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The majority of models describing the kinetic properties of a microorganism for a given substrate are

unstructured and empirical. They are formulated in this manner so that the complex mechanism of cell

growth is simplified. Herein, a novel approach for modelling microbial growth kinetics is proposed,

linking biomass growth and substrate consumption rates to the gene regulatory programmes that

control these processes. A dynamic model of the TOL (pWW0) plasmid of Pseudomonas putida mt-2 has

been developed, describing the molecular interactions that lead to the transcription of the upper and

meta operons, known to produce the enzymes for the oxidative catabolism of m-xylene. The genetic

circuit model was combined with a growth kinetic model decoupling biomass growth and substrate

consumption rates, which are expressed as independent functions of the rate-limiting enzymes

produced by the operons. Estimation of model parameters and validation of the model’s predictive

capability were successfully performed in batch cultures of mt-2 fed with different concentrations of

m-xylene, as confirmed by relative mRNA concentration measurements of the promoters encoded in

TOL. The growth formation and substrate utilisation patterns could not be accurately described by

traditional Monod-type models for a wide range of conditions, demonstrating the critical importance of

gene regulation for the development of advanced models closely predicting complex bioprocesses. In

contrast, the proposed strategy, which utilises quantitative information pertaining to upstream

molecular events that control the production of rate-limiting enzymes, predicts the catabolism of a

substrate and biomass formation and could be of central importance for the design of optimal

bioprocesses.

& 2011 Elsevier Inc. All rights reserved.
1. Introduction

Monitoring of bioprocess performance is generally conducted
by measuring macroscopic operating parameters, ignoring the
molecular interactions controlling the process (Kovarova-Kovar
and Egli, 1998). However, in many cases biomass utilisation and
substrate consumption patterns cannot be accurately predicted
by models developed merely based on bulk measurements, due to
regulation at both the enzyme and the genetic level (Rogers and
Reardon, 2000). Especially in bioprocesses with mixed microbial
populations, multiple substrates and fluctuating substrate con-
centrations, traditional Michaelis–Menten and Monod models do
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not capture the description of substrate degradation (Park et al.,
2008). Previous studies have demonstrated that enzymatic mea-
surements can be successfully used to construct mechanistic
models with improved predictive capabilities (Melchiorsen
et al., 2001). Nevertheless, the application of experimentally
validated models of key genetic circuits, describing the upstream
molecular and genetic events that control the synthesis of
enzymes, to improve the description of the kinetic properties of
a microorganism has not been demonstrated yet. The current
state of the art is rather limited to the recent work of Douma et al.
(2010) presenting the development of a simple dynamic gene
regulation model to describe biomass and penicillin production in
a chemostat. It was shown that although the gene regulation
model was only validated using enzyme activity assays instead of
measuring mRNA levels, it nevertheless improved significantly
the prediction of the bioprocess demonstrating the benefits of
accounting for genetic events in biochemical engineering.

www.elsevier.com/locate/ymben
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The application of modern molecular tools to link the molecular
to meso- and macro-scale events that instrumentally affect the
composition, physiological state and activities of a microbial
population is becoming a primary research goal for environmental
biotechnology. Competitive RT-PCR has been previously applied to
improve the monitoring of in situ microbial function and activity in
methanotrophs (Han and Semrau, 2004). Furthermore, RT-PCR has
also been used to understand the link between the photosynthetic
capacity of autotrophic plankton and transcription of the gene
responsible for primary carbon fixation during photosynthesis
(Corredor et al., 2004). Although it is emphasised that molecular
biology methods can be useful for optimising bioprocess perfor-
mance, nonetheless substrate consumption is only correlated to
mRNA transcript levels using best-fit lines without considering the
regulatory processes controlling the transcription from the rele-
vant genes. Thus, even though an almost linear relationship
between mRNA levels and cellular activity might occur, this
relationship can be strongly dependent on the growth conditions
– thus, emphasising the need for establishing detailed mechanistic
models that link transcript numbers and substrate utilisation rates.
The limitation of investigations that do not consider the regulatory
phenomena affecting gene expression has been previously shown
in a gas-phase biofilter (Gunsch et al., 2007). Specifically, although
relative gene expression was consistent with biofilter performance,
no direct mathematical correlation could be established between
the microscopic and macroscopic levels.

Pseudomonas putida is a metabolically versatile soil bacterium,
capable of metabolising a large number of industrially important
aromatics (Pieper et al., 2004). P. putida strains have been ranked
among the most solvent-tolerant bacteria known (Nicolaou et al.,
2010), suitable for enhancing their biotechnological production of
compounds by metabolic engineering (Ewering et al., 2006).
Numerous Pseudomonads exhibit a wide biotechnological poten-
tial, producing a series of bulk and fine chemicals, which has led
to a growing interest in studying specific metabolic pathways at
the gene expression and regulation levels (Ballerstedt et al.,
2007). In line with this, mathematical models of promoter/
regulator systems (Van Dien and de Lorenzo, 2003) and gen-
ome-scale metabolic models have been developed (Nogales et al.,
2008; Puchalka et al., 2008) aiming at exploring the vast biotech-
nological potential of this bacterium. P. putida mt-2 is the best
characterised toluene-degrading bacterium. This strain harbours
the TOL plasmid (pWW0), which specifies a pathway for the
oxidative catabolism of toluene and m-xylene (Timmis, 2002). The
required genetic information for the metabolism of these com-
pounds is encoded by the xyl operons of the plasmid, synthesising
the relevant biocatalytic enzymes for conversion of substrates to
Krebs cycle intermediates, while xylS and xylR are involved in
transcriptional control (Ramos et al., 1997). The complex inter-
actions between TOL plasmid-encoded regulators, a set of sigma
factors and DNA-bending proteins, resulting in expression by the
catabolic operons, render the TOL plasmid a paradigm of specific
and global regulation (Aranda-Olmero et al., 2005).

This work establishes a quantitative framework that links
molecular to macroscale events in microbial systems. To this
end, we have recently paved the way developing a dynamic
mathematical model of the Ps/Pr node of the TOL plasmid,
involved in the metabolism of m-xylene by P. putida mt-2
(Koutinas et al., 2010). Herein, this model is extended to account
for the regulatory effects pertinent to the function of Pu and Pm

promoters, driving the transcription from the operons, to con-
struct a complete model of the genetic interactions encountered
in TOL. The mRNA transcript levels computed in the genetic
circuit model are linked to specific growth and substrate utilisa-
tion rates through computation of the rate-limiting enzymes
synthesised by the operons. The parameter values of the
combined model are estimated in a single experiment and its
predictive capability is evaluated through a series of independent
experiments. Our results show that the combined dynamic model
effectively describes the function and dynamics of the system, at
both the microscopic (promoter mRNA concentration) and macro-
scopic (substrate and biomass concentration) levels. The consid-
erable accuracy of the combined model in predicting the
performance of the system for a wider range of conditions,
compared to Monod-type models, highlights the importance of
this novel modelling approach in capturing essential molecular
dynamics and using these effectively for the prediction of biopro-
cess reaction kinetics. Such a strategy may provide fundamental
information for the realisation of bioprocesses pertaining complex
regulatory programmes that govern their dynamics.
2. Materials and methods

2.1. Growth conditions

All subcultures of P. putida mt-2 were pregrown overnight at
30 1C in M9 minimal medium (Sambrook et al., 1989) supplemented
with 15 mM succinate. Triplicate cultures were prepared by diluting
the overnight culture in minimal medium to an initial optical
density of 0.1 at 600 nm (UV-2101PC, Shimadzu UK Ltd, UK). The
minimal medium was supplemented with m-xylene at a concentra-
tion level in agreement to the requirements of each experiment. The
incubation of the cultures was performed using conical Erlenmeyer
flasks with 2.35 L total volume (0.4 L culture volume), which were
continuously stirred at 1250 rpm via a Heidolph MR 3001 K
(Heidolph, UK) magnetic stirrer. The flasks were filled with medium
to one-sixth of their volume, to ensure that sufficient oxygen is
available, and closed gas-tight with Teflon coated lids to avoid losses
of the volatile organic compound. Temperature was maintained
constant at 30 1C. All chemicals used were obtained from Sigma-
Aldrich Company Ltd (UK) and were of ANALAR grade.
m-xylene was obtained from VWR International Ltd (UK) 99% pure.

2.2. Analyses

Gas Chromatograph (GC) analysis was employed for determina-
tion of the m-xylene concentration in the gaseous and aqueous
samples using an Agilent 6850 Series II Gas Chromatograph with a
FID detector and a ‘J&W Scientific’ (Agilent Technologies UK Limited,
UK) column with HP-1 stationary phase (30 m�0.32 mm�
0.25 mm). Gaseous samples of 25 mL were injected into the GC and
the temperature programme run at 70 1C for 3 min and then
increased to 80 1C at a rate of 5 1C min�1. Biomedium m-xylene
concentration was determined experimentally as previously
described (Koutinas et al., 2010). The coefficient of variation for
5 samples was 4.6% at a concentration level of 0.07 mM m-xylene.

Biomass concentration was determined by absorbance at
600 nm on a UV-2101PC scanning spectrophotometer (Shimadzu,
UK) interpolating from a previously established dry weight
calibration curve. The coefficient of variation for 5 samples was
4.2% at a concentration level of 583 mgbiomass L�1.

2.3. Isolation of total RNA, cDNA synthesis and quantitative

real-time PCR

Quantitative Real-Time PCR (Q-PCR) was performed to deter-
mine the expression of xylR (Pr promoter), xylS (Ps promoter), xylU

(Pu promoter), xylX (Pm promoter) and rpoN (housekeeping)
genes during the course of the experiments. The method was
performed as previously described (Koutinas et al., 2010) and the
primer sequences used are shown in Table 1.



Table 1
Primers used in quantitative real time-PCR.

Primer Description Source

5 xylR 907 RT 50-AACTGTTTGGTGTCGATAAGG-30 [29]

3 xylR 1009 RT 30-ATCACCTCATCAAGAAAGATGG-50 [29]

5 xylS 210 RT 50-GGATTAGAGACCTGTTATCATCTG-30 [29]

3 xylS 318 RT 30-GATTGAGCAGCAATAGTTCG-50 [29]

5 xylU 204 RT 50-GCAGTTATCGGCTTCATCTC-30 This study

3 xylU 306 RT 30-CATATAGTCGGTTGAGGTTAGC-50 This study

5 xylX 047 RT 50-TGAAGAAGATGAGAACGAGG-30 This study

3 xylX 157 RT 30-AGATAAATCCAGTTGCCCTC-50 This study

5 rpoN 1067 RT 50-TAACGAAACCCTGATGAAGG-30 [29]

3 rpoN 1169 RT 30-AATGTCATGCAGTACCAACG-50 [29]

Fig. 1. Transcriptional regulation of the TOL pathway. (A) The enzymes encoded in

the upper operon sequentially transform m-xylene into 3-methylbenzoate. The

latter is then transformed into acetate and pyruvate through the action of the

enzymes synthesised by the meta operon. The meta pathway products are

channelled into the Krebs cycle yielding the precursor molecules required to

support biomass growth. (B) The upper operon is transcribed from the s54

promoter Pu upon activation by the central regulator of the pathway (XylR) bound

to specific effectors such as m-xylene. The meta operon is transcribed from the Pm

promoter, which is activated by either XylS and 3-methylbenzoate as a co-inducer,

or by high levels of XylS expression alone (considered in this work). xylS and xylR

are transcribed from the divergent and overlapping promoters Ps and Pr,

respectively. The regulation of these promoters is connected, because Ps is

activated by XylR, which also binds and downregulates its own production from

Pr. (C) A logic representation of the transcriptional regulation in TOL has been

produced with the use of logic gates. The various regulatory modules of TOL have

been rationally combined to construct a conceptual representation of the envir-

onmental signal (m-xylene) activating the existing gene expression programme of

the plasmid, which changes the cell metabolism through the control of the

production rate of the downstream protein expression machinery. J: inactive

form of XylS (XylSi); K: active form of XylS (XylSa); &: inactive form of XylR (XylRi);

’: active form of XylR (XylRa); : input; : output; : AND; : OR;

: NOT.
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2.4. Statistical analysis

SigmaStat (Systat Software UK Ltd, UK, version 3.5) was used
for calculation of 95% confidence intervals between the experi-
mental data of the promoters mRNA concentration and the
model’s prediction, in order to elucidate the precision of the
model in predicting the experimental results.

2.5. Parameter estimation in gPROMS

All parameter estimation experiments and model simulations
were carried out on an Intels CoreTM2 Duo (E4600–2.4, 2.39)
personal computer with 3.24 GB of RAM memory. All model
simulations and parameter estimation experiments were imple-
mented in the advanced process modelling environment
gPROMSs (Process Systems Enterprise, 2010). gPROMS is an
equation-oriented modelling system used for building, validating
and executing first-principles models within a flowsheeting
framework. Parameter estimation in gPROMS is based on the
Maximum Likelihood formulation which provides simultaneous
estimation of parameters in both the physical model of the
process as well as the variance model of the measuring instru-
ments. gPROMS attempts to determine values for the uncertain
physical and variance model parameters, y, that maximise the
probability that the mathematical model will predict the mea-
surement values obtained from the experiments. Assuming inde-
pendent, normally distributed measurement errors, eijk, with zero
means and standard deviations, sijk, this maximum likelihood
goal can be captured through the following objective function:

F¼
N

2
lnð2pÞþ 1

2
miny

XNE

i ¼ 1

XNVi

j ¼ 1

XNMij

k ¼ 1

lnðs2
ihkÞþ

ðzijk�zijkÞ
2

s2
ihk

" #8<
:

9=
;

where N stands for total number of measurements taken during
all the experiments, y is the set of model parameters to be
estimated, NE is the number of experiments performed, NVi is
the number of variables measured in the ith experiment and NMij

is the number of measurements of the jth variable in the ith
experiment. The variance of the kth measurement of variable j in
experiment i is denoted as s2

ijk, while zijk is the kth measured
value of variable j in experiment i and zijk is the kth (model-
)predicted value of variable j in experiment i. The above formula-
tion can be reduced to a recursive least squares parameter
estimation if no variance model for the sensor is selected.
3. Results

3.1. Mathematical modelling of the TOL genetic circuit

A complete model of the transcriptional regulation of TOL was
constructed based on existing biological knowledge of its function
(Moreno et al., 2010; Ramos et al., 1997) and specified by various
molecular components, which interact to guide the catabolism of
m-xylene (Fig. 1A, B). Consequently, the action of the various
molecules, genes and gene products has been conceptually
described as a combination of logic gates (Fig. 1C), based on
biochemical inverters (Weiss et al., 2003), to produce a simple
representation of the plasmid’s regulatory logic and its expres-
sion. Based on this logic representation, Hill functions were used
as input functions to the genes (Alon, 2006) obtaining a dynamic
mathematical model of the system controlling the production of
the enzymes required for the metabolism of m-xylene and similar
compounds.

3.2. Pr promoter

Expression of xylR is driven by two constitutive s70-dependent
tandem promoters (Pr1 and Pr2) synthesising the central regulator
of the pathway, the XylR protein. Following binding with an
aromatic effector such as m-xylene, the inactive dimer form of the
protein (XylRi) binds ATP, triggering the multimerization of the
regulator to form a hexamer (Bertoni et al., 1998). The multimerized
protein undergoes conformational changes producing a transcrip-
tionally competent form of XylR (XylRa) (Devos et al., 2002), which
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results in rapid transition between the active and inactive forms of
the protein (Shingler, 2003). Consequently, XylRa induces transcrip-
tion from Pu and Ps triggering the response of the pathway towards
m-xylene biodegradation. The synthesis of XylRi from Pr driven
transcription and the mechanism for XylR activation/deactivation
are expressed by Eqs. (1)–(3).

dXylRi

dt
¼ bXylRi

PrTC�rXylRXylRiþ3rR,XylRXylRa�aXylRi
XylRi ð1Þ

dXylRa

dt
¼

1

3
rXylRXylRi�rR,XylRXylRa ð2Þ

rXylR ¼ rR,XylR
Xyl

XylINI
ð3Þ

XylRi and XylRa refer to the concentrations of the inactive and
active forms of XylR protein, respectively. bXylRi is the translation
rate of Pr promoter’s mRNA, PrTC is the relative mRNA concentra-
tion of Pr, rXylR is the XylRi oligomerization constant, rR,XylR is the
XylRa dissociation constant, Xyl is the concentration of m-xylene,
XylINI is the initial m-xylene concentration at the parameter
estimation experiment, t is the time, and aXylRi accounts for XylRi

degradation and dilution due to cellular volume increase.
In Ps the upstream activator sequences (UAS), where XylR

targets, overlap the Pr promoters triggering a transcriptional
switch between Pr and Ps (Bertoni et al., 1998). Thus, both XylRi

and XylRa are known to repress expression from Pr reducing their
own synthesis (Eq. (4)). For simplification of the model developed
we have assumed that the concentration of s70 is constant at
housekeeping level (previously shown in Ishihama, 2000) and we
express both xylR tandem promoters as a single Pr promoter.

dPrTC

dt
¼ bPr

K3
XylRi

K3
XylRi
þXylR3

i

þ
KXylRi

KXylRi
þXylRa

 !
�aPrPrTC ð4Þ

bPr stands for the maximal expression level of Pr, KXylRi is the
repression coefficient of Pr due to XylRi binding, and aPr is the
mRNA degradation rate of Pr. The Hill coefficients of Pr due to
XylR binding have been set to three and one, respectively, in order
to account for the presence of three dimers or one hexamer on the
binding site at a dynamic equilibrium.

Comparing the expression used for Pr to the one presented in
our previous work with the Pr/Ps system (Koutinas et al., 2010),
the following minor differences can be identified. Given that
succinate has not been used in the experiments of this study,
the catabolite repression effect of this compound on Pr has been
removed from Eq. (4). The Hill coefficient values for the terms
accounting for repression of Pr due to XylRi and XylRa binding have
been set to 3 and 1, respectively, to account for the three XylRi

dimers required to form a single XylRa hexamer. Furthermore, the
activation/deactivation mechanism for XylR has been modified to
consider that only XylRi is activated by the presence of m-xylene
to form XylRa, while degradation of the latter is omitted to
account for the fast transition between the two forms of this
protein.

3.3. Pu promoter

The upper pathway of TOL is controlled by the s54-dependent
promoter Pu, which is activated at a distance by XylRa (Velazquez
et al., 2006). The binding of the regulator to upstream activating
sequences and the looping out of the complex closely to the
s54-RNAp complex is a process assisted by the integration host
factor (IHF). This structural change optimises the promoter’s
geometry stimulating Pu to drive the synthesis of the enzymes
coded by the upper operon (Carmona et al., 1999). s54 is known to
maintain a balanced intracellular concentration through the
growth time (Cases et al., 1996; Jishage et al., 1996). Furthermore,
when P. putida is grown in a rich LB medium the concentration of
IHF is highest at early stationary phase (Valls et al., 2002),
delaying the increase in the transcriptional output from Pu. Based
on the fact that such a delay was not monitored in the present
study, under M9 medium conditions, and due to the lack of
experimental information about s54 and IHF concentrations, it is
assumed that s54 and IHF are not limiting. Thus, the relative
mRNA concentration of Pu is given by

dPuTC

dt
¼ bPu

XylRa

KXylRa ,PuþXylRa
�aPuPuTC ð5Þ

PuTC stands for the relative mRNA concentration of Pu, bPu is its
maximal expression level, KXylRa,Pu is the activation coefficient of
Pu due to XylRa binding, and aPu is the mRNA degradation rate of
the promoter.

Pu controls the genetic information (genes xylUWCMABN) for
the upper pathway, which is located in the upper operon. The
enzymatic products of xylC (benzaldehyde dehydrogenase), xylM

and xylA (xylene monooxygenase), and xylB (benzyl alcohol
dehydrogenase) are involved in the oxidation of aromatic effec-
tors to the corresponding benzyl alcohol, benzaldehyde, and
benzoate, respectively (Van Dien and de Lorenzo, 2003). Further-
more, it is widely accepted that control of the enzyme level on the
flux of a pathway is distributed between all participating enzymes
(Douma et al., 2010). Nevertheless, these enzymes do not exert
the same level of control on the flux of the pathway, which is
usually dominated by a single rate-limiting enzyme. The produc-
tion of this rate-limiting enzyme for the conversion of m-xylene
to 3-methylbenzoate is expressed as a function of the relative
mRNA concentration of Pu (Eq. (6)).

dXylU

dt
¼ bXylUPuTC�aXylUXylU ð6Þ

XylU stands for the concentration of the assumed rate-limiting
enzyme of the upper pathway, bXylU is the translation rate based
on Pu mRNA, and aXylU accounts for XylU degradation and dilution
due to cellular volume increase.
3.4. Ps promoter

The xylS gene is transcribed at low levels from the constitutive
s70-dependent Ps2 promoter and its expression is boosted in the
presence of m-xylene, through XylRa regulated induction of the
s54-dependent Ps1 promoter (Gonzalez-Perez et al., 2004). We
have previously shown that in the absence of TOL pathway
effectors activation of Ps is very low (Koutinas et al., 2010).
Therefore, the basal expression level of Ps is considered insignif-
icant and it is not accounted for the mRNA concentration of Ps.
Thus, we assume that the induction of Ps2 is negligible under the
conditions of our experiments and we account only for the XylRa

induced Ps1 promoter, which is referred in the rest of the manu-
script as the Ps promoter. Similarly to the effect of IHF on Pu, the
binding of HU protein on Ps facilitates the correct architecture of
the promoter bringing into contact the XylRa bound to the UAS
and the s54-RNAp complex (Perez-Martin and de Lorenzo, 1995).
Based on previous findings showing that HU is abundant in
Escherichia coli (Ishihama, 1999) and s54 is a constitutive protein
(Merrick, 1993), it is assumed that the concentrations of HU and
s54 are constant at housekeeping level. Furthermore, although
IHF may significantly repress Ps activity (Marques et al., 1998),
under inducing conditions this effect is not significant due to
strong XylRa binding to Ps (Holtel et al., 1992). Thus, it is assumed
that Ps is IHF-independent and its relative mRNA concentration
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is given by

dPsTC

dt
¼ bPs

XylRa

KXylRa ,PsþXylRa
�aPsPsTC ð7Þ

PsTC stands for the relative mRNA concentration of Ps, bPs is its
maximal expression level, KXylRa,Ps is the activation coefficient of
Ps by XylRa, and aPs is the mRNA degradation rate of the promoter.

The mRNA translated from Ps1 is 10 times more efficient than
that from Ps2 (Gonzalez-Perez et al., 2004). This pattern of
translation, together with the pattern of transcription described
above, lead to two types of activation of the XylS protein. In cells
growing with meta pathway effectors, such as benzoate, the small
amounts of XylS produced constitutively from Ps2 stimulate
transcription from Pm following binding to the effector. However,
in cells growing with upper pathway effectors, such as m-xylene,
the high XylS concentration synthesised by Ps1 suffice to stimu-
late Pm even when XylS effectors are not present (Dominguez-
Cuevas et al., 2008). In both cases the activation of XylS occurs due
to conformational changes, driven either by the addition of meta

pathway effectors or by the presence of high XylS concentrations,
leading to dimerisation of XylS monomers. The synthesis of XylS

from Ps driven transcription and the mechanism for XylS activa-
tion/deactivation in the presence of m-xylene are expressed by

dXylSi

dt
¼ bXylSi

PsTC�rXylSXylSiþ2rR,XylSXylSa�aXylSi
XylSi ð8Þ

dXylSa

dt
¼

1

2
rXylSXylSi�rR,XylSXylSa ð9Þ

where XylSi and XylSa refer to the concentrations of the inactive
and active forms of XylS protein, respectively, bXylSi is the
translation rate based on Ps mRNA, rXylS is the XylSi oligomeriza-
tion constant, rR,XylS is the XylSa dissociation constant, and aXylSi

accounts for XylSi degradation and dilution due to cellular volume
increase.
3.5. Pm promoter

The meta-cleavage pathway operon is under the control of a
single Pm promoter and its transcription is stimulated by the
presence of the activated form of the XylS protein. This process is
mediated by RNAp with s32 or s38 depending on the growth
phase (Gonzalez-Perez et al., 2002). It was recently shown that
the XylSi monomer also binds to Pm (Dominguez-Cuevas et al.,
2008). Thus, the relative mRNA concentration of Pm is given by

dPmTC

dt
¼ bPm

XylSa

KXylSi ,PmþXylSa

XylS2
i

K2
XylSi ,PmþXylS2

i

�aPmPmTC ð10Þ

PmTC stands for the relative mRNA concentration of Pm, bPm is
its maximal expression level, KXylSi,Pm is the activation coefficient
of Pm by XylS, and aPm is the mRNA degradation rate of the
promoter.

The meta operon comprises 13 genes (xylXYZLTEGFJQKIH)
consisting one of the largest operons in prokaryotes (Ramos
et al., 1997). The transcription originating at the Pm promoter
leads to the formation of nine enzymes involved in the meta

pathway. Thus, the benzoate yielded through the action of the
enzymes synthesised in the upper operon is cis-dioxygenated in
the meta pathway to form 3-methylcatechol, which is cleaved in
meta and consequently channelled into the Krebs cycle
(Velazquez et al., 2005). Similarly to the assumption made for
the upper pathway, the conversion of benzoate to Krebs cycle
intermediates is modelled as being exclusively controlled by a
single rate-limiting enzyme. Therefore, the synthesis of the rate-
limiting enzyme becomes a function of the relative mRNA
concentration of Pm, as shown below

dXylM

dt
¼ bXylMPmTC�aXylMXylM ð11Þ

XylM stands for the concentration of the assumed rate-limiting
enzyme of the meta pathway, bXylM is the translation rate based
on Pm mRNA, and aXylM accounts for XylM degradation and
dilution due to cellular volume increase.
3.6. Coupling TOL to the growth kinetics

Predicting degradation of substrates and dynamics of growth
with models based on enzyme kinetics is not straightforward
(Littlejohns and Daugulis, 2008), because the production of
enzymes in a catabolic pathway is often subject to transcriptional
regulation controlling their expression (Kovarova-Kovar and Egli,
1998). This mechanism clearly indicates that unless the residual
concentrations of growth-controlling substrates are linked to the
regulatory loops governing the elements coding the genetic basis
for the synthesis of enzymes, the applicability of the developed
model will be usually restricted to a narrow range of conditions.
In order to account for the regulatory events controlling the
metabolism of m-xylene in P. putida mt-2, a mathematical model
coupling the mRNA transcript levels computed in the TOL model
to specific growth and substrate utilisation rates has been
developed.

Given that the upper pathway drives the first reaction for m-
xylene bioconversion to the various intermediates involved in
TOL, m-xylene consumption has been modelled as a function of
the concentration of the rate-limiting enzyme controlled by Pu

(Eq. (12)). Furthermore, the meta pathway channels the products
of the TOL pathway from m-xylene biodegradation into the Krebs
cycle providing the precursor molecules required for the anabolic
processes which result in biomass growth. Thus, the specific
growth rate on m-xylene is expressed as a function of the
concentration of the rate-limiting enzyme controlled by Pm

(Eq. (13)). Consequently, biomass production is modelled using
Eq. (14) and its decay is expressed by Eq. (15).

dXyl

dt
¼�

1

MWm�x

bXylU,m�xXylU

KXylU,m�xþXylU
X ð12Þ

m¼
bXylM,bXylM

KXylM,bþXylM
ð13Þ

dX

dt
¼ ðm�dÞX ð14Þ

d¼
dmaxXyl

KdþXyl
ð15Þ

MWm�x is the molecular weight of m-xylene, bXylU,m�x stands
for the maximum m-xylene metabolic quotient based on XylU,
KXylU,m�x is the saturation constant for XylU, X refers to biomass
concentration, m is the specific growth rate of biomass on
m-xylene, bXylM,b is the maximum specific growth rate of biomass
based on XylM, KXylM,b is the saturation constant for XylM, d

accounts for the decay rate, dmax is the maximum decay rate,
and Kd refers to the decay saturation constant.

In many cases, microbial growth kinetics are modelled by
applying the Monod equation to describe the specific growth rate
(Eq. (16)). Furthermore, when an inhibitory substrate such as m-
xylene is fed, a Monod term accounting for substrate inhibition
can be used (Eq. (17)) (Morgado et al., 2004; Yano and Koga,
1969). Therefore, the consumption of the substrate is given by



Table 2
Parameter values used for model simulation.

Parameter Equation employed Value

dmax 15 0.35 h�1

Kd 15 1.79 mM

KXylM,b 14 15.4 mM

KXylRa,Ps 7 25.6 mM

KXylRa,Pu 5 25.6 mM

KXylRi 4 13.8 mM

KXylSi,Pm 10 4.85 mM

KXylU,m�x 12 4.83 mM

MWm�x 12 106 gm�xyl mol�1

rR,XylR 1 632 h�1

rR,XylS 8 47.4 h�1

rXylS 8 13.3 h�1

aPm 10 3.77 h�1

aPr 4 6.38 h�1

aPs 7 3.37 h�1

aPu 5 3.56 h�1

aXylM 11 5.94 h�1

11
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Eq. (18) and biomass production is expressed by Eq. (14)

m¼
mmax,1Xyl

KS,1þXyl
ð16Þ

m¼
mmax,2Xyl

KS,2þXylþXyl3=K2
I

ð17Þ

dXyl

dt
¼�

m
Y

X ð18Þ

mmax,1 and mmax,2 stand for the maximum specific growth rates of
biomass on m-xylene, Ks,1 and Ks,2 are the m-xylene saturation
constants, KI refers to the m-xylene inhibition constant, and Y is
the yield coefficient for biomass on m-xylene.

Comparing the specific growth and substrate consumption
rates of the two models based on enzyme kinetics (Monod, and
Yano and Koga) and that of the combined model that accounts for
transcriptional regulation of the m-xylene metabolising pathway,
three main structural advantages of the latter can be highlighted:
aXylRi 1 7.45 h

aXylSi 8 60 h�1

aXylU 6 8.61�10�2 h�1
i.

bPm 10 5.1 h�1

bPr 4 16.1 h�1

�1
Biomass growth and substrate consumption have been
decoupled and they are modelled as two independent
processes.
bPs 7 5.45 h
�1
ii.

bPu 5 5.71 h

bXylM 11 3.88�102 mM h�1

bXylM,b 13 0.58 h�1

bXylRi 1 7.13�102 mM h�1

bXylSi 8 1.81�103 mM h�1

bXylU 6 1.48�103 mM h�1

�1 �1
Both rates are independent of the substrate concentration and
they are expressed as a function of the relevant rate-limiting
enzyme controlling each process. In this way the expression of
key genes for the bioprocess has been linked to the growth
kinetics, since the genetic circuit model is validated based on
measurements of mRNA transcript levels as shown below.
bXylU,m�x 12 0.19 gm�xyl gbiom h

iii.
 The combined model accounts for non-constant biomass yield,

which is regulated by the production of the upper pathway
rate-limiting enzyme.

The advantages of the combined model summarised above
address limitations of models developed based on enzyme
kinetics, which are unstructured and empirical. Therefore, while
empirical/unstructured models constitute an indispensable tool
in all fields of biotechnology, their applicability is often compro-
mised because they do not account for complex cellular
mechanisms.

3.7. Parameter estimation experiment

3.7.1. Genetic circuit model prediction

The model presented above was applied in gPROMS (Process
Systems Enterprise, 2010) and the parameter values, given in
Table 2, were obtained from a batch experiment in the presence
of 1 mM m-xylene as the sole carbon source. Under induced
conditions, XylRi interacts with the substrate to form the master
regulator of the system (XylRa). Thus, Pr should be repressed due
to binding of its two protein products, while Pu and Ps were
expected to be activated as a result of their interaction with XylRa.
Furthermore, the expression of xylS due to the presence of XylRa

results in XylS hyperproduction driving the increase in Pm

promoter’s relative mRNA concentration. Experimental measure-
ments of the promoters’ relative mRNA levels (Fig. 2A–D)
confirmed the expected system behaviour described above show-
ing that the genetic circuit model can effectively describe the
experimental results.

3.7.2. Lag-phase

When P. putida strains equipped with the TOL plasmid are
exposed to aromatic compounds three distinct cellular responses
are generated. The expression programs produced comprise a
nutritional signal triggering the metabolic programme encoded in
TOL, a toxic signal activating a solvent extrusion and tolerance
response, and interference with the protein folding machinery
setting off a heat-shock response (Dominguez-Cuevas et al.,
2006). The general stress response, reflected by the latter two
expression programs, includes the interaction of the aromatic
compound with the phospholipid bilayer of the cell membrane
disturbing its structure (Sikkema et al., 1995). This change of the
membrane’s structure results in the disruption of xylene mono-
oxygenase (XMO), the enzyme initiating m-xylene degradation,
the activity of which is known to be membrane-bound (Buhler
et al., 2006). Therefore, although the genes included in TOL are
transcribed without delay (apart from the genes of the meta

pathway which show a short delay) following introduction of m-
xylene, due to the activity loss of XMO immediate bioconversion
of the aromatic compound to TOL pathway intermediates does
not occur. This results in a lag-phase where the substrate is not
consumed and biomass is not produced. The mathematical
description of the mechanism causing the lag-phase was out of
the scope of our work. Thus, from the biomass and m-xylene
concentration profiles for each experiment we have observed the
duration of the lag-phase and we have fitted the three models
developed to the average values of the experimental points
during this period. However, since the response of the plasmid
starts immediately following introduction of m-xylene, the TOL
model was simulated from the beginning of the experiment.
3.7.3. Combined model simulation and parameter estimation

For the description of m-xylene depletion and biomass growth
during the parameter estimation experiment the combined,
Monod, and Yano and Koga models were employed. According
to m-xylene and biomass measurements, the duration of the lag-
phase was 90 min for this experiment. Thus, the genetic circuit
model (Eqs. (1)–(11)) was used to compute the concentrations of
the rate-limiting enzymes XylU and XylM controlling m-xylene
biodegradation and biomass production, respectively, (Fig. 3A, B).



Fig. 2. Comparing the prediction of the genetic circuit model with the expression of the promoters encoded in TOL. Shown are the measured relative mRNA levels and

model simulations for (A) Pr, (B) Ps, (C) Pu, and (D) Pm under the presence of 1 mM m-xylene in the parameter estimation experiment. The results are obtained as an

average from six individual measurements at each point and the error bars are calculated for standard deviation.

Fig. 3. Pseudomonas putida mt-2 growth kinetics in the parameter estimation experiment. The dynamic genetic circuit model was used to calculate the concentration

profiles of the rate-limiting enzymes (A) XylU and (B) XylM synthesised in the TOL operons. Consequently, the concentration of each enzyme was used to model

(C) m-xylene biodegradation due to the induction of the upper pathway and (D) biomass growth resulting from the metabolic products of the meta operon channelled into

the Krebs cycle.
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Table 3
Correlation coefficients between experimental and modelling results.

Experiment R2 (biomass) R2 (m-xylene)

1 (Combined model) 0.961 0.985

1 (Monod model) 0.974 0.986

1(Yano and Koga model) 0.975 0.910

2 (Combined model) 0.928 0.955

2 (Monod model) 0.608 0.817

2 (Yano and Koga model) 0.845 0.294

3 (Combined model) 0.952 1.000

3 (Monod model) 0.950 0.989

3 (Yano and Koga model) 0.872 0.314

4 (Combined model) 0.928 0.955

4 (Monod model) 0.609 0.817

4 (Yano and Koga model) 0.845 0.294

1. 1 mM m-xylene (parameter estimation experiment); 2. 0.4 mM m-xylene

(predictive experiment); 3. 0.7 mM m-xylene (predictive experiment); 4. 1.3 mM

m-xylene (predictive experiment).
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However, Eqs. (12)–(15) were employed after the lag-phase to
predict the concentrations of substrate and biomass using as
initial conditions for the variables their values at 90 min (Fig. 3C,
D). Based on the predictions of the three models, the high
correlation coefficient values obtained (Table 3) between experi-
mental and modelling results confirm that the experimental
results were adequately described by all the models studied.
Furthermore, the parameter values for the Monod, and Yano and
Koga models were estimated in this experiment. It would be
interesting to compare the values of the estimated parameters
against values that exist in literature. However, since the biolo-
gical mechanisms that follow mRNA transcription are presented
here in a lumped fashion, relevant parameters could not be found
for most of the parameters of the developed model. Nevertheless,
parameter values relevant to mRNA transcription and degradation
are in accordance with basic biological expectations (Feng et al.,
2004; Hooshangi et al., 2005; Stricker et al., 2008).

3.8. Predictive experiments

Having obtained the parameter values for the growth kinetic
models their predictive capability was tested with three indepen-
dent experiments, to facilitate their validation under a wide range
of conditions. Consequently, P. putida mt-2 was grown in three
triplicate batch cultures utilising initial m-xylene concentration of
0.4, 0.7 and 1.3 mM, respectively.

3.8.1. Genetic circuit model prediction

The overall trend of the model’s prediction for Pu and Pm

promoters is accurate for the experiments with initial m-xylene
concentration of 0.4 and 0.7 mM, as confirmed by correlating the
model’s prediction with 95% confidence intervals of Pu and Pm

mRNA levels (Fig. 4A–D). Similarly, when 1.3 mM m-xylene was
fed the model closely tracked the relative mRNA level of Pu for the
first 120 min, with some discrepancies for the remaining of the
culture when Pu relative mRNA concentration was slightly over-
predicted (Fig. 4E). However, as confirmed by 95% confidence
intervals of the experimental data, the genetic circuit model
underpredicted the relative mRNA level of Pm for most of the
experiment with 1.3 mM m-xylene (Fig. 4F). The higher m-xylene
concentration used in this experiment might have resulted in
accumulation of meta pathway effectors, such as 3-methylbenzo-
ate, that bind XylS and enhance transcription from Pm

(Dominguez-Cuevas et al., 2008). Nevertheless, although this
effect might have caused an increase in the mRNA concentration
of Pm, even in this case the model follows the general trend of Pm

promoter’s mRNA level. Thus, the results of the predictive
experiments confirm that the existing model structure satisfacto-
rily describes the experimental data of Pu and Pm relative mRNA
concentrations based on the level of biological information avail-
able for the system.

The profiles of the promoters’ relative mRNA concentration are
in agreement with previous studies, showing that when the
culture is grown in M9 medium under m-xylene inducing condi-
tions Pu promoter is quickly induced upon exposure to the
aromatic compound, while induction from Pm occurs approxi-
mately 15 min later (Velazquez et al., 2005). Expression of the
upper operon is controlled by the m-xylene responsive regulator
XylR, while the meta operon is under the control of a two-stage
cascade established by the XylRa activation of Ps and activation of
Pm due to XylSa binding (Fig. 1C). Therefore, since cascades are
known to produce temporal programs of gene expression
(Hooshangi et al., 2005), the delay in Pm induction is an expected
behaviour.

The part of the mathematical model describing the function of
Pr and Ps promoters, as well as the production of XylRi and its
subsequent multimerization to XylRa has been recently experi-
mentally validated (Koutinas et al., 2010). Therefore, measuring
the relative mRNA concentration of these promoters in the
predictive experiments was not considered necessary and their
predicted profiles, as well as the predicted concentration profiles
of the protein regulators of the system (XylRi, XylRa, XylSi and
XylSa) are presented in Fig. 5.
3.8.2. Comparison of the combined model with Monod-type models

Based on the prediction of the genetic circuit model, the
concentrations of the rate-limiting enzymes controlled by Pu

and Pm were calculated for the predictive experiments (Fig. 5D, H).
The duration of the lag-phase for m-xylene biodegradation was
10, 150 and 100 min for the experiments with initial substrate
concentrations of 0.4, 0.7 and 1.3 mM, respectively (Fig. 6A–F).
Based on the correlation coefficient values calculated between
experimental and modelling results (Table 3), only the combined
model was able to accurately describe the measured biomass and
m-xylene concentration profiles for all three experiments. The
Yano and Koga model accounting for substrate inhibition was
only capable to predict the experiment performed in the upper m-
xylene concentration tested with reasonable accuracy, failing to
predict the growth kinetics when 0.4 or 0.7 mM m-xylene were
used. Likewise, although the Monod model closely tracked
m-xylene and biomass concentrations in the batch cultures fed
with 0.7 and 1.3 mM m-xylene, it unsuccessfully described the
growth kinetics at the lowest substrate concentration tested.
Furthermore, it is interesting to note that apart from under-
predicting m-xylene biodegradation and overpredicting biomass
concentration under 0.4 mM m-xylene conditions, the Monod
model calculated 32% higher biomass production compared to
that measured experimentally. On the contrary the combined
model accurately described all three experiments confirming that
when quantitative information of the regulatory effects control-
ling a bioprocess is considered the model’s prediction can be valid
under a wide range of conditions.

Although the developed model has more parameters than the
Monod-type models used for comparison purposes, the fact that
the combined model has been successfully tested in three
independent experiments under a wide range of conditions
indicates that the model’s predictive capability is satisfactory.
Furthermore, although variables accounting for the protein pro-
ducts of the 4 promoters have been introduced, none of these
proteins have been experimentally measured. Therefore, the
parameters associated with these variables cannot be uniquely
identified from the available experimental data. To mitigate this



Fig. 4. An overview of the genetic circuit model prediction of Pu and Pm promoters relative mRNA concentration. Shown are simulation and experimental results for the

three predictive experiments. (A, B) 0.4 mM m-xylene, (C, D) 0.7 mM m-xylene, and (E, F) 1.3 mM m-xylene. The results are obtained as an average from six individual

measurements at each point and the error bars are calculated for standard deviation.
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source of parametric uncertainty Global Sensitivity Analysis (GSA)
has been performed scanning all model parameters over a space
790% from their estimated value. According to the GSA results
(Supplemental Material), none of the parameters associated with
the genetic circuit has a significant effect on the model outputs of
interest (m-xylene and biomass concentrations). The GSA results
mathematically guarantee that the estimated parameter values
are adequate approximations.
4. Discussion

Understanding the functional relationship between gene
expression and growth kinetics is a big challenge. The TOL genetic
circuit studied for the metabolism of m-xylene is abundant
among Pseudomonas spp. and given its metabolic versatility, the
elements driving its response remain important modules for the
construction of microbes with new activities. We have built and
validated a mathematical model that captures the essential
regulatory features of TOL taking into account the observed
dynamics of the regulatory circuit in a quantitative manner. The
dynamic behaviour of the genetic circuit has been coupled to the
growth kinetics of the strain developing a systematic framework
that links molecular-level understanding of a system to macro-
scopic bioprocess behaviour. We demonstrate that substrate
consumption and biomass production can be decoupled and
described in a mechanistic way based on the molecular phenom-
ena controlling each of the two processes, while the presence of
non-constant yields can be also considered reducing the error
often generated when constant yield is assumed.

The combination of advanced genetic techniques with math-
ematical models capturing essential quantitative features of
experimental measurements can bring a breakthrough from
descriptive and empirical approaches to a modern form of
mathematical reasoning enriching our understanding of biopro-
cesses (Bailey, 1998). Advances in sequencing and genetic



Fig. 5. Predicted dynamic profiles of the TOL regulatory elements controlling the synthesis of catabolic rate-limiting enzymes. Shown are model simulations for the three

predictive experiments. The genetic circuit model is applied to calculate the time course of the relative mRNA level of (A) Pr. The induction of Pr is used to determine the

production of (B) XylRi, which in the presence of m-xylene is multimerized to form (C) XylRa. The latter stimulates transcription from Pu regulating the synthesis of (D)

XylU. XylRa also regulates transcription from (E) Ps synthesising (F) XylSi. The hyperproduction of XylSi results in its dimerisation to form (G) XylSa, which subsequently

regulates the synthesis of (H) XylM. –––: predicted concentration – 0.4 mM m-xylene; – –: predicted concentration—0.7 mM m-xylene;yy: predicted concentra-

tion—1.3 mM m-xylene.
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engineering have made this approach feasible through the study
of naturally occurring genetic circuits with mathematical models
(Hasty et al., 2002). There has been a variety of previous studies
focused on quantitative modelling of genetic circuits, including
the broadly studied lactose (lac) operon (Lee and Bailey, 1984),
bistable switches (Isaacs et al., 2003), cell cycle regulatory
systems (Laub et al., 2007), circadian clocks (Hardin, 2005),
and oscillating networks (Elowitz and Leibler, 2000) harboured
by wild-type microorganisms. Furthermore, artificial genetic
circuits embedded within cellular genetic circuits may provide



Fig. 6. Comparisons of Pseudomonas putida mt-2 growth kinetics predictions for the three models developed. The TOL model was used to calculate the concentration

profiles of the rate-limiting enzymes XylU and XylM regulating m-xylene biodegradation and biomass growth, respectively. Therefore, the concentration of each enzyme

was used to predict m-xylene and biomass dynamic profiles in the combined model, which is compared to the Monod, and Yano and Koga models. Shown are simulation

and experimental results for the three predictive experiments. (A, B) 0.4 mM m-xylene—the insets show a zoom in of m-xylene and biomass concentration profiles, (C, D)

0.7 mM m-xylene, and (E, F) 1.3 mM m-xylene. K: m-xylene concentration—experimental; ’ : biomass concentration—experimental;––––– : combined model; – – –:

Monod model; –– –: Yano and Koga model.
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opportunities for sophisticated interface engineering between
living and non-living systems (Kramer et al., 2005). Therefore,
mathematical modelling approaches employed to study the
function of key genetic circuits for a bioprocess can reveal
important links of the particular circuit to the function of the
biological system (Han, 2008).

Mathematical modelling is becoming one of the prominent
areas of biological studies and it has the potential to drive
bioprocessing towards a more precise engineering discipline.
Various modelling approaches have been employed to study the
properties of biological systems. Flux balance analysis (FBA) has
been useful for analysing the behaviour of large metabolic net-
works and predicting the phenotypic properties of microorgan-
isms (Alper et al., 2005). Sorting of large amounts of biological
data can be also done with the use of Boolean logic, making the
assumption that gene expression is discrete (de Jong, 2002).
Furthermore, dynamic analysis employing a set of ordinary
differential equations (ODEs) can be applied to describe biological
systems in a mechanistic way, providing information about the
kinetics of molecular interactions (Pecou, 2005). However, ODE
models are yet more useful for the study of smaller systems
mainly due to (i) partially known parameters, (ii) molecular
mechanisms not yet described in detail, and (iii) complexity in
the analysis of nonlinear differential equations. Moreover, the
stochastic kinetics modelling approach considering the stochastic
nature of biochemical reactions has been applied to describe the
concentration of molecular species within the cell (Hasty et al.,
2001).

In the past few years, the effort to build a whole-cell model has
made the development of integrative modelling approaches
necessary for the analysis of cellular metabolism. Thus, large-
scale metabolic (FBA) and regulatory network (Boolean) models
have been used as a scaffold with which ODE-based models can
be integrated to study detailed models of sub-cellular networks in
the context of their global effects (Covert et al., 2008; Lee et al.,
2008). In this article we integrate two dynamic models in the
regulatory and metabolic cellular level to describe the m-xylene
degrading behaviour of P. putida. We suggest that focusing on the
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gene expression profiles of a specific pathway that is important
for a bioprocess may provide accurate description of the meta-
bolic dynamics avoiding the development of laborious large-scale
models.

As the structure of an increasing number of genetic circuits is
elucidated, shedding light on dynamic aspects of key regulatory
systems, it will be possible to advance traditional bioprocess
modelling into a modern era where accounting for the interaction
between genes will be required for the design of optimal biopro-
cesses. Our study demonstrates how to link the power of
molecular biology tools with knowledge of the functional rela-
tionships between genetic circuit components to develop
advanced mechanistic models accurately predicting cellular func-
tions. Without question, in order to improve the accuracy of
models in the field the existing assumptions of unstructured and
empirical models, usually limiting their applicability to a narrow
range of conditions, should be replaced by quantitative descrip-
tions of the regulatory effects controlling upstream the produc-
tion of catabolic enzymes. Future studies can use the modelling
framework developed here in conjunction with the current
progress in molecular biology to decipher more detailed models
of the relationship between the dynamics of key circuit compo-
nents and how their underlying biochemical interactions affect
the function of biological systems.
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