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Abstract

A platform that operates a social network allows firms to post display ads
to network members. Each member is interested in exactly one type of product.
The network structure is correlated with the profile of members’privately known
preferences over product types. The platform’s policy consists of a display rule
(which specifies the stationary probability with which each product is shown to
each network member, as a function of the network structure) and an advertis-
ing fee (which the platform charges from firms as a function of their reported
type). We provide conditions for the existence of an incentive-compatible policy
that maximizes and fully extracts firms’surplus. This objective is easier to at-
tain when the network is more informative of members’preferences, consumers
are more attentive to advertising and their frequency of repeated purchases is
higher, and advertisers are less informed of the network structure. We provide
a more detailed characterization when the network is generated according to the
“stochastic block model”, thus linking our model to the “community detection”
problem in Network Science.
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1 Introduction

The rise of modern online platforms has generated new opportunities for advertisers

in terms of personalizing and targeting their marketing messages. When consumers

access a platform, they leave a trail of information that may be correlated with their

consumption tastes. This correlation enables advertisers to achieve better targeting,

which in turn helps the platform increase its advertising revenues. In this paper, we

study targeted advertising when the platform operates a social network. Consumers

access the platform in order to cultivate relationships with other network members

- i.e., the platform’s primary function is not commercial but social. However, con-

sumers’ social activity generates valuable information for advertisers. In particular,

the structure of the social network, and the exact location of an individual consumer

in the network are informative of his preferences. For instance, if individuals exhibit

homophily - i.e., they associate with other individuals with similar interests and tastes

(see Kandell (1978)) - then a large cluster in the network indicates that its members

are likely to have similar tastes.

Our objective is to develop a modeling framework that addresses a number of key

questions: How can the platform use the information inherent in the network’s structure

to allocate display-ad slots to advertisers? What are the incentive constraints that

the platform faces? When can the platform overcome these incentive constraints and

fully extract advertisers’surplus? How is implementability of the platform’s objective

affected by various characteristics of its environment: the distribution of consumer

tastes, the way these tastes are correlated with the formation of social links, consumers’

attentiveness to advertising, the frequency of repeat purchases and the extent to which

advertisers are informed of the network structure?

In our model, there are two product types, x and y. Each type is offered by

a large number of firms (also referred to as advertisers). There is a collection of

n consumers. The type of each consumer is defined by the one product type he is

interested in. Consumers’privately known types are drawn i.i.d. Consumers are linked

by a social network, the structure of which is a stochastic function of the profile of

consumers’types. The social network is operated by a platform that enables firms to

post personalized display ads. Firms know the process that generates the network. As

a benchmark, we assume that they are uninformed of the realized network - we later

relax this assumption.

We consider a stationary environment in which each consumer type is in one of two

states - a “demand”state in which he is potentially interested in consuming his product

2



type, and a “satiation”state in which the consumer is not interested in consumption.

A consumer in the demand state switches to his satiation state as soon as he consumes

his product type. He switches back to the demand state with per-period probability ε.

At every time period, each consumer is exposed to a display ad that belongs to one

of the two product categories, x or y. While consumers have continual access to the

platform, their attention to advertising on the platform is limited: each consumer no-

tices his personalized display ad with probability θ at each period. When the consumer

notices an ad, he realizes whether it describes a product he likes. If it does, then a

consumer in his demand state transacts with the advertiser “offl ine”- i.e., outside the

platform - whereas a consumer in his satiation state does not transact. The consumer’s

presence at the platform continues uninterrupted even after he transacts because his

primary motivation for accessing it is the social network it operates. We abstract from

product prices, and assume that each firm aims to maximize its expected per-period

number of transactions.

The platform’s knowledge of the social network enables it to refine its beliefs re-

garding each consumer’s type. Therefore, although consumers are ex-ante identical,

the platform is able to tailor its ad display policy to individual consumers, according

to the information revealed by the realized network. The platform employs a station-

ary (personalized) display rule, such that the product category that is displayed to a

consumer is drawn independently at every period, according to a distribution that is

allowed to vary across consumers. Stationary display rules are justified by the assump-

tion that consumers have continual access (from “period minus infinity”) to the social

network, and that the platform cannot monitor whether consumers transact with firms

or pay attention to their ads. The platform’s policy consists of its chosen display rule

and an advertising fee, which is a per-period lump sum that is allowed to depend on

the firm’s type.

If the platform could identify firms’types, it would choose a policy that maximizes

and fully extracts firms’surplus (i.e., their per-period number of transactions). Because

of the uncertainty regarding consumer types and the restriction to stationary display

rules, the platform would find it optimal to use interior rules - i.e., it would display

both products with positive probability to some consumers and network realizations -

as long as ε/θ is not too high. At the other extreme, when ε/θ is high enough, the

optimal display rule is deterministic: each consumer will be exposed to exactly one

type of ad.

The key assumption in the paper, however, is that the platform is unable to di-

rectly verify advertisers’types. Therefore, the display-ad slots it allocates to each firm
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(according to its display rule) and the advertising fee it charges are based on the firm’s

self-reported type. To give a sense of what such self-reporting corresponds to in real

life, imagine that x and y represent different categories of holiday packages: resort vs.

active travel. In this context, reporting one’s type means self-selecting one of the two

categories for the purpose of getting advertising slots. Thus, advertisers communicate

to the platform which category of ad slots to apply to them. The probability with

which an advertiser will be displayed to members of the network will depend on its

selected category, and our question is whether advertisers will have an incentive to

select the appropriate category. The platform’s policy is incentive-compatible if every

advertiser wants to report truthfully, given that all other advertisers do so. Our main

problem is to characterize the situations in which the platform’s ideal policy (a.k.a its

first-best) is incentive-compatible.

It turns out that the possible optimality of interior display rules creates an incentive

issue that would not arise under deterministic rules. Our basic result is a necessary

and suffi cient condition for the implementability of the first-best when ε/θ is low (such

that the optimal display rule is interior for all consumers and network realizations).

Moreover, when ε/θ is suffi ciently low, the assumption that advertisers do not know

the realized network is important: If they were fully informed of the network structure,

the platform would be unable to implement the first-best.

The necessary and suffi cient condition is a simple inequality that incorporates two

quantities: (i) the extent to which the network is informative of consumers’ types

- measured by the Bhattacharyya Coeffi cient of similarity between the distributions

over realized networks conditional on the two possible consumer types; and (ii) the

ratio between the ex-ante probabilities that consumers like x and y. As the network

becomes more informative, and as the distribution over consumer tastes becomes more

symmetric, it gets easier to meet the condition. However, quantities (i) and (ii) are not

independent: the informativeness measure is sensitive to the distribution over consumer

types. This interdependence leads to a few surprising conclusions, as we will see below.

The necessary and suffi cient condition enables us to address some of the comparative-

statics questions raised in the opening paragraphs. An increase in consumers’atten-

tiveness, or a decrease in the frequency of repeat purchases, makes it harder to satisfy

the necessary condition and therefore magnifies the incentive constraints that limits

the platform’s ability to implement its first-best. The reason is that a lower ratio ε/θ

pushes optimal display probabilities away from the extremes, thus exacerbating the

incentive issues that arise from interior display rules.

While our basic result is straightforward to derive, working out its ramifications
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is non-trivial, because of the intricacies of calculating the Bhattacharyya Coeffi cient

induced by the joint distribution over consumer-type profiles and social networks. We

illustrate the basic result - and specifically, the interplay between the above factors

(i) and (ii) - with a familiar model of randomly generated networks, known as the

“stochastic block model”. This model has been extensively studied in the Computer

Science literature (e.g., see Mossel, Neeman and Sly (2012) and Abbe and Sandon

(2015)). It is parameterized by the size of the network n and a “connectivity matrix”

- i.e., a symmetric 2 × 2 matrix that specifies the probability of a link between any
pair of consumers as a function of their types. The stochastic block model subsumes

two natural models of network formation: the “homophily”case where identical types

are more likely to form a link, and the “extroversion/introversion” case where each

consumer type has a different propensity to initiate a link, and the probability of a link

between two consumer types is a product of their propensities.

Applying our main result to the stochastic block model, we show that when ε/θ is

small enough, the first-best is not implementable if the consumer type distribution is

either too biased in favor of one type or too close to being uniform. We also use the

stochastic block model to address the following question. Suppose that the platform

cannot prevent advertisers from learning the subgraph induced by the social network

over a random subset ofm nodes; how large canm be without destroying the first-best’s

implementability? We present a suffi cient condition that quantifies the upper bound

on m in terms of the consumer type distribution and the Bhattacharyya Coeffi cient

induced by the stochastic block model with n−m nodes.

A natural question for the stochastic block model is whether a larger network makes

it easier for the platform to implement its first-best. We first present a simple result:

for a fixed connectivity matrix, the first-best is implementable if n is suffi ciently large.

This is because the network becomes arbitrarily informative in the n→∞ limit. The

computer Science literature has addressed a substantially more diffi cult question. Sup-

pose that we raise n and lower the connectivity matrix at the same time, such that the

expected degree of an individual node grows only logarithmically in n; does the net-

work become arbitrarily informative in the n→∞ limit? Recently, Abbe and Sandon

(2015) derived a characterization of the connectivity matrices for which the answer is

affi rmative. We apply their result to obtain a suffi cient condition for the implementabil-

ity of the first-best, and illustrate it for the homophily and extroversion/introversion

specifications.
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Related literature

This paper belongs to a research agenda that explores novel incentive issues that arise

in modern online platforms. Our earlier exercise in this vein, Eliaz and Spiegler (2015),

studied an environment in which consumers submit noisy queries regarding their pref-

erences. A “search platform” responds to each query by providing consumers with

a “search pool” - i.e., a collection of products that they can browse via some search

process. The platform’s problem is to design a decentralized mechanism for effi ciently

allocating firms into these search pools, and for extracting the firms’surplus. Some

of the ingredients of our earlier exercise - notably the relevance of the above factors

(i) and (ii) for the implementation problem - reappear in the present model, albeit

for different reasons and in a somewhat different form. However, new substantive and

technical questions arise because of the specific context of social networks.

There has been a growing interest in targeted advertising in the I.O. literature. One

strand of this literature analyzes competition between advertising firms that choose

advertising intensity, taking into account the cost of advertising and the probability

that their advertising messages will reach the targeted consumers. Notable papers in

this literature include Iyer, Soberman and Villas-Boas (2005), Athey and Gans (2010),

Bergemann and Bonatti (2011), Zubcsek and Sarvary (2011) and Johnson (2013). A

second strand of this literature studies how to optimally propagate information about

a new product by targeting specific individuals in a network. Recent papers in this

strand include Galeotti and Goyal (2012) and Campbell (2015) (see Bloch (2015) for

a survey).

2 A Model

Let N = {1, ..., n} be a set of consumers (nodes), and let T = {x, y} be a set of product
types. Each product is offered by a number m of advertisers who can costlessly supply

any amount of this product. Each consumer is interested in exactly one product type.

We say that a consumer (advertiser) is of type x (y) if he (it) demands (supplies)

product x (y). We use ti to denote the type of consumer i ∈ N . If a consumer acquires
a product from an advertiser, the advertiser earns a fixed payoff of 1 (we abstract from

product pricing).1

Consumers and advertisers are brought together by a platform that operates a social

network - i.e., it enables consumers to form social links with each other. Whether a pair

1It is easy to adapt our analysis to the case of profit margins that vary across product types. We
assume symmetry across product types purely for notational simplicity.
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of consumers is linked depends stochastically on their types. The social links between

consumers define a network w, which is a non-directed graph over the set of nodes N .

The set of all possible networks is W . From now on, we will refer to elements in N as

consumers and nodes interchangeably.

Let µ be the joint distribution over the profile of consumer types and the social

network. We use µi(t, w) to denote the probability that a given consumer i is of type

t and the network is w. Let µi(x) =
∑

w∈W µi(x,w) be the ex-ante probability that

ti = x. Given some network w, the probability that ti = x is denoted µi(x | w).
Likewise, µ(w | ti) is the distribution over networks conditional on consumer i’s type.
We assume that µ is symmetric in the following sense. First, all consumers are ex-ante

identical - i.e., µi(x) = µ(x) for every i ∈ N . Second, suppose nodes i and j are

indistinguishable in the network w - i.e., any node h 6= i, j is linked to i if and only if

it is linked to j. Then, µi(x | w) = µj(x | w). Finally, denote µ(x) = π ≥ 1
2
.

We consider a stationary environment in which a consumer of type t is in one of

two states: state Dt, a “demand state”in which the consumer purchases product type

t whenever he notices an ad for it (we describe below the process by which ads are

displayed to consumers) and a state St, a “satiation state” in which the consumer is

not interested in consuming. A consumer who is in state Dt remains in that state until

he consumes product type t, in which case he switches to state St. A consumer who is

in state St returns to state Dt with independent per-period probability ε. Thus, the

parameter ε captures the frequency with which consumers are active in the product

market.

We assume that the platform observes the network, but does not directly observe

the types of consumers and advertisers. Each consumer and each advertiser only knows

its own type. In particular, advertisers do not observe the realized social network. We

will relax the latter assumption in Section 5.

An example: A three-node network with perfect homophily

The following specification will serve as a running example in the paper. Let n = 3

and assume that nodes i and j are linked in w if and only if ti = tj. Then, the network

is pinned down by the profile of consumer types. In particular, the only networks

that are realized with positive probability are the fully connected graph and a graph

in which exactly two nodes are connected. We can use this observation to calculate

µi(w | ti). For example, the probability that the network is fully connected conditional
on t1 = x is π2, while the probability of this network conditional on t1 = y is (1− π)2;
the probability of the network in which only 1 and 2 are linked conditional on t1 = x

is π(1− π); and so forth. �
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How does the platform match advertisers and consumers? At every time period

and for each consumer i, the platform selects an advertiser - according to a process

we will specify below - and displays it to the consumer in the form of an advertising

banner. The consumer notices the ad with probability θ > 0 (independently across

periods). The parameter θ captures the consumer’s attention to advertising on the

social network. If the consumer fails to notice the ad, it expires at the end of the

period and a new one is displayed in the next period. When the consumer notices

the ad, he instantaneously recognizes the advertised product. If it does not match his

type, the consumer takes no action and stays in the market where his exposure to ads

continues. If the advertised product matches the consumer’s type, he acquires it if and

only if he is in his demand state. After the consumer buys the product, he switches

to his satiation state but remains in the platform, as its primary function is the social

network it operates.

The platform’s objective is to maximize expected profits by assigning advertisers

to nodes and charging advertisers a per-period lump-sum access fee. The advertisers’

objective is to maximize their per-period expected profits. We assume that the platform

controls which advertiser is displayed to any consumer at any time period. However,

the platform cannot monitor whether the consumer is attentive to the ad, or whether

a transaction is made. This fits situations in which all interactions between consumers

and advertisers take place “offl ine”(i.e., outside the platform), and there is no notion

of “clicking”on display ads.

3 Basic Results

In this section we characterize the policy that would maximize the platform’s adver-

tising revenues if it could observe advertisers’types, and then derive conditions for the

incentive-compatibility of the optimal policy.

3.1 First-Best

The “first-best” outcome for the platform consists of an assignment of advertisers

to network nodes that maximizes the advertisers’ surplus, and a fee schedule that

fully extracts this surplus. We assume that the platform precommits to personalized,

stationary display rules. Stationarity is justified by the stationarity of the process

that governs consumers’switching between demand and satiation states, and by the

platform’s inability to monitor consumers’commercial activity.
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Formally, qi(t | w) is the probability that at any time period, the platform displays
an advertiser of type t ∈ {x, y} to consumer i, conditional on the realized network being
w. Of course, qi(y | w) ≡ 1 − qi(x | w). Conditional on displaying an advertiser of
type t, each of these advertisers is drawn with equal probability. Hence, the probability

that a particular advertiser of this type is displayed is qi(t | w)/m. We refer to q(w) =
(qi(x | w))i∈N as the platform’s display rule for w. Let Ft be the per-period fee the

platform charges from advertisers of type t . Denote q = (q(w))w∈W , F = (Fx, Fy).

The pair (q, F ) constitutes the platform’s policy.

Our objective is to characterize the policy that maximizes the platform’s advertis-

ing revenues. For this purpose, let us first derive the collection of display rules that

maximizes advertisers’surplus. The gross expected per-period payoff (without taking

into account any payment to the platform) for an advertiser of type t is calculated as

follows. For each consumer i ∈ N , we compute the invariant probability that the con-
sumer is in state Dt, and we multiply it by the probability that the consumer transacts

conditional on being in this state. Then, we sum over all consumers. To carry out this

calculation, let us first derive the invariant distribution over states of each consumer

type.

Given a network w and a display rule q(w), the transition probabilities between the

states of consumer i of type t are given by the following matrix:

Dt St

Dt 1− θqi(t | w) θqi(t | w)
St ε 1− ε

(1)

Hence, given w and q(w), the joint invariant probability that consumer i is in state Dt

is

ρt(i, w) ≡
λµi(t | w)
λ+ qi(t | w)

where

λ =
ε

θ

This parameter will play a key role in our analysis. It follows that the expected number

of transactions per period with advertisers of type t is∑
i∈N

∑
w∈W

µ(w)ρt(i, w)θqi(t | w) (2)
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Let q∗(w) be the display rule that maximizes the sum∑
i∈N
[ρx(i, w)θqi(x | w) + ρy(i, w)θqi(y | w)] (3)

We refer to q∗(w) as the “first-best”display rule for the network w. The “first-best”

fee that the platform charges advertisers of type t, denoted F ∗t , is defined to be the

amount that extracts the maximal expected surplus of these advertisers. I.e., F ∗t is

equal to (2) evaluated at q∗(w).

Note that for fixed µ, if consumers are suffi ciently inattentive (i.e., θ is suffi ciently

close to zero such that λ is suffi ciently high), the first-best display rule is generically

a corner solution: q∗i (t | w) = 1 if µi(t | w) > 1
2
. When q∗i (w) is interior, first-order

conditions imply

λ+ qi(x | w)
λ+ qi(y | w)

=

√
µi(x | w)
µi(y | w)

(4)

This allows us to solve explicitly for q∗i (x | w):

q∗i (x | w) =
(1 + λ)

√
µi(x | w)− λ

√
µi(y | w)√

µi(y | w) +
√
µi(x | w)

(5)

In particular,

q∗i (x | w)→
√
µi(x | w)√

µi(x | w) +
√
µi(y | w)

(6)

when λ tends to zero.

Henceforth, we assume that the primitives µ and λ are such that

λ

λ+ 1
<

√
µi(x | w)
µi(y | w)

<
λ+ 1

λ
(7)

for every w and every i, such that q∗(w) is an interior solution for every w.

3.2 Incentive Compatibility

Let us now assume that the platform is unable to directly verify advertisers’types, and

instead relies on their self-reports. A policy (q, F ) is incentive-compatible (IC) if no firm

has an incentive to misreport its type, given that every other firm reports truthfully.

When a single advertiser of type t misreports its type, it changes its probability of

display from qi(t | w)/m to qi(t′ | m)/(m+1). Hence, the transition probability fromDt
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to St changes to θ[qi(t | w)+qi(t′ | m)/(m+1)], since this consumer will make a purchase
if he is attentive and the displayed ad was either from one of the truthful x advertisers

or from the single deviant advertiser. Consequently, the invariant probability that

consumer i is in state Dt is

ρ′t(i, w) =
λµi(t | w)

λ+ qi(t | w) + qi(t′ | w) · 1
m+1

Note that ρ′t → ρt as m→∞.
It follows that an x advertiser weakly prefers not to report that its type is y if and

only if

∑
i∈N

∑
w∈W

µ(w)ρ′x(i, w)θ
qi(x | w)

m
− Fx ≥

∑
i∈N

∑
w∈W

µ(w)ρ′x(i, w)θ
qi(y | w)
m+ 1

− Fy

We refer to this inequality as the IC(x, y) constraint. The IC constraint of a y adver-

tiser, or IC(y, x), is similarly defined.

We wish to derive conditions under which the first-best policy (q∗, F ∗) is IC in the

m → ∞ limit. When it is, we say that the first-best is implementable. Because F ∗

fully extracts advertisers’surplus, the L.H.S of IC(x, y) and IC(y, x) is zero. In the

m→∞ limit, the inequalities thus reduce to∑
i∈N

∑
w∈W

µ(w)qi(y | w)(ρx(i, w)− ρy(i, w)) ≤ 0 (8)∑
i∈N

∑
w∈W

µ(w)qi(x | w)(ρy(i, w)− ρx(i, w)) ≤ 0

Plugging the solution for q∗ from the previous sub-section, we can obtain a necessary

and suffi cient condition for implementability of the first-best. However, in order to

present this condition in an interpretable, transparent form, we need to introduce a

new concept.

The Bhattacharyya Coeffi cient

Suppose that we knew the type of a particular consumer i. Then, we could update our

beliefs regarding the overall structure of the social network. The conditional distribu-

tions (µi(w | ti)w∈W , ti = x, y, describe these updated beliefs. The following measure

of similarity between these two conditional distributions turns out to play a key role
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in the condition for implementability of the first-best. Define

Si ≡
∑
w∈W

√
µi(w | x)µi(w | y)

In the Statistics and Machine Learning literatures, Si is known as the Bhattacharyya

Coeffi cient that characterizes the distributions µi(· | x) and µi(· | y).2 From a geometric
point of view, this is an appropriate similarity measure because Si is the direction cosine

between two unit vectors in R|W |, (
√
µi(w | x))w∈W and (

√
µi(w | y))w∈W . The value

of Si increases as the angle between these two vectors shrinks; Si = 1 if the two vectors

coincide; and Si = 0 if they are orthogonal.

More importantly, Si(x, y) is an appropriate similarity measure given our interpre-

tation of µi(· | x) and µi(· | y), according to which the realized network w serves as a
signal that indicates the types of individual consumers. Indeed, the stochastic matrix

(µi(· | t))t∈{x,y} can be viewed as an information system in Blackwell’s sense. The

following result (which is stated and proved in Eliaz and Spiegler (2015)) establishes a

link between Blackwell informativeness and the Bhattacharyya Coeffi cient.

Remark 1 The Bhattacharyya Coeffi cient Si decreases with the Blackwell informa-
tiveness of (µi(· | t))t∈{x,y}.

We will make extensive use of this observation in Sections 4 and 5. Finally, note

that by the symmetry assumptions we imposed on µ, Si is the same for all nodes, hence

in what follows we will suppress the subscript i.

The following remark states two additional useful properties of the Bhattacharyya

Coeffi cient.

Remark 2 Let w = (g, h). For each k = g, h and collection of conditional distributions

(p(k | t))k,t, define
Sp(k) =

∑
wk

√
p(k | x)p(k | y)

(i) If µ(w | t) = µ(g | t)µ(h | t), then S = Sµ(g)Sµ(h).

(ii) If µ(w | t) = α(g)βg(h | t), then S =
∑

g α(g)Sβg(h).

2See Basu, Shioya and Park (2011) and Theodoris and Koutroumbas (2008). A related concept is
the Hellinger distance between distributions, given by H2(x, y) = 1−

√
S(x, y).
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Part (i) says that the Bhattacharyya Coeffi cient induced by a collection of signals

that are independent conditional on the consumer’s type is the product of the Bhat-

tacharyya Coeffi cients of the individual signals. Part (ii) says that when one signal is

an independently distributed variable that merely determines the distribution of the

other signal conditional on the consumer’s type, the Bhattacharyya Coeffi cient is a

weighted average of the coeffi cients induced by the latter signal. The properties follow

immediately from the coeffi cient’s definition, and therefore the proof is omitted.

To illustrate the Bhattacharyya Coeffi cient in our context, let us revisit the three-

node example of Section 2. Let wijl denote the fully connected network, and let wij
denote the network in which only nodes i and j are linked. Then,

S =
√
µi(wijl | x)µi1(wijl | y) +

√
µi(wjl | x)µi(wjl | y) + 2

√
µi(wij | x)µi(wij | y)

In Section 2, we derived the values of the conditional probabilities that feature in this

expression. Plugging these values, we obtain S = 4π(1− π).

Necessary and suffi cient conditions for first-best implementability

The next result employs the Bhattacharyya Coeffi cient to derive a simple statement of

necessary and suffi cient conditions for implementability of the first-best.

Proposition 1 The first-best policy (q∗, F ∗) is implementable if and only if

S ≤ ( 1 + λ

1 + 2λ
)

√
1− π
π

+ (
λ

1 + 2λ
)

√
π

1− π (9)

Thus, implementability of the first-best depends on two factors: the two products’

“popularity ratio”π/(1−π), and the extent to which the social network is informative
of consumer types, captured by the Bhattacharyya Coeffi cient induced by µ. To get an

intuition for the result, consider the ε→ 0 limit, where repeat purchases by the same

consumer are rare, and condition (9) simplifies into

S

√
π

1− π ≤ 1 (10)

In this parameter regime, the optimal display probability qi(t | w) is proportional to the
square root of µi(t | w). By comparison, the first-best fee paid by a firm that submits

the report t is proportional to µ(t). Thus, although a product with high µi(t | w)
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gets an advantage in terms of display probability, the square root factor softens this

advantage.

The optimal policy’s differential treatment of display probabilities and fees is a

force that favors the less popular product y, thus creating an incentive for x firms to

misreport. When π/(1 − π) gets larger (holding S fixed), the gap between the fees

paid by the two types widens, and this exacerbates the misreporting incentive. As

the network becomes more informative, the values of µi(t | w) get closer to zero or
one, such that the “square root”effect vanishes, and this mitigates the misreporting

incentive. Finally, recall that the platform conditions the display probabilities on

w, whereas advertisers are uninformed of w at the time they submit their reports.

When the network is highly informative, a firm that chooses to misreport knows it will

be displayed with high (low) probability to consumers with low (high) probability of

transacting with it, and this is another force that mitigates the misreporting incentive.

The above discussion may give an impression that the two factors, captured by S

and π/(1−π), are independent. This is not the case, because changes in the consumer
type distribution generally lead to changes in the informativeness of the network. For

example, recall that in our simple three-node network with perfect homophily, S is a

strictly decreasing function of π (in the presumed π ≥ 1
2
range). In Section 4 we show

that implementability of the first-best is not monotone in π in the sense that when π

is close to 1 and also when π is close to 1
2
the first-best is not implementable when the

frequency of recurring purchases ε is small enough.

The probability ε of exiting the satiation state and the “attention parameter” θ

contribute to the coeffi cient λ/(1 + 2λ) that features in condition (9). Note that

λ/(1 + 2λ) ∈ (0, 1
2
) and that it increases with λ, implying that it increases with ε

and decreases with θ. The following result summarizes the comparative statics of the

necessary condition w.r.t λ.

Proposition 2 If the first-best is not implementable for a given λ, then it is not im-
plementable under λ′ < λ.

This observation follows from noting that π ≥ 1
2
. Thus, as consumers become more

attentive to ads, or as the frequency of repeat purchases declines, the necessary and

suffi cient condition for implementing the first-best becomes harder to meet.

The results in this section only rely on the view of µi(· | t) as a Blackwell infor-
mation system. The fact that w is a social network plays no role, and in principle the

same analysis would hold for an arbitrary signal w. Thus, one could argue that our
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insistence on the network interpretation is superfluous. However, note that there are

few other concrete examples for an aggregate signal that provides information about

the preferences of all consumers at the same time. But more importantly, in the next

section we will pour more content into the network interpretation of w and use it to

draw powerful implications from the basic results given in this section.

4 The Stochastic Block Model

Within the literature on random networks in various disciplines, a popular class of

specifications is the stochastic block model (SBM). An SBM is characterized by a triplet

(n, σ, P ), where n is the number of nodes, σ is a probability vector over k types and P

is a k×k symmetric matrix, where the entry Pij gives the independent probability that
a node of type i forms a link with a node of type j. In the case of two types (k = 2),

the type distribution σ is represented by π ∈ (0, 1) (the ex-ante probability that a node
is of type x); and the connectivity matrix P is characterized by three parameters: px,

the probability that two x types connect, py, the probability that two y types connect,

and pxy the probability that two different types connect. The components σ and P

generate a joint distribution µ over consumer-type profiles and social networks that

satisfies the symmetry properties we assumed in Section 2.

One of the central problems that is studied using SBMs is that of community de-

tection (see Mossel, Neeman and Sly (2012) and Abbe and Sandon (2015), and the

references therein). The objective is to identify with high probability the types of

nodes in a given network, under the assumption that the network was generated by a

known SBM. A growing literature in Computer Science and Machine Learning looks

for conditions on the SBM parameters that are necessary and suffi cient for identify-

ing node types (and for implementing the identification with computationally effi cient

algorithms). These conditions capture the extent to which the network is informative

about node types. Because this is also a crucial consideration for our problem of de-

signing incentive-compatible advertising policies, the community-detection literature

allows us to obtain simple suffi cient conditions for implementability of the first-best,

when the network formation process obeys an SBM.

When analyzing social networks, a natural question that arises is what induces two

agents to form a link. One popular theory, known as homophily, is that agents with

similar characteristics are more likely to connect. The connectivity matrix in this case

can be captured by two parameters: px = py = α, and pxy = β < α. An alternative

theory is that some agents have a greater propensity to form social links than others.
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We refer to this theory as extroversion/introversion. This case can also be represented

with two parameters α > β, such that px = α2, py = β2 and pxy = αβ.

Our first result in this section addresses the role of the consumer type distribution

given by π. It turns out that when the popularity gap is too large or too small, the

first-best is not implementable when λ is small.

Proposition 3 Fix n ≥ 2 and a generic P . (i) There exists π∗ ∈ (1
2
, 1) with the

property that for every π > π∗ there exists λ∗(π) such that for every λ < λ∗(π), the

first-best is not implementable. (ii) There exists π∗∗ ∈ (1
2
, 1) with the property that for

every π ∈ (1
2
, π∗∗) there exists λ∗∗(π) such that for every λ < λ∗∗(π), the first-best is

not implementable.

Proof. Our method of proof is to obtain two different lower bounds on S, and use
these bounds to derive π∗ and π∗∗.

(i) Fix a node i. Suppose that the platform were informed of the realized network w,

as well as of tj for all j 6= i. This would clearly be a (weakly) more informative signal

of ti than learning w only. Moreover, conditionally on learning (tj)j 6=i, the link status

between any j, h 6= i has no informational content regarding ti. Therefore, in order to

calculate a lower bound on S, we can consider a signal that consists of (tj)j 6=i and the

link status between i and every other j.

Let us calculate the Bhattacharyya Coeffi cient of the signal that consists of learning

tj and whether nodes i and j are linked:

√
πpx · πpxy +

√
π(1− px) · π(1− pxy)

+
√
(1− π)pxy · (1− π)py +

√
(1− π)(1− pxy) · (1− π)(1− py)

= π

(
√
pxpxy +

√
(1− px)(1− pxy)

)
+ (1− π)

(
√
pypxy +

√
(1− py)(1− pxy)

)
Because signals that correspond to different nodes j 6= i are independent conditional

on ti, the Bhattacharyya Coeffi cient of the signal that consists of (tj)j 6=i and the link

status between i and every other j is[
π

(
√
pxpxy +

√
(1− px)(1− pxy)

)
+ (1− π)

(
√
pypxy +

√
(1− py)(1− pxy)

)]n−1
Recall that by construction, this expression is weakly below S. Without loss of gener-
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ality, let

√
pxpxy +

√
(1− px)(1− pxy) ≤

√
pypxy +

√
(1− py)(1− pxy)

Then, S is weakly above

δ ≡
(
√
pxpxy +

√
(1− px)(1− pxy)

)n−1
For generic P (in particular, when all matrix entries get values in (0, 1)), this term is

strictly positive.

Let π∗ satisfy
√
(1− π∗)/π∗ = δ2, where δ < 1

2
. For any π > π∗ let

√
(1− π)/π =

δ̂
2
where δ̂ < δ. Define λ∗(π) by λ∗/(1 + 2λ∗) = δ̂

4
. Hence, for π > π∗ and λ < λ∗(π)

we have

(1− λ

1 + 2λ
)(
1− π
π

) + (
λ

1 + 2λ
)(

π

1− π ) < (1− δ̂
4
)δ̂
4
+ δ̂

4 · 1
δ̂
2 < 2δ̂

2
< δ

Therefore, there exists π∗ ∈ (1
2
, 1) with the property that for every π > π∗ there

exists λ∗(π) such that for π and λ ≤ λ∗(π) we have

S ≥
(
√
pxpxy +

√
(1− px)(1− pxy)

)n−1
> (1− λ

1 + 2λ
)(
1− π
π

) + (
λ

1 + 2λ
)(

π

1− π )

which means that the necessary condition for implementability of the first-best is vio-

lated.

(ii) Let us now obtain a different lower bound on S. Once again, we use the fact that S

decreases with the informativeness of the signal given by the network. For fixed n and

π, this informativeness is maximal under perfect homophily - i.e., when px = py = 1

and pxy = 0 - because any other connectivity matrix P represents a Blackwell garbling

of it.

Assume perfect homophily, and consider an arbitrary node. Conditional on this

node’s type, if we learn whether it is linked to the other nodes, we do not gain any

additional information from learning the links among these other nodes. The reason

is that conditional on the node’s type, it is linked to another node if and only if their

types are identical. Thus, knowing the node’s type and its link status with all other

nodes, we can entirely pin down the rest of the network. Moreover, conditional on the

node’s type, its link status with respect to some node is independent of its link status

with respect to another node.
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It follows that the signal given by the network under perfect homophily is equivalent

to a collection of n−1 independent signals: each signal generates a link with probability
π (1 − π) conditional on the original node’s type being x (y). The Bhattacharyya

Coeffi cient for this network is thus(√
π(1− π) +

√
(1− π)π

)n−1
Since this expression is weakly lower than S, the following inequality is a necessary

condition for the implementability of the first-best:

(√
4π(1− π)

)n−1
≤ ( 1 + λ

1 + 2λ
)

√
1− π
π

+ (
λ

1 + 2λ
)

√
π

1− π

By multiplying both sides of the inequality by
√
π/(1− π) we can rewrite it as follows:

2n−1π
n
2 (1− π)n2−1 ≤ ( 1 + λ

1 + 2λ
) + (

λ

1 + 2λ
)(

π

1− π ) (11)

The inequality is binding for π = 1
2
. We wish to show that there exists π∗∗ suffi ciently

close to 1
2
with the property that for every π ∈ (1

2
, π∗∗) there exists λ∗∗(π) such that

condition (11) is violated for every λ < λ∗∗(π). To show this, it suffi ces to construct

π∗∗ and λ∗∗(π) such that for every π ∈ (1
2
, π∗∗) and λ < λ∗∗(π), the derivative w.r.t. π

of the L.H.S of (11) is strictly higher than the corresponding derivative of the R.H.S.

The derivative w.r.t π of the L.H.S of (11) is equal to

2n−1π
n
2
−1(1− π)n2−2[n

2
− π(n− 1)] (12)

which is positive if 1
2
< π < n

2(n−1) . Since the expression (12) equals 2 when π =
1
2
, is

it strictly above one when π is suffi ciently close to 1
2
.

The derivative w.r.t. π of the R.H.S. of (11) is equal to λ/[(1+2λ)(1−π)2], which,
for all π ∈ (1

2
, 1), is positive and increasing in π and λ. Given π ∈ (1

2
, π∗∗), let λ∗∗(π)

be the solution to the equation

λ∗∗(π)

1 + 2λ∗∗(π)
· 1

(1− π)2 = 1

Hence, for any π ∈ (1
2
, π∗∗) and any λ < λ∗∗(π), the derivative w.r.t π of the L.H.S of

(11) is strictly higher than the corresponding derivative of the R.H.S.

Thus, an intermediate popularity gap is necessary for implementability of the first-
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best under the SBM. The intuition behind the case of a large popularity gap (i.e., π close

to 1) is simple. For generic P and fixed n, there is an upper limit to the network’s

informational content, which implies a positive lower bound on the Bhattacharyya

Coeffi cient. Moreover, this lower bound is independent of π. Therefore, a suffi ciently

large π induces an adverse “popularity gap”factor that overweighs whatever positive

effect it may have on the informativeness factor.

The case of a low popularity gap (i.e., π close to 1
2
) is less obvious. In this case, the

network is very uninformative about the nodes’types. For example, in the homophily

case, if α is high and β is low, then with high probability the network will consist of

two fully connected components, yet they will tend to be similar in size and it will

be diffi culty to identify the type of consumers that belong to each component. Thus,

both S and (1 − π)/π will be close to one in the π → 1
2
regime, and it is not clear a

priori whether the condition for implementability of the first-best will hold. However,

it turns out that when π is close to 1
2
, the popularity-gap effect due to changing π

overweighs the informativeness effect.

A simple corollary of Proposition 3 is that for every π there exists λ(π) such that

for every λ < λ(π), the first-best is not implementable under any SBM with n = 2.

This observation brings us to the role of n. The following result provides a suffi cient

condition for implementability of the first-best.

Proposition 4 Fix π ∈ (1
2
, 1) and P with px 6= py. Then, there exists n∗ such that the

first-best is implementable for all SBMs (n, π, P ) with n > n∗.

Proof. Fix an arbitrary node i. Suppose that we were given a signal that only describes
whether there is a link between i and some given node j 6= i. The probability of a link

conditional on ti = x is ηx = πpx+(1−π)pxy, and the probability of a link conditional
on ti = y is ηy = πpxy + (1 − π)py. Therefore, the Bhattacharyya Coeffi cient that

corresponds to this signal is

√
ηxηy +

√
(1− ηx)(1− ηy)

Now suppose that we are given a signal that describes whether there is a link between

i and each of the other n− 1 nodes. Since the probability of such a link is independent
across all j 6= i conditional on ti, the Bhattacharyya Coeffi cient that corresponds to

this signal is

[
√
ηxηy +

√
(1− ηx)(1− ηy)]n−1 (13)
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Now, observe that this signal is weakly less informative than learning the entire network

w. Therefore, S is weakly below the expression (13). It follows that the following

inequality is a suffi cient condition for the implementability of the first-best:

[
√
ηxηy +

√
(1− ηx)(1− ηy)]n−1 ≤ (

1 + λ

1 + 2λ
)

√
1− π
π

+ (
λ

1 + 2λ
)

√
π

1− π (14)

By our assumptions on π and P , √ηxηy +
√
(1− ηx)(1− ηy) < 1. In addition, for any

π and λ that satisfy (7), the R.H.S. of (14) is bounded away from zero. Therefore,

there exists n∗ such that the inequality holds for every n > n∗.

Thus, for a large enough network, incentive compatibility does not constrain im-

plementing the first-best. To see why, think of the extreme case of perfect homophily,

where α = 1 and β = 0. Then, any realized network consists of two fully connected

components. When n is large, the probability that the larger component consists of

x consumers is close to one. When n → ∞, the network thus becomes arbitrarily
informative, such that S becomes arbitrarily close to zero, and the condition for im-

plementability of the first-best is satisfied.

To get some quantitative sense of the implications of the suffi cient condition, con-

sider the following table, which provides values of n∗ for various specifications of the

homophily case:
π α β λ n∗

0.6 0.1 0.05 0 1, 124

0.6 0.1 0.02 0 356

0.75 0.1 0.05 0 485

0.75 0.1 0.02 0 151

0.6 0.01 0.005 0 12, 060

0.6 0.01 0.002 0 3, 762

0.999 0.1 0.05 0 748

0.75 0.1 0.05 0.25 232

0.75 0.1 0.02 0.25 73

This table illustrates the various forces that affect implementability of the first-best:

the non-monotonic effect of π, the negative effect of low connectivity, the positive effect

of strong homophily (captured by a large α/β ratio), and the positive effect of raising

λ.

Up to now we assumed that the likelihood of forming links does not change as

we increase the network size. Thus, the expected degree of a node was linear in n.
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However, in the context of social networks, it makes sense to assume that the average

number of links that a node forms grows at a slower rate than the network size. As

a result, the network will become more sparse as it grows larger. In this case, it is

not clear whether a larger network will be more informative than a smaller one, and

therefore it is not clear whether the first-best will more easier to implement when the

network is large.

To address this question, we follow the community detection literature and assume

that the expected degree of a node grows logarithmically with n. Specifically, we assume

that the connectivity matrix P depends on n, such that

px = a2
ln(n)

n

pxy = b2
ln(n)

n

py = c2
ln(n)

n

where a, b, c are arbitrary constants. Using recent advances in the community detec-

tion literature, we derive a suffi cient condition for implementability of the first-best.

Specifically, we borrow existing necessary and suffi cient conditions for exact recovery of

two asymmetric “communities”. By exact recovery, we mean that for a given network,

there exists an algorithm that can identify the type of each node with a probability

arbitrarily close to one. If exact recovery is feasible, then the network is almost per-

fectly informative. If node i is identified as type x (y) with probability close to one,

then the probability of the observed network w is close to one conditional on ti = x

(y) and close to zero conditional on ti = y (x). This implies that S is close to zero and

therefore the condition for implementability of the first-best holds. For simplicity, we

state the next result for the λ→ 0 limit.

Proposition 5 In the n→∞ and λ→ 0 limit, the first-best is implementable if

π(a− b)2 + (1− π)(c− b)2 ≥ 2 (15)

Proof. Let n → ∞. Given the preceding paragraph, it suffi ces to derive a suffi cient
condition for exact recovery. By Abbe and Sandon (2015), such a network is exactly

recoverable if and only if

max
r∈[0,1]

{
r[πa2 + (1− π)b2] + (1− r)[πb2 + (1− π)c2]− πa2rb2(1−r) − (1− π)b2rc2(1−r)

}
≥ 1
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A suffi cient condition for this inequality to hold is that the maximand of the L.H.S is

weakly greater than one for r = 1
2
- i.e., if

π(
a2 + b2

2
) + (1− π)(c

2 + b2

2
)− π(ab)− (1− π)(cb) ≥ 1

which is equivalent to (15).

Note that in the homophily case, a = c, while in the extroversion/introversion case

b =
√
ac. Thus, Proposition 5 implies the following.

Corollary 1 In the n → ∞ and λ → 0 limit, the first-best is implementable in the

homophily case if

(a− b)2 ≥ 2

while in the extroversion/introversion case, the first-best is implementable if

(πa+ (1− π)c)(
√
a−
√
c)2 ≥ 2

Thus, when connectivity increases logarithmically with network size, a suffi cient

condition for implementability of the first-best for a large network is that the homophily

or extroversion/introversion effects are suffi ciently strong.

5 Informed Advertisers

So far, we assumed that advertisers are entirely uninformed of the realization of the

network w. Relaxing this assumption raises a natural question: can the platform

benefit from releasing information to the advertisers? Our first result in this section

is a negative answer to this question. This finding then raises an immediate follow-

up question: when advertisers can gain information about the network structure by

sampling part of it, how large can this part be without destroying the platform’s ability

to implement the first-best?

To address the first question, suppose that an advertiser receives a signal s regarding

the realization of w. Let r be the joint distribution over networks w and signals s, such

that r(s | w) is the probability that an advertiser receives the signal s conditional on the
realized network being w. Conversely, let r(w | s) be the probability that the realized
network is w conditional on the signal being s. We allow signals to be correlated across

advertisers conditional on w. A plausible example of a signal in this context is that the
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advertiser learns the subgraph induced by w over some subset of nodes. The platform

does not observe the advertisers’signals.

We extend the incentive-compatibility requirement such that it needs to hold for

every realization of s - that is, advertisers learn s when they report their type. In

principle, because an advertiser’s type now consists of both its product type and its

information, one would like the pair (q, F ) to condition on both. In other words, theo-

retically advertisers need to report both components of their type. However, because

the optimal display rule is only a function of advertisers’ product types, it is easy

to show that the platform’s ability to implement the first-best is unaffected if it also

requires platforms to report their signal. Therefore, we will continue to assume that

advertisers only report their product type, and this report is the only input that feeds

(q, F ). Then, the original IC constraints (8) are exactly the same, except that the

term µ(w) is replaced with r(w | s). We only require advertisers’IR constraint to bind
ex-ante - i.e., on average across signal realizations.

It follows that in the m → ∞ limit, the necessary and suffi cient condition for

implementability of the first-best can be written as follows. For every realization of s

and every t, t′ ∈ {x, y},∑
w∈W

r(w | s)
∑
i∈N

qi(t | w)(ρt′(i, w)− ρt(i, w)) ≤ 0 (16)

By Blackwell’s ranking of information systems, r′ is less informative than r if there

is a system of conditional probabilities (p(s | s′))s,s′ , such that for every w, s,

r′(s | w) =
∑
s′

p(s | s′)r(s′ | w)

The following result establishes that the platform benefits fromwithholding information

about the network structure from advertisers. Let w∗ and w∗ denote the fully connected

and empty networks, respectively.

Proposition 6 (i) If the first-best is implementable under r, then it is implementable
under any r′ that is less informative than r. (ii) Suppose µ(x | w∗) 6= 1

2
or µ(x | w∗) 6=

1
2
. Then, there exists λ∗ > 0 such that if advertisers are fully informed of w (i.e.,

r(w | w) = 1 for every w), the first-best is not implementable for all λ < λ∗.

The reason why withholding information about w from advertisers cannot harm the

platform is standard - it means that IC constraints that previously held for all signals
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are now required to hold only on average. Part (ii) of the result establishes that

this monotonicity result is not vacuous: giving advertisers full information about the

network will prevent the platform from implementing its first-best when λ is small. This

part is based on a very mild condition on the relation between the network structure

and the types of individual consumers - namely, that it is impossible for both the fully

connected and empty networks to induce a uniform posterior. The SBM discussed in

the previous section clearly satisfies this property.

Suppose that the platform cannot prevent advertisers from getting some informa-

tion about the network; how much information can it afford to give away? In particular,

consider an SBM and assume that each advertiser get information by sampling a ran-

dom subset of no more than m nodes (out of the total of n nodes in the network),

and learning the subgraph over these m nodes that is induced by w. Recall that w is

realized according to a given SBM. Hence, the Bhattacharyya Coeffi cient can be de-

fined for any subgraph of w consisting of k nodes, k = 1, ..., n (where the connectivity

matrix is fixed). Denote this coeffi cient by S(k).

Proposition 7 Suppose each advertiser is informed of the subgraph induced by w over
a random subset of at most m nodes. If

S(n−m) ≤ 1√
π(1− π)

[
λ+ (1− π)
1 + 2λ

− ( m

n−m)(
√
2− 1
2

)

]
(17)

then the first-best is implementable.

Proof. Suppose an advertiser learns the subgraph induced by w over some subset of
nodes N1 (the size of which is n1). We can represent w as a triple (g1, g2, h), where g1
is the subgraph that the advertiser learns, g2 is the subgraph induced by w over the

remaining set of nodes N2 = N−N1 (the size of which is n2), and h consists of all links
between a node in N1 and a node in N2. Because w is generated by an SBM and g1
and g2 are defined over disjoint sets of nodes, g1 and g2 are independently distributed.

The necessary and suffi cient condition for implementability of the first-best is that

for every signal g1,∑
g2,h

µ(g2, h | g 1)
∑
i∈N

√
µi(x | g1, g2, h)µi(y | g1, g2, h) ≤ (18)

∑
g2,h

µ(g2, h | g 1)
∑
i∈N

[
1 + λ

1 + 2λ
µi(y | g1, g2, h) + (

λ

1 + 2λ
)µi(x | g1, g2, h)

]
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and ∑
g2,h

µ(g2, h | g 1)
∑
i∈N

√
µi(x | g1, g2, h)µi(y | g1, g2, h)≤ (19)

∑
g2,h

µ(g2, h | g 1)
∑
i∈N

[
1 + λ

1 + 2λ
µi(x | g1, g2, h)+

λ

1 + 2λ
µi(y | g1, g2, h)

]

By construction, g1 and g2 are independent, such that we can write

µ(g2, h | g1) = µ(g2)µ(h | g1, g2)

and observe that

µi(x | g1, g2) =
∑
h

µ(h | g1, g2)µi(x | g1, g2, h)

Applying the Cauchy-Schwartz inequality, we obtain√
µi(x | g1, g2)µi(y | g1, g2) ≥

∑
h

µ(h | g1, g2)
√
µi(x | g1, g2, h)µi(y | g1, g2, h)

It follows that inequalities (18)-(19) are implied by the following, simpler inequalities:

∑
i∈N

[∑
g2

µ(g2)
√
µi(x | g1, g2)µi(y | g1, g2)−

1 + λ

1 + 2λ
µi(y | g1)−

λ

1 + 2λ
µi(x | g1)

]
≤ 0

∑
i∈N

[∑
g2

µ(g2)
√
µi(x | g1, g2)µi(y | g1, g2)−

1 + λ

1 + 2λ
µi(x | g1)−

λ

1 + 2λ
µi(y | g1)

]
≤ 0

Consider first the top inequality. We can break the summation over i ∈ N into two

summations over N1 and N2. Because g1 and g2 are independent, for every i ∈ N1

we can write µi(x | g1, g2) = µi(x | g1). Similarly, for every i ∈ N2 we can write

µi(x | g1, g2) = µi(x | g2) and µi(x | g1) = µi(x) = π. It follows that the inequality can
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be rewritten as

∑
i∈N2

[∑
g2

(
µ(g2)

√
µi(x | g2)µi(y | g2)− (

1 + λ

1 + 2λ
)µi(y | g1)− (

λ

1 + 2λ
)µi(x | g1)

)]
+

∑
i∈N1

[∑
g2

(
µ(g2)

√
µi(x | g1)µi(y | g1)− (

1 + λ

1 + 2λ
)µi(y | g1)− (

λ

1 + 2λ
)µi(x | g1)

)]
≤ 0

The top sum can be simplified into

n2S(n2)
√
π(1− π)− n2(

1 + λ

1 + 2λ
)(1− π)− n2(

λ

1 + 2λ
)π

while the bottom sum can be grouped together as

∑
i∈N1

[√
µi(x | g1)µi(y | g1)− (

1 + λ

1 + 2λ
)µi(y | g1)− (

λ

1 + 2λ
)µi(x | g1)

]
≤ n1 · max

a∈{0,1}
max
d∈[0,1]

[√
d(1− d)− ad− (1− a)d

]
= n1 ·

√
2− 1
2

Plugging this term and exploiting the assumption that π > 1
2
, we can now obtain the

following suffi cient condition for implementability of the first-best:

n2

[
S(n2)

√
π(1− π)− λπ

1 + 2λ
− (1 + λ)(1− π)

1 + 2λ

]
+ n1

√
2− 1
2

≤ 0 (20)

Substituting m for n1 and n−m for n2 yields the desired condition.

Inequality (17) is a suffi cient condition for implementability of the first-best. When

π and the connectivity matrix that define the SBM are fixed, the inequality is stated

entirely in terms of m and n. In principle, it is also possible to calculate S(n −
m), and because (17) is a suffi cient condition, we can use upper bounds on S(k)

derived in Section 4 to get a closed-form upper bound on m, such that the first-

best is implementable for any value of m below that bound. Finally, the comparative

statics w.r.t m is consistent with our previous results. When m increases, the R.H.S

of (17) clearly goes down, whereas S(n −m) goes up, because a smaller network is a
less informative signal. Thus, a larger m makes is more diffi cult to satisfy the suffi cient

condition.
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6 Extensions

In this section we briefly discuss two natural extensions of our model.

Additional consumer observables

As mentioned before, the basic results of Section 3 do not rely on the interpretation

of w as a network - it can be any signal about consumer types. In particular, the

description of w may consist of the realized network as well as personal information

about consumers (demographic characteristics, actions they took within the confines

of the social network that indicate their preferences, etc.). The following is an example

of how this extension may change the analysis of the SBM specification in Section 4.

Suppose that a consumer i ∈ N is characterized by a pair (ti, ai), where ti ∈ {x, y}
is the usual preference type and ai ∈ {1, 2} is a demographic characteristic. The ex-
ante probability that ai = 1 (for any i), denoted γ, is independent of ti. As before,

the platform does not observe ti. However, we assume that the platform does observe

ai. Thus, w consists of the realized network and the profile (a1, ..., an). Suppose that

if ai 6= aj, then consumers i and j form a link with probability zero. The probability

of a link between consumers i and j with ai = aj = a is a function of ti and tj, given

by a symmetric 2× 2 connectivity matrix P a, as before.

We now provide a characterization of the Bhattacharyya Coeffi cient that is induced

by this process. When the platform learns the profile (a1, ..., an), it can partition N

into two sets, N1 and N2, such that ai = k for every i ∈ Nk. By assumption, the two

subgraphs over N1 and N2 induced by the network, denoted w1 and w2, are necessarily

mutually isolated. The absence of a link between nodes that belong to different sets

conveys no information, given that we know the realization (a1, ..., an). Therefore,

w1 and w2 are independently drawn conditional on the realization of (a1, ..., an). The

Bhattacharyya Coeffi cient of a signal that consists of the two graphs over N1 and N2
is thus S(1, n1) · S(2, n2), where S(k, nk) is the Bhattacharyya Coeffi cient of an SBM
defined by (nk, π, P k). To obtain the Bhattacharyya Coeffi cient of the entire process,

we need to average out over all possible realizations of N1 and N2:

S =

n∑
r=1

(
n

r

)
γr(1− γ)n−rS(1, r)S(2, n− r)

We can now plug this expression for S into necessary or suffi cient conditions for im-

plementability of the first-best.

Many product types

Throughout this paper, we assumed that there are only two product types, x and y.
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Now suppose that there are K > 2 product types, denoted x1, ..., xK . Consider the

case in which qi(xk | w) > 0 for all i ∈ N , w ∈ W and k = 1, ..., K. Then, it is

straightforward to show that a necessary and suffi cient condition for implementability

of the first-best is that for every pair of types xk and xm,

S(k,m) ≤ ( 1 + λ

1 + 2λ
)

√
µ(xk)

µ(xm)
+ (

λ

1 + 2λ
)

√
µ(xm)

µ(xk)

where µ(xk) is the ex-ante probability that a consumer wants xk, and S(k,m) is the

Bhattacharyya Coeffi cient of the conditional distributions (µ(w | xk))w∈W and (µ(w |
xm))w∈W . This condition is an immediate extension of the condition for two product

types.

7 Conclusion

We presented a modeling framework that sheds light on some of the forces that shape

the optimal design of incentive-compatible advertising on social networks. Our results

illuminate how the distribution over consumer preferences and the process that gener-

ates the social network affect the incentive issues that the platform faces when designing

personalized display rules and setting advertising fees. The results also demonstrate

the non-trivial effects of consumers’attentiveness to advertising and their frequency of

repeat purchases. Finally, the analysis highlights - and to some extent quantifies - the

importance of keeping advertisers uninformed of the structure of the social network.

Perhaps the most intriguing aspect of our model is the connection to the community

detection problem. Given that the latter is an active research area in Network Science,

we hope that future results in this literature will generate additional insights into the

question of incentive-compatible advertising on a social network.

Appendix: Proofs
Proposition 1
From (7), it follows that (5) characterizes the first-best display policy. Plugging this

expression for qi(t | w) into the IC(x, y) constraint (8) yields the following inequality∑
i∈N

∑
w∈W

µ(w)·
√
µi(x | w)µi(y | w) ≤

∑
i∈N

∑
w∈W

µ(w)·[( 1 + λ

1 + 2λ
)µi(y | w)+(

λ

1 + 2λ
)µi(x | w)]

Note that µ(w)µi(t | w) = µi(t, w) and
∑

w∈W µi(x,w) = π. The above inequality can
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thus be rewritten as∑
i∈N

∑
w∈W

√
µi(x,w)µi(y, w) ≤ n(

1 + λ

1 + 2λ
)(1− π) + n(

λ

1 + 2λ
)π (21)

Because µi(x,w) = πµi(w | x) and µi(y, w) = (1− π)µi(w | y), we can express (21) as
the following inequality,

∑
i∈N

∑
w∈W

√
µi(w | x)µi(w | y) ≤ n(

1 + λ

1 + 2λ
)

√
1− π
π

+ n(
λ

1 + 2λ
)

√
π

1− π

By the ex-ante symmetry of nodes, the L.H.S. of the above inequality is simply nS, so

that this inequality reduces to

S ≤ 1 + λ

1 + 2λ

√
1− π
π

+
λ

1 + 2λ

√
π

1− π (22)

If we carry out a similar exercise for IC(y, x), we obtain the inequality

S ≤ 1 + λ

1 + 2λ

√
π

1− π +
λ

1 + 2λ

√
1− π
π

By assumption, π ≥ 1
2
. And since 1 + λ > λ, the only inequality that matters is (22),

which is precisely the condition (9).

Proposition 6
(i) The proof is entirely rudimentary and standard. Nevertheless, we give it for com-

pleteness. By assumption, inequality (16) holds for every s. Using the definition of

Blackwell informativeness, we can write

r′(w | s) =
µ(w)

r′(s)
r′(s | w) = µ(w)

r′(s)

∑
s′

p(s | s′)r(s′ | w)

=
µ(w)

r′(s)

∑
s′

p(s | s′)r(s
′)r(w | s′)
µ(w)

=
∑
s′

p(s | s′)r(s′)
r′(s)

r(w | s′)

where r(s′) is the ex-ante probability of the signal s′ under r, and r′(s) is the ex-ante

probability of the signal s under r′. Now, elaborate the term

p(s | s′)r(s′)
r′(s)

=

∑
w µ(w)p(s | s′)r(s′ | w)∑

s′′
∑

w µ(w)p(s | s′′)r(s′′ | w)
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We can easily see that this term is between 0 and 1, and that

∑
s′

p(s | s′)r(s′)
r′(s)

= 1

It follows that for every s, r′(w | s) is some convex combination of (r(w′ | s))w′.
Therefore, given that under r, (16) holds for every s, it must hold under r′ as well.

(ii) Suppose that advertisers are fully informed of the realization of w. Then, the

necessary and suffi cient conditions for implementability of the first-best are that for

every w,

∑
i∈N

√
µi(x | w)µi(y | w) ≤

∑
i∈N

[
1 + λ

1 + 2λ
µi(y | w) +

λ

1 + 2λ
µi(x | w)

]
∑
i∈N

√
µi(x | w)µi(y | w) ≤

∑
i∈N

[
1 + λ

1 + 2λ
µi(x | w) +

λ

1 + 2λ
µi(y | w)

]

Let w ∈ {w∗, w∗}. Then, w is a symmetric signal - i.e., µi(x | w) is the same for all
i ∈ N , such that we can remove the subscript i and the summation over i from both

inequalities. The inequalities then reduce to

1 ≤ (
1 + λ

1 + 2λ
)

√
µ(y | w)
µ(x | w) + (

λ

1 + 2λ
)

√
µ(y | w)
µ(x | w) (23)

1 ≤ (
1 + λ

1 + 2λ
)

√
µ(x | w)
µ(y | w) + (

λ

1 + 2λ
)

√
µ(x | w)
µ(y | w) (24)

Because µ(x | w∗) 6= 1
2
or µ(x | w∗) 6= 1

2
, either µ(x | w) > µ(y | w) or µ(x | w) >

µ(y | w). Assume w.l.o.g that µ(x | w∗) > µ(y | w∗). Since inequality (24) is violated
for λ = 0, there exists λ∗ > 0 such that this inequality would also be violated for all

λ < λ∗.
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