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Abstract 

A novel modeling approach for the description of bioprocesses is proposed, linking 

microbial growth kinetics to gene regulation. An example is given with the development 

and experimental validation of a dynamic mathematical model of the TOL plasmid of 

Pseudomonas putida mt-2, which is used for the metabolism of m-xylene. The model of 

this genetic circuit is coupled to a growth kinetic model through predictions of rate-

limiting enzyme concentrations that control biomass growth and substrate consumption. 

Batch cultures of mt-2 fed with m-xylene were performed to estimate model parameters 

and to confirm that the combined model successfully describes the bioprocess, through 

mRNA, biomass and m-xylene concentration measurements. However, mathematical 

models developed exclusively based on macroscopic measurements failed to predict the 

process variables, highlighting the importance of gene regulation for the development of 

advanced biological models.  
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1. Introduction 

Monitoring of bioprocess performance is often conducted based on bulk measurements 

ignoring regulation at the genetic level [1]. Although modern molecular tools, such as 

RT-PCR, have been previously applied to improve the monitoring of in situ microbial 

function, substrate consumption is usually correlated to mRNA levels using best-fit 

lines ignoring the regulatory loops controlling the transcription from catabolic genes 

[2]. Therefore, the relationship between mRNA concentration and cellular activity can 

be dependent on the experimental conditions, highlighting the need for establishing 

mechanistic models that link gene transcript levels and substrate consumption rates. 
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Pseudomonas putida is a metabolically versatile bacterium exhibiting a wide 

biotechnological potential. Strain P. putida mt-2 is equipped with the TOL plasmid 

(pWW0), which specifies a pathway for the catabolism of major environmental 

pollutants, such as m-xylene. The required genetic machinery for the metabolism of m-

xylene is encoded by the upper and meta gene operons of the plasmid, which synthesize 

the required enzymes for the conversion of m-xylene to Krebs cycle intermediates, 

while xylS and xylR are involved in transcriptional control [3]. 

This work presents the construction of a dynamic model relevant to the function of Pu 

and Pm promoters of TOL, controlling the transcription from its catabolic operons. 

Computation of the rate-limiting enzymes synthesized by the operons is linked to 

specific growth and substrate utilization rates demonstrating that the combined model 

successfully describes the dynamics of the system. The prediction of the combined 

model is compared to that of Monod-type models underlying the importance of this 

novel modeling approach for improving the prediction of microbial growth kinetics. 

2. Results and discussion 

2.1. Genetic circuit model 

We have recently developed a dynamic mathematical model describing the function of 

Ps/Pr promoters of TOL, involved in the transcriptional control of the plasmid’s 

operons, as well as the production of XylRi and its subsequent multimerization to XylRa 

[4]. Therefore, this part of the TOL model is not presented here and can be obtained 

from the reference given above. In the present work, we extend this model to include 

predictions of Pu and Pm promoters driven transcription leading to the synthesis of the 

enzymes of the pathway. The TOL network has been reconstructed into its various 

molecular elements and has been described as a combination of logic gates (Figure 1). 

Therefore, based on this logic model Hill functions were used as input functions to the 

genes producing a dynamic mathematic model, which is presented below.  

 
Figure 1. Logic model of the TOL (pWW0) plasmid.  : input;  : output;  : AND; 

: OR;  : NOT. 

Transcription from the upper pathway is driven by the Pu promoter, which is triggered 

by the activated form of XylR protein (XylRa). The binding of XylRa to the promoter 

and the looping out of the complex closely to the σ54
-RNAp complex is assisted by the 

integration host factor (IHF), stimulating the production of the upper operon enzymes. 

We have assumed that the concentrations of σ54
 and IHF are constant at housekeeping 
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level. Thus, the function of the relative mRNA concentration of Pu is given by Eq. (1) 

(equations are given in Table 1 and symbols are defined in Table 2). 

Table 1. Model equations. 

Table 2. List of symbols. 

The enzymatic products of the upper operon oxidize m-xylene to 3-methylbenzoate in a 

series of reactions. Moreover, although the control of the enzyme level on the flux of a 

pathway is distributed between all participating enzymes, these enzymes do not always 
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Symbols Definition 

d / dmax decay and maximum decay rates 

Kd /  KS,1 / KS,2 decay and m-xylene saturation constants 

KI m-xylene inhibition constant 

KXylM,b saturation constant for XylM 

KXylRa,Pu / KXylSi,Pm activation coefficients of Pu and Pm due to XylRa and XylSi 

MWm-x m-xylene molecular weight 

PuTC / PmTC / PsTC relative mRNA concentrations of Pu, Pm and Ps 

rXylS /  rR,XylS XylSi oligomerization and  XylSa dissociation constants 

t time 

Xyl / X m-xylene and biomass concentrations respectively 

XylRi / XylRa / XylSi / XylSa concentrations of the inactive and active forms of XylR and XylS proteins 

XylU / XylM concentrations of the rate-limiting enzymes of the upper and meta pathways 

Y yield coefficient for biomass on m-xylene 

αPu / αPm mRNA degradation rates of Pu and Pm 

αXylU / αXylM / αXylSi XylU,  XylM and XylSi degradation/dilution rates due to cellular volume increase  

βPu / βPm maximal expression levels of Pu and Pm 

βXylM,b maximum specific growth rate of biomass based on XylM 

βXylU / βXylM / βXylSi translation rates based of Pu, Pm and Ps mRNA 

βXylU,m-x maximum m-xylene metabolic quotient based on XylU 

µ / µmax,1 / µmax,2 specific and maximum specific growth rates of biomass on m-xylene 
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exert the same level of control on the flux, which is usually dominated by a single rate-

limiting enzyme [5]. Due to the fact that the production of the rate-limiting enzyme 

required for the reactions of the upper pathway is controlled by Pu, this production is 

expressed as a function of the relative mRNA concentration of the promoter (Eq. 2). 

The xylS gene is transcribed by the σ54
-dependent Ps promoter synthesizing the XylS 

protein. In the presence of m-xylene, the high XylS concentration produced leads to 

dimerization of XylS monomers stimulating transcription from Pm. Eqs. (3,4) describe 

the production of XylS from Ps driven transcription and XylS activation/deactivation. 

The Pm promoter controls transcription from the meta operon triggered by the activated 

form of XylS (XylSa) and σ32
 or σ38

 depending on the growth phase. Since the XylSi 

monomer also binds to Pm, the relative mRNA concentration of Pm is expressed by Eq. 

(5). Similarly to the assumption made for the upper pathway, the conversion of 3-

methylbenzoate to Krebs cycle intermediates in the meta pathway is modeled as being 

exclusively controlled by a single rate-limiting enzyme. Thus, the synthesis of this 

enzyme is expressed as a function of the relative mRNA concentration of Pm (Eq. 6). 

2.2. Linking the genetic circuit model to the growth kinetics 

A model linking the mRNA transcript levels predicted by the TOL model to the growth 

kinetics of mt-2 has been developed. The upper pathway drives the first reaction for m-

xylene bioconversion to TOL pathway intermediates, while the meta pathway channels 

the metabolic products of TOL into the Krebs cycle resulting in biomass growth. Thus, 

m-xylene consumption is given as a function of the concentration of the rate-limiting 

enzyme controlled by Pu (Eq. 7) and the specific growth rate on m-xylene is expressed 

as a function of the concentration of the rate-limiting enzyme controlled by Pm (Eq. 8). 

Biomass production and decay are modelled using Eqs. (9,10). 

In many cases the Monod equation is used to model the specific growth rate (Eq. 11). 

Also, when an inhibitory substrate such as m-xylene is fed, the Yano and Koga model 

[6] accounting for substrate inhibition can be used (Eq. 12). Therefore, the consumption 

of the substrate is given by Eq. (13) and biomass production is expressed by Eq. (9). 

2.3. Predicting the growth kinetics with the combined model  

The parameters of the combined, Monod and Yano and Koga models were obtained in a 

batch experiment where mt-2 was grown with 1 mM m-xylene (data not shown). Thus, 

the predictive capability of these models was tested in a batch culture fed with 0.4 mM 

m-xylene. The overall trend of the model’s prediction for Pu and Pm was accurate (Figs. 

2A,B), confirming that its structure successfully describes the experiment.  

Based on the TOL model, the concentrations of the rate-limiting enzymes of the two 

pathways were calculated for this experiment (Figs. 2C,D). According to the measured 

biomass and m-xylene concentrations, the duration of the lag-phase was 10 min. Thus, 

for the observed duration of the lag-phase we have fitted the three models developed to 

the average values of the experimental points. However, since the response of TOL 

starts immediately following introduction of the substrate, the TOL model was 

simulated from the beginning of the experiment. The Monod, and Yano and Koga 

models failed to predict this experiment, calculating significantly higher biomass 

production compared to that measured experimentally (Figs. 2E,F). On the other hand, 
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the combined model accurately described the experiment demonstrating the importance 

of considering the regulatory effects of a key circuit for predicting the bioprocess. 

 
Figures 2A-F. Comparison of the three models developed in the predictive experiment. The 

arrows indicate the duration of the lag-phase. 

3. Conclusions 

We have built and validated a dynamic mathematical model that accounts for the 

regulatory features of the TOL plasmid. The function of TOL has been linked to the 

growth kinetics of mt-2 developing a systematic framework that couples gene 

expression to macroscopic bioprocess behaviour. This work demonstrates that substrate 

consumption and biomass production can be decoupled and described in a mechanistic 

way based on the molecular interactions regulating the two processes, while the 

presence of non-constant yields can be also considered. Thus, the accuracy of models in 

the field can be improved with quantitative descriptions of the regulatory effects 

controlling upstream the production of catabolic enzymes.  
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