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a b s t r a c t

This work presents a holistic ‘closed loop’ approach for the development of models of biological
systems. The ever-increasing availability of experimental information necessitates the advancement of
a systematic methodology to organise and utilise these data. Herein, we present a biological model
building framework that maps the treatment of the information from the initial conception of the model,
through its experimental validation and finally to its application in model-based optimisation studies.
We highlight and discuss current issues associated with the development of mathematical models of
biological systems and share our perspective towards a holistic ‘closed loop’ approach that will facilitate
the control of the in vitro through the in silico.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Mathematical models of biological systems developed over
the last decades incorporate various degrees of structure and
mathematical complexity. Models of single cells, cell populations
andmicrobial cultures have been central in the understanding and
improvement of biological systems, as well as in the optimisation
and control of bioprocesses (Thilakavathi, Basak, & Panda, 2007).
The large-scale generation of biological data obtained with
the development of a variety of high-throughput experimental
technologies demand for mathematical model building to become
a centre of importance in biology (Covert et al., 2001). Alas,
as Bailey (1998) argued the development of mathematically
and computationally orientated research has failed to catch
up with the recent developments in biology. Furthermore, he
concluded that the little attention that mathematical modelling of
biological systems receives from experimentalists could be partly
attributed to the lack of effective communication of the benefits of
formulating and using a mathematical model.
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Even relatively simple microorgansisms, which have been
extensively studied, are hosts to a complex network of intercon-
nected processes occurring on diverse time scales within a con-
fined volume. The multilevel nature of the regulatory network of
cells and the interactions occurring at the intracellular level further
augment this complexity (Yokobayashi, Collins, Leadbetter, Weiss,
& Arnold, 2003). Therefore, attempts to wholly model the function
of even a single cell are currently non-trivial, if not impossible. The
amount of delicate intracellular measurements required to vali-
date such a model is exhaustive both in terms of labour as well
as cost. Uncertainties introduced on the parameter identifiability
level (Sidoli, Mantalaris, & Asprey, 2004) and on the mechanistic
level further complicate this task.

Borrowing research principles from the Process Systems
Engineering paradigm, mathematical modelling of biological
systems can provide a systematic means to quantitatively study
the characteristics of the multilevel interactions that occur in cell
bio-processing. The literature around mathematical modelling of
biological systems, be they prokaryotic or eukaryotic, is arguably
too vast to summarise within the limited space of a paper.
Indicatively, mathematical models have been successfully used
to design optimal media (Xie & Wang, 1994), identify previously
ignored growth limiting factors (deZengotita, Miller, & Aunins,
2000), optimise culture growth and productivity (De Tremblay,
Perrier, Chavarie, & Archambault, 1992; Dhir, Morrow, Rhinehart,
& Wiesner, 1999; San & Stephanopoulos, 1989), and apply control
principles to cell culture processes (Frahm et al., 2002).

Pörtner and Schäfer (1996) compared a selection of models
that existed in the literature at that time and carried out an
analytic error and range of validity analysis. They found significant
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Fig. 1. Model development framework for biological systems.
variations in the values of maximum growth rate, yields and
nutrient Monod constants used by researchers. They came to
the conclusion that the models’ predictions involved significant
errors, particularly due to the lack of understanding of cellular
metabolism and the limited data ranges within which the
model was valid. They further pointed out that the majority
of studies presented either utilise literature data to validate
the models or generate their own experimental data without
any form of systematic design of experiments. In order to
maximise the gains from the ever increasing influx of biological
information, the approach to modelling needs to shift towards a
systematic framework from conception to optimisation. Hereinwe
attempt to formalise a structure upon which experimental and
mathematical biology can interact seamlessly. The use of model-
based techniques can facilitate the reduction of unnecessary
experimentation hence reducing operating labour and cost by
indicating the most informative experiments and providing
strategies to optimise and automate the process at hand.

2. Biological systems model development framework

One of the challenges in biological systems engineering is the
development of high fidelity models able to capture the required
biological functions while remaining computationally tractable in
order to be viable candidates for model-based control and optimi-
sation. However, high fidelity models, inherently, contain a large
number of parameters. Use of a framework that designs experi-
ments in a way that minimises cost and labour whilst simultane-
ously maximising information obtainable from the data, is the first
step towards achieving a uniquely validated model (Sidoli et al.,
2004). The work presented by Asprey and Mantalaris (2002), Ho,
Varley, and Mantalaris (2006), Kiparissides, Kucherenko, Manta-
laris, and Pistikopoulos (2009), Kontoravdi, Asprey, Pistikopoulos,
and Mantalaris (2007), Kontoravdi, Pistikopoulos, and Mantalaris
(2010), Lam et al. (2008), Sidoli et al. (2004), Sidoli, Mantalaris, and
Asprey (2005) defines a systematic approach to modelling biolog-
ical systems which is depicted in Fig. 1.

The presented framework sets a scientific platform of commu-
nication between modeller and experimentalist, thus bridging the
communication gap. Each step of the framework organises and di-
rects the flow of experimental information in an effort to alleviate
uncertainty where possible. More specifically:
• Step 1.Model development.
Define the aim of the model and choose an appropriate model

type (i.e. structured vs. unstructured). Define the model equations
through ‘First principles’ relationships.
• Step 2. Parameter identifiability test (Asprey & Mantalaris, 2002;
Sidoli et al., 2004).

Test how many parameters are identifiable from the available
model inputs. If an adequate number of parameters cannot be
identified the model structure needs to change.
• Step 3.Model analysis (Kiparissides et al., 2009).

Study how the uncertainty introduced through the parameter
values affects themodel’s outputs and define parameters crucial to
the model’s output. Set insignificant parameters to their nominal
values.
• Step 4. Optimal experimental design (Kontoravdi et al., 2010).

Based on the available experimental measurements design
optimal experiments that minimise the uncertainty in the
significant parameters. Estimate parameter values from tailor-
made experiments.
• Step 5. Range of validity (Kontoravdi et al., 2010).

Test the validity of the model against a set of independent data
and against experiments with varying environmental conditions.
• Step 6.Model based optimisation–automation (Lam et al., 2008).
Optimise the inputs of the modelled bioprocess towards a desired
goal (i.e. end product maximisation). Increase reproducibility and
stability by introducing process control & automation where
applicable.

3. Closing the loop: a holistic approach tomonoclonal antibody
production

This section aims to highlight the potential of the framework
through its application on a ‘‘real life’’ process. An example of
an industrial process for the production of monoclonal antibodies
(mAbs) harvested from cultures of hybridoma cells is employed.
The aim is to model this process and maximise the final antibody
titre in the culture through in silico experimentation. Batch and
fed-batch cultures are currently the culture methods of choice by
the biologics industry for the large scale production of mAbs, due
to their operational simplicity, reliability, and flexibility for im-
plementation in multipurpose facilities (Bibila & Robinson, 1995).
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Table 1
Table of model equations.

dVXu
dt = µVXu − µdVXu (1)

dVXt
dt = µVXu − KlysisV (Xt − Xu) (2)

µ = µmax


[GLC]

Kglc+[GLC]

 
[GLN]

Kgln+[GLN]


KIamm

KIamm+[AMM]

 
KIlac

KIlac+[LAC]


(3)

µd =
µd,max

1+


Kd,amm
[AMM]

n (4)

d(V [GLC])
dt = −


µ

Yx,glc
+mglc


VXu (5)

d(V [GLN])
dt

= −


µ

Yx,gln
+mgln


VXu − Kd,glnV [GLN]

mgln =
a1[GLN]

a2 + [GLN]

(6)

d(V [AMM])
dt = Yamm,gln


µ

Yx,gln
+mgln


VXu + Kd,glnV [GLN] (7)

d(V [LAC])
dt = Ylac,glc


µ

Yx,glc
+mglc


VXu (8)

dmH
dt = NHSH − KmH (9)

dmL
dt = NLSL − KmL (10)

d[H]
dt = THmH − RH (11)

d[L]
dt = TLmL − RL (12)

H + H ←→ H2
H2 + L←→ H2L
H2L+ L←→ H2L2

(13)

RH =
2
3KA[H]2RL = 2KA[H2][L] + KA[H2L][L] (14)

d[H2]
dt =

1
3KA[H]2 − 2KA[H2][L] (15)

d[H2L]
dt = 2KA[H2][L] − KA[H2L][L] (16)

d[H2L2]ER
dt = KA[H2L][L] − KER[H2L2]ER (17)

d[H2L2]G
dt = ε1KER[H2L2]ER − KG[H2L2]G (18)

d(V [MAb])
dt = (γ2 − γ1µ)QMAbVXV (19)

QMAb = ε2λKG[H2L2]G

Therefore, for the purposes of our example a model capable of de-
scribing both batch and fed-batch cell cultures is required. Since
the model will ultimately be utilised for optimisation studies,
which are inherently computationally intense techniques, detailed
structured models become less applicable. As Sidoli et al. (2005)
have argued, overparameterised models lead to parameter iden-
tifiability issues which in turn reduce confidence in the model
output. Balancing the trade-off between tractability and fidelity is
addressed by hybrid models (Ho et al., 2006; Kontoravdi et al.,
2007; Lam et al., 2008). A step-by-step overview of the algorithm is
provided using experimental and modelling results from the work
of Kontoravdi (2006), Kontoravdi et al. (2010) and Lam (2009) who
have successfully coupled a structured model of mAb synthesis to
an unstructured growth model.

3.1. First principles model derivation

The complete list of model equations can be found in Table 1. A
material balance for viable cells within the bioreactor is given by
(1) where Xu is the concentration of viable cells in the bioreactor
measured in cells per litre and µ, µd are the specific growth
and death rates respectively (h−1). The material balance for the
total cell concentration (the sum of both dead and viable cells)
is given by (2) where Xt denotes the total cell concentration and
is measured in cells l−1. The specific growth rate is estimated
through (3) where µmax is the maximum possible growth rate
for the specific cell line (h−1) and Ki’s are the Monod constants
for the primary nutrients, glucose and glutamine. Similarly,
KIi’s are the inhibition constants of the primary metabolites,
lactate and ammonia. [GLC], [GLN], [LAC] and [AMM] represent
extracellular concentrations (mM). The specific death rate (µd)
is given by (4) where, µd,max represents the maximum specific
death rate (h−1) and Kd,amm describes the rate of cell death by
ammonia.

Since the model is unsegregated, it only represents the overall
concentrations of nutrients andby-products of cellularmetabolism
within the bioreactor. The material balance for glucose is given
by (5) where parameters Yx,glc and mglc are the cell yield
on glucose (cell mmol−1) and maintenance energy of glucose
(mmol cell−1 h−1), respectively. Eq. (5) was originally presented
(Jang & Barford, 2000) with an additional term for glucose
consumption by glucokinase, which as Kontoravdi (2006) later
argued, based on evidence by Tatiraju, Soroush, and Mutharassan
(1999) has negligible effects. The material balance for glutamine is
similarly described by (6) where Yx,gln and mgln are the cell yield
on glutamine (cell mmol−1) and maintenance energy of glutamine
(mmol cell−1 h−1) respectively, with a1 and a2 being the constants.
The additional termdescribes glutamine degradation. Glutamine is
known to be spontaneously converted into pyrolidonecarboxylic
acid at high temperatures and weakly acidic or alkaline solutions
(Chibnall & Westall, 1932). Bray, James, Raffan, and Thorpe
(1948) showed that even in medium temperatures, around 37 °C,
glutamine degrades in the presence of weakly acidic or alkaline
solutions. The degradation is more pronounced when the solution
contains phosphate buffer, which is often the case with media
used for mammalian cell cultures. Eq. (6) is presented in the
updated version (Kontoravdi, 2006) and not as originally presented
(Tatiraju et al., 1999). The mass balances for ammonia and lactate
are given by (7) and (8) respectively Ylac,glc and Yamm,gln represent
the yields of the particular product on its primary nutrient (mmol
of metabolite/mmol of nutrient).

The structured model describing antibody formation and
secretion, as presented by Bibila and Flickenger (1992) consists
of an intracellular heavy-(9) and light-(10) chain mRNA balance,
where mH and mL are the intracellular heavy- and light-chain
mRNA concentrations (mRNAs cell−1), NH and N are the heavy-
and light-chain gene copy numbers (gene cell−1), SH and SL are the
heavy- and light-chain gene specific transcription rates (mRNAs
gene−1 h−1), and, finally, K is the heavy- and light-chain mRNA
decay rate (h−1). The intra Endoplasmic Reticulum (ER) heavy and
light chain balances are given by (11) and (12) respectively, where
[H] and [L] are the free heavy and light chain concentrations in
the ER (chain cell−1), TH and TL are the heavy- and light-chain
specific translation rates (chain mRNA−1 h−1), and RH and RL are
the rates of heavy- and light-chain consumption in assembly (chain
cell−1 h−1). MAbs consist of two heavy (H) and two light (L) amino
acid chains. Eachmolecule is synthesised in the ER according to the
mechanism shown in (13) (Percy, 1975). Following the assumption
presented by Bibila and Flickenger (1992) that the rates of heavy
and light chain consumption in the assembly stage are given by
(14) an intra-ER balance can be performed for each of the assembly
intermediates (15)–(16) where, [H2], [H2L] are the concentrations
of the assembly intermediates in the ER (molecule cell−1), and
KA is the assembly rate constant (molecule cell−1 h−1). A balance
can then be performed on the assembled mAb structure ([H2L2]ER)
in the ER (17) where [H2L2]ER is the mAb concentration in the
ER (molecule cell−1), and KER is the rate constant for ER-to-Golgi
antibody transport (h−1). Once the mAb is assembled in the ER,
it proceeds to the Golgi apparatus, where glycosylation process
place. An intraGolgi mAb balance is given by (18) where [H2L2]G
is the mAb concentration in the Golgi (molecule cell−1), ε1 is the
ER glycosylation efficiency factor and KG is the rate constant for
Golgi-to-extracellular medium mAb transport (h−1). Finally, the
expression for antibody secretion (production) is given in (19)
where QMAb is the specific mAb production rate (mg cell−1 h−1),
λ is the molecular weight of IgG1 (146,000 g mol−1), and ε2
is the Golgi glycosylation efficiency factor. [MAb] denotes the
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Table 2
Model parameters: biological significance grouping.

Symbol Units Value

1-growth/death related
µmax h−1 5.8 ∗ 10−3
KI,Amm mM 28.484
KI,Lac mM 171.756
KGlc mM 0.75
KGln mM 0.075
md,max h−1 0.03
Kd,Amm mM 1.759
n n/a 2
Klysis h−1 0.05511

2-metabolism related
YLac,Glc n/a 1.399
mGlc mmol cell−1 h−1 4.853 ∗ 10−14

Yx,Glc Cell mmol−1 1.061 ∗ 108

Yx,Gln Cell mmol−1 5.565 ∗ 108

Kd,gln h−1 9.6 ∗ 10−3

a1 mM L cell−1 h−1 3.4 ∗ 10−13
a2 mM 4
YAmm,Gln n/a 0.4269

3-mab synthesis related
K h−1 0.1
NH gene cell−1 139.8
SH mRNAs gene−1 h−1 3000
NL gene cell−1 117.5
SL mRNAs gene−1 h−1 4500
TH chain mRNA−1 h−1 17
TL chain mRNA−1 h−1 11.5
KA molecule cell−1 h−1 10−6

KER h−1 0.693
KG h−1 0.1386
ε1 n/a 0.995

4-mab secretion related
γ1 n/a 0.1
γ2 n/a 2
ε2 n/a 1

mAb concentration in the culture (mg l−1), and γ1, γ2 are
constants.

Eqs. (1)–(19) form a first principlesmodel consisting of a total of
16 differential equations and 31model parameters. Prior to further
analysis initial estimates for the model parameters need to be
derived from relevant experimental data. In case themodel already
exists, parameter values obtained from relevant literature can be
utilised. The derivation of estimates for the presented. model’s
parameters was performed using experimental data of batch
hybridoma cultures from the work of Kontoravdi et al. (2010). All
parameter estimation experiments and model simulations were
implemented in the advanced process modelling environment
gPROMS r⃝ (Process Systems Enterprise, 1997–2010). Table 2
summarises the list of model parameter estimates while Fig. 2
presents an overview of experimental data andmodel simulations.
The model is in good agreement with the experimental data
and successfully captures the trends of nutrient consumption
and metabolite accumulation. This indicates a model capable of
describing the process under study.

3.2. Model analysis

Model analysis techniques serve the purpose of increasing
the confidence in the chosen structure and resulting output of
the mathematical formulation. Application of such techniques
prior to experimentation yields valuable information regarding the
suitability of the model to describe the studied process.

3.2.1. Parameter identifiability
Parameter identifiability can refer to either structural or

numerical identifiability. Structural identifiability studies the form
Fig. 2. Experimental data from batcg hybridoma cultures and model predictions.
Source: Adapted from Kontoravdi et al. (2010).

of the model equations and thus requires symbolic manipulation.
For relatively simple models where M + P ≤ 10, where M is the
dimensionality of the response vector and P the dimensionality
of the parameter vector, identifiability theory is well developed
and rigorous structural identifiability can be applied (Walter,
1987). For small scale non-linear models techniques exist that
make them amenable to analysis (Walter & Pronzato, 1996).
In contrast, very few techniques for arbitrarily large, non-linear
models exist (Ljung & Glad, 1994). In these cases, we must
resort to numerical identifiability, which studies the numerical
behaviour of a model’s input–output structure. Asprey and
Machietto (2000) have developed an optimisation-based method
for global identifiability. A detailed example on the application
of this method on models of biological systems is presented in
the work of Asprey and Mantalaris (2002). The studied model
was a modified version of the unstructured model developed
by Jang and Barford (2000). Identifiability was posed as an
optimisation problem that sought to maximise the variability of
each parameter in the model subject to the output trajectories
being invariant. At the end of the optimisation parameters that
could take values within a range greater than the predefined
tolerance without any effect on the output prediction, were
classified as unidentifiable. Thus prior to the performance of
any experiments, Asprey and Mantalaris (2002) were able to
determine, that the model could not be uniquely identified based
on its parameters, and moreover which were the problematic
parameters. Campolongo, Tarantola, and Saltelli (2000) mention
that the use of global quantitative sensitivity analysis (SA)methods
can be used prior to and within the context of parameter
identification rendering the two techniques fairly complementary.
Therefore in the context of the present study only SA results will be
utilised.

3.2.2. Sensitivity analysis
SA allocates model uncertainty to the various sources of

uncertainty (i.e. model parameters) facilitating the targeted
reduction of output uncertainty by accurate parameter estimation
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through tailor-made experiments indicated by a model based
design of experiments (DOE) algorithm. On the other hand
parameters indicated as insignificant, with respect to the model’s
output, can be fixed at their literature values (if available) or
approximated.

The majority of SA methods met in engineering are derivative
based and hence local in nature. SA methods have provided
numerous interesting results in a wide variety of fields such
as chemical reactions (Meadows, Crowley, Immanuel, & Doyle,
2003; Rabitz, Krammer, & Dacol, 1983; Thomas & Kiparissides,
1984), financial applications (Scaillet, 2003), eco-system biology
(Wood & Thomas, 1999) and process systems engineering (Jia &
Ierapetritou, 2004). However according to Saltelli, Ratto, Tarantola,
and Campolongo (2005) use of derivative or otherwise one-factor-
a time techniques requires the model to be linear in all its
parameters unless some form of averaging over the parameter
space is made. Chan, Saltelli, and Tarantola (1997) illustrate the
benefits of using global sensitivity analysis (GSA) methods when
studying non-linear systems. In a nutshell, the ability to estimate
higher level indices, which quantify the effect on the output of
parameter-parameter interactions gives global methods the edge
over their local counterparts.

The highly non-linear nature of models of biological systems
favours the use of global methods. Herein we have utilised the
Sobol Global Sensitivity indices (Sobol’, 2001) as theGSAmethod of
choice due to their ability to distinguish between first order sensi-
tivity and non-liner effects. As a result the Sobol’ sensitivity indices
can be used to exclude parameters with a high level of non-linear
interactions from DOE on the basis of singularity. However com-
putational efficiency issues impose the use of parameter group-
ing for medium and large scale models (Kiparissides et al., 2009).
Herein grouping model parameters according to their biological
function was the method of choice. The model was simulated for
120 h of batch culture time and SA was performed at three char-
acteristic time points (20, 50 and 120 h). Sensitivity Indices (SI’s)
change dynamically along the time trajectory of the model output.
As the culture progresses and nutrients start being depleted, the
model output will become more sensitive towards parameters af-
fecting nutrient uptake and metabolism. SA was conducted at dif-
ferent phases of the cell culture in order to capture the dynamics
of the various phases of a batch culture. Specifically time points
from the lag, exponential growth and decline phases were evalu-
ated. The simulations involved scanning of all model parameters
with respect to the output variables of interest. The uncertainty
range associated with the parameters was set to ±100% from the
nominal value. Themodel’s parameterswere divided into 4 groups,
which can be found in Table 2. Fig. 3 presents the results of the
GSA, while parameters identified as significant are presented in
Table 3. Changes in the value of the SIs can be observed as the
culture progresses. Interestingly a change in the ratio Sind/Stot at
various time points for a given parameter can be observed. Time
points when this ratio is closer to the unit and additionally display
a relatively high SI are the optimal time points to extract the value
for the said parameter. Groups 1 and 2 generally display similar
trends for both output variables. The parameters of group 3 have
either small SIs or high Stot but low Sind values. This indicates a
high degree of uncertainty in the structured part of themodel. Alas,
even if a parameter can mathematically guarantee unique identi-
fication, it may still not be feasible to conduct the necessary ex-
perimentalmeasurements thatwould allow the precise estimation
of its value. Glycosylation efficiency measurements for example
are rather complex and cumbersome and require equipment not
readily available in every analytical laboratory. Therefore, whilst
aware of the uncertainty associated with the parameters (ε1, ε2)
of groups 3 and 4, we have no choice but to omit them from the
DOE algorithm. Similarly, parameter (γ2) is closely linked to the
Table 3
Summary of GSA results.

Group 1 Group 2 Group 3 Group 4

µmax Yx,glc ε1 γ2
µd,max Yx,gln ε2

Yamm,gln
Ylac,glc

cells’ position in the cell cycle, making its experimental estimation
particularly difficult. The difficulty of obtaining experimental mea-
surements for certain parameters is a common ‘‘real life’’ problem.
The fact that a parameter cannot be experimentally estimated does
not invalidate the sensitivity analysis and on the contrary raises the
awareness of themodeller to possibleweaknesses of the developed
model.

The use of SA effectively reduced the number of parameters
that need to be experimentally validated from a total of 31
to a mere 6. Moreover, we have gained valuable information
regarding the time points that would yield the most informative
experiments.

3.3. Design of experiments and model validation

Fed-batch operation is the most common choice for industrial
applications as it can prolong culture longevity and thus the final
titre. Consequently, the aim is to extend the model’s predictive
capabilities to fed-batch conditions. Instead of re-estimating the
whole set of model parameters in order to account for the different
metabolic characteristics of fed-batch cultivation, the accurate
estimation of only the significant parameters is targeted through
D-optimal model-based experimental design (Kontoravdi et al.,
2010; Process Systems Enterprise, 1997–2010). The latter dictates
the appropriate feeding strategy for a fed-batch experiment so that
the information content of the collected data is maximised. The
data of the designed culture are used to validate the model under
fed-batch conditions. As previous studies have discussed (Munack
& Posten, 1989; Versyck, Claes, & Impe, 1997), DOE uses the model
to design sufficiently informative experiments for this purpose.
The most significant parameters (Table 3) can be readily input to
the DOE algorithm. The use of a CAD tool, such as gPROMS, where
a DOE utility is already implemented, significantly simplifies this
step.

The concentrations of glucose and glutamine in the feed
were set at 500 mM and 100 mM, respectively. The maximum
total volume of feed was fixed at 8.75 ml, which represents
nearly 5% of the total culture volume (200 ml), so as to avoid
dilution effects. Sampling times, at which measurements were
conducted, were determined a priori. The output of the algorithm
provided the optimal amount of feed supplied at each feeding
interval as well as the optimal timing of the intervals and the
optimal duration of the experiment (168 h) (Kontoravdi et al.,
2010) and enabled the re-estimation of the significant parameters
(Table 4).

Fresh media was added to the culture at predefined volumes
of 1.25 mL every 24 h starting from 12 h of culture time.
Sampling initiated after the first addition of freshmedia. Additional
samples were taken 0, 6, 12 and 24 h after the addition of
media. The ‘‘refined’’ version of the model is simulated for fed-
batch operation and is plotted against relevant experimental
data (Kontoravdi et al., 2010). The model is found to be in
good agreement with the experimental data and can successfully
capture the dynamics of a fed-batch culture as shown in Fig. 4.
Moreover the model’s performance while using the parameter
values of Table 4 is compared to the performance while using
the parameter values of Table 2. Quality of fit calculations for the
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Fig. 3. GSA results; (a): SIs for parameters of group 1 with respect to viable cell concentration; (b): SIs for parameters of group 1 with respect to glucose concentration; (c):
SIs for parameters of group 2 with respect to Lactate concentration; (d): SIs for parameters of group 2 with respect to Ammonia concentration; (e): SIs for parameters of
group 3 with respect to mAb concentration; (f): SIs for parameters of group 4 with respect to mAb concentration.
predictions shown in Fig. 4 are shown in Table 5. Finally themodel’s
range of applicability should be examined against an independent
set of experimental data as shown in Kontoravdi (2006) and
Kontoravdi et al. (2010).

3.4. Model based optimisation & control

From a process engineering point of view the ultimate goal of
any modelling attempt is to ‘‘close the loop’’ through model-based
optimisation. Several studies presented in the literature showcase
the potential of the application model-based optimisation and
control strategies on bioprocesses (De Tremblay et al., 1992;
De Tremblay, Perrier, Chavarie, & Achambault, 1993; Frahm
et al., 2002; Frahm, Lane, Märkl, & Pörtner, 2003; Zhou, Rehm,
Europa, & Hu, 1997). However, a holistic approach that facilitates
optimisation of the in vitro through the in silico is still lacking.
Consequently, the response of the culture to changes in the feeding
strategy is usuallymonitored implicitly through the oxygen uptake
rate and the culture pH. The limited number of readily available
online measurements in turn limits the complexity of the utilised
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Table 4
Results of the parameter estimation algorithm.

Parameter New Value Confidence intervalsa

90% 95% 99%

µmax 0.054305 1.001×10−3 1.194×10−3 1.572×10−3

µd,max 0.031519 1.801×10−3 2.149×10−3 2.829×10−3

Yx,glc 2.6× 108 2.275× 107 2.715× 107 3.494× 107

Yx,gln 8× 108 3.203× 107 3.822× 107 3.575× 107

Yamm,gln 0.381159 2.393×10−3 2.856×10−3 5.032×10−3

Ylac,glc 2.05356 1.751×10−1 2.089×10−1 2.751×10−1

a The confidence ellipsoid is a linear approximation of the non-linear confidence
region (Process Systems Enterprise, 1997–2010).

Fig. 4. Fed-batch cultures of HFN 7.1 hybridma cells.
Source: Adapted from Kontoravdi et al. (2010).

Table 5
Quality of fit.

Variable R2 using parameters
from Table 4

R2 using parameters
from Table 2

[mAb] 0.93177 0.92328
[LAC] 0.93026 0.38679

model. Therefore, the common practice when estimating optimal
feeding profiles is to base calculations on the cells’ need for glucose
(and/or glutamine) alone.

Lam (2009) following the model development algorithm of
Fig. 1, performed model-based optimisation studies on CHO-IFNγ
cultures. The resulting optimal feeding profile is shown in Fig. 5(b).
These results indicate a potential for the fed-batch culture to
produce IFNγ at approximately 60mg L−1 at the end of the culture
time whereas the highest yield achieved experimentally (Fig. 5(a))
was about 35 mg L−1. The higher product yield in the optimised
resultwas achieved due to a low concentration of toxic ammonium
as a result of a better controlled supply of nutrients. Although
the model utilised in that study (Lam, 2009) is different than
the one presented thus far, the modelling steps were identical.
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Fig. 5. IFNγ concentration profile of CHO-IFNγ fed-batch culture (a) Simulation
(solid line) and experiment data (dots). (b) Optimal profile as a result of dynamic
optimisation.
Source: Adapted from Lam (2009).

Consequently, the results of Fig. 5 represent the logical evolution
of the algorithm and ultimately ‘close the loop’ by optimisation of
the in vitro (Fig. 5) through in silico experimentation. Details on the
formulation and solution of the optimisation problem can be found
in Lam (2009).

4. Concluding remarks

Interestingly, there appear to be many differences between the
mathematical models that describe mammalian cell growth. Cell
growth has been mathematically related to glucose concentration
alone (Frahm et al., 2002), glucose and glutamine (De Tremblay
et al., 1992), glucose and lactate (Kurokawa, Park, Iijima, &
Kobayashi, 1994) and to all four nutrients and metabolites (Jang &
Barford, 2000). Similarly cell death has been related to glutamine,
lactate and ammonia (De Tremblay et al., 1992), glucose (Frame
& Hu, 1991), glutamine (Dalili, Sayles, & Ollis, 1990), ammonia
and lactate (Batt & Kompala, 1989), or ammonia (Jang & Barford,
2000). This apparent lack of consistency, illustrates the need for a
framework that formalises model development.

Optimisation of secreting cultures depends on the balance
between prolonged culture viability and increased productivity.
Alas, conditions that seem to prolong culture viability usually
reduce productivity and vice versa. Optimal feeding profiles
based on the provision of glucose and glutamine alone might
yield an increase in the final product titre without being the
global optimum. Moreover, the work of Xie and Wang (1994)
illustrated that excessive feeding of glucose is not the best
means towards higher product titres, since it shifts metabolism
towards energy inefficient pathways. Energy metabolism is a
significant element of cell culture that has thus far been ignored
from a modelling point of view. Furthermore, deZengotita et al.
(2000) has shown that apart from the primary nutrients, other
components might be limiting growth. A truly optimal feeding
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profile should be derived based on the provision of adequate yet
not excessive amounts of energy through controlled quantities of
nutrients.

Bailey (1998) predicted the need to shift modelling focus
upstream towards the genetic level where the kernel of the
cell’s control mechanism lies however little work has been
done since. The advancements in analytical and theoretical
biology will increasingly provide more information in the future,
especially with the increasing popularity and availability of the
— omics techniques. Paving the way towards a ‘closed-loop’
approach for bioprocess automation, the work presented herein
presents a biological model development framework (Fig. 1) in
a step-by-step fashion, highlighting challenges and ‘‘real life’’
problems associated with each stage of model development. By
organising available information in a systematic way, unnecessary
experimentation is avoided and models with a priori established
aims able to guide the in vitro through the in silico are
developed.
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