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1 (a) A particle has displacementx(t) = (2t2−8t+9) et for times0 ≤ t ≤ 4.

Find its velocityv(t) and determine for what times the particle is mov-

ing in thenegativex direction. 4%

(b) Find sin−1(sin(27π
7

)). 4%

(c) Find a root of e−x = x2 to 7 decimal places usingNewton’s method

with the initial guessx0 = 0. 4%

(d) Evaluate lim
x→0

(1 + x)
1

sin(2x) .

(Hint: represent this limit aslim
x→0

e f(x) for some functionf(x) and

then use l’Ĥopital’s rule to evaluatelim
x→0

f(x) .) 4%

(e) Find the first derivative ofxln(x+1) . 4%

(f) Find the interval of convergence of the power series
∞∑

n=1

(2x− 1)n

n4 · 3n . 4%

(g) If u = 3i− j− 6k, v = i− 7j + 2k, and w = 2i + 3j, find

the triple vector productu× (v ×w). 4%

(h) Prove that iff ′(x) < 0 on (a, b), thenf(x) is decreasing on(a, b).

(Hint: use the Mean-Value Theorem.) 4%

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Consider the functiony = f(x) = x e−x2/8.

(a) What is the domain off(x)? Find thex- andy-intercepts off(x), if

any. 2%

(b) Discuss the behaviour off(x) asx → ∞ and asx → −∞. Find all

verticalandhorizontal asymptotesof f(x), if any. 3%

(c) Find the critical points and singular points off(x), if any. Find thex-

values for whichf(x) is increasing/decreasing. Find all local maxima

and minima off(x), if any. (Decimal approximations will suffice.) 5%

(d) Find thex-values for whichf(x) is concave up/down. Find the points

of inflection off(x), if any. (Decimal approximations will suffice.) 5%

(e) Sketch the graph ofy = f(x). 4%

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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3 (a) Suppose that the intensity of a point light source is directly propor-

tional to the strength of the source and inversely proportional to the

square of the distance from the source. Two point light sources with

strengths ofS and8S are separated by a distance of90 cm. Where on

the line segment between the two sources is the intensity a minimum? 7%

(b) Test the series below for convergence, stating which test you are using:

(i)
∞∑

n=1

n
3
√

n4 + 1
, (ii)

∞∑
n=1

(2n)!

(n!)2 5n
, (iii)

∞∑
n=1

(−1)n n
3
√

n4 + 1
. 4%+4%+4%

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 (a) By direct differentiation and using Taylor’s formula, find thefirst four

non-trivial termsof the Maclaurin series for the function

e sin x

9%

(b) Hence find thefirst three non-trivial termsof the Maclaurin series of

e sin(4x) , e sin(2x3) , and of e sin(2x2−4x) . 3%+3%+4%

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 (a) Evaluate the limit: lim
x→∞

1

x−√x2 − 5x− 1
.

4%
(b) Consider the planesx + 5z = 8 and2x − 3y + 4z = −12. For each

of them, find a normal vector. Then find the angle between these two

planes. 5%

(c) Find an equation of the plane passing through the point(2, 0, 1) that is

perpendicular to the line containing the points(2, 0, 7) and(3, 5,−1). 3%

(d) Find the area of the triangle with vertices:

(2, 2,−3), (4, 1, 5) and(4, 6,−1). 4%

(e) Find the equation of the plane through(2, 2,−3), (4, 1, 5) and(4, 6,−1).

3%
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