
 מרוכבים מספרים

 

Z=השלמים קבוצת,Q=רציונליים,R=ממשיים 

 

 הגדרה

z=a+biεC 

a,bεR,i²=-1 

C המרוכבים קבוצת נקראת 

 

 a-bi - צמוד

 מהאפס הנקודה מרחקz|=√(a²+b²=)| :מוחלט ערך

 Re(z)=a,Im(z)=b: ומדומה ממשי חלק

 

 

 

 (6 עמוד)3.4 תרגיל

 הבאים מהביטויים אחד לכל

 ,הביטוי ערך את חשבו( א

 המדומה החלק ואת ממשי החלק את, הצמוד את, המוחלט הערך את ציינו( ב

3)z=(5+2i)(2-3i) 

 z=(5+2i)(2-3i)=10-15i+4i+6=16-11i 

 Re(z)=16,Im(z)=11,16+11=צמודi,|z|=√377 

 

4)z=(5+2i)/(2-3i)=(5+2i)(2+3i)/((2-3i)(2+3i))=(10-15i+4i-6)/(4+9)=(4-11i)/13=4/13-11/13*i 

 Re=4/13..., 

 

 



 3.5 תרגיל

 |zεC:|Re(z)|≤|z לכל( א

 :הוכחה

 :z=a+bi יהי

|z|²=a²+b²≥a²=Re(z)² => |z|≥|Re(z|) 

 

 

 

 (z1+z2)צ=z2צ+z1צ=<  z1,z2εC לכל

 :הוכחה

 z1=a1+b1i,z2=a2+b2i לכל

 a1+ba2-(b1+b2)i=(a1+b1i+a2+b2i)צ(=z1+z2)צ

 a1-b1i+a2-b2i=a1+ba2-(b1+b2)i=(a2+b2i)צ(+a1+b1i)צ=z2צ+z1צ

 

 

 :טענה

 z2( =z1*z2)צ*z1צ

𝑧1 ∗ 𝑧2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧1̅̅ ̅ ∗ 𝑧2̅̅ ̅ 

 הוכחה

(z1 ∗ z2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (a1 ∗ a2 + a1 ∗ b2i + b2 ∗ a1i − b1 ∗ b2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= (a1 ∗ a2 − b1 ∗ b2) − (a1 ∗ b2 + a = b1 ∗ a2) 

z1 ∗ z2̅̅ ̅̅ ̅̅ ̅̅ ̅ = (a1 − b1i)(a2 − b2i) = a1 ∗ a2 − a1 ∗ b2i − b2 ∗ a1i − b1 ∗ b2

= (a1 ∗ a2 − b1 ∗ b2) − (a1 ∗ b2 + a = b1 ∗ a2) 

 

 :טענה

𝑧 ∗ 𝑧̅ = |𝑧|² 

 :הוכחה

(a+bi)(a-bi)=a²+abi-abi+b²=a²+b²=|z|² 

 



 |z1z2|=|z1||z2: |טענה

|z1z2|²=z1*z2*צz1*צz2=z1*צz1*z2*צz2=|z1|²*|z2|² => |z1z2|=|z1||z2| 

|z1z2|² = z1 ∗ z2 ∗ z1 ∗ z2̅̅ ̅̅ ̅̅ ̅̅ ̅ = z1 ∗ z1̅̅ ̅ ∗ z2 ∗ z2̅̅ ̅ = |z1|² ∗ |z2|² =>  |z1z2| = |z1||z2| 

 חיובי תמיד מוחלט ערך כי שורש להוציא מותר

 

 טענה

∀𝑧 ∈ ℂ: 𝑅𝑒(𝑧) =
𝑧 + 𝑧̅

2
, 𝐼𝑚(𝑧) =

(𝑧 − 𝑧̅)

2𝑖
 

 :הוכחה

(a+bi+a-bi)/2=2a/2=a 

(a+bi-a+bi)/2i=2b/2i=b 

 

 

 

 

 

 'ב 3.6 תרגיל

 :C מעל פתרו

2z²-8z=10-20i+12zi 

 פתרון

2z²-8z-12zi-10+20i=0 => 2z²+(-8z-12zi)-10+20i=0 

z1,2=(8+12i±√(32i))/4=(8+12i±4√(2i))/4=2+3i±√(2i) * 

 השורש את נחשב

(√2i)=a+bi => (a+bi)²=2i=a²+2abi-b² => a²-b²=0,2ab=2i, b=1/a, a²-1/a²=0, a²=1/a²,a^4=1, a=±1 

=> √(2i)=±(1+i) 

 * את נמשיך

=2+3i±(1+i), z1=3+4i,z2=1+2i 

 

 



 

 

 

 

 

 

 (קטבית)פולרית הצגה

 Θ מסומנת והזוית r מסומן המרחק. הצירים מראשית ומרחק זוית י"ע 0╪מרוכב מספר כל לאפיין ניתן

z=a+bi=re^(iΘ)=rcisΘ=r(cosΘ+isinΘ) 

 כאשר

r=|z|,Θ=atan(b/a)+πn 

 

 הבאה בשנה רק תוכח הזאת המשוואה( 1:הערות

 הרביע לפי( רדיאנים π או)180 להוסיף צריך אם לבדוק יש הזווית את מחפשים כאשר(2

 π/2- או π/2 היא טהור מדומה של הזוית(3

 

 

 (:a+bi)קרטזית לצורה מעבר

a=rcosΘ,b=rsinΘ 

 

 

 דוגמאות

1)z=1-i,r=√((1²+(-1)²)=√2,Θ=atan(-1/1)=-π/2+πn ,הרביע לפי Θ=1.5π 

 

2)z=2e^(iπ/3), a=2cos(π/3)=1,b=2sin(π/3)=√3 

 

 

 :DeMoivre משפט



 ⁿ=rⁿcis(nΘ)(rcisΘ) מתקיים

 

 את חשבו: 3.8 תרגיל

(1√+3^)2010 

r=√(1+3)=√4=2,Θ=atan√3=π/3 

(2cis(π/3))^2010=2^2010cis(670π)=2^2010cis0=2^2010 

 

 א3.6 תרגיל

z^4=-16i 

r^4e(4iΘ)=16e(-iπ/2) => r=2, Θ=-π/8+k/4, k=0,1,2,3 

 

Zk=2e^(i(-π/8+kπ/2)) 

 

 

 כללית נוסחה

Zk=ⁿ√r*e^(i(Θ+2πk)/n) 

 

 

 

 

 

 הנוסחה את הוכיחו:תרגיל

cos(α+ß)=cosα*cosß-sinα*sinß 

 :פתרון

(1 )e^(i(α+ß))=cos(α+ß)+isin(α+ß) 

(2( )cosα+isinα)(cosß+isinß)=cosα*cosß+cosαisinß+cosßisinα-sinα*sinß=חוקי לפי 1 סעיף 

 הטריגו



 שדות

 הגדרה

>שדה  𝔽,+,∗ ,0,1 עם פעולות חיבור וכפל)לאו דווקא החיבור והכפל הרגילים(  𝔽הוא קבוצה  <

 המקיימות את התכונות הבאות:

,𝑎∀סגירות:  .1 𝑏 ∈ 𝔽: 𝑎 + 𝑏 ∈ 𝔽, 𝑎 ∗ 𝑏 ∈ 𝔽 

,𝑎∀: חילוף .2 𝑏 ∈ 𝔽: 𝑎 + 𝑏 = 𝑏 + 𝑎, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 

,𝑎∀קיבוץ:  .3 𝑏, 𝑐 ∈ 𝔽: 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑏, 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐 

0איברים ניטרליים: קיימים .4 ≠ 1 ∈ 𝔽 כך ש𝑎 + 0 = 𝑎, 𝑎 ∗ 1 = 𝑎 

𝑎איבר הופכי ונגדי: לכל  .5 ∈ 𝔽  קיים(−𝑎) כך ש𝑎 + (−𝑎) = 𝑎כך ש 𝑎−1, קיים 0 ∗ 𝑎−1 = 1 

,𝑎∀פילוג: .6 𝑏, 𝑐 ∈ 𝔽: 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 

 1.3תרגיל 

>יהי  𝔽,+,∗ ,0,1  שדה, הוכיחו את התכונות הבאות: <

,𝑎∀ .א 𝑏 ∈ 𝔽, 𝑐 ≠ 0: 𝑎𝑐 = 𝑏𝑐 ⇒ 𝑎 = 𝑐 )פעולה זו נקראת צמצום( 

𝑎𝑐הוכחה: נתון  = 𝑏𝑐 נכפיל ב𝑐−1  ונקבל(𝑎𝑐)𝑐−1 = (𝑏𝑐)𝑐
−1
, 𝑎(𝑐𝑐−1) = 𝑏(𝑐𝑐−1) ⇒

𝑎 = 𝑏 

𝑎∀ .ג ∈ 𝔽: 𝑎 ∗ 0 = 0 ∗ 𝑎 = 0 

𝑎הוכחה:  ∗ 0 = 𝑎 ∗ (0 + 0) = 𝑎 ∗ 0 + 𝑎 ∗ 𝑎)−נוסיף לשני האגפים את  0 ∗  )קיים לפי התכונות(: (0

 0 = 𝑎 ∗ 0 + (−𝑎 ∗ 0) = (𝑎 ∗ 0 + 𝑎 ∗ 0) + (−(𝑎 ∗ 0)) = 𝑎 ∗ 0 + (𝑎 ∗ 0 + (−(𝑎 ∗ 0))) = 𝑎 ∗ 0 

𝑎∀ .ו ∈ 𝔽:−(−𝑎) = 𝑎 

𝑎הוכחה: יהי  ∈ 𝔽  אזי קיים– 𝑎 ∈ 𝔽 כך ש𝑎 + (−𝑎) = –. נוסיף לאגפים 0 (−𝑎)נקבל . 

(𝑎 + (−𝑎)) + (−(−𝑎)) = 0 + (−(−𝑎)) = 𝑎 + ((−𝑎) + (−(−𝑎)) = 𝑎 + 0 = 𝑎 

𝑎∀ .ז ∈ 𝔽: (−1) ∗ 𝑎 = −𝑎 

𝑎(1−)הוכחה: הטענה שקולה ל + 𝑎 = 0 

(−1)𝑎 + 𝑎 = (−1)𝑎 + 1𝑎 = ((−1) + 1)𝑎 = 0𝑎 =
לפי ד

0 

,𝑎∀ .ח 𝑏 ∈ 𝔽: (−𝑎)(−𝑏) = 𝑎𝑏 

(1−)(1−)הוכחה: נראה ש = 1 ∗ 1 = (1−)(1−) . לפי סעיף ז1 = −(−1) = 1. 

(𝑏−)(𝑎−)נחזור להוכחת הטענה:  =
סעיף ז

((−1)𝑎)((−1)𝑏) =
נובע מקיבוץ וחילוף

(−1)(−1)𝑎𝑏 = 1𝑎𝑏 =ab 

 תרגיל

 ר הניטרלי ביחס לחיבור הינו יחידהוכיחו כי האיב

 הוכחה

01,02נניח בשלילה שקיימים ∈ 𝔽  01שונים. מתקיים = 01 + 02 =  סתירה – 02

  



 2.3תרגיל 

 (ℝאינו שדה )ביחס לפעולה המושרית מ ℕהוכיחו אי  (א

𝑎פתרון: יהי  ∈ ℕ .ℕ ⊆ ℝ  לכן𝑎 ∈ ℝקיים ל .a  נגדי יחיד שהוא–a אבל ,−𝑎 ∉ ℕ ע"פ(

 (ℕהגדרת 

 

  



 הגדרה

…,0,1}את קבוצת האיברים  ℤ𝑛נסמן ב , 𝑛 −  (:moduloכאשר מוגדרת עליהם פעולת מודולו) {1

∀𝑎, 𝑏 ∈ ℤ𝑛: 𝑎 ⊕ 𝑏 = (𝑎 + 𝑏)𝑚𝑜𝑑 𝑛, 𝑎 ⊙ 𝑏 = (𝑎 ∗ 𝑏)𝑚𝑜𝑑 𝑛 

ℤ6למשל  = {0,1,2,3,4,5}: 

1⊕ 4 = 5 

3⊕ 4 = 7 𝑚𝑜𝑑 6 = 1, 

2⊙ 3 = 6 𝑚𝑜𝑑 6 = 0 

 הגדרה

0איבר  ≠ 𝑎 ∈ 𝐹(F  נקרא "מחלק אפס" אם )0∃אינו בהכרח שדה ≠ 𝑏 ∈ 𝐹 כך ש𝑎𝑏 = 𝑏𝑎או  0 = 0 

 הוא "מחלק אפס" 2למשל בדוגמה הקודמת 

 תרגיל

 הוכיחו שבשדה אין מחלקי אפס

 הוכחה

,𝑎∃ אזי קיים מחלק אפס. 𝔽נניח בשדה  𝑏 ∈ 𝔽 כך ש 0שונים מ𝑎𝑏 = 𝑏−1. נכפול את המשוואה ב0 ∈

𝔽(b  לכן יש  0הוא לא𝑏−1 נקבל .)𝑎 =  וזה בסתירה להנחה. 0

 סעיף ג' 2.3תרגיל 

 פריק. nאינו שדה עבור  ℤ𝑛הוכיחו ש

 הוכחה:

n  1פריק ולכן קיימים < 𝑚, 𝑘 < 𝑛 כך ש𝑚𝑘 = 𝑛  ואז נקבל𝑚⊙𝑘 = 𝑛 𝑚𝑜𝑑 𝑛 =  ℤ𝑛ולכן עבור  0

 יש מחלקי אפס והוא לא שדה.

  



 תת שדה

 קריטריון מקוצר לתת שדה

ℍאם  𝔽הואר תת שדה של  ℍנאמר ש ⊆ 𝔽 ביחס לפעולות מ וגם שדה בעצמו𝔽. 

 :מספיק להוכיח את התכונות הבאות

1) 1𝔽 ∈ ℍ ∈ 𝔽 

,𝑎∀עבור  (2 𝑏 ∈ ℍ, 𝑏 ≠ 0𝔽  מתקיים𝑎−𝔽𝑏 ∈ ℍ, 𝑎 ∗𝔽 𝑏
−1 ∈ ℍ 

 

 2.6תרגיל 

 ℝראשוני( אינו תת שדה של  p)ℤ𝑝הסביר מדוע 

 הסבר

𝑝למשל עבור  = 3,5נקבל  7 ∈ ℤ7 3, אבל+ℝ5 = 8 ∉ ℤ7לכן לא מתקיימת סגירות , 

  



 מורכבים

 הגדרה

ℂ = ℝ×ℝ = {(𝑎, 𝑏)|𝑎, 𝑏 ∈ ℝ 

0ℂ = (0,0), 1ℂ = (1,0) 

(𝑎, 𝑏)+ℂ(𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑) 

(𝑎, 𝑏) ∗ℂ (𝑐, 𝑑) = ((𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖 = (𝑎𝑐 + 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐)⏞                                                      
הסבר

 

 תרגיל

,𝑎)ל  ℂנשנה את פעולת הכפל ב 𝑏) ∗ℂ (𝑐, 𝑑) = (𝑎𝑐, 𝑏𝑑) האם .ℂ ?נשאר שדה 

(1,0)(0,1)תשובה: ממש לא!  = (0,0) = 0ℂ  (0,1)=< אבל, (1,0) ≠ 0ℂ כלומר לℂ  יש מחלקי אפס

 כן הוא כבר לא שדהול

 הגדרה

𝑛והוא מספר  𝑐ℎ𝑎𝑟(𝔽)מסומן ב 𝔽המאפיין של שדה  ∈ ℕ הקטן ביותר כך ש𝑛 ∗ 1 = 1 + 1+. . .1⏞      
n פעמים

= 0 

 .0אם אין מספר כזה אז נאמר שהמאפיין הוא 

 או ראשוני 0המאפיין הוא או 

  



 תרגיל

 וחשבו את המאפיין שלו 4בנו שדה בגודל 

 פתרון

 נבנה טבלאות חיבור וכפל.

* 0 1 a b 

0 0 0 0 0 

1 0 1 a b 

a 0 a b 1 

b 0 b 1 a 

𝑎. הסבר: אם למשל לא יתכן שמספר יחזור על עצמו 0פרט למכפלות  ∗ 1 = 𝑎 וגם 𝑎 ∗ 𝑎 = 𝑎  נקבל

1ע"פ צמצום  = 𝑎 

𝑎המודגשים הם לפי ההגדרות  ∗ 𝑎 ≠ 𝑏 שכן אז 1 ∗ 𝑎 = 𝑏  אבל𝑏 ∗ 1 = 𝑏 לכן ,𝑎 ∗ 𝑎 = 𝑏  ואת

 טבלת הכפל משלימים לפי האפשרויות שנשארו. שאר

1נראה ש + 1 = 1: נניח בשלילה ש0 + 1 = 𝑎: 

+ 0 1 a b 

0 0 1 a b 

1 1 a b 0 

a a b 0 1 

b b 0 1 a 

𝑎אבל אז  ∗ 𝑎 = (1 + 1) ∗ (1 + 1) =
פילוג

(1 + 1) + (1 + 1) = 𝑎 + 𝑎 = 1. אותו דבר לגבי 0 +

1 = 𝑏: 

+ 0 1 a b 

0 0 1 a b 

1 1 b 0 a 

a a 0 b 1 

b b a 1 0 
 



 מערכת משוואות לינאריות

 הגדרה

𝑥1𝑥1משתנים היא משוואה מהצורה  nמשוואה לינארית ב + 𝑎2 + 𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 = 𝑏 

𝑥𝑖 –  .משנים𝑎𝑖 –  .מקדמים𝑏 – מקדם החופשי 

 1כל משתנה במוואה הנ"ל הוא ממעלה 

 דרכים לפתרון מערכת משוואות: 3אנו מכירים 

 מקדמים( השוואת 3( הצבה. 2( גראפית. 1

 דוגמה

}הדרכים הנ"ל:  3פתרו את המערכת הבאה ב
𝑥 + 2𝑦 = 4
3𝑥 + 4𝑦 = 10

 

 ( גראפית:1

 

 (הצבה:2

𝑥 = 4 − 2𝑦, 3(4 − 2𝑦) + 4𝑦 = 10,… 

 (השוואת מקדמים3

{
𝑥 + 2𝑦 = 4
3𝑥 + 4𝑦 = 10

⇒ {
2𝑥 + 4𝑦 = 8
3𝑥 + 4𝑦 = 10

⇒ −𝑥 = −2 ⇒ 2𝑦 + 2 = 4 ⇒ (2,1) 

  



 שיטת החילוץ)האלימינציה( של גאוס

האלגוריתם שואף להביא את המערכת לצורה משולשית עליונה)או בהינתן מערכת משוואות לינארית, 

מדורגת עליונה(. בעזרת השיטה הזו ניתן לחלץ את המשתנים מהמשוואה האחרונה ובעזרת הצבה 

 לאחור ניתן למצוא את שאר המשתנים.

 

 כלומר צריך להמיר את המערכת:

{
 
 

 
 
𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎(𝑚−1)1𝑥1 +⋯+ 𝑎(𝑚−1)𝑛𝑥𝑛 = 𝑏𝑚−1
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

⟹

{
 
 

 
 

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
0 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
0 +⋯𝑎(𝑚−1)(𝑛−1)𝑥(𝑛−1) + 𝑎(𝑚−1)𝑛𝑥𝑛 = 𝑏𝑚−1

0 +⋯𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

 

 

 (:12)עמ' 1.3תרגיל 

}: א( ℝפתרו מעל 
3𝑥 + 5𝑦 = 7
9𝑥 + 15𝑦 = 0

: 

{
3𝑥 + 5𝑦 = 7
9𝑥 + 15𝑦 = 0

⇒ {
−9𝑥 − 15𝑦 = 21
9𝑥 + 15𝑦 = 0

⇒ {
−9𝑥 − 15𝑦 = 21
0𝑥 + 0𝑦 = 21

 

}ב( 
2𝑥 + 4𝑦 = 0
6𝑥 + 12𝑦 = 0

: 

{
2𝑥 + 4𝑦 = 0
6𝑥 + 12𝑦 = 0

⇒ {
−6𝑥 − 12𝑦 = 0
6𝑥 + 12𝑦 = 0

⇒ {
−6𝑥 − 12𝑦 = 0
0𝑥 + 0𝑦 = 0

 

,2𝑡−)}קיבלנו אינסוף פתרונות. אוסף הפתרונות הכללי הוא  𝑡): 𝑡 ∈ ℝ} 

 1.6תרגיל 

}את המערכת  ℤפתרו מעל 
16𝑥 + 18𝑦 = 34
18𝑥 + 39𝑦 = 57

 

{
16𝑥 + 18𝑦 = 34
18𝑥 + 39𝑦 = 57

⇒ {
8𝑥 + 9𝑦 = 17
6𝑥 + 13𝑦 = 19

⇒ {
−24𝑥 − 27𝑦 = −51
24𝑥 + 52𝑦 = 76

⇒ {
−24𝑥 − 27𝑦 = −51
0𝑥 + 25𝑦 = 25

 

𝑦מכאן ש = 1, 𝑥 =  (1,1)ולכן הפתרון הוא  1

  



 תרגיל

}את המערכת:  ℤ5פתרו מעל 
3𝑥 + 5𝑦 + 𝑧 = 0
−𝑥 − 2𝑦 + 3𝑧 = 0
4𝑥 + 𝑦 − 2𝑧 = 0

5הערה:   = 0,4 =  וכו' 1−

{

3𝑥 + 0𝑦 + 𝑧 = 0
−𝑥 − 2𝑦 + 3𝑧 = 0
−𝑥 + 𝑦 − 2𝑧 = 0

⇒ {

3𝑥 + 0𝑦 + 𝑧 = 0

3𝑥 + 𝑦⏞
=6𝑦

+ 𝑧⏞
=−9𝑧

= 0
−𝑥 + 𝑦 − 2𝑧 = 0

⇒ {
3𝑥 + 𝑧 = 0

0𝑥 + 𝑦 + 0𝑧 = 0
−𝑥 + 𝑦 − 2𝑧 = 0

⇒ 𝑦 = 0 

{
3𝑥 + 𝑧 = 0
−𝑥 − 2𝑧 = 0

⇒ {
3𝑥 + 𝑧 = 0

−3𝑥 − 𝑧⏞
=−6𝑧

= 0
⇒ {

3𝑥 + 𝑧 = 0
0𝑥 + 0𝑧 = 0

 

𝑡פתרון כללי הוא  ∈ ℤ5(𝑡, 0,−3𝑡) 

𝑡פתרונות שכן  5מקבלים  זה לא אינסוף פתרונות! ∈ ℤ5 

 תרגיל

,∞,1יש  kעבור אילו ערכי  }: ℝמעל  פתרונות למערכת 0
𝑥 + 2𝑦 + 𝑘𝑧 = −1
𝑥 − 3𝑧 = −3

2𝑥 + 𝑘𝑦 − 𝑧 = −2
 

{
𝑥 + 2𝑦 + 𝑘𝑧 = −1
𝑥 − 3𝑧 = −3

2𝑥 + 𝑘𝑦 − 𝑧 = −2

𝑅3:𝑅3−2𝑅2
⇒       {

𝑥 + 2𝑦 + 𝑘𝑧 = −1
𝑥 − 3𝑧 = −3
𝑘𝑦 + 5𝑧 = 4

𝑅2:𝑅2−𝑅1
⇒      {

𝑥 + 2𝑦 + 𝑘𝑧 = −1

−2𝑦 − (3 + 𝑘)𝑧 = −2
𝑘𝑦 + 5𝑧 = 4

𝑅3:2𝑅3+𝑘𝑅2
⇒         

{

𝑥 + 2𝑦 + 𝑘𝑧 = −1

−2𝑦 − (3 + 𝑘)𝑧 = −2

(−𝑘2 − 3𝑘 + 10)𝑧 = 8 − 2𝑘

 

𝑧 =
8 − 2𝑘

−𝑘2 − 3𝑘 + 10
=

2𝑘 − 8

(𝑘 + 5)(𝑘 − 2)
, 𝑦 =

2 + 4𝑘

(𝑘 + 5)(𝑘 − 2)
, 𝑥 = −

3(𝑘 + 2)(𝑘 − 1)

(𝑘 + 5)(𝑘 − 2)
 

𝑘אין פתרון ב = 0כי אז  5,2− ∗ 𝑧 = 𝑐 ≠ 0 

𝑘פתרון יחיד נקבל עבור  ≠ −5,2 

אינסוף פתרונות אין בתרגיל הזה. נקבל אינסוף פתרונות כאשר נקבל ביטוי מהצורה 
0

0
 

  



.𝟏תרגיל  𝟖
𝟏

𝟐
 

,∞,0יש  a,t: לאלו ערכי ℝפתרו מעל  }פתרונות:  1

𝑥 + 𝑎𝑦 + 𝑧 = 1

𝑎𝑥 + 𝑎2𝑦 + 𝑧 = 2 + 𝑎
𝑎𝑥 + 3𝑎𝑦 + 𝑧 = 2 − 𝑡

 

{

𝑥 + 𝑎𝑦 + 𝑧 = 1

𝑎𝑥 + 𝑎2𝑦 + 𝑧 = 2 + 𝑎
𝑎𝑥 + 3𝑎𝑦 + 𝑧 = 2 − 𝑡

𝑅3:𝑅3−𝑅2
⇒      {

𝑥 + 𝑎𝑦 + 𝑧 = 1

𝑎𝑥 + 𝑎2𝑦 + 𝑧 = 2 + 𝑎

(3𝑎 − 𝑎2)𝑦 = −𝑡 − 𝑎

 

𝑦 =
−𝑡 − 𝑎

3𝑎 − 𝑎2
=

𝑎 + 𝑡

𝑎(𝑎 − 3)
, 𝑧 =

2

1 − 𝑎
, 𝑥 =

−𝑎2(5 + 𝑡) + 𝑎(9 + 𝑡)

𝑎(1 − 𝑎)(3 − 𝑎)
 

𝑎 = 0𝑧: אין פתרון)מקבלים 1 = 𝑐) 

𝑎 = 𝑡אם  :0 = 0𝑧מקבלים  0 =  , אחרת אין פתרוןכלומר אינסוף פתרונות 0

𝑎 = 𝑡: אם 3 = 𝑡אז יש אינסוף פתרונות, אם  3− ≠  אז אין פתרון 3−

𝑎 ≠  : פתרון יחיד0,1,3

 2.1תרגיל 

,𝑥פתור עבור  𝑦, 𝑧 > }את המערכת: 0

𝑥𝑦2𝑧3 = 2

𝑥4𝑦5𝑧6 =
1

4

𝑥6𝑦8𝑧9 = 8

 

 פתרון

log2נסמן  𝑥 = 𝛼, log2 𝑦 = 𝛽, log2 𝑧 = 𝛾:נוציא לוג . 

{

𝛼 + 2𝛽 + 3𝛾 = 1
4𝛼 + 5𝛽 + 6𝛾 = −2
6𝛼 + 8𝛽 + 8𝛾 = 3

 

  



 מטריצות

 :לרשום את מערכת המשוואות הלינאריות באופן הבאניתן 

(
𝑎11 𝑎12 … 𝑎1𝑛 𝑏1
⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛 𝑏𝑚

) 

𝐴𝑥או בצורה  = 𝑏  כאשר𝐴 = (
𝑎11 𝑎1𝑛
𝑎𝑚1 𝑎𝑚𝑛

) , 𝑥 = (

𝑥1
𝑖
𝑥𝑛
) , 𝑏 = (

𝑏1
𝑖
𝑏𝑛

) 

 הגדרה 

1∀מערכב "הומוגנית" היא מערכת משוואות שעבורן  ≤ 𝑖 ≤ 𝑛: 𝑏𝑖 = 0. 

 הערה

 כאשר מדובר במערכת הומוגנית נהוג להשמיט את עמודת המקדמים החופשיים

 הגדרה

 שתי מערכות משוואות נקראות שקולות אם יש להן אותה קבוצת פתרונות.



 הגדרה

 אם ניתן להגיע מאחת לשניה ע"י דירוג שורות שקולות שורהנאמר ששתי מטריצות 

 הגדרה

 אם: מדורגתנקראת  Aמטריצה  (א

 כל שורות האפסים)אם ישנן( נמצאות בתחתית המטריצה 

  האיבר המוביל בכל שורה)האיבר הראשון שאינו אפס( נמצא מימין לאיבר המוביל 

 בשורה שמעליו

 )או קנונית( אם היא מדורגת ו:מדורגת קנוניתמטריצה נקראת  (ב

  = 1האיברים המובילים 

 0האיברים בעמודות של האיבר המוביל)פרט לאיבר המוביל( כולם שווים ל 

 צורה מדורגת של מטריצה אינה יחידה, בעוד שהצורה הקנונית יחידה.

 תרגיל

):דרגו את המטריצה הבאה לצורתה הקנונית

1 1 12 13 3 0
0 3 6 15 0 0
0 1 2 5 2 0
0 2 4 10 4 −1

) 

 פתרון

(

1 1 12 13 3 0
0 3 6 15 0 0
0 1 2 5 2 0
0 2 4 10 4 −1

)
𝑅4:𝑅4−2𝑅3
⇒       (

1 1 12 13 3 0
0 3 6 15 0 0
0 1 2 5 2 0
0 0 0 0 0 −1

)
𝑅3:3𝑅3−𝑅2
⇒       (

1 1 12 13 3 0
0 3 6 15 0 0
0 0 0 0 6 0
0 0 0 0 0 −1

)

⏞                  
צורה מדורגת

 

𝑅1:2𝑅1−𝑅3
⇒       (

2 2 24 26 0 0
0 3 6 15 0 0
0 0 0 0 6 0
0 0 0 0 0 −1

)

𝑅1:
1

2
𝑅1

𝑅2:
1

3
𝑅2

𝑅3:
1

6
𝑅3

𝑅4:−𝑅4
⇒    (

1 1 12 13 0 0
0 1 2 5 0 0
0 0 0 0 1 0
0 0 0 0 0 1

)
𝑅1:𝑅1−𝑅2
⇒      (

1 0 10 8 0 0
0 1 2 5 0 0
0 0 0 0 1 0
0 0 0 0 0 1

)

⏞                
צורה קנונית)יחידה(

 

  



 אלגברת מטריצות

 הגדרות

(?m×𝑛 (𝔽))𝔽
𝑚×𝑛 = {(

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

) :

∀1 ≤ 𝑖 ≤ 𝑚,
1 ≤ 𝑗 ≤ 𝑚:
𝑎𝑖𝑗 ∈ 𝔽

} 

  :סדר מטריצה𝑚×𝑛 

  1מטריצה מהסדר  –וקטור שורה×𝑛 

  מטריצה מהסדר  –וקטור עמודה𝑚×1 

Aנאמר ששתי מטריצות  ∈ 𝔽𝑚×𝑛, 𝐵 ∈ 𝔽𝑘×𝑙 :שוות אם 

 𝑘 = 𝑚, 𝑙 = 𝑛)כלומר אותו מספר שורות ואותו מספר עמודות( 

 ∀1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛: 𝑎𝑖𝑗 = 𝑏𝑖𝑗 

 

𝐶 :מטריצות אם ורק אם הן מאותו סדר. החיבור מתבצע באופן הבא 2ניתן לחבר  (1 = 𝐴 + 𝐵 :

𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 

𝛼𝐴מתבצע ע"י הכפלת כל איברי המטריצה בסקלר הנתון:  פל בסקלרכ (2 = 𝐶 :𝑐𝑖𝑗 = 𝛼𝑎𝑖𝑗 

,𝑖∀: 0מטריצת האפס: שכל איבריה שווים ל (3 𝑗: 𝑎𝑖𝑗 = 0 

𝐴מטריצה נגדית: לכל  (4 ∈ 𝔽𝑚×𝑛  קיימת מטריצה נגדית𝐵 = −𝐴 ∈ 𝔽𝑚×𝑛 כך ש 

𝐴 + (−𝐴) = 𝑏𝑖𝑗. מתקיים 0 = −𝑎𝑖𝑗 

 ביחס לחיבור מטריצות 𝔽𝑚×𝑛באופן כללי, כל התכונות של השדה שמתייחסות לחיבור מתקיימות ב

 מטריצותכפל 

𝐴יהיו  ∈ 𝔽𝑚×𝑛, 𝐵 ∈ 𝔽𝑛×𝑘 נסמן ,𝐶 = 𝐴𝐵  אזי𝐶 ∈ 𝔽𝑚×𝑘  ומוגדר𝑐𝑖𝑗 = ∑ 𝑎𝑖𝑡𝑏𝑡𝑗
𝑛
𝑡=1 

 B= מספר השורות של  Aהכפל מוגדר רק כאשר מס' העמודות של  –שימו לב 

 תכונות הכפל)או לפחות חלקן(

1) 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶 

2) A(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 

3) (𝛼 ∈ 𝔽), 𝛼(𝐴𝐵) = (𝛼𝐴)𝐵 = 𝐴(𝛼𝐵) 

4) 0 ∗ A = A ∗ 0 = 0 

  



 תרגיל

 חשבו את המכפלות הבאות)במידה ומוגדרות(

) (א
1 2
3 4

) (
1 −1 2
−1 1 0

) 

) (ב
1 2
3 4

)(
1
2
3
) 

) (ג
1 0
1 −1
2 1

) (
3 0
1 2

) 

 פתרון

 3×2הכפל מוגדר והמטריצה המתקבלת היא מסדר  (א

𝑐11 = 𝑎11𝑏11 + 𝑎12𝑏21 = 1 ∗ 1 + 2 ∗ (−1) = −1 
𝑐12 = 𝑎11𝑏12 + 𝑎12𝑏22 = 1 ∗ (−1) + 2 ∗ 1 = 1 
𝑐23 = 𝑎21𝑏13 + 𝑎22𝑏23 = 3 ∗ 2 + 4 ∗ 0 = 6 

(
1 2
3 4

)
⏞    

𝐴

(
1 −1 2
−1 1 0

)
⏞        

𝐵

= (
−1 1 2
1 1 6

) 

 מספר העמודות של השמאלי לא שווה למספר השורות של הימני, לכן הכפל לא מוגדר. (ב

 2×3מוגדר והסדר שלו  C (ג

(
1 0
1 −1
2 1

)(
3 0
1 2

) 

 מהימנית ונכפול בהתאמה ונסכום: 1מהמטריצה השמאלית ואת עמודה  1ניקח את שורה 

𝑐11 = 𝑎11 ∗ 𝑏11 + 𝑎12 ∗ 𝑏21 = 1 ∗ 3 + 0 ∗ 1 = 3 

𝑐וכן הלאה עד שנקבל  = (
3 0
2 −2
7 2

) 

 סימונים

 𝑅𝑖(𝐴)מסומנת ב Aשל  iהשורה ה

 𝐶𝑖(𝐴)מסומנת ב Aשל  jה ההעמוד

 דוגמה

 מטריצה בווקטור עמודה: לנראה דרך אלטרנטיבית לכפו

(
1 0
1 −1
2 1

)(
3
1
) = 3(

1
1
2
) + 1(

0
−1
1
) = (

3
3
6
) + (

0
−1
1
) = (

3
2
7
) 

  



 (17)עמוד 3.6תרגיל 

𝐴יהיו  ∈ 𝔽𝑚×𝑛, 𝐵 ∈ 𝔽𝑛×𝑘  ותהא𝐶 = 𝐴𝐵 ∈ 𝔽𝑚×𝑘:הוכח . 

)𝑨א.

𝒙𝟏
⋮
𝒙𝒏
) = ∑ 𝒙𝒊𝑪𝒊(𝑨)

𝒏
𝒊=𝟏 

 הוכחה

𝐴(

𝑥1
⋮
𝑥𝑛
) = (

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

)(

𝑥1
⋮
𝑥𝑛
) = (

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛
⋮

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛

) 

=
סכום מטריצות

 (

𝑎11𝑥1
⋮

𝑎𝑚1𝑥1
) +⋯+ (

𝑎1𝑛𝑥𝑛
⋮

𝑎𝑚𝑛𝑥𝑛
) = 𝑥1 (

𝑎11
⋮
𝑎𝑚1

) +⋯+ 𝑥𝑛 (

𝑎1𝑛
⋮
𝑎𝑚𝑛

)

= 𝑥1𝐶1(𝐴) + ⋯𝑥2𝐶2(𝐴) =∑𝑥𝑖𝐶𝑖(𝐴)

𝑛

𝑖=1

 

)אם  ניקח 

𝑥1
⋮
𝑥𝑛
) = 𝑒𝑖 =

(

 
 
 
 

0
⋮
0

1(𝑖 במיקום)
0
⋮
0 )

 
 
 
 

 

𝐴𝑒𝑖אזי  = 0 ∗ 𝐶1(𝐴) + ⋯+ 1 ∗ 𝐶𝑖(𝐴) + ⋯+ 0 ∗ 𝐶𝑛(𝐴) = 𝐶𝑖(𝐴) 

𝑪𝒊(𝑪)ד. כפל עמודה בעמודה  = 𝑨 ∗ 𝑪𝒊(𝑩) 

𝐴 ∗ 𝐶𝑖(𝐵) = 𝐴 ∗ (
𝑏1𝑖
⋮
𝑏𝑛𝑖

) =
'לפי סעיף א

𝑏1𝑖𝐶1(𝐴) + ⋯𝑏𝑛𝑖𝐶𝑛(𝐴) =∑𝑏𝑗𝑖𝐶𝑗(𝐴)

𝑛

𝑗=1

=∑𝑏𝑗𝑖 (

𝑎1𝑗
⋮
𝑎𝑚𝑛

)

𝑛

𝑗=1

=
כפל בסקלר וחילוף בתוך השדה

∑(

𝑎1𝑗𝑏𝑗𝑖
⋮

𝑎𝑚𝑛𝑏𝑗𝑖

)

𝑛

𝑗=1

=
סכום מטריצות

(

 
 
 
 
∑𝑎1𝑗𝑏𝑗𝑖

𝑛

𝑗

⋮

∑𝑎𝑚𝑗𝑏𝑗𝑖

𝑛

𝑗 )

 
 
 
 

 

=
כפל מטריצות

 (

𝑐1𝑖
⋮
𝑐𝑚𝑖
) = Ci(𝐶) 

  



 הערה

A𝑥אמרנו בשיעור שעבר שאחת הצורות לרשום מערכת משוואות לינארית היא  = 𝑏  כאשר𝑥 =

(

𝑥1
⋮
𝑥𝑛
) ,𝑏 = (

𝑏1
⋮
𝑏𝑛

) ,𝐴 ∈ 𝔽𝑚×𝑛 

 הוכחה

𝐴𝑥 = 𝑏 ⇔ (

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

)(

𝑥1
⋮
𝑥𝑛
) = (

𝑏1
⋮
𝑏𝑛

) ⇔ (

𝑎11𝑥1 +⋯+ 𝑎1𝑛𝑥𝑛
⋮

𝑎𝑚1𝑥1 +⋯+ 𝑎𝑚𝑛𝑥𝑛

) = (
𝑏1
⋮
𝑏𝑛

) ⇔

שוויון

של

.ל מ.ל

 



 (16)עמ' 3.3תרגיל 

הוכיחו שאם המכפלה באחד האגפים מוגדרת אזי גם המכפלה באגף השני מוגדרת,  (א

A(BC)ותוצאתן שווה:  = (AB)C 

 הוכחה

𝐴תהי  ∈ 𝔽𝑚×𝑛, 𝐵 ∈ 𝔽𝑘×ℎ, 𝐶 ∈ 𝔽𝑟×𝑞 אגף ימין מוגדר אם ורק אם .𝑛 = 𝑘כדי ש(𝐴𝐵  )יהיה מוגדר

ℎו = 𝑟כדי ש((𝐴𝐵)𝐶  :במקרה זה אגף שמאל גם מוגדר .)יהיה מוגדרℎ = 𝑟>=BC מוגדר, ו𝑛 =

𝑘>=𝐴(𝐵𝐶) .מוגדר. באופן דומה ניתן להוכיח שאם אגף שמאל מוגדר אז גם ימין 

𝐴נניח מעכשיו ש ∈ 𝔽𝑚×𝑛, 𝐵 ∈ 𝔽𝑛×ℎ, 𝐶 ∈ 𝔽ℎ×𝑞 ניתן כמו כן לראות שסדר המטריצות בשני .

 בשני האגפים. jעמודה  iשורה . נשוואה בין האיברים ב𝑚×𝑞האגפים הוא 

(𝐴𝐵)𝐶 נסמן𝑃 = 𝐴𝐵: 

(𝑃𝐶)𝑖𝑗 = ∑ 𝑃𝑖𝑡𝐶𝑡𝑗

ℎ

𝑡=1

= ∑ (∑ 𝐴𝑖𝑙𝐵𝑙𝑡

𝑛

𝑙=1

) 𝐶𝑡𝑗

ℎ

𝑡=1

=
פילוג

∑ ∑(𝐴𝑖𝑙𝐵𝑙𝑡)

𝑛

𝑙=1

𝐶𝑡𝑗

ℎ

𝑡=1

 (∗) 

A(BC)  נסמן𝐵𝐶 = 𝐷: 

(𝐴𝐷)𝑖𝑗 = ∑ 𝐴𝑖𝑡𝐷𝑡𝑗

𝑛

𝑡=1

= ∑ 𝐴𝑖𝑡 (∑ 𝐵𝑡𝑙𝐶𝑙𝑗

ℎ

𝑙=1

)

𝑛

𝑡=1

=
פילוג

∑ ∑ 𝐴𝑖𝑡(𝐵𝑡𝑙𝐶𝑙𝑗) 

ℎ

𝑙=1

𝑛

𝑡=1

= ∑ ∑(𝐴𝑖𝑡𝐵𝑡𝑙)𝐶𝑙𝑗 

ℎ

𝑙=1

𝑛

𝑡=1

 

∑ונקבל  lל tנחליף בין  ∑ (𝐴𝑖𝑙𝐵𝑙𝑡)𝐶𝑡𝑗 ℎ
𝑡=1

𝑛

𝑙=1
. נחליף את סדר הסכימה)מותר בגלל הקומוטטיביות 

∑ואסוצאטיביות של החיבור ונקבל  ∑ (𝐴𝑖𝑙𝐵𝑙𝑡)𝐶𝑡𝑗 𝑛
𝑙=1

ℎ

𝑡=1
 שזה שווה ל)*( 

 ות𝚺"הסבר" להחלפת 

∑ ∑ 𝑥𝑖𝑚

2

𝑖=1

3

𝑚=1

= ∑ 𝑥𝑖1

2

𝑖=1

+ ∑ 𝑥𝑖2

2

𝑖=1

+ ∑ 𝑥𝑖3

2

𝑖=1

= 𝑥11 + 𝑥21 + 𝑥12 + 𝑥22 + 𝑥13 + 𝑥23 

∑ ∑ 𝑥𝑖𝑚

3

𝑚=1

1

𝑖=1

= ∑ 𝑥1𝑚

3

𝑚=1

+ ∑ 𝑥2𝑚

3

𝑚=1

= 𝑥11 + 𝑥12 + 𝑥13 + 𝑥21 + 𝑥22 + 𝑥23 

קיבלנו אותם איברים בשינוי סדר,ובגלל קומוטטיביות ואסוציאטיביות בשדה מקבלים  

∑ ∑ 𝑥𝑖𝑚
2
𝑖=1

3
𝑚=1 = ∑ ∑ 𝑥𝑖𝑚

3
𝑚=1

1
𝑖=1 

  



 הגדרה

𝐴תהי  = (𝑎𝑖𝑗) ∈ 𝔽𝑚×𝑛 המטריצה המשוחלפת ,𝐴𝑡 = (𝑏𝑗𝑖) ∈ 𝔽𝑚×𝑛  מוגדרת ע"י𝑏𝑖𝑗 = 𝑎𝑗𝑖  לכל𝑖, 𝑗 

 דוגמה

𝐴 = (
1 2 3
4 5 6

) , 𝐴𝑡 = (
1 4
2 5
3 6

) 

 (18)עמוד  4.1תרגיל 

𝐴תהי  ∈ 𝔽𝑚∈𝑛 ,𝛼 ∈ 𝔽:הוכיחו . 

𝑡(𝛼𝐴) (א = 𝛼𝐴𝑡 

𝑡(𝐴𝑡) (ב = 𝐴 

𝑡(𝛼𝐴𝑡) (ג = 𝛼𝐴 

 פתרון

𝑡(𝛼𝐴) (א = (

𝛼𝑎11 ⋯ 𝛼𝑎1𝑛

⋮ ⋱ ⋮
𝛼𝑎𝑚1 ⋯ 𝛼𝑎𝑚𝑛

)

𝑡

= (

𝛼𝑎11 ⋯ 𝛼𝑎𝑚1

⋮ ⋱ ⋮
𝛼𝑎1𝑛 ⋯ 𝛼𝑎𝑚𝑛

) = 𝛼 (

𝑎11 ⋯ 𝑎𝑚1

⋮ ⋱ ⋮
𝑎1𝑛 ⋯ 𝑎𝑚𝑛

) = α𝐴𝑡 

𝐴 (ב ∈ 𝔽𝑚×𝑛 ⇒ 𝐴𝑡 ∈ 𝔽𝑛×𝑚 ⇒ (𝐴𝑡)𝑡 ∈ 𝔽𝑚×𝑛 ⇒ 

𝐵נסמן  = 𝐴𝑡 , 𝐶 = 𝐵𝑡 = (𝐴𝑡)𝑡 הוכחנו שהסדרים של .A וC  שווים, נבדוק איברים𝑎𝑖𝑗 = 𝑏𝑗𝑖 =

𝑐𝑖𝑗  כלומר𝑎𝑖𝑗 = 𝑐𝑖𝑗  ולכן𝐴 = 𝐶  כלומר𝐴 = (𝐴𝑡)𝑡 

𝑡(𝛼𝐴𝑡) (ג = 𝛼((𝐴𝑡)𝑡) = 𝛼𝐴 

 תכונות של שחלוף

1) (𝐴 + 𝐵)𝑡 = 𝐴𝑡 + 𝐵𝑡 

2) (𝐴𝐵)𝑡 = 𝐵𝑡𝐴𝑡 

  



 הערה/תרגיל:

 הוכחנו בתרגיל ובשיעורים את שתי התכונות הבאות:

𝐴 (א (

𝑥𝑛

⋮
𝑥𝑛

) = ∑ 𝑥𝑖𝐶𝑖(𝐴)𝑛
𝑖=1 

,𝑥1) (ב … 𝑥𝑚)𝐴 = ∑ 𝑥𝑖𝑅𝑖(𝐴)𝑚
𝑖=1 

 )אבל לא בשיעורי הבית(.ניתן להוכיח )א(=<)ב( באמצעות תכונות השחלוף

 הוכחה

((𝑥1, … 𝑥𝑚)𝐴)
𝑡

=
 תכונת שחלוף 2

𝐴𝑡 (

𝑥1

⋮
𝑥𝑚

) = ∑ 𝑥𝑖𝐶𝑖(𝐴𝑡)

𝑚

𝑖=1

 

∑)נראה ש 𝑥𝑖𝐶𝑖(𝐴𝑡)𝑚
𝑖=1 )𝑡 = ∑ 𝑥𝑖𝑅𝑖(𝐴𝑡)𝑚

𝑖=1: 

(∑ 𝑥𝑖𝐶𝑖(𝐴𝑡)

𝑚

𝑖=1

) =
תכונה 1 של שחלוף

∑(𝑥𝑖𝐶𝑖(𝐴𝑡))
𝑡

𝑚

𝑖=1

=
(𝛼𝐴)𝑡=𝛼𝐴𝑡

∑ 𝑥𝑖(𝐶𝑖(𝐴𝑡))
𝑡

𝑚

𝑖=1

= ∑ 𝑥𝑖𝑅𝑖(𝐴)

𝑚

𝑖=1

(∗) 

 הערה לגבי )*(

(𝐶𝑖(𝐴𝑡))
𝑡

= (
𝑏1𝑖

⋮
𝑏𝑛𝑖

)

𝑡

= (𝑏1𝑖, … , 𝑏𝑛𝑖) = (𝑎𝑖1, … 𝑎𝑖𝑛) = 𝑅𝑖(𝐴) 

 המשך

,𝑥1))קיבלנו,  … 𝑥𝑚)𝐴)
𝑡

= ∑ 𝑥𝑖(𝐶𝑖(𝐴𝑡))
𝑡𝑚

𝑖=1 לכן ,(((𝑥1, … 𝑥𝑚)𝐴)
𝑡
)

𝑡
= ∑ 𝑥𝑖𝑅𝑖(𝐴)𝑚

𝑖=1 

 הגדרה

𝐴 ∈ 𝔽𝑚×𝑛  אם  מטריצה סימטריתתיקרא𝐴𝑡 = 𝐴 אם  אנטיסימטריתו𝐴𝑡 = −𝐴 

 דוגמאות

𝐴 = (
1 2
2 3

 סימטרית (

𝐵 = (
0 −1
1 0

 אנטיסימטרית (

𝐶 = (
1 3
4 5

 ולא אנטיסימטריתלא סימטרית  (

  



 (19)עמוד  4.4תרגיל 

𝐴הוכיחו שלכל מטריצה  (א ∈ 𝔽𝑚×𝑛  המטריצה𝐴𝐴𝑡 ∈ 𝔽𝑚×𝑚 .היא סימטרית 

𝐴הוכיחו שלכל  (ב ∈ 𝔽𝑛×𝑛  מתקיים𝐴 + 𝐴𝑡  ,סימטרית𝐴 − 𝐴𝑡 .אנטי סימטרית 

 הוכחה

𝐴𝐴𝑡בדקו  (א ∈ 𝔽𝑚×𝑚 

(𝐴𝐴𝑡)𝑡 =
תכונות שחלוף

(𝐴𝑡)𝑡𝐴𝑡 = 𝐴𝐴𝑡 

𝐴נוכיח ש (ב + 𝐴𝑡  :סימטרית(𝐴 + 𝐴𝑡)𝑡 = 𝐴𝑡 + 𝐴 = 𝐴 + 𝐴𝑡נוכיח ש .𝐴 − 𝐴𝑡 :אנטיסימטרית 

(𝐴 − 𝐴𝑡)𝑡 = (𝐴 + (−𝐴𝑡))
𝑡

=
תכונות שחלוף

𝐴𝑡 + (−𝐴𝑡)𝑡 = 𝐴𝑡 + ((−1)𝐴𝑡)
𝑡

= 𝐴𝑡 + (−1)(𝐴𝑡)𝑡 = 𝐴𝑡 − 𝐴 = −(𝐴 − 𝐴𝑡) 

 4.5תרגיל 

𝐴תהי  (א ∈ ℝ𝑛×𝑛  אנטי סימטרית. הוכיחו שלכל אברי האלכסון שלA  מתקיים𝑎𝑖𝑖 = 0 

𝐴ה גם עבור האם הטענה נכונ (ב ∈ ℤ2
𝑛×𝑛? 

 פתרון

𝐴𝑡מקיימת  Aמטריצה אנטיסימטרית  (א = −𝐴 >=𝑎𝑖𝑗 = −𝑎𝑗𝑖  לכלI,j  בפרט𝑎𝑖𝑖 = −𝑎𝑖𝑖  >=

2𝑎𝑖𝑖 = 𝑎𝑖𝑖לכן  0 = 0 

1מתקיים  ℤ2ב (ב = 1ולכן  1− + 1 = 𝐴ולא נוכל להסיק מה שהסקנו קודם. נניח  0 = (
1 0
0 1

) ,

𝐴𝑡 = (
1 0
0 1

𝐴, לכן ( = 𝐴𝑡  אבל𝐴𝑡 = −𝐴 = 𝑎  1שכן = −1 

 2 ≠סעיף א' מתקיים בכל שדה עם מאפיין 

 הגדרה

𝐴𝐵כך ש Bהיא הפיכה אם קיימת מטריצה  Aנאמר שהמטריצה  = 𝐵𝐴 = 𝐼במקרה זה נאמר ש .B 

𝐵ונסמן  Aההופכי של  = 𝐴−1 

 (24)עמוד 6.1תרגיל 

 מטריצה הפיכה Aתהי 

 ריבועית Aהוכיחו ש (א

 Aשהיא הופכית ל Bהוכיחו שיש רק מטריצה אחת  (ב

1−(𝐴−1)הפיכה ומתקיים  𝐴−1הוכיחו שגם  (ג = 𝐴 

 פתרון

𝐴𝐵כך ש Bהפיכה ולכן קיימת  A (א = 𝐵𝐴 = 𝐼נניח ש .𝐴 ∈ 𝔽𝑚×𝑛, 𝐵 ∈ 𝔽𝑘×𝑙 .AB  מוגדרת לכן

𝑛 = 𝑘 .BA  מוגדרת לכן𝑙 = 𝑚 .AB  מסדר𝑚×𝑙ו ,BA  מסדר𝑘×𝑛.  לכן בסך הכל𝑚 = 𝑘 =

𝑙 = 𝑛  ומכאןA .ריבועית 

𝐵קיימות נניח  (ב ≠ 𝐶 כך ש𝐴𝐵 = 𝐵𝐴 = 𝐼, 𝐴𝐶 = 𝐶𝐴 = 𝐼: 

B =
תכונה

𝐵𝐼 = 𝐵(𝐴𝐶) =
אסוציאטיביות

(𝐵𝐴)𝐶 = 𝐼𝐶 = 𝐶 בסתירה להנחה 

𝐴𝐴−1כך ש 𝐴−1הפיכה ולכן קיימת  A (ג = 𝐴−1𝐴 = 𝐼 –  כלומר𝐴−1 הפיכה וA  ,הופכית שלה

1−(𝐴−1)אבל בסעיף ב' הוכחנו שההופכית יחידה ולכן  = 𝐴 

  



.𝟔תרגיל  𝟏
𝟏

𝟐
 

𝐴הוכיחו שאם  ∈ 𝔽𝑛×𝑛  הפיכה, אזי גם𝐴𝑡  הפיכה ומתקיים(𝐴𝑡)−1 = (𝐴−1)𝑡 הסיקו: אם .A 

 סימטרית A−1סימטרית והפיכה אזי גם 

 פתרון

A  הפיכה ולכן𝐴−1 כך ש𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼 נבצע שחלוף ונקבל .(𝐴𝐴−1)𝑡 = (𝐴−1𝐴)𝑡 = 𝐼𝑡(= 𝐼) 

(𝐴−1)𝑡𝐴𝑡 = 𝐴𝑡(𝐴−1)𝑡 = 𝐼 לכן ,(𝐴𝑡)−1 = (𝐴−1)𝑡 אם .A סימטרית והפיכה נקבל(𝐴−1)𝑡 = (𝐴𝑡)−1 = 𝐴−1 

 (23)עמוד 6.2תרגיל 

1−(𝐴𝐵)הפיכה ומתקיים  ABמטריצות הפיכות מאותו סדר. הוכיחו שגם  A,Bיהיו  = 𝐵−1𝐴−1 

 הוכחה

(𝐴𝐵)(𝐵−1𝐴−1) = 𝐴(𝐵𝐵−1)𝐴−1 = 𝐴𝐼𝐴−1 = 𝐴𝐴−1 = 𝐼 



 פתרונות פונדמנטליים

)(: ℝנמצא את הפתרונות הפונדמנטליים של המערכת הבאה)מעל 
6 −6 2 2 −6 | 0
0 0 2 2 −4 | 0

) 

𝑥1, 𝑥3  משתנים מובילים לכן𝑥2, 𝑥4, 𝑥5 חופשיים 

𝑥2פתרון פונדמנטלי ראשון   (א = 1, 𝑥4 = 𝑥5 =  (1,1,0,0,0) נקבל את הפתרון .0

𝑥4  שניפתרון פונדמנטלי  (ב = 1, 𝑥2 = 𝑥5 =  (1,1,0−,0,0)נקבל את הפתרון  .0

𝑥5 שלישיפתרון פונדמנטלי  (ג = 1, 𝑥2 = 𝑥4 = ). נקבל את הפתרון 0
1

3
, 0,2,0,1) 

 נציין)נדע להוכיח בהמשך( שהפתרון הכללי של המערכת הוא

{𝑥2(1,1,0,0,0) + 𝑥4(0,0,−1,1,0) + 𝑥5 (
1

3
, 0,2,0,1) : 𝑥2, 𝑥4, 𝑥5 ∈ ℝ} 

 הקשר בין מערכת משוואות הומוגנית למערכת לא הומוגנית

A𝑥מהצורה  נעלמים nמשוואות ב mה מערכת של נתונ = 𝑏(𝐴 ∈ 𝔽𝑚×𝑛) 

𝐻נתון  = {𝑐 ∈ 𝔽𝑛: 𝐴𝑣 =  הפתרון של המערכת ההומוגנית. {0

𝐿 = {𝑣 ∈ 𝔽𝑛: 𝐴𝑣 = 𝑏} .הפתרונות של המערכת הלא הומוגנית 

 הוכחתם בכיתה את המשפט הבא:

𝐿אם  ≠ 𝑣0∀אזי  0 ∈ 𝐿: 𝐿 = 𝑣0 +𝐻 

 דוגמה

(𝐿)𝑥 + 𝑦 = 5 

(H)𝑥 + 𝑦 = 0 

(2,3)}הוא  Lאוסף הפתרונות הכללי של  (2,3)הוא  Lמסויים לפתרון  + (−𝑡, 𝑡): 𝑡 ∈ ℝ} 

 עוד דוגמה

) נתבונן במערכת
6 −6 2 2 −6 | 6
0 0 2 2 −4 | 4

) 

𝑣0אפשר לראות ש = (
1

3
, Lפתרון של המערכת. נראה ש (0,2,0,0 = 𝑣0 +𝐻 

 נפתור את המערכת הלא הומוגנית

𝑥2, 𝑥4, 𝑥5   משתנים חופשיים. נסמם𝑥2 = 𝑠, 𝑥4 = 𝑡, 𝑥5 = 𝑘 במשוואות ונקבל:. נציב 

𝐿 =

{
 
 

 
 

(

  
 

1

3
+ 𝑠 +

1

3
𝑘

𝑠
2𝑡 + 2𝑘
𝑡
𝑘 )

  
 
: 𝑠, 𝑡, 𝑘 ∈ ℝ

}
 
 

 
 

 



(

  
 

1

3
+ 𝑠 +

1

3
𝑘

𝑠
2 − 𝑡 + 2𝑘

𝑡
𝑘 )

  
 
=

(

 
 
 

1

3
0
2
0
0)

 
 
 
+ 𝑠

(

 
 

1
1
0
0
0)

 
 
+ 𝑡

(

 
 

0
0
−1
1
0 )

 
 
+ 𝑘

(

 
 
 

1

3
0
2
0
1)

 
 
 

 

 קיבלנו

𝐿 = 𝑣0 +𝐻 

 הערה

𝑣0 לכלהטענה נכונה  ∈ 𝐿  במקרה שלנו ההוכחה היתה קלה אך באופן כללי יש להראות הכלה דו

 כיוונית.

 (17)עמ' 3.4תרגיל 

𝐿ג( הוכיחו  ≠ ∅  >=#𝐻 = #𝐿 #(- )מספר האיברים בקבוצה 

 הוכחה

𝐿 ≠ 𝑣0ולכן קיים  ∅ ∈ 𝐿  ומתקיים𝐿 = 𝑣0 +𝐻  כלומר{𝑣: 𝑣 ∈ 𝐿} = 𝑣𝑜 + {𝑤:𝑤 ∈ 𝐻} = (𝑣0 +𝑤:𝑤 ∈ 𝐻} .

𝑣0  ווקטור קבוע ונתון ולכן#𝐻 = #𝐿 

 סעיף ד'

𝐻#מצאו מקרה בו  = 1,#𝐿 = 0 

 תשובה

}למשל 
0𝑥 = 1
2𝑥 = 5

}אין פתרון.  – 
0𝑥 = 0
2𝑥 = 0

 פתרון אחד. – 

)בכתיב מטריצות
0
2
) 𝑥 = (

1
5
)  ,(

0
2
) 𝑥 = 0 

 סעיף ה'

𝐻#מצאו מקרה בו  = ∞,#𝐿 = 0 

 תשובה

(
0 1
0 1

) (
𝑥
𝑦) = (

2
5
) = >{

0𝑥 + 𝑦 = 2
0𝑥 + 𝑦 = 5

𝐿#=< אין פתרון   = 0 

(
0 1
0 1

) (
𝑥
𝑦) = 0  >={

0𝑥 + 𝑦 = 0
0𝑥 + 𝑦 = 0

,𝑡)}=< הפתרון   0): 𝑡 ∈ ℝ} 

 סעיף ו'

𝐻#מצאו מקרה בו  = 7,#𝐿 = 0 

 תשובה

,ℤ7 :#{(𝑡אותה מערכת כמו קודם רק מעל  0): 𝑡 ∈ ℤ7} = 7 

  



 פעולות אלמנטריות ופעולות שורה

 הגדרה

על מטריצה נקראת "פעולת שורה אלמנטרית" אם היא מבצעת אחת משלוש הפעולות  𝜌פעולה 

 הבאות:

1) 𝑅𝑖 ← 𝑅𝑖 + 𝛼𝑅𝑗)חיבור שורה עם כפולה של שורה אחרת( 

2) 𝑅𝑖 ← 𝛼𝑅𝑖(𝛼 ≠  (0 ≠, הכפלת שורה בסקלר 0

3) 𝑅𝑖 ↔ 𝑅𝑗)החלפת שורות( 

 נקראת מטריצת שורה אלמנטרית)או מטריצה אלמנטרית( 𝜌(𝐼)במקרה כזה המטריצה 

 דוגמאות

𝐴נניח שיש לנו מטריצה  (1 = (
1 2
3 4

𝑅1(𝜌)נניח שאנחנו רוצים לבצע  ( ↔ 𝑅2 נסתכל על .

𝐼 2×2מטריצת היחידה מסדר  = (
1 0
0 1

) .𝜌(𝐼) = (
0 1
1 0

) , 𝜌(𝐴) = (
3 4
1 2

) 

𝜌(𝐼)𝐴 הטענה: = 𝜌(𝐴) 

(
0 1
1 0

) (
1 2
3 4

) = (
3 4
1 2

) 

𝐴נניח שיש לנו מטריצה שאנו רוצים לדרג  (2 = (
2 8
1 3

): 

𝐴 = (
2 8
1 3

)
𝑅2:2𝑅2
→    
𝜌1

(
2 8
2 6

)
𝑅2:𝑅2−𝑅1
→      

𝜌2
(
2 8
0 −2

) = B 

ρ1(𝐼)פעולות השורה האלמנטריות הן  = (
1 0
0 2

) , 𝜌2(𝐼) = (
1 0
−1 1

) 

𝐵𝜌2(𝜌1(𝐴))מתקיים:  = 𝜌2(𝐼)𝜌2(𝐼)𝐴 

)כלומר 
1 0
−1 1

) (
1 0
0 2

) (
2 8
1 3

)
⏟          

=(
2 8
2 6

)

= (
2 8
0 −2

) 

 הערה

 מתבצע מימין. 𝜌(𝐼)כל הדיון הנ"ל תקף גם לפעולות עמודה, רק שהכפל ב

  



 (25)עמ' 6.7תרגיל 

 פעולת שורה אלמנטרית. 𝜌תהא 

𝐴הוכיחו: לכל מטריצה  (א ∈ 𝔽𝑚×𝑛  מתקיים𝜌(𝐴) = 𝜌(𝐼)𝐴 כאשר 𝐼 ∈ 𝔽𝑚×𝑚 הסיקו שלכל .

𝜌(𝐴𝐵)מתקיים  A,Bזוג מטריצות)כך שהכפל מוגדר(  = 𝜌(𝐴)𝐵 

 פתרון

𝛼𝑅𝑖)פעולות שורה. נוכיח רק לגבי אחת מהן  3ישנן  → 𝑅𝑖) 

𝑒𝑖𝐴   : ב'( 3.6תרגיל  –)תזכורת    = 𝑅𝑖(𝐴) 

𝜌(𝐼)𝐴 =

(

 
 

𝑒1
⋮
𝛼𝑒𝑖
⋮
𝑒𝑚)

 
 
∗ 𝐴 =

תרגיל 3.6

סעיף ד
(

 
 

𝑒1𝐴
⋮

𝛼𝑒𝑖𝐴
⋮
𝑒𝑚𝐴)

 
 
=

(

 
 

𝑅1(𝐴)
⋮

𝛼𝑅𝑖(𝐴)
⋮

𝑅𝑚(𝐴))

 
 
= ρ(𝐴) 

 לכן

𝜌(𝐴𝐵) = 𝜌(𝐼)(𝐴𝐵) = (𝜌(𝐼)𝐴)𝐵 = 𝜌(𝐴)𝐵 

 סעיף ב'

𝜌(𝐼)−1הפיכה ומתקיים  𝜌(𝐼)המטריצה  = 𝜌−1(𝐼)  כאשר𝜌−1 היא הפעולה ההפוכה ל𝜌 

 הוכחה

𝜌(𝐼)𝜌−1(𝐼) =
לפי סעיף א

𝜌(𝜌−1(𝐼)) = 𝐼 

 לכן: פעולת שורה אלמנטרית 𝜌−1פעולת שורה אלמנטרית אז גם  𝜌באופן דומה אם 

𝜌−1(𝐼)𝜌(𝐼) = 𝜌−1(𝜌(𝐼)) = 𝐼 

  



 הגדרה

𝐴של מטריצה ריבועית  (trace)ה ב  ק  הע   ∈ 𝔽𝑚×𝑚 :היא סכום איברי האלכסון 

𝑡𝑟(𝐴) = 𝑎11 + 𝑎22 +⋯+ 𝑎𝑛𝑛 =∑𝑎𝑖𝑖

𝑛

𝑖=0

 

 תכונות

1) 𝑡𝑟(𝐴) = 𝑡𝑟(𝐴𝑡) 

2) 𝑡𝑟(𝐴 + 𝐵) = 𝑡𝑟(𝐴) + 𝑡𝑟(𝐵) 

3) 𝑡𝑟(𝛼𝐴) = 𝛼𝑡𝑟(𝐴) 

4) 𝑡𝑟(𝐴𝐵) = 𝑡𝑟(𝐵𝐴) 

 הוכחה

𝐴נסמן  = (𝑎𝑖𝑗) ,𝐵 = (𝑏𝑖𝑗)  נניח(𝐴, 𝐵 ∈ 𝔽𝑛×𝑛 ,)𝐶 = 𝐴𝐵(= (𝑐𝑖𝑖)) ,𝐵𝐴 = 𝐷 

𝑡𝑟(𝐴𝐵) = 𝑡𝑟(𝐶) =∑𝑐𝑖𝑖

𝑛

𝑖=1

=∑∑𝑎𝑖𝑘𝑏𝑘𝑖

𝑛

𝑘=1

𝑛

𝑖=1

 

𝑡𝑟(𝐵𝐴) = 𝑡𝑟(𝐷) =∑𝑑𝑖𝑖

𝑛

𝑖=1

=∑∑𝑏𝑖𝑘𝑎𝑘𝑖

𝑛

𝑘=1

𝑛

𝑖=1

=
חילוף

כפל

בשדה

∑∑𝑎𝑘𝑖𝑏𝑖𝑘

𝑛

𝑘=1

𝑛

𝑖=1

=
החלפת

אינדקסים

∑∑𝑎𝑖𝑘𝑏𝑘𝑖

𝑛

𝑖=1

𝑛

𝑘=1

=
החלפת סדר הסכימה

∑∑𝑎𝑖𝑘𝑏𝑘𝑖

𝑛

𝑘=1

𝑛

𝑖=1

 

.𝟓תרגיל  𝟏𝟎
𝟏

𝟐
 (21)עמ' 

,𝐴הוכיחו שאין מטריצות  𝐵 ∈ ℝ2  עבורן𝐼 = 𝐴𝐵 − 𝐵𝐴?האם הטענה נכונה לכל שדה . 

 הוכחה

,𝐴נניח בשלילה שקיימות  𝐵 ∈ ℝ2 ,𝐼 = 𝐴𝐵 − 𝐵𝐴. 

𝑛אזי  = 𝑡𝑟(𝐼) = 𝑡𝑟(𝐴𝐵 − 𝐵𝐴) =
tr תכונות

𝑡𝑟(𝐴𝐵) − 𝑡𝑟(𝐵𝐴) =
תכונה 4 שהוכחנו

0 

𝑛קיבלנו  = 𝑛)וזו סתירה  0 ≥ 1) 

 

𝐴: ניקח ℤ2הטענה אינה נכונה לכל שדה. למשל עבור  = (
1 0
0 0

) , 𝐵 = (
0 0
1 0

): 

𝐴𝐵 = (
1 0
0 0

) , 𝐵𝐴 = (
0 0
0 1

) , 𝐴𝐵 − 𝐵𝐴 = (
1 0
0 1

) = I 



 מרחב ווקטורי

 הגדרה

וכן פעולת כפל המקשרת  𝑉+הוא קבוצה שעליה מוגדרת פעולת חיבור  𝔽מעל שדה  Vמרחב ווקטורי 

נקראים ווקטורים  Vאיברי  . הפעולות הנ"ל מקיימות אקסיומות שראיתם בשיעור.𝔽 ∗𝔽𝑉בינו לבין 

 נקראים סקלרים. 𝔽ואיברי 

 דוגמאות

1) 𝔽𝑛  מרחב ווקטורי)מ"ו בקיצור( מעל𝔽 .עם חיבור רכיב רכיב וכפל בסקלר 

2) 𝔽𝑚×𝑛  הוא מ"ו מעל𝔽 .עם חיבור מטריצות וכפל מטריצה בסקלר 

 הוא מרחב ווקטורי מעל עצמו. 𝔽: כל שדה 1מקרה פרטי של  (3

 (34)עמ' 1.2תרגיל 

( משרה מבנה של מרחב וקטורי על ℝ. האם פעולת הכפל הבאה)מעל עם חיבור וקטורי רגיל ℝ2יהא 

ℝ2? 𝛼(𝑥, 𝑦) = (𝛼2𝑥, 𝛼2𝑦) 

 פתרון

 פעולות הכפל בסדלק במ"ו אמורות לקיים מס' תכונות:

,𝑢לכל  𝑣 ∈ 𝑉, 𝛼, 𝛽 ∈ 𝔽: 

(𝛼𝛽)𝑣 = 𝛼(𝛽𝑣), (𝛼 + 𝛽)𝑣 = 𝛼𝑣 + 𝛽𝑣, 𝛼(𝑢 + 𝑣) = 𝛼𝑢 + 𝛼𝑣 

,𝛼יהי  𝛽 ∈ 𝔽, (𝑥, 𝑦) ∈ ℝ2 

(𝛼 + 𝛽)(𝑥, 𝑦) = ((𝛼 + 𝛽)2𝑥, (𝛼 + 𝛽)2𝑦) = (𝛼2𝑥 + 2𝛼𝛽𝑥 + 𝛽2𝑥, 𝛼2𝑦 + 2𝛼𝛽𝑦 + 𝛽2𝑦) 

 מצד שני

𝛼(𝑥, 𝑦) + 𝛽(𝑥, 𝑦) = (𝛼2𝑥, 𝛼2𝑦) + (𝛽2𝑥, 𝛽2𝑦) = (𝛼2𝑥 + 𝛽2𝑥, 𝛼2𝑦 + 𝛽2𝑦) 

,𝛼הביטויים הנ"ל אינם שווים לכל  𝛽 ∈ 𝔽, (𝑥, 𝑦) ∈ ℝ2 –  למשל𝛼 = 𝛽 = 𝑥 = 𝑦 = 1 

 )של תת מרחב(הגדרה

 אם: Vהוא תת מרחב)בקיצור ת"מ( של  W. נאמר ש𝔽מרחב ווקטורי מעל  Vיהי 

𝑊 (א ≠ ∅ 

 𝔽𝑉∗ולכפל  𝑉+ביחס לחיבור  𝔽היא מרחב ווקטורי מעל  Wהקבוצה  (ב

 דוגמאות

 .Vהוא ת"מ של  V, אז 𝔽מ"ו מעל  Vאם  (א

 .Vת"מ של  {0𝑉} , אז𝔽אם מ"ו מעל  (ב

𝑤 (ג = {(𝑎, 𝑏) ∈ ℝ2: 𝑎 = 𝑏}  הוא ת"מ שלℝ2 מעל(ℝ מדובר בישח .)𝑦 = 𝑥 כל ישר .

𝑤שיעבור דרך הראשית יהיה ת"מ וקטורי. מצד שני הישר  = {(2, 𝑎): 𝑎 ∈ ℝ} (𝑥 = ( כי 2

  ⏟(2,3)למשל אין סגירות: 
∈𝑤

+ (2,4)⏟  
∈𝑤

= (4,7)⏟  
∉𝑤

 

 ת"מ טריוויאלים



𝑊 (ד = {(𝑎, 𝑏, 0): 𝑎, 𝑏 ∈ ℝ}  הוא ת"מ שלℝ3 אבל ,{(𝑎, 𝑏, 1): 𝑎, 𝑏 ∈ ℝ}  שהוא המישור𝑧 =

 אינו ת"מ. 1

 הערה

𝑊אם  ⊆ 𝑉 0 ת"מ אזי𝑊 = 0𝑉)של המרחב. 0יב להכיל את וקטור הולכן כל ת"מ חי )תוכיחו בש"ב 

 קריטריון מקוצר לת"מ

0𝑉 (א ∈ 𝑊 ⊆ 𝑉  או לחילופין(∅ ≠ 𝑊 ⊆ 𝑉) 

𝑢,𝑤לכל  (ב ⊆ 𝑊  מתקיים𝑢+𝑉𝑤 ∈ 𝑊 

𝛼לכל  (ג ∈ 𝔽,𝑤 ∈ 𝑊  מתקיים𝛼 ∗𝔽𝑉 𝑤 ∈ 𝑊 

 (35)עמ' 2.8תרגיל 

𝑢,𝑤מ"ו ויהיו  Vיהא  ⊆ 𝑉  כך שתתי מרחבים שלו𝑤 ⊆ 𝑢הוכיחו ש .𝑤  ת"מ של𝑢 

 הוכחה

 .בקריטריון המקוצרנעזר 

𝑤נתון  (1 ⊆ 𝑢 .W  ת"מ שלV  0ולכן𝑉 ∈ 𝑤 מצד שני .u  ת"מ שלV  0ולכן𝑢 =
ההערה הנ"ל

0𝑉 ∈ 𝑢 

0𝑢לכן  ∈ 𝑤 

,𝑤1יהי  (2 𝑤2 ∈ 𝑤 נתון .𝑤 ⊆ 𝑢 .u  ת"מ שלV  ולכן 

𝑤1+𝑢𝑤2 =
𝑉 ת"מ של 𝑢

𝑤1+𝑉𝑤2 ∈
𝑉 ת"מ של 𝑤

𝑤 

𝑤יהי  (3 ∈ 𝑊,𝛼 ∈ 𝔽: 

𝛼 ∗𝔽𝑢 𝑤 =
𝑉 ת"מ של 𝑢

𝛼 ∗𝔽𝑉 𝑤 ∈
𝑉 ת"מ של 𝑤

𝑊 

 (35)עמ' 2.10תרגיל 

𝐴 ∈ 𝔽𝑛×𝑛 נגדיר .𝑉𝐴 = {𝐵 ∈ 𝔽
𝑛×𝑛: 𝐴𝐵 = 𝐵𝐴} 

 𝔽𝑛×𝑛ת"מ של  𝑉𝐴הוכיחו ש (א

 סגור לכפל מטריצות. 𝑉𝐴הוכיחו ש (ב

 )סעיף א'(הוכחה

𝑉𝐴 (א ⊆ 𝔽
𝑛×𝑛 .מתקיים  נתון𝐴 ∗ 0 = 0 = 0 ∗ 𝐴  >=0 ∈ 𝑉𝐴 

,𝐵יהיו  (ב 𝐶 ∈ 𝑉𝐴נראה ש .𝐵 + 𝐶 ∈ 𝑉𝐴מתקיים . 

(𝐵 + 𝐶)𝐴 =
פילוג

𝐵𝐴 + 𝐶𝐴 =
𝐵,𝐶∈𝑉𝐴

𝐴𝐵 + 𝐴𝐶 = A(B + C) ⇒ 𝐵 + 𝐶 ∈ 𝑉𝐴 

𝐵נניח  (ג ∈ 𝑉𝐴, 𝛼 ∈ 𝔽  ונראה𝛼𝐵 ∈ 𝑉𝐴 

(𝛼𝐵)𝐴 =
תכונות של מטריצות

𝛼(𝐵𝐴) =
𝐵∈𝑉𝐴

𝛼(𝐴𝐵) = (𝛼𝐴)𝐵 = (𝐴𝛼)𝐵 = 𝐴(𝛼𝐵) ⇒ 𝛼𝐵 ∈ 𝑉𝐴  

 !לא קשור לתתי מרחביםהוכחה לסעיף ב' 

,𝐵נניח  𝐶 ∈ 𝑉𝐴  צ"לBC ∈ VA: 

𝐴(𝐵𝐶) =
אסוציאטיביות

(𝐴𝐵)𝐶 =
𝐵∈𝑉𝐴

(𝐵𝐴)𝐶 =
'אסוצ

𝐵(𝐴𝐶) =
𝐶∈𝑉𝐴

𝐵(𝐶𝐴) =
'אסוצ

(𝐵𝐶)𝐴 

  



𝑊,𝑈חיבור ואיחוד של תתי מרחבים) ⊆ 𝑉) 

𝑊 ∪𝑈 = {𝑣 ∈ 𝑉: 𝑣 ∈ 𝑊 ∧ 𝑣 ∈ 𝑈} 

 . כלומר:Wו Uהחיתוך הוא ת"מ והוא תת המרחב הגדול ביותר המוכל ב

1) 𝑈 ∩𝑊 ⊆
𝑈
𝑊

 

𝑋כך ש Vת"מ של  Xאם  (2 ⊆ 𝑈,⊆ 𝑊  אזי𝑋 ⊆ 𝑈 ∩𝑊 

𝑊 ∪𝑈 = {𝑣 ∈ 𝑉:
𝑣 ∈ 𝑈

או

𝑣 ∈ 𝑊

𝑊לא חייב להיות ת"מ והוא ת"מ אם ורק אם  { ⊆ 𝑈  או𝑈 ⊆ 𝑊 

 (35)עמ' 3.4תרגיל 

𝑉יהא  = ℝ𝑛×𝑛 ,𝑢,𝑤 ⊆ 𝑉 תתי מרחב 

  תארו את𝑢 ∩ 𝑤 

 הוכיחו ש𝑢 ⊆ 𝑤  או𝑤 ⊆ 𝑢 ואם לא אזי הוכיחו ש𝑤 ∪ 𝑢 אינו ץ"מ 

 האלכסוניות wהמטריצות הסימטריות,  u (א

𝑤 ∈ 𝑢  ולכן𝑤 ∪ 𝑢 = 𝑤)כל אלכסונית היא סימטרית( 

 משולשיות עליונות wמטריצות סימטריות,  u (ב

𝑢נקבל  ∩ 𝑤 =  :{אלכסוניות}

𝐴 ∈ 𝑢 ∩ 𝑤  >=𝐴 ∈ 𝑤  ולכן∀𝑖 > 𝑗 𝑎𝑖𝑗 = 𝑖אם סימטרית ולכן  Aכמו כן  0 < 𝑗  נקבל𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 0 .

𝑖∀מכאן  ≠ 𝑗: 𝑎𝑖𝑗 =  אלכסונית. Aולכן  0

𝑢 ∩ 𝑤 נראה שאין סגירות לחיבור:אינו תת מרחב . 

(
1 1
0 1

)
⏟    
∈𝑢∪𝑤

+ (
0 1
1 1

)
⏟    
∈𝑢∪𝑤

= (
1 2
1 2

) ∉ 𝑢 ∪ 𝑤 

𝒕𝒓מטריצות עם  wמטריצות אנטיסימטריות,  u (ג = 𝟎 

𝐴הוכחנו בעבר שלכל  ∈ ℝ𝑛×𝑛  אנטיסימטרית מתקיים𝑡𝑟(𝐴) = 𝑢לכן  0 ⊆ 𝑤  ולכן
𝑢 ∩ 𝑤 = 𝑢
𝑢 ∪ 𝑤 = 𝑤

 

  



 סכום של תתי מרחב

𝑈,𝑊מ"ו ויהיו  Vיהי  ⊆ 𝑉  ת"מ שלו. הסכום𝑈 +𝑊 = {𝑢 + 𝑤:
𝑢 ∈ 𝑈
𝑤 ∈ 𝑊

הוא תמיד ת"מ והוא המ"ו  {

 .Wו Uהקטן ביותר המכיל את 

 תרגיל

 בתרגיל הנ"ל מצאו בכל סעיף את סכום תתי המרחבים הנתונים.

 האלכסוניות wהמטריצות הסימטריות,  u (א

𝑤 ⊆ 𝑢  אזי𝑢 + 𝑤 = 𝑢 

 משולשיות עליונות wמטריצות סימטריות,  u (ב

𝑢 + 𝑤 = 𝔽𝑛×𝑛  נראה עבור𝑛 =  כללי(:)ניתן להוכיח באופן 2

(
𝑥 𝑦
𝑧 𝑤

) = (
0 𝑧
𝑧 0

)
⏟    
סימטרית

+ (
𝑥 𝑦 − 𝑧
0 𝑤

)⏟      
משולשית עליונה

 

  



 סכום ישר

𝑈אם  Vהוא סכום יש של  U+𝑊. נאמר Vתתי מרחבים של  𝑈,𝑊יהיו  +𝑊 = 𝑉 ו𝑈 ∩𝑊 = {0𝑉} 

𝑈⊕𝑊ובמקרה זה נרשום  = 𝑉 

 הערה

𝑣ראיתם בהרצאה שבמקרה זה כל וקטור  ∈ 𝑉  ניתן להצגה יחדיה𝑣 = 𝑢⏟
∈𝑈

+ 𝑤⏟
∈𝑊

 

 דוגמה

ℝ2 :𝑢נתבונן בשני תתי מרחב של  = {(𝑥, 𝑦): 𝑥 = 𝑦} ו𝑤 = {(𝑥, 𝑦): 𝑥 + 𝑦 = ℝ2. נראה ש{0 = 𝑢⊕𝑤 

 הוכחה

𝑈צ"ל  (א ∩𝑊 = ,𝑥). אם {(0,0)} 𝑦) ∈ 𝑢 ∩ 𝑤  אזי
𝑦 = 𝑥
𝑦 = −𝑥  >=𝑥 = 𝑦 = 0 

ℝ2 (ב ∋ (𝑥, 𝑦) =
?
(𝑎, 𝑎) + (𝑏,−𝑏) אם נפתור נקבל .{

𝑥 = 𝑎 + 𝑏
𝑦 = 𝑎 − 𝑏

 כלומר: 

𝑥 + 𝑦 = 2𝑎 => 𝑎 =
𝑥 + 𝑦

2
, 𝑥 − 𝑦 = 2𝑏 => 𝑏 =

𝑥 − 𝑦

2
 



 הגדרה

,𝑣1ויהיו  𝔽מ"ו מעל  Vיהי  … 𝑣𝑛 ∈ 𝑉 צירוף לינארי של .𝑣1, … 𝑣𝑛  הוא ביטוי מהצורה𝛼1𝑣1 +⋯𝛼𝑛𝑣𝑛 

1∀כאשר  ≤ 𝑖 ≤ 𝑛: 𝛼𝑖 ∈ 𝔽 

𝛼𝑖אם  =  הוא טריוויאלי)צל"ט בקיצור(נאמר שהצירוף הלינארי  iלכל  0

,𝑣1שוקטורים נאמר  … 𝑣𝑛  צ"ל לא טריוויאלי כך ש ישהם ת"ל )תלויים ליניארית( אם𝛼1𝑣1 +⋯𝛼𝑛𝑣𝑛 = 0 

,𝑣1אחרת נאמר ש … 𝑣𝑛 )בת"ל)בלתי תלויים לינארית 

 דוגמאות

𝑉יהי  = ℝ23 ,(2,3), (1,8) ∈ ℝ2  (2,3)3אזי + ,(2,3)הוא צ"ל של  (1,8)5 . צל"ט שלהם הוא (1,8)

0(2,3) + 0(1,8) = 𝛼(2,3)למשוואה . שני הוקטורים הם בת"ל כי (0,0) + 𝛽(1,8) = קיים  (0,0)

 רק פתרון טריויאלי.

,(1,0)מצד שני אם נבחר  (1,8), (1,0)3נראה שהם ת"ל כי למשל  (2,4) + 1(1,8) − 2(2,4) = (0,0) 

 תרגיל

ℝ2[𝑥]נתבונן במ"ו הבא:  ≔ {𝑎𝑥2 + 𝑏𝑥 + 𝑐: 𝑎, 𝑏, 𝑐 ∈ ℝ} בדקו האם ארבעת הווקטורים הבאים .

 הם ת"ל או בת"ל:

𝑓1(𝑥) = 1 + 3𝑥 + 𝑥
2, 𝑓2(𝑥) = 1 + 4𝑥 + 4𝑥

2, 𝑓3(𝑥) = 2 + 3𝑥, 𝑓4(𝑥) = 8𝑥 + 𝑥
2 

 פתרון

𝛼(1 + 3𝑥 + 𝑥2) + 𝛽(1 + 4𝑥 + 4𝑥2) + 𝛾(2 + 3𝑥) + 𝛿(8𝑥 + 𝑥2) ≡ 0 

⊛צ"ל אם קיים צ"ל לא טריוויאלי:  {

𝛼 + 𝛽 + 2𝛾 = 0
3𝛼 + 4𝛽 + 3𝛾 + 8𝛿 = 0

𝛼 + 3𝛽 + 𝛿 = 0
 נפתור: -. מדובר במערכת הומוגנית 

(
1 1 2 0
3 4 3 8
1 3 0 1

 ((.0)בגלל שזו מערכת הומוגנית לא רושמים את טור הקבועים)=(

הפתרון:

{
 
 

 
 

 

(

  
 

−10
3

4
𝛿

3
1

4
𝛿

15

4
𝛿

𝛿 )

  
 
: 𝛿 ∈ ℝ

}
 
 

 
 

 יש אינסוף פתרונות ולכן הוקטורים תלויים. ולכן 

שמנו אותה  ⊛המשוואות לבחור את מערכת שימו לב שעל מנת  הערה בקשר לתרגיל הקודם: 

 במטריצה כך שהעמודות של המטריצה הן בדיוק המקדמים של הפולינומים.

 (38)עמ' 5.3תרגיל 

𝑣1( בת"ל: ℝיהיו הוקטורים הבאים)מעל  aמצאו לאלו ערכי  = (1,2, 𝑎), 𝑣2 = (2𝑎 + 1,2,3), 𝑣3 =

(2,4, 𝑎 − 1) 



 פתרון

(
1 2𝑎 + 1 2
2 2 4
𝑎 3 𝑎 − 1

) → (
1 2𝑎 + 1 2
0 −4𝑎 0
0 −2𝑎2 − 𝑎 + 3 −𝑎 − 1

) 

𝑎אם  = 𝑎. נניח נקבל שיש משתנה חופשי ואז הוקטורים ת"ל 0 ≠ ונחלק את השורה השנייה  0

 :ונקבל 4𝑎−ב

(
1 2𝑎 + 1 2
0 1 0
0 −2𝑎2 − 𝑎 + 3 −𝑎 − 1

) → (
1 2𝑎 + 1 2
0 1 0
0 0 −𝑎 − 1

) 

𝑎אם  =  נקבל שהווקטורים ת"ל. 1−

𝑎מסקנה:  = 𝑎ת"ל,  1−,0 ≠  בת"ל 1−,0

 הגדרה

𝐴נאמר שהקבוצה  = {𝑣1, … 𝑣𝑛}  היא ת"ל אם קיים צ"ל לא טריוויאלי𝛼1𝑣1 +⋯+ 𝛼𝑛𝑣𝑛 = 0 ,

 בת"ל Aאחרת נאמר ש

 (39)עמ' 5.8תרגיל 

 מ"ו: הוכיחו או הפריכו: Vיהי 

𝐴ה( אם  ⊆ 𝑉  איבר של  כלת"ל אזיA .הוא צ"ל של האחרים 

 פתרון

𝐴הפרכה: תהי  = {(1,2), (2,4), (1,0)} ∈ ℝ2(1,2)2שכן  . זו קבוצה תלויה לינארית − 1(2,4) + 0(1,2) = 0 .

,(2,4)אינו צ"ל של  (1,0)אבל  (1,2). 

 הגדרה

∅ותהי  𝔽מ"ו מעל  Vיהי  = 𝑆 ⊆ 𝑉  קבוצה כלשהי. הנפרש שלS  הוא אוספ כל הצירופים הלינאריים

 𝑆𝑝𝑎𝑛(𝑆)והוא יסומן ב Sהסופיים של אברי 

(∅)𝑆𝑝𝑎𝑛מגדירים  = 0 

𝑆𝑝𝑎𝑛(𝑆)אם  = 𝑉 נאמר שS  פורשת את 

 Spanהערות על 
Sלכל  .1 ⊆ 𝑉  ,תת קבוצה𝑆𝑝𝑎𝑛(𝑆)  תת מרחב שלV 

2. 𝑆𝑝𝑎𝑛(𝑆)  הוא ת"מ הקטן ביותר המכיל אתSכלומר .: 

𝑆  .א ⊆ 𝑆𝑝𝑎𝑛(𝑆)⏟    
תת מרחב

 

𝑆אם  .ב ⊆ 𝑊 וw  ת"מ אזי𝑆𝑝𝑎𝑛(𝑆) ⊆ 𝑊 

 דוגמה

𝑆נבחר  ⊆ ℝ2 . ,𝑆 = {(1,0),  :אזי {(2,0)

S𝑝𝑎𝑛(𝑆) = {𝛼(1,0) + 𝛽(0,1): 𝛼, 𝛽 ∈ ℝ} = {(𝛼 + 2𝛽, 0): 𝛼, 𝛽 ∈ ℝ} = {(𝛾, 0): 𝛾 ∈ ℝ} = 𝑥 −  ציר ה



𝑆נבחר  ∈ ℝ2×2 :𝑆 = {(
1 0
0 0

) , (
0 1
0 0

) , (
0 0
0 1

)}: 

𝑆𝑝𝑎𝑛(𝑆) = {𝛼 (
1 0
0 0

) + 𝛽 (
0 1
0 0

) + 𝛾 (
0 0
0 1

) : 𝛼, 𝛽𝛾 ∈ ℝ} = {(
𝛼 𝛽
0 𝛾

) : 𝛼, 𝛽𝛾 ∈ ℝ} = {
משולשיות

עליוניות
} 

 את תת המרחב של המטריצות המשולשיות העליונות. פורשת Sנאמר ש

 (40)עמ' 6.3תרגיל 

,𝐴ויהיו  𝔽מ"ו מעל  Vיהי  𝐵 ⊆ 𝑉 :קבוצות כלשהן. הוכיחו או הפריכו 

𝑆𝑝𝑎𝑛(𝐴 (א + 𝐵) = 𝑆𝑝𝑎𝑛(𝐴) ∪ 𝑆𝑝𝑎𝑛(𝐵) 

𝑆𝑝𝑎𝑛(𝐴 (ב ∪ 𝐵) = 𝑆𝑝𝑎𝑛(𝐴) ∪ 𝑆𝑝𝑎𝑛(𝐵) 

𝑆𝑝𝑎𝑛(𝐴 (ג + 𝐵) = 𝑆𝑝𝑎𝑛(𝐴) + 𝑆𝑝𝑎𝑛(𝐵) 

𝑆𝑝𝑎𝑛(𝐴 (ד ∩ 𝐵) = 𝑆𝑝𝑎𝑛(𝐴) ∩ 𝑆𝑝𝑎𝑛(𝐵) 

 פתרון

 א+ב

ניקח  תמיד ת"מ והאיחוד הוא ת"מ אם ורק אם תת מרחב אחד מוכל בשני. 𝑆𝑝𝑎𝑛אינם נכונים היות ו

𝐴 = {(1,0)}, 𝐵 = {(0,1)} ∈ ℝ2 לכן .𝑆𝑝𝑎𝑛(𝐴) = {(𝑡, 0): 𝑡 ∈ ℝ}, 𝑆𝑝𝑎𝑛(𝐵) = {(0, 𝑠): 𝑠 ∈ ℝ}. 

𝑆𝑝𝑎𝑛(𝐴 + 𝐵) = 𝑠𝑝𝑎𝑛{(1,1)} = {(𝑡, 𝑡): 𝑡 ∈ ℝ} 
𝑆𝑝𝑎𝑛(𝐴) ⊈ 𝑆𝑝𝑎𝑛(𝐵)  וכן𝑆𝑝𝑎𝑛(𝐵) ⊈ 𝑆𝑝𝑎𝑛(𝐴)  ולכן𝑆𝑝𝑎𝑛(𝐴) ∩ 𝑆𝑝𝑎𝑛(𝐵) אינו ת"מ 

 ג

 נמשיך עם אותה דוגמה:

𝑆𝑝𝑎𝑛 𝐴 + 𝑆𝑝𝑎𝑛 𝐵 = {(𝑡, 0): 𝑡 ∈ ℝ} + {(0, 𝑠): 𝑠 ∈ ℝ} = {(𝑡, 𝑠): 𝑡, 𝑠 ∈ ℝ} ≠ {(𝑡, 𝑡): 𝑡 ∈ ℝ} = S𝑝𝑎𝑛(𝐴 + 𝐵) 

 ד

𝐴דוגמה נגדית:  = {(0,1)}, 𝐵 = 𝐴אזי  {(0,2)} ∩ 𝐵 = ∅ ⇒ 𝑆𝑝𝑎𝑛(𝐴 ∩ 𝐵) = . לעומת זאת {0}

𝑆𝑝𝑎𝑛 𝐴 = 𝑆𝑝𝑎𝑛 𝐵 = {(0, 𝑡): 𝑡 ∈ ℝ} ⇒ 𝑆𝑝𝑎𝑛 𝐴 ∩ 𝑆𝑝𝑎𝑛 𝐵 = {(0, 𝑡): 𝑡 ∈ ℝ} ≠ {0} 

 הערה

𝑆𝑝𝑎𝑛(𝐴מה שכן נכון הוא  ∪ 𝐵) = 𝑆𝑝𝑎𝑛 𝐴 + 𝑆𝑝𝑎𝑛 𝐵 

  



 6.5תרגיל 

ג( בדקו האם הנפרש שווה לקבוצה המושווית אליו. אם כן בטאו איבר כללי של הקובצה באמצעות 

 הוקטורים הנתונים. אן לא מצאו איבר שנמצא בקבוצה ולא בנפרש.

ℝ2×2 = 𝑆𝑝𝑎𝑛 {(
1 2
2 1

) , (
1 −1
−1 1

) , (
0 1
1 0

) , (
5 3
3 5

)} 

 פתרון

 כלליהסבר 

𝑊מתקיים  Wכאשר מבקשים להוכיח שעבור ת"מ ומ"ו כלשהו  = 𝑆𝑝𝑎𝑛{𝑣1, … 𝑣𝑘}  יש

 להראות הכלה דו כיוונית:

,𝛼1לכל  (⊆) … 𝛼𝑘 ∈ 𝔽 ,𝛼1𝑣1 +⋯+ 𝛼𝑘𝑣𝑘 ∈ 𝑊 

𝑤עבור ווקטור כללי  (⊇) ∈ 𝑊  קיימים𝛼1, … 𝛼𝑘 ∈ 𝔽 כך ש𝛼1𝑣1 +⋯+ 𝛼𝑘𝑣𝑘 ∈ 𝑊 

 :(⊇)ברורה. נבדוק את ההכלה  ⊆אצלנו ההכלה 

(
𝑥 𝑦
𝑧 𝑡

) = 𝛼 (
1 2
2 1

) + 𝛽 (
1 −1
−1 1

) + 𝛾 (
0 1
1 0

) + 𝛿 (
5 3
3 5

) 

 מקבלים:

(

1 1 0 5 𝑥
2 −1 1 3 𝑦
2 −1 1 3 𝑧
1 1 0 5 𝑡

) → (

1 1 0 5 𝑥
2 −1 1 3 𝑦
0 0 0 0 𝑧 − 𝑦
0 0 0 0 𝑡 − 𝑥

) 

𝑡אם ורק אם ז"א יש פתרון  = 𝑥, 𝑧 = 𝑦 זה נכון למטריצות מהצורה .(
𝑥 𝑦
𝑦 𝑥)  ז"א רק מטריצות

…}𝑆𝑝𝑎𝑛סימטריות שייכות למרחב הנספר.  } ∌ (
1 2
3 4

) ∈ ℝ2×2 

 דוגמה

𝐴תהי  ∈ 𝔽𝑚×𝑛 ו𝐻 = {𝑣 ∈ 𝔽𝑛: 𝐴𝑣 = ,𝑣1אוספ הפתרונות של מע' הומוגנית,  {0 … 𝑣𝑘  הם

𝐴𝑥הפתרונות הפונדמנטליים של  = ,𝑆𝑝𝑎𝑛 {𝑣1ומתקיים  𝔽𝑛הוא ת"מ של  H, אזי 0 … 𝑣𝑘} = 𝐻 



 משפט

 :𝑟𝑎𝑛𝑘(𝐴)דרגת השורות של מטריצה שווה לדרגת העמודות שלה ומסומנת ב

𝑟𝑎𝑛𝑘(𝐴) = dim𝑅(𝐴) = dim𝐶(𝐴) 

 (25)עמ' 6.11תרגיל 

,𝐴יהיו  𝐵 ∈ 𝔽𝑛×𝑛 נתון .𝐴𝐵 = 𝐼:הוכיחו . 

 שורת אפסים. Aא( אין ב

 אינה שקולה למטריצה עם שורת אפסים. Aב( 

𝐶ג( קיימת  ∈ 𝔽𝑛×𝑛 כך ש𝐶𝐴 = 𝐼 

 הפיכה Aד( 

 הפיכה Bה( 

 פתרון

1א( נניח בשלילה שקיים  ≤ 𝑖 ≤ 𝑛 כך ש𝑅𝑖(𝐴) = 𝑅𝑖(𝐴𝐵). אזי (0…,0,0) = 𝑅𝑖(𝐴)𝐵 = (0,… ,0) = 𝑅𝑖(𝐼) 

 אין שורת אפסים. 𝐼וזאת סתירה כי ב

𝐴: (iיש שורת אפסים במקום ה M)ובMכן שקולה למטריצה עם שורת אפסים  Aב( נניח בשלילה ש → ⋯ → 𝑀 .

PAהפיכה)מט' אלמנטרית( כך ש Pקיימת  = Mב .M יש שורת אפסים ולכן בPA :יש שורת אפסים 

𝑅𝑖(𝑃𝐴) = (0,0, … ,0) 

𝑅𝑖(𝑃𝐴) = 𝑅𝑖(𝑃)𝐴 = (0,0, …0) 
𝑃𝐵כך ש Bולכן קיימת הפיכה  Pשימו לב ש = 𝐼אבל אז לפי א' מקבלים שאין ב ,P  שורת אפסים לכן קיבלנו

 סתירה.

שורת אפסים =< זאת  איןאינה שקולה למטריצה עם שורת אפסים ולכן בצורה המדורגת קנונית שלה  Aג( 

𝐴מטריצת היחידה: 
𝑃1
→𝐴1

𝑃2
→𝐴2 → ⋯

𝑃𝑘
→ 𝐼 נבחר .𝐶 = 𝑃1…𝑃𝑘 המטריצה שמדרגת את(A  )לצורתה הקנונית

𝐶𝐴ואז  = 𝐼. 

𝐴𝐵כך ש Bהפיכה, כלומר קיימת  Aד( )צ"ל  = 𝐵𝐴 = 𝐼). 

𝐶𝐴 = 𝐼 ,𝐴𝐵 = 𝐼יש להראות ש , C = B .ואז נקבל הפיכות 

𝐶 = 𝐶𝐼 = 𝐶(𝐴𝐵) = (𝐶𝐴)𝐵 = 𝐼𝐵 = 𝐵 
𝐴𝐵לכן  = 𝐵𝐴 = 𝐼  ולכןA .הפיכה 

𝐴𝐵הפיכה שכן כפי שהוכחנו קודם  Bה(  = 𝐵𝐴 = 𝐼. 

 הערה

𝐴, 𝐵 ∈ 𝔽𝑛×𝑛  והיה נתון𝐴𝐵 = 𝐼והסקנו ש ,A .הפיכה 

 מסקנה

 .אחד בכדי שהי תהיה הפיכה(עבור מטריצה ריבועית, מספיק למצוא הופכית מצד 

  



 11.6תרגיל 

𝐴יהיו  ∈ 𝔽𝑘×𝑛, 𝐵 ∈ 𝔽𝑛×𝑚 

𝑟𝑎𝑛𝑘(𝐴𝐵)א( הוכיחו שתמיד מתקיים  ≤ 𝑟𝑎𝑛𝑘(𝐴), 𝑟𝑎𝑛𝑘(𝐵) 

𝐴ב( תהא  ∈ 𝔽𝑛×𝑛 :הוכיחו .A  הפיכה 𝑟𝑎𝑛𝑘(𝐴) = 𝑛 

 פתרון

𝑟𝑎𝑛𝑘(𝐴𝐵)נוכיח אחד מהם:  (א ≤ 𝑟𝑎𝑛𝑘(𝐴) 

 .מרחב השורה/העמודההדרך הטבעית לגשת לדרגת המטריצה היא באמצעות 

𝐴𝐵 = 𝐴(𝐶1(𝐵), …𝐶𝑚(𝐵)) = (𝐴𝐶1(𝐵), …𝐴𝐶𝑚(𝐵)) = (𝐴(
𝑏11
⋮
𝑏𝑛1

) ,…𝐴(
𝑏1𝑚
⋮
𝑏𝑛𝑚

))

= (∑𝑏𝑖1𝑅𝑖(𝐴)

𝑛

𝑖=1

, …∑𝑏𝑖𝑚𝑅𝑖(𝐴)

𝑛

𝑖=1

) 

𝐶(𝐴𝐵)ולכן  Aהיא צירוף לינארי של עמודות  ABכלומר כל עמודה ב
=𝑠𝑝𝑎𝑛(𝐶𝑖(𝐴𝐵)}

⊆ 𝐶(𝐴)
=𝑠𝑝𝑎𝑛{𝐶𝑖(𝐴)}

 

dim𝐶(𝐴𝐵)ולכן  ≤ dim𝐶(𝐴)  ולכן𝑟𝑎𝑛𝑘(𝐴𝐵) ≤ 𝑟𝑎𝑛𝑘(𝐴). 

Aצ"ל  (ב ∈ 𝔽𝑛×𝑛  הפיכה 𝑟𝑎𝑛𝑘(𝐴) = 𝑛 

A ן קיימת הפיכה לכB כך שAB = I.  מצד אחד𝑛 = 𝑟𝑎𝑛𝑘(𝐼) = 𝑟𝑎𝑛𝑘(𝐴𝐵) ≤ 𝑟𝑎𝑛𝑘(𝐴) ,

𝑟𝑎𝑛𝑘(𝐴)לא יכול להיות שאבל  > 𝑛  ולכן𝑟𝑎𝑛𝑘(𝐴) = 𝑛 

 כיוון שני

𝑟𝑎𝑛𝑘(𝐴) = 𝑛 ⇒ dim𝐶(𝐴) = 𝑛 ⇒ 𝐶(𝐴) = 𝔽𝑛 
𝑏כלומר כל  ∈ 𝔽𝑛  הוא צ"ל של עמודותA  כלומר לכל𝑏 ∈ 𝔽𝑛  קיימים𝛼1, … 𝛼𝑛 ∈ 𝔽  כך ש

𝑏 = 𝛼1𝐶1(𝐴) + ⋯+ 𝛼𝑛𝐶𝑛(𝐴) זה נכון לכל .b  ולכן גם לכל𝑒𝑖 ,1 ≤ 𝑖 ≤ 𝑛 לכל :𝑒𝑖  קיימים

,𝑥𝑖1סקלרים  … 𝑥𝑖𝑛 ∈ 𝔽 כך ש𝑒𝑖 = 𝑥𝑖1𝐶1(𝐴) + ⋯+ 𝑥𝑖𝑛𝐶𝑛(𝐴) נבנה מטריצה .B: 

𝐵 = (

𝑥11 ⋯ 𝑥𝑛1
⋮ ⋱ ⋮
𝑥1𝑛 ⋯ 𝑥𝑛𝑛

) 

 מתקיים:

𝐵𝐴 = (

𝑥11 ⋯ 𝑥𝑛1
⋮ ⋱ ⋮
𝑥1𝑛 ⋯ 𝑥𝑛𝑛

)(𝐶1(𝐴), …𝐶𝑛(𝐴))
⏟                      

נסו לכתוב יותר משכנע

= 𝐼 

 Aההופכית של וכך בנינו את המטריצה 

  



 11.11תרגיל 

𝐴תהי  ∈ 𝔽𝑛×𝑛)הוכיחו א=<ב=<ג=<...=<ז=<א )ז"א התנאים הבאים שקולים . 
 הפיכה A (א

𝑏לכל  (ב ∈ 𝔽𝑛  למערכת𝐴𝑥 = 𝑏 .יש פתרון יחיד 

𝑏קיים  (ג ∈ 𝔽𝑛  כך שלמערכת𝐴𝑥 = 𝑏 .יש פתרון יחיד 

𝐴𝑥למערכת  (ד =  יש רק את הפתרון הטריוויאלי. 0

 בת"ל Aעמודות  (ה

𝑟𝑎𝑛𝑘(𝐴) (ו = 𝑛 

 בת"ל Aשורות  (ז

 פתרון

 א=<ב

𝐴𝑥 = 𝑏 ,A  הפיכה ולכן𝐴−1(𝐴𝑥) = 𝐴−1𝑏  כלומר𝑥 = 𝐴−1𝑏 –  'זהו הפתרון)אם נציב אותו במע

𝐴𝑦נקבל פסוק אמת( והוא גם יחיד:  = 𝑏  >=𝑦 = 𝐴−1𝑏  >=𝑦 = 𝑥. 

 טריוויאלי –ג ב=<

 ג=<ד

𝐻={𝑣∈𝔽𝑛:𝐴𝑣=0}שבין מע' הומוגנית ללא הומוגנית: בקשר ניזכר 
𝐿={𝑣∈𝔽𝑛:𝐴𝑣=𝑏}

𝐿. הראנו שאם  ≠ 𝐻#אזי  ∅ = #𝐿 

𝐿#באמת לא ריקה  Lאצלנו: לפי ג',  = 1  >=#𝐻 =  והפתרון היחיד למע' הומוגנית הוא הטריוויאלי 1

 ד=<ה

∑𝛼𝑖𝐶𝑖(𝐴)

𝑛

𝑖=1

= 𝛼1𝐶1(𝐴) + ⋯+ 𝛼𝑛𝐶𝑛(𝐴) = 0 

A(

𝛼1
⋮
𝛼𝑛
) = 0 

,𝛼1)אבל לפי ד'  … 𝛼𝑛) =  בת"ל. Aולכן עמודות  (0…,0)

 ה=<ו

dim𝐶(𝐴)עמודות =<  nיש  Aבת"ל. ל Aעמודות  = 𝑛  >=𝑟𝑎𝑛𝑘(𝐴) = 𝑛 

𝑟𝑎𝑛𝑘(𝐴)טריוויאלי:  – ו=<ז = dim𝑅(𝐴)⏟      
מספר שורות בת"ל

 

 ז=<א

dim𝑅(𝐴)בת"ל =<  Aשורות ( 1 = 𝑛  >=𝑟𝑎𝑛𝑘(𝐴) = 𝑛  ש 11.6=< וכבר הראנו בתרגילA .הפיכה 

𝑅(𝐴)בת"ל =<  A( שורות 2 = 𝔽𝑛  כל וקטור >=𝑏 ∈ 𝔽𝑛  הוא צ"ל של שורותA בפרט .𝑒𝑖  הוא צ"ל

A :𝑒𝑖של שורות  = 𝑥𝑖1𝑅1(𝐴) + ⋯+ 𝑥𝑖𝑛𝑅𝑛(𝐴) :ולכן 

𝐵 = (

𝑥11 ⋯ 𝑥𝑛1
⋮ ⋱ ⋮
𝑥1𝑛 ⋯ 𝑥𝑛𝑛

) , 𝐵𝐴 = 𝐼 

 הפיכה. Aולכן 

  



 אלגוריתם למציאת מטריצה הופכית

𝐴עבור  𝐴−1מצאו  = (
1 0 5
0 5 10
1 5 7

) 

 השיטה היא:

(𝐴|𝐼)
לדרג את שני האגפים
→            (𝐼|𝐵) 

𝐴−1ואז יוצא  = 𝐵 

(
1 0 5 1 0 0
0 5 10 0 1 0
1 5 7 0 0 1

)
𝑅3:𝑅3−𝑅1
→      (

1 0 5 1 0 0
0 5 10 0 1 0
0 5 2 −1 0 1

)
𝑅3:𝑅3−𝑅2
→      (

1 0 5 1 0 0
0 5 10 0 1 0
0 0 −8 −1 −1 1

) 

𝑅2:𝑅2−2𝑅1
→       (

1 0 5 1 0 0
0 5 0 −2 1 0
0 0 −8 −1 −1 1

)
להמשיך
→     



 משפט המימדים

𝑈,𝑊יהיו  ⊆ 𝑉 :ת"מ אזי 

dim(𝑈 +𝑊) = dim𝑈 + dim𝑊 − dim(𝑈 ∩𝑊) 

 (46)עמ' 8.3תרגיל 

𝑈,𝑊, יהיו 5מ"ו ממימד  Vיהיו  ⊆ 𝑉  בהתאמה. מהן האפשרויות עבור  3,4תתי מרחבים ממימדים

dim(𝑈 ∩𝑊)? 

 פתרון

dim(𝑈ממשפט המימדים:  + 𝑉) = 7 − dim(𝑈 ∩𝑊) 

5 = dim𝑉 

𝑈,𝑊מצד שני  ⊆ 𝑈 +𝑊 .תתי מרחבים 

5 = dim𝑉 ≥ dim(𝑈 +𝑊) ≥
dim𝑈 = 3

dim𝑊 = 4
 

5לכן  ≥ dim(𝑈 +𝑊) ≥ 4 

dim(𝑈לכן  ∩𝑊) = dim(𝑈או  2 ∩𝑊) = 3 

𝑈נשים לב  ∩𝑊 ⊆ 𝑈 

 משפט

𝐴אם  ⊆ 𝐵  ,ת"מdim𝐴 = dim𝐵  אזיA = B 

3כלומר: באופציה ב' נקבל  = dim(𝑈 ∩𝑊) = dim𝑈  >=𝑈 ∩𝑊 = 𝑈 

𝑈 ∩𝑊 ⊆ 𝑈  ולכן בסיטואציה זו𝑈 ⊆ 𝑊 

dim(𝑈שורה תחתונה:  ∩𝑊) = {
3 𝑈 ⊆ 𝑊
2 𝑈 ⊈ 𝑊

 

 8.5תרגיל 

𝑈,𝑊ויהיו  nמ"ו ממימד  Vיהי  ⊆ 𝑉 תתי מרחבים כך ש𝑊 ⊈ 𝑈, dim𝑈 = 𝑛 − 𝑈הוכיחו:  .1 +𝑊 = 𝑉 

 פתרון

 ע"פ משפט המימדים:

𝑛 = dim𝑉 ≥ dim(𝑈 +𝑊) = dim𝑈 + dim𝑊 − dim(𝑈 ∩𝑊) 

U ∩𝑊 ⊆ 𝑊 ⇒ dim𝑊 ≥ dim(𝑈 ∩𝑊) ⇒ dim𝑊 − dim(𝑈 ∩𝑊) ≥ 0 
 נקבל

dim(𝑈 +𝑊) ≥ 𝑛 − 1 
dim(𝑈אם  +𝑊) = 𝑛  >=𝑢 + 𝑤 = 𝑣 .וסיימנו 

dim(𝑈נניח בשלילה  +𝑊) = 𝑛 − 1 

𝑛 − 1 = dim(𝑈 +𝑊) = dim𝑈 + dim𝑊 − dim(𝑈 ∩𝑊) ⇒ dim𝑊 − dim(𝑈 ∩𝑊) = 0

⇒ dim𝑊 = dim(𝑈 ∩𝑊)  
𝑈מכיוון ש ∩𝑊 ⊆ 𝑊  והמימדים שלהם שווים נקבל𝑈 ∩𝑊 = 𝑊 תמיד , כמו כן𝑈 ∩𝑊 ⊆ 𝑈  ולכן

𝑊 ⊆ 𝑈 .בסתירה להנחה 



 2009ממבחן  –תרגיל 

𝑈,𝑊יהיו  ⊆ 𝑉 במרחב נוצר סופית  שני ת"מV 

dim𝑉הוכיחו שאם  (א < dim𝑈 + dim𝑊  אזי𝑈 ∩𝑊 ≠ {0} 

dim(𝑈נניח שמתקיים  (ב +𝑊) = dim(𝑈 ∩𝑊) + 𝑈. הוכיחו שאז 1 ⊆ 𝑊  או𝑊 ⊆ 𝑈 

 פתרון

(∗)א(  dim(𝑈 +𝑊) = dim𝑈 + dim𝑊 − dim(𝑈 ∩𝑊) 

𝑈נניח בשלילה ש ∩𝑊 = {0}  >=dim(𝑈 ∩𝑊) 

dim𝑉 נקבל מ)*(: ≥ dim𝑈 + dim𝑊 בסתירה לכך שdim𝑉 < dim𝑈 + dim𝑊 

dim(𝑈ב( מתקיים  +𝑊) = dim(𝑈 ∩𝑊) + 1 

dim(𝑈מצד שני  +𝑊) = dim𝑈 + dim𝑊 − dim(𝑈 ∩𝑊) 

dim(𝑈אם נשווה נקבל  ∩𝑊) + 1 = dim𝑈 + dim𝑊 − dim(𝑈 ∩𝑊) ואז 

(∗) dim𝑈 + dim𝑊 = 2dim(𝑈 ∩𝑊) + 1 
dim𝑈נרצה להוכיח ש = dim(𝑈 ∩𝑊)  אוdim𝑊 = dim(𝑈 ∩𝑊) 

dim𝑈מתקיים  ≥ dim(𝑈 ∩𝑊)  וגםdim𝑊 ≥ dim(𝑈 ∩𝑊) 

dim𝑈מ"ל)מספיק להוכיח(  ≤ dim(𝑈 ∩𝑊) או dim𝑊 ≤ dim(𝑈 ∩𝑊) 

dim𝑈נניח בשלילה ש > dim(𝑈 ∩𝑊)  וגםdim𝑊 > dim(𝑈 ∩𝑊) 

dim𝑢זה גורר  ≥ dim(𝑈 ∩𝑊) + dim𝑊וגם  1 ≥ dim(𝑈 ∩𝑊) + 1 

dim𝑈זה גורר:  + dim𝑊 ≥ 2dim(𝑈 ∩𝑊) +  בסתירה ל)*( 2

dim𝑈לכן  = dim(𝑈 ∩𝑊)  ואז𝑈 = 𝑈 ∩𝑊 ⊆ 𝑊  אוdim𝑊 = dim(𝑈 ∩𝑊)  ואז𝑊 = 𝑈 ∩𝑊 ⊆ 𝑈 

  



 ומטריצת מעברווקטור קואודינטות 

 הגדרה

𝑣מ"ו,  Vיהי  ∈ 𝑉  וקטור כלשהו. יהי𝐵 = {𝑣1, … 𝑣𝑛} ל )סדור(בסיסV אזי אם .𝑣 = 𝛼1𝑣1 +⋯𝛼𝑛𝑣𝑛 

𝐵[𝑣]נכתוב  = (𝛼1, … 𝛼𝑛) ונקרא ל[𝑣]𝐵  וקטור קואורדינטות שלv  בבסיסB. 

 דוגמה

𝑉יהי  = ℝ2:נבחר שני בסיסים , 

𝐵 = {(0,1), (1,0}, 𝐶 = {(1,1), (2,3)} 
𝑣יהי  =  אזי: (1−,0)

[𝑣]𝐵 =? 
(0, −1) = −1(0,1) + 0(1,0) ⇒ [𝑣]𝐵 = [(0,1)]𝐵 = (−1,0) 
[𝑣]𝐶 =? 

(0, −1) = 2(1,1) − 1(2,3) ⇒ [𝑣]𝐶 = (2,−1) 

 הגדרה

𝐵שני בסיסים. נסמן:  B,Cמ"ו ויהיו  Vיהי  = {𝑣1, … 𝑣𝑛} 

𝑃𝐶אז המטריצה 
𝐵 = [𝐼]C

B = (
|

[𝑣1]𝐶
|
…

|
[𝑣𝑛]𝐶
|
" והיא Bלבסיס  Cנקראת "מטריצת מעבר בין בסיס  (

𝑣∀מקיימת  ∈ 𝑉: 𝑃𝐶
𝐵[𝑣]𝐵 = [𝑣]𝐶  וזאת המטריצה היחידה שמקיימת זאת לכל𝑣 ∈ 𝑉 

 דוגמה

𝑉יהי  = ℝ2 :נבחר שני בסיסים .𝐵 = {(1,2), (3,5)}, 𝐶 = {(0,1), (1,0)}. 

𝑃𝐶
𝐵 =? 

(1,2) = 2(0,1) + 1(1,0) 

(3,5) = 5(0,1) + 3(1,0) 

𝑃𝐶
𝐵 = (

2 5
1 3

) 

PB
C =? 
(0,1) = 3(1,2) − 1(3,5) 

(1,0) = −5(1,2) + 2(3,5) 

𝑃𝐵
𝐶 = (

3 −5
−1 2

) 

𝑃𝐶שמתקיים  שימו לב
𝐵𝑃𝐵

𝐶 = 𝐼 .וזה מתקיים באופן כללי 

  



 (48)עמ'  10.5תרגיל 

𝐵. יהי Sמ"ו ונניח שיש לו בסיס סטנדרטי  Vיהי  = {𝑏1, … 𝑏𝑛}  בסיס אחר שלV 

𝑃𝑆הוכיחו שהמטריצה  (א
𝐵  מקיימת𝑃𝑆

𝐵[𝑣]𝐵 = [𝑣]𝑆  לכל𝑣 ∈ 𝑉)בהרצאה( 

𝑉יהיו  (ב = ℝ2[𝑥] ,𝑆 = {1, 𝑥, 𝑥2} ,𝐵 = {1,2 − 𝑥, 3𝑥3}צה המקיימת . מצא מטרי𝑃[𝑣]𝐵 = [𝑣]𝑆 

𝑃[𝑣]𝑆עבור המקרה של הסעיף הקודם מצאו מטריצה המקיימת  (ג = [𝑣]𝐵 

𝐶יהי  (ד = {1 + 𝑥2, 𝑥 + 𝑥2, 𝑥2} בסיס נוסף לℝ2[𝑥]מצאו מטריצות המקיימות . 

𝐴[𝑣]𝐶 = [𝑣]𝐵, 𝑄[𝑣]𝐶 = [𝑣]𝑆 

 )ב(פתרון

1 = 1 ∗ 1 + 0𝑥 + 0𝑥2 

2 − 𝑥 = 2 ∗ 1 + (−1)𝑥 + 0𝑥2 

3𝑥3 = 0 ∗ 1 + 0𝑥 + 3𝑥3 

𝑃 = 𝑃𝑆
𝐵 = (

1 2 0
0 −1 0
0 0 3

) 

 פתרון)ג(

P  המבוקשת בתרגיל היא𝑃𝐵
𝑆 מתקיים .𝑃𝐵

𝑆𝑃𝑆
𝐵 = 𝐼 ,נמצא את ההופכית של המטריצה בסעיף הקודם .

(𝐴|𝐼)ע"פ  → (𝐼|𝐴−1) 

(
1 2 0 1 0 0
0 −1 0 0 1 0
0 0 3 0 0 1

)
𝑅1:𝑅1+2𝑅2
→       (

1 0 0 1 2 0
0 −1 0 0 1 0
0 0 3 0 0 1

)

𝑅2:−𝑅2

𝑅3:
𝑅3
3

→    (

1 0 0 1 2 0
0 1 0 0 −1 0

0 0 3 0 0
1

3

) 

𝑃𝐵לכן 
𝑆 = (

1 2 0
0 −1 0

0 0
1

3

) 

 פתרון)ד(

𝑄 = 𝑃𝑆
𝐶  

[1 + 𝑥2]𝑆 = (1,0,1) 

[𝑥 + 𝑥2]𝑆 = (0,1,1) 

[𝑥2]𝑆 = (0,0,1) 

PS
C = (

1 0 0
0 1 0
1 1 1

) 

𝑃𝐵ראיתם בהרצאה שמתקיים 
𝑆𝑃𝑆
𝐶 = 𝑃𝐵

𝐶לכן . 

(

1 2 0
0 −1 0

0 0
1

3

)(
1 0 0
0 1 0
1 1 1

) 

  



 שיטת גיל

(
1 0 0
0 1 0
1 1 1

) 
 

(

1 2 0
0 −1 0
1

3

1

3

1

3

) (

1 2 0
0 −1 0

0 0
1

3

) 

 7.17תרגיל 

𝐵מ"ו ותהי  Vיהי  ⊆ 𝑉 :קבוצה. הוכיחו שהתנאים הבאים שקולים 

 Vבסיס עבור  B (א

∌ 0⃗ (ב 𝐵  ולכל קבוצה𝐴 ⊆ 𝐵  מתקיים𝑉 = 𝑠𝑝𝑎𝑛 𝐴⊕ 𝑠𝑝𝑎𝑛(𝐵 ∖ 𝐴) 

 פתרון

𝐴קח ינ = 𝑉ואז  ∅ = 𝑠𝑝𝑎𝑛(∅) + 𝑠𝑝𝑎𝑛 𝐵 = 𝑠𝑝𝑎𝑛 𝐵נניח בשלילה ש .B  קיימים ת"ל אזי

)*(𝑣1, … 𝑣𝑛, 𝑣 ∈ 𝐵 שונים כך ש𝐵 ∌ 0⃗ ≠ 𝑣 = 𝛼1𝑣1 +⋯+ 𝛼𝑛𝑣𝑛 

𝐴ניקח  = {𝑣} מתקיים .𝑠𝑝𝑎𝑛 𝐴 ∩ 𝑠𝑝𝑎𝑛(𝐵\𝐴) = 𝑠𝑝𝑎𝑛{𝑣}לכן  {0} ∩ 𝑠𝑝𝑎𝑛(𝐵 ∖ {𝑣}) = {0}  >=

𝑠𝑝𝑎𝑛{𝑣} ∌ 𝑣 ≠ 0⃗   >=𝑣 ∉ 𝑠𝑝𝑎𝑛(𝐵 ∖ {𝑣}) )*(בסתירה ל 



 הגדרה

:𝑇. פונקציה 𝔽מ"ו מעל  V,Wיהיו  𝑉 → 𝑊 :תיקרא העתקה לינארית אם 

,𝑣1∀ (א 𝑣2 ∈ 𝑉: 𝑇(𝑣1 + 𝑣2) = 𝑇(𝑣1) + 𝑇(𝑣2) 

𝛼∀ (ב ∈ 𝔽, 𝑣 ∈ 𝑉: 𝑇(𝛼𝑣) = 𝛼𝑇(𝑣) 

 הערה

:𝑇אם  𝑉 → 𝑊  )אז העתקה לינארית)הע"ל𝑇(0𝑉) = 0𝑊 

 תרגיל

𝑇:ℝהאם  → ℝ ?היא הע"ל 

𝑻(𝒙)א(  = 𝟐𝒙 

 :כן

𝑇(𝑣1 + 𝑣2) = 2(𝑣1 + 𝑣2) = 2𝑣1 + 2𝑣2 = 𝑇(𝑣1) + 𝑇(𝑣2) 

𝑇(𝛼𝑥) = 2(𝛼𝑥) = 𝛼2𝑥 = 𝛼𝑇(𝑥) 

𝑻(𝒙)ב(  = 𝟐𝒙 + 𝟏 
𝑇(0): ראשונהלא. דרך  = 1 ≠ 0 

𝑇(𝑥1דרך שניה:  + 𝑥2) = 2(𝑥1 + 𝑥2) + 1 ≠ 2𝑥1 + 2𝑥2 + 2 = 𝑇(𝑥1) + 𝑇(𝑥2) 

 הגדרה

:𝑇. נאמר שהעתקה לינארית 𝔽מ"ו מעל  V,Wיהיו  𝑉 → 𝑊  היא הפיכה אם קיימת הע"ל𝑆:𝑊 → 𝑉 

𝑇כך ש ∘ 𝑆 = 𝐼𝑑𝑊, 𝑆 ∘ 𝑇 = 𝐼𝑑𝑉 לעיתים נסמן(𝑇 ∘ 𝑆 = 𝑇𝑆) ובמקרה זה גם אומרים שT 

 איזומורפיזם.

 חח"ע ועל.  Tהיא איזומורפיזם  Tכלומר הע"ל 

 תרגיל

𝑇:ℝ2תהי  → ℝ2  הע"ל המוגדרת ע"י𝑇(𝑥, 𝑦) = (2𝑥, 𝑥 + 𝑦) האם .T ?איזומורפיזם 

 פתרון

T  בדקו!( –הע"ל( 

,𝑇(𝑥1חח"ע?  𝑦1) = 𝑇(𝑥2, 𝑦2)  >=(2𝑥1, 𝑥1 + 𝑦1) = (2𝑥2, 𝑥2 + 𝑦2)  >=2𝑥1 = 2𝑥2, 𝑥1 + 𝑦1 = 𝑥2 + 𝑦2 

 >=𝑥1 = 𝑥2, 𝑦1 = 𝑦2  >=(𝑥1, 𝑥2) = (𝑦1, 𝑦2)  >=T .חח"ע 

,𝑥)ניקח  על? 𝑦) ∈ ℝ2  ונרצה לבדוק האם קיים(𝑎, 𝑏)  שכך𝑇(𝑎, 𝑏) = (𝑥, 𝑦): 

𝑇(𝑎, 𝑏) = (2𝑎, 𝑎 + 𝑏) = (𝑥, 𝑦) ⇒ 𝑎 =
𝑥

2
, 𝑏 = 𝑦 −

𝑥

2
 

,𝑥)לכן לכל  𝑦) ∈ ℝ2  אם ניקח(𝑎, 𝑏) = (
𝑥

2
, 𝑦 −

𝑥

2
,𝑇(𝑎נקבל  ( 𝑏) = (𝑥, 𝑦). 

 איזומורפיזם. Tלכן 



 משפט ההגדרה

,𝑣1}מ"ו. יהי  V,Wיהיו  … 𝑣𝑛}  בסיס שלV  ותהי{𝑤1, …𝑤𝑛} קבוצה כלשהי בW הע"ל  קיימת. אזי

:𝑇 יחידה 𝑉 → 𝑊 כך ש𝑇(𝑣1) = 𝑤1, … 𝑇(𝑣𝑛) = 𝑤𝑛 

 למשפט ותהער

,𝑣1}אם הקבוצה  (1 … 𝑣𝑛} אזי קיימת הע"ל  היא רק בת"ל ולא בסיסT  לא יחידהאבל. 

,𝑣1}אם הקבוצה  (2 … 𝑣𝑛}  אם קיימת אז אי אפשר לדעת באופן כללי ת"לT  כזו. בוחנים כל

 מקרה לגופו.

 תרגיל

 :Tבדקו בכל סעיף האם קיימת הע"ל 

𝑻:ℝ𝟐א(  → ℝ𝟐  המוגדרת ע"י{
𝑻(𝟏,𝟎) = (𝟓,𝟐)
𝑻(𝟎,𝟏) = (𝟏𝟎,𝟒)

 

,(1,0)}קיימת ויחידה ע"ם משפט ההגדרה כי  Tכן,   ℝ2בסיס ל {(0,1)

𝑻:ℝ𝟑ב(  → ℝ𝟑 המוגדרת ע"י {
𝑻(𝟏,𝟎, 𝟎) = (𝟏,𝟏,𝟏)
𝑻(𝟎,𝟏, 𝟎) = (𝟎,𝟎,𝟎)

 

,(1,0,0)}כן, אבל לא יחידה. כי אם נשלים את הקבוצה  הרי ניתן  (0,0,1)ע"י הוספת למשל לבסיס  {(0,1,0)

 .ℝ3איבר ב לכל (0,0,1)לשלוח את 

𝑻:ℝ𝟑ג(  → ℝ𝟑  המוגדרת ע"י{
𝑻(𝟐, 𝟎, 𝟎) = (𝟏, 𝟎, 𝟎)

𝑻(𝟎, 𝟑, 𝟐) = (𝟖, 𝟎, 𝟐)

𝑻(𝟐, 𝟑, 𝟐) = (−𝟓, 𝟎, 𝟎)
 

 שכזו. נקבל:נניח בשלילה שקיימת הע"ל 

(−5,0,0) = 𝑇(2,3,2) = 𝑇(2,0,0) + 𝑇(0,3,2) = (1,0,0) + (8,0,2) = (9,0,2) 

 והגענו לסתירה.

 תרגיל

𝑇:ℝ3תהא  → ℝ3  .המוגדרת ע"פ משפט ההגדרה{
𝑇(2,0,0) = (1,3,6)

𝑇(0,1,0) = (0,0,2)

𝑇(0,1, −1) = (9,0, −1)
 

 פתרון

(𝑥, 𝑦, 𝑧) = 𝛼(2,0,0) + 𝛽(0,1,0) + 𝛾(0,1,−1) 

𝑥 = 2𝛼 ⇒ 𝛼 =
𝑥

2
; 𝑦 = 𝛽 + 𝛼 ⇒ 𝛽 = 𝑦 + 𝑧; 𝑧 = −𝛾 ⇒ 𝛾 = −𝑧 

(𝑥, 𝑦, 𝑧) =
𝑥

2
(2,0,0) + (𝑦 + 𝑧)(0,1,0) − 𝑧(0,1,−1) 

𝑇(𝑥, 𝑦, 𝑧) =
𝑥

2
𝑇(2,0,0) + (𝑦 + 𝑧)𝑇(0,1,0) − 𝑧𝑇(0,1,−1) 

𝑇(𝑥, 𝑦, 𝑧) = (
𝑥

2
,
3

2
𝑥, 3𝑥) + (0,0,2𝑦 + 2𝑧) + (−9𝑧, 0, 𝑧) = (

𝑥

2
− 9𝑧,

3

2
𝑥, 3𝑥 + 2𝑦 + 3𝑧) 



 הגדרה

𝐸מ"ו ויהיו  V,Wיהיו  = {𝑣1, … 𝑣𝑛}, 𝐹 = {𝑤1, …𝑤𝑚}  שני בסיסים שלV,W  בהתאמה. תהי𝑇: 𝑉 →

𝑊  הע"ל. המטריצה המייצגת שלT בבסיסים E,F : 

[𝑇]𝐹
𝐸 = ([

|

𝑇(𝑣1)
|
]𝐹 , … [

|

𝑇(𝑣𝑛)

|
]𝐹) 

𝑣∀ומתקיים  ∈ 𝑉: [𝑇]𝐹
𝐸[𝑣]𝐸 = [𝑇(𝑣)]𝐹 

 הערה

𝑉אם ניקח  = 𝑊 ,𝑇 = 𝐼: 𝑉
B בסיס

𝑉 של

→ 𝑉
C בסיס

𝑉 של

𝐶[𝐼]. נקבל: 
𝐵 = ([

|
𝑣1
|
]𝐶 , … [

|
𝑣𝑛
|
]𝐶)  ומתקיים∀𝑣 ∈ 𝑉: [𝐼]𝐶

𝐵

| |

𝑃𝐶
𝐵

[𝑣]𝐵 = [𝑣]𝐶 

 הערה

:𝑇אם  𝑉
E בסיס

𝑉 של

→ 𝑊
F בסיס

𝑊 של

𝐹[𝑇])איזומורפיזם אזי:  
𝐸)−1 = [𝑇−1]𝐸

𝐹 

𝑃𝐵העתקת זהות נקבל  V=W ,Tאם שוב ניקח 
𝐶 = (𝑃𝐶

𝐵)−1 

 6.2תרגיל 

𝑉יהיו  = ℝ2 ,𝑤 = ℝ2[𝑥]  עם הבסיסים𝐸 = {(1,2), (3,4)} ,𝐹 = {1 + 𝑥2, 𝑥2 − 1, 𝑥 + . תהי {5

𝑇: 𝑉 → 𝑊  הע"ל המוגדרת ע"יT(𝑎, 𝑏) = 3𝑎𝑥 − 2𝑏𝑥2 מצאו את .[𝑇]𝐹
𝐸. 

 פתרון

𝐹[𝑇]בעיקרון ההגדרה של 
𝐸 = ([

|

𝑇(𝑣1)

|

]𝐹 , … [
|

𝑇(𝑣𝑛)

|

]𝐹). 

E,F אינם בסיסים סטנדרטיים ואנחנו נעדיף לעבוד עם הסטנדרטיים. נעזר במטריצות מעבר: 

[𝑇]𝐹
𝐸 = [𝐼]𝐹

𝑆2[𝑇]𝑆2
𝑆1[𝐼]𝑆1

𝐸  

[𝐼]𝑆1
𝐸 = (

1 3
2 4

) , [𝐼]𝐹
𝑆2 = ([𝐼]𝑆2

𝐹 )
−1
= (

1 −1 5
0 0 1
1 1 0

)

−1

=

(

 
 

1

2
−
5

2

1

2

−
1

2

5

2

1

2
0 1 0)

 
 

 

[𝑇]𝑆2
𝑆1 =?𝑇(1,0) = 3𝑥, 𝑇(0,1) = −2𝑥2 ⇒ [𝑇]𝑆2

𝑆1 = (
0 0
3 0
0 −2

) 

[𝑇]𝐹
𝐸 =

(

 
 

1

2
−
5

2

1

2

−
1

2

5

2

1

2
0 1 0)

 
 
(
0 0
3 0
0 −2

)(
1 3
2 4

) =

(

 
 
−
19

2
−
53

2
11

2

37

2
3 9 )

 
 

 



 הגדרה

:𝑇תהי  𝑉 → 𝑊 :הע"ל. נגדיר 

T - ker(𝑇)הגרעין של  (א = {𝑣 ∈ 𝑉: 𝑇(𝑣) = 0𝑊} 

T - 𝐼𝑚(𝑇)התמונה של  (ב = {𝑤 ∈ 𝑊:∃𝑣 ∈ 𝑉   𝑇(𝑣) = 𝑤} 

 הערה

ker(𝑇) ⊆ 𝑉  ,ת"מ𝐼𝑚(𝑇) ⊆ 𝑊 .ת"מ 

 דוגמה

𝑇:ℝ3נמצא את הגרעין והתמונה של הה"ע  → ℝ2  :שמוגדרת𝑇(𝑥, 𝑦, 𝑧) = (𝑥, 𝑥) 

 פתרון

,𝑥)גרעין:  𝑦, 𝑧) ∈ ker 𝑇 ⇔ 𝑇(𝑥, 𝑦, 𝑧) = (0,0) ⇔ (𝑥, 𝑥) = (0,0) ⇔ 𝑥 = 0 

ker 𝑇 = {(0, 𝑦, 𝑧): 𝑦, 𝑧 ∈ ℝ} = {𝑦(0,1,0) + 𝑧(0,0,1): 𝑦, 𝑧 ∈ ℝ} = 𝑠𝑝𝑎𝑛 {(0,1,0), (0,0,1)}⏟          
ker𝑇בסיס ל

כי {(0,0,1),(0,1,0)} בת"ל

 

dimker 𝑇 = 2 

,𝑎): יהי Tהתמונה של  𝑏) ∈ 𝐼𝑚 𝑇  אזי קיים(𝑥, 𝑦, 𝑧) ∈ ℝ3 כך ש𝑇(𝑥, 𝑦, 𝑧) = (𝑎, 𝑏) כלומר קיים ,

(𝑥, 𝑦, 𝑧) ∈ ℝ3 כך ש(𝑥, 𝑥) = (𝑎, 𝑏)  >=𝑎 = 𝑏 

𝐼𝑚 𝑇 = {(𝑎, 𝑎): 𝑎 ∈ ℝ} = 𝑠𝑝𝑎𝑛{(1,1)}, dim 𝐼𝑚 𝑇 = 1 

    ⏟dimℝ3מתקיים 
3

= dim 𝐼𝑚 𝑇⏟      
1

+ dimker 𝑇⏟      
2

 . זה לא מקרי

 הערה

:𝑇תהי  𝑉 → 𝑊  הע"ל. נניחdim𝑉 = 𝑛, dim𝑊 = 𝑚  ותהיA  המטריצה המייצגת שלT  בבסיסים

 כלשהם. אזי:

𝑉 (א ≅ 𝔽𝑛,𝑊 ≅ 𝔽𝑚 

ker (ב 𝑇 ≅ {𝑥 ∈ 𝔽𝑛: 𝐴𝑥 = 0} 

𝐼𝑚 𝑡 (ג ≅ 𝐶(𝐴) ⊆ 𝔽𝑚 

  



 קשורה להערה האחרונה()לא דוגמה

𝑇:ℝ3תהא  → ℝ2 הע"ל נתונה ע"י המטריצה 𝐴 = (
1 0 3
2 5 6
0 1 0

𝑇(𝑐))כלומר ( = 𝐴𝑣 מצאו את .)

 .Tהגרעין והתמונה של 

 פתרון

ker 𝑇 נדרג את ?A :ונקבל 

(
1 0 3
2 5 6
0 1 0

) → (
1 0 3
0 5 0
0 1 0

) → (
1 0 3
0 1 0
0 0 0

) 

kerהפתרון הוא  𝑇 = {(−3𝑡, 0, 𝑡): 𝑡 ∈ ℝ} = 𝑠𝑝𝑎𝑛{(−3,0,1)} ,dimker 𝑇 = 1 

𝐼𝑚 𝑇 = 𝐶(𝐴)  העמודות של המשתנים המובילים לאחר דירוג 2ו 1עמודות הציר הן עמודות(

𝐼𝑚 𝑇המטריצה( במטריצה המקורית, כלומר  = 𝑠𝑝𝑎𝑛 {(
1
2
0
) , (

0
5
1
)} ,dim 𝐼𝑚 𝑇 = 2 

 תרגיל)כן קשור להערה(

𝑇𝐴:𝑀2(ℝ)הע"ל מצאו את הגרעין והתמונה של  → 𝑀2(ℝ)  הנתונה ע"י𝑇𝐴(𝑥) = 𝐴𝑥 − 𝑥𝐴  עבור

𝐴 = (
1 0
3 0

). 

 פתרון

 :[𝑇𝐴]בבסיסים הסטנדרטיים ונסמנה  𝑇𝐴נמצא את המטריצה המייצגת של 

𝑇𝐴 (
1 0
0 0

) = (
1 0
3 0

) (
1 0
0 0

) − (
1 0
0 0

) (
1 0
3 0

) = (
0 0
3 0

) 

𝑇𝐴 (
0 1
0 0

) = (
−3 1
0 3

) , 𝑇𝐴 (
0 0
1 0

) = (
0 0
−1 0

) , 𝑇𝐴 (
0 0
0 1

) = (
0 0
−3 0

) 

[𝑇𝐴] = (

0 −3 0 0
0 1 0 0
3 0 −1 −3
0 3 0 0

)
במהלך

דירוג

→   (

0 0 0 0
0 1 0 0
3 0 −1 −3
0 0 0 0

)
לאחר

דירוג

→  (

3 0 −1 −3
0 1 0 0
0 0 0 0
0 0 0 0

) 

ker 𝑇𝐴 ≅ {(
𝑠 + 3𝑡

3
, 0, 𝑠, 𝑡) : 𝑠, 𝑡 ∈ ℝ} = 𝑠𝑝𝑎𝑛 {(

1

3
, 0,1,0) , (1,0,0,1)} 

⇓ 

ker 𝑇𝐴 = 𝑠𝑝𝑎𝑛 {(
1

3
0

1 0

) , (
1 0
0 1

)} , dimker 𝑇 = 2 

𝐼𝑚 𝑇𝐴 ≅ 𝑠𝑝𝑎𝑛{(

0
0
3
0

) ,(

−3
1
0
3

)} ⇒ 𝐼𝑚 𝑇𝐴 = 𝑠𝑝𝑎𝑛 {(
0 0
3 0

) , (
−3 1
0 3

)} , dim 𝐼𝑚 𝑇𝐴 = 2 

  



 (56עמ'  2.3)תרגיל

:𝑇תהא  𝑉 → 𝑉 :הע"ל. הוכיחו 

ker (א 𝑇 ⊆ ker(𝑇2) 

𝐼𝑚(𝑇2) (ב ⊆ 𝐼𝑚(𝑇) 

 פתרון

𝑣יהי  (א ∈ ker 𝑇  אזי𝑇(𝑣) = 0  >=𝑇2(𝑣) = 𝑇(𝑇(𝑣)) = 𝑇(0) = 0  >=𝑣 ∈ ker(𝑇2) 

𝑣יהי  (ב ∈ 𝐼𝑚(𝑇2)  קייםאזי 𝑤 ∈ 𝑉 כך ש𝑇2(𝑤) = 𝑣 >= 𝑇(𝑇(𝑤)) = 𝑣  לכן קיים𝑧 ∈ 𝑇(𝑤) 

𝑇(𝑧)כך ש = 𝑣  >=𝑣 ∈ 𝐼𝑚 𝑇 

 2.5תרגיל 

,𝑆הוכיחו/הפריכו: יהיו  𝑇: 𝑉 → 𝑉 הע"ל כך שker 𝑆 = ker 𝑇 ,𝐼𝑚 𝑆 = 𝐼𝑚 𝑇 אזי ,𝑇 = 𝑆. 

 הפרכה

,𝑇ניקח  𝑆:ℝ → ℝ  המוגדרות ע"י𝑆(𝑥) = 2𝑥, 𝑇(𝑥) = 𝑥 ברור כי .𝑇 ≠ 𝑆 אבל 

ker 𝑇 = 0 = ker 𝑆 

𝐼𝑚 𝑇 = ℝ = 𝐼𝑚 𝑆 

 (56)עמ' 2.9תרגיל 

:𝑇תהא  𝑉 → 𝑉  הע"ל המקיימת𝑇2 = 𝐼 יהיו .𝑊 = ker(𝑇 + 𝐼) , 𝑈 = ker(𝑇 − 𝐼) הוכיחו .𝑉 =

𝑈⊕𝑊 (V  מ"ו מעל𝔽 ,𝑐ℎ𝑎𝑟 𝔽 ≠ 2) 

 הוכחה

1 ):𝑈 ∩𝑊 = {0} 

𝑣יהי  ∈ U ∩𝑊  𝑣 ∈ 𝑈 = ker(𝑇 − 𝐼) ולכן 

(𝑇 − 𝐼)(𝑣) = 0 ⇒ 𝑇(𝑣) − 𝑣 = 0 ⇒ 𝑇(𝑣) = 𝑣 
𝑣כמו כן  ∈ 𝑊 = ker(𝑇 + 𝐼) ומכאן 

(𝑇 + 𝐼)(𝑣) = 0 ⇒ 𝑇(𝑣) + 𝑣 = 0 ⇒ 𝑇(𝑣) = −𝑣 

𝑣מכאן  = −𝑣  >=(1𝔽 + 1𝔽)𝑣 = 2𝑣 = 0  >=𝑣 = 0 

𝑣( נניח שלכל 2 ∈ 𝑉  קיימים
𝑢∈𝑈
𝑤∈𝑊

𝑣כך ש   = 𝑢 + 𝑤:אזי , 

𝑇(𝑣) = 𝑇(𝑢) + 𝑇(𝑤) =

[
 
 
 
 

(

 
 

𝑢 ∈ ker(𝑇 − 𝐼)
(𝑇 − 𝐼)𝑢 = 0

⇓
𝑇(𝑢) − 𝑢 = 0
𝑇(𝑢) = 𝑢 )

 
 
(

𝑤 ∈ 𝑊
⇓

𝑇(𝑤) = −𝑤
)

]
 
 
 
 

 

} "קיבלנו"
𝑣 = 𝑢 + 𝑤
𝑇(𝑣) = 𝑢 − 𝑤

  
2−1(𝑣+𝑇(𝑣))=𝑢⇐𝑣+𝑇(𝑣)=2𝑢

2−1(𝑣−𝑇(𝑣))=𝑤⇐𝑣−𝑇(𝑣)=2𝑤
 

שנותר לבדוק 
2−1(𝑣+𝑇(𝑣)∈𝑈=ker(𝑇−𝐼)(∗)

2−1(𝑣−𝑇(𝑣))∈𝑊=ker(𝑇+𝐼)(∗∗)
 

 נבדוק רק את )*(:



(𝑇 − 𝐼) (2−1(𝑣 + 𝑇(𝑣))) = 2−1(𝑇(𝑣) + 𝑇2(𝑣) − 𝐼(𝑣) − 𝐼(𝑇(𝑣)) = 𝑤−10𝑉 = 0𝑉 

 לכן )*( מתקיים

 משפט הדרגה

:𝑇תאה  𝑉 → 𝑊  הע"ל. אזיdimker(𝑇) + dim 𝐼𝑚(𝑇) = dim𝑉 

 הערה

dim𝑉נניח  = 𝑛, dim𝑊 = 𝑚  ונסמן(
מטריצה

מייצגת
) [𝑇] = 𝐴 ∈ 𝔽𝑚×𝑛  

𝑁𝑢𝑙𝑙(𝐴)נסמן  = {𝑣 ∈ 𝔽𝑛: 𝐴𝑣 =  מרחב האפס של המטריצה. {0

 כעת ניתן לכתוב את משפט הדרגה באופן הבא:

𝑛 = dim(𝑁𝑢𝑙𝑙(𝐴))⏟        
מספר משתנים

חופשיים

+ 𝑟𝑎𝑛𝑘 (𝐴)⏟      
מספר משתנים

מובילים

 

 (56)עמ'  2.10תרגיל 

:𝑇תאה  𝑉 → 𝑊 :הע"ל. הוכיחו שהתכונות הבאות שקולות 

ker (א 𝑇 = {0𝑉} 

 חח"ע T (ב

 פתרון

kerשא: נניח בשלילה ב 𝑇 ≠ {0𝑉}  אזי קיים𝑣 ≠ 0𝑉 כך ש𝑇(𝑣) = 0𝑊 = 𝑇(0𝑉) בסתירה לכך שT 

 חח"ע.

𝑇(𝑣)כך ש 𝑣,𝑤ב: נניח שקיימים א = 𝑇(𝑤) אזי ,𝑇(𝑣 − 𝑤) =
T הע"ל

𝑇(𝑣) − 𝑇(𝑤) = 0𝑊 מצד שני .

ker 𝑇 = {0𝑉}  לכן𝑣 − 𝑤 = 0𝑉  𝑣 = 𝑤. 

 מסקנה מהתרגיל

:𝑇תאה  𝑉 → 𝑊  הע"ל אזיT  איזומורפיזם 𝐼𝑚(𝑇) = 𝑤  וגםker(𝑇) = {0𝑉} בנוסף, אם .

dim𝑉 = dim𝑊  אזיT  על T .חח"ע 

 הוכחה

dim𝑉על. נשתמש במשפט הדרגה  Tנניח  = dimker 𝑇 + dim 𝐼𝑚𝑇⏟      
=dim𝑊=dim𝑉

  dimker 𝑇 = 0  

ker 𝑇 = {0𝑉} ג T .גחח"ע 

𝑉בפרט אם  = 𝑊  אזיT  אופרטור הפיך T .חח"ע 

 2.13תרגיל 

𝑇:ℝ5האם קיימת הע"ל  .א → ℝ5  המקיימת𝐼𝑚 𝑇 = ker 𝑇? 

𝑇:ℝ5האם קיימת הע"ל  .ב → ℝ5  המקיימת𝐼𝑚 𝑇 = ker 𝑇? 



 פתרון

 הפרכה: נניח בשלילה כי קיימת הע"ל כזו אזי .א

5 = dimℝ5 = dimker 𝑇 + dim 𝐼𝑚 𝑇 = 2dimker 𝑇 ⇒ dimker 𝑇 = 2
1

2
∉ ℕ 

 נגדיר את ההעתקה ע"י משפט ההגדרה: כן! .ב

𝑇(1,0,0,0) = (0,0,0,0) 

𝑇(0,1,0,0) = (0,0,0,0) 

𝑇(0,0,1,0) = (1,0,0,0) 

𝑇(0,0,0,1) = (0,1,0,0) 
kerלכן  𝑇 = 𝐼𝑚 𝑇 = 𝑠𝑝𝑎𝑛{𝑒1, 𝑒2} 

 2.18תרגיל 

:𝑇תהא  𝑉 → 𝑉 :הע"ל. הוכיחו שהתכונות הבאות שקולות 

ker(𝑇2) (א = ker(𝑇) 

𝐼𝑚(𝑇2) (ב = 𝐼𝑚(𝑇) 

𝑉 (ג = ker 𝑇 ⊕ 𝐼𝑚 𝑇 

 פתרון

 בגאב נוכיח

ker(𝑇)שמתקיים  2.3ראינו בתרגיל  א:ב ⊆ ker(𝑇2) :כדי להראות שוויון נראה שוויון מימדים .

 :מתקיים

dim𝑉 = dimker 𝑇 + dim 𝐼𝑚 𝑇
נתון∥

 

dim𝑉 = dimker 𝑇2 + dim 𝐼𝑚(𝑇2) 

⇓ 

dimker 𝑇 = dimker(𝑇2) 

𝑣( יהי 1: גא ∈ ker 𝑇 ∩ 𝐼𝑚 𝑇  אזי𝑇(𝑣) = 𝑤וכן קיים  0 ∈ 𝑉 כך ש𝑡(𝑤) = 𝑣.  נפעילT  עך שני

𝑇2(𝑤)האגפים ונקבל  = 𝑇(𝑣) = 0  𝑤 ∈ ker(𝑇2)  ker 𝑇 = ker(𝑇2)  𝑤 ∈ ker(𝑇)  

𝑇(𝑤) = 0  𝑣 = 0 

2 )𝑉 = 𝐼𝑚 𝑇 + ker 𝑇 מתקיים ?ker 𝑇 + 𝐼𝑚 𝑇 ⊆ 𝑉 

dim(kerלפי משפט המימדים:  𝑇 + 𝐼𝑚 𝑇) = dimker 𝑇 + dim 𝐼𝑚 𝑇 − dim(ker 𝑇 ∩ 𝐼𝑚 𝑇) 

dim(kerלכן  𝑇 + 𝐼𝑚 𝑇) = dimker 𝑇 + dim 𝐼𝑚 𝑇 הדרגה נקבל:. ממשפט 

dim𝑉 = dimker 𝑇 + dim 𝐼𝑚 𝑇 ⇒ dim𝑉 = dim(ker 𝑇 + 𝐼𝑚 𝑇) ⇒ 𝑉 = ker𝑇 + 𝐼𝑚 𝑇 

𝐼𝑚(𝑇2)ב: ראינו כבר ג ⊆ 𝐼𝑚(𝑇).נראה את ההכלה השנייה . 

𝑣יהי  ∈ 𝐼𝑚(𝑇)  אזי קיים𝑢 ∈ 𝑉 כך ש𝑇(𝑢) = 𝑣(∗) .𝑢 ∈ 𝑉  ע"פ ג' ניתן לכתוב𝑢 = 𝑢1⏟
∈ker𝑇

+ 𝑢2⏟
∈𝐼𝑚 𝑇

 

 

𝑇(𝑢) = 𝑇(𝑢1) + 𝑇(𝑢2) ⇒ 𝑇(𝑢) = 𝑇(𝑢2) 
𝑢2 ∈ 𝐼𝑚 𝑇  ∃𝑤 ∈ 𝑉 כך ש𝑇(𝑤) = 𝑢2  ולכן𝑇(𝑢) = 𝑇(𝑢2) = 𝑇

2(𝑤) מ)*( נקבל .𝑇2(𝑤) = 𝑣 

 𝑣 ∈ 𝐼𝑚 𝑇2 



 2.19תרגיל 
 בתרגיל זה נוכיח את משפט הדרגה הפוך:

 .nמ"ו ממימד  Vיהי 

𝑈,𝑊יהיו  (א ⊆ 𝑉  ת"מ כך שמתקייםdim𝑈 + dim𝑊 = 𝑛 הוכיחו שקיימת הע"ל .𝑇: 𝑉 → 𝑉 

כך ש
ker 𝑇 = 𝑊
Im𝑇 = 𝑈

 

𝑘כך ש k,mהסיקו שלכל שני מספרים  (ב +𝑚 = 𝑛  קיימת הע"ל𝑇: 𝑉 → 𝑉  כך

ש
rank𝑇 = dim Im𝑇 = 𝑚
𝜈(𝑇) = dimker 𝑇 = 𝑘

 

 פתרון

dim𝑈א( מקרה ראשון:  = dim𝑈או  0 = 𝑛.  אםdim𝑈 = 𝑇ניקחאז  0 = Im𝑇נקבל   0 = {0} = 𝑈 ,

ker 𝑇 = 𝑉.  אםdim𝑈 = 𝑛  ניקח𝑇 = 𝐼  ונקבלIm𝑇 = 𝑉 = 𝑈, ker 𝑇 = {0} = 𝑊. 

𝑘מקרה שני:  = dim𝑊 ≥ 1,𝑚 = dim𝑈 ≥ W 𝐵ל B. ניקח בסיס 1 = {𝑤1, …𝑤𝑘}  ובסיסC לU 𝐶 =

{𝑢1, … 𝑢𝑚} נשלים את .B  לבסיסD  עבורV :𝐷 = {𝑤1, …𝑤𝑘 , 𝑤𝑘+1, … 𝑤𝑛⏟
=𝑤𝑘+𝑚

:𝑇. נגדיר הע"ל { 𝑉 → 𝑉 

 באופן הבא:
T(𝑤𝑖) = 0, ∀1 ≤ 𝑖 ≤ 𝑛

𝑇(𝑤𝑘+𝑖) = 𝑢𝑖, ∀1 ≤ 𝑖 ≤ 𝑚
 ע"פ משפט יחידה. קיימת הע"ל שכזו והיא 

Im𝑇נראה שמתקיים  ההגדרה. = 𝑈, ker 𝑇 = 𝑊: 

𝑊 ⊆ ker𝑇  כי לכל𝑤 ∈ 𝐵
𝑊בסיס ל

𝑇(𝑤)מתקיים   = 𝑣נוכיח את ההכלה ההפוכה. יהי  .0 ∈ ker 𝑇 .

𝑇(𝑣)מתקיים  = 𝑣, מצד שני 0 = ∑ 𝛼𝑖𝑤𝑖
n
i=1  כיD בסיס לV. 

0 = 𝑇(𝑣) = 𝑇 (∑𝛼𝑖𝑤𝑖

n

i=1

) =∑𝛼𝑖𝑇(𝑤𝑖)

𝑛

𝑖=1

= ∑ 𝛼𝑖𝑇(𝑤𝑖)

𝑛

𝑖=𝑘+1

+∑𝛼𝑖𝑇(𝑤𝑖)

𝑘

𝑖=1⏟      
=0

= ∑ 𝛼𝑖𝑇(𝑤𝑖)

𝑛

𝑖=𝑘+1

= ∑ 𝛼𝑖𝑢𝑖

𝑛

𝑖=𝑘+1

= 𝛼𝑘+1𝑢1 +⋯+ 𝛼𝑛𝑢𝑚 = 0 

,𝑢1}אבל ידוע ש … 𝑢𝑚} לכן בסיס ולכן בת"ל ,𝛼𝑘+1 = ⋯ = 𝛼𝑛 =  לכן: 0

𝑣 =∑𝛼𝑖𝑤𝑖

𝑘

𝑖=1
𝑤בסיס ל {𝑤1,…𝑤𝑘)
⇒            𝑣 ∈ 𝑊 

𝑊לכן  ⊆ ker𝑇 

𝑈מצד שני מתקיים  ⊆ Im𝑇  כל )כי𝑢𝑖 = 𝑇(𝑤𝑘+𝑖))ממשפט הדרגה מתקיים . 

𝑛 = dim𝑉 = dimker 𝑇⏟      
=𝑘

+ dim Im𝑇⏟      
=𝑛−𝑘=𝑚=dim𝑈

 

Im𝑇לכן  = 𝑈 

 ב( מיידי מא'.

 הערה

𝑛 = dim𝑉 ≥ dim(ker 𝑇 + Im𝑇) = dimker 𝑇 + dim Im𝑇 − dim(ker 𝑇 ∩ Im𝑉) 2.20תרגיל 

  



 2.20תרגיל 

0. תהא 𝔽מעל שדה  nממימד מ"ו  Vיהי  ≠ 𝑇:𝑉 → 𝔽 :העל. הוכיחו 

dim (א Im𝑇 = 1 

dimker (ב 𝑇 = 𝑛 − 1 

𝑣0יהא  (ג ∈ 𝑉 כך ש𝑇(𝑣0) ≠ >. נסמן 0 𝑣0 > = span{𝑣0} :הוכיחו .𝑣 =< 𝑣0 > +ker 𝑇 

,𝑤1}אם  (ד …𝑤𝑛−1}  בסיס עבורker 𝑇  אזי𝐵 = {𝑣0, 𝑤1, …𝑤𝑛−1}  בסיס עבורV. 

 פתרון

Im𝑇א(  ⊆ 𝔽 ,dim𝔽 = dim, לכן 1 Im𝑇 ≤ dim. נניח בשלילה ש1 Im𝑇 < dimאזי  1 Im𝑇 = 0 

 Im𝑇 {0}   סתירה, לכןdim Im𝑇 = 1. 

𝑛ב( מיידי ממשפט הדרגה, כי  = dim𝑉 = dimker 𝑇 + dim Im𝑇  dimker 𝑇 = 𝑛 − 1 

dim(𝑘𝑒𝑟ג(  𝑇+< 𝑣0 >) =
משפט המימדים

dimker 𝑇⏟      
=𝑛−1

+ dim < 𝑣0 >⏟        
=1
⇑

dim<𝑣0>=dimspan{𝑣0}=1

⇑
𝑣≠0𝑉
⇑

𝑇(𝑣)≠0𝔽

− dim(ker 𝑇 ∩< 𝑣0 >) 

dim(kerקיבלנו  𝑇+< 𝑣0 >) = 𝑛 − dim(ker 𝑇 ∩< 𝑣0 ker. נראה ש(< 𝑇 ∩< 𝑣0 >= , אחרת {0}

𝑣קיים  ≠ 𝑣כך ש 0 ∈ ker 𝑇 ∩ span{𝑣0}.  מתקיים𝑣 = 𝛼𝑣0, 0 ≠ 𝛼 ∈ 𝔽 אחרת(𝑣 = 𝑣 (. כמו כן0 ∈

ker 𝑇.  לכן𝑇(𝑣) = 𝑇(𝛼𝑣0) = kerונקבל סתירה. מכאן  0 𝑇 ∩ span{𝑣0} = dim(ker. לכן {0} 𝑇 +

span{𝑣0}) = 𝑛 ker, מתקיים + 𝑇 + span{𝑣0} ⊆ 𝑉 וכן שוויון מימדים, לכן 

ker 𝑇 + span{𝑣0} = 𝑉 

,𝑤1}ד( נניח  …𝑤𝑛−1} בסיס עבור ker 𝑇 צ"ל .𝐵 = {𝑣0, 𝑤1, …𝑤𝑛−1}  בסיס עבורV 

𝑣0נקבל ש \אחרת בת"ל. Bהוכחה: נראה תחילה ש = 𝛼1𝑤1 +⋯+ 𝛼𝑛−1𝑤𝑛−1 נתון ש({𝑤1, …𝑤𝑛−1} 

𝑇(𝑣0)בת"ל(. מצב זה לא יתכך כי אז  = 𝛼1𝑇(𝑤1) +⋯+ 𝛼𝑛−1𝑇(𝑤𝑛−1) =  .𝑣0בסתירה לבחירת  0

dim𝑉מתקיים  = 𝑛 ,𝐵 = {𝑣0, 𝑤1, …𝑤𝑛−1}  בת"ל מגודלn )ולכן היא גם פורשת)בסה"כ בסיס 

 2.24תרגיל 

:𝑇תהא  הוכיחו או הפריכו:  𝑉 → 𝑊 יהי הע"ל .𝐵 = {𝑣1, … 𝑣𝑛}  בסיס עבורV  1כך שלכל ≤ 𝑖 ≤ 𝑛 

𝑇(𝑣𝑖)מתקיים  ≠ kerאזי  0 𝑇 = {0} 

 תשובה

𝑉הפרכה: יהי  = ℝ2 .נגדיר  עם הבסיס הסטנדרטי
𝑇(1,0) = (1,1)

𝑇(0,1) = (1,1)
היא  T. המטריצה המייצגת של 

[𝑇] = (
1 1
1 1

,𝑇(𝑥, לכן ( 𝑦) = (
1 1
1 1

) (
𝑥
𝑦) = (𝑥 + 𝑦, 𝑥 + 𝑦) 

ker 𝑇 = {(𝑥, −𝑥): 𝑥 ∈ ℝ} = span{(1,−1)} ≠ {0} 

  



 שאלה ממבחן

𝐴תהא  ∈ 𝔽𝑚×𝑛 

𝐵ו Aהוכיחו שלמטריצת  .א ∈ 𝔽𝑛×𝑘 מתקיים 𝐶(𝐵) ⊆ Null 𝐴 ⇔ 𝐴𝐵 = 0 

,𝐴יהיו  .ב 𝐵 ∈ 𝔽3×3 כך שrank𝐴 = rank𝐵 = 𝐴𝐵. הוכיחו ש2 ≠ 0 

𝐴תהי  .ג ∈ 𝔽𝑛×𝑛  המקיימת𝐴2 = rank𝐴. הוכיחו ש0 ≥
𝑛

2
 

 פתרון

𝐶(𝐵)א.  ⊆ Null 𝐴  ∀1 ≤ 𝑖 ≤ 𝑘: A ∗ C𝑖(𝐵) = 0  ∀1 ≤ 𝑖 ≤ 𝑘: 𝐶𝑖(𝐴𝐵) = 0  𝐴𝐵 = 0 

𝐴𝐵ב. נניח בשלילה ש = 𝐶(𝐵)אזי נקבל מא' ש ,0 ⊆ Null 𝐴ממשפט הדרגה נקבל . 

3 = rank𝐴⏞    
=2

+ dimNull 𝐴 ⇒ dimNull 𝐴 = 1 
dim𝐶(𝐵) = rank𝐵 = 2 

𝐶(𝐵) ⊆ Null 𝐴 ⇒ dim𝐶(𝐵) ≤ dimNull 𝐴 

−סתירה 2 ≤ 1 

𝐴2נתון ג.  = 𝐵ולכן ע"פ א' ) 0 = 𝐴 נקבל )𝐶(𝐴) ⊆ Null 𝐴 ממשפט הדרגה .(∗)𝑛 = rank𝐴 + dimNull 𝐴 .

𝐶(𝐴)מתקיים  ⊆ Null 𝐴  rank𝐴 = dim𝐶(𝐴) ≤ dimNull 𝐴 מ)*( נקבל .𝑛 = rank𝐴 + dimNull 𝐴  לכן

𝑛 ≤ 2 rank𝐴  rank𝐴 ≥
𝑛

2
 

 עוד שאלה ממבחן

𝐴יהיו  ∈ 𝔽𝑚×𝑛, 𝐵 ∈ 𝔽𝑛×𝑘 

 .בת"ל Bבת"ל אזי גם עמודות  𝐴𝐵הוכיחו שאם עמודות  .א

rank𝐴בת"ל הוא  ABבת"ל. הראו שתנאי הכרחי לכך שעמודות  Bנניח שעמודות  .ב ≥ 𝑘 

 פתרון

rank𝐴𝐵. לכן בת"ל ABנתון שעמודות א.  = 𝑘⏟
𝑘 מספר העמודות של

rank𝐵. כמו כן  ≥ rank𝐴𝐵 לכן .

rank𝐵 ≥ 𝑘   מספר העמודות שלB  הואk  לכןrank𝐵 = 𝑘 

rank𝐴אזי בת"ל  ABב. יש להוכיח שאם עמודות  = 𝑘 :הוכחה .rank𝐴𝐵 = 𝑘 כמו כן ,rank𝐴 ≥ rank𝐴𝐵 ,

rank𝐴לכן  ≥ 𝑘 



 הגדרה

:𝑇. העתקה לינארית 𝔽מ"ו מעל שדה  Vיהי  𝑉 → 𝔽 .נקראת פונקציונל לינארי 

 דוגמה

𝑡𝑟: 𝔽𝑛×𝑛 → 𝔽  כאשר לכל𝐴 ∈ 𝔽𝑛×𝑛  מתקיים𝑡𝑟 𝐴 = ∑ 𝑎𝑖𝑖
𝑛
𝑖=1  כי מתקיים

𝑡𝑟(𝐴 + 𝐵) = 𝑡𝑟(𝐴) + 𝑡𝑟(𝐵)

𝑡𝑟(𝛼𝐴) = 𝛼𝑡𝑟(𝐴)
 

 הגדרה

:𝑇אוסף הפונקציונלים  𝑉 → 𝔽  נקרא המרחב הדואלי שלV  ומסומן𝑉∗. 

 הערה

𝑉∗ .הוא מ"ו ביחס לחיבור פונקציונלים וכפל בסקלר של פונקציונל 

 1.5תרגיל 

𝜑הוכח שלכל  ∈ 𝔽∗  יש𝛼 ∈ 𝔽 כך ש𝜑(𝑥) = 𝛼𝑥. 

 פתרון

𝜑(1)]בהנחה שהטענה נכונה  = 𝛼] 

𝜑יהי  ∈ 𝔽∗ נגדיר .𝛼 = 𝜑(1) :נראה שמתקיים הדרוש .𝜑(𝑥) = 𝜑(𝑥 ∗ 1) = 𝑥𝜑(1) = 𝑥𝛼 

 הערה

 (מעל עצמו 𝔽הם גם סקלרים וגם וקטורים )של  𝔽שאיברי ♥ שימו 

 1.6תרגיל 

,𝑢מ"ו ויהיו  Vיהי  𝑣 ∈ 𝑉  כך שלכל𝑢 ∈ 𝑉∗  המקיים𝜑(𝑢) = 𝜑(𝑣)מתקיים  0 = 𝛼. הוכח שיש 0 ∈ 𝔽 

𝛼𝑣כך ש = 𝑢. 

 הוכחה

𝑢 -מקרה ראשון  = 𝑣נראה שבהכרח  0 = 𝛼ואז נבחר למשל  0 = 𝑣אחרת,  .0 ≠ 0, 𝑢 =  {𝑣}נקבל  0

 .Bבת"ל, נשלימה לבסיס 

𝑥∀יהי  ∈ 𝐵:𝜑(𝑥) = {
0 𝑥 ≠ 𝑣
1 𝑥 = 𝑣

𝜑(𝑢)מוגדר ויחיד ע"פ משפט ההגדרה. מתקיים  𝜑, אזי  = 𝜑(0) = 0 

𝜑(𝑣)אבל  =  . סתירה1

𝑢 -מקרה שני  ≠ ,𝑢ף נוכיח ש0 𝑣 נניח בשלילה שהם בת"ל אזי ניתן להשלימם לבסיס ת"ל .𝐵′  ולהגדיר

∀𝑥 ∈ 𝐵′: 𝜑(𝑥) = {
0 𝑥 ≠ 𝑣
1 𝑥 = 𝑣

 .𝜑  .מוגדר ויחיד ע"פ משפט ההגדרה𝜑(𝑢) = 0, 𝜑(𝑣) =  סתירה. 1

,𝑢לכן  𝑣 ולכן קיים צירוף לינארי לא טריויאלי  תלויים לינארית𝜆𝑦 + 𝜇𝑣 = 𝜇. נראה ש0 ≠ 𝜇. אחרת, 0 = 0 

𝜆ואז  𝑢⏟
≠0

= 0  𝜆 = 𝜆, לכן 0 = 𝜇 = לכן  וזה צירוף טריויאלי בסתירה לכך שהצירוף אינו טריויאלי. 0

𝑣 = −
𝜆

𝜇
𝑢 נגדיר .𝛼 = −

𝜆

𝜇
 



 פונקציונליםהערה לגבי מבנה 

𝑊ראינו בעבר שאם  = 𝔽𝑚, 𝑉 = 𝔽𝑛  אז כל העתקה לינארית𝑇: 𝑉 → 𝑊 ניתנת לזיהוי 

𝑇(𝑣)עם  = 𝐴𝑣, 𝐴 ∈ 𝔽𝑚×𝑛 

𝑊במקרה שבו  ≅ 𝔽𝑚, 𝑉 ≅ 𝔽𝑛 .הטענה נכונה עד כדי איזומורפיזם 

:𝑇כעת, במקרה של פונקציונל לינארי  𝑉 → 𝔽 ניתן לחשוב על כל פונקציונל שכזה כ𝜑:𝔽𝑛 → 𝔽  עד

 י איזומורפיזם.כד

𝐴עם  𝜑כמו כן ניתן לזהות את  ∈ 𝔽1×𝑛 :𝜑(𝑣) = (𝑎1, … 𝑎𝑛)(

𝑣1
⋮
𝑣𝑛
) = 𝑎1𝑣1 +⋯𝑎𝑛𝑣𝑛 

 הגדרה+משפט

𝐵מ"ו עם בסיס  Vיהי  = {𝑣1, … 𝑣𝑛} אזי קיים בסיס דואלי .𝐵∗ לV∗ :𝐵∗ = (𝜑1, …𝜑𝑛}  1∀כאשר ≤

𝑖, 𝑗 ≤ 𝑛: 𝜑𝑖(𝑣𝑗) = {
1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗

 

 הערות

 𝜑𝑖קבענו את  Bעל אברי הבסיס  𝜑𝑖שלפי משפט ההגדרה ברגע שכבאני את כרכי ♥ שימו  (1

 בצורה יחידה.

dim𝑉אם  (2 = 𝑛  אזיdim𝑉∗ = 𝑛 

 3.3תרגיל 

𝑉יהי  = ℂ3 יהי .𝐵 = {(𝑖, 𝑖, 𝑖), (𝑖, 𝑖, 0), (𝑖,  בסיס. {(0,0

∗𝐵מצאו בסיס דואלי  (א = {𝜑1, 𝜑2, 𝜑3}  עבור𝑉∗ 

 פתרון

,𝜑1(𝑖לפי הגדרת הבסיס הדואלי נקבל  𝑖, 𝑖) = 𝜑2(𝑖, 𝑖, 0) = 𝜑3(𝑖,  . בנוסף:(0,0

𝜑1(𝑖, 𝑖, 0) = 𝜑1(𝑖, 0,0) = 𝜑2(𝑖, 𝑖, 𝑖) = 𝜑2(𝑖, 0,0) = 𝜑3(𝑖, 𝑖, 𝑖) = 𝜑3(𝑖, 𝑖, 0) = 0 
𝐴עם מטריצה  𝜑1ע"פ הערה לעיל ניתן לזהות את  = (𝑎1, 𝑎2, 𝑎3) :כך ש 

{

𝜑1(𝑖, 𝑖, 𝑖) = 𝑎1𝑖 + 𝑎2𝑖 + 𝑎3𝑖 = 1

𝜑1(𝑖, 𝑖, 0) = 𝑎1𝑖 + 𝑎2𝑖 = 0

𝜑1(𝑖, 0,0) = 𝑎1𝑖 = 0

 

𝐵עם  𝜑2באופן דומה ניתן לזהות את  = (𝑏1, 𝑏2, 𝑏3): 

𝜑2(𝑖, 𝑖, 𝑖) = 𝑏1𝑖 + 𝑏2𝑖 + 𝑏3𝑖 = 0

𝜑2(𝑖, 𝑖, 0) = 𝑏1𝑖 + 𝑏2𝑖 = 1

𝜑2(𝑖, 0,0) = 𝑏1𝑖 = 0

 

 ונקבל עוד מערכת משוואות. נפתור את כולן בבת אחת: 𝜑3 באופן דומה ניתן לזהות את

(
𝑖 𝑖 𝑖 1 0 0
𝑖 𝑖 0 0 1 0
𝑖 0 0 0 0 1

)

אחרי

כמה

שלבים
→  (

0 0 1 −𝑖 𝑖 0
0 1 0 0 −𝑖 𝑖
1 0 0 0 0 −𝑖

)
דירוג
→  (

1 0 0 0 0 −𝑖
0 1 0 0 −𝑖 𝑖
0 0 1 −𝑖 𝑖 0

) 

a1מקבלים  = 0, a2 = 0, a3 = −i, לכן 

𝜑1(𝑎 + 𝑏𝑖, 𝑐 + 𝑑𝑖, 𝑒 + 𝑓𝑖) = 𝑎1(𝑎 + 𝑏𝑖) + 𝑎2(𝑐 + 𝑑𝑖) + 𝑎3(𝑒 + 𝑓𝑖) = 𝑓 − 𝑖𝑒 



 3.5תרגיל 

𝐵מ"ו עם בסיס  Vיהי  = {𝑣1, … 𝑣𝑛} ,𝐵∗ = {𝜑1, …𝜑𝑛} הבסיס המתאים ו𝑣 ∈ 𝑉. 

𝐵[𝑣]אזי  = (𝜑1(𝑣),…𝜑𝑛(𝑣)) 

 הוכחה

𝑣יהי  ∈ 𝑉  ונניח[𝑣]𝐵 = (𝛼1, … 𝛼𝑛) כלומר ,𝑣 = ∑ 𝛼𝑖𝑣𝑖
𝑛
𝑖=1 1∀. צ"ל ≤ 𝑗 ≤ 𝑛: 𝛼𝑗 = 𝜑𝑗(𝑣). 

𝜑𝑗(𝑣) = 𝜑𝑗 (∑𝛼𝑖𝑣𝑖

𝑛

𝑖=1

) =
לינאריות של

𝜑𝑗

∑𝛼𝑖𝜑𝑗(𝑣𝑖)

𝑛

𝑖=1

=∑𝛼𝑖 𝜑𝑗(𝑣)⏟  
=0

𝑛

𝑖=1
𝑖≠𝑗

+ 𝛼𝑗 (𝑣𝑗)⏟
=1

= 𝛼𝑗 

 3.10תרגיל 

𝐵יהא  = {(1,0,3), (0,2,2),  .ℝ3בסיס עבור  {(0,2,1)

 בצורה ישירה. ∗𝐵מצאו את הבסיס הדואלי  .א

 ה לפתרון של א'הער

 ולקבל 3.3ניתן לפתור בדיוק כמו תרגיל 

𝜑1(𝑥, 𝑦, 𝑧) = 𝑥, 𝜑2(𝑥, 𝑦, 𝑧) = −3𝑥 −
1

2
𝑦 + 𝑧, 𝜑3(𝑥, 𝑦, 𝑧) = 3𝑥 + 𝑦 − 𝑧 

 בעזרת מטריצת מעבר מתאימה. ∗𝐵מצאו את הבסיס הדואלי  .ב

 )לב'(פתרון

∗𝑃𝑆מתקיים 
𝐵∗ = (𝑃𝐵

𝑆)
𝑡

. 

𝑃𝑆
𝐵 מטריצת מעבר מS לB  המקיימת𝑃𝑆

𝐵[𝑣𝐵] = [𝑣]𝑆 

𝑃𝑆
𝐵 = ([𝑏1]𝑆, [𝑏2]𝑆, [𝑏3]𝑆) מתקיים .(𝑃𝑆

𝐵)−1 = (𝑃𝐵
𝑆) בסה"כ , לכן𝑃𝑆∗

𝐵∗ = ((𝑃𝑆
𝐵)−1)𝑡 

𝑃𝑆
𝐵 = (

1 0 0
0 2 2
3 2 1

) ⇒ 𝑃𝐵
𝑆 = (

1 0 0
0 2 2
3 2 1

)

−1

= (

1 0 0

3 −
1

2
1

3 1 −1

) 

(𝑃𝐵
𝑆)
𝑡
= (

1 3 3

0 −
1

2
1

0 1 −1

) = 𝑃𝑆∗
𝐵∗  

𝑆∗ = {𝑠1
∗, 𝑠2

∗, 𝑠3
𝑠1מקיים  {∗

∗(𝑥, 𝑦, 𝑧) = 𝑥 {

𝑠1
∗(1,0,0) = 1

𝑠2
∗(0,1,0) = 1

𝑠3
∗(0,0,1) = 1

 ,𝑠3
∗(𝑥, 𝑦, 𝑧) = 𝑧, 𝑠2

∗(𝑥, 𝑦, 𝑧) = 𝑦 

∗𝑃𝑆קיים מת
𝐵∗ = ([

|
𝜑1
|
]

𝑆∗

, [
|
𝜑2
|
]

𝑆∗

, [
|
𝜑3
|
]

𝑆∗

) = (

1 3 3

0 −
1

2
1

0 1 −1

)  

φ1 = 𝑠1
∗ ∗ 1 + 0𝑠2

∗ + 0𝜑3
∗ 

𝜑(𝑥, 𝑦, 𝑧) = 𝑠1
∗(𝑥, 𝑦, 𝑧) = 𝑥 

𝜑2(𝑥, 𝑦, 𝑧) = 3𝑠1
∗(𝑥, 𝑦, 𝑧) −

1

2
𝑠2
∗(𝑥, 𝑦, 𝑧) + 1 ∗ 𝑠3

∗(𝑥, 𝑦, 𝑧) = 3𝑥 −
1

2
𝑦 + 𝑧 

𝜑3(𝑥, 𝑦, 𝑧) = 3𝑥 + 𝑦 − 𝑧    באופן דומה 
 



𝑣יהי  .ג =  𝐵[𝑣]. חשבו את (0,1,1)

 )לג'(פתרון

𝑏2שימו לב  = 𝐵[𝑣]ולכן  (0,2,2) = (0,
1

2
,
1

2
) 

 ש 3.5הראנו ב

[𝑣]𝐵 = (𝜑1(𝑣), 𝜑2(𝑣), 𝜑3(𝑣)) ⇒ [(0,1,1)]𝐵 = (𝜑1(0,1,1), 𝜑2(0,1,1), 𝜑3(0,1,1))

= (0,
1

2
, 0) 










