

Introducing the Agile Risk
Management (ARM) Framework

Agile Six Applications, Inc.
Brian Derfer, CTO

Copyright 2016, Agile Six Applications, Inc.
All rights reserved.

2

Introduction	

Agile processes like Scrum, XP, SAFe, and Kanban have proven to be very effective at
delivering software in a more collaborative, transparent, and predictable fashion than
traditional waterfall processes. However, Agile practices, by themselves, are not
sufficient to address the risks that impact most medium-to-large software projects, and in
particular are often not well suited to delivering on federal government projects, which
often have a structure - such as fixed scope and delivery timelines - that is not easily or
naturally accommodated by Agile. To fill the gap between what Agile does well at the
team level, and the risk management requirements of medium-to-large projects, we have
developed the Agile Risk Management (ARM) Framework.

The	Need	for	Better	Risk	Management	

In our experience, there is a noticeable lack of proactive risk management in Agile
projects in both the commercial and government sectors. Some would argue that Agile
practices are by themselves mechanisms for mitigating risk, and to a certain extent this
is true. Techniques such as time-boxed iterations allow many opportunities for course
correction, while demos provide regular empirical verification of a team’s output.
Retrospectives provide teams with a mechanism for addressing team dysfunction and
facilitate continuous improvement, and team ownership of each sprint’s commitment
often provides the emotional investment needed to keep a project moving effectively.
However these mechanisms, while necessary, are not sufficient to manage risk across
even a medium-sized software project. For example, Agile by itself does not provide an
effective mechanism for addressing structural problems within a project that are beyond
a team’s control. Consider the following problems that are fairly typical in Scrum projects
of non-trivial size:

• The Product Owner (PO), despite ongoing pleas from the team during
retrospectives, fails to prioritize user stories that help the team manage technical
risk or technical debt.

• The PO is not capable of leaving a Scrum team alone for an entire iteration
without introducing new user stories or acceptance criteria.

• The team does not have enough consistent members to estimate velocity.
• The team’s velocity simply isn’t fast enough to meet current schedule

commitments.
• The architecture that has evolved incrementally is brittle, or does not align with

the priorities of the project overall.
• The customer has not provided access to users or important stakeholders.
• The team does not know who all of the stakeholders are who define success for

the project.

Copyright 2016, Agile Six Applications, Inc.
All rights reserved.

3

When the additional constraints imposed by federal projects are considered, traditional
Agile processes are simply insufficient to manage risk on many projects. Some
combination of the following usually happens when risk is not managed well on a project:

• Team velocity and quality of deliverables declines.
• The team must constantly fight fires and deal with emergencies which results in them

regularly failing to deliver on sprint commitments.
• The team loses whatever autonomy and “ownership” of the sprint commitment they

had, and is simply directed by POs or management to work longer and harder
“because we can’t move the deadline.”

• Release dates are missed and/or promised functionality is not delivered.
• Team morale deteriorates as unhappy POs, customers, and managers bemoan the

ongoing low quality if the team’s output despite their working longer hours. The project
gets a reputation as the “death march that no one wants to be on.”

• The team has to scramble late in the project to meet a whole set of security and
architectural constraints that had been invisible, or at least not appropriately
prioritized.

• The last 20% of a project ends up taking 80% of the time.
• The team gets blindsided by new user stories or acceptance criteria that come out of

the woodwork late in the project schedule as previously unengaged stakeholders
finally gain interest in the project and add their two cents.

Problem Impact

• Technical debt is not addressed in a
timely manner.

• New requirements are injected mid-
sprint.

• The team does not have enough
consistent members to estimate
velocity.

• The team’s velocity is not sufficient to
meet schedule commitments.

• The architecture has become brittle
and/or does not align with project
priorities.

• The customer has not provided access to
users or other important stakeholders.

• The team does not know who all of the
stakeholders are.

• Team velocity and the quality of
deliverables declines.

• The team regularly fails to deliver on
sprint commitments.

• Release dates are missed, and/or
promised functionality is not delivered.

• The team loses their autonomy.
• Team morale suffers.
• There is a “balloon payment” of

technical and/or feature debt at the end
of the project.

	
One consistent problem that we have encountered is a misunderstanding that an Agile
process somehow removes the need to perform any basic project management all. It
doesn’t. Agile simply places a higher value on incremental delivery of working code over
the creation of project management artifacts and deliverables, and provides flexibility to
address facts on the ground rather than rigidly stick to a plan that may become obsolete.

Copyright 2016, Agile Six Applications, Inc.
All rights reserved.

4

But that does not mean that Agile removes the need to manage projects at all. There is
still the need to determine which process is appropriate for a given project, adequately
resource teams, identify and address risks and structural problems within the projects,
coordinate the activities of multiple teams on large projects, and maintain an ecosystem
that supports the development process. In fact, Agile processes are often better at
identifying problems in a project early and often than serving as a solution to the
problems per se.

The	ARM	Framework ©	

Based on our years of experience using Agile to successfully deliver across a range of
large commercial and federal government projects, we have developed an Agile Risk
Management (ARM) Framework. The ARM framework provides a set of tools and
practices that projects can use to better manage risk on Agile projects.

Determine	which	process	is	appropriate	

Scrum, and other iterative and incremental processes such as XP and SAFe, can be
very powerful delivery frameworks when implemented correctly and properly supported
within the right set of conditions. However, Agile processes in general, and any specific
Agile process in particular, may not be the right framework for a given project. If a given
process is not a good fit for a project, it is far better to determine that up-front or as early
as possible than to invest a lot of time trying to make it work on a project for which it is
simply a bad fit. For example, we assert that the following minimum conditions should be
in place for any Scrum project:
- The team can be left alone for a sprint cycle (usually 2 weeks) without injection

of new backlog items or significant changes to existing user stories. Sprint
commitments are cornerstone to Scrum; in order for the team to succeed in their
commitment, the corollary commitment needs to be made to leave the team alone to
self-organize to meet its commitment. If your customer demands that the team be able
to respond to incoming requests and changes in priorities more frequently than the
sprint cycle frequency, then Scrum is probably not the right choice. Kanban (see
below) may be a better choice in this circumstance.

- There is a critical mass of consistent, dedicated team members. While it is ideal
to have all team members 100% dedicated to a Scrum team, with little or no turnover,
this is hardly a realistic expectation. Developers move between jobs, and companies
need a certain amount of resource flexibility and fluidity in order to keep employees
fully tasked and projects moving forward. However, there does need to be at least a
“core” team that is consistently dedicated, otherwise it becomes very difficult to hold
team members accountable (“I got called in to fight a fire on that other project, so I
couldn’t get to that.”), and it may be difficult to implement any kind of continuous
improvement if velocity or other metrics cannot be consistently measured and
compared in an “apples-to-apples” way.

- There needs to be support for Scrum throughout the organization. Senior leaders
in particular need to understand both the philosophy of Agile and its practices. There
is nothing that will undermine any Agile effort faster than a VP circumventing the

Copyright 2016, Agile Six Applications, Inc.
All rights reserved.

5

process and going directly to a team with a hot task that is not in their sprint
commitment. This is especially true for a nascent conversion to an Agile process such
as Scrum. If the VP really can’t avoid bothering the team through an iteration, see the
first minimum condition described above.

- The team needs a qualified Scrum Master. Scrum supplants a lot of external
structure (process, documentation, etc.) with an emphasis on real-time interactions
among team members. This entails a tradeoff in investments - companies need to
invest in facilitating healthy teams and interactions - not simply an abandonment of
investments in formal process structure. Too often the move to Scrum is undertaken
as a one-way embrace of freedom from formal structure and the costs associated with
it (time, money, tools, etc.) without fully embracing the investments that need to be
made in a culture that emphasizes collaboration, communication, and trust. As a
result, developers or project managers are thrust into the Scrum Master role without
sufficient training or experience. They may not possess some of the essential
personality traits required of a good Scrum Master such as emotional intelligence, the
ability to coach and lead informally, and the ability to engage a project at many
different levels of detail.

- The Scrum Master needs to be dedicated enough to be able to effectively coach
the team. Assuming you have a properly qualified Scrum Master, he or she needs to
have time to properly do the job. “Dedicated enough” here is intentionally vague.
Teams new to Scrum or have not been practicing healthy Scrum will probably need
someone who is more dedicated than a very experienced senior team. A Scrum
Master needs to be dedicated enough to gain the team’s emotional trust, and be
present enough to see and respond to issues across a wide spectrum of causes
(project structure, team dynamics, individual psychology, technical risk, etc.).
Companies need be very careful about asking people to take on “extra” Scrum Master
responsibilities alongside their existing development or PM responsibilities. Unless
both the Scrum Master and team are very experienced at Agile, part-time Scrum
Masters usually do not work out well.

Similarly, there are minimum conditions that should be in place for other Agile
processes, such as XP or Kanban, to succeed as well, though it is beyond the scope of
this paper to exhaustively enumerate these for each flavor of Agile. The point is that
companies and teams should take stock of the entire ecosystem within which their
project will operate, and select (or invent) a process that can thrive in that ecosystem.
Picking the right process, and/or making the necessary changes to the ecosystem to
support the process chosen, is a huge first step in mitigating the risk that your Agile
project will fail.

Assign	an	Architecture	Owner	

In Agile projects, architecture is not defined within a separate phase of the development
lifecycle and handed off to teams, but rather emerges iteratively and incrementally
through sprints in response to the evolving needs of the project as these are expressed
through the priorities of product backlog. There are tremendous advantages to this

Copyright 2016, Agile Six Applications, Inc.
All rights reserved.

6

approach, not the least of which is that software ideas can be tried out and killed off
relatively cheaply when there is little up-front investment in architecture. One risk,
however, is that it provides little structure - in terms of approval ceremonies,
documentation artifacts, etc. - for the team and other stakeholders to ensure that the
architecture is on track. It may be a challenge for an evolving architecture to address
complex requirements, strict security controls, stringent standards requirements, or
approval gateways such as those found in many healthcare integration or federal
government projects if there is no one held accountable for ensuring that the architecture
meets these needs.

To better support complex and/or formal architectural requirements, the ARM
Framework includes a new Agile role: Architecture Owner. The Architecture Owner is
analogous to the traditional Product Owner role; whereas the Product Owner is
responsible for the observable “user-driven” feature set of an application, an Architecture
Owner is responsible for the underlying architecture needs of an application or system
that may not be apparent or observable to
users, or even well-understood by the
Product Owner. Product Owners may not
be highly technical, and hence may not
understand or appreciate such things as
design patterns, security standards and
vulnerabilities, or complex and multi-
faceted architecture requirements of an
existing environment or set of processes.
Without a deep technical understanding of
these issues, Product Owners may not be
able to appropriately prioritize work efforts
related to them, which can result in
products that meet visible users needs
well but are not well-architected and/or fail
to meet architecture requirements. The
Architecture Owner is one mechanism for
helping to ensure that the architecture
continues to align with complex
requirements within a process that
prioritizes individuals and interactions over
documentation and formal process.

The Architecture Owner works within or alongside the team to understand the
architecture requirements of an application, works with the team to identify toolsets,
frameworks, templates, and patterns that support the architecture requirements and
best-practices, helps the team identify and prioritize technical debt, and provides
guidance through frequent architecture reviews to ensure that architecture requirements
and and best-practices are being met. At the end of each sprint, the Architecture Owner
and team are available to demonstrate to other technical stakeholders, including client
stakeholders, how the application(s) support architecture requirements and best-
practices in the sprint review.

But aren’t Agile teams supposed to self-
organize? One frequent objection to
identifying an Architecture Owner role is that it
undermines the ability of a team to self-
organize. And we can’t really argue with that,
though we would prefer the more neutral term
“limit” to the term “undermine.” Structure by
definition puts certain constraints on freedom.
A prioritized backlog constrains a team’s ability
to self-organize in that teams are not permitted
to take on lower priority user stories even
though they may strongly feel that doing so
would benefit the project. It really comes down
to what bits of structure you decide to build into
the process, and what freedom to self-organize
you permit within that structure. In our opinion,
the advantages of the additional structure that
an Architecture Owner brings is worth the
constraints on self-organization that come with
it.

Copyright 2016, Agile Six Applications, Inc.
All rights reserved.

7

The architecture owner role can range from informal (the person generally recognized as
the most experienced and capable on the team) to formal (someone officially designated
that role and held accountable for it). The level of formality required depends on a
number of factors, including:

• The complexity of the project
• The requirements for meeting specific technical standards
• The need for production of formal artifacts and documents
• The level of formality in the project structure itself

In general, small teams working on commercial MVP projects will probably fall more on
the informal end of this continuum, while larger teams working on federal government
projects will probably fall more on the formal end.

The architecture owner is not a silver bullet, and there is still the need to manage
technical risk and technical debt in other ways. For example, the risk meeting provides a
forum for communicating technical risk and the product backlog is still the mechanism by
which that risk is addressed. However, having an architecture owner may provide a level
of oversight that, along with some other practices described here, may help projects
avoid brittle architectures, unmet technical requirements, and skyrocketing technical
debt.

There is an informative discussion of the Architecture Owner role and how it can be
scaled out to large projects at AgileModeling.com:

http://www.Agilemodeling.com/essays/architectureOwner.htm

Establish	a	Common	Project	Vision	

The prioritization of working software over process and documentation, and the
quickness with which Agile processes can often deliver it, may cause some teams to
inappropriately de-emphasize the importance of ensuring that there is both a coherent
vision for the project and that it will well understood by the entire team. Most Agile
projects we’ve encountered either do not have any artifacts at all describing the project
vision, or, when something has been created, it has been shared by senior executives
and Product Owners, but not with the team. The vision description does not need to be
(and in fact in many cases should not be) an elaborate 87-page piece of marketing shelf-
ware. Rather, a good vision artifact should be as short as possible, very public, visible,
and reviewed regularly. In fact, it doesn’t even need to be a document; it needs to be
some kind of artifact that the team can refer to easily. A wiki page often makes a great
home for a project vision. Regardless of the format, what we call the Vision Artifact
should accomplish the following in the most efficient way possible.

• The Vision Artifact should succinctly describe what problem is being solved
or what business opportunity is being met. Precisely because Agile emphasizes
individuals and interactions over process and documentation, teams are usually

Copyright 2016, Agile Six Applications, Inc.
All rights reserved.

8

operating without a technical specification document. Acceptance criteria within
user stories were never meant to replace a technical spec, and trying to make them
fill this purpose will quickly lead to an over-worked Product Owner. Hence there are
hundreds of technical and design decisions that the team makes each sprint that
are supported only by acceptance criteria described at a high level and the team’s
understanding of the problem(s) they are solving. Having the team internalize the
big picture “WHY?” that is driving the project will help them make daily micro-
decisions that better support the goals of the project. Of course the team will not
always get it right the first time, and getting the working software into the hands of
target users is by far the best way of ensuring that your project is on track. But
having a basic shared understanding of the users’ needs up-front can dramatically
reduce the number of iterations required to deliver software that users are happy
with.

• The vision artifact should succinctly prioritize the technical or architectural
principles driving the project. Many architectural decisions imply tradeoffs
between benefits. For example, a system built with security as the paramount
concern may not be as extensible, or may not perform as well, as a system without
such constraints. Architects and team members are going to be making these
tradeoff decisions on a constant basis. It is better that these tradeoffs are discussed
up-front, and some decisions made on what principles will take priority, so that
tradeoff decisions made within sprints align with the overall goals of the project.

• The Vision Artifact should identify the stakeholders that will determine
whether the project is a success or failure. This is a critical point that cannot be
overlooked. There are usually significant stakeholders beyond the user community

that can and will determine
whether or not your project
will ever see the light of day.
These include approval
committees, IT stakeholders,
contracting officers, subject
matter experts (especially in
clinical or technical domains),
and senior executives who
just want to have a say-so.
Projects should do everything
they can to identify these
stakeholders up front and
make sure they are included
in Agile ceremonies wherever
possible. It may never be
possible to completely
eliminate the risk that a senior
executive will suddenly

become interested in the project, swoop in two weeks before release, and start
demanding changes. Agile is not a panacea for dysfunctional companies. But
having a mechanism for identifying stakeholders upfront and providing many

MVP and “Spiking the Process”
Teams and POs may not know up front who all
of the important stakeholders are in a project.
This is especially true for teams operating in
new environment with complex organizational
and approval structures, such as DoD or VA. In
such cases, one mechanism for ferreting out
these stakeholders is to drive a minimum viable
product (MVP) through the SDLC process as far
as possible as early as possible - a process we
call “Spiking the Process.” Driving a software
deliverable through all of the approval gates
and (if possible) getting it deployed can bring
out important stakeholders and their concerns,
so that these can be accounted for relatively
early in a project.

Copyright 2016, Agile Six Applications, Inc.
All rights reserved.

9

opportunities to make sure the list correct should help mitigate the risk that new
important stakeholders are identified late in the release cycle.

Finally, we have found that it is valuable for the team to demonstrate that they have
internalized the project vision. Some examples of quick exercises that the team can do
include:

• Have a team member other than the Product Owner go over the vision artifact with
the team, or have different team members go over different sections.

• Create and perform a pretend TV commercial about the product being built.
• Construct a competitive game like Jeopardy or Family Feud that requires team

members to demonstrate their understanding of the project vision.

Create,	Share,	and	Maintain	Roadmaps	

Traditional Agile teams frequently fail to deliver fixed scope projects on time. This is not
surprising, since Agile traditionally rejects fixed release scope and schedule in favor of
fixed sprint time boxes and flexibility around priorities. The common answer to the
mismatch between Agile and fixed scope projects is a demand to remove the fixed
scope and schedule from the project. However, this is not a very realistic choice for
companies who want to use Agile on government contracts where fixed scope and
budget are built in to the contractual agreement and are usually inflexible. As someone
has probably said somewhere, outright rejection of fixed scope projects can be a “career
limiting move.”

For those companies who do want to use Agile on fixed scope projects, the common
approach is to make the Product Owner responsible for larger milestones (such as
releases), while the team’s obligations, and hence focus, remains tied to sprint
increments – namely, what it can commit to in a sprint. The problem here is that if the
team’s sprint velocity is not sufficient to complete the work on schedule, there is no clear
mechanism for course correcting other than to “break” the Agile model of team
ownership of its delivery capacity each sprint, and make teams work harder and longer
than they want to. This, in turn, can cause team members to leave the project and
company for projects where their buy-in and commitments are respected. In any case, it
is not a healthy mechanism for getting a project done on time.

In our experience, one way of addressing this apparent paradox is to ask the PO to
create a roadmap of deliverables and ask the team to share ownership of it. The
roadmap is reviewed each sprint or every couple of sprints, either during the planning
meeting or the backlog grooming meeting, so teams are regularly exposed to the entire
schedule, not just to the POs top priorities at any given time. Teams who are solely
focused on sprint deliverables every two weeks often fail to adequately “own” the entire
release schedule and deliverables, and hence fail to raise concerns about resources,
technical risk, user story prioritization, or feature creep on user stories until it is too late.
In our experience, a team that has a clear view of the roadmap is less likely to spend
time gold-plating features or invest time in exploring alternative implementations for the
heck of it. It is more likely to raise alarms about the issues that it has visibility into.

Copyright 2016, Agile Six Applications, Inc.
All rights reserved.

10

This is not to suggest that roadmaps are fixed and cannot or should not change. One of
the foundational drivers of Agile is the recognition that the bigger the time increment that
a plan covers, the more likely it is to be wrong. Put another way, sprints are a
mechanism to quarantine inaccurate planning to manageable chunks of time. We don’t
dispute this. We understand that the roadmap created at the beginning of a project will
probably look quite a bit different than the roadmap actually followed by the team over
the course of a project. In our view, however, the value of the roadmap isn’t that it is
accurate at the start of a project, but that it provides something against which to
measure actual progress and make the necessary micro-adjustments in order to deliver
a project on time.

What do we mean when we say that the team should “own” the roadmap along with the
PO? It should:

• Understand it and be emotionally invested in delivering on it, and be invested in
fixing it when it no longer represents reality, or no longer provides value

• Raise alarms about any issue, including access, resources, processes, or
external commitments, that will impede delivery on the roadmap

• Work with the PO to identify user stories or features that pose risk to the
roadmap so that these can be prioritized appropriately in the product backlog

Even on projects that support a more flexible delivery model, we believe that creating,
maintaining, and regularly reviewing a roadmap may provide benefits to Agile teams.
Usually the PO has some idea of how they envision the project unfolding over a timeline
larger than the next sprint. Sharing that vision with the team in the form of a high-level
roadmap, getting the team’s input on it, measuring progress against it, and updating it
when appropriate will make sure that the PO and the team stay on the same page about
the progress of the project and the risks to delivery.

Having the team buy into and “own” the larger product roadmap only works if the team
has a mechanism for addressing its concerns about the schedule, resources, and larger
project structure within which it operates, which is described in the following section.

Manage	Risk	Transparently	and	Collaboratively	

Teams can only be asked to own something if they are given mechanisms to manage it.
In the case of a product roadmap or a fixed release schedule, one mechanism for
managing a roadmap is a formal risk register that the team contributes to, and is
regularly reviewed with the PO and all stakeholders, including the customer. The risk
register and risk meeting provide a high degree of transparency into the challenges
faced by the team, ensures that each risk is associated with a mitigation strategy and an
owner responsible for executing it. It also provides a feedback mechanism for important
items to be prioritized in the team’s backlog and items which once seemed important to
be either cut or deprioritized. Think of Agile as an alarm that gets sounded every couple
of weeks about current and potential problems. Without a mechanism for managing that
risk, such as a risk register and recurring risk meeting, that alarm may go unheard.

Copyright 2016, Agile Six Applications, Inc.
All rights reserved.

11

The inclusion of the customer in the risk mitigation meetings is a topic of vigorous
debate, but in our view is central to a healthy risk management system. In our
experience, when customer stakeholders are “invited in” to see what challenges and
risks are faced by the team, can see that risks are being actively managed, and are
invited to take part in mitigating the risks, the vendor-customer relationship can often
undergo a profound transformation — from one in which the customer is a passive
recipient of the vendor’s output (or, too often, its “victim”) into a true collaborative partner
which shares in the challenges and solutions. Of course, not every customer will make a
good collaborative partner, and there are plenty of dysfunctional vendor-customer
relationships where increased transparency may not be a good idea. Most reasonable
customers, however, will appreciate being invited in to the risk management process,
and can be key contributors to making necessary structural changes on their end to help
teams be more efficient. Ideally, customers may also we willing to adjust the priority or
scope of deliverables once they have a full understanding of the challenges facing the
team. Most important, however, is that by involving customers in seeking solutions, they
become invested collaborators in those solutions, and it becomes less easy for them to
simply blame the team for not meeting challenges.

At this point, those familiar with Agile might counter that sprint retrospectives are the
mechanism for identifying and mitigating risks or challenges to the team. There may be
situations on small projects with teams composed of very experienced Agile practitioners
where this actually plays out. In our experience, however, retrospectives are not
adequate for managing risk for a couple of reasons:

1. Retrospectives are too often focused on what happened during that previous
sprint, and do not provide an opportunity for team members and other
stakeholders to raise their heads out of the sprint to focus on what’s going on at
the project level or roadmap level.

2. Retrospectives do not have all of the right people in the room to address project
risk well. Retrospectives are the appropriate forum for team members to identify
opportunities for improvement during the last sprint and try little experiments to
improve. Retrospective commitments assume the autonomy of the team to try
things over which they have direct local control. However, many of the elements
that can add risk to a project is outside of team’s control. Hence there needs to
be some mechanism for identifying those risks early in a project and mitigating
them, and that often requires involvement by POs, other stakeholders, and
sometimes even the customer.

Backlog grooming meetings may also be considered a mechanism for managing project
risk, especially around areas like technical debt. And actually, this answer is frequently
pretty close to right. The product backlog is usually the right tool for prioritizing mitigation
strategies owned by the team. However, the backlog cannot be the primary mechanism
for managing project risk, since it cannot be used to manage the risk mitigation the
efforts of those outside the team. The backlog is also usually a deficient mechanism for
tracking things like risk severity and likelihood, or communicating high risk items in a
visually compelling format.

Copyright 2016, Agile Six Applications, Inc.
All rights reserved.

12

There are good existing discussions on the web about what makes a good risk register,
so we won’t repeat them here. Here is one example:

https://michaellant.com/2010/06/04/five-simple-steps-to-Agile-risk-management/

Establish	an	Agile	Community	of	Practice	

An Agile Community of Practice is a regular meeting of Agile practitioners — Scrum
Masters, Product Owners, Architecture Owners, and other stakeholders in the process
— whose purpose is to improve the process itself. During Agile Community of Practice
meetings, attendees are invited to discuss problems encountered by teams and possible
solutions, as well as bring in good ideas that their own teams have tried, or which they
have read about or heard about outside of their current project or organization. One of
the benefits of Agile is continuous improvement, and the Community of Practice provides
a mechanism for sharing good ideas across people, teams and organizations. The
Community of Practice is also a great vehicle for enculturating new Scrum Masters or
Product Owners into an Agile practice.

A	more	comprehensive	and	inclusive	process	of	Continuous	Improvement	

In traditional Agile approaches, the sprint retrospective provides a valuable mechanism
for the team to identify problems, create solutions, and continually improve its
effectiveness. While this process works well at the team level, we have found that there
are almost always larger structural issues
beyond the team’s control that can also
benefit from continuous improvement —
issues such as project structure and
communication, processes for provisioning
or gaining access to systems, and ensuring
that the team itself is adequately resourced,
in terms of personnel, tools, and knowledge.
The ARM Framework provides a set of
mechanisms that facilitate this continuous
improvement on a larger scale. The
transparent and collaborative risk meetings,
Communities of Practice, along with
retrospective meetings and user feedback,
provide a rich set of inputs and opportunities
to address larger “structural” issues that cut
across the team, the company, and the
customer. Software projects are complex
and somewhat unpredictable by nature, and need to be able to adjust to “facts on the
ground.” Having process of continuous improvement is far more important to most
projects than the ability to define and strictly adhere to any given set of process
structures or practices up-front.

Copyright 2016, Agile Six Applications, Inc.
All rights reserved.

13

Conclusion	

Agile methodologies have revolutionized the way that software is delivered. However,
the need to proactively and systematically manage risk on Agile projects has often been
neglected, with the result that, too often – especially on fixed scope projects typical on
federal government projects – Agile projects fail to deliver on time with the feature set
and quality that users demand. The ARM Framework provides a set of tools that can be
used to manage risk on Agile projects.

About Agile Six Applications

Agile Six Applications, Inc. was established to serve those who have bravely served our
country. We are passionate about our mission to improve the lives of veterans and their
families by delivering world-class software solutions. Our collaborative and highly
transparent Agile development process invites users and program representatives to
participate in the development process, and results in better solutions, delivered more
quickly, at a lower overall cost. Our firm was founded in 2014 by former executives from
the federal and commercial space (i.e. DefenseWeb & Amazon) in direct response to the
formation of the US Digital Services where “America’s most capable problem solvers are
striving to make critical services — like Healthcare, student loans, and Veterans’ benefits
— as simple as buying a book online.” As such, we actively promote the tenets of the
CIO Playbook:

Digital Service Plays

1. Understand what people need
2. Address the whole experience, from start to finish
3. Make it simple and intuitive
4. Build the service using agile and iterative practices
5. Structure budgets and contracts to support delivery
6. Assign one leader and hold that person accountable
7. Bring in experienced teams
8. Choose a modern technology stack
9. Deploy in a flexible hosting environment
10. Automate testing and deployments
11. Manage security and privacy through reusable processes
12. Use data to drive decisions
13. Default to open

Please visit www.agile6.com for more information.

About Brian Derfer

Brian blends nearly 20 years of hands-on experience in
the software industry with a background in cognitive
anthropology in order to bring a unique perspective to
technical problem domains. He has been involved in

Copyright 2016, Agile Six Applications, Inc.
All rights reserved.

14

several start-up ventures as founding partner or early associate, and worked as an
architect in the development of key systems within the Defense Health Information
Management System (DHIMS) as well as Fortune-100 companies, in vertical markets
that include family services, healthcare, education, and social media. His main areas of
focus include agile process, software development best-practices, artificial intelligence,
organizational learning, web and mobile development, cloud computing, and test-driven
design. Brian holds a Master's Degree in Cognitive Anthropology from UCSD, and is a
Certified Scrum Master through the Scrum Alliance. His other interests include soccer,
sailing, music, history, and human cognition.

He can be contacted at mailto:brian.derfer@agile6.com

