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Abstract

The iterative closest point (ICP) algorithm is widely
used for the registration of 3D geometric data. One of the
main drawbacks of the algorithm is its quadratic time
complexity ON°) with the number of points N.
Consequently, several methods have been proposed to
accelerate the process. This paper presents a new
solution for the speeding up of the ICP algorithm and
special care is taken to avoid any tradeoff with the quality
of the registration. The proposed solution combines a
coarse to fine multiresolution approach with the neighbor
search algorithm. The multiresolution approach permits
to successively improve the registration using finer levels
of representation and the neighbor search algorithm
speeds up the closest point search by using a heuristic
approach. Both multiresolution scheme and neighbor
search algorithm main features are presented in this
paper. Confirming the success of the proposed solution,
typical results show that this combination permits to
create a very fast ICP algorithm, with a closest point
search complexity of O(N), while preserving the matching

quality.
1. Introduction

The geometric matching of 3D datasets consists in
finding their correct relative alignment based on their
intrinsic properties. Typical applications using registration
as part of their working principle include the modeling of
3D objects, object recognition or quality inspection.

The iterative closest point (ICP) algorithm [2] figures
among the principal and widely used low-level
registration methods. Starting from an initial rough
alignment of the data, the ICP processes iteratively. At
each iteration, it first creates closest point
correspondences between two sets of points (or more
generally geometric data) and then minimizes the average
distance of the previously found correspondences by a
rigid transformation - a translation and a rotation.

The main practical difficulty of the ICP algorithm is
that it requires heavy computations. When working with
clouds of points or triangulated meshes, the complexity of
the original algorithm is O(N,Ny), where N, and Ny
represent the number of points of the clouds to be
matched. Consequently, matching high-resolution shapes
can take a lot of time, even on current computers, and
there is a need for ways to reduce the ICP computation
time.

A review of the main solutions to speed up the ICP is
presented in the next chapter. The main trouble
encountered is that existing solutions often create a
tradeoff between the speeding up and the quality of the
registration — as measured i.e. by an increased registration
error and/or a reduced range of successful initial
configurations [8].

A new solution to accelerate the ICP is presented in
this paper. In fact, it consists in the combination of two
recently proposed methods to speed up the ICP. First of
all, the neighbor search algorithm [9], which relies on
neighborhood relationships in the data to restrict the
search of the closest point to a local subset. Then, a multi-
resolution scheme [10] that proceeds from coarse to fine
and successively improves a previous solution at the finer
representation level. This solution for the speeding up of
the ICP has been developed in a perspective to avoid the
tradeoff with the registration quality that was mentioned
above.

This document is organized as follows. The next
section presents the basic ICP algorithm and its principal
variants and reviews the associated acceleration methods.
Section 3 and 4 briefly describe the key points of the
neighbor search algorithm and the multiresolution scheme
ICP. An experimental comparison of the proposed
algorithm with existing methods is presented in section 5.
Finally, conclusions can be found in section 6.

2. Fast registration with ICP

The ICP algorithm registers two sets of points, P and X
composed of respectively N, and Ny points, starting from
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an initial pose estimation. The algorithm proceeds
iteratively. It first pairs every point of P with its closest
point of X. These pairs are used to compute the rigid
transformation (R, t) which, when applied to P,
minimizes the coupling error e of the two data sets. The
resulting transformation is then applied to set P and the
iteration continues until a defined stopping criterion is
fulfilled.

Different variants of the ICP algorithm exist that
improve the matching quality and the robustness of the
registration. Chen and Medioni [5] proposed a similar
algorithm where couplings are made between points of
one surface and planes parallel to the other surface.
Several authors proposed to weight the point couplings
[16] [17] in order to make the ICP algorithm more robust
to the outliers that typically appear when registering
shapes of different sizes or when data sets overlap each
other only partially.

Others authors also suggested to use additional
features, such as surface normals [4] or surface colors
[14], to define point closeness or distance, in order to
improve the quality of the registration. The ensuing ICP
algorithm then requires less iterations for converging to a
better position and it also improves the range of
successful initial configurations [14]. A review of the
different variants can be found in [13].

Given d(p o> X) the function that measures the distance
between a pair of points from the two sets,
p, €P,xeX, one iteration of the algorithm can be
summarized as follows:

1. Compute closest points:
vVp,eP,x, = {xeX|d(pk,x):min}

2. Weight the couplings: define a wy for each couple

3. Compute the best transformation, i.e. the rotation R
and translation t that minimize

1
e(R,t): WZ:W,{"Rpk +t—xk||2, W= Zwk
Np Np

4. Apply transformation (R, t) to P

These steps are iterated and the algorithm stops when a
defined criterion is reached, for example when the change
in the coupling error e falls below a threshold:
e, —e, <7 or when the resulting best transformation is
closer to identity than a threshold.

2.1. Fast ICP algorithms

The first step of the algorithm, closest point
computation, has a complexity of O(N,Ny), while steps 2
to 4 possess a complexity of O(N,). Consequently, the
complexity of the ICP algorithm is O(N,Ny) and, for large
data sets, most of the time is spent for closest point
computation.

Many solutions for the acceleration of the ICP
algorithm have been proposed. Langis [12] recently
proposed a parallel implementation of the ICP and
showed that a nearly linear performance improvement
with the number of processors can be obtained with up to
16 processors. Beside this hardware-oriented solution, one
can separate the different methods into three main classes:
reduction of the number of iterations n, reduction of the
number of data points N, and Ny and acceleration of the
closest points computation. A review of the different
methods and their results are given in the next paragraphs.

2.1.1. Reducing the number of iteration n. In his
original publication, Besl [2] proposed a variation named
"accelerated ICP". 1t uses a linear or quadratic
extrapolation of the registration parameters to reduce the
number of iterations. Simon [15] later proposed to
decouple rotation and translation in the accelerated ICP
to reduce the number of iterations further more. Typical
results from these authors showed "accelerated ICP" and
"decoupled" version to reduce computation time by a
factor of 3 and 4.5 respectively.

Rusinkiewicz [13] recently proposed a review of the
influence of many variants of the ICP (as presented
above) on the number of iterations. Most of them were
shown to only have a marginal influence on it.

2.1.2. Reducing the number of data points N, and N,.
Another way to reduce computation time is to reduce the
number of points involved in the computation of closest
points and best transformation. Some authors proposed to
use a coarse to fine strategy. They execute the first
iterations using a lower resolution, like 1/4 or 1/5 of the
points, and finish with fine matching using full resolution
[16][17]. In this case, the acceleration is greatly
dependent on the number of iterations performed at the
different resolutions. So far, few results have been
published concerning multi resolution strategy. Zhang
[17] found a reduction factor of about 2 to 4.

Chen and Medioni [5] proposed to use only subsets of
the data named control points. As such, they suggested
using points sitting in smooth areas, because normals and
line plan intersections are more reliable in that case. This
argument is valid when using point to plan distances but
is of less importance for the ICP algorithm where point-
to-point distances are calculated. Other ways of choosing
control points have also been proposed. Brett [4] applies
an alternate mesh reduction algorithm to triangulated
surfaces that keeps significant features (high curvature)
and iteratively matches a reduced P mesh with X then a
reduced X mesh with P. A pure random choice, an even
distribution of the normals [13] or a generalized feature-
oriented random sampling [6] are among other possible
choice schemes.
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2.1.3. Speeding up the closest point computation. The
acceleration of the closest point search can be done using
either search structures or projection methods. Search
structures, like the k-D tree [17] or the spherical triangle
constraint nearest neighbor (STCNN) [7], permit to
accelerate the search by restricting it to a subpart of the
data. This allows to reduce the complexity of the closest
point search — and of the ICP - to O(N, log Ny) with a k-D
tree and up to a best case O(N,,) with the STCNN.

The goal of projection methods is to speed up the
closest point search by projecting points into one or more
planes, reducing the problem to a 2D search. If scanner
parameters are known, the reverse calibration [3] consists
in projecting the points of one dataset into the range
image of the second one, in the direction of the range
camera. Projection in multiple Z-buffers [1] is another
solution. Both these methods permits to reduce the
complexity up to O(N,).

2.2. Discussion

An in-depth review and comparison of the different
methods can be found in [11] but here are the main points
that we retained from it.

Using the extrapolation of parameters, a reduction of
the computation time by a factor of 3 or 4 can be expected
but at the risk of overshoot. The latter could at best
eliminate the beneficial effect of the method but it could
also cause the algorithm to converge toward a bad local
minimum, which would be annoying.

Using control points imply a reduction of the
computation time linked with the number of control
points. The less control points used, the better the
acceleration of the ICP. On the other hand, the method
chosen to select the points can have a negative impact on
the computation time of the registration. Less control
points also means a bigger registration error and, in this
perspective, a coarse to fine approach would be preferred.

Search structure and projection method allow to reduce
the complexity — theoretically up to O(N,) - and
consequently have the best impact on the computation
time of the ICP algorithm. For example, Zhang [17]
obtained a time reduction factor of about 15 for meshes
containing about 2500 points when using a k-D tree and it
should increases with the number of points. The main
problem with search structures is that they lose a lot of
their speeding up advantages when datasets are far from
each other, which is generally the case in the first
iterations of the ICP, and when additional features are
used to define the closest point, which is useful to make
the ICP more robust.

Finally, projection methods permit a very good
speeding up of the closest point search. On the other hand,
they only give approximations of the closest points,
especially when datasets are only coarsely aligned, and
are not very adapted to the use of additional features. This

can lead to bad matching and, consequently, the range of
successful initial configurations tends to be much smaller
when using these methods.

One can note here that all three types of acceleration
methods are quite independent and consequently can be
combined together. For example, Simon [15] mixed
accelerated ICP with k-D tree and Zhang [17] used both
coarse to fine strategy and k-D tree. Our solution,
presented in the next section, also combines a coarse to
fine strategy with a fast closest point search.

As our main conclusion, the analysis of the literature
shows that most of the existing solutions lead to a tradeoff
between the actual speeding up and the quality of the
registration — i.e. registration error and range of successful
initial configurations [8].

3. The neighbor search algorithm

The neighbor search algorithm [9] assumes the
existence of a neighborhood relationship between the two
sets of points P and X. Given that there exist
neighborhoods V and V’ defined in respectively datasets
P and X, the relationship hypothesis is that two neighbors
in a data set possess closest points that are neighbors in
the other data set. Formally, the principle of this
neighborhood relationship is exposed in Figure 1: given a
point p; in data set P and its corresponding closest point
x, in data set X, the closest point x; of p;, if p, belongs to
neighborhood V of p,, V(p;), is found in the neighborhood
A% Oka, V,(Xk).

closest
point
relationship

Figure 1. The neighborhood relationship assumption

The proposed idea towards a faster search is to use
good approximations of the closest points instead of exact
closest points. The neighborhood relationship is used to
get a first approximation of the closest point and, then, a
local search can be performed to refine the result instead
of an exhaustive (or global) one: if p; possesses a
neighbor p; in data set P, with a know closest point x; in
data set X, finding the closest point of p, can be reduced to
searching the closest point in the neighborhood V’ of x,
V7 (xp).

The following pseudo-code formulates the closest
point neighbor search algorithm:
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input: datasets P and X, with associated
neighborhood, V(P) and V'’ (X)
output: for each p, of P, an approximation x,

of its closest point in X
procedure neighbor closest point_search (P, X)

for (each p, of P) do
if (3 x, closest point of p, € V(pi)) then

x, = local closest point (p,, V'’ (x,))

else
x, = global closest point (p,, X)

i

It appears that for each point p,, the closest point
search is performed either in the full set X or only in the
neighborhood V’(x;), depending whether at least one
neighbor of p; has already a known closest point or not.
Formally, this closest point search algorithm has therefore
a theoretical best-case complexity of O(N,), if a local
search can be performed in each case, and a worst case
complexity equal to the one of the global search. One can
note that a basic fast search method, such as a k-D tree,
can be used for the global search.

Of course, the order in which points p; of P are
scanned is important. Using a random method is a bad
idea, as it would create a high number of global searches
and push complexity toward the worst case.
Consequently, the basic idea is to scan points using a
diffusion method, so that the next point p; is chosen in the
neighborhood of the points that already have a known
neighbor.

3.1. Algorithm applied to range images

When considering range images, each point possesses
either 4 or 8 direct neighbours (except points on borders),
depending on the considered topology (V-4 or V-8
neighbourhood). A very basic but effective algorithm is
considered here. Neighbourhood V is the 3x3 window
surrounding the point p; in P (V-8 neighbourhood) and
neighbourhood V’ is a nxn window in X. We choose to
scan the points of range image P row by row, starting
from upper left. That way, the possible direct neighbours
of p; with a known closest point p, can be found on the
previous point in the same row and in the previous row
(see image P on Figure 2). Those 4 possible candidates
are just checked sequentially and the first one that
possesses a known closest point is chosen as py.

| |
P X

Figure 2. The neighbor search in range images

Normally, any of the candidate neighbors possesses a
known closest point, except for the first scanned point and
in case of missing data points.

Once p; and its corresponding closest point X, are
known, the local closest point search of p, is done in a
square neighborhood zone of size nxn, centered on the
approximation X (see image X in Figure 2). If no point p;
can be found, the global search is performed in X using a
k-D tree search, as suggested previously.

4. Multiresolution scheme

The principle of the multiresolution ICP is to make the
first few iterations using down sampled data and to
further increase the resolution of the data in the following
iterations, creating a coarse to fine matching. The main
expected advantage of the multiresolution is the reduction
of the computational cost, given that the duration of each
iteration made at lower resolutions is reduced. The
precision of the final matching is expected to be the same
as when using all the points for the whole registration. In
addition, we expect the total number of iterations not to
be higher than in the “monoresolution” case.

step 1 step 2 step 3 step 4

couplings error
X P I" minimization |~ ¥

|—> closest point|

computation

f (Rj, t))

use next

resolution
step

Figure 3. The multiresolution ICP principle

4.1. Chosen multiresolution pattern

The multiresolution coarse to fine strategy is not a new
concept and has been widely used in image processing
and other domains for years. A few publications (as seen
in the introduction) also briefly presented some coarse to
fine solutions applied to ICP.

The pattern we chose has been presented in [10]. It
consists in dividing the number of points by a factor N for
each resolution step. The lowest possible resolution is
defined by keeping the number of points of the reduced
data sets above a minimum value (typically 50 or 100).

The number of iterations at each resolution step isn’t
set. Instead, the algorithm goes to the next resolution step
automatically when a defined stop criterion is reached at
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the current one (Figure 3). A complete analysis of the
presented scheme can be found in [11].

4.2. Multiresolution neighbor search algorithm

Both multiresolution scheme and neighbor search are
quite independent and consequently can be combined
together. Such a combination should permit to create a
very fast ICP algorithm and the following remarks can be
done.

In the case of the neighbor search, the reduction of data
set X doesn’t have a big influence on the cost given that it
has a best-case complexity of O(N;). However we can
note that in practice, data set X needs to be reduced as
well in order that the relative size of the local search area
stays the same.

A complete analysis of the proposed multiresolution
scheme can be found in [11]. To estimate the numerical
value of the gain in speed G(N,) of a multiresolution case
in relation to a full resolution case, we made the
hypothesis that the total number of iterations remains the
same in both cases. We also distinguished 3 cases on how
iterations are distributed for each step:

1. aconstant number of iterations at each step

2. an increasing number of iterations with the higher
resolutions

3. adecreasing number of iterations with the higher
resolutions.

These different cases can be seen as average (1), worst
(2) and best (3) theoretical cases. Figure 4 presents a
graphical representation of these estimates as a function
of Nj,. One can see that the bigger the datasets, the higher
the expected gain is.

G(Np) 10
8

J— >

0 50000 100000 150000 200000 250000 300000

Np

o N~ O

Figure 4. Expected multiresolution gains G(N,) for fast
ICP algorithms, for N=4

Besides its pure speeding up potential linked to the
reduction of the number of points, the multiresolution
matching scheme is expected to have an added beneficial
impact on the neighbor search method. When using the
neighbor search algorithm, higher resolutions tend to
decrease the exactness of the closest points pairing,

especially on coarse misalignment of the datasets, which
typically reduces the range of successful initial
configurations (SIC). This effect can be seen in Figure 5
in the next section. Using a lower resolution for the initial
iterations, when the misalignment is coarse, should permit
to avoid this problem since the registration of lower
resolution datasets possess the best SIC range.

5. Experimental results

The presented fast ICP algorithm has been tested on
different data and compared with other fast ICP
algorithms using tree search and neighbor search alone.
The comparison focuses on two features: matching
quality and computation speed. The expected goal is, as
said before, to speed up the algorithm while keeping the
same quality of the matching.

The following typical results have been obtained using
overlapping surfaces of a duck toy measured with a
structured light range finder. The overlap is
approximately 35% of the surfaces and the datasets
contain about 25000 to 30000 points. Beside the
modifications presented above, our ICP algorithm uses
the normals in the distance computation [14], 2 fixed
thresholds depending of the resolution of the data to get
rid of outliers and a balanced k-D tree search similar to
the one proposed by Zhang [17].

5.1. Matching quality

Two measures can be considered to examine the
quality of the matching procedure: the matching error and
the domain of convergence. To compare the matching
error, the resulting positioning of the successful
registration has to be the same or at least in the same error
range as when matching using exact closest points. It was
the case with all the methods used in this chapter.

To examine the domain of convergence, we used a
method presented in [8] that compares the domains of
successful initial configurations (SIC) and present the
results in SIC-maps. Basically, the SIC-map represents by
black sectors the range of successful initial configurations
of two datasets to be matched relative to a three-
dimensional angular misalignment (¢, 6, ® space) of the
datasets. Consequently, the more black sectors in a SIC-
map, the bigger the SIC range (or domain) is.

As mentioned previously, the neighbor search
algorithm uses a heuristic closest point search to improve
matching speed. This means that the exactness of the
matching decreases when datasets are further apart and
when their resolution is bigger. As a consequence, coarser
initial alignments that previously lead to a successful
convergence may not converge correctly anymore and,
thus, the SIC range tends to get smaller when higher
resolution data are used, as shown in the SIC-maps of
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Figure 5. This is something we want to avoid thank to the
multiresolution scheme.
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Figure 5. SIC-maps using a 9x9 neighbor search for
different data resolution

Figure 6 compares the SIC-maps obtained using a k-D
tree search ICP, the neighbor search accelerated ICP and
their multiresolution variants. The results first show that
multiresolution does not affect the domain of successful
convergence when coupled with a k-D tree search, since
the SIC range remains nearly the same in both cases.
Furthermore, it has the expected beneficial effect on it
when coupled with the neighbor search. More precisely,
one can see that the multiresolution scheme permits to
maintain the SIC range of the ICP when combined with
the neighbor search.
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5.2. Computation speed

Figure 7 graphically presents the average closest point
computation time per point of P, t,, as a function of N,.
Two values of k-D tree time are given at each resolution,
a minimal time and a maximal time. This is to reflect the
difference in the computation time depending on the
distance between both data sets when using a k-D tree.
Basically, the tree search is longer when data sets are
farther from each other. The min / max values must be
considered as a best-case / worst-case type of measure.

One can observe that the theoretical complexity O(N,)
was practically reached for the neighbor search since
ty~const. For k-D tree, one can see that t,~logN,, which
follows the theoretical complexity O(N,, logNy). The gain
in speed lies typically between 2 and 5 over a best-case k-
D tree. Considering the worst-case tree search values, the
gain can go up to 13 times!

1.8
1.6
14 A

max k-D tree search

min k-D tree search

0.2 4 n-search 9x9

0 10000 20000 30000 40000 50000 60000 70000
number of points Nx

Figure 7. Average closest point computation time per
point of P, t,(Ny), for the n-search and k-D tree
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Figure 8 presents a comparison of the average gains in
k-D tree MR k-D tree the computation time of the successful registrations, using
5006 GO0 the different acceleration methods. One can see that the
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OOOOOO OOO o®® ®O® S OOOO G@G S50 than 25 times faster than using a k-D tree search fast ICP
000 OO@ @®© GOO 000G GGO ()GG ®00 and 1500 faster than a non-accelerated ICP.
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Figure 6. SIC-maps obtained using the different fast S so0.
ICP methods (n-search=neighbor search, MR = multi- 2 400l
resolution) 2004
0,
All in all, these results confirm that the multiresolution nf"-t g k-Dtree n-search MRk-Dtree MR n;]
. . accelerate searcl
scheme does not affect the matching quality for both the cp

matching error and the domain of convergence.
Furthermore, it has beneficial effects on the SIC range,
especially when combined with the neighbor search
algorithm.

Figure 8. Comparison of the average gains in the
computation time of the registration using the
different acceleration methods
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These results are also expected to become higher for
bigger data sets, due to the smaller complexity (O(Np)) of
the neighbor search algorithm.

Considering the impact of the sole multiresolution
scheme, it permits to reduce the total registration time by
an average factor of about 9 in the presented case.
Practically, the number of iterations is -effectively
decreasing with the higher resolutions steps, although not
as much as the best theoretical case. On the other hand,
the total number of iterations is slightly reduced —
typically 10 to 20% less iterations -, which was not taken
into account in the theoretical case [11]. All in all, the
results are basically similar to the theoretical best-case
gain shown in Figure 4 (case 3).

6. Conclusion

This paper proposes a solution to the speeding up of
the ICP algorithm that combines a heuristic closest point
search algorithm with a multiresolution scheme. A review
of existing solutions showed that most of them imply a
tradeoff between the gained acceleration and the quality
of the resulting matching. Our goal is to obtain a fast but
also robust ICP algorithm, both in terms of resulting
alignment error and range of successful initial
configuration.

The presented ICP algorithm combines the use of the
neighbor search algorithm with a multiresolution scheme.
The neighbor search uses the assumption that two
neighbors on a surface possess closest points that are
neighbors on the other surface to easily obtain a first
approximation of the closest point and then proceeds with
a local search to refine the result. The chosen
multiresolution scheme proceeds from coarse to fine and
successively improves a previous solution at the finer
representation level. This combination allows obtaining a
very fast and robust registration of two datasets.

More precisely, experimental results obtained with
typical datasets showed that when combining
multiresolution with the neighbor search method, the
registration is up to around 25 times faster than when
using a tree search, which represents a gain of more than
1600 over a non-accelerated ICP algorithm. The speedup
gain is also expected to be higher for bigger data sets, due
to the smaller complexity (O(N,)) of the neighbor search
algorithm. Moreover, the multiresolution scheme permits
to maintain the range of successful initial configurations,
as well as the registration error of the ICP, unchanged.
This clearly shows that the proposed fast ICP algorithm
exploits the fundamental nature of shape registration to
substantially contribute to improve its computation.

Finally, the neighbor search principle was applied to
range images in this work but the concept can be extended
to three-dimensional polygonal meshes or point sets in the
future.
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