency metric.  

 In the following logistic regression analyses, ‘first-syllable stress’ was considered as the 

baseline category, so that regression coefficients reflect the probability of assigning second-syllable 

stress.
3
 Accordingly, our predictors included the measure of spelling-to-stress consistency of the first 

and the second syllable described above (which reflects whether the onset and rime units of each 

syllable point toward first- or second-syllable stress), the item’s orthographic weight (expressed as the 

ratio of number of letters in the first syllable to the number of letters in the second syllable), the vowel 

length of the second syllable (which denotes whether the second syllable contains a long vowel), and 

the stress pattern of the item’s orthographic neighbours (which denotes whether an item has any word 

neighbours that are stressed on the second syllable). Further, we considered stress certainty as an 

additional predictor of stress assignment.  

 In order to determine then whether stress assignment in the models was sensitive to the same 

factors as in the human data, the same logistic regression analyses were carried out for each model. 

These analyses treated model stress as the outcome variable (again, with first-syllable stress being the 

baseline category) and used the same predictor variables as in the human data.
4
 All analyses of stress 

placement used the glm function in R (R Core Team, 2015, version 3.2.3) and the packages car (Fox 

& Weisberg, 2011) and mlogit (Croissant, 2013). Further, given that we had no logical or theoretical 

basis for considering any variable to be prior to any other, we entered all of the variables into the 

analysis simultaneously. Our predictions about how each of these variables was likely to influence 

stress assignment are outlined below:  

i. Spelling-to-stress consistency. We calculated two variables, one for the onset and rime units of  

                                                           
3
 Eight of the nonwords were assigned first- and second-syllable stress an equal number of times. These items 

were excluded from the analyses of both the human and the model stress data.  

4
 Stress certainty in the CDP++ model consisted of the absolute value of the difference between the activations 

of the model’s stress nodes. Stress certainty in the SMA09 network was also calculated on the basis of the stress 

node’s activation value (see details of its calculation on p. 19). In both models, higher values indicated greater 

stress certainty. 
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 the first syllable and another for the onset and rime units of the second syllable for all 915  

 nonwords. These variables expressed the consistency with which these units in each syllable 

 map to a particular stress pattern according to the CELEX database (Baayen et al., 1995). The  

values for onsets and rimes were then averaged to form a composite measure of unit 

consistency within each syllable. Our hypothesis was that the more consistently the onset and 

rime units in a syllable map onto a particular stress pattern, the more likely it would be for that 

syllable to have this stress pattern. Values toward 1 pointed toward first-syllable stress while 

values toward 0 pointed toward second-syllable stress. In line with our predictions, the average 

spelling-to-stress consistency of the first syllable of prefixed items in our set was 0.40 (thus, 

showing bias toward second-syllable stress) while the corresponding value of the second 

syllable of suffixed items was 0.80 (thus, showing bias toward first-syllable stress). The 

average spelling-to-stress consistency for non-affixed items in our set was 0.80 for both 

syllables (indicating strong bias toward first-syllable stress). Further details on the calculation 

of this metric can be found in Appendix A.  

ii. Orthographic weight. We calculated a metric expressing orthographic weight by dividing the  

 number of letters in the first syllable by the number of letters in the second syllable. Values  

 below 1 indicated more letters in the second syllable, while values above 1 indicated more  

 letters in the first syllable. We hypothesized that the more letters a syllable contained the more  

 likely it would be for that syllable to attract stress (see Kelly, 2004; Kelly et al., 1998). 

iii. Long vowel (second syllable). We created a binary variable, which expressed for each nonword  

whether there is likely to be a long vowel in the second syllable. This was based on a rule-based 

pronunciation of the vowel orthography (e.g., vowel digraphs and split digraphs would 

normally yield a long vowel). In the analysis, the category ‘no long vowel in the second 

syllable’ was treated as the baseline. Our hypothesis was that long vowels in the second syllable 

would tend to attract stress (see Baker & Smith, 1976).  

iv. Orthographic neighbor with second-syllable stress. We created a binary variable, which 

expressed for each nonword whether it has an orthographic word neighbor that is stressed on 

the second syllable. The calculation of this metric included addition, deletion, and substitution 
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neighbors. In this analysis, the category ‘no neighbor with second-syllable stress’ was treated as 

the baseline. We hypothesized that nonwords that had one or more neighbors pronounced with 

second-syllable stress would be more likely to attract second-syllable stress than nonwords with 

no such neighbors (see Burani & Arduino, 2004; Sulpizio & Colombo, 2013).  

v. Stress certainty. We created a continuous variable by calculating the absolute difference 

between the percentage of people that assigned 1
st
-syllable stress and 2

nd
-syllable stress to each 

nonword. A bigger difference reflected higher stress certainty for a certain item. We 

hypothesized that nonwords that yielded less stress certainty may be more likely to take 2
nd

-

syllable stress. This is because 2
nd

-syllable stress is not the default stress pattern in English and 

so readers are likely less exposed to sublexical cues that are typically associated with 2
nd

-

syllable stress in the English lexicon (and hence more uncertain when assigning 2
nd

-syllable 

stress).  

 

 Some general characteristics of the nonwords that are relevant for the regression analyses on 

the stress data are shown in Table 3. The results from the analyses of the stress data are shown in 

Table 4.  
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Table 3. Characteristics of nonwords (ranges for means are shown in parentheses). 

 Total 

Prefixed 396 

Suffixed 150 

Orthographic weight 0.9 (0.2-5) 

Long vowel 2
nd

 syllable 314 

Neighbors stressed on 2
nd

-syllable  64 

Neighborhood 0.5 (0-12) 

 Mean 

Onset and rime spelling-to-stress consistency  

(1
st
 syllable) 

0.7 (0.1-1) 

 

Onset and rime spelling-to-stress consistency  

(2
nd

 syllable) 

0.7 (0.2-1) 

 

Alternative pronunciations 5.9 (1-22) 
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Table 4. Logistic regression analyses on stress data for humans, CDP++, RC00, and SMA09. 

 Humans CDP++ RC00 SMA09 

 B(SE) OR B(SE) OR B(SE) OR B(SE) OR 

Spelling-to-Stress 

Consistency  

(1
st
 syllable) 

-3.52*** 

(0.58) 

 

0.03 

 

-3.39*** 

(0.54) 

 

0.03 

 

-4.11*** 

(0.45) 

 

 

0.02 

 

-3.07*** 

(0.51) 

 

 

0.05 

 

 

Spelling-to-Stress 

Consistency  

(2
nd

 syllable) 

-2.15*** 

(0.59) 

 

0.12 

 

-2.29*** 

(0.56) 

 

0.10 

 

-2.37*** 

(0.49) 

 

0.09 

 

-1.61** 

(0.54) 

 

0.20 

Orthographic 

Weight 

-4.46*** 

(0.66) 

 

0.01 

 

-2.57*** 

(0.53) 

 

0.08 -0.24 

(0.24) 

 

0.79 

 

-3.43*** 

(0.50) 

 

0.03 

 

Vowel Length 0.91*** 

(0.23) 

 

2.49 

 

1.74*** 

(0.22) 

 

5.72 

 

-0.02 

(0.19) 

 

0.98 

 

0.52* 

(0.21) 

 

1.68 

 

Neighbors with 

2
nd

 syllable stress 

1.07** 

(0.35) 

 

2.93 

 

0.12 

(0.34) 

 

1.13 0.76* 

(0.35) 

 

2.13 

 

2.20*** 

(0.47) 

 

8.99 

 

Stress Certainty -0.01* 

(0.00) 

 

0.99 

 

-1.02** 

(0.36) 

 

0.36 

 

  -0.83 

(0.64) 

 

0.44 

 

R
2 
(Hosmer-

Lemeshow) 

.45 .44 .26 .42 

Chi-square 

statistic 

χ²(6) = 447.25 χ²(6) = 469.52 

 

χ²(5) = 307.35 

 

χ²(6) = 479.84 

 

Note. ***p < .001; **p < .01; *p < .05. B(SE): Unstandardized coefficients with Standard Errors in 

parentheses; OR: Odds Ratio 

 

  We further assessed the relative importance of individual predictors in the model. Relative 

importance refers to the quantification of an individual regressor’s contribution to a multiple 

regression model. The varImp metric of the caret package in R (Kuhn, 2016) is a statistical test that 
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assesses the relative importance of individual predictors in the model by estimating the absolute value 

of the t-statistic for each model parameter. This function automatically scales the importance scores to 

be between 0 and 100. Table 5 presents the results from this analysis. 

 

Table 5. Analyses of variable importance on stress data for humans, CDP++, RC00, and SMA09. 

 Humans CDP++ RC00 SMA09 

Spelling-to-Stress Consistency (1
st
 syllable) 83.68 78.18 100.00 86.03 

Spelling-to-Stress Consistency (2
nd

 syllable) 29.03 49.16 51.91 30.73 

Orthographic Weight 100.00 59.02 9.81 100.00 

Vowel Length 37.62 100.00 0.00 21.70 

Neighbors with 2
nd

 syllable stress 17.31 0.00 22.84 60.49 

Stress Certainty 0.00 

 

32.45  0.00 

 

Humans. The analyses of the human stress data were all in the predicted direction. In particular, 

second-syllable stress becomes less likely when (i) the onsets and rimes of both syllables are 

consistently associated with first-syllable stress; (ii) the orthographic weight is biased toward the first 

syllable; and (iii) there is more stress certainty. Similarly, second-syllable stress becomes more likely 

when (i) there is a long vowel in the second syllable; and (ii) the nonword has one or more 

orthographic neighbors with second-syllable stress.  

  The odds ratios further showed that for a unit increase in the spelling-to-stress consistency of 

the onset and rime units in the first syllable, which indicates more association with first-syllable 

stress, there was a 97% decrease in the odds of 2
nd

-syllable stress assignment. The equivalent decrease 

for the onset and rime units in the second syllable was 88%. Similarly, for a unit increase in the 

orthographic weight, which indicates more letters in the first-syllable, there was a 99% decrease in the 

odds of 2
nd

-syllable stress assignment. However, for a unit increase in stress certainty there was only a 

1% decrease in the odds of 2
nd

-syllable stress assignment. The odds of 2
nd

-syllable stress assignment 

for items with a long vowel in the second syllable were 149% higher than the odds for items without a 
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long vowel in the second syllable, while the odds of 2
nd

-syllable stress assignment for items with 2
nd

-

syllable stressed neighbors were 193% higher than the odds for items without such neighbors.  

  The analysis of variable importance further showed that the most important predictor in the 

regression model on the human stress data was orthographic weight, followed by the spelling-to-stress 

consistency of the onset and rime units in the first syllable. Vowel length of the 2
nd

 syllable was the 

next most important predictor, followed by the spelling-to-stress consistency of the onset and rime 

units in the second syllable. The stress neighbourhood of the second syllable was a less important 

predictor in the model while stress certainty had no importance. Collinearity was not an issue as 

variance inflation factors (VIF) for all predictors in the model were less than 1.14 while the lowest 

observed value of the tolerance statistic (1/VIF) was 0.88. 

 

CDP++. The analyses of the CDP++ stress data revealed the same effects as the human data except 

that having an orthographic neighbour with 2
nd

-syllable stress did not influence stress assignment in 

this model. The odds ratios further showed that for a unit increase in the spelling-to-stress consistency 

of the onset and rime units in the first syllable, which indicates more association with first-syllable 

stress, there was a 97% decrease in the odds of 2
nd

-syllable stress assignment. The equivalent decrease 

for the onset and rime units in the second syllable was 90%. Further, for a unit increase in the 

orthographic weight, which indicates more letters in the first-syllable, there was a 92% decrease in the 

odds of 2
nd

-syllable stress assignment, while for a unit increase in stress certainty, there was a 64% 

decrease in the odds of 2
nd

-syllable stress assignment. Also, the odds of 2
nd

-syllable stress assignment 

for items with a long vowel in the second syllable were 472% higher than the odds for items without a 

long vowel in the second syllable. The analysis of variable importance showed that the most 

important predictor in the regression model was the vowel length of the 2
nd

 syllable, followed by the 

spelling-to-stress consistency of the onset and rime units in the first syllable. Orthographic weight was 

the next most important predictor followed by the spelling-to-stress consistency of the onset and rime 

units in the second syllable. Stress certainty was a less important predictor while the stress 

neighborhood of the second syllable had no importance. Collinearity was not an issue as variance 
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inflation factors (VIF) for all predictors in the regression model were less than 1.32 while the lowest 

observed value of the tolerance statistic (1/VIF) was 0.76. 

 

RC00. The analyses of the RC00 stress data revealed that second-syllable stress becomes less likely 

when the onsets and rimes of both syllables are consistently associated with first-syllable stress, and 

that second-syllable stress becomes more likely when the nonword has one or more orthographic 

neighbors with second-syllable stress. The odds ratios further showed that for a unit increase in the 

spelling-to-stress consistency of the onset and rime units in the first syllable, which indicates more 

association with first-syllable stress, there was a 98% decrease in the odds of 2
nd

-syllable stress 

assignment. The equivalent decrease for the onset and rime units in the second syllable was 91%. 

Further, the odds of 2
nd

-syllable stress assignment for items with 2
nd

-syllable stressed neighbors were 

113% higher than the odds for items without such neighbors. The analysis of variable importance 

showed that the most important predictor in the regression model on the RC00 stress data was the 

spelling-to-stress consistency of the onset and rime units in the first syllable, followed by the spelling-

to-stress consistency of the onset and rime units in the second syllable. We believe that this effect was 

picked up the RC00 algorithm, because the spelling-to-stress consistency metric captures 

morphological effects on stress and prefixation and suffixation are hard-coded in the model, so that 

both prefixes and suffixes repel stress. The stress neighbourhood of the second syllable was the next 

most important predictor while orthographic weight and the vowel length of the second syllable had 

minimal or no importance. Collinearity was not an issue as variance inflation factors (VIF) for all 

predictors in the model were less than 1.53 while the lowest observed value of the tolerance statistic 

(1/VIF) was 0.65. 

 

SMA09. The analyses of the SMA09 stress data revealed the same effects as the human data except 

that stress certainty in the model did not influence stress assignment. The odds ratios further showed 

that for a unit increase in the spelling-to-stress consistency of the onset and rime units in the first 

syllable, which indicates more association with first-syllable stress, there was a 95% decrease in the 

odds of 2
nd

-syllable stress assignment. The equivalent decrease for the onset and rime units in the 
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second syllable was 80%. Further, for a unit increase in the orthographic weight, which indicates 

more letters in the first-syllable, there was a 97% decrease in the odds of 2
nd

-syllable stress 

assignment. The odds of 2
nd

-syllable stress assignment for items with a long vowel in the second 

syllable were 68% higher than the odds for items without a long vowel in the second syllable, while 

the odds of 2
nd

-syllable stress assignment for items with 2
nd

-syllable stressed neighbors were 799% 

higher than the odds for items without such neighbors. The analysis of variable importance showed 

that similarly to the human data, the most important predictor in the regression model was 

orthographic weight, followed by the spelling-to-stress consistency of the onset and rime units in the 

first syllable. The stress neighbourhood of the second syllable was the next most important predictor 

followed by the spelling-to-stress consistency of the onset and rime units in the second syllable. 

Vowel length of the 2
nd

 syllable was a less important predictor while stress certainty had no 

importance. Collinearity was not an issue in the model as variance inflation factors (VIF) for all 

predictors were less than 1.22 while the lowest observed value of the tolerance statistic (1/VIF) was 

0.82. 

  Taken together, these results show that the SMA09 network was the most successful in 

predicting modal human stress assignment, followed by the CDP++ model. The RC00 algorithm was 

the least successful model in predicting modal human stress.  

 

Human Stress certainty 

 Considering modal stress belies variability across items in the consistency with which 

participants assign stress. For this reason, we carried out additional analyses on the stress certainty 

with which people assigned first- and second-syllable stress. For each item, we calculated the 

percentage of people that assigned 1
st
-syllable and 2

nd
-syllable stress. The absolute difference between 

the two percentages reflected stress certainty, with bigger differences reflecting greater stress 

certainty. For example, the item ‘bafeness’ was assigned 1
st
-syllable stress 100% of the time and so its 

stress certainty was 100. The item ‘contonse’ was assigned both 1
st
- and 2

nd
-syllable stress 50% of the 

time and so its stress certainty was 0. The item ‘abast’ was assigned 1
st
-syllable stress 17.5% of the 

time and 2
nd

-syllable stress 82.5% of the time, hence its stress certainty was 65.  
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The items were then separated into two groups. One group contained the items that received 

modal 1
st
-syllable stress and the other group contained the items that received modal 2

nd
-syllable 

stress. The items that did not receive modal stress (N = 8), which were the items that had stress 

certainty of 0, were excluded from this analysis. Four stress certainty levels were then created (i.e., 

very low, low, high, and very high stress certainty), with each level containing the total number of 

items that received 1
st
 and 2

nd
 modal stress. Figure 4 shows that the vast majority of the items that 

yielded high stress certainty tended to be those given 1
st
-syllable stress, while most 2

nd
-syllable 

stressed items yielded lower stress certainty. This result indicates great consistency across participants 

in reading aloud items with first-syllable stress, but lower consistency across people in producing 

items with second-syllable stress. 

 

 

Figure 4. Number of first- and second-syllable stressed nonwords that yielded different levels of stress 

certainty. 
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Pronunciation 

        Two sets of analyses were conducted on the pronunciation data. In the first set of analyses, we 

assessed how well the CDP++ model and the RC00 algorithm captured the pronunciations given by 

human readers. In the second set of analyses, we quantified variability in the pronunciations given by 

human readers through a measure of entropy known as the H statistic (Shannon, 1949). We then used 

regression analyses at the item level to determine the factors that predict variability in pronunciation 

across participants. In all of the analyses in this section, we consider pronunciation only, without 

regard to stress assignment. Thus, the calculation of the modal human response treated pronunciations 

stressed on the first and second syllable as the same, as long as they contained exactly the same 

phonemes. Similarly, model pronunciations were considered as matching human pronunciations if the 

same string of phonemes was produced, irrespective of stress assignment.   

 

Model Performance in capturing Human Pronunciation  

        The analyses that we carried out first sought to determine how well the model pronunciations 

matched those given by human readers. Table 6 summarizes how often the models’ pronunciation 

matched the 1st most common pronunciation given by participants, the 2nd most common, the 3rd 

most common and so on. However, in the light of potential difficulty in distinguishing similar-

sounding vowels due to accent, which may have resulted in some variability in the transcription of 

human pronunciations, we additionally created a lenient score (see Table 6). According to this score, 

all pronunciations of nonwords containing a vowel that had been transcribed as a schwa (e.g., d@nEst 

for ‘danest’) were merged with pronunciations of the same nonwords containing a vowel in the same 

position that had been transcribed as a short vowel (e.g., d{nEst). As is shown in the table, when the 

lenient scoring criteria applied, there was an additional 7% of items whose modal pronunciation the 

CDP++ model was able to capture and an additional 14% of items whose modal pronunciation the 

RC00 algorithm could capture. The second last column of the table (titled ‘Absent’) gives the 

percentage of items for which the models gave a pronunciation that no human reader gave. These 

pronunciations are provided in Appendices B and C for the CDP++ model and the RC00 algorithm, 

respectively.   
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Table 6. CDP++ and RC00 pronunciation accuracy against human pronunciation data.  

Strict scoring criteria 

Pronunciations 1st 2nd 3rd 4th 5th 6th 7th Match Absent Total 

CDP++ 44% 17% 9% 4% 2% 0% 0% 76% 24% 100% 

RC00 55% 22% 7% 3% 1% 0% 0% 88% 12% 100% 

Lenient scoring criteria 

Pronunciations 1st 2nd 3rd 4th 5th 6th 7th Match Absent Total 

CDP++ 51% 15% 8% 4% 1% 0% 0% 79% 21% 100% 

RC00 69% 16% 5% 2% 0% 0% 0% 92% 8% 100% 

 

  Typically, models of reading have been assessed relative to average performance (e.g., 

Coltheart et al., 2001; Perry et al., 2007); for example, their match against the most frequent 

pronunciation (e.g., Andrews & Scarratt, 1998) or mean reaction time (e.g., Spieler & Balota, 1997). 

However, it is also possible to treat models not as the average participant, but as an individual 

participant within the normal distribution (e.g., Pritchard et al., 2012; Robidoux & Pritchard, 2014; 

Zevin & Seidenberg, 2006). One way of evaluating models within this conceptualisation is by 

assessing the extent to which their pronunciations accord with those of at least one human reader in 

the sample (Pritchard et al., 2012). Table 6 shows that even when we used a lenient scoring criterion, 

a substantial portion of pronunciations given by CDP++ and RC00 were not given by any human 

reader. Close inspection of these pronunciations revealed substantial differences in the kinds of errors 

produced by the two models. For the CDP++ model, most errors were due to: 

(a) unusual vowel shortening in the second syllable (e.g., bomly -> bQmlI; ungourt -> VNg@t). 

In some cases, this led to impossible pronunciations, so that both syllables contained schwa 

vowels, one of which was stressed (e.g., adant -> @d@nt); 

(b) unlikely print-to-sound mappings (e.g., lictoun -> lIst6n; bethove -> bITVv); 

(c) lexicalisations (e.g., insance -> Inst@ns; leavy -> lIvIN); 
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(d) assuming the existence of final –e (e.g., astond -> @st5nd; enmil -> Enm2l); 

(e) phoneme deletions (e.g., droseful -> dr5sEf; bafeness -> b{finz); 

(f) phoneme additions (e.g., afflave -> @fl1vz; sorglom -> s9gl@md). 

 

 In contrast, the cases in which the RC00 algorithm produced a response that no human reader 

gave could be more clearly categorized in terms of the application of certain rules. These included:  

(a) reducing an initial vowel to schwa and repelling stress as a result of the identification of a 

prefix (e.g., combal -> k@mb{l; forsive -> f@s2v);   

(b) treating two graphemes as one (e.g., pemble -> pem@l; blingle -> blIN@l); 

(c) reducing the second vowel to a schwa (e.g., adnarb -> {dn@b; evact -> Ev@kt); 

(d) pronouncing silent ‘e’ (e.g., bafeness -> b1fin@s; droseful -> dr5sifUl); 

(e) producing unusual pronunciations (e.g., byfane -> bIf1n; dakey -> d1k2); 

(f) pronouncing c followed by i as /k/ (e.g., bancing -> b{NkIN; ucide -> Vk2d). 

 

The large number of model pronunciations given by no human reader would appear to suggest 

that these models do not provide good descriptions of sublexical processes in disyllabic reading.  

However, human readers also produce unique pronunciations. If a model is conceptualised as an 

individual participant, then perhaps these unique pronunciations are to be expected. In order to 

evaluate this possibility, we carried out an analysis that allows us to visualise in a fine-grained manner 

the extent to which the models lie within the distribution of human responses. We first calculated the 

similarity of each participant in the study to every other participant; that is, we compared the 

responses of participant 1 to those of every other participant, the responses of participant 2 to those of 

every other participant, and so on. This process yielded 40 similarity proportions per participant or a 

total of 820 unique similarity proportions across all participants. We then compared the 

pronunciations of CDP++ and RC00 to each individual subject, yielding 41 similarity proportions for 

each model. Figure 5 shows the distribution of similarity values for human participants, the CDP++ 

model and the RC00 algorithm. As is shown in the figure, both models show overall lower similarity 

to human participants than human participants show to each other. Further, while the RC00 similarity 
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values overlap the lower third of the values from human participants, the similarity values from 

CDP++ overlap only very few of the plotted human similarity values. We can infer from this analysis 

that if the models are treated as if they were individual participants, then they are certainly not very 

typical individuals, particularly in the case of the CDP++ model.   

 

 

Figure 5. Pronunciation similarity between participants and between models and every other 

participant. 

 

Factors Influencing Variability in Pronunciation 

        Nonwords attracted an average of 5.9 alternative pronunciations, ranging from 1 to 22 

pronunciations. Nonwords that attracted only a single pronunciation and nonwords that attracted 12 or 

more pronunciations are shown in Appendix D. Pronunciation variability across participants was 

quantified using the H statistic. H is calculated using the formula Ʃ[-pi x log2(pi)], where pi is the 

proportion of participants giving a certain pronunciation (see also Andrews & Scarratt, 1998; Zevin & 

Seidenberg, 2006). For the item ‘amett’, for example, three alternative pronunciations were given by a 

total of 41 participants. The most frequent pronunciation was given by 30 participants (i.e., a 



MOVING BEYOND THE MONOSYLLABLE 

38 

 

proportion of .732); the second most frequent was given by 8 participants (i.e., a proportion of .195); 

and the third most frequent was given by 3 participants (i.e., a proportion of .073). Using the above 

formula, H was calculated as: 

a. -.732 x log2(.732) = -.732 x -0.450 = 0.33 for the first pronunciation; 

b. -.195 x log2(.195) = -.195 x -2.358 = 0.46 for the second pronunciation; 

c. -.073 x log2(.073) = -.073 x -3.776 = 0.28 for the third pronunciation. 

The three values were then added up (0.33 + 0.46 + 0.28) to give an H value of 1.07. An H 

value of 0 denotes that all participants produced a single pronunciation for a given item, whereas 

higher H values indicate pronunciation variability across participants. 

 In order to understand the factors that influenced pronunciation variability across participants, 

we conducted item-level regression analyses with H as the outcome variable. In line with the stress 

analyses, we calculated a metric of spelling-to-sound consistency that expressed the consistency with 

which orthographic units in the first and second syllable map to particular sounds. The same 

syllabifications as for the analyses on stress were used, which allowed us to derive onset and rime 

units from our nonwords that matched the onset and rime units of similar words in CELEX, thus 

increasing the validity of our spelling-to-sound consistency metric. The factors that influence the 

pronunciation of items containing more than one syllable are not established in the literature. For this 

reason, we opted to include in our analyses only variables whose properties we could reliably 

calculate or identify in disyllabic nonwords. Hence, our predictors included the spelling-to-sound 

consistency of the first and the second syllable, the item’s letter length, and the total number of the 

item’s orthographic neighbours. Analyses used the lm function in R and the packages car (Fox & 

Weisberg, 2011) and QuantPsyc (Fletcher, 2012). All of the variables were entered into the analysis 

simultaneously. Our predictions about how each of these variables was likely to influence 

pronunciation variability are outlined below:  

i. Spelling-to-sound consistency. We calculated two variables, one for the onset and rime units of  

 the first syllable and another for the onset and rime units of the second syllable for each of the

 915 nonwords. These variables expressed the consistency with which these units in each  

 syllable map to particular sounds according to the CELEX database (Baayen et al., 1995). The  
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 spelling-to-sound consistency measure was expressed using the H statistic, so that higher values  

 indicate less consistency in the spelling-to-sound mapping. H values for onsets and rimes were  

 then averaged to form a composite measure of unit consistency within each syllable.
5
 Our  

 hypothesis was that more consistent mappings between the spellings of onset and rime units  

 and their sounds in a syllable would yield more homogeneous pronunciations, hence less  

 pronunciation variability. Details of the calculation of this metric can be found in Appendix A. 

ii. Neighborhood size. This variable refers to the number of orthographic neighbors that can be  

 obtained by adding, deleting, or substituting one letter in the nonword. Our hypothesis was that  

 items with more word neighbors would yield less pronunciation variability. 

iii. Item length. This variable refers to the number of letters in each nonword. We hypothesized  

 that longer items would yield more pronunciation variability. 

 The results of this regression analysis are shown in Table 7. 

 

 

 

 

 

                                                           
5
 During these calculations, we noted that this composite measure of consistency for items that ended in –ble,  

–cle, –dle, –fle etc. did not reflect accurately the spelling-to-sound consistency of these units in the CELEX 

database. This was because –e as a rime in the second syllable is relatively inconsistent, whereas if such units 

are considered as a whole, their pronunciations in CELEX are very consistent (except for the unit –tle whose 

spelling-to-sound mappings are rather inconsistent because of the tendency to drop the /t/ sound, as in ‘castle’). 

These units always corresponded to the second syllable of real words in CELEX. Hence, for all of our items that 

contained these units (e.g., churble, gibtle, steafle etc.), we calculated the spelling-to-sound consistency of their 

second syllable as a whole, and these were the values that we entered in our analyses on pronunciation and 

naming latencies. It is worth pointing out that it was not possible to calculate whole-syllable spelling-to-sound 

consistencies for all of our stimuli, because half of the syllables contained in our nonwords did not exist as such 

in CELEX.  
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Table 7. Regression analyses on pronunciation variability data for humans. 

 B(SE) β Relative 

contributions 

Spelling-to-Sound Consistency (1
st
 syllable) 0.45 (0.07) .22*** 

 

40.49 

Spelling-to-Sound Consistency (2
nd

 syllable) 0.48 (0.07) .20*** 

 

32.19 

Neighborhood size -0.13 (0.03) -0.16*** 

 

23.41 

Item length -0.04 (0.03) -0.04 3.91 

R
2
 .13 

Note. ***p < .001. 

 

  Results revealed that less consistent spelling-to-sound mappings in the onset and rime units of 

both the first and the second syllable induced greater pronunciation variability. Further, nonwords 

with more word neighbors yielded less pronunciation variability. Item length did not influence 

pronunciation variability. Collinearity was not an issue as variance inflation factors (VIF) for all 

predictors in the model were less than 1.21 while the lowest observed value of the tolerance statistic 

(1/VIF) was 0.83. We further sought to quantify the relative contributions of the regressors to the 

model's total explanatory value. The lmg metric of the relaimpo package in R (Grömping, 2006) 

estimates the importance of each regressor by decomposing R
2
 into non-negative contributions that 

automatically sum to the total R
2
. Relative importance estimates are then adjusted to sum to 100% 

(see Table 7). The spelling-to-sound consistency of the first syllable contributed the most to the 

model, followed by the spelling-to-sound consistency of the second syllable and neighborhood size.  

Similarly as for stress, considering modal pronunciation belies variability across items in the 

consistency with which participants assign pronunciation. For this reason, we calculated the 

percentage of responses that corresponded to each given pronunciation across all nonwords. 

Nonwords were grouped in terms of the alternative pronunciations they yielded. As is shown in 

Figure 6, the vast majority of the responses that participants gave across all items corresponded to the 
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most frequent pronunciation followed by the second most frequent pronunciation. Further, we 

calculated the percentage of items that yielded the different numbers of alternative pronunciations in 

order to gauge the overall pronunciation variability. As can be seen in Figure 7, half of the items 

(51%) received from 1 to 5 alternative pronunciations, indicating low pronunciation variability; 

another 40% of the items received 6 to 10 alternative pronunciations, indicating greater pronunciation 

variability; 8% of the items received 11 to 15 pronunciations, and only 1% received over 16 

pronunciations. Taken together, the results from these analyses show that even though the nonwords 

in our study yielded a number of alternative pronunciations (M = 5.9, range 1-22), they were overall 

pronounced in a relatively consistent manner.  

 

 

Figure 6. Percentage of responses given to each alternative pronunciation in items that generated one 

or more pronunciations. 
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Figure 7. Percentage of nonwords that yielded 1 to 5, 6 to 10, 11 to 15, and 16 to 22 alternative 

pronunciations. 

 

RT 

        Our analysis of RT first considered how well the CDP++ model’s reading aloud latencies 

captured human reading aloud performance. We then conducted regression analyses at the item level 

to determine the factors that contributed to human and model reading aloud latency.   

 

Latencies in the CDP++ Model        

        Correlational analyses revealed a small but significant relationship between the model’s RTs 

and human RTs, r = .20, p < .001. RTs from the CDP++ model also correlated significantly with 

human pronunciation variability (H), r = .26, p < .001, with longer RTs associated with items that 

yielded greater pronunciation variability across participants. Finally, the model’s RTs correlated 

significantly with human stress certainty, r = -.15, p < .001, so that longer RTs were associated with 

items that yielded lower stress certainty in human readers. 
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Factors Influencing Reading Aloud Latency 

        In order to determine the factors influencing reading aloud latency, we conducted a regression 

analysis at the item level with human RT as the outcome variable. On the basis of previous empirical 

work (for a review see Perry et al., 2010), a number of factors were included as predictors. Analyses 

were undertaken using the lm function in R and the packages car (Fox & Weisberg, 2011), MASS 

(Venables & Ripley, 2002), and QuantPsyc (Fletcher, 2012). Further, the Box-Cox procedure 

indicated that inverse RT (1/RT) was the optimal transformation to meet the precondition of 

normality. For the analysis, we multiplied 1/RT by -1000 (-1000/RT) to maintain the direction of 

effects, so that a larger inverse RT meant a slower response. All of the variables were entered into the 

analysis simultaneously. The predictor variables included:  

i. Spelling-to-sound consistency. This is the same variable that we included in the analysis of the 

pronunciation variability data. Our hypothesis was that more consistent mappings between the 

spellings of onset and rime units and their sounds in each syllable would yield faster RTs. 

ii. Neighborhood size. This variable refers to the number of orthographic neighbors that can be 

obtained by adding, deleting, or substituting one letter in the nonword. Our hypothesis was that 

items with more word neighbors would yield faster RTs. 

iii. Item length. This variable refers to the number of letters in each nonword. We hypothesized 

that longer items may yield slower RTs. 

iv. Onset coding. This variable refers to potential articulatory parameters that could influence RTs. 

On the basis of previous findings (Rastle et al., 2005), we considered voicing (with two levels: 

voiced and unvoiced) and manner of articulation (with five levels: stops/affricates, fricatives, 

nasals, approximants, and vowels) as potential predictors of naming latencies. For the voicing 

factor we treated voiced initial consonants as the reference level, and for the manner of 

articulation factor we treated stops as the reference level. This is because the acoustic onset of 

items that start with voiced consonants and/or a stop consonant is known to occur later than for 

other voicing and manner classes of phoneme (see Table 1, Rastle et al., 2005, p. 1089). 
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v. Stress certainty. This is the same variable that we used in the analysis of the stress data and so 

higher values indicated greater stress certainty. Our hypothesis was that greater stress certainty 

may be associated with faster RTs.  

vi. Stress. This is a binary variable that refers to the modal stress assigned to each item across 

participants (for the analysis of the human RT data) and the stress assigned to each item (for the 

analysis of the CDP++ RT data). The baseline category was ‘first-syllable stress’. First-syllable 

stress is the most common stress pattern for disyllables in English, hence we hypothesized that 

first-syllable stressed nonwords may yield faster RTs than second-syllable stressed nonwords. 

 

Results of the regression analysis are shown in Table 8. Numeric variables were standardized 

using the scale function in R. Standardized coefficients for dummy (factor) variables are meaningless 

and therefore are not included. 
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Table 8. Regression analyses on naming latency data for humans and CDP++. 

 Humans CDP++ 

 B(SE) β Relative 

contributions 

B(SE) β Relative 

contributions 

Spelling-to-Sound 

Consistency (1
st
 syllable) 

0.01 

(0.01) 
 

0.04 

 

0.67 8.08** 

(2.61) 

0.11 

 

8.80 

Spelling-to-Sound 

Consistency (2
nd

 syllable) 

0.01 

(0.01) 

0.02 

 

0.41 4.34 

(2.73) 

0.05 

 

2.57 

Neighborhood size -0.03*** 

(0.00) 

-0.23 

 

26.15 -2.74** 

(0.95) 

-0.10 

 

19.86 

Item length 0.04*** 

(0.00) 

0.25 26.97 7.66*** 

(1.23) 

0.22 39.72 

Onset coding (voicing) -0.03** 

(0.01) 

 4.10    

Onset coding (manner)   36.66    

Approximant -0.06*** 

(0.01) 

     

Fricative -0.10*** 

(0.01) 

     

Nasal -0.07*** 

(0.02) 

     

Vowel -0.05*** 

(0.01) 

     

Stress Certainty -0.00 

(0.00) 

-0.06 

 

4.57 -10.63** 

(3.39) 

-0.11 

 

19.59 

Stress -0.01 

(0.01) 

 0.46 4.49 

(2.46) 

 9.46 

R
2
 .24 .10 

Note. ***p < .001; **p < .01.  

 

  Results showed that nonwords with more word neighbors yielded faster RTs while longer 

nonwords yielded slower RTs. The place and manner of articulation of the initial consonant also 

influenced naming latencies, so that items with a voiceless initial consonant yielded faster RTs and 
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items that started with an approximant, fricative, nasal, or a vowel produced faster RTs than items 

with an initial stop consonant. The stress certainty that an item yielded and its modal stress did not 

influence naming latencies. Collinearity was not an issue as variance inflation factors (VIF) for all 

predictors in the model were less than 2.37 while the lowest observed value of the tolerance statistic 

(1/VIF) was 0.42. We further sought to quantify the relative contributions of the regressors to the 

model's total explanatory value using the lmg metric of the relaimpo package in R (Grömping, 2006). 

Relative importance estimates were then adjusted to sum to 100% (see Table 8). Onset coding 

followed by neighbourhood size and item length were the predictors that contributed the most to the 

model’s explanatory value. 

        In order to determine whether the CDP++ model was sensitive to the same factors, we 

conducted a similar regression analysis using model RTs as the outcome variable. The same 

predictors as for the analyses of the human RT data were used except for the onset coding variable 

that is not relevant for model RTs. Further, stress certainty in the model was expressed as the absolute 

value of the difference between the activations of the two stress nodes, with higher values indicating 

greater stress certainty. In agreement with the human data, nonwords with more word neighbors 

yielded faster RTs and longer nonwords were associated with slower RTs. However, in contrast to the 

human data, the model yielded a spelling-to-sound consistency effect of the first syllable, so that 

nonwords with more inconsistent units in the first syllable were associated with slower RTs. Further, 

greater stress certainty in the model yielded faster RTs. Collinearity was not an issue in the regression 

model as variance inflation factors (VIF) for all predictors were less than 1.27 while the lowest 

observed value of the tolerance statistic (1/VIF) was 0.79. As for the human data, we sought to 

quantify the relative contributions of the regressors to the model's total explanatory value. Item length, 

followed by neighbourhood size and stress certainty were the predictors that contributed the most to 

the model’s explanatory value. The results from these analyses are shown in Table 8.  

 

General discussion 

  Theoretical and empirical work on the cognitive processes that underpin reading aloud has 

flourished over the past 30 years. Despite this, our understanding of these processes is largely 
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confined to monosyllables, which form only a very small part of the English vocabulary and are 

virtually absent from many of the world’s languages. Recent developments in computational models 

of reading aloud (Perry et al., 2010) have yielded some theoretical progress in this domain of research, 

yet the empirical work is very limited. The present study provides the first database of stress 

assignments, pronunciations, and reading aloud latencies for a variety of monomorphemic and 

polymorphemic disyllabic English nonwords.  

  Our analyses of over 37,000 reading aloud responses to 915 disyllabic nonwords sought to 

identify cues to stress assignment in English, and to uncover the factors that influence pronunciation 

variability and reading latency across skilled adult readers. We also used these data to evaluate the 

adequacy of three approaches to disyllabic reading aloud that have been computationally instantiated: 

the CDP++ model (Perry et al., 2010), the rule-based disyllabic algorithm (Rastle & Coltheart, 2000), 

and the connectionist print-to-stress network (Ševa et al., 2009). In addition to revealing new insights 

about how skilled English readers process disyllabic letter strings, and evaluating the adequacy of 

extant computational approaches to reading aloud, the present database is by far the largest of its kind 

for assessing generalisation in computational models of reading. By making the full dataset available 

with this article, we hope to foster rapid development of the next generation of these models, 

particularly as they move beyond the monosyllabic domain. 

 

Stress Assignment 

Our analyses of the most frequent (modal) stress indicated that participants assigned first-

syllable stress to 77% of the items, and second-syllable stress to 23% of the items, thus mirroring the 

distribution of stress in the language (i.e., approximately 75% of English disyllabic words are stressed 

on the first syllable). Finer-grained analyses showed that nearly 40% of items yielded very high 

certainty in stress assignment across participants, and that almost all of these items had modal first 

syllable stress. Just over 20% of items had very low certainty in stress assignment across participants, 

and a much higher percentage of these had modal second syllable stress. Regression analyses revealed 

several item-level factors that influenced participants’ assignment of stress: these included the 

spelling-to-stress consistency of the onset and rime units in the first and the second syllables, the 
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relative orthographic weight of the two syllables, the second syllable’s vowel length, the stress pattern 

of the item’s orthographic neighbours, as well as the certainty with which stress was assigned across 

participants. Several of these variables are strongly related to the morphological structure of the 

English writing system. Because of these strong intercorrelations (in our stimuli and in the language), 

we cannot determine whether the simple presence of an affix within a letter string has a direct 

influence on stress assignment as postulated by Rastle and Coltheart (2000). However, we can 

conclude that morphology likely has a powerful indirect influence on stress assignment by virtue of its 

significance in the nature of the mapping between sublexical orthographic units and stress, and its 

significance in the relative salience of syllables within words across the English lexicon.   

 Recently, Ktori et al. (2016) reported that people with acquired surface dyslexia frequently 

assign incorrect stress to prefixed words with a strong-weak stress pattern (e.g., reflex). Ktori et al. 

(2016) argued that these errors provide strong evidence for the functional role of prefixes in stress 

assignment during reading. However, in light of the findings reported in this paper, it is uncertain 

whether the patients in this study were indeed sensitive to prefixation when assigning second-syllable 

stress to most prefixed disyllabic words, or whether it was some related factor that led them to show 

this stress pattern (e.g., orthographic weight, spelling-to-stress consistency). Because it is impossible 

to find sets of English monomorphemic and polymorphemic words matched on these factors, it would 

be difficult to disentangle experimentally these two possibilities. One possibility may be to conduct 

factorial experiments with nonwords purposely designed to pull these interrelated cues apart; this is an 

approach that we are currently investigating (Ktori, Mousikou, & Rastle, 2016). 

 Our analysis of the model data revealed that all models performed well in producing the modal 

stress given by participants, predicting the human response in 81% (CDP++), 79% (SMA09), and 

73% (RC00) of cases. Further analysis revealed that nonwords that yielded high stress certainty across 

participants also yielded high stress certainty in the CDP++ model and the SMA09 network, with the 

former model performing slightly better than the latter. However, when we conducted the same item-

level regression analyses as for the human participants, we observed that not all of the models 

performed well for the right reasons. While the CDP++ model and the SMA09 network were 

successful in capturing human modal stress, with the SMA09 network approaching more the human 



MOVING BEYOND THE MONOSYLLABLE 

49 

 

data according to our analyses of the relative importance of the individual predictors in the regression 

models, the RC00 algorithm failed to capture the effects of orthographic weight and vowel length that 

human readers showed. However, it is worth noting that the underlying reason why both the SMA09 

network and the CDP++ model showed a vowel length effect on stress assignment is likely because 

vowel length was confounded with number of vowel letters in our nonwords, and so both models may 

capture this effect on the basis of orthographic information (as may also be the case for human 

readers).  

  

Pronunciation 

We quantified variability in pronunciation using the H statistic, a measure of entropy that takes 

into account the proportion of participants producing each alternative pronunciation. Lower values of 

H denoted fewer pronunciations for a given item, whereas higher values of H denoted more 

pronunciation variability across participants. Results showed that the factors that determine variability 

in pronunciation are the spelling-to-sound consistency of sublexical orthographic units in the first and 

the second syllable and the orthographic neighborhood in which the items reside in the lexicon. 

Additional analyses that we carried out to gauge the overall pronunciation variability across 

participants showed that even though the nonwords in our study yielded a number of alternative 

pronunciations (ranging from 1 to 22), they were overall pronounced in a relatively consistent 

manner.  

 The analyses of the model pronunciation data revealed that the CDP++ model produced the 

modal human pronunciation in 44% of cases while it produced a response given by no human 

participant for 24% of the items. The model responses in these cases reflected a combination of 

different types of errors, which would require intensive study of the model to understand fully.
6
 

Conversely, the RC00 algorithm captured the human modal pronunciation in 55% of cases, and gave a 

                                                           
6
 We have also run these simulations with the CDP++ parser (Perry, Ziegler, & Zorzi, 2013) and the results were 

very similar to those obtained with the CDP++ model. We chose to report the simulations with the CDP++ 

model because it has been tested more extensively than the parser implementation. 
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response produced by no human participant in just 12% of cases. These were all cases that arose as a 

result of individual hard-wired rules in the algorithm; hence, it is not difficult to envisage how these 

could be altered to improve the fit to the human data. Human readers sometimes produce unique 

responses, and so we went even further to assess whether either of the models could be considered as 

a typical individual participant. These analyses revealed that the models showed much lower 

similarity to human participants than human participants showed to each other.  In fact, while the 

RC00 algorithm overlapped the lower third of the similarity distribution for human readers, the 

CDP++ model fell almost totally outside of the distribution for human readers. These data allow us to 

infer that if we treat models as if they were individual participants, they do not behave like very 

typical participants.  

 

RT 

  Though we did not emphasize speed in our instructions to participants, the average speed with 

which they responded was relatively fast (818 ms). In the analyses of the reaction time data, we 

observed that onset coding, item length, and the items’ orthographic neighborhood were all significant 

predictors of human naming latencies. However, the CDP++ model only approached the human data 

in terms of the factors that gave rise to its latencies. In agreement with the human data, item length 

and orthographic neighbourhood were significant predictors of naming latencies in the model, yet the 

model also showed sensitivity to stress certainty and the spelling-to-sound consistency of the first 

syllable, neither of which influenced human RTs.  

 

Model limitations and future directions 

One of the aims of the present study was to assess the reading performance of statistical 

(CDP++; SMA09) and rule-based (RC00) computational models of reading against a large dataset of 

human reading aloud responses to disyllabic nonwords. The SMA09 network was the most successful 

model in capturing human performance on stress assignment, followed by the CDP++ model, thus 

providing support for a statistical-learning approach to relating spelling to stress in disyllabic reading 

aloud. However, in terms of pronunciation, the CDP++ model performed less well. A close inspection 
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of the different types of pronunciation errors that the CDP++ model made (see Appendix B) revealed 

that these were primarily due to (a) the way the model assigns graphemes to the different slots in the 

graphemic buffer, and (b) the model overgeneralizing the spelling-to-sound relationships that it learns 

during training.  

In relation to (a), the CDP++ model uses the Maximum Onset Principle, according to which 

consonant graphemes after the first vowel are placed in all available onset positions of the second 

syllable. However, most phoneme omissions that occurred in the model (e.g., grametul -> gr{mIt; 

lafeless -> l{filz) seemed to be due to grapheme assignment problems that were caused by this 

principle. For example, in the case of ‘grametul’, the consonant that follows the first vowel (i.e., /m/) 

is activated in the onset of the second syllable. The vowel that follows this consonant (i.e., /e/) is 

activated in the second syllable, and so the following consonant (i.e., /t/) is activated in the coda of the 

second syllable. No English word finishes in /tl/, so /l/ never gets activated in the coda of the second 

syllable. It is worth noting here that the CDP++ parser was designed to get around the pronunciation 

problems that were due to the onset maximization principle implemented in the CDP++ model. In 

relation to (b), statistical information about spelling-to-sound relationships is captured by the network 

during training. However, phoneme additions and unlikely print-to-sound correspondences were often 

observed in the model’s pronunciations (e.g., astond -> @st5nd; bethove -> bITVv; strastle -> 

str#s@l; arreme -> @r1m), because the model does not have context-independent knowledge of 

spelling-to-sound relationships that seems to be used by skilled adult readers when they are reading 

aloud nonwords. One could argue that some of these errors may be due to idiosyncracies in the 

training set (e.g., CELEX often produces the vowel in 'golf' as /5/, hence the model's pronunciation of 

astond as /@st5nd/). However, other similar words in CELEX (e.g., pond) are not pronounced in the 

same unusual way, and so the few idiosyncracies in CELEX cannot account for the full range of 

errors reported in Appendix B. Therefore, future developments of the model would need to consider 

these two points.  
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Rule-based vs. Statistical-learning approaches to reading aloud  

 Our data provide important insights into the question of whether sublexical knowledge is best 

characterised in terms of rules or in terms of learned statistical mappings. In order to address this 

question, we focused on how participants stressed and pronounced prefixed nonwords. The choice of 

prefixed items was deliberate since a rule-based approach like that adopted by the RC00 algorithm 

posits that all prefixes repel stress and also, that each prefix is likely to be pronounced in a single 

manner (e.g., ‘be’ is always pronounced as /bI/ irrespective of its context). In contrast, a statistical 

learning approach like that adopted by the CDP++ model predicts that the stress pattern and 

pronunciation of prefixes depends on the context in which they occur and the statistical properties of 

the English lexicon.  

 Our analyses of the stress data showed that the RC00 algorithm showed sensitivity to the 

spelling-to-stress consistency of the first and the second syllable in assigning stress. Yet we know that 

this sensitivity must be due to the model’s implemented rule that prefixes and suffixes repel stress. In 

other words, prefixes are associated with spelling-to-stress consistencies that point toward 2
nd

-syllable 

stress while suffixes are associated with spelling-to-stress consistencies that point toward 1
st
-syllable 

stress. Could it be then that once people learn the associations between certain spellings that 

correspond to affixes and their stress patterns, they form the general rule that affixes repel stress? If 

that is the case we would expect that participants assign second-syllable stress to prefixed items in a 

very consistent manner. A rule of this kind may even be formed only in those cases where prefixes are 

strongly and almost always associated with second-syllable stress in the lexicon.  

 We examined this issue by calculating first the spelling-to-stress consistency of all of the prefix 

units used in our study. Similarly to the calculation of the spelling-to-stress consistency of the onset 

and rime units, prefix units with a spelling-to-stress consistency close to 0 pointed toward 2
nd

-syllable 

stress in the CELEX database, whereas prefixes with a spelling-to-stress consistency close to 1 

pointed toward 1
st
-syllable stress. We identified 5 prefixes that very strongly pointed toward 2

nd
-

syllable stress (Mean spelling-to-stress consistency = 0.04). These were the prefixes ‘be’, ‘un’, ‘ap’, 

‘em’, and ‘re’. We then calculated the percentage of times that each participant assigned 1
st
- and 2

nd
-

syllable stress to all of the nonwords in our study that contained these prefixes and we averaged these 



MOVING BEYOND THE MONOSYLLABLE 

53 

 

percentages for each prefix and type of stress (1
st
 vs. 2

nd
). Across all five prefixes, 1

st
-syllable stress 

was assigned 47% of the time while 2
nd

-syllable was assigned 53% of the time. This result shows 

great inconsistency across participants in assigning stress to prefixed items. However, might it be that 

some readers use rules in assigning stress to prefixed items and others do not, depending on the type 

of reading instruction they received at school and their reading skills? If that were the case we should 

observe within-participant consistency in assigning second-syllable stress to prefixed items, at least on 

some occasions. This was not the case in our data; we could not find any participants who reliably 

assigned second-syllable stress to nonwords with particular prefixes across all items that contained 

those prefixes. Hence the results from this analysis provide strong evidence against a rule-based 

approach to stress assignment, at least the one adopted by the RC00 algorithm.  

 In terms of pronunciation, we took a quite similar approach to investigate whether sublexical 

spelling-to-sound knowledge is best characterised in terms of rules or statistics. In particular, we first 

calculated from CELEX the spelling-to-sound consistency of each of the prefix units used in our study 

and expressed this as an H value. Hence, a value of 0 corresponding to a certain prefix unit indicated 

that this prefix is always pronounced in the same way in the lexicon, whereas values greater than 0 

indicated pronunciation variability of this prefix across the lexicon. We then identified seven prefixes 

with the lowest H values (mid, mis, out, im, in, fore, dis), indicating high pronunciation consistency 

(Mean H = 0.06).
7
 We hypothesized that if people use rules to translate print to sound, and on the 

assumption that these rules might differ across readers depending on the type of reading instruction 

they received at school and/or their reading skills (Mousikou, Coltheart, Finkbeiner, & Saunders, 

2010; Thompson, Connelly, Fletcher-Flinn, & Hodson, 2009), we may observe within-participant 

consistency in the pronunciation of prefixes that have very consistent spelling-to-sound mappings in 

the lexicon. This is because readers may be more likely to form a rule when there are strong 

associations between certain spellings and their corresponding sounds in the lexicon. For this reason, 

                                                           
7
 The prefix ‘by’ had an H value of 0; hence it was one of the prefixes with the lowest H values. However, this 

prefix occurred only in a single item in our set, hence the corresponding analyses would not be informative and 

for this reason, we did not consider it. 
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we further calculated the consistency with which participants pronounced the prefixes with the lowest 

identified H values. We expressed this consistency as an H value too. Even though participants were 

overall consistent in the way they pronounced these seven prefixes (Mean H = 0.21), only two of them 

pronounced these prefixes always in the same manner. Hence, even if we assume that different people 

may apply different rules to translate print to sound depending on their reading instruction and skills, 

the results from our analysis show that a rule-based approach to reading aloud is rather unlikely.  

 Our data further allowed us to investigate whether readers are sensitive to the statistics of the 

lexicon when they are translating printed letter strings into their corresponding sounds. In particular, 

in addition to identifying the prefixes with the lowest H values, we identified seven prefixes with the 

highest H values (pre, sur, com, ex, for, ar, ad), indicating low pronunciation consistency (Mean H = 

1.35).
8
 We then extracted all of the nonwords in our dataset that contained the identified prefixes with 

the lowest and highest H values (N = 144). A statistical learning approach would predict that items 

that contain prefixes with consistent spelling-to-sound mappings in the lexicon (prefixes with very 

low H values) may yield less pronunciation variability across participants than prefixes with 

inconsistent spelling-to-sound mappings in the lexicon (prefixes with high H values). Thus, we 

compared pronunciation variability across participants (H) in the items containing consistent prefixes 

and the items containing inconsistent prefixes. We observed that the difference between the two 

means (0.80 vs. 1.46) was highly significant (t(65) = -4.91, p < .001). Thus, this analysis provides 

support for a statistical learning approach to reading aloud. 

 

Applied implications 

 There is now a broad consensus that the acquisition of sublexical knowledge is critical for the 

development of successful reading (Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2001), and 

that most children with developmental reading disabilities are characterised by a phonologically-based 

                                                           
8
 The prefixes ‘al’ and ‘cor’ had among the highest H values, however, each of these prefixes occurred in a 

single item in our set, hence the corresponding analyses would not be informative and for this reason, we did not 

consider them. 
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deficit (Rack, Snowling, & Olson, 1992) associated with difficulty acquiring sublexical knowledge 

(Jackson & Coltheart, 2001). Thus, the assessment of this knowledge is central to diagnosing reading 

difficulties or disorders. The present study is the first to investigate extensively the nature of this 

sublexical knowledge in disyllabic reading, thus motivating the development of new nonword reading 

tests to assess reading deficits, and the implementation of a sound and effective literacy strategy. 

 Further, our work has important downstream clinical implications. For example, speech 

pathologists, clinical neuropsychologists, and professionals involved in special needs education all 

rely significantly on measures of nonword reading performance to conduct assessments of people with 

acquired and developmental reading disorders. However, a recognized problem in this area is that 

there is a lack of normative data on skilled nonword reading, thus making it very difficult to 

determine what constitutes ‘impaired’ or ‘atypical’ (Tree, 2008) and to design suitably targeted 

interventions (Colebrander, Nickels, & Kohnen, 2011). Individuals with acquired phonological 

dyslexia, for example, have severe impairments at nonword reading (Coltheart, 1992), often 

producing real words in response to nonwords (i.e., ‘zoo’ or ‘pool’ in response to ‘zool’). Such errors 

are typically judged against the 'modal' response that a small sample of typical skilled readers 

generates; for example, if the majority of a small group of skilled readers pronounce ‘zool’ to rhyme 

with ‘pool’ and none of the individuals with acquired dyslexia pronounces this item in the same way, 

it is considered an error. However, nonwords may elicit different responses across normal skilled 

readers, as our study demonstrates, and so having a distribution of nonword responses available at the 

item level will improve and facilitate the assessment of these individuals. Our dataset provides the 

first normative nonword corpus for British English and is the largest database of its kind, so we 

believe that it will be particularly useful to this group of users. 

 

Conclusion 

The present paper reports a large-scale study in which 41 participants read aloud 915 disyllabic 

nonwords, yielding a total of around 37,000 responses. We investigated the cues to stress assignment 

and the factors that influence pronunciation variability and reading latencies in the English language. 

We also compared human reading performance to the reading performance of computational models 
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of reading that adopt rule-based and statistical-learning approaches to explaining disyllabic reading. 

Our findings provided support for the latter approach, although we identified important deficiencies 

with the most fully developed model of this type. The findings from the present study make a critical 

theoretical contribution to our understanding of skilled adult reading. Further, this dataset provides the 

first normative nonword corpus for British English and is the largest database of its kind for any 

language, thus being critical for evaluating generalization in models of reading as they advance into 

the disyllabic domain. Finally, our findings have significant applied implications for the development 

of evidence-based strategies for literacy education and the clinical diagnosis and treatment of reading 

impairments.  
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ItemNum Item Syllable1 Syllable2 Prefixation Suffixation

1 abast a bast Prefixed Non_suffixed

2 abloit a bloit Prefixed Non_suffixed

3 accoll ac coll Prefixed Non_suffixed

4 adane a dane Prefixed Non_suffixed

5 adant a dant Prefixed Non_suffixed

6 adanx a danx Prefixed Non_suffixed

7 adase a dase Prefixed Non_suffixed

8 adhace ad hace Prefixed Non_suffixed

9 adhorb ad horb Prefixed Non_suffixed

10 adhust ad hust Prefixed Non_suffixed

11 adnarb ad narb Prefixed Non_suffixed

12 adsarb ad sarb Prefixed Non_suffixed

13 adsearn ad searn Prefixed Non_suffixed

14 advore ad vore Prefixed Non_suffixed

15 advort ad vort Prefixed Non_suffixed

16 affeps af feps Prefixed Non_suffixed

17 afflave af flave Prefixed Non_suffixed

18 afflove af flove Prefixed Non_suffixed

19 afrosk a frosk Prefixed Non_suffixed

20 afush a fush Prefixed Non_suffixed

21 allyl al lyl Prefixed Non_suffixed

22 alyth a lyth Prefixed Non_suffixed

23 amett a mett Prefixed Non_suffixed

24 aminge a minge Prefixed Non_suffixed

25 apleave a pleave Prefixed Non_suffixed

26 aplign a plign Prefixed Non_suffixed

27 applexe ap plexe Prefixed Non_suffixed

28 apreds a preds Prefixed Non_suffixed

29 arend a rend Prefixed Non_suffixed

30 arreme ar reme Prefixed Non_suffixed

31 arroste ar roste Prefixed Non_suffixed

32 aslare a slare Prefixed Non_suffixed

33 astond a stond Prefixed Non_suffixed

34 asush a sush Prefixed Non_suffixed

35 attase at tase Prefixed Non_suffixed

36 attipe at tipe Prefixed Non_suffixed

37 atuse a tuse Prefixed Non_suffixed

38 bafeness bafe ness Non_prefixed Suffixed

39 baftness baft ness Non_prefixed Suffixed

40 baicy bai cy Non_prefixed Suffixed

41 baininx bai ninx Non_prefixed Non_suffixed

42 bairtul bair tul Non_prefixed Non_suffixed

43 bamper bamp er Non_prefixed Suffixed

44 bancing banc ing Non_prefixed Suffixed

45 baranx ba ranx Non_prefixed Non_suffixed

46 bartless bart less Non_prefixed Suffixed

47 basple bas ple Non_prefixed Non_suffixed

48 bastle bas tle Non_prefixed Non_suffixed

49 bastond ba stond Non_prefixed Non_suffixed
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Participant ItemNum Nonword Stress Pronunciation RT

1 1 abast 1 {b{st 682

1 2 abloit 1 {bl4t 834

1 3 accoll 1 {kk5l 768

1 4 adane 2 {d1n 885

1 5 adant 1 {d{nt 720

1 6 adanx 1 {d{Nks 791

1 7 adase 2 {d1s 1049

1 8 adhace 1 {dh1s 1044

1 9 adhorb 1 {d9b 1335

1 10 adhust 2 {dVst 1185

1 11 adnarb 1 {dn#b 1734

1 12 adsarb 1 {ds#b 1797

1 13 adsearn 1 {ds3n 1327

1 14 advore 1 {dv9 2026

1 15 advort 1 {dv9t 1074

1 16 affeps 1 {fEps 877

1 17 afflave 1 {ffl1v 913

1 18 afflove 1 {fl5v 1140

1 19 afrosk 1 {frQsk 999

1 20 afush 2 {fVS 1324

1 21 allyl 1 {lIl 1783

1 22 alyth 1 {lIT 1782

1 23 amett 1 {mEt 852

1 24 aminge 1 {mIn_ 1459

1 25 apleave 1 {pliv 989

1 26 aplign 1 {pl2n 1216

1 27 applexe 1 {plEks 1317

1 28 apreds 1 #prEdz 884

1 29 arend 1 {rEnd 1148

1 30 arreme 2 {rim 1000

1 31 arroste 2 {rQst 1682

1 32 aslare 2 {sl8 1261

1 33 astond 1 {stQnd 789

1 34 asush 2 {suS 961

1 35 attase 2 {t1s 936

1 36 attipe 1 {t2p 1590

1 37 atuse 1 {tjus 827

1 38 bafeness 1 b1fnEs 1725

1 39 baftness 1 b{ftn@s 1143

1 40 baicy 1 b1si 1837

1 41 baininx 1 b1nINks 1511

1 42 bairtul 1 b8t@l 1469

1 43 bamper 1 b{mp@ 860

1 44 bancing 1 b{nsIN 923

1 45 baranx 1 b{r{Nks 970

1 46 bartless 1 b#tl@s 1071

1 47 basple 1 b{sp@l 1541

1 48 bastle 1 b{st@l 675

1 49 bastond 1 b{stQnd 847
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