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Abstract 

A modelling framework that consists of model building, validation and analysis, leading 

to model-based design of experiments and to the application of optimisation-based 

model-predictive control strategies for the development of optimised bioprocesses is 

presented. An example of this framework is given with the construction and 

experimental validation of a dynamic mathematical model of the Ps/Pr promoters 

system of the TOL plasmid, which is used for the metabolism of m-xylene by 

Pseudomonas putida mt-2. Furthermore, the genetic circuit model is combined with the 

growth kinetics of the strain in batch cultures, demonstrating how the description of key 

genetic circuits can facilitate the improvement of existing growth kinetic models that 

fail to predict unusual growth patterns. Consequently, the dynamic model is combined 

with global sensitivity analysis, which is used to identify the presence of significant 

model parameters, constituting a model-based methodology for the formulation of 

genetic circuit optimization methods. 
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1. Introduction 

Genetic circuits are groups of elements that interact producing certain behaviour [1]. 

Based on our capability to engineer genetic circuits, fundamental biological processes 

can be studied systematically and targets can be identified for genetic modification, 

producing the desired properties. However, the extensive experimentation required to 

understand the function of genetic circuits, is often limited by the time and cost 

required. Although the experimental techniques required for the study of genetic circuits 

are very sophisticated, reliable mathematical models are equally important in reducing 

substantially the trial-and-error experimentation. In line with this, dynamic modelling 

can be used for characterisation of the cellular function integrating biological 

information into predictive models [2]. Furthermore, the molecular and genetic events 

responsible for the growth kinetics of a microorganism can be extensively influenced by 

the presence of mixtures of substrates leading to unusual growth patterns, which cannot 

be accurately predicted from existing models [3]. Thus, a novel approach combining 
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genetic circuit and growth kinetic models constitutes an improved version of the 

currently used models for the prediction of microbial growth kinetics. 

Complex biological models may include a large number of parameters, which can be 

difficult to estimate and may incorporate expensive and time consuming experiments. 

Global sensitivity analysis (GSA) is a tool used to quantify the importance of model 

parameters and their interactions with regards to the model output [4]. Analyzing the 

properties of parameters included in genetic circuit models provides the identification of 

the most significant ones with respect to the output of interest. Thus, the experiments 

required for circuit optimisation can be aimed at genetic modifications altering these 

parameters alone, consequently reducing the cost and the number of experiments 

required. Application of GSA methods to biological systems has been limited to a few 

examples [5]. In this work, we present a modeling framework that consists of model 

building, validation and analysis providing a solid basis for genetic circuit optimization. 

A combined model has been constructed describing the function of the Ps/Pr promoters 

system and the growth kinetics of P. putida mt-2. The model’s prediction has been 

compared to that of models accounting for enzymatic interactions. Finally, preliminary 

model analysis has been performed with the application of Sobol’ GSA method [6]. 

2. Results and discussion 

2.1. Genetic circuit model  

P. putida mt-2 is equipped with the TOL plasmid (pWW0), specifying a pathway for 

the catabolism of m-xylene. The enzymes required for these reactions are produced by 

the two gene operons of TOL (upper- and meta- operon), while two genes (xylS and 

xylR) control the regulation of transcription of the operons. These four transcriptional 

units are driven by four different promoters (Pu, Pm, Ps and Pr). The Ps/Pr system has 

been reconstructed into its various interacting molecular components and has been 

described as a combination of logic gates (Fig. 1) producing a representation in an 

analogy to electronic circuitry. Based on the logic model of the Ps/Pr system, the Hill 

functions were used as input functions to the genes and a dynamic mathematical model 

of the system was generated, as described below.  

 
Figure 1. Logic diagram of the Ps/Pr system of TOL plasmid pWW0.  : input;  : 

output;  : AND;  : NOT. 

P. putida mt-2 degrades aromatic substrates through a series of events leading to 

coordinated expression from the upper- and meta-cleavage pathways of TOL. The 

master regulator of the two pathways, the XylR protein, is transcribed by the xylR gene 

from two σ70
 tandem promoters (Pr1 and Pr2). After binding with m-xylene, the 

inactive dimer form of the XylR protein (XylRi) binds ATP and oligomerizes to form a 

hexamer. This leads to the formation of the active form of XylR (XylRa), which induces 

transcription of the Pu promoter synthesizing the upper-pathway enzymes. The 
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synthesis of XylRi, as well as the forward and reverse reactions for XylR 

activation/deactivation are expressed by Eqs. (1-2) (all symbols are defined in Table 1): 
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Table 1. List of symbols. 

For simplification of the model developed we express both xylR promoters as a single 

Pr promoter. The XylR protein activates Ps and represses its own synthesis. During the 

experiments, the Pr promoter was slightly repressed in the presence of both substrates 

as compared to the case when only m-xylene was present. Therefore, we presumed that 

succinate is repressive for Pr in the presence of m-xylene and that the concentration of 

σ70
 is at a constant level. The function of Pr promoter activity is expressed by Eq. (3). 
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The xylS gene is expressed constitutively at a basal expression level β0 (Eq. 4) but 

boosted in the presence of m-xylene synthesizing the XylS protein and stimulating the 

induction of the meta-pathway. Activation of Ps is assisted by the HU protein, which 

stabilizes the correct architecture of the promoter. The experiments of this study 

confirmed in that Ps is negatively affected in the presence of succinate. Thus, we 

consider that succinate is repressive for Ps promoter and we assume that the 

concentration of HU and σ54
 is constant at housekeeping level. 
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Symbols Definition 

XylRi / XylRa concentrations of the inactive and active forms of XylR protein 

rXylR /  rR,XylR XylRi oligomerization and  XylRa dissociation constants 

Xyl /  XylINI / Suc total m-xylene,  total m-xylene initial and total succinate concentrations 

PrTC / PsTC relative activities of Pr and Ps 

t time 

KPr,XylRi  / βXylRi XylRi and maximal XylRi translation rates 

αXylRi / αXylRa degradation/dilution rates due to cellular volume increase for XylRi and XylRa 

β0 / βPs / βPr basal and maximal expression levels of Ps and Pr 

KXylRa,Ps / KXylRi / KXylRa activation  and repression coefficients of Ps and Pr due to XylRi and/or XylRa 

nPr,i / nPr,a / nPs,a Hill coefficients of Pr and Ps due to XylRi and/or XylRa binding 

KSUC,Pr / KSUC,Ps inhibition constant of succinate on  Pr and Ps 

αPr / αPs deactivation rates of Pr and Ps 

µ1 / µ2 / µmax,1 / µmax,2 specific and maximum specific growth rates of biomass on m-xylene and succinate 

S1 / S2 m-xylene and succinate concentrations 

KS,1 / KI,1 /  KS,2 m-xylene and succinate saturation and/or inhibition constants 

X biomass concentration 

MWt1 / MWt2 m-xylene and succinate molecular weight 

Y1 / Y2 yield coefficient for biomass on m-xylene and succinate 

KI,1,2 /  KI,1-P,2 m-xylene inhibition and by-product inhibition on succinate constant 
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2.2. Growth kinetic model  

P. putida mt-2 was first cultivated in the presence of succinate and m-xylene as single 

substrates. The biodegradation of 0.9 mM m-xylene fed in a batch experiment was 

modelled assuming substrate inhibition [7] (Eqs. 5-6). 
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A 1 h lag-phase occurred following the introduction of m-xylene (data not shown). 

Since the culture was pre-grown in succinate, the lag might be due to the change in 

substrate requiring the induction of new enzymes for m-xylene biodegradation. Thus, 

we assume that the transition from the lag to the accelerating phase takes place when the 

activity of Ps increased from its basal level by 65-fold, an amount which corresponds to 

the activation of the TOL pathway and to the induction of its enzymes. The genetic 

circuit model was used to calculate Ps promoter’s activity over time, estimating the 

duration of the lag-phase, and the growth kinetic model was used after the lag-phase. 

The growth kinetics of mt-2 was studied in the presence of succinate. The consumption 

of 13.6 mM succinate fed in a batch experiment was modelled using Eqs. (7-8).  
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The strain was cultured in a batch experiment in the presence of 14 mM succinate and 

1.04 mM m-xylene. Unlike the cases of simultaneous or diauxic growth often observed 

when a mixture of substrates is available, mt-2 displayed a different growth pattern. 

Following the initial lag-phase, m-xylene degradation started first followed by succinate 

degradation resulting in two phases were both substrates were utilised individually and 

one phase were both substrates were utilised simultaneously. m-xylene is sensed by P. 

putida mainly as a stressor to be extruded rather than as a nutrient to be metabolised. 

Consequently, the lag-phase in succinate degradation can be attributed to the presence 

of the stressor and the duration of the lag on succinate might depend on the time 

required to inactivate m-xylene. In order to consider the inhibitory effects of m-xylene 

and its intermediates on succinate degradation, a new succinate degradation model is 

suggested (Eq. 9). We assume that a major intermediate in m-xylene degradation 

accumulates over time proportionally to the removal of m-xylene. Furthermore, 

inhibition of growth on succinate due to the presence of m-xylene is also considered. 
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Due to the overall repression of Ps, we assumed that in the presence of both substrates, 

m-xylene degradation started when the activity of Ps increased from its basal level by 

14-fold. Also, as mentioned above, the lag-phase in succinate degradation is attributed 

to the stress effect caused by m-xylene. Thus, we assume that growth on succinate starts 

when the cellular metabolic resources are redistributed towards succinate assimilation 

indicating the onset of the TOL pathway deinduction, which is expressed by the time 

point where Ps activity starts decreasing from its maximum value. The model parameter 

values were obtained from the experiments presented above. 

The mixed-substrate experiment was also modelled with the SKIP model, which is used 

when the type of substrate interactions cannot be directly specified, and with cell growth 
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models accounting for competitive, noncompetitive and uncompetitive inhibition. The 

uncompetitive inhibition and SKIP models satisfactorily described the experimental 

data, while the competitive and non-competitive inhibition models failed to follow the 

experimental results (data not shown). 

The predictive capability of the model was tested with an independent experiment. The 

initial succinate concentration was maintained at 14.1 mM, while m-xylene 

concentration was reduced to 0.8 mM. The duration of the lag-phase for each substrate 

was calculated from the genetic circuit model (Fig. 2) as described above. The 

combined mathematical model underpredicted the biomass concentration (Fig. 3) and 

overpredicted to minor extent the m-xylene concentration over time (Fig. 4). However, 

the model closely tracked succinate concentration (Fig. 5) and overall produced a 

satisfactory description of the experimental data. In contrast, the competitive inhibition 

and the SKIP model failed to describe the experimental results confirming that only the 

combined model can be predictive under different experimental conditions. 
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Figures 2-5. Comparison of the combined model and the substrate interaction models prediction. 

I) lag-phase on m-xylene; II) lag-phase on succinate. 

2.3. Model analysis  

The ability of the Sobol’ method to distinguish between individual and total sensitivity 

index (SI) enables us to identify interacting factors within the system gaining valuable 

insight into its dynamics. The dimensionality of the sensitivity analysis problem is 

defined by the number of model parameters; therefore a feasibility constraint regarding 

the maximum possible number of individually scanned parameters is imposed implicitly 

in terms of computational time. This constraint is unavoidable due to the - increasing 

with dimension - number of model evaluations required for the Monte Carlo integrals to 

converge. Researchers in the field of GSA often resolve to parameter grouping in order 

to reduce the dimensionality of the problem, thus solving a more tractable version of the 

original problem. Therefore the parameters of the model have been divided in 16 groups 

according to their biological function, to make the computation of GSA feasible.  

The sensitivities of the parameter groups have been calculated at different time points 

for XylRa concentration as the output variable and the results are shown in Fig. 6. The 



  Koutinas et al. 

4 8
1216

G
p1

G
p2

G
p3

G
p4

G
p5

G
p6

G
p7

G
p8

G
p9

G
p10

G
p11

G
p12

G
p13

G
p14

G
p15

G
p16

0

0.2

0.4

0.6

0.8

1

S
e

n
s

itiv
ity

 In
d

e
x

Time 

[h]

Group

most significant parameter groups are: i) Gp1 (µmax,1), ii) Gp10 (rXylR, rR,XylR), iii) Gp11 

(βXylRi, αXylRi, KPr,XylRi) and Gp12 (αXylRa). Therefore, parameters related to XylRi and 

XylRa oligomerization and dissociation respectively, XylRi translation and degradation, 

XylRa degradation and the maximum specific growth rate on m-xylene are the most 

significant. The identification of significant parameters not only enriches our knowledge 

on the intricate mechanisms that govern cellular behaviour, but may be an indication of 

which are the most significant parameters to genetically modify towards the production 

of improved cellular behaviour. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Preliminary calculation of SI for various parameter groups. Indexes were calculated at 

different time points for XylRa concentration as the output variable. 

3. Conclusions 

The mathematical model successfully combines the prediction of a key genetic circuit to 

the growth kinetics of the microorganism, producing a reliable description of the 

system. The combination of the constructed model with GSA constitutes a model-based 

methodology identifying the driving mechanisms of the system, which can be used for 

hypothesis testing and network optimisation. Thus, the modeling framework presented 

in this study enables the formulation of genetic circuit optimisation methods, opening a 

window into the direct re-programming of cellular behaviour and, subsequently, the 

development of optimised and novel, high-added value biocatalysts. 
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