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a b s t r a c t

The molecular and genetic events responsible for the growth kinetics of a microorganism can be exten-
sively influenced by the presence of mixtures of substrates leading to unusual growth patterns, which
cannot be accurately predicted by mathematical models developed using analogies to enzyme kinetics.
Towards this end, we have combined a dynamic mathematical model of the Ps/Pr promoters of the TOL
(pWW0) plasmid of Pseudomonas putida mt-2, involved in the metabolism of m-xylene, with the growth
kinetics of the microorganism to predict the biodegradation of m-xylene and succinate in batch cultures.
The substrate interactions observed in mixed-substrate experiments could not be accurately described
by models without directly specifying the type of interaction even when accounting for enzymatic inter-
enetic circuit
seudomonas putida
-Xylene

actions. The structure of the genetic circuit–growth kinetic model was validated with batch cultures of
mt-2 fed with m-xylene and succinate and its predictive capability was confirmed by successfully pre-
dicting independent sets of experimental data. Our combined genetic circuit–growth kinetic modelling
approach exemplifies the critical importance of the molecular interactions of key genetic circuits in pre-
dicting unusual growth patterns. Such strategy is more suitable in describing bioprocess performance,
which current models fail to predict.
. Introduction

Microbial growth kinetics is an essential tool for the design of
ptimal bioprocesses. Despite more than half a century of research,
any fundamental questions about the validity and application of

rowth kinetics are still unanswered [1]. One of the various cases
n biotechnology where understanding of the kinetics of microbial
rowth is limited is when a culture is grown on mixed-substrates
2]. A multitude of utilisation patterns may occur depending on
he metabolic effects of each compound [3] and various sub-
trate interactions have been identified including sequential [4]
nd simultaneous [5] utilisation. Although substrate interactions
an be either positively or negatively influenced by the presence of

ther compounds [6], in some cases unusual substrate interactions
ave been reported but not modelled [7].

∗ Corresponding author. Tel.: +44 20 7594 5601; fax: +44 20 7594 5638.
E-mail address: a.mantalaris@imperial.ac.uk (A. Mantalaris).
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In general there is no simple rule for the prediction of substrate
interactions [8]. When no substrate interactions are identified, sim-
ple Monod terms [9] can be added in sum kinetics. However, if
substrate interactions occur, growth rate equations accounting for
these interactions are used [10]. Usually an analogy to enzyme
kinetics is made, because if a reaction is enzyme catalysed then the
inhibition of enzyme activity results in the inhibition of microbial
growth by the same pattern. Nevertheless, although the determi-
nation of the model giving the most accurate description of the
experimental data might suggest the mechanism of the interac-
tions, this might not always hold true when unusual substrate
interactions occur. Thus, for a certain combination of substrates
none of the developed models may accurately fit the experimental
data or the interaction indicated may not be valid for a wide range
of conditions. Although the metabolic events taking place in mixed-
substrate cultivation have been previously studied [6], the failure

of models to predict the growth kinetics in some cases underlines
the need for inclusion of the exact mechanism for the production
of enzymes [11]. The genetic information required for the produc-
tion of enzymes used for the metabolism of substrates in a certain

dx.doi.org/10.1016/j.bej.2011.03.012
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Nomenclature

I1,2 interaction parameter of m-xylene on succinate [–]
I2,1 interaction parameter of succinate on m-xylene [–]
i inhibition constant [mM−1 h−1]
KI,1 m-xylene inhibition constant [mM]
KI,1,2 m-xylene inhibition on succinate constant [mM]
KI,1-P,2 m-xylene by-product inhibition on succinate con-

stant [mM]
KIq,1,2 m-xylene inhibition on succinate consumption con-

stant [mM]
KIq,1-P,2 m-xylene by-product inhibition on succinate con-

sumption constant [mM]
KPr,XylRi

XylRi translation coefficient [–]
KS,1 m-xylene saturation constant [mM]
Ks,1 saturation constant for m-xylene consumption

[mM]
KS,2 succinate saturation constant [mM]
Ks,2 saturation constant for succinate consumption

[mM]
KSUC,Pr inhibition constant of succinate on Pr promoter

activity [mM−2]
KSUC,Ps inhibition constant of succinate on Ps promoter

activity [mM]
KXylRa

repression coefficient of Pr promoter (due to XylRa

binding) [mM]
KXylRa,Ps activation coefficient of Ps promoter [mM]
KXylRi

repression coefficient of Pr promoter (due to XylRi
binding) [mM]

MWt1 m-xylene molecular weight [mg mmol−1]
n exponent indicating the type of relation between �2

and S2 [–]
nPr,a hill coefficient of Pr promoter (due to XylRa binding)

[–]
nPr,i hill coefficient of Pr promoter (due to XylRi binding)

[–]
nPs,a hill coefficient of Ps promoter (due to XylRa binding)

[–]
qs,1 m-xylene metabolic quotient

[mMm-xylene mgbiomass
−1 h−1]

qs,2 succinate metabolic quotient
[mMsuccinate mgbiomass

−1 h−1]
rR,XylR XylRa dissociation constant [mM−1 h−1]
rXylR XylRi oligomerization constant [mM−1 h−1]
S0,1 initial m-xylene concentration [mM]
S1 m-xylene concentration [mM]
S2 succinate concentration [mM]
Sm maximum m-xylene concentration above which

growth is completely inhibited [mM]
S� threshold m-xylene concentration below which

there is no inhibition [mM]
t time [h]
Y1 yield coefficient for biomass on m-xylene

[mgbiomass mgm-xylene
−1]

PrTC Pr promoter relative activity [–]
PsTC Ps promoter relative activity [–]
Rmax,1 maximum m-xylene metabolic quotient

[mmolm-xylene mgbiomass
−1 h−1]

Rmax,2 maximum succinate metabolic quotient
[mmolsuccinate mgbiomass

−1 h−1]
X biomass concentration [mg L−1]
XylRa XylRa protein concentration [mM]
XylRi XylRi protein concentration [mM]

Greek letters
˛Pr Pr promoter deactivation rate [h−1]
˛Ps Ps promoter deactivation rate [h−1]
˛XylRi

XylRi degradation/dilution rate [h−1]
˛XylRa

XylRa degradation/dilution rate [h−1]
ˇ0 basal expression level of Ps promoter [h−1]
ˇPr maximal expression level of Pr promoter [h−1]
ˇPs maximal expression level of Ps promoter [h−1]
ˇXylRi

maximal XylRi translation rate based on Pr activity
[mM h−1]

� specific growth rate of biomass [h−1]
�1 specific growth rate of biomass on m-xylene [h−1]
�2 specific growth rate of biomass on succinate [h−1]
�max,1 maximum specific growth rate of biomass on m-

xylene [h−1]
�max,2 maximum specific growth rate of biomass on succi-

−1
nate [h ]

process, is encoded by genes existing in specific genetic circuits of
the cells. Thus, the construction of mathematical models describ-
ing the molecular interactions regulating the transcription of these
genes might provide the exact mechanism for substrate interac-
tions.

Genetic circuits are groups of elements, which interact produc-
ing certain behaviour [12]. These elements include DNA binding
regions for RNA polymerase starting transcription of DNA, DNA
regions that terminate transcription, mRNA binding sequences for
rRNA starting the translation of mRNA, proteins that regulate the
synthesis and activity of other proteins, and motifs that determine
mRNA and protein stability. Advanced genetic techniques may suc-
cessfully identify the components of a circuit and the way these
interact. With the application of these techniques, several natu-
rally occurring genetic circuits have been studied recently, such as
cell cycle regulatory systems [13], bistable switches [14], oscillat-
ing networks [15], and circadian clocks [16]. Therefore, given the
fact that key genetic circuits are essential for survival and reproduc-
tion of microorganisms, the mechanisms of interactions between
circuit components may well-define the distinct responses of vari-
ous cellular functions to changes in the cells environment [17,18].
The current state of the art is rather limited to the work of Bet-
tenbrock et al. [19] utilizing a dynamic gene regulation model of
catabolite repression to describe the dynamic behaviour of various
metabolites in Escherichia coli.

This study attempts to combine a mathematical model of a
key genetic circuit with the growth kinetics of the host microor-
ganism. To this end we have previously paved the way with the
development of a mathematical model of the Ps/Pr node of the
TOL plasmid encoded by Pseudomonas putida mt-2 [20]. Herein,
we present a growth kinetic model of the strain and its coupling
with the genetic circuit model, demonstrating a new approach for
the improvement of growth kinetic models in cases where the use
of quantitative genetic information is imperative. The parameter
values of the combined model were estimated through indepen-
dent experiments and its predictive capability was evaluated in a
distinct experimental set-up. Analysis of the results showed that
there is increased complexity in modelling substrates degradation
and growth kinetics due to the substrate interactions. Although,
the combined model offered an improved description of the pro-
cess, different models, either accounting for interactions in analogy

to enzyme kinetics or without directly specifying the type of
interaction, were unsuccessful in describing the experiments. This
modelling framework provides a solid basis for the development
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f mechanistic mathematical models that consider key molecular
nteractions to predict unusual system performance that cannot be
xplained with currently existing models.

. Materials and methods

.1. Cell culture conditions

Subcultures of P. putida mt-2 were pregrown overnight at 30 ◦C
n M9 minimal medium [21] supplemented with 15 mM succinate
nd an organic antifoaming agent (Antifoam 204, Sigma–Aldrich
ompany Ltd., UK). Triplicate cultures were prepared by diluting
he overnight culture in minimal medium to an initial optical den-
ity of 0.1 at 600 nm. The minimal medium was supplemented
ith either succinate, m-xylene or a combination of the two sub-

trates. The incubation of the cultures was performed using conical
rlenmeyer flasks with 2.35 L total volume (0.4 L culture volume),
hich were continuously stirred at 1250 rpm via a Heidolph MR

001K (Heidolph, UK) magnetic stirrer. The flasks were filled with
edium to one-fifth of their volume, to make sure that sufficient

xygen was available, and closed gas-tight with Teflon coated lids
o avoid losses of the volatile organic compound. Biomedium and
as samples were collected from the flasks through a sampling port
mbedded on the lids and temperature was maintained constant at
0 ◦C in a constant temperature room facility. The same conditions
ere maintained at all times apart from the initial m-xylene and

uccinate concentrations, which varied for each experiment. Ini-
ial m-xylene and succinate concentrations for each experiment are
iven below. All chemicals used were obtained from Sigma–Aldrich
ompany Ltd. (UK) and were of ANALAR grade. m-Xylene was
btained from VWR International Ltd. (UK) 99% pure.

.2. Experimental design

Three experiments were conducted to obtain the parameter val-
es for the mathematical model, while its predictive capability
as tested with an independent experiment. The initial concentra-

ions for the two substrates were set at the following concentration
evels for each experiment: (i) 0.9 mM m-xylene (m-xylene only
xperiment), (ii) 13.6 mM succinate (succinate only experiment),
iii) 1.04 mM m-xylene and 14 mM succinate (parameter estima-
ion experiment), and (iv) 0.8 mM m-xylene and 14.1 mM succinate
predictive experiment). Biomass, m-xylene and succinate concen-
rations were monitored at certain time intervals using optical
ensity, gas chromatography (GC) and high-pressure liquid chro-
atography (HPLC) analysis respectively, while real-time PCR was

mployed to determine gene expression. The above methods are
escribed in detail in Sections 2.4 and 2.5.

.3. Growth on the antifoaming agent

Intensive foaming formation was observed when the cul-
ure achieved dry cell weight concentration above 1 g L−1 in the
resence of succinate. An antifoaming agent was used in all experi-
ents, in order to avoid the formation of the foam. However, during

he experiments, although a distinct lag-phase occurred where the
ubstrate(s) were not consumed, an increase in biomass concentra-
ion was observed. In order to clarify that the increase in biomass
oncentration during that period was due to the addition of the
ntifoam, two flasks were inoculated in the presence or in the
bsence of the antifoaming agent. There was an increase in biomass
oncentration for the first 1.5 h following inoculation of the flask

upplemented with antifoam, while biomass concentration started
ecreasing from the beginning of the flask that did not contain
ny antifoam indicating that the presence of the specific amount of
ntifoam added could support cellular growth for up to 1.5 h. The
ring Journal 55 (2011) 108–118

chemical composition of the antifoam was not defined and mea-
surement of its concentration was not possible. Thus, for the first
1.5 h of each experiment the biomass produced due to the presence
of the antifoam is given from best-fit time profile of its experimen-
tal values during the control experiment described above and it is
neglected for the remaining of each experiment. The same concen-
tration of antifoaming agent was used in all flasks.

2.4. Analyses

GC analysis was employed for determination of the m-xylene
concentration in the gaseous and aqueous samples using an Agi-
lent 6850 Series II Gas Chromatograph with an FID detector and a
‘J&W Scientific’ (Agilent Technologies UK Limited, UK) column with
HP-1 stationary phase. Gaseous samples of 25 �L were injected into
the GC and the temperature program run at 70 ◦C for 3 min and then
increased to 80 ◦C at a rate of 5 ◦C min−1. Biomedium m-xylene con-
centration was determined experimentally as previously described
[20]. The coefficient of variation for 5 samples was 4.6% at a con-
centration level of 0.07 mM m-xylene. Succinate concentration was
determined using HPLC on a Shimadzu liquid chromatograph LC-
10AT (Shimadzu, UK) equipped with a SIL-10AD Shimadzu auto
injector, a RID-10A Shimadzu refractive index detector and a CTO-
10AC column oven. Samples were eluted with distilled water at a
flow rate of 0.4 ml min−1 from an Aminex® HPX-87H (Bio-Rad Lab-
oratories Ltd., UK) ion-exclusion organic acid analysis column at
55 ◦C. Biomedium samples were centrifuged and the supernatant
was filtered through 0.2 �m filters to remove any remaining solids.
50 �l of the filtered sample was injected into the HPLC. The concen-
tration of succinate was calculated interpolating from a previously
established succinate calibration curve. The coefficient of variation
for 3 samples was 0.1% at a concentration level of 4.38 mM suc-
cinate. Biomass concentration was determined by absorbance at
600 nm on a UV-2101PC scanning spectrophotometer (Shimadzu,
UK) interpolating from a previously established dry weight calibra-
tion curve. The coefficient of variation for 5 samples was 4.2% at a
concentration level of 583 mgbiomass L−1.

2.5. Isolation of total RNA, cDNA synthesis and quantitative
real-time PCR

Quantitative real-time PCR (Q-PCR) was performed to deter-
mine the expression of xylR, xylS and rpoN genes during the
experiments. 4.5 ml of biomedium samples were centrifuged for
4 min at 11,000 rpm. The supernatant solution was removed, while
the cell pellet was quenched in liquid N2 for 1 min and was
stored at −80 ◦C. Total RNA was isolated from quenched cells using
NucleoSpin® RNA II (Fisher Scientific Ltd., UK) and was eluted with
60 �l RNase-free water. Following the extraction, total RNA was
used immediately for cDNA synthesis. cDNA was synthesised using
iScriptTM Select cDNA Synthesis Kit (Bio-Rad Laboratories Ltd., UK)
using random priming and Q-PCR assays were performed on a
Rotor-Gene 6000 (Qiagen Ltd., UK), using iQTM SYBR® Green Super-
mix (Bio-Rad Laboratories Ltd., UK). For each reaction, 2 �l of cDNA
(10 ng �l−1) was mixed with 24 �l of the PCR solution. This solution
contained 12.5 �l 1× iQ SYBR Green Supermix, 0.25 �l of forward
primer (0.2 �M), 0.25 �l of reverse primer (0.2 �M) (Invitrogen Ltd.,
UK) and 11 �l of sterile water. PCR was carried out according to the
following protocol: initial denaturation at 95 ◦C (3 min) followed
by 50 cycles of 95 ◦C (20 s), 60 ◦C (30 s) and 72 ◦C (30 s), while a
melting curve was generated for each reaction in order to ensure
the specificity of each PCR product. Threshold cycle values (CT)

were calculated with the use of Rotor-Gene 6000 series software
1.7 (Qiagen Ltd., UK). Each Q-PCR was performed in duplicate. The
coefficient of variation for 3 samples was 2.8% at a cDNA mass level
of 10 ngcDNA used for each reaction. The primer sequences and the
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Table 1
Substrate inhibition models.

Publication Authors Equation

[24] Andrews (1968) �1 = �max,1S1

KS,1 + S1 + (S2
1/KI,1)

(1)

[25] Aiba et al. (1968) (2)�1 = �max,1S1
KS,1+S1

e(−S1/KI,1)

[26] Yano and Koga
(1969)

�1 = �max,1S1

KS,1 + S1 + (S3
1/K2

I,1)
(3)

[27] Wayman and Tseng
(1976)

(4)�1 = �max,1S1
KS,1+S1

− i(S1 − S�)

[28] Luong (1987) (5)�1 = �max,1S1
KS,1+S1

(
1 − S1
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Table 2
Parameter values used for model simulation.

Parameter Value 95% Conf.
interval

Units Experiment

I1,2 2.971 – – 3
I2,1 0 – – 3
KI,1 0.439 0.049 mM 1
KI,1

a 0.465 0.044 mM 1
KI,1,2 19.418 23 mM 3
KI, 1-P,2 0.84 0.038 mM 3
KIq,1,2 7.248 2.3 mM 3
KIq, 1-P,2 0.823 0.028 mM 3
KS,1 0.099 0.054 mM 1
KS,1

a 0.096 0.04 mM 1
KS,2 43.047 34 mM 2
Ks,2 45.781 – mM 2
Rmax,1 0.076 6.9 × 10−4 mmolm-xylene gbiom

−1 h−1 1
Rmax,1

a 0.072 5.7 × 10−4 mmolm-xylene gbiom
−1 h−1 1

Rmax,2 0.029 4.4 × 10−4 mmolsuccinate gbiom
−1 h−1 2

�max,1 0.931 0.17 h−1 1
�max,1

a 0.979 0.15 h−1 1
�max,2 2.637 0.013 h−1 2

1—Single-substrate biodegradation: m-xylene only; 2—single-substrate biodegra-
[29] Alagappan and
Cowan (2001)

(6)�1 = �max,1S1

KS,1+S1+(S2
1

/KI,1)
− i(S1 − S�)

ethod used for calculating the normalised levels of xylR and xylS
RNA expressions were performed as previously described [20].

.6. Parameter estimation in gPROMS

All parameter estimation experiments and model simulations
here carried out on an Intel® CoreTM2 Duo (E4600 – 2.4, 2.39)
ersonal computer with 3.24 GB of RAM memory. Model simula-
ions and parameter estimation experiments were implemented
n the advanced process modelling environment gPROMS® [22],

hich is an equation-oriented modelling system used for building,
alidating and executing first-principles models within a flow-
heeting framework. Parameter estimation in gPROMS is based on
he Maximum Likelihood formulation, which provides simultane-
us estimation of parameters in both the physical model of the
rocess as well as the variance model of the measuring instruments.
PROMS attempts to determine values for the uncertain physical
nd variance model parameters, �, that maximise the probability
hat the mathematical model will predict the measurement values
btained from the experiments. Assuming independent, normally
istributed measurement errors, εijk, with zero means and stan-
ard deviations, �ijk, this maximum likelihood goal can be captured
hrough the following objective function Eq. (7):

= N

2
ln(2�) + 1

2
min�

⎧⎨
⎩

NE∑
i=1

NVi∑
j=1

NMij∑
k=1

[
ln(�2

ihk) + (z̄ijk − zijk)2

�2
ihk

]⎫⎬
⎭

(7)

here N stands for total number of measurements taken during all
he experiments, � is the set of model parameters to be estimated,
E is the number of experiments performed, NVi is the number of
ariables measured in the ith experiment and NMij is the number
f measurements of the jth variable in the ith experiment. The vari-
nce of the kth measurement of variable j in experiment i is denoted
s �2

ijk
, while zijk is the kth measured value of variable j in exper-

ment i and zijk is the kth (model-)predicted value of variable j in
xperiment i. The above formulation can be reduced to a recursive
east squares parameter estimation if no variance model for the
ensor is selected.

. Results and discussion

.1. Single-substrate biodegradation: m-xylene only

Subcultures of P. putida mt-2 were first grown in the presence

f succinate and m-xylene as single substrates. The biodegradation
f 0.9 mM m-xylene fed in a batch experiment was most accu-
ately modelled assuming substrate inhibition, as noted by the
xperimental results presented in Fig. 1A, which is in agreement
dation: succinate only; 3—succinate–m-xylene mixture: parameter estimation
experiment.

a Parameter value determined without information from the TOL model.

with previously developed models of m-xylene biodegradation by
P. putida [23]. The Monod and various substrate inhibition mod-
els that have been used to describe the growth on m-xylene are
provided in Eqs. (1)–(6) (Table 1). From the models propagated,
although there were small differences between three of the models
tested (Andrews, Yano and Koga, Wayman and Tseng), the Yano and
Koga equation (3) showed the best fit (Supporting Fig. 1) and was
selected to describe biomass growth on m-xylene. Furthermore,
m-xylene consumption was modelled using Eq. (8), the specific m-
xylene consumption rate was independently modelled using Eq. (9)
and biomass concentration was expressed by Eq. (10).

dS1

dt
= − 1

MWt1

�1

Y1
X (8)

qs,1 = Rmax,1S1

Ks,1 + S1
= − 1

X

dS1

dt
(9)

dX

dt
= �1X (10)

Combining Eqs. (8) and (9) the observed cell mass yield on m-
xylene is given by Eq. (11).

Y1 = 1
MWt1

�1

Rmax,1

(
1 + Ks,1

S1

)
(11)

If S1 � Ks,1 and in the case where for a given initial substrate con-
centration the specific growth rate (�1) in the exponential growth
phase is constant, then the observed cell mass yield is constant.
Although this might not always hold true it is usually assumed that
the yield coefficient is an average constant dependent on the initial
substrate concentration (S0,1), when the latter is much higher than
the critical substrate concentration (S0,1 � (KS,1KI,1

2)1/3) where �1
is maximum [30]. However, a constant yield cannot be present for
a wide range of initial substrate concentrations when substrate
inhibition is considered. Thus, for the experiments in the present
study a new yield value was calculated for different initial m-xylene
concentrations, using Eq. (12).

Y = 1 �max,1 1
(12)
1 MWt1 Rmax,1 1 + (KS,1/S0,1) + (S2

0,1/K2
I,1)

The parameter values determined from the experiment pre-
sented in Fig. 1A are shown in Table 2. Monod-like models fail to
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Fig. 1. Single-substrate batch biodegradation experiments. (A) m-Xylene biodegradation (predicted without genetic information), (B) Ps promoter relative activity, (C)
m-xylene biodegradation (predicted by the combined model), and (D) succinate biodegradation. I: Beginning of m-xylene biodegradation; �: biomass dry cell weight
concentration – experimental; �: succinate concentration – experimental; �: m-xylene concentration – experimental; �: Ps activity – experimental; : biomass dry cell
weight concentration – predicted; . . .. . .: succinate concentration – predicted; – – –: m-xylene concentration – predicted; — · ·: Ps activity – predicted. The Ps promoter
a licate
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3.2. Single-substrate biodegradation: succinate only

When high concentrations of an inhibitory substrate are fed in a
bioprocess, an easily biodegradable substrate, such as succinate can

Fig. 2. Organization of the m-xylene biodegradation pathway born by the TOL
plasmid pWW0. The figure sketches the reactions implicated in metabolism of
this aromatic compound, including the stepwise oxidation of one methyl group of
the substrate to an alcohol and eventually to a carboxylic acid, yielding m-toluate
through the action of the enzymes encoded by the upper TOL pathway. m-Toluate is
then deoxygenated to yield 3-methylcatechol, which is cleaved in meta and finally
channelled into the Krebs cycle by means of the products of the lower or meta operon.
The upper operon is transcribed from the �54 promoter Pu upon activation by the
cognate regulator of the pathway (XylR) bound to specific effectors. These include
the substrate of the pathway (m-xylene) as well as the two first metabolic interme-
diates: 3-methylbenzylalcohol and 3-methylbenzylaldehyde. The lower operon is
transcribed from the Pm promoter, which is activated by the m-toluate responsive
ctivity results are obtained as an average from 6 individual measurements for trip

ccount for lag periods and consider the beginning of the expo-
ential growth as their initial point [11]. Due to the fact that the
odel developed does not take into account the lag-phase, there
as minor deviation of the model’s prediction from the experimen-

al results (Fig. 1A).
It is evident that a lag-phase occurred for the first 1 h follow-

ng the introduction of m-xylene. One of the main reasons for true
ag is the change in nutrition. Therefore, since the inoculum was
re-grown in succinate, the lag-phase might have been caused
ecause the change in carbon source involves the induction of new
nzymes catalysing the biodegradation of m-xylene. MT-2 is known
o degrade m-xylene via the TOL pathway (Fig. 2), which is equipped
ith the enzymes for its oxidative catabolism [31]. The two gene

perons of TOL (upper operon: xylUWCMABN and meta operon:
ylXYZLTEGFJQKIH) encode the catabolic enzymes of the pathway,
hile two genes (xylS and xylR) control the regulation of transcrip-

ion of the operons. These four transcriptional units are driven by
our different promoters (upper operon: Pu, meta operon: Pm, xylS
ene: Ps and xylR gene: Pr). Therefore, the time required to synthe-
ise the optimum amount of the TOL enzymes can be directly (Pu) or
ndirectly (Pm) controlled by the master regulator of the system, the
ctive form of XylR protein (XylRa), which is activated by m-xylene
32]. For various known systems genes induced for biodegradation
f new carbon sources constitute only a small fraction of the entire
ranscriptome reprogramming [33]. The transition from the lag to
he accelerating growth phase is assumed to take place when Ps,
hich is activated by XylRa, has its relative activity increased from

ts basal level by 65-fold, an amount which corresponds to the acti-
ation of the TOL pathway and consequently to the induction of
ts enzymes. A similar activation profile to that of Ps would be also
xpected for Pu, which is also activated by XylRa.

The mathematical model of the Ps/Pr promoters of TOL previ-
usly developed [20], shown in Table 3, was used to calculate Ps

romoter’s activity over time (Fig. 1B). Thus, the duration of the

ag-phase was estimated from the genetic circuit model and the
rowth kinetic model was used after the lag-phase to re-estimate
he parameter values (Table 2). Therefore, by taking into account
flasks at each time point and the error bars are calculated for standard deviation.

the duration of the lag-phase, the prediction of the combined model
improved the description of the experiment (Fig. 1C), as confirmed
by the high correlation coefficient values obtained between exper-
imental and modelling results (Table 4). The development of the
genetic circuit model is not further discussed in this paper, as this
is readily available in the reference mentioned above.
activator XylS. Pm can be turned on either by XylS and m-toluate as a co-inducer,
or by overproduction of XylS alone. Finally, xylS and xylR are transcribed from the
divergent and overlapping promoters Ps and Pr respectively. The regulation of the
latter is connected, because the Ps promoter is activated by XylR, which also binds
and downregulates its own Pr promoter.



M. Koutinas et al. / Biochemical Engineering Journal 55 (2011) 108–118 113

Table 3
The mathematical model of the Ps/Pr promoters of TOL.

Description Equation

XylRi concentration dXylRi
dt

= ˇXylRi
PrTC

KPr,XylRi
+PrTC

− rXylRXylRiS1 + 3rR,XylRXylRa(S0,1 − S1) − ˛XylRi
XylRi

XylRa concentration dXylRa
dt

= 1
3 rXylRXylRiS1 − rR,XylRXylRa(S0,1 − S1) − ˛XylRa XylRa

Pr promoter activity dPrTC
dt

= ˇPr
1+(XylRi/KXylRi

)nPr,i +(XylRa/KXylRa
)nPr,a

1
1+KSUC,Pr S2

2

− ˛Pr PrTC

1
1+(S2/K
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substrates during the experiments, several models were used. The
model that is usually applied to predict growth on mixtures of sub-
strates, when substrate interactions are not present, is the sum
Ps promoter activity dPsTC
dt

= ˇ0 + ˇPs
XylRanPs,a

KnPs,a
XylRa ,Ps

+XylRanPs,a

e supplied additionally to the inhibitory one to support biomass
rowth. Thus, the growth kinetics of mt-2 was studied in the pres-
nce of succinate. Unlike the m-xylene only case presented above,
he assumption that S2 � Ks,2 was not valid when only succinate
as fed. Therefore, the biodegradation of 13.6 mM succinate fed

n a batch experiment was modelled using Eq. (13) for succinate
iodegradation and Eq. (14) for biomass growth using the Monod
odel. Furthermore, the specific succinate consumption rate was

ndependently modelled using Eq. (15) and biomass production
as expressed by Eq. (16). Fig. 1D shows that the Monod model

an effectively describe the experimental results. The parameter
alues estimated are listed in Table 2.

dS2

dt
= −qs,2X (13)

2 = �max,2S2

KS,2 + S2
(14)

s,2 = Rmax,2S2

Ks,2 + S2
(15)

dX

dt
= �2X (16)

.3. Succinate–m-xylene mixture: parameter estimation
xperiment

The microbial strain was cultured in a batch experiment in the
resence of 14 mM succinate and 1.04 mM m-xylene. According to
he experimental results (Fig. 3), unlike the cases of simultaneous
r diauxic growth often met in mixed-substrates, mt-2 presented
different growth pattern. Following the initial lag-phase, m-

ylene degradation started first followed by succinate degradation
esulting in two phases where both substrates were utilised
ndividually and one phase where both substrates were utilised

imultaneously.

m-Xylene is sensed by P. putida strains bearing the TOL plasmid
ainly as a stressor to be extruded rather than as a nutrient to be
etabolised. Thus, m-xylene causes the reduction of a variety of

able 4
orrelation coefficients between experimental and modelling results.

Experiment R2 (biomass) R2 (m-xylene) R2 (succinate)

1 0.994 0.998 –
2 0.990 – 0.996
3 (Combined model) 0.974 0.978 0.987
3 (Competitive inh.) 0.952 0.965 0.953
3 (Non-competitive Inh.) 0.771 0.372 0.860
3 (Un-competitive Inh.) 0.994 0.979 0.969
3 (SKIP model) 0.997 0.974 0.955
4 (Combined model) 0.951 0.977 0.948
4 (Un-competitive inh.) 0.837 0.606 0.956
4 (SKIP model) 0.956 0.844 0.705

—Single-substrate biodegradation: m-xylene only; 2—single-substrate biodegra-
ation: succinate only; 3—succinate–m-xylene mixture: parameter estimation
xperiment; 4—succinate–m-xylene mixture: predictive experiment.
SUC,Ps)2 − ˛PsPsTC

central carbon metabolism enzymes including the succinic semi-
aldehyde dehydrogenase [33], which catalyses the reaction for the
conversion of succinate to succinate semialdehyde. Consequently,
the lag-phase in succinate degradation can be attributed to the
presence of the stressor and the duration of the lag might depend
on the time required to inactivate m-xylene. Therefore, although
succinate is a more readily degradable compound than m-xylene,
the biodegradation of the latter preceded the biodegradation of
succinate due to the stress response. The biodegradation of the
inhibitory substrate prior to the easily degradable one has been
previously reported for batch experiments of Arthrobacter species
fed on glucose and toluene [3]

For the description of biomass growth and depletion of the two
Fig. 3. Prediction of the double-substrate batch biodegradation experiment with the
combined genetic circuit–growth kinetic model. (A) Ps promoter relative activity,
and (B) biomass dry cell weight, m-xylene and succinate concentration. I: Begin-
ning of m-xylene biodegradation; II: beginning of succinate biodegradation; �: Ps
activity – experimental; �: biomass dry cell weight concentration – experimental;
�: succinate concentration – experimental; �: m-xylene concentration – experi-
mental; — · ·: Ps activity - predicted; : biomass dry cell weight concentration –
predicted; . . .. . .: succinate concentration – predicted; – – -: m-xylene concentra-
tion – predicted. The Ps promoter activity results are obtained as an average from 6
individual measurements for triplicate flasks at each time point and the error bars
are calculated for standard deviation.
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inetics model (Eqs. (8), (13) and (17)).

= �max,1S1

KS,1 + S1 + (S1
3/KI,1

2)
+ �max,2S2

KS,2 + S2
(17)

This simple model failed to describe the experimental results
data not shown) due to substrate interactions. The presence of m-
ylene inhibited succinate biodegradation, while the presence of
uccinate had little effect on m-xylene consumption.

Accumulation of metabolic intermediates might be responsible
or the inhibitory effects on substrates consumption. The produc-
ion of methylbenzyl alcohol can be inhibitory for mt-2 [34], while
ccumulation of 3-methylbenzoate has been also observed in cul-
ures of the strain. Furthermore, m-xylene oxidation might result in
teric effects on substrate–enzyme interaction [35]. Based on the
xperimental results presented in Fig. 3 it is apparent that when
nly succinate is available, from 5.5 h and until the end of the
xperiment, the cell growth is considerably slower compared to
he single-substrate experiment (Fig. 1D). However, inhibition on
-xylene consumption was not observed in the mixed-substrate

xperiment. In order to consider the inhibitory effects of m-xylene
nd its intermediates on succinate degradation a new succinate
egradation model is suggested (Eq. (18)) and the specific growth
ate on both substrates is given in Eq. (19).

2 = �max,2S2

KS,2 + S2

KI,1,2

KI,1,2 + S1

KI,1−P,2

KI,1−P,2 + (S0 − S1)
(18)

= �max,1S1

KS,1 + S1 + (S1
3/KI,1

2)

+ �max,2S2

KS,2 + S2

KI,1,2

KI,1,2 + S1

KI,1−P,2

KI,1−P,2 + (S0 − S1)
(19)

Measurements of the intermediates from m-xylene biodegra-
ation would be required to consider their effect on succinate
egradation rate. However, since several metabolic intermediates
re produced when m-xylene is catabolised, the determination of
heir concentration during the experiments would be a difficult
rocess. For this reason we assume that a major intermediate in m-
ylene degradation accumulates over time proportionally to the
emoval of m-xylene. Thus, in Eq. (18) the degraded amount of
-xylene is used to express the concentration of the inhibitory

ntermediates, an assumption which is similar to that previously
eveloped for considering the inhibitory effects of metabolic inter-
ediates on phenol degradation by P. putida ATCC 49451 [30].

urthermore, inhibition of growth on succinate due to the presence
f m-xylene is also considered and the specific succinate consump-
ion rate can be independently modelled using Eq. (20).

s,2 = Rmax,2S2

Ks,2 + S2

KIq,1,2

KIq,1,2 + S1

KIq,1−P,2

KIq,1−P,2 + (S0 − S1)
(20)

In the m-xylene only experiment, degradation of m-xylene starts
hen the Ps promoter’s relative activity increases by 65-fold. How-

ver, the activity of Ps is known to be repressed in the presence
f both substrates as compared to when only m-xylene is avail-
ble due to catabolite repression [20]. Therefore due to the overall
epression of Ps, it was assumed that under the presence of both
ubstrates m-xylene degradation started when the activity of Ps
ncreased from its basal activity level by 14-fold (Fig. 3A). Further-

ore, due to the effect caused by m-xylene, reassigning the bulk
f the available transcriptional machinery to endure general stress
33], we assume that growth on succinate starts when the cellular
etabolic resources are redistributed towards succinate assimi-
ation indicating the onset of the TOL pathway deinduction. This
esponse can be expressed by the time point where Ps activity starts
ecreasing from its maximum value. Based on the combination of
ring Journal 55 (2011) 108–118

the model presented above and the genetic circuit model predict-
ing Ps promoter’s activity, the experimental results (Fig. 3B) were
adequately described. Parameters values KI,1,2 and KI,1-P,2 were esti-
mated from the experimental data. The accuracy of the model could
be further improved by identifying and measuring the concentra-
tion of the inhibitory intermediate from m-xylene degradation. This
way, the validity of the assumption that the specific intermediate is
not degraded over time (Eq. (18)) would be experimentally verified.

3.4. Succinate–m-xylene mixture: prediction with existing models

The substrate interactions observed were modelled with cell
growth models accounting for competitive, noncompetitive and
uncompetitive inhibition. Substantial differences exist between
the experimental data and the prediction of the models (data not
shown). In many cases where a mixed-substrate experiment can-
not be accurately predicted using enzymatic kinetics, the SKIP
model is applied. However, the SKIP model was also unsuccessfully
applied to describe the experimental results. Since the above mod-
els failed to predict the experimental data, they were applied with
the addition of the term accounting for inhibition of cell growth on
succinate due to the presence of inhibitory intermediates from m-
xylene biodegradation. Furthermore, the parameter values of these
models were estimated from the single-substrate experiments pre-
sented above.

Similarly to succinate, the end products from m-xylene
biodegradation in the TOL pathway are Krebs cycle intermediates
[32]. Therefore, since a part of the metabolic pathway followed in
the catabolism of both m-xylene and succinate is the same, the two
substrates might compete for an enzyme in the pathway. In order to
evaluate this scenario, a model incorporating competitive substrate
kinetics [36] was applied according to Eq. (21).

� = �max,1S1

KS,1 + S1 + (KS,2/KS,1)S2 + (S1
3/KI,1

2)

+ �max,2S2

KS,2 + S2 + (KS,2/KS,1)S1

KI,1−P,2

KI,1−P,2 + (1 − S1)
(21)

The trajectories predicted by this model are shown in Fig. 4A–C
using the parameter values determined from the single-substrate
experiments and the value of KI,2-P,1 obtained in Section 3.3. This
model underpredicted the production of biomass and overpre-
dicted m-xylene and succinate concentration profiles for most of
the experiment.

A different form of interaction that is commonly used for an
enzyme and two substrates is noncompetitive inhibition. In this
case, both substrates are simultaneously bound to the enzyme
forming a nonreactive complex [37]. Based on this interaction the
growth model for noncompetitive inhibition is given in Eq. (22).

� = �max,1S1

(KS,1 + S1)(1 + (S2/KS,2)) + (S1
3/KI,1

2)

+ �max,2S2

(KS,2 + S2)(1 + (S1/KS,1))
KI,1−P,2

KI,1−P,2 + (1 − S1)
(22)

The model prediction presented in Fig. 4A–C shows that the
biomass dry cell weight and the substrates concentration calcu-
lated by this model, failed to follow the experimental data as the
consumption of both substrates was much faster experimentally
than predicted.

A similar type of inhibition to noncompetitive is uncompetitive

inhibition. However, in uncompetitive inhibition the inhibitor is
able to bind only to the enzyme–substrate complex and not to the
free enzyme. The model of cell growth in the presence of uncom-
petitive inhibition has been previously described [36] according to
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Fig. 4. Comparison of prediction of the double-substrate batch biodegradation
experiment from the different substrate interaction models. (A) Biomass dry cell
weight concentration, (B) m-xylene concentration, and (C) succinate concentration.
�: Biomass dry cell weight concentration – experimental; �: succinate concentra-
tion – experimental; �: m-xylene concentration – experimental; — —: competitive
inhibition model (biomass, m-xylene and succinate – predicted); – · – ·: non-
competitive inhibition model (biomass, m-xylene and succinate – predicted); – –
–
.
p

E

�

p
t
c

e

: uncompetitive inhibition model (biomass, m-xylene and succinate - predicted);
. .. . .: unspecified type of inhibition model (biomass, m-xylene and succinate –
redicted). The error bars are calculated for standard deviation.

q. (23).

= �max,1S1

KS,1 + S1(1 + (S2/KS,2)) + (S1
3/KI,1

2)

+ �max,2S2

KS,2 + S2(1 + (S1/KS,1))
KI,1−P,2

KI,1−P,2 + (1 − S1)
(23)

Similarly to the combined genetic circuit–growth kinetic model
resented above uncompetitive inhibition satisfactorily describes

he experimental data (Fig. 4A–C) confirmed by the high correlation
oefficient values obtained (Table 4).

Additionally to the three models developed in analogy to
nzyme kinetics, the SKIP model that does not specify the type of
ring Journal 55 (2011) 108–118 115

interaction was also applied. This model includes an interaction
parameter Ij,k in each Monod term indicating the degree to which
substrate j affects the biodegradation of substrate k. The SKIP model
was first formulated by Yoon et al. [36], which is presented in Eq.
(24).

� = �max,1S1

KS,1 + S1 + I2,1S2 + (S1
3/KI,1

2)

+ �max,2S2

KS,2 + S2 + I1,2S1

KI,1−P,2

KI,1−P,2 + (1 − S1)
(24)

The SKIP model accurately described biomass dry cell weight
concentration during the experiment. Furthermore, the prediction
of the SKIP model showed minor deviation from the experimentally
obtained substrates concentration producing an overall satisfac-
tory prediction of the system. The interaction parameter values
were estimated from this experiment and their values are given
in Table 2.

3.5. Succinate–m-xylene mixture: predictive experiment

Having confirmed that the combined, competitive inhibition
and SKIP models fitted best the parameter estimation experiment,
their predictive capability was tested with an independent experi-
ment. The initial succinate concentration was maintained the same
as in the parameter estimation experiment (14.1 mM), while m-
xylene concentration was reduced to 0.8 mM.

The duration of the lag-phase for each substrate was calcu-
lated from the genetic circuit model (Fig. 5D). The combined model
underpredicted and overpredicted to a minor extent the biomass
and succinate concentrations over time respectively, as confirmed
by the correlation coefficient values calculated between experi-
mental and modelling results (Table 4). However, the model closely
tracked m-xylene concentration and overall produced a satisfac-
tory description of the experimental data (Fig. 5A–C). On the
contrary, the competitive inhibition and the SKIP model failed to
describe the experimental results as confirmed by the values of
the correlation coefficient obtained. Interestingly, the SKIP and
the enzymatic kinetic models were also unsuccessfully applied to
describe both mixed-substrate experiments, using the information
from the genetic circuit model to predict the duration of the lag-
phase (data not shown). The results presented above confirm that
only the combined model can be predictive under different exper-
imental conditions, underlying the importance of incorporating in
growth kinetic models information from key genetic circuits.

3.6. Limitations of existing models

The number of modelling studies concentrating in biodegrada-
tion of mixed-substrates is limited compared to single-substrate
biodegradation. Especially when the substrates are differential,
triggering various parts of the cell’s metabolism, the modelling pro-
cess of cellular growth can be very complex resulting in very few
modelling studies being published in the particular subject. The
most common limitations identified when modelling the biodegra-
dation of mixtures of substrates are summarised in Table 5 and can
be divided in three main categories.

In the first category the lag-phase is not modelled and the mod-
els developed are used to predict only the post lag-phase period.
However, the lag-phase can vary substantially between single-
substrate and mixed-substrate biodegradation or when there is

a change in the experimental conditions. The lag-phase can be
a substantial part of batch processes and therefore the accurate
prediction of its duration can be very important for an accurate
description of these systems. Furthermore, in continuous appli-
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Fig. 5. Comparison of prediction of the model validation batch biodegradation experiment from the different substrate interaction models and the combined genetic
circuit–growth kinetic model. (A) Biomass dry cell weight concentration, (B) m-xylene concentration, (C) succinate concentration, and (D) Ps promoter relative activity.
I: Beginning of m-xylene biodegradation; II: beginning of succinate biodegradation; �: biomass dry cell weight concentration - experimental; �: succinate concentration
- experimental; �: m-xylene concentration – experimental; �: Ps activity – experimental; : combined genetic circuit–growth kinetic model (biomass, m-xylene and
s
x
fl

T
L

T
p
t

uccinate – prediction); – – –: uncompetitive inhibition model (biomass, m-xylene and
ylene and succinate – prediction);— - -: Ps activity – predicted. The Ps promoter activity
asks at each time point and the error bars are calculated for standard deviation.

able 5
imitations of the existing models.

Substrates Model type

Benzene, toluene, ethylbenzene and o-xylene
(BTEX) [10]

SKIP model

Benzene, toluene and phenol [6] SKIP model
Phenol, chlorophenol and sodium glutamate

(SG) [40]
Empirical kinetic model

Phenol and sodium salicylate [43] Competitive and uncompe
Naphthalene, phenanthrene and pyrene [8] Multisubstrate form of the

Toluene and phenol [4] SKIP model
Phenol and p-cresol [44] SKIP model
Toluene and trichloroethylene (TCE) [45] Competitive inhibition

Phenol and toluene [41] SKIP model
Binary and complex mixtures of polycyclic

aromatic hydrocarbons (PAHs) [46]
Multisubstrate biodegrada
accounting or not accounti
inhibition

Pentachlorophenol and Tween 20 [47] Contois model with substra
effects

Benzene, toluene, and p-xylene [48] Competitive inhibition
Glucose and 2,4-dichlorophenoxyacetate [49] Monod model accounting f

alternative substrates
Glucose and aniline [50] SKIP model
Phenol and 4-chlorophenol [51] Empirical kinetic model

he most common limitations identified have been grouped in three main categories. Cat
ost lag-phase data; Category 2: there is no comparison of the model’s prediction against a
he experimental results and it is not possible to predict a variety of multisubstrate exper
succinate – prediction); . . .. . .: unspecified type of inhibition model (biomass, m-
results are obtained as an average from 6 individual measurements for triplicate

Limitations

Category 1

Category 1
Category 3. The utilisation profile of SG is not
modelled and SG concentration is correlated
using a polynomial function

titive model Categories 1 and 3
Monod model Category 2. Biomass simulation results are

presented without experimental
measurements
Category 2
Category 2
Category 3. The kinetic model was not able to
predict the TCE removal in the absence of
toluene or at very low toluene concentrations
Category 3

tion kinetic models:
ng for competitive

Category 3. Neither of the two multisubstrate
models was clearly optimal in the present
study

te interaction Category 3. Finding a single set of kinetic
parameters that predicted all dual substrate
tests was not achieved
Category 2

or inhibition by Category 2

Category 2
The duration of the lag period is based on a
fitted curve of the initial substrate
concentration vs the lag period duration, for
only a narrow substrate concentration range

egory 1: the lag period is not modelled and the models are used to predict only the
n independent experiment; Category 3: the model predictions do not fit accurately
iments using a single set of parameters.
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ations with unstable substrates feed (e.g. fluctuating substrates
oncentration, starvation periods, sequentially alternating sub-
trates), which is commonplace at remediation sites [38], the
uration of the lag can be even harder to predict due to exces-
ive biomass inhibition or inactivation and biomass might require
onger time periods to re-establish its full biodegradation capac-
ty [39]. The failure of models to predict the lag-phase in some
ases highlights the importance of including in our models the exact
echanism for the production of enzymes with the incorporation

f the function of specific genetic circuits producing these enzymes.
Another common limitation, which has been reported for sev-

ral modelling studies on biodegradation of mixed-substrates, is
hen the predictive capability of the model is questionable. In most

f these cases there is no comparison of the model’s prediction
gainst an independent experiment and the predictive capability
f the model has only been tested with experimental data which
ave been also used for estimation of the model parameters.

Various modelling studies cannot accurately predict the exper-
mental results. It is evident that in many cases the models
eveloped are not optimal and it is not possible to predict a vari-
ty of multisubstrate experiments using a single set of parameters.
ikewise, in some cases the modelling process for the biodegrada-
ion of mixed-substrates is very complex and it is simplified with
he exclusion of the utilisation profile of a substrate or biomass
oncentration, which is often correlated using a polynomial func-
ion [40]. Furthermore, in cases where a mixture of substrates is
egraded by a mixture of microorganisms, interactions between
he microorganisms might also occur in conjunction with the
ubstrates interactions making the modelling process even more
omplex [41]. Therefore, although the determination of which
odel fits best to the experimental data might indicate the nature

f substrates interactions, none of these models might accurately
t the experimental data and the interaction indicated might not
e valid over a wide range of conditions [10]. Potential reasons for
eviation from enzymatic inhibition can be interactions at the level
f substrate transport into the cytoplasm, interactions with regula-
ory compounds or the presence of catabolic pathways which have
ot been identified yet [6]. Therefore, the substrate interactions
hat often occur cannot be accurately described using enzymatic
inetics and their true mechanisms should be considered in a
athematical model describing the function of key genetic circuits

ontrolling the production of enzymes. Also, since bioremediation
s often achieved by mixtures of microorganisms, in such cases
he modeller should even consider the molecular cell–cell commu-
ication mechanisms altering the function of key genetic circuits
42]. In line with the above, the combined model constitutes an
mprovement of the currently used models for predicting microbial
rowth kinetics and it has been used to predict the concentration
f biomass and of both differential substrates under a variety of
onditions.

. Conclusions

There is a need for the development of modelling approaches
hat account for gene regulation to describe unusual substrate
nteractions. The mathematical model presented in this study suc-
essfully combines the prediction of a key genetic circuit for the
ioprocess to the growth kinetics of the microorganism, produc-

ng a reliable description of the system’s performance. Although
he genetic circuit model was simulated from the beginning of the
xperiments to predict the duration of the lag-phase, the growth
inetic model could only be applied after the lag. The results show

hat it is possible to couple genetic information to metabolic models
mproving the prediction of bioprocesses with increased modelling
omplexity that currently used models fail to predict. Thus, with
he use of advanced genetic and biochemical techniques additional

[

[

ring Journal 55 (2011) 108–118 117

information about complex bioprocesses could be obtained facili-
tating the development of combined models accurately predicting
their behaviour. Following this approach, we could eventually have
activity levels of key genes, controlling upstream the production
of catabolic enzymes, linked to the cellular kinetics. Furthermore,
apart from the development of models used for the design, control
and optimisation of bioprocesses, the methodology of combining
key molecular interactions to growth kinetics can offer the prospect
of making model-driven questions on biology. In this way, certain
biological hypothesis can be either validated or disproved, assisting
to further our understanding of cellular mechanisms.
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