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1.1   Introduction 

The advancements in molecular biology and analytical techniques over the last century have 

significantly elevated the biological industry in the economical scale. Monoclonal antibodies 

(MAb) alone have a projected market of 49bn$ by 2013, according to “Monoclonal antibodies 

Report, 2007”. Considering that MAb industry is a mere fraction of the applications that utilise 

mammalian cell culture systems, one can appreciate the size of the biologics industry. However 

as initially Bailey (1998) and later Sidoli et al. (2004) argue the development of mathematically 

and computationally orientated research has failed to catch up with the recent developments in 

biology. Moreover, the little credit that mathematical modelling of biological systems receives 

from experimentalists may be the offspring of the lack of effective communication of the 

benefits of making a mathematical model (Bailey 1998). 

In all aspects of science where modelling is involved, the first step, before making the model, 

is to determine its use and define a priori the problem the said model intends to address. Even 

the simplest possible bacterial strain, or the most exhaustively studied for that matter, is a 

complex network of a myriad of interconnected processes occurring on diverse time scales 

within a confined volume. To add to the complexity, the cell regulates its activities on multiple 

levels, deploying an elaborate control network, which to a large extent still remains grey 

territory. Moreover when cells grow in the neighbourhood of other cells, an intricate 

communication network of signals and interactions mediates the macroscopic behaviour of the 

culture. Therefore any attempt to elaborately model the function of even a single cell will 

undoubtedly fall short for numerous reasons. First of all, the amount of delicate intracellular 

measurements required to validate such a model is exhaustive both in terms of labour as well as 
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cost, not to mention parameter identifiability issues (Sidoli et al. 2004). Furthermore, not all 

aspects of biology are thoroughly understood, while many have been studied under very specific 

conditions. Therefore one will reasonably wonder what role mathematical modelling can play 

when studying biological systems. 

Borrowing research principles from the Chemical and Process Engineering paradigms, 

mathematical modelling of biological systems can provide a systematic means to quantitatively 

study the characteristics of the complex and multilevel interactions that occur in cell 

bioprocessing. In a way, it can be viewed as an effective way to organise in a meaningful way 

the vast plethora of available biological information. Mathematical models have successfully 

been used to design optimal media (Xie and Wang 1993), identify previously ignored growth 

limiting factors (deZengotita et al. 2000), optimise culture growth and productivity (deTremblay 

et al. 1992, San and Stephanopoulos 1998, Dhir et al. 1999) and apply control principles to cell 

culture processes (Frahm et al. 2002). Thus the potential of modelling as a scientific and 

engineering tool, has proven its worth, however in order to maximise the gains from the ever 

increasing influx of information from biology, especially with the development of the -omics 

techniques, our view of modelling needs to be shifted towards a closed-loop framework from 

conception to optimisation. 

The way biochemical engineers conceive of and mathematically describe biological 

processes is still defined by the framework presented by Tsuchiya et al. (1966) and Fredrickson 

et al. (1970). According to the framework, shown in Figure (1), a model can be structured (or 

unstructured) and/or segregated (or unsegregated). Most models fall in one of the four 

subcategories formed, depending on whether they possess one two or none of the above 

properties. Structured models enable the identification of a cell by assigning structure to it. The 

use of the term structure does not necessarily refer solely to the physical meaning of the term. 

Moreover besides physical structure which can be incorporated through the creation of 

intracellular compartments representing the various organelles, it can be incorporated by 

distinction amongst the various biochemical species hence giving rise to biochemical structure. 

Therefore a structured metabolic model would consist of the reactions of at least two 

intracellular species. On the other hand if cells are treated individually, so that they differ from 

each other in some distinct way we have a segregated model. If however the entire population is 

treated as a sum of averaged cellular behaviour, the model is unsegregated. In other words, 

segregated models can account for cells in different cycle phases and generally depict the 

inherent heterogeneity of a cell population, whereas unsegregated models describe a 

homogeneous culture composed by a number of “average” cells. 
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Figure 1 Classification of biological models according to A.G. Fredrickson (1970) 

 
Discriminations that exist for mathematical models in general, such as stochastic or 

deterministic, static or dynamic, are also applicable to biological models. Stochastic models 

account for the uncertainty inherent in all systems and implement this through some probabilistic 

based variation of the input variables. Deterministic modeling is usually based on experimental 

observations, accounting in a straight forward manner for the most common behavior of the 

system under observation. The drawback of deterministic modelling is that it can not account for 

any possible set of inputs but only for the most probable ones. Dynamic models observe the 

evolution of the modelled system over a predetermined time horizon, whereas static models 

focus on a specific instance of the population. Dynamic models usually consist of systems of 

differential algebraic equations (DAE) and are computationally more demanding than static 

models which usually contain algebraic equations and can be used for more detailed modelling 

of a system while remaining tractable.  

A typical example of the above can be found in metabolic models, which can be either 

stoichiometric or kinetic. A kinetic model is represented usually by a set of DAEs, which are 

integrated over a time domain of interest and result in well defined time trajectories of all the 

variables involved. A key drawback of kinetic modelling is that their additional predictive 

capability is associated with the incorporation of complex dynamic expressions which usually 
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result in non-linearities both in the parameters and the variables. On the other hand 

stoichiometric models are represented by a system of flux balance equations based on reaction 

stoichiometry of a metabolic network with accompanying constraints on flux values and solved 

as a constrained optimisation problem using some a priori assumed cellular objective. A key 

advantage of stoichiometric modelling is that it can take into account competing reactions, which 

enables the study of the relative activity of certain pathways under different culture conditions. 

However the main drawback of stoichiometric models is that they are not dynamic hence they 

can not provide information on the temporal evolution of the variables under study (Sidoli et al. 

2004). 

Two extremes exist on the dimension scale on which cell models are considered. The first 

one is the Single Cell Model (SCM) approach, first presented by Shuler et al. (1980), according 

to which a single cell is modelled exhaustively incorporating as much information as there is 

available. SCM models are detailed descriptions of the functions occurring within a single cell 

ignoring any interactions with other cells. The more holistic modelling counterpart to single cell 

modelling is Population Balance modelling (PB), where multiple populations with varying 

parameters can be studied. This type of modeling can account for cells being in different phases 

of the cell cycle and therefore displaying different behavior and different protein production 

rates. In the core of every population balance model, lies a simple model which describes cell 

metabolism, growth kinetics and when division occurs. The drawback of PB models is that they 

tend to be computationally demanding and include large numbers of parameters. 

Notable studies that have shaped new sub-categories of biological systems modelling include, 

but are not limited to, cybernetic modelling presented by Ramkrishna (1982) and the 

introduction of structure as defined by Fredrickson (1970) at the genetic level by Lee and Bailey 

(1984a and b). In brief, the concept behind cybernetic modelling is the adaptation of a 

mathematically simple description of a complex organism which is compensated for the over-

simplification by assigning an optimal control motive to its response (Kompala et al. 1984). For 

example, microbial cells growing in the presence of multiple substrates are assumed to be 

following an invariant strategy to optimise a certain goal by choosing which substrate to 

consume first. So assuming for example, a multisubstrate environment containing cells that 

follow different strategies of substrate consumption, cells that will, somehow, choose to grow 

first on the fastest substrate available will proliferate much faster than cells that respond 

differently. After some time all the cells that remain in the environment will be those that have 

responded in the optimal manner (Kompala et al. 1984). It is therefore reasonable to assume that 
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over the many years of evolution cells have acquired the ability to respond optimally to 

environmental conditions. 

Lee and Bailey (1984a and b), extended the concept of structure as presented above to the 

level of nucleotide sequences. Lee introduced an explicit connection between a particular 

nucleotide sequence and the affinity of a particular protein for that sequence which in turn will 

influence the corresponding transcription event, thus deriving a quantitative mapping from 

nucleotide sequence to overall phenotype. Even though in his detailed review, Bailey (1998), 

predicted that this new “genetically structured model” would be widely embraced in the future, 

supported by the advancement of the omics techniques, little work has yet been done in that 

direction. 

1.2   Review of mathematical models of mammalian cell culture 

systems 

Mathematical biology, and biotechnology for that matter, can be subdivided in two broad 

categories depending on the type of cells studied. The oldest and more exhaustively studied 

category deals with microbial systems mostly and prokaryotic cells in general. On the other hand 

we have the more recently emerged field of eukaryotic (or mammalian) cell modelling. In light 

of recent advancements, both scientific and regulatory, it is worthwhile mentioning the 

prominent advancement of a third category, namely that of stem cell modelling. Even though all 

three types of cells share a lot of common elements with respect to their core metabolism, they 

have distinct differences in their behaviour in culture necessitating their study within these broad 

categories. Undoubtedly developments and research in prokaryotic cell modelling lead by a fair 

margin the respective developments in both mammalian and stem cell modelling. This can be 

attributed to a number of reasons, the main being that prokaryotic cells have to a certain degree 

simpler metabolic characteristics. The literature around mathematical modelling of biological 

systems, be they prokaryotic or eukaryotic, is arguably too vast to summarise within the limited 

space of a book chapter. Therefore we will attempt to review contributions that have either 

shaped or can successfully highlight a new way of approaching dynamical modelling of 

mammalian systems. 

The earliest reference and possibly the most significant one is the mathematical formulation 

that describes enzyme kinetics, presented by Michaelis and Menten (1913). Although the 

hypothetical system studied was the simplest possible, the conversion of one molecule of a given 

substrate to a product via a single enzymatic reaction, in many ways it shaped the way we 

conceive of kinetic rates in biology. Since then the theory provided by Michaelis and Menten has 
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evolved, now being used as a starting point when attempting to describe much more complex 

enzyme kinetics. Around the same time that Michaelis and Menten presented their work, 

Archibald Vivian Hill in his effort to describe the sigmoidal binding curve of oxygen to 

Hemoglobin, derives what is now know as the Hill function (1910). In essence the Hill function 

describes the binding of a given ligand to a macromolecule when the latter is already saturated 

with ligands. Finally in 1948 Jacques Monod, presented a function identical to the Michaelis-

Menten rate equation which successfully described microbial growth. The basic concept behind 

Monod’s work was that the kinetics observed in every metabolic pathway are largely shaped by 

its rate limiting step, ultimately an enzyme catalysed reaction. All these kinetic equations are 

summarised in Table 1.1. 

 

Table 1.1 Enzyme and Microbial growth kinetic expressions 
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Shifting our focus towards the area of mammalian cell metabolism, most mathematical 

models examine glucose and glutamine as the primary nutrients and lactate and ammonia as the 

main metabolites. A typical layout of an unstructured model for cell metabolism consists of mass 

balances on glucose, glutamine, ammonia and lactate around the bioreactor. These account for 

the uptake of glucose and glutamine from viable cells for cell growth, as well as glucose 

consumption by glucokinase, glucose maintenance energy and spontaneous degradation of 

glutamine in the medium. Lactate and ammonia production are described as functions of glucose 

and glutamine consumption, respectively (Jang and Barford, 2000). Monod-type kinetics are 
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used for most metabolic models (Jang and Barford, 2000; Tziampazis and Sambanis, 1994; 

Tatiraju et al., 1999). 

One of the first attempts at developing a structured model for mammalian cells was that of 

Batt and Kompala (1988) who adapt ideas presented by Fredrickson (1970) and Shuler (1979) to 

mammalian cell culture systems. Cell mass is divided in four intracellular metabolic pools 

accounting for amino acids, nucleotides proteins and lipids. These are derived from the 

extracellular substrates, glucose glutamine and amino acids found in the culture media, while the 

secreted products include lactate, ammonia and monoclonal antibody. Borrowing experimental 

data from the extensive work of Miller et al. (1986), Batt and Kompala show that the model 

successfully describes experimental data but more importantly can be used in order to study the 

effects of various feeding strategies. 

Bibila and Flickinger (1991) presented one of the most significant structured models 

describing MAb synthesis in hybridoma cells. Based on the mechanism proposed by Percy et al. 

(1975) for the covalent assembly of monoclonal antibodies, the authors present in detail the 

derivation of the structured model that successfully describes experimental data of monoclonal 

antibody synthesis and secretion. On subsequent studies (1991a and b) they move on to use the 

proposed model for both steady state and dynamic optimisation of the culture conditions, 

suggesting strategies that increase final antibody titre. Moreover they perform a parameter 

sensitivity analysis (1991a), through factorial design, in the steady state version of their model 

and draw conclusions on the parameters that affect antibody secretion positively.  Finally they 

suggest the assembly step of antibodies within the Endoplasmic reticulum (ER) as the most 

probable candidate for a rate limiting step of the secretion process, based on perturbation studies 

conducted with their model (1991b). 

Xie and Wang (1993) presented a detailed stoichiometric model for animal cell growth and 

utilise it to optimise culture media composition. Their stoichiometric analysis covers various 

aspects of cellular metabolism including energy requirements, lipid, carbohydrate, nucleotide 

and protein synthesis. Moreover they provide formulae for the derivation of stoichiometric 

coefficients both for nutrients and products by studying their roles in animal cell metabolism. 

Later work (1996a and b) by the same authors has provided valuable insight on  mammalian cell 

metabolism. Utilising the devised model (1993), the authors reach a number of valuable 

conclusions including the necessity to control glucose feed at low concentrations in order to shift 

mammalian cell metabolism towards more energy efficient pathways. Finally (1996b) they were 

amongst the first to  exhaustively study energy metabolism in mammalian cell culture systems 

by studying the stoichiometry of the simplified metabolic reaction network they devised. 



8/45 Modelling of Biological Systems 

De Tremblay and co-workers (1992) showcase the potential of dynamic programming for the 

optimisation of fed-batch hybridoma cultures.  Having verified the applicability of dynamic 

programming, in 1993 they went one step forward and examined the benefits of using and 

optimal control approach versus a closed loop strategy on fed-batch hybridoma cultures, also 

presenting experimental data to support their results.  Frahm and co-workers (2002a and b) 

presented a novel open-loop-feedback-optimal controller for the fed-batch cultivation of 

hybridomas. The utilised unstructured model accounts for monoclonal antibody production and 

culture growth based on the consumption of glucose and glutamine and the production of lactate 

and ammonia as basic by-products of metabolism.  

DiMasi et al. (1995), present a mechanistic structured kinetic model of mammalian cell 

culture dynamics. The developed model specifically addresses the dynamics of substrate 

consumption and energy metabolism in mammalian cell culture. Borrowing experimental data 

from Miller et al. (1987) the authors compare their model to the unstructured model of Batt and 

Kompala (1989) and reach the conclusion that a structured model that successfully predicts 

specific growth rates and utilisation rates of the major substrates (glutamine, glucose, essential 

amino acids and oxygen) is a more suitable candidate for model based optimisation and control 

studies. Their work provides a solid framework for the development of structured dynamic 

models that capture the dynamics of mammalian energy metabolism, however parameters have 

been estimated from literature data, leading  therefore to low confidence levels in the model 

output. 

Even though cell growth is a well-studied area of animal cell cultures, there appear to be 

many differences between the mathematical models that describe it. These differences mainly 

involve its dependency on nutrients, metabolites and oxygen. Cell growth has been 

mathematically related to glucose concentration alone  (Frame and Hu, 1991), glucose and 

glutamine (de Tremblay et al., 1992), glutamine, ammonia and lactate (Bree et al., 1988), 

glucose and lactate (Kurokawa et al., 1994) and to all four nutrients and metabolites (Miller et 

al., 2000; Jang and Barford, 2000). All of the above models assume Monod-type kinetics. 

Tatiraju et al. (1999) have also suggested an equation for oxygen consumption and its relation to 

cell growth, which is of little use as it is decoupled from the other nutrients with which it has 

been proven to be associated. Similar models have been obtained for cell death, which relate the 

rate of cell death to glutamine, lactate and ammonia concentrations (de Tremblay et al., 1992; 

Bree et al., 1988), or glucose (Frame and Hu, 1991), or glutamine (Dalili et al., 1990), or 

ammonia and lactate (Batt and Kompala, 1988), or ammonia (Jang and Barford, 2000). 
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Pörtner and Schäfer (1996) compared a selection of models and model parameters that 

existed in the literature at that time and carried out an analytic error and range of validity 

analysis. They found significant variations in the values of maximum growth rate, yields and 

nutrient Monod constants that were used by other researchers. They came to the conclusion that 

the models' predictions involved significant errors, particularly due to the lack of understanding 

of cellular metabolism and the limited data ranges within which the model was valid. They 

further suggested that static batch cultures could be used, for example, for the determination of 

maximum specific growth rate, but not for establishing a relationship between the growth rate 

and substrate concentration, whereas continuous cultures could yield reliable data due to the 

steady state operation conditions. For very low substrate concentrations they suggest using fed-

batch cultures. Finally, they recognised that for signicant improvements, parameter identication 

techniques and control strategies need to be applied to mammalian cell cultures as has previously 

been the case in other biotechnological processes. 

Significant efforts, lead by Fredrickson and co-workers (Eakman et al. 1966, Tsuchiya et al. 

1966), have been made to introduce population balance models (PBM) in biological systems 

modelling. Even though PBMs have the unique ability to account for the inherent heterogeneity 

in all cell cultures, unfortunately they are difficult to solve and usually lead to intractable models. 

Despite their promising characteristics, their limited usage in mathematical biology is mainly due 

to two major drawbacks (Srienc 1999, Villadsen 1999). They are complicated to handle and 

solve and accurate determination of model parameters is not possible due to the lack of 

distribution data.  

One of the main contributors in the field of PBM has been Mantzaris and co-workers, who 

have presented a series of papers (2001a, b and c, 2002) covering a variety of different PBM 

cases, some of which were compared to models that could be analytically solved. The 

combination of SCMs and PBMs represents the next logical challenge. Despite the additional 

model fidelity, such a hybrid model is extremely computationally intensive; hence the solution of 

even the PBM component of the overall model becomes intractable. To overcome this problem, 

investigators have used finite-representation techniques to discretise  populations avoiding the 

problems of continuous distributions and the integral differential features they bring. Sidoli et al. 

(2006) presented a coupled SCM-PBM model which uses a highly structured SCM to 

characterize single-cell growth and death rates in each stage of a multistage PBM. The model 

was validated against batch and fed-batch experimental data achieving a satisfactory agreement 

with some but not all of the modelled variables.  
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This section was intended as a brief overview of some, but not all, key contributions in the 

field of mammalian cell culture systems’ modelling. The following section will pose the key 

questions that need to be answered in the near future and intends to motivate the reader to follow 

through the remainder of this chapter. 

1.3   Motivation 

A thorough overview of the previous sections reveals that the optimal point on the scale 

between tractability and fidelity does not lie near the boundaries. On the contrary, an approach 

that would attempt to exploit the advantages of structured models whilst maintaining tractability 

could result in a robust yet computationally flexible hybrid model. Such an approach has 

successfully been followed by Mantalaris and coworkers (Ho et al. 2006, Kontoravdi et al. 2007, 

Lam et al. 2008) for secreting mammalian cell culture systems. The idea was to maintain 

structure for the protein formation and secretion process, while using an unstructured model to 

describe growth and proliferation. All models successfully predict final antibody titres while 

some (Lam et al. 2008) have gone a step further being used for the derivation of an optimal 

feeding profile. 

What ultimately discriminates a good model from a bad model is its ability to successfully 

describe the modelled process whilst minimising the uncertainty of its output variables. The 

majority of studies presented, either utilise literature data to validate the models or generate their 

own experimental data without any form of systematic design of experiments. One of the 

challenges in biochemical engineering is the development of high fidelity models able to capture 

the required biological functions involved in the generation of the end-product while remaining 

computationally tractable in order to be viable candidates for model-based control and 

optimisation. However, high fidelity models, inherently, contain a large number of parameters. 

Therefore use of a systematic framework that designs experiments in a way that minimises the 

necessary experimentation whilst simultaneously maximising information obtainable from the 

data, is the first step towards achieving a uniquely validated model (Sidoli et al. 2004). The 

increasingly available biological information, both theoretical and analytical, necessitates the use 

of such a framework from model conception to validation in order to avoid unnecessary 

experimentation and poorly informative experiments. 

The work presented by Asprey and Machietto (2000), Asprey and Mantalaris (2001), Sidoli 

et al. (2004), Ho et al. (2006), Kontoravdi et al. (2007), Lam et al. (2008) and Kiparissides et al. 

(2009) defines a unique and systematic approach to modelling biological systems which is 

depicted in Figure (2). 



11/45 Modelling of Biological Systems 

Let us assume a first principle mathematical model, ),( Pxg , formulated to describe a real 

life process, where x denotes the input vector, and IP  (where i = 1,…,ν) denotes the parameter 

vector. The first step of the model development algorithm is to determine, before actually 

designing or performing any experiments, whether model parameters can be uniquely identified 

from the mathematical structure of the model. Failure to pass the identifiability test implies 

mathematical singularity with respect to the model parameters, therefore there is no need to 

perform any further analysis or experiments for a model whose parameters are know a priori to 

be unidentifiable (Asprey and Mantalaris 2001, Sidoli et al. 2004). Models that fail the 

identifiability test should either be reformulated in a way that avoids singularity for the 

problematic parameters or discarded.  

For models that satisfy the criteria of the identifiability test the next step is to apportion the 

uncertainty in the model output to the sources of variation. Model analysis techniques and 

sensitivity analysis (SA), in particular, can provide valuable insight regarding the dependence of 

the model output to its parameters. The output of SA will be a vector of size ν, containing the 

sensitivity indices (SI) of the model parameters. As a rule of thumb if ν larger than 20, the use of 

parameter grouping will become necessary (Kiparissides et al. 2009). This merely affects the 

notation of Figure (2) and in no way the algorithm itself. Therefore in the case of parameter 

grouping, IP  is the parameter vector and ν is the number of partitions it contains, corresponding 

to the number of parameter groups formed.  

Consequently an empirical criterion, determined by the modeller, is applied in order to 

discriminate the significant from the insignificant model parameters. The criterion is a threshold 

value for the SI, usually set between 0 and 0.2 (Saltelli, 2000). Any parameters with values 

below the set threshold are considered insignificant to the model output and are allocated in a 

partition of the parameter vector termed 1

jp  ( j = 1,…,ν’). The remaining parameters whose SI is 

above the threshold value are allocated in a second partition of the parameter vector termed 2

kp  ( 

k = 1,…,ν’’). The sum of ν’ and ν’’ should of course equal the size of the parameter vector IP , at 

all times. The values of the parameters in partition 1

jp  are set to the nominal values, which can 

be derived either from existing literature or from a parameter estimation algorithm, hence 

yielding the parameter vector nom

jp . 

The values of the model affecting parameters in partition 2

kp  need to be determined 

experimentally with accuracy in order to reduce the uncertainty in the  model output. Therefore 

experiments are specifically designed (Asprey and Macchietto 2000 and 2002) for the 
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determination of the parameters in vector 2

kp  and once the experimental data is available the 

values for parameters 2

kp  are determined explicitly, yielding vector exp

kp . Finally by substituting 

the initial parameter vector IP , with the newly derived nom

jp  and exp

kp , we derive a refined 

version of the original model, ),,( exp

k

nom

j ppxg . 

Figure 2 Model development framework for biological systems  
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Following the above presented framework successfully minimises model uncertainty but 

more significantly minimises experimental costs and labour. Moreover it sets a scientific 

platform of communication between modeller and experimentalist, thus bridging the 
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communication gap between engineers and biologists. In the sections that follow the individual 

steps of the model development framework will be discussed in more detail, illustrated by the 

presentation of relative research examples. 

1.4   Dynamic Modelling of Biological systems – an illustrative 

example. 

 The biological systems model building framework described in the previous section will be 

explained in detail through a “real life” illustrative example in this section. Let us utilise as an 

example an industrial process for the production of MAbs harvested from cultures of hybridoma 

cells. The reason we wish to model this process is the maximisation of final antibody titre in our 

culture through in silico experimentation. Batch and Fed-batch cultures are currently the 

cultivation methods of choice from the biologics industry for the large scale production of 

monoclonal antibodies, due to their operational simplicity, reliability, and flexibility for 

implementation in multipurpose facilities (Bibila and Robinson, 2008). Therefore for the 

purposes of our example a model capable of describing both batch and fed-batch cultures of 

antibody secreting hybridomas is required.  

Bearing in mind that the model will ultimately be utilised for optimisation studies, which are 

inherently computationally expensive, renders structured models a less attractive idea. Moreover, 

as Sidoli et al. (2006) have proved, overparametrised models lead to parameter identifiability 

issues which in turn reduces the confidence in the model output. However the model should 

contain adequate level of information regarding the antibody formation process and how its 

various steps are affected by the growth characteristics of the culture and the availability of 

nutrients in order to yield meaningful results. Balancing the trade-off between tractability and 

fidelity is the first challenge we need to address. Hybridoma growth kinetics have been widely 

studied and unstructured models have time and again proven to be capable of capturing their 

dynamics. Therefore, structure can be avoided at a low cost and an unstructured model can be 

used to describe cell proliferation and nutrient uptake in batch and fed batch cultures. The model 

has been adapted by Kontoravdi 
et al. (2005) based on the work of Jang and Barford (2000) and 

models growth based on the consumption of two basic nutrients (glucose and glutamine) and the 

production of the two corresponding byproducts of the cell’s metabolism (lactate and ammonia). 

The formation and secretion of monoclonal antibodies is an inherently complex process 

(Figure 3). Monoclonal antibodies are Y shaped proteins formed from two identical heavy and 

two identical light polypeptide chains. The heavy and light chains are encoded from different 

genes and therefore a situation might easily arise where there is an abundance of one type of 
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chains yet a shortage in the other resulting in a small, and even zero, production rate. The 

formation of these proteins starts from the nucleus of the cell, where the chain specific DNA 

sequence is copied on an mRNA molecule in a process know as transcription. The mRNA 

molecule will migrate to the endoplasmic reticulum where it will bind to a ribosome and start the 

process of transcription. Once an antibody molecule has been formed by two heavy and two light 

chains it will be transferred to the Golgi apparatus where it will undergo posttranslational 

modifications in order to become a biologically active molecule prior to its secretion to the 

extracellular environment. 

 

Figure 3 Protein Synthesis [adapted from: http://www.nih.gov/ ] 

Since a significant number of processes, each occurring at a separate site, are involved in 

antibody formation, utilizing an unstructured model to describe the rate of antibody 

accumulation in the media would result in a significant loss of information. Therefore the 

structured model, presented by Bibila and Flickinger (1992), is an ideal candidate for the 

description of the antibody formation process. Kontoravdi et al. (2006) successfully managed to 

couple this structured model, to the unstructured model (mentioned above) describing cell 

growth and proliferation. Following this brief discussion around the conceptual formulation of 

the model, a first principles derivation of the hybrid model is presented below. 

1.4.1   First principles model derivation 
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 A material balance for viable cells within the bioreactor is given by the following 

equation: 

 

udu

u VXVX=
dt

dVX
µµ − ,        (1.4.1) 

 

where Xu is the concentration of viable cells in the bioreactor measured in cell per liter and µ, µd 

are the specific growth and death rates respectively measured in h-1. Detailed formulas for the 

estimation of the specific growth and death rates will be presented at a later stage. The material 

balance for the total cell concentration (the sum of both dead and viable cells within the 

bioreactor) is: 

 

u

t VX=
dt

dVX
µ ,                                                  (1.4.2) 

where Xt denotes the total cell concentration and is measured in cells per liter. 

 The specific growth rate that appears in equations (1.4.1) and (1.4.2) is estimated through 

the following formula: 

 

inhff limmaxµµ = ,    (1.4.3) 

 

where µmax is the maximum possible growth rate for the specific cell line (h-1) and the terms flim 

and finh represent, respectively, the nutrient limitation and product inhibition. These can be 

defined through the following equations: 
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where, the Ki parameters are the Monod constants for the primary nutrients, namely glucose and 

glutamine. Similarly, the KIi parameters are the inhibition constants of the primary products of 

metabolism, namely lactate and ammonia. [GLC], [GLN], [LAC] and [AMM] represent the 
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extracellular concentrations of the aforementioned nutrients and products and are measured in 

mM. 

 The term µd represents the specific death rate of the cells within the bioreactor and can be 

defined in a way similar to the specific growth rate. 
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where, µd,max represents the maximum specific death rate (h-1) and Kd,amm describes the rate of 

cell death by ammonia. 

 The presented differential equations along with the accompanying algebraic equations 

describe the growth and proliferation of the mammalian cell culture within the bioreactor. Since 

the model is unsegregated, it only represents the overall concentrations of nutrients and by-

products of cellular metabolism within the bioreactor. Therefore, by performing material 

balances on each biological compound, 4 ordinary differential equations yielding the temporal 

evolution of the concentration of nutrients/metabolites are obtained. Specifically, the material 

balance for the concentration of glucose can be formulated as shown: 

 

uglcVXQ=
dt

GLCVd
−

])[(
,    (1.4.6) 

 

where Qglc is the specific glucose consumption rate (mmol/cell/hr) and is defined as: 

 

glc

glcx

glc m
Y

Q +=
,

µ
.    (1.4.7) 

 

 The parameters Yx,glc and mglc which appear in equation (1.4.7) are the cell yield on 

glucose (cell/mmol) and maintenance energy of glucose (mmol/cell/hr), respectively. Equation 

(1.4.6) was originally presented (Jang and Barford, 2000) with an additional term for glucose 

consumption by glucokinase, which as Kontoravdi (2006) later argued, based on evidence by 

Tatiraju et al.
 (1998) has negligible effects. The material balance for glutamine similarly is 

described by the following equation: 
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][
])[(

ln,ln GLNVKVXQ=
dt

GLNVd
gdug −−  .  (1.4.8) 

 

 The only difference is the term containing glutamine degradation. Glutamine is known to 

be spontaneously converted into pyrolidonecarboxylic acid at high temperatures and when in 

weakly acidic or alkaline solutions (Chibnall et al.1932). Bray et al.
 (1948) showed that even in 

medium temperatures, around 37 oC, glutamine degrades in the presence of weakly acidic or 

alkaline solutions. The degradation is more pronounced when the solution contains phosphate 

buffer, which is often the case with media used for mammalian cell cultures. The specific 

consumption rate for glutamine is calculated through a formulation containing the cell yield on 

glutamine, Yx,gln, and  the maintenance energy of glutamine, mgln. 
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where 
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with a1 and a2 being the relevant kinetic constants. Equation (1.4.9) is presented in the updated 

version (Kontoravdi, 2006) and not as originally presented (Tatiraju, 1998). 

 Similarly, mass balances can be formulated to describe the temporal evolution of the 

concentrations of the primary by-products of cell metabolism. More specifically, the mass 

balance for ammonia is given by: 

 

 

][
])[(

ln, GLNVKVXQ=
dt

AMMVd
gduamm + ,        (1.4.11) 

 
with, 

lnln, ggammamm QYQ = .      (1.4.12) 

 

Similarly for lactate: 
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ulacVXQ=
dt

LACVd ])[(
,        (1.4.13) 

 

with, 

 

glcglclaclac QYQ ,= .    (1.4.14) 

 

Qlac and Qamm, represent the specific production rate (mmol/cell/hr) while Ylac,glc and Yamm,gln 

represent the yield of the particular product on its primary nutrient (mmol of metabolite/mmol of 

nutrient). 

 The structured model describing antibody formation and secretion, as presented by 

Kontoravdi (2006) consists of an intracellular heavy- and light- chain mRNA balance: 

 

HHH
H KmSN

dt

dm
−=       (1.4.15) 

and 

LLL
L KmSN

dt

dm
−= ,           (1.4.16) 

 

where mH and mL are the intracellular heavy- and light-chain mRNA concentrations 

(mRNAs/cell), NH and N are the heavy- and light-chain gene copy numbers (gene/cell), SH and 

SL are the heavy- and light-chain gene specific transcription rates (mRNAs/gene/h), and, finally, 

K is the heavy- and light-chain mRNA decay rate (h-1). 

 The intra Endoplasmic Reticulum (ER) heavy and light chain balances are: 

 

HHH RmT
dt

Hd
−=

][
       (1.4.17) 

and 

LLL RmT
dt

Ld
−=

][
,                   (1.4.18) 

 
where [H] and [L] are the free heavy and light chain concentrations in the ER (chain/cell), TH 

and TL are the heavy- and light-chain specific translation rates (chain/mRNA/h), and RH and RL 

are the rates of heavy- and light-chain consumption in assembly (chain/cell/h). MAbs consist of 

two heavy (H) and two light (L) amino acid chains. Each molecule is synthesised in the ER 

according to the following mechanism (Percy, 1975): 
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2HHH →←+   

LHLH 22 →←+             (1.4.19) 

222 LHLLH →←+ . 

 
 Assuming that the rates of heavy and light chain consumption in the assembly stage are 

given by: 
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 ,  (1.4.20) 

 

an intra-ER balance can be performed for each of the assembly intermediates: 

 

]][[2][
3

1][
2

22 LHKHK
dt

Hd
AA −=     (1.4.21) 

]][[]][[2
][

22
2 LLHKLHK

dt

LHd
AA −= ,      (1.4.22) 

 

where, [H2], [H2L] are the concentrations of the assembly intermediates in the ER 

(molecule/cell), and KA is the assembly rate constant ((molecule/cell) h-1).  

 A balance can then be performed on the assembled MAb structure ([H2L2]ER) in the ER: 

ERERA

ER LHKLLHK
dt

LHd
][]][[

][
222

22 −= ,          (1.4.23) 

where [H2L2]ER is the MAb concentration in the ER (molecule/cell), and KER is the rate constant 

for ER-to-Golgi antibody transport (h-1). Once the Mab is assembled in the ER, it proceeds to the 

Golgi apparatus, where the main part of its glycosylation process takes place. An intraGolgi Mab 

balance yields: 

 

GGERER

G LHKLHK
dt

LHd
][][

][
22221

22 −= ε ,          (1.4.24) 

 

where [H2L2]G is the MAb concentration in the Golgi (molecule/cell), ε1 is the ER glycosylation 

efficiency factor, and KG is the rate constant for Golgi-to-extracellular medium antibody 

transport (h-1). Finally, the expression for antibody secretion (production) is: 
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VMAbVXQ
dt

MAbVd
)(

])[(
12 µγγ −= ,             (1.4.25) 

where: 

GGMAb LHKQ ][ 222λε= ,     (1.4.26) 

 

where QMAb is the specific MAb production rate (mg/cell/h), λ is the molecular weight of IgG1 

(g/mol), and ε2 is the Golgi glycosylation efficiency factor. In equation (1.4.25), [MAb] is the 

MAb concentration in the culture, and γ1, γ2 are constants. 

Equations 1.4.1 to 1.4.26 form a first principles model consisting of a total of 16 differential 

equations and 30 model parameters. In order to save time and effort from performing tedious 

computations manually, models are usually implemented in a CAD (Computer Aided Design) 

tool of choice. Common choices amongst biochemical engineers include, but are not limited to, 

Fortran, C++, the Mathworks Matlab® suite, Mathematica®, Mathcad® and gPROMS®. For the 

purposes of our example we choose gPROMS® as the software of choice, due to its superior 

solvers and seamless integration of experimental data (PSE 2009). 

The next step in the biological model development algorithm is the derivation of initial 

estimates for the model parameters from relevant experimental data. In the case that the utilised 

model already exists, this step can utilise parameter values obtained from relevant literature. For 

the derivation of estimates for the presented model’s parameters we will borrow experimental 

data of batch hybridoma cultures from the work of Kontoravdi (2006). All parameter estimation 

experiments and model simulations where carried out on an Intel® CoreTM2 Duo (E4600 – 2.4, 

2.39)  personal computer with 3.24 GB of RAM memory and all model simulations and 

parameter estimation experiments where implemented in the advanced process modelling 

environment gPROMS® (Process Systems Enterprise, 2009).  

gPROMS is an equation-oriented modelling system used for building, validating and 

executing first-principles models within a flow sheeting framework. Parameter Estimation in 

gPROMS is based on the Maximum Likelihood formulation which provides simultaneous 

estimation of parameters in both the physical model of the process as well as the variance model 

of the measuring instruments. gPROMS attempts to determine values for the uncertain physical 

and variance model parameters, θ, that maximise the probability that the mathematical model 

will predict the measurement values obtained from the experiments. Assuming independent, 

normally distributed measurement errors, εijk, with zero means and standard deviations, σijk, this 

maximum likelihood goal can be captured through the following objective function:  
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where N stands for total number of measurements taken during all the experiments, θ is the set of 

model parameters to be estimated, NE is the number of experiments performed, NVi is the 

number of variables measured in the i th experiment and NMij is the number of measurements of 

the jth variable in the ith experiment. The variance of the kth measurement of variable j in 

experiment i is denoted as σ2
ijk, while ijkz  is the kth measured value of variable j in experiment i 

and ijkz  is the kth (model-) predicted value of variable j in experiment i. The above formulation 

can be reduced to a recursive least squares parameter estimation if no variance model for the 

sensor is selected. 

 

Figure 4 Experimental Data from batch hybridoma cultures and model predictions 

Table (1.2) summarises the list of model parameter estimates obtained from the parameter 

estimation algorithm while Figure (4) presents an overview of experimental data and model 
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simulations. The model is in good agreement with the experimental data and successfully 

captures the trends of nutrient consumption and metabolite accumulation. This indicates a well 

posed model, capable of describing the process under study even with initial parameter 

estimates. Having obtained initial estimates for the values of the model parameters we can 

proceed to the next step of the algorithm, namely model analysis. 

Table 1.2 Model parameter estimates derived from batch hybdridoma culture data 

Symbol Units Nominal Value 

µmax hr-1 5.8*10-3 

KI,Amm mM 28.484 

KI,Lac mM 171.756 

KGlc mM 0.75 

KGln mM 0.075 

md,max hr-1 0.03 

Kd,Amm mM 0.1386 

n Real integer 0.995 

YLac,Glc Dimensionless 1.399 

mGlc Mmol/cell/hr 4.853*10-14 

Yx,Glc Cell/mmol 1.061*108 

Yx,Gln Cell/mmol 5.565*108 

Kd,gln hr-1 9.6*10-3 

a1 mM*L/cell/hr 3.4*10-13 

a2 mM 4 

YAmm,Gln Dimensionless 0.4269 

K h-1 0.1 

NH gene/cell 139.8 

SH mRNAs/gene/h 300 

NL gene/cell 117.5 

SL mRNAs/gene/h 4500 

TH chain/mRNA/h 17 

TL chain/mRNA/h 11.5 

KA (molecule/cell) h-1 10-6 

KER h-1 0.693 

KG h-1 0.1386 

ε1 Dimensionless 0.995 
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γ1 Dimensionless 0.1 

γ2 Dimensionless 2 

ε2 Dimensionless 1 

λ g/mol 146000 

1.4.2   Model Analysis 

Model analysis techniques and sensitivity analysis, in particular, can provide valuable insight 

regarding the dependence of the model output to its parameters. Allocating model uncertainty to 

the various sources of uncertainty (i.e. model parameters) facilitates the targeted reduction of 

output uncertainty by accurately estimating model parameters through tailor made experiments 

indicated by a model based design of experiments (DOE) algorithm. On the other hand 

parameters indicated as insignificant, with respect to the model output, can be fixed at their 

literature values (if available) or approximated hence reducing unnecessary experimentation. 

There is a vast plethora of available model analysis techniques, enough to confuse even the 

experienced modeller. Below follows a rational discussion, leading to the proposal of the most 

suitable group of model analysis techniques, in the context of dynamical modelling of biological 

systems. A detailed study on the performance and applicability of sensitivity analysis techniques 

in the context of biological models can be found in the work of Kiparissides et al. (2009). 

Dynamic models describing complex biological functions involve highly non-linear terms 

and include a large number of parameters with varying orders of magnitude. Thus, commonly 

used sensitivity analysis techniques are not able to provide results with any practical value for 

such models. Sensitivity analysis methods are commonly grouped in three main categories, 

namely screening, local and global methods. 

Screening methods are randomised, one-at-a-time numerical experiments, which aim to 

indicate the most important factors amongst the totality of model parameters. While screening 

methods involve computationally efficient algorithms, their use is limited to only preliminary 

results due to calculation of only first order effects (i.e. effects the input factors have on the 

model output, without including their mutual interactions) and inherently lack precision, 

especially when used on non-linear models (Saltelli, 2000) Efforts to calculate higher order 

effects, through screening methods, have been recorded in the literature (Box et al. 1978b, Cotter 

et al. 1979), though these methods fall short either in terms of accuracy or computational time. 

Local methods derive measures of importance by estimating the effects infinitesimal 

variations of each factor have on the model output, in the area of a predetermined nominal point. 

Local methods are commonly used on steady-state models, or on studies dealing with the 
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stability of a nominal point. Consequently, local methods fail to capture large variations in the 

parameter set and can only account for small variations from the parameter nominal values. 

Global methods have the unique advantage of performing a full search of the parameter 

space, hence providing data independent of nominal points and are applicable to the whole range 

of the model’s existence. Moreover global methods apportion the total uncertainty in the model 

output to the various sources of variation, while all parameters are varied at the same time. GSA 

provides the most complete set of results and mapping of the system, being able to cope with 

nonlinearities and identify parameter interaction effects (Saltelli, 2000) The main drawback of 

GSA methods is their extensive computational requirements for large models. GSA methods are 

commonly grouped in two categories, namely methods that utilise a model approximation in 

order to generate measures of importance, and methods that study the total output variance of the 

model. Model approximation methods, such as regression analysis, correlation ratios and rank 

transformation can not account for higher order effects.  

Variance-based methods provide measures of importance, i.e. sensitivity indices that 

apportion the total output variance to its contributors, namely the model parameters. In order to 

estimate the total output variance and its fractions, model parameters are treated as random 

variables within the parameter space. In the present context, randomness refers to the statistical 

independence of the generated samples. Since the models’ parameters are treated as random 

variables, the resulting model output will be a random variable itself. The model output can thus 

be decomposed into summands of increasing dimensionality, a procedure also known as analysis 

of variance (ANOVA) decomposition.  
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Under the assumption that each of the terms in (4.2.1) is orthogonal (Sobol’ 2001, Homma and 

Saltelli 1996) the decomposition is unique and, therefore, integration of any term over any of the 

variables it may contain results to zero. This unique decomposition enables variance-based 

methods to discriminate between the first order and higher order effects. First order information 

refers to the significance of merely the first summand with respect to the model output while 

higher order information explore the effect of parameter interactions and their contribution to the 

total output variance.  

Main effects can be used to generate a significance - with respect to the model output - 

ranking of the model parameters. While rankings based solely on main effects are quite efficient 

in the case of linear models, the effect of the remaining summands can not be neglected for non-

linear models. Chan et al.
 (1997) have illustrated the significance of higher order sensitivity 
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indices in understanding the behaviour of the model parameters and how the uncertainty 

associated with them propagates through the model. Significance ranking for the model 

parameters should be based on the calculation of the Total Sensitivity Index (TSI) (Sobol’ 1990, 

Homma and Saltelli 1996) The TSI for parameter i is estimated as the sum of all higher order 

terms in (4.2.1) which include parameter i. The vast majority of sensitivity analysis techniques 

do not include a decomposition similar to the one presented in equation (4.2.1) therefore it is not 

possible to discriminate whether the measure of importance they estimate refers to first or higher 

order information. Therefore, in order to obtain a realistic insight into the model’s affecting 

parameters, obtaining information in the form of TSI is required. For a more comprehensive 

description of ANOVA decomposition and the TSI, refer to the work of Sobol’ (2001), Saltelli 

(2000), and Chan et al.
 (1997). The most commonly used variance based methods include the 

Sobol’ global sensitivity indices and the Fourier Amplitude Sensitivity Test (FAST). As reported 

in Kiparissides et al. 2009, such methods can be computationally exhaustive, however robust and 

less cumbersome alternatives exist (Kucherenko et al., 2008). 

For the purposes of our example, we have chosen to use the global sensitivity analysis. The 

dimensionality of the sensitivity analysis problem is ultimately defined by the number of model 

parameters, therefore a feasibility constraint regarding the maximum possible number of 

individually scanned parameters is imposed implicitly in terms of computational time. This 

constraint is unavoidable due to the - increasing with dimension - number of model evaluations 

required for the Monte Carlo integrals to converge. Researchers in the field of GSA often resolve 

to parameter grouping in order to reduce the dimensionality of the problem, thus solving a more 

tractable version of the original problem. A detailed discussion on parameter grouping and 

various methods for grouping can be found in the work of Kiparissides et al. 2009, and is 

summarised in table (1.3), adapted from the same work. 

Table 1.3 Grouping Parameters in GSA (adapted from Kiparissides et al. 2009) 

Consideration Scope of the analysis 

Number of Groups  

1. Few groups Computationally efficient, low resolution 

2. Many groups Computationally expensive, high resolution 

Grouping Method:  
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1. Random/Arbitrary Parameter Significance Ranking 

2. Biological Significance Related Model analysis leading to DOE 

3. Functional Model analysis/reduction 

 

An overview of the above table, will help us decide upon the most beneficial for our analysis 

method of grouping. Having already tested our model’s agreement with experimental data 

(Figure 4), we have concluded that our model is well posed and therefore there is no need for 

reduction or structural reformulation. Therefore, grouping according to biological significance 

seems to be the most suitable method of grouping our parameters prior to the application of 

sensitivity analysis.  

As stated earlier, a batch operation mode was considered, the model was simulated for 120 

hours of culture time, and the sensitivity analysis was performed at three characteristic time 

points (20, 50 and 120 hours). SI’s have been known to change dynamically along the time 

trajectory of the model output. For example, as the culture progresses and nutrients start being 

depleted, the model output will become more sensitive towards the parameters affecting nutrient 

uptake and metabolism. This is a valuable property as it can provide information regarding the 

time point that would yield the most informative experiments. Sensitivity analysis was conducted 

at different phases of the cell culture in order to capture the dynamics of the various growth 

phases of a batch cell culture. Specifically time points from the lag phase, the exponential growth 

phase and the decline phase were evaluated. The output variables of interest, from a process 

point of view, are viable cell concentration and MAb concentration as these ultimately define the 

final amount of MAb titre available. The simulations involved scanning of all model parameters 

with respect to the output variables of interest. The uncertainty range associated with each of the 

30 model parameters was set to ± 100% from the parameter nominal value. Following the 

discussion in the previous section, using parameter grouping was imposed by the dimensionality 

of the problem and the model’s 30 parameters were grouped into 4 unequal groups, which were 

formulated based on their biological function and can be seen table 1.4. 

When the goal of sensitivity analysis is to indicate candidates for model based DOE, a “first 

layer” analysis of grouped parameters does not suffice. More specifically, considering the 

formulation of our problem, the first analysis will indicate one – or more – groups of parameters 

as significant instead of identifying individual parameters. A group of parameters with a high 

sensitivity index does not necessarily translate in all parameters within that group being 

significant with respect to the model output. Moreover, it is often the case, that different groups 
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will have high sensitivity indices at different points of the predetermined time horizon. 

Therefore, a second analysis, this time within the significant groups is required in order to 

identify individual parameters that affect the model output.  

 

 

Table 1.4 Model Parameters: Biological Significance Grouping 

Group 1 – Growth/Death related Group 2 - Metabolism related 

µmax YLac,Glc 

KI,Amm mGlc 

KI,Lac Yx,Glc 

KGlc Yx,Gln 

KGln Kd,gln 

md,max a1 

Kd,Amm a2 

N YAmm,Gln 

Group 3 – Mab Synthesis Related Group 4 - Mab secretion related       

K γ1 

NH γ2 

SH ε2 

NL  

SL  

TH  

TL  

KA  

KER  

KG  

ε1  

 

From a computational point of view, the “first layer” analysis is computationally more 

demanding from the “second layer” as the entirety of the parameter space is sampled. 

Furthermore, since the “first layer” ultimately is a stepping stone towards model based DOE, the 

acquisition of sensitivity indices of first order is somewhat of a luxury. Taking this into account 

we have chosen to use Derivative Based Global Sensitivity Measures (DGSM, Kucherenko et al. 
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2008) for the “first layer” of GSA. DGSM is a global screening method, proved (Kiparissides et 

al. 2009) to provide results similar to the variance based methods’ total sensitivity index (TSI), 

and infact has been shown to have a direct correlation with the Sobol’ TSI in most cases (Sobol’ 

and Kucherenko 2008). The main benefit of using DGSM over a variance based method, is the 

significant gain in terms of computational time. DGSM provides only TSI information, and not 

first or higher order information, but as discussed previously this is not an issue for this stage of 

the analysis. Figure (5) presents the results of the analysis when studying parameters in the 

groups defined in table (1.4). 
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Figure 5 "First Layer" GSA: a. 20h, b. 50h and c.120h of culture time 

 
Observing the results of Figure (5), one can conclude that different parameter groups affect 

different model outputs. This is both expected and logical. The unstructured model as seen 

through its output variable, namely viable cell concentration, is affected mainly by parameter 

groups 1 and 2, which contain the parameters of the unstructured model. In the early stages 

(20,50h) group 1 is the more significant by a fair margin while group 2 becomes increasingly 

significant as the culture progresses. Group 2 contains the parameters associated with nutrient 
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uptake and metabolism, and as discussed earlier is expected to become more significant as the 

depletion of nutrients starts being an increasingly crucial factor for the culture. On the other 

hand, the structured MAb formation model is affected mainly by parameter groups 3 and 4, 

which contain the respective model parameters, but as the culture progresses starts to be slightly 

affected by groups 1 and 2.  

One could arguably discuss that this “first layer” of GSA has yielded no useful results as it 

appears that all parameter groups show some significance throughout the culture, indicating 

possibly a poor choice in parameter grouping. However a closer observation of the results of 

Figure (5) will yield valuable information. That is, group 4 for example is constantly significant 

throughout the culture with its sensitivity index varying slightly. Therefore a “second layer” 

analysis within group 4 at only one time point would be sufficient to indicate which parameters 

of that group are responsible for the high sensitivity index (SI) of that group. Due to the nature of 

the grouping we have chosen, the significant individual parameters of group 4 are expected to 

maintain their significance, in accordance to the behaviour of the SI of group 4, throughout the 

culture. Therefore we opt to perform a “second layer” analysis of the parameters within group 4 

at the first time point (20h) for two reasons. First and foremost the earlier time points are less 

computationally demanding, even if marginally, than latter time points due to the required 

integration time. Moreover group 4 has the highest sensitivity index at 20h of culture time. 

Group 1 has the highest sensitivity index at 50h of culture time, which makes sense from a 

biological point of view, since it’s the time point closest to the peak in viable cell concentration. 

Therefore the best time point to scan the parameters of group 1 is 50 hours of culture time. Using 

the same rationale, group 2 will be studied at 20 hours while group 3 will be studied at 120 

hours. Therefore this “first layer” of GSA has indeed provided considerable amount of 

information, serving its purpose to guide us through the “second layer” which will indicate the 

actual model parameters and that affect the model output the most, and the point in time where 

they have the highest sensitivity index associated with them, leading to suggestions for model 

based DOE.  

Since the “second layer” of GSA will involve smaller problems as only partitions of the 

parameter space will be sampled and individual parameters will be studied we have chosen to 

use the Sobol’ global sensitivity indices for this part of the analysis. The Sobol’ sensitivity 

indices, even though more computationally cumbersome will provide information on parameter 

interactions and can therefore be used to exclude parameters with a high level of non-linear 

interactions from DOE on the basis of singularity. Figures (6-9) present the results of the 

“second layer” of GSA, scanning individual parameters as discussed above. 
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Figure 6 Sensitivity indices for parameters of  group 1 at 50h of culture time; Top: 

Viable Cell concentration as the output, Bellow: MAb Concentration as the output 

The largest contributor to the high sensitivity index of group 1 is the maximum growth rate 

(µmax) as can be seen from Figure (6). From the remaining parameters only the maximum death 

rate (µd,max) and to a lesser extent the death rate due to ammonia accumulation (Κd,amm) seem to 

affect the output of viable cell concentration. Another important conclusion drawn from figure 

(6) is that all parameters have a very small contribution of parameter interaction towards their 

overall sensitivity index. As discussed earlier the difference in value between the total index and 

the individual index is an indication of parameter interactions. Low level of interactions is a 

desirable property as it allows for more accurate parameter estimations. 
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Figure 7 Sensitivity indices for parameters of  group 2 at 20h of culture time; Top: 

Viable Cell concentration as the output, Bellow: MAb Concentration as the output 

The sensitivity indices for the parameters of group 2 are quite similar between the two 

studied model outputs. Taking a closer look at the model formulation this result is both 

reasonable and expected. The parameters of group 2 are associated with the nutrient uptake rates 

and the metabolite accumulation rates. Therefore they ultimately define the overall growth rate 

which in turn affects the viable cell concentration profile. Moreover, the final antibody titre is a 

function of both the overall growth rate and the viable cell concentration. Figure (7) is a 

confirmation of the above, indicating the same parameters as significant for both model outputs. 

Furthermore a slight increase in the difference between the total and individual indices is 

noticeable when MAb concentration is the studied output, indicating the indirect effect these 

parameters have on the said output variable. The significant parameters are the yields of cell 

mass on both substrates (Yx,glc, Yx,gln) and the spontaneous degradation rate of glutamine (Kd,gln). 

The threshold level below which a parameter is considered insignificant is arbitrarily chosen by 

the modeller as stated earlier. In the present work parameters with sensitivity indices smaller 
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than 0.1 are considered insignificant, while others (Saltelli 2000) favour a higher cut-off point 

such as 0.2 or even 0.3. 

According to figure (5) groups 3 and 4 have sensitivity indices equal to zero with respect to 

viable cell concentration as the model output. Referring back to the model equations this is 

readily justifiable since parameters from both groups are the parameters of the structured model 

describing MAb formation and secretion. The structured model is coupled to the unstructured 

model in a one-way manner. That is, the unstructured growth model affects the output of the 

structured model but the structured part of the model has no effect on the output of the growth 

model. Therefore for groups 3 and 4 only the sensitivity indices with respect to Mab 

concentration as the model output will be considered.  
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Figure 8 Sensitivity indices for parameters of  group 3 at 120h of culture 

time; MAb Concentration as the output 

 
Figure (8) seems difficult to interpret at a first glance. Almost all of the model parameters 

have a non-negligible total sensitivity index, yet only one (ε1) has an individual index higher than 

0.1. As mentioned earlier parameters whose total index in strongly influenced by non-linear 

interactions are poor candidates for parameter estimation as they can not be uniquely indentified 

(Sidoli et al. 2006). However this does not necessarily mean that none of the parameters of group 

3 can be uniquely estimated. It is highly probable that the time point of the analysis was a poor 

choice and performing the analysis at a different time point might yield more informative results. 

Few other conclusions can be drawn from figure (7) alone. Therefore we have chosen to repeat 

the analysis of the parameters of group 3 at a different time point, namely at 20h of culture time. 
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Should the results of the new analysis resemble the results shown in figure (7) this would be an 

indication of an over-parameterised and ill-posed model. 
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Figure 9 Sensitivity indices for parameters of  group 3 at 20h of culture time; 

MAb Concentration as the output 

Figure (9) contains the sensitivity indices for the parameters of group 3 as calculated after 20 

hours of culture time. The results at this time point are indeed much more informative than the 

ambiguous results of figure (8). The glygosylation efficiency factor (ε1) and the rate constant for 

Golgi to extracellular media transport (Kg) are the only parameters with a TSI greater than 0.1. 

Both parameters also have quite high individual indices which suggest that they could be 

uniquely identified from a suitably designed experiment. It is worthwhile identifying the reasons 

behind the differences between Figures (8) and (9). After 120 hours of culture time, glutamine 

has been completely depleted and the culture is well in its decline phase. A near zero 

concentration for glutamine would yield a near zero value for the specific growth rate as given 

from equations (1.4.3, 1.4.4). This in turn would affect the right hand side of equation (1.4.25) 

which in fact yields the output variable. Since GSA is a numerical tool it shares the same 

limitations as the numerical solvers it utilises for the integration of the DAE system. Therefore 

when the right hand side of equation (1.4.25) is known to lie at a near zero (if not exactly zero) 

value any variance from parameter value alterations is difficult to be quantified at the specific 

time point. 

The analysis of the parameters of group 4 (Figure 10) highlighted both the glycosylation 

efficiency factor (ε2) and one of the constants for MAb secretion (γ2) as significant parameters. 

Both parameters display a high individual index value which, as mentioned earlier, is a desirable 

property from a parameter estimation point of view. However, even though a parameter may be 
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significant to the model output and can mathematically guarantee unique identification, it may 

still not be feasible to conduct the necessary experimental measurements that would allow the 

precise estimation of its value. 

Glycosylation efficiency measurements for example are rather complex and cumbersome and 

require equipment not readily available in every analytical laboratory. Therefore, whilst aware of 

the uncertainty associated with these parameters (ε1, ε2), we have no choice but to omit them 

from the DOE algorithm. Similarly, parameter (γ2) is closely linked to the cells’ position in the 

cell cycle, making its experimental estimation particularly difficult and therefore was excluded 

from the DOE algorithm. The difficulty of obtaining experimental measurements for certain 

parameters is often a “real life” problem. Some might argue that on the basis of experimental 

estimation, such parameters could be excluded from model analysis since they can not be 

estimated. However, the fact that a parameter can not be experimentally estimated, does not 

invalidate the sensitivity analysis and on the contrary raises the awareness of the modeller to 

possible weaknesses of the developed model. 

 

Figure 10 Sensitivity indices for parameters of  group 4 at 20h of culture time; 

MAb Concentration as the output 

 
The gain from the detailed analysis in this section is the reduction of the number of 

parameters that need to be experimentally validated in order to increase the fidelity of our model. 

Having started from a total of 30 parameters we have successfully narrowed down the 

parameters that need to be experimentally validated to a mere  7 summarised in table 1.5. 

Moreover we have gained valuable information regarding the time points that would yield the 

most informative experiments leading to a more accurate estimation of our model parameters. 

Therefore model analysis is a key step towards the development of a robust and well posed 
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dynamic model and should always be performed prior to experimentation in order to avoid 

unnecessary experimental costs and labour. The next step of the model development algorithm is 

DOE and finally model validation through an independent set of experiments. 

 

Table 1.5 Summary of GSA results. 

Parameters to be input to the DOE algorithm 

Parameter Time point of GSA (h) 

µmax 

µd,max 

Κd,amm 

Yx,glc 

Yx,gln 

Kd,gln 

Kg 

50 

50 

50 

20 

20 

20 

20 

 

1.4.3   Design of Experiments and Model Validation 

Thus far we have presented the derivation of a model that can accurately describe batch 

cultures of MAb secreting hybridoma cultures as it flows through the model development 

algorithm of Figure (2). Using as an example the model and experimental results presented in the 

work of Kontoravdi (2006) we have successfully created the partitions of the parameter vector 

containing the significant parameters (Table 1.5) and the insignificant parameters that will be set 

at their nominal values. The next step of the model development algorithm is to design tailor 

made experiments for the significant parameters in order to facilitate their accurate estimation. In 

order to guide the reader through this step of the algorithm we will again use as an example the 

relevant work of Kontoravdi (2006) in an attempt to provide a “closed-loop” overview of the 

model development framework presented in Figure (2). 

However, from a process engineering point of view, fed-batch operation is the most 

important for industrial applications as it can prolong culture longevity therefore increasing MAb 

productivity and final titre. Therefore the goal set out is to extend the model's predictive 

capabilities to fed-batch conditions, so that it can be used for the application of model based 

optimisation and control. Assuming that the model is valid under such conditions, the specific 

objective is to accurately estimate the significant model parameters from fed-batch experimental 
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data. As previous studies have discussed (Versyck et al., 1997; Nathanson and Saidel, 1985; 

Munack and Posten, 1989), optimal experimental design uses the model to design sufficiently 

informative experiments for this purpose. Borrowing experimental data from the work of 

Kontoravdi (2006)  

Table 1.6 Optimal Experiment Schedule [Adapted from Kontoravdi 2006] 

Time 

(h) 

Feed Volume 

(mL) 

Time 

(h) 

Feed Volume 

(mL) 

12  90  

F - 12.1 1.25 96  

18  108  

24  F - 108.1 1.25 

36  114  

F - 36.1 1.25 120  

42  132  

48  F - 132.1 1.25 

60  138  

F - 60.1 1.25 144  

66  156  

72  F - 156.1 1.25 

84  162  

F - 84.1 1.25 168  

 

Following the detailed analysis of the model and its parameters in the previous section we 

have already identified the most significant model parameters which can readily be input to the 

optimal experimental design algorithm. Reaping the benefits of using an advanced CAD tool like 

gPROMS, an optimal experimental design utility is already implemented trivialising the 

application of  DOE. The concentrations of glucose and glutamine in the feed were set at 500mM 

and 100mM, respectively. The maximum total volume of feed was fixed at 8.75ml, which 

represents nearly 5% of the total culture volume (200ml), so as to avoid dilution effects. 
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Sampling times, at which measurements were conducted were determined (indicated from the 

work of Kontoravdi 2006) a priori and can be found in table 1.6. The output of the algorithm 

(table 1.7) provided us with the optimal amount of feed supplied at each feeding interval as well 

as the optimal timing of the intervals and the optimal duration of the experiment (168 hours) 

(Kontoravdi 2006).  

 

Figure 11 Fed-Batch Cultures of HFN 7.1 Hybridoma cells [Adapted from Kontoravdi 2006] 

 
Borrowing fed-batch experimental data of HFN 7.1 hybridoma cultures from the work of 

Kontoravdi (2006) enables the re-estimation of the parameters identified as significant from 

model analysis. The “refined” version of the model is simulated for fed-batch operation and is 

plotted against relevant experimental data. The model is found to be in good agreement with the 

experimental data and can successfully capture the dynamics of a fed-batch culture as shown in 

Figure (11). Table 1.7 contains the values of the “refined” model parameters.  

Having verified the validity of the model structure for the simulation of fed-batch processes, 

its applicability should be examined against an independent set of experimental data. This will 

prove that model parameters were not just fitted to experimental data but were properly 
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estimated and the model is valid under various operating conditions. It is beyond the subject of 

this chapter however to provide such a validation and for a proof of concept the reader can refer 

to the work of Kontoravdi (2006,2008) where such data are available. 

Table 1.7 Results of the parameter estimation algorithm 

Parameter New Estimated Value 

µmax 0.05439 

µd,max 0.02784 

Κd,amm 1.932 

Yx,glc 2.6*108 

Yx,gln 8*108 

Kd,gln 8.75*10-3 

Kg 0.14 

 

1.5   Concluding remarks 

The balancing point for the trade-off between fidelity and tractability is constantly shifting 

with the advancements both in numerical tools and raw computational power. Most of the 

models describing mammalian cell culture presented thus far in the literature are based on the 

consumption of up to 2 basic nutrients and the toxic effects from the accumulation of the 

corresponding end products of metabolism. However, in order to truly capture the dynamics and 

behaviour of a culture and achieve truly optimal feeding strategies, we need to start paying 

attention to a number of other components that have so far being ignored. The work of Xie and 

Wang (2001) has already taught us that excessive feed of glucose is not always the best means 

towards higher titres of  product, as they proved it shifts metabolism towards energy inefficient 

pathways. Moreover, deZengotita et al. (2000) has shown that apart from the established growth 

limiting nutrients (namely glucose and glutamine), there are many other components that might 

be limiting the growth of a culture. The question that naturally arises is whether an optimal 

feeding profile should be derived on the basis of availability of nutrients while disregarding the 

energy requirements of the cell or on the provision of adequate yet not excessive amounts of 
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energy through the provision of controlled quantities of nutrients. Energy metabolism is a 

significant element of cell culture that has thus far been ignored from a modelling point of view. 

Optimisation of cultures secreting a valuable end product has always been centred around the 

balance between prolonged culture life and increased specific productivity. Usually these two 

goals are reached through competing paths. Conditions that seem to prolong culture viability 

reduce specific productivity while conditions that increase specific productivity seem to affect 

culture longevity. Even though a lot of published studies have shown the potential of in silico 

experimentation, a lot of work still remains to be done. In order to achieve the global optimum 

between prolonged culture life and increased productivity, we must first understand and 

incorporate the significant elements of metabolism in our models. For example, there has been to 

the extent of our knowledge no model that takes into account the availability of amino-acids in 

the culture medium as a factor affecting either growth or productivity. However it is well known 

from biology that the building blocks for the synthesis of biological macromolecules are amino-

acids and that not all of the amino-acids can be produced by the cell.  Therefore seeking optimal 

feeding profiles based on the provision of glucose alone, and in the best case glucose and 

glutamine,  might yield an increase in final titre on the one hand, however it is still quite far from 

the global optimum. 

The visionary remarks of Bailey (1998) predicted the need to shift modelling focus upstream 

towards the gene level in order to truly understand the dynamics of cellular metabolism. Little – 

to no – work has been published since containing structure on the gene level where the kernel of 

the cell’s control mechanism lies. The advancements in analytical and theoretical biology will 

increasingly provide more information in the future, especially with the increasing popularity 

and availability of the –omics techniques. However from an engineering point of view, this 

information can only be utilised through a systematic and rigorous framework that will organise 

and prioritise necessary measurements and experiments.  

Paving the way towards a “closed-loop” holistic framework for bio-process automation, this 

chapter covers the development of dynamical models of biological systems. The biological 

model development framework presented in figure (2) is explained in a step by step fashion, 

highlighting scientific concerns, challenges and “real life” problems associated with each step of 

the framework. Adapting a “real-life” example from the work of Kontoravdi (2006) we present 

the logical and systematic evolution of a model from conception to validation as it flows through 

the various steps of the model development framework. The key conclusion of this chapter is 

that by utilising a systematic way of organising available information, one can avoid conducting 

experiments for the sake of experimentation and develop models with an a priori set aim. 
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