NUESTRA ALIMENTACIÓN ACTUAL BASADA EN LA ANCESTRAL

Prof. Dr. José Antonio Villegas García Catedrático de Fisiología

"No es por la benevolencia del carnicero, del cervecero y del panadero que podemos contar con nuestra cena, sino por su propio interés." Adam Smith

Dedicado a quien quiero (el amor no admite sino solo amor por paga).

1.- INTRODUCCIÓN

- A) Centenares de dietas
- B) El hambre
- C) Lo que comíamos hace miles de años condiciona lo que debemos comer ahora
- D) Homo sapiens sobrevivió como especie
- E) <u>La etapa oscura de nuestro paso a agricultores y ganaderos</u>
- F) La termorregulación, la gran adaptación de nuestra especie
- G) La alimentación en la actualidad
- H) Cambios en la dieta a lo largo del tiempo
- I) ¿Dieta mediterránea? ¿Es la solución?
- J) <u>La nutrigenómica es nuestra esperanza</u>
- K) La microbiota intestinal
 - a. Diferencias entre el hombre actual y los ancestros
 - b. Interacción microbiota-intestino-organismo en general
- L) La barrera hematoencefálica
- M) Entre tanto. ¿podríamos tomar una dieta más cercana a la dieta paleolítica?

2. MACRONUTRIENTES

- A) Carbohidratos
 - a. <u>Tipos</u>
 - b. Los cereales
 - c. La fibra

- B) Proteínas
- C) Grasas
 - a. El ácido docosahexaenoico DHA
- D) <u>Vitaminas y minerales</u>
- E) Antioxidantes
- F) El agua
 - a. Deshidratación

3. ALIMENTOS LIGHT, FUNCIONALES Y TRANSGÉNICOS

- A) Alimentos bajos en calorías
- B) Alimentos funcionales
 - a. ¿Podemos hacer nuestros propios alimentos funcionales
 - b. ¿Qué alimentos funcionales me dan lo que necesito?
- C) Alimentos transgénicos
 - a. Seguridad
 - b. Legislación

4. TIPOS DE DIETAS ESPECIALES

- A) ¿Cuántas comidas debemos hacer al día? ¿Merece la pena ayunar?
- B) ¿Y los deportistas? ¿Qué deben comer?
- C) Dieta terapéutica
 - c. Enfermedades con componente inflamatorio
 - d. Enfermedades con fuerte carácter pro-oxidante
 - e. Enfermedades cardiovasculares
 - f. Sarcopenia y osteoporosis

5. CONSIDERACIONES FINALES

- A) Recomendaciones en la lucha con el sobrepeso
- B) Finalicemos mirando atrás "sin ira"
- C) A modo de corolario
- D) Bibliografía

PRÓLOGO

Socializar la proteína

<u>Eudald Carbonell</u> Codirector del Proyecto Atapuerca

En plena refriega del trabajo de campo del año 2006, tras las campañas de Atapuerca en Burgos, las prospecciones en el norte de Argelia buscando los pobladores más antiguos del Norte de África, llegué a l'Abric Romaní, en Capellades (Barcelona) donde mi colaboradora asistente me entregó un montón de correos electrónicos previamente seleccionados para darles respuesta. Entre ellos, me llamó la atención el del Dr. José A. Villegas, quien, de forma muy amable, me pedía la introducción para su libro "La alimentación de ayer, hoy y mañana. Nuevos conceptos", adjuntándome algunas páginas que yo leí con atención. Le solicité todo el borrador y, una vez en mis manos, lo leí ávidamente. He decidido escribir la introducción antes de las excavaciones en la Cueva de Santa Ana, en el Calerizo de Cáceres. El tiempo pasa volando, ya estamos en la segunda semana de septiembre y en los últimos días debo empezar otra campaña, motivo por el cual escribo estas líneas de un tirón, como a mi me gusta, después de reflexionar sobre lo quiero decir.

He estado excavando desde el mes de mayo y estoy cansado. Afortunadamente, la dieta de la última excavación ha sido muy buena y el cuerpo y la mente lo agradecen porque, por suerte, tenemos una cocinera que cocina de manera admirable. Además, también disponemos de buenos vinos, blanco para los momentos de esfuerzo y tinto para las comidas, ambos del Penedés, ya que trabajamos al lado dicha comarca. En nuestro trabajo, esta sabrosa bebida no puede faltar, aunque no debemos abusar de ella y no la consumimos en grandes cantidades.

El trabajo intelectual se ha mezclado con el físico. El equipo ha extraído cerca de 500.000 kilogramos de sedimento desde aproximadamente ocho metros de profundidad, un trabajo imprescindible para excavar un nivel de *Homo neanderthalensis* de cerca de 56.000 años de antigüedad, el más antiguo hasta ahora del Abric Romaní. Rosa, la cocinera, guisa conociendo cual es nuestra actividad y los carbohidratos y la cantidad de ingesta aumentan o disminuyen según el trabajo del momento en una dialéctica precisa. No he tenido tiempo de echar barriga, más propia del invierno, cuando las tareas de laboratorio y de gabinete me obligan a permanecer hora tras hora analizando los registros o trabajando ante el ordenador.

Nuestra dieta de trabajo es paleolítica, es decir, investigamos en niveles prehistóricos pre-holocenos durante cuatro o cinco meses al año. Somos nómadas en la temporada de verano, y algunos de nosotros continuamos siéndolo durante el resto del año a consecuencia del trabajo de investigador. Sin embargo, también engordan ahora los nómadas, o sufren sobrepeso, las cosas ya no son como eran antes. Nada de ello ocurría a los homínidos que estamos estudiando, del *Homo antecessor* al *Homo sapiens* más moderno del Paleolítico, ninguno de ellos engordaba como lo hacemos nosotros.

Nuestros antepasados, que vivían en los árboles hace más de cuatro millones de años, comían muchas hojas, frutos y pocas proteínas de origen animal. Pero su cerebro era pequeño, de cerca de 300 cm3, unas seis veces menor del que tenía nuestra especie, el *Homo sapiens*. La actividad alimenticia representaba una continuidad estructural que abarcaba más de siete horas diarias con el objetivo de mantener el equilibrio termodinámico. Tenían poco tiempo para la socialización. Con la comida rica en proteínas animales las cosas cambiarían, dedicando muy poco tiempo a la ingesta de alimentos, se aseguraría toda la actividad energética del cuerpo.

Para nuestro género, al principio fue básico consumir carne procedente del carroñeo y de la caza en cantidades importantes, era necesario alimentar un cerebro en rápido crecimiento y sostener una importante actividad física motivada por el nomadismo y la estrategia cinegética. Pero ahora nos pasa factura, con la baja actividad que tiene el *Homo sapiens* en general y la excesiva ingesta de grasas. En su momento fue fundamental la fabricación de herramientas de piedra; ello, más comer proteína animal y disponer de tiempo libre fueron los tres factores básicos para la socialización tecnológica.

Sin embargo, no fue hasta la socialización del fuego cuando se produjo otro salto en la conciencia de nuestro género. El fuego, elemento socializador, también permite cambiar los hábitos alimentarios. La transformación de los alimentos gracias al calor, y su conservación, nos permite entrar en otros paradigmas muchos de los cuales aún no hemos abandonado. Comer al lado del fuego, socializarnos a través de comida transformada, la *nouvelle cuisine*, sin olvidar la luz artificial, transformaron la humanidad y así entramos en la edad moderna de la alimentación

Los homínidos del Paleolítico no tenían ni la ocasión ni la posibilidad, al contrario de nosotros, de discutir con un nutricionista; tampoco iban al médico para adelgazar ni seguían ninguna dieta milagrosa, pero, a pesar de ello, mantenían su físico en condiciones óptimas. La que hoy denominamos "dieta paleolítica" por analogía a lo que comían nuestros antepasados de las diferentes especies me parece muy divertida. Los cazadores recolectores comían lo que hallaban en el entorno dependiendo del clima y de la vegetación y, como es lógico, de la latitud donde se encontraban. Por lo tanto, era una dieta que se basaba en comer lo que existía en el entorno, con grandes desequilibrios debidos a la estacionalidad. Un panorama radicalmente distinto al actual donde, si dispones de dinero, puedes ir al supermercado y consumir lo que más te apetezca por exótico que sea. Ya no existen la estacionalidad ni la singularidad; los humanos con recursos depredamos cualquier tipo de alimento, todo aquel que nos parezca sabroso sin tener en cuenta ni donde ni cuando crece; además, las técnicas de conservación permiten una larga vida a los productos, una duración casi indefinida con o sin fecha de caducidad.

Los generalistas del pasado lo eran a nivel de especie pero no a nivel de población. Poseían desde dietas basadas únicamente en la proteína, tal como ocurría con el *Homo neandertalensis* y el *Homo sapiens*, que vivían en las zonas centrales de los continentes en un permafrost constante, hasta las dietas ampliamente variadas de los homínidos que habitaban las zonas mediterráneas donde la mayor parte del tiempo no sufrían heladas. Al ser nómadas y no consumir grasas saturadas en abundancia, tanto para las especies que nos han precedido como para nuestra especie, antes del Holoceno, hace

aproximadamente unos 10.000 años, la obesidad, tal como expone muy bien el Dr. Villegas, no se conocía.

Al convertirnos en sedentarios, hace unos 8.000 años, el control del alimento cambió definitivamente nuestra dieta; aumentaron los carbohidratos de manera cada vez más alarmante. Sin embargo, el trabajo físico en el campo nos servía para metabolizar eficazmente los nuevos alimentos. También aumentaron en la dieta humana los alimentos con muchas grasas ya que los animales pastadores libres desaparecieron paulatinamente para dar paso a los prisioneros alimenticios de nuestra especie. Con la llegada de la revolución científico-técnica, a mediados del siglo XX, las cosas volvieron a cambiar de forma alarmante.

Hoy en día, aunque algunos de nosotros seamos relativamente nómadas y hagamos ejercicio, la obesidad es una patología común que afecta a mayores, adultos, jóvenes y niños. El impacto de la revolución científico-técnica rompe con los procesos de adaptación propios de la selección natural que había operado durante toda la evolución de nuestro género. A lo largo del proceso se seleccionó por poblaciones el tipo de comida según la situación geográfica y climática a la que se adaptaba una comunidad humana.

Frecuentemente evolución también significa una revolución. Seguramente el *Homo sapiens* actual no podría adaptarse tan fácilmente a un cambio de dieta y, si volviera a una dieta propia del Paleolítico, sería incapaz de resistirla. Para ilustrarlo, acudamos al ejemplo que nos ofrecen algunos contextos de cazadores recolectores actuales; algunos de sus especimenes pueden comer de una vez cerca de seis kilogramos de carne, cosa que parece imposible para cualquier miembro de nuestra especie.

Lo que sí es terrible en nuestra especie es que la abundancia de proteína consumida por un 30 % de la población del planeta sea compensada por la deficiencia alimenticia del 70 % restante. Es absurdo hablar de sobrealimentación cuando la mayoría de nuestros congéneres sufren déficits estructurales. Una gravísima contradicción.

La alimentación equilibrada será básica tras la socialización de la revolución científicotécnica. Como muy bien dice José Antonio Villegas: "... La solución está en la tecnología, la industria debe encaminar su desarrollo tecnológico hacia alimentos saludables, no hacia los más rentables. Para ello solo hay un camino crear una corriente de consumo". O lo que es lo mismo, lo que no hace la selección natural lo debe hacer la selección cultural, lo cual significa una revolución en nuestra especie y una transformación de sus hábitos.

Somos unos primates de costumbres ancestrales que estamos cambiando rápidamente nuestros hábitos por la abundancia con la que se producen alimentos en algunos medios humanos: en otros, en cambio, son más escasos y se generan problemas serios para la supervivencia, recordemos solamente las hambrunas del siglo XX y, en nuestros días, las que producen los cambios clima y las guerras. Allí donde existe abundancia también existe el negocio, una forma de acumular calorías en forma de dinero. Primates con poca conciencia, debemos alertar del peligro que supone el no cambiar hábitos. En mi opinión, solamente en el marco del aumento de la conciencia crítica de especie seremos capaces de combatir la patología que provoca una mala nutrición y que puede

conducirnos a una situación donde la enfermedad sea algo cotidiano en nuestras poblaciones.

Tenemos un conocimiento y una tecnología de humanos, pero nos comportamos como primates poco evolucionados. La sustitución del orden natural por la organización humana representa un aumento de complejidad en nuestra socialización. La nutrición es algo fundamental. Unos comportamientos humanos socialmente avanzados deberían conducirnos en primer lugar a ser solidarios con quien pasa hambre. Después, a mejorar nuestra capacidad de entender que comer correctamente no es únicamente ingerir lo que nos gusta sino lo que alimenta y es bueno para nuestro organismo; en otras palabras, nos hace falta sentido común.

No recomiendo la apuesta romántica por la comida paleolítica. La comida basura actual, tal y como se entiende la comida rápida y rebosante de grasas, tampoco es recomendable, como dice muy bien el autor del libro. Sí que lo es la comida que se adapte a la falta de ejercicio físico y que sea mejor para el ejercicio intelectual. La comida que revolucione nuestra forma de comportarnos y que genere la nueva sociedad de la revolución científico-técnica tendrá que ser muy manipulada -en sentido positivo-para que nos siente bien. Hacer ejercicio no está mal aunque sea de forma artificial, la comida también lo será.

La genética y la proteómica tienen mucho que decir sobre esta cuestión; la evolución es irreversible y provocará una revolución en la alimentación y en el comportamiento si su socialización se hace con criterios y crítica. Comer mal para estar gordo o para estar flaco, un hecho único de la especie de la abundancia, sobretodo en las partes del mundo donde dicha abundancia es omnipresente.

De todas maneras, lo más importante es que haya comida para todos; después, que todos nosotros podamos comer bien. La patología más importante de nuestra especie es la falta de solidaridad. Los obesos en mayor o menor grado de Occidente, desde nuestra enfermedad, muchas veces no queremos ver lo flacos y mal alimentados que están los congéneres de otros continentes, y tememos enfermedades como la abulia, cuando culturalmente contribuimos a su éxito mientras desvirtuamos los procesos naturales sin sustituirlos por procesos humanos lógicos.

Probablemente, el *Homo antecessor* de Gran Dolina no habría dado crédito a la visión de unos homínidos obesos como lo somos nosotros en un 30 %. Ahora bien, si nos hubiera comido quizás los caníbales habrían enfermado a causa de la gran ingesta de grasa del *Homo sapiens* actual. No puede ocurrir dado que los caníbales de Atapuerca desaparecieron hace miles y miles de años. Ellos no conocieron esta patología y comieron los sabrosos cuerpos de sus congéneres que inadvertidamente corrían por la sierra, víctimas de unos sagaces omnívoros que, mientras consumían los cuerpos de las crías y de los jóvenes, se deleitaban acompañando el ágape con *lladoners*, la deliciosa fruta del *Celtys australis*.

Aquí termino, recomiendo leer con atención este libro, no sin antes advertir que lo que debemos cambiar es nuestra forma de conocer, de pensar y de actuar. Quizás después seamos capaces de comer mejor y de manera más solidaria. Nuestra principal patología es no saber qué somos y hacia dónde vamos.

1.- **INTRODUCCIÓN** (Hombre refranero, medido y certero).

N) Centenares de dietas

Estamos llenos de tópicos en cuanto a la alimentación. En múltiples ocasiones mis pacientes comienzan el relato de su forma de alimentarse haciendo preguntas; ¿Doctor, es verdad que la fruta hay que tomarla antes del resto de los alimentos? ¿Es cierto que no se debe beber agua en las comidas? ¿Es bueno tomar una vez al mes la dieta del pomelo? ¿Y ayunar? ¿Los carbohidratos son malos? ¿Y tomar ajo en ayunas...?

Hay cientos de libros sobre el tema y en las conversaciones entre amigos y conocidos siempre hay alguien que sentencia sobre algún hábito alimenticio que, supuestamente, es mucho mejor que los otros. Todos conocemos algún vegetariano y de vez en cuando se pone de moda una dieta especial, la dieta Atkins (basada en alimentos ricos en proteínas) o la dieta Macrobiótica o Zen (que en casos extremos llega a preconizar alimentarse exclusivamente de cereales) etc etc. Hasta los enfermos de algunas patologías graves con malos resultados con el tratamiento médico científico, consultan con los especialistas en nutrición para que les informen de la posible curación con la "nutrición ortomolecular", basada en tratar enfermedades con suplementos de vitaminas y minerales.

Pensamos que nuestra tecnología ha resuelto los grandes problemas de la alimentación, y creemos firmemente que el futuro serán comidas tecnológicas, a base de lo que ahora se llaman "alimentos funcionales", es decir, alimentos modificados con criterios saludables. Y no hablemos de los alimentos transgénicos y la revolución que pueden suponer en nuestra vida.

Existen dietas basadas en criterios religiosos (kosher, dieta sin carne de los adventistas..); en la filosofía y el modo de vida (vegetarianismo, dieta zen, dieta ayurveda...); en supuestos seudocientíficos (dieta mediterránea, dieta atlántica, dieta zona, dieta por grupos sanguíneos...); en criterios médicos (dietoterapia en distintas enfermedades); en situaciones de catástrofes (dieta de supervivencia), en prácticas deportivas intensas (dietas pre, per y postcompetitivas) etc. Sin embargo algo no funciona cuando habiendo más alimentos que nunca y más información de la que ha habido en nuestra historia, las grandes enfermedades que padece el ser humano en la actualidad (enfermedades cardiovasculares, diabetes tipo II, etc) siguen estando relacionadas de una forma u otra, con la dieta. ¡Hay que dar un golpe de timón y enfrentarnos con nuestras teorías si estas fallan y, en el campo de la alimentación, algo falla estrepitosamente!

Este libro está escrito desde la independencia (nadie lo subvenciona, ni me ha presionado directa o indirectamente para decir u omitir algo), y desde el rigor intelectual, por tanto, y fiel a ese rigor, tengo que advertir al lector que el concepto básico en el que se fundamenta (la teoría dietética evolutiva) no deja de ser eso, una hipótesis sin la base experimental suficiente que le de sustento de tesis. No obstante, también es cierto que se basa en datos fuertemente asentados en el campo de <u>la paleoantropología</u> y en conceptos metabólicos y de tecnología de alimentos que están, asimismo, claramente definidos y documentados. No he querido asumir el lenguaje científico y someter al lector no especialista, al tormento de citas y citas, algo imprescindible, por otro lado. Todo el libro es, por tanto, fruto de la introspección de un

investigador cuyo currículum está libre de sospecha. La experiencia desde los años universitarios cuando leí mi tesis sobre la alimentación de ciclistas de competición, pasando por los centenares de estudios e investigaciones en este campo, unido a miles de encuestas dietéticas realizadas a deportistas, y a una experiencia enormemente satisfactoria como profesor de la asignatura de "ayudas ergogénicas" (sustancias que mejoran el rendimiento deportivo sin ser dopantes), todo ello me ha servido para sentarme con tranquilidad, revisar documentos y apuntes y expresarles mi opinión personal.

El libro argumenta nuestro pasado y echa una ojeada al futuro que está ya encima con la nutrigenómica. Cada definición, cada nutriente, cada posibilidad alimentaria tiene su ojeada al pasado en la definición "Solución Paleolítica" y al presente como "Solución aprovechando la actual tecnología". De esta forma, el lector puede contrastar la capacidad (o no) de adaptar nuestra alimentación en la sociedad actual, a la que nuestros genes nos condicionan. Ahora más que nunca hay que decir que "Eres lo que comes".

O) El hambre (No comer por haber comido, nada nos hemos perdido).

La primera consideración que hay que hacer es que cuando hablamos de alimentación, hablamos de supervivencia, es decir, tocamos un punto clave de nuestra condición de seres vivos. Nuestro refranero está lleno de referencias al hambre, algo que la humanidad lleva asociado desde nuestro origen.

El hambre diezmó e hizo desaparecer muchos <u>homínidos</u> antepasados nuestros. Quizás sea el factor que más ha influido en la evolución de nuestra especie. Lo conocemos bien, hemos hecho mucho camino juntos, tanto es así que nuestro organismo tiene decenas de sistemas para evitar el despilfarro de energía cuando hay abundancia. Sin embargo, no fue durante la etapa de cazadores cuando hemos pasado más hambre, ya que probablemente nuestra condición de nómadas siguiendo los movimientos de nuestras presas, nos permitieron mantener contacto con un hábitat menos degradado.

Durante esta etapa de larga duración (cientos de miles de años) en nuestra evolución, realizábamos un ciclo adaptativo que ahora se estudia para explicar la pandemia de obesidad y ver si está relacionada con fenómenos metabólicos adaptativos. En este sentido, nuestros ancestros participaban en el llamado "retorno inmediato", es decir, que hacían uso de los recursos de inmediato y por completo, en lugar de almacenarlos. No habría sido adaptativo para simples cazadores-recolectores racionar el consumo de alimentos o dejar pasar los alimentos altos en calorías. Sin embargo, lo que entonces era una buena adaptación al medio (consumir alimentos ricos en calorías cuando se pudiera), ahora, con la capacidad de almacenamiento, se convierte en una fuente de enfermedad por sobrepeso.

Poco a poco, la liberación de la presión de la depredación al ir fabricando mejores armas de caza, conociendo los hábitos migratorios y determinando los movimientos periódicos utilizando técnicas astronómicas y, posteriormente, la agricultura incipiente y la domesticación de animales, permitió que nuestros ancestros dejaran de sentir la presión del medio ambiente. Esta presión es la que obliga a los depredadores a mantener la agilidad, resistencia y capacidad atlética. Sin embargo, los genes que promueven el almacenamiento de energía y la obesidad no fueron eliminados por la selección natural

y simplemente se les permitió la deriva en el viaje genético de la evolución humana, siendo ésta (deriva génica) una teoría más que intenta explicar la masiva obesidad actual.

Las grandes hambrunas que han padecido los pueblos han marcado su historia. Entre 1846 y 1851 más de un millón de irlandeses murieron de hambre. ¿La razón? La dependencia de un alimento, la patata. Debido a las características agrícolas de su producción (la patata es la cuarta planta de más rendimiento del mundo), los campesinos irlandeses dependían totalmente de ella (se dice que en Irlanda, un campesino consumía de 5 a 6 kg diarios). En 1845, tras tres semanas de lluvia las patateras se infectaron con un hongo y la producción se destruyó. La consecuencia fue no solo la muerte de más de un millón de personas, sino una de las emigraciones colectivas más grandes de la historia, llevando a Norteamérica a más de 1,6 millones de irlandeses. Tras la hambruna un movimiento revolucionario, el fenianismo, sirvió de preámbulo para la Guerra Civil que desembocó, en 1921, en la creación del Estado libre de Irlanda en el sur de la isla.

Recordemos la India (más de 1 millón de muertos en 1943 en Bengala), China, con más de 15 millones de personas fallecidas entre 1958 y 1961 y África, con la gran hambruna de El Sahel entre 1968 y 1973. En el momento de escribir este libro, miles de personas mueren de hambre en África y se produce una emigración masiva que lleva a miles de ciudadanos de países pobres africanos a las costas españolas a riesgo de perder sus vidas en travesías marítimas más propias de siglos pasados.

Pues bien, podemos aprender mucho de estas situaciones dramáticas. Cuando un varón adulto africano se queda sin suficientes alimentos por un corto período de tiempo (menos de un año) y luego vuelve a comer adecuadamente ante una nueva cosecha, no sufre daños corporales. El organismo durante la situación de hambre se adapta, disminuye su gasto energético, duerme más, trabaja menos y pierde el apetito. Cuando hay alimentos, recupera las ganas de comer y comienza a tener más ganas de trabajar. ¡El organismo está muy bien adaptado y preparado para pasar hambre!

¿Pero que pasa si el organismo no pasa hambre? ¿Y si come todos los días algo más de lo que necesita? Miremos a nuestro alrededor, miles de obesos (un 30% de españoles tiene sobrepeso), mala calidad de vida, millones de euros gastados en seguir dietas en clínicas de adelgazamiento, y en Estados Unidos, la primera generación que va a tener menor esperanza de vida que la anterior debido, fundamentalmente, al sobrepeso.

¡No estamos preparados para comer más de lo que necesitamos!

Vamos a buscar las razones para esta realidad epidemiológica, es decir, vamos a averiguar por qué la población enferma precisamente cuando tiene más alimentos a su disposición. Para ello tenemos que echar la vista atrás, muy muy atrás.

Los ciclos de hambre y saciedad han conformado nuestra especie (nuestros genes). No estamos preparados genéticamente para asumir una alimentación que nos aporte más energía de la que gastamos.

P) <u>Lo que comíamos hace miles de años condiciona lo que debemos comer ahora</u> (*Plátano maduro no vuelve a verde*).

Nuestro organismo apenas ha cambiado desde el paleolítico medio, hace más de 40.000 años. Nuestra mente es la misma del <u>homo sapiens</u> que salió de un <u>nicho ecológico</u> en África central hace unos 150.000 años y pobló la Tierra.

Hay una frase que se comenta mucho en la comunidad científica tras el éxito del proyecto genoma humano: "El hombre socialmente está en el siglo XXI, pero genéticamente sigue en el paleolítico".

¿Cómo ha marcado nuestra alimentación ancestral a nuestro organismo?

Hace 1 millón y medio de años las precipitaciones descendieron notablemente y una parte del continente africano fue haciéndose progresivamente más seca. Al disminuir los bosques se produjo mayor competencia por el espacio y muchos de aquellos primeros homínidos (primates adaptados a la posición bípeda), se vieron forzados a vagar por las llanuras donde muchos de ellos morirían.

Algo fue providencial, los efectos de la glaciación no perduraron, con lo que tras un ciclo se repitió otro y volvió la abundancia y la escasez. En ese mundo asequible para los primates hace millones de años se produjo una evolución típicamente arborescente con la aparición de distintos tipos de homínidos con una característica común, la bipedación. Se dieron entonces una serie de circunstancias en cuyo orden en importancia todavía no hay consenso, pero que sin duda fueron decisivos para llegar a nuestra evolución actual. Al caminar sobre dos piernas se dejó libre la mano, que adquirió una posición única del pulgar que nos permite la acción de pinza y con ello, la utilización y fabricación de herramientas precisas, muy útiles para la caza. Descendió la laringe permitiéndonos la fonación y el habla, lo que nos permitió una comunicación precisa y posibilitó nuestro desarrollo social. Homínidos que hablaban, manejaban herramientas y cazaban en conjunto, comían más carne y podían permitirse un lujo, desarrollar el cerebro.

No sabemos con seguridad quien hizo desarrollarse a quien, si fue el hecho de comer carne con mayor facilidad lo que transformó nuestro tubo digestivo y permitió desarrollarse a un órgano que consume tanta energía como nuestro cerebro, o si fue un mayor cerebro el que desarrolló tácticas de cooperación y utilización de herramientas que a su vez facilitó la caza y, por tanto, comer más carne.

Fíjese, lector, en la trascendencia de la frase "Aunque estemos en el siglo XXI, seguimos genéticamente en el Paleolítico"

Lo que es seguro es que comer más carne nos hizo ser más inteligentes (*olla con jamón y gallina, a los muertos resucita*). La carne tiene lo que se denominan proteínas de alta calidad. ¿Y que son proteínas de alta calidad? Pues aquéllas que están formadas por aminoácidos del tipo de los que no podemos sintetizar y que necesariamente tenemos que ingerir de los alimentos. Los llamados aminoácidos esenciales.

Uno de estos aminoácidos ha tenido un papel muy importante en nuestra evolución, se trata de la tirosina. Nuestro cerebro sintetiza una sustancia que tiene una acción primordial en la transmisión de impulsos entre neuronas en las zonas más

evolucionadas, *la dopamina*. Hay bastantes evidencias de que determinadas condiciones de termorregulación en las zonas de fuerte calor africano de donde procedemos, unidas a la necesidad de una intensa actividad física para cazar y sumadas, lógicamente, a la proteína de alta calidad de la carne de caza, aumentaron la dopamina y dieron lugar a la expansión de las zonas más modernas y complejas del cerebro humano.

Ahora bien, el cerebro es uno de los órganos más costosos (consume mucha energía). Precisa un 20% de las calorías totales ingeridas (10 veces más que cualquier otro órgano). Había que sacrificar el requerimiento de energía de algún otra parte del cuerpo y, en este caso, el perjudicado fue el aparato digestivo que disminuyó su longitud, es decir, la expansión cerebral que se produjo en nuestra especie sólo fue posible con un acortamiento del tubo digestivo (y un tubo digestivo corto es típico de los carnívoros).

Los animales herbívoros tienen tubos digestivos largos, por lo que gran parte de la energía que consumen se destina al mantenimiento de ese órgano. Para reducir el gasto energético del tubo digestivo, nuestros antepasados necesitaron comer más carne, un alimento mucho más fácil de digerir. Nuestra inteligencia, creciente, nos permitió acceder a este alimento sin necesidad de modificar nuestros dientes y muelas para poder desgarrar la carne o triturar los huesos como el resto de depredadores, sino que aprendimos a usar herramientas como cantos y filos de piedras y después aprendimos a tallarlas para que éstas fueran más eficaces (si tenemos que cortar, desgarrar y masticar carne y no tenemos buenos colmillos, necesitaremos herramientas que los sustituyan).

El primer concepto claro en nutrición humana es, por tanto, que somos omnívoros -casi plenamente carnívoros-, es decir, el vegetarianismo en nuestra especie es "contra natura" y para aplicarlo debemos recurrir a complementos proteicos y de aminoácidos (taurina), vitaminas (como la B₁₂) y minerales (como el hierro). Esto no quiere decir que la decisión libre y soberana de ser vegetariano conlleve necesariamente a graves padecimientos, ya que gracias a los conocimientos actuales sabemos como complementar una dieta deficitaria y obtener una dieta equilibrada. Significa, simplemente, que no se puede sostener que el vegetarianismo sea una vuelta a nuestros orígenes.

El Australopithecus, un antepasado nuestro de hace unos cuatro millones de años, tenía un cierto grado de leptino resistencia. La <u>leptina</u> (del griego, lepthos, delgado), hormona secretada principalmente por el tejido adiposo, inhibe el «centro del hambre» en el cerebro, indicando la condición de saciedad. Cuando <u>Lucy (el australopithecus más conocido)</u>, encontraba alimento debía comer hasta saciarse, o más aún si era posible, por lo cual, para que esto ocurriera, era necesario crear cierta condición de leptino resistencia por parte de centro del hambre ubicado en el hipotálamo cerebral. De esta manera Lucy tenía la posibilidad de acumular más reservas energéticas en el tejido adiposo.

¿Dónde acumular la grasa? Si bien fue posible que aumentara la grasa subcutánea, esta tiene una limitación, ya que afectaría la transferencia de calor, por lo cual fue necesario «ubicar» el exceso de grasa en otra distribución anatómica. Esta no debería afectar los requerimientos anatómicos derivados de la bipedación. Por ejemplo, no podría acumularse en una joroba como en los dromedarios, o en el cuello o la cabeza como en algunos mamíferos marinos. La mejor distribución parece haber sido alrededor de los órganos digestivos, en la cintura, y en la región glúteo femoral. Ambos sexos optaron

evolutivamente por una distribución diferente. Las hembras desarrollaron una distribución principalmente glúteo femoral, en cambio los hombres derivaron mayoritariamente hacia un depósito en la cintura y en la barriga. De esta forma, con el Astralopithecus afarensis habría nacido la sensibilidad diferencial a la insulina, una tendencia a la leptino resistencia, y el inicio de la obesidad ginoide y androide.

En el Homo Ergaster (hace unos dos millones de años), la transformación en un carnívoro no adaptado, hizo más marcada la insulino resistencia del tejido muscular. Los carnívoros son fisiológicamente insulino resistentes, ya que su dieta está constituida esencialmente por proteínas y grasas, y muy pocos carbohidratos, por lo cual deben desarrollar resistencia a la insulina, tanto a nivel del tejido muscular como del tejido adiposo (no hay carnívoros obesos). La gluconeogénesis a partir de los aminoácidos es particularmente activa en los carnívoros absolutos. De esta forma, sus músculos sólo consumen ácidos grasos y aminoácidos como fuente energética, su tejido adiposo acumula reservas muy restringidas de triglicéridos debido al poco aporte dietario de carbohidratos, ya que estos son esencialmente reservados para la función del cerebro.

Vamos a explicar esa insulino resistencia y su efecto metabólico:

La glucosa estimula la secreción de insulina en el páncreas. La insulina favorece la incorporación de glucosa de la sangre hacia las células, por lo que ayuda a una mayor disponibilidad de glucosa en el tejido muscular para obtener energía y en el tejido adiposo, favoreciendo el depósito de lípidos. Pues bien, la insulino-resistencia disminuye el uso de glucosa por el músculo, lo que permite una alta disponibilidad de glucosa para el cerebro, mientras el tejido muscular metaboliza preferentemente ácidos grasos provenientes del tejido adiposo, lo que es clave para los animales carnívoros, ya que la ausencia de carbohidratos de su dieta, sería un problema para mantener la glucemia si los músculos tiraran de la glucosa como fuente energética predominante.

En la actualidad, un segmento importante de la población del mundo tiene amplia disponibilidad de alimentos de todo tipo, dispone de recursos para poder adquirirlos, los encuentra todos en los supermercados, ya no sale a «cazarlos» o a «recolectarlos», no corre para obtenerlos, ya que utiliza su automóvil, o los compra por Internet y los recibe en su propio domicilio. Este Homo sapiens, que es sin lugar a dudas inteligente, heredó de sus antepasados una insulino resistencia y una leptino resistencia que ahora no necesita.

Por otro lado, el uso del fuego merece una atención especial porque ha marcado hitos en los cambios alimenticios de nuestra especie. El conocimiento del fuego es muy antiguo, quizás lo emplearan esporádicamente homínidos anteriores a nuestra especie hace más de medio millón de años. Sin embargo, fue el homo sapiens el que consiguió dominarlo aprendiendo a crearlo cuando lo necesitaba. Con fuego se podía asar la carne, dándole mejor sabor y al mismo tiempo ablandando las fibras para que se pudiese masticar más fácilmente. Se podía tostar el grano (cereales) y las legumbres, haciéndolas comestibles, aumentando de este modo las reservas de comida. Hay que tener en cuenta que las legumbres son una buena fuente de proteínas complementaria de la carne y el pescado y nos permitía no depender tanto de la caza. El fuego además mataba los gérmenes y parásitos de la comida, reduciendo las enfermedades, pero no solo eso, también contribuyó a socializarnos hasta entrar tanto en nuestra memoria genética que actualmente una buena chimenea es el punto ideal de encuentro de la familia para

comunicarse los hechos cotidianos. ¡Un cuento al abrigo de una buena hoguera! ¡Que escena tan profundamente homo sapiens!

Y todo ello asociado a cambios producidos por la propia luz del fuego, que mediante la ampliación de las horas del día, pudo tener consecuencias fisiológicas para los ciclos diarios y anuales. La luz azul (que se encuentra en la base de una llama), tiene un gran efecto sobre los ritmos circadianos humanos, de modo que una exposición de una hora y media es suficiente para modificar el reloj interno en 3 horas (aunque la intensidad de la luz es también importante).

Por otro lado, una característica de nuestro metabolismo es que nosotros somos el único mamífero grande que obtiene la mayoría de la energía a través de la absorción y metabolización de carbohidratos, lo que rara vez produce aumento de tejido adiposo ya que el metabolismo de carbohidratos está relacionado con la producción de energía. De esta forma, siempre y cuando las fuentes de proteína y grasa se ingieran en cantidades modestas, incluso un consumo excesivo de hidratos de carbono no contribuirá notablemente al depósito de grasa. Ahora bien, cuando se cumplen los requerimientos calóricos (generalmente por una actividad física muy baja), con los carbohidratos y además, se consumen proteínas y grasas, éstos macronutrientes se convertirán en triglicéridos llevando a un almacenamiento en tejido adiposo y a obesidad. Esto se debe, en parte, a que no hay depósito para almacenar proteínas como fuente regular de energía y los aminoácidos se desaminan y se convierten en grasas.

Tener que vivir en grupos y relacionarnos preparando estrategias de caza, nos obligó a hacernos más complejos. El Homo Heidelbergensis (del que derivó el neandertal), que habitó en <u>Atapuerca</u> hace 500.000 años, realizaba utensilios de caza complejos y tenía una actividad social. No obstante, la búsqueda de la caza obligaba a un desplazamiento constante siguiendo las migraciones de los herbívoros. Las poblaciones de cazadores se mantenían en grupos reducidos (lo máximo que permitía compartir unos cuantos animales cazados) y su esperanza de vida rondaba los 40 años.

Fue en una zona específica del cuerno de África, donde un grupo de homínidos desarrolló capacidades nuevas. Cazaban los machos mientras las hembras recogían marisco y pescaban en las orillas del mar Rojo. Esas hembras que estaban preñadas y daban ese mismo alimento a las crías cuando se destetaban, estaban forjando el desarrollo del cerebro del Homo sapiens sapiens. El marisco y el pescado son muy ricos en un tipo de ácido graso insaturado, el llamado n3 u omega3 (quédense con ese nombre, ya hablaremos de él más adelante). El cerebro nuestro está, por tanto, muy conformado por ese tipo de ácido graso. A partir de ahí, se produjo un mayor refinamiento en las asimetrías cerebrales y un aumento del cociente de encefalización (mayor proporción de cerebro en relación al peso del cuerpo). Seguro que en este salto evolutivo tuvo mucho que ver la termorregulación tan fantásticamente conseguida en nuestra especie, que le permitió al cerebro eliminar calor cuando el cuerpo aumenta la temperatura interna (por la acción de la caza, por ejemplo).

Dejamos a la imaginación del lector la relación entre las características cazadoras y sobre todo pescadoras del sapiens sapiens, el aumento brusco de su encefalización y la extinción del resto de homínidos competidores.

Hace unos 10.000 años finalizó la última glaciación del Cuaternario, la temperatura de la Tierra subió unos 5° C en unos miles de años y el consecuente deshielo elevó el nivel del mar inundando las tierras bajas, los mejores territorios de caza del homo sapiens sapiens. Nueva situación complicada y nueva adaptación, esta vez, con un mayor desarrollo cerebral. El hombre afrontó el reto de criar animales y plantar especies cultivables, nació la agricultura y la ganadería. Las poblaciones dejaron de ser nómadas, comenzó el desarrollo de ciudades y aumentó el número de miembros en los grupos y, por tanto, la complejidad social. El manejo del fuego le permitió tomar cereales y legumbres y aprovechar partes de la carne de difícil digestión. Aumentó su esperanza de vida y accedió por primera vez a alimentos "nuevos" como el aceite (procedente de alimentos cultivados) y el azúcar (procedente de la caña y de la remolacha), así como el vino, especies y demás alimentos modernos.

Q) Nosotros sobrevivimos como especie

Debemos imaginarnos el incremento del tamaño del cerebro a lo largo de la evolución como una carrera constante entre las ventajas e inconvenientes hacia una cognición más óptima. Ello explicaría por qué el encéfalo de los sucesores del *Homo erectus* siguió creciendo independientemente de los otros homínidos. No obstante, no todo fue un camino expedito ya que, según se desprende de los datos sobre la frecuencia de versiones de genes dentro del acervo genético, *Homo sapiens* debió experimentar, al menos en una ocasión, un cuello de botella genético. Durante esa fase evolutiva, el número de individuos vivos cayó por debajo de los 10.000. ¡Casi nos extinguimos! De hecho, si hace unos 50.000 años se hubiera llevado a cabo un balance provisional del éxito de las especies animales de alto desarrollo cognitivo con capacidades lingüísticas y dominio del fuego, el informe habría dispensado pocas esperanzas: ninguna de las especies se había reproducido de manera contundente, ninguna aprovechaba sus capacidades al máximo, y los neandertales y los hombres de Denisova se encontraban al borde de la extinción.

¿Qué propició el empuje decisivo a Homo sapiens?

Podríamos preguntarnos qué hizo que una especie (la nuestra) sobreviviera y la otra no, pero seguro que tuvo mucho que ver la diferente forma de interpretar la realidad de uno y otro cerebro. El cerebro del neandertal era de igual tamaño, si no mayor, eran cazadores, enterraban a sus muertos y cuidaban de sus heridos. Sin embargo, sus sistemas de caza y las herramientas utilizadas evidenciaban un tipo de caza al acecho, utilizando las lanzas en un cuerpo a cuerpo que les costaba un alto precio de heridas y fracturas.

Podemos imaginar un equipo de rugby con deportistas de piel blanca, rubios, fortísimos y aguerridos, aunque un poco toscos y rudos. Frente a ellos, un equipo de fondistas, negros, llenos de abalorios, más altos, aunque también fornidos.

Neandertales: Los arcos supraorbitarios tan marcados, la ausencia de mentón y la frente huidiza les dan un aspecto feroz, unido a una constitución de menor talla, pero mucho más corpulenta y fornida. Tenían el gen FoxP2, relacionado con la posibilidad del habla, asimismo, el hioides estaba lo suficientemente desarrollado y posicionado como para la emisión de fonemas discretos con capacidad simbólica. También se ha

encontrado el gen MCR1, de la pigmentación, que indicaría un color del pelo, rubio o pelirrojo.

Sapiens: Sus caras tenían un aspecto mucho más distinguible para nosotros, ya que es nuestra cara. Su talla y su fuerza, aun siendo mucho mayor que la que tenemos ahora, era, sin embargo, menor que la de los otros homínidos. Tenían un lenguaje estructurado y poseían armas de largo alcance. La piel era negra (pigmentación original de África) y estaba cubierta de pieles, pintada y llena de abalorios.

Los neandertales perdieron la carrera. En su caso, prevalecieron las desventajas, por lo que acabaron extinguiéndose. Nuestros antepasados, por el contrario, sobrevivieron, aunque con una cifra modesta

¿Por qué?

Se calcula que el cerebro humano tiene unas 100.000.000.000.000 (10¹⁴) conexiones entre sus células. Si consideráramos cada conexión con una capacidad de un bit, estaríamos ante una capacidad almacenamiento equivalente a unos 160.000 CD, o unos 20 millones de libros de 500 páginas cada uno. En este sentido, existe un nivel funcional de complejidad, que está determinado por cómo estas células se interrelacionan y conectan entre ellas. Precisamente, la diferencia más notable entre el ser humano y el resto de los animales reside en esta conectividad. La mayor conectividad en la especie humana también está basada en una especialización morfológica de la corteza cerebral, con un mayor número de circunvoluciones para conseguir un aumento de superficie para un volumen similar.

Posiblemente circunstancias derivadas de la mayor capacidad de interconexión entre áreas cerebrales, lo que ahora se llama teoría de la mente (capacidad de comprender y reflexionar respecto al estado mental de sí mismo y de los demás), etc, tuvieron mucho que ver en esta diferente adaptación al medio y supervivencia en un momento de gran dificultad climatológica y de competencia entre especies.

La clave, quizás, vuelve a estar en el ácido graso omega 3 que comentábamos anteriormente, el DHA. Si la velocidad de crecimiento del cuerpo es pequeña, entonces se puede producir la síntesis adecuada de DHA para el crecimiento del cerebro, lo que

resulta en una relación cerebro/peso corporal de 42% (por ejemplo, pequeños roedores). A medida que la velocidad de crecimiento del cuerpo aumenta, la limitación de velocidad de síntesis de DHA domina y el tamaño relativo del cerebro disminuye. En los mamíferos más grandes en tierra la relación se reduce a 0,1% (rinoceronte, búfalo..) a pesar de la abundancia en los tejidos de alfa-linolénico. Una abundante fuente de DHA, como en las dietas de los mamíferos marinos, puede obviar esa baja capacidad de síntesis. Tal evidencia sugiere que la nutrición, especialmente con respecto a DHA, es un factor determinante del tamaño del cerebro. Por ejemplo, el delfín tiene un cerebro de 1.800 g, en comparación con una cebra, de tan solo 360 g.

Asi pues, en todas las especies de mamíferos, el tamaño del cerebro disminuye logarítmicamente con el aumento de peso corporal, con dos excepciones-los delfines y los humanos. Es evidente que algo en nuestra evolución era diferente.

R) La etapa oscura de nuestro paso a agricultores y ganaderos

Al dejar de ser nómadas, hace unos 8.000 años, el control del alimento cambió definitivamente nuestra dieta; aumentaron los carbohidratos de manera cada vez más alarmante. Sin embargo, el trabajo físico en el campo nos servía para metabolizar eficazmente los nuevos alimentos. También aumentaron en la dieta humana los alimentos con muchas grasas ya que *los animales pastadores libres desaparecieron paulatinamente para dar paso a los prisioneros alimenticios de nuestra especie*, nos dice el antropólogo Eudald Carbonell. Con la llegada de la revolución científico-técnica, a mediados del siglo XX, las cosas volvieron a cambiar de forma alarmante. Hoy en día, aunque algunos de nosotros hagamos ejercicio, la obesidad es una patología común que afecta a mayores, adultos, jóvenes y niños. El impacto de la revolución científico-técnica rompe con los procesos de adaptación propios de la selección natural que había operado durante toda la evolución de nuestro género.

El trigo comenzó a ser cultivado hace unos 10.000 años en Asia, expandiéndose lentamente por Europa. El arroz fue inicialmente domesticado en Asia, India y China, hace 7.000 años, y el maíz inició su cultivo en México y América Central hace unos 8.000 años. A pesar de estos cambios en el patrón nutricional del Homo sapiens, su genética ya estaba determinada, se había consolidado la insulino resistencia y probablemente una leptino resistencia. El tejido adiposo, antes un reservorio de energía para las etapas de hambruna, se convirtió en un reservorio de los excedentes energéticos, sin que ocurriesen en forma constante períodos de hambruna. La revolución industrial, iniciada durante la segunda mitad del siglo pasado, consolidó una mayor disponibilidad de alimentos. El hombre aprendió no sólo a cultivar y producir sus alimentos, también aprendió a procesarlos, a conservarlos, y a mejorarlos desde el punto de vista nutricional y energético. La dieta a base de leche fresca y almidones en el Neolítico (agricultura y ganadería) provocaron adaptaciones genéticas para aprovechar estos nutrientes que las generaciones anteriores de homo sapiens no hubieran tolerado. Ahora, pagamos esos cambios recientes ya que una parte importante de la población tiene dificultad para aprovechar los alimentos que la industria publicita de forma constante y machacona. Alimentos como los lácteos son mal tolerados por aquellos que no han consolidado el gen de la lactasa intestinal y, también, por los que tienen un intestino permeable a compuestos de acción central como la beta-casomorfina-7 (ya hablaremos de ello). Otros, como cereales con glúten, tienen proteínas que generan enfermedad en personas predispuestas e intolerancias en amplias capas de la población.

Todos ellos, fueron grandes cambios que solo podía afrontar un animal generalista (como somos nosotros). La mayoría de las especies tienen nichos ecológicos amplios que, no siendo tan eficaces en el aprovechamiento de los recursos, tienen la ventaja de ser menos vulnerables al adaptarse más fácilmente a nuevas situaciones, sea por cambios en el ambiente físico, sea por entrar en competencia con nuevas especies. A estas especies (como la nuestra), los ecólogos las llaman generalistas. Pues bien, los cambios en nuestra alimentación han sido tan profundos y en tan corto espacio de tiempo que quizás no hayamos tenido tiempo de adaptarnos metabólicamente a ellos, lo que justificaría la pregunta que nos hacíamos al principio. ¿Cómo es que ahora que comemos de todo y mucho más que nunca, tenemos tantas enfermedades relacionadas con la alimentación?

Vamos a ver en la figura 1 una ilustración sobre esos cambios tan drásticos en algunos nutrientes específicos (pero muy importantes)

CAZADORES-RECOLECTORES AGRICULTORES **INDUSTRIALIZADOS** 40 600 Vitamina C 30 100 Porcentaje de calorías Grasas totales de las grasa Vitamina E 20 **Trans** 10 Saturadas 10 0 -4 x 106 2 000 -10 000 1 800 1 900 ANOS

Figura 1 Tomado de Simopoulos AP, 2001. (con permiso del autor)

Es decir, tomamos mucha más grasa que nunca (más calorías inútiles por la ausencia de otros nutrientes como vitaminas, minerales y antioxidantes), además es una grasa alejada de la que tomábamos antes (mucha más grasa saturada y muy pocos ácidos grasos omega-3). Han aparecido grasas nuevas que son desconocidas por nuestro metabolismo (grasas "trans") y tomamos menor cantidad de muchas vitaminas y minerales (como las vitaminas C y E del gráfico).

Tenemos, por tanto, una condición genética, de especie, marcada por millones de años de evolución, que nos señala un tipo de alimentación de referencia. La llamada dieta paleolítica.

S) La termorregulación, la gran adaptación de nuestra especie

Somos un primate que perdió la condición de arborícola debido a la disminución del bosque húmedo tropical como reflejo del movimiento continental, pasando a caminar de pie, correr y cazar en zonas de fuerte estrés térmico. La evaporación del sudor, como mecanismo de eliminación del calor, fue un factor importante que evitó la limitación de la evolución de nuestro cerebro, un órgano que consume mucha energía y necesita refrigeración para no sobrepasar temperaturas que puedan poner en peligro su funcionamiento metabólico. La fantástica adaptación a realizar ejercicio (caza) con temperaturas elevadas permiten, aun en la actualidad, la llamada caza por persistencia, practicada por pueblos cazadores como los bosquimanos, que persiguen a antílopes kudú hasta la extenuación y muerte por golpe de calor del animal, al que rematan de forma ritual en un extraordinario ejemplo de caza respetuosa y sostenible.

Pues bien, la capacidad de termorregular en el calor extremo o en climas extremadamente fríos generan una selección mucho más potente que las de los genes ahorrativos, que supuestamente proporcionan simplemente una ligera ventaja de fecundidad. Por otra parte, para reproducirse debe sobrevivir. Por lo tanto, ventajas de supervivencia debieron, en su momento, reemplazar ventajas de fertilidad. Así, los genes que son esenciales para la supervivencia, especialmente en recién nacidos o niños pequeños, como los que controlan la termorregulación serían de mayor importancia que los genes ahorrativos ya que permitirían a un individuo sobrevivir para llegar a la edad reproductiva.

En nuestra ocupación del planeta, posteriormente, desarrollamos un tejido adiposo marrón eficiente para hacer frente al frío, porque la falta de este tejido adiposo llevaría a tasas muy elevadas de mortalidad en los niños nacidos en climas más fríos, como hubiera sido el caso de los ancestros de los europeos y los asiáticos del este que florecieron en la edad de hielo de Europa y Siberia. Por lo tanto, es razonable pensar que las poderosas presiones de selección climáticas en la historia evolutiva ejercieron una fuerte influencia en los genes para conseguir una termorregulación eficiente y, por tanto, aumentar la supervivencia. Es posible que la diferencia de susceptibilidad a la obesidad entre etnias puede remontarse a la diferente exposición de los antepasados de estas poblaciones a los eventos climáticos de selección que comenzaron cuando los humanos modernos emigraron de África hace unos 70 000 años. La migración a las latitudes del norte habría requerido la selección de genes para la adaptación al frío, como las que mejoran la termogénesis.

Estos genes, debido a sus efectos secundarios sobre el metabolismo, la adiposidad, y el gasto energético, se convirtieron en actores clave en la predisposición genética a la obesidad en la población occidental sedentaria y sobrealimentada de hoy y explican por qué la carga de la obesidad no se comparte de igual manera a través de las diversas etnias. La alta incidencia de sobrepeso y obesidad en ciertos grupos, como los nativos americanos, los negros y los hispanos, refleja una prevalencia de genes para la adaptación al calor, que en gran medida mejoraron las posibilidades de supervivencia en el clima caliente y árido al que los antepasados de estos grupos étnicos fueron expuestos. Por el contrario, la selección de genes para la adaptación al frío en los europeos y asiáticos del este puede explicar la relativa resistencia a la obesidad en esta población, ya que la capacidad para mantener el calor en tales ambientes fríos permitiría tasas de supervivencia altas, fijadas ya en la edad de hielo de Europa y Siberia. Por el

contrario, en la sabana africana, el tejido adiposo marrón hubiera sido perjudicial por lo que no habría sido seleccionado en estas poblaciones. La reducción de las tasas metabólicas entre los africanos se ha relacionado con una menor expresión de proteínas de desacoplamiento y con una función termogénica reducida.

La investigación en siberianos indígenas (cuyos antepasados estaban más estrechamente relacionados con los primeros humanos que poblaron latitudes más elevadas) reveló un gasto energético basal consistentemente elevado en comparación con la de los siberianos no indígenas. Este patrón de aumento de las tasas metabólicas de los pueblos indígenas que viven en climas fríos se ha observado en muchas poblaciones cercanas a los polos. Por ejemplo, los pueblos inuit del Ártico canadiense también tienen tasas metabólicas muy elevadas y por lo tanto están protegidos de la obesidad.

Por otra parte, las tasas metabólicas tan reducidas de los <u>indios Pima</u> se han atribuido a las temperaturas más bajas del cuerpo, probablemente debido a la disminución de la actividad del sistema nervioso simpático, debido a la reducción de la capacidad termogénica en los nativos americanos que emigraron al sur desde Alaska hacia el ecuador. Además, la predisposición genética a la enfermedad cardiovascular elevada en la población americana nativa se ha relacionado con una mayor capacidad de retención de sal, que ahora se cree que es una adaptación evolutiva al estrés por calor. De hecho, las mutaciones en el <u>gen GNB3</u>, que aumentan el tono venoso en respuesta a la pérdida de agua y tienen una fuerte base latitudinal, son muy frecuentes en los nativos americanos. Las mutaciones en varios genes asociados con una mejor adaptación al calor en los nativos americanos son tan frecuentes como en la población de África. Es decir, que la selección para la adaptación de calor tuvo un profundo efecto sobre los genes en menos de 20 000 años. Por lo tanto, el interruptor genético que permite la adaptación del frío al calor puede explicar la propensión a la obesidad en los habitantes de los Estados Unidos de ascendencia nativa americana.

Un gran activador de la termogénesis es una dieta alta en grasas o la nutrición hipercalórica, que se ha demostrado que aumenta la termogénesis en el tejido adiposo marrón. Sin embargo, la aparición de un polimorfismo de nucleótido único en el exón 2 de una proteína llamada UCP1 (encargada de activar la oxidación de los ácidos grasos y la producción de calor en el tejido adiposo pardo, proporcionando calor corporal durante el estrés por frío), condujo a la incapacidad para aumentar el gasto de energía en respuesta a una dieta alta en grasas y puede ser causal en la obesidad humana.

La pandemia de obesidad actual está relacionada, por tanto, con múltiples factores creados en diferentes fases de nuestra evolución. Se suman el hecho de la disminución de la presión depredadora al mejorar útiles de caza y sistemas de acecho, inicialmente y debido a la domesticación después. Posteriormente, la aparición de polimorfismos que concedían ventaja frente a las hambrunas de la época de los primeros asentamientos (genes ahorradores), así como para acceder a zonas frías (tejido adiposo pardo útil en zonas frías), aumento de la producción de alimentos y disminución de la actividad física, junto a la tecnología de los alimentos y el acceso masivo a comida rápida y rica en grasas y carbohidratos simples.

Como ejemplo, hay un estudio muy curioso realizado en ratones deficientes de proteína desacopladora 1 (UCP1) de la que hemos hablado en relación al tejido adiposo pardo, que provocó altas tasas de obesidad inducida por la dieta solo cuando estaban expuestos

a temperaturas por encima de 30°C. Este hallazgo sugiere que en los tiempos modernos (con la gran mayoría de las personas que poseen calefacción central), los aumentos constantes en la temperatura del interior de las casas está exacerbando los efectos nocivos de las dietas occidentales y las normas de estilo de vida, incluso en aquellos con tejido adiposo marrón relativamente eficaz. No estamos hechos para pasarnos la vida en oficinas climatizadas y casas con calefacción central. El estilo de vida confortable nos aleja de la salud, desafortunadamente para nosotros.

Por otro lado, recordemos que una característica de nuestro metabolismo es que nosotros somos el único mamífero grande que obtiene la mayoría de la energía a través de la absorción y metabolización de carbohidratos, siendo la insulina la hormona que favorece la disponibilidad de glucosa en el tejido adiposo y el depósito de lípidos. Pues bien la resistencia a la insulina disminuiría el uso de glucosa por el músculo, lo que permitiría una alta disponibilidad de glucosa para el cerebro, mientras el tejido muscular metaboliza preferentemente ácidos grasos provenientes del tejido adiposo. Todo ello en condiciones de una elevada actividad física. Sin embargo, en la actualidad, un segmento importante de la población del mundo tiene amplia disponibilidad de alimentos de todo tipo, dispone de recursos para poder adquirirlos, los encuentra todos en los supermercados, ya no sale a «cazarlos» o a «recolectarlos», no corre para obtenerlos, ya que utiliza su automóvil, o los compra por Internet y los recibe en su propio domicilio. Este Homo sapiens, que es sin lugar a dudas inteligente, heredó de sus antepasados una insulino resistencia y una leptino resistencia que ahora no necesita, el «gen ahorrador» sigue expresándose sin que se requiera de su acción y la obesidad campa a sus anchas complicando nuestra salud y nuestra esperanza de vida plena y de calidad.

Un ejemplo de la unión entre falta de actividad física y desequilibrio de nutrientes lo tenemos en grupos de religiosos con dietas exclusivamente vegetarianas. Tenemos los grupos de vegetarianos -incluso los que viven en América del Norte- con sobreabundancia de alimentos y bajos niveles de ejercicio y, sin embargo, la obesidad y el sobrepeso son mucho menos comunes que entre los no vegetarianos. Este hecho nos plantea la hipótesis de que el aumento de la obesidad de sociedades opulentas modernas es el resultado del consumo de proteína animal en poblaciones en las que la necesidad de energía ya está cubierta por los carbohidratos y las grasas que se consumen al mismo tiempo. Así, hasta el advenimiento de la agricultura, la dieta en las poblaciones humanas se basó en el consumo de una variedad de animales terrestres y acuáticos complementados con cantidades relativamente pequeñas de alimentos de origen vegetal. En esta situación, nuestros cuerpos se adaptaron para usar las proteínas como fuente de energía y, cuando se podían almacenar excedentes, los aminoácidos de las proteína ingeridas, se desaminaban y se transformaban en grasa. Sin embargo, en las dietas modernas los carbohidratos son abundantes y ofrecen, junto con las grasas, la energía requerida, de forma que las proteínas directamente se convierten (de manera muy eficiente), en grasa. Este es el criterio que avanza la medicina moderna acerca de la obesidad. Cuando se introducen nuevos tipos de cultivos para la producción masiva de alimentos baratos, nuestros cuerpos pueden no ser capaces de reaccionar correctamente a todos sus contenidos y algunos de los ingredientes pueden causar obesidad sin necesidad de aumentar mucho las calorías ingeridas.

T) La alimentación en la actualidad (Buen comer, trae mal comer).

Nuestra alimentación, en este momento, tiene dos caras absolutamente contrapuestas.

Por un lado, la globalización permite que podamos acceder a cualquier alimento en cualquier época del año, es decir, ya no hace falta esperar a la cosecha en invierno para comer naranjas, podemos tomar pescado procesado industrialmente semanas antes en lugares remotos, o elegir el pan (por ejemplo) entre más de veinte modalidades diferentes.

Por otro lado, el gran cambio en nuestros hábitos genera una alteración brutal en la ingesta de determinados nutrientes. Por ejemplo, no se roen los huesos, y se elimina cualquier espina del pescado (disminuye la entrada de calcio). Se pela la fruta y se tiran las semillas y, a veces la piel, al comer uva (por ejemplo), con lo que disminuye la ingesta de sustancias con gran poder antioxidante. Eliminamos la fibra y aumentamos la ingesta de azúcar, con lo que aumentamos las calorías por encima de nuestros requerimientos. Buscamos fundamentalmente el sabor en las comidas (comer ha llegado a convertirse en un acto social, piensen en las comidas "de negocios"), con la entrada de una gran cantidad de grasas (que son las que dan el sabor). Ya no tomamos sangre y apenas consumimos vísceras (con lo que disminuye al ingesta de hierro absorbible) etc.

Con todo ello se alteran mecanismos arcaicos de regulación de la ingesta. La mayor ingesta de grasas y carbohidratos simples hace que las comidas sean menos saciantes, lo que hace que comamos más y, encima, hacemos menos ejercicio. Un cazador recolector de hace un millón de años realizaba un ejercicio físico equivalente a caminar una media de 20 a 30 km diarios. Eso hoy día solo lo hacen los deportistas de fondo. Esta gran contradicción se salda con una generación de obesos. En Estados Unidos, si todo sigue al ritmo actual, se calcula que en el año 2040 todos serán obesos (y nuestra situación es cada vez más parecida a la de ellos).

El primer gran cambio en los hábitos alimenticios se debió al sedentarismo en base a la aparición de la ganadería y la agricultura, hace unos siete u ocho mil años. La cría de animales domésticos para su consumo de carne en espacios cerrados cambió la ingesta de carne de caza (pobre en grasa) por carne de animales sedentarios en los que se buscaba la obesidad (la grasa). Eran animales básicamente rumiantes, con un tejido graso rico en grasas saturadas. La aparición de sociedades humanas en el interior de continentes, alejados muchas veces de la pesca, eliminó una gran fuente de proteínas y grasas omega 3 (otra vez la palabreja, tranquilos, ya la explicaremos).

Finalmente, la agricultura introdujo el cereal en nuestra alimentación, aumentando la fuente de hidratos de carbono. Además, el manejo de las fuentes de alimentación dio lugar a las primeras tecnologías de los alimentos, obteniendo aceite de girasol, soja, aceitunas etc, lo que introdujo la grasa de forma exagerada en nuestra ingesta dieta.

Ahora, apliquemos el sentido común, pensemos en un homínido que durante decenas de miles de años se adapta a ir introduciendo poco a poco más carne en su ración diaria (su tubo digestivo va disminuyendo y su cerebro va aumentando). Todo su organismo se va adaptando al metabolismo de nuevas fuentes energéticas, pero manteniendo muchos de los alimentos habituales hasta entonces (insectos, raíces, vegetales, frutas...). Si observamos los nutrientes que supone la ingesta de algunos insectos que actualmente

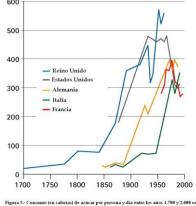
son fuente de proteínas en algunas culturas (Figura 2), nos llevaremos la sorpresa de ver que son muy ricos en proteínas, calcio y hierro.

Cuando ya está adaptado a incluir más carne en su dieta, casi súbitamente se hace ganadero y agricultor, y de pronto se encuentra con unas fuentes de alimentos desconocidas para su especie, cereales, grasas saturadas... Su tecnología se hace más precisa y ya es capaz de producir aceite (grasa desconocida para él), descubre como almacenar carne y pescado en sal (aumenta el consumo de cloruro sódico) y también como obtener azúcar (el gran descubrimiento de la humanidad). En pocos años su dieta baja drásticamente en proteínas y sube en carbohidratos simples y grasas.

Lo que puede pasar si bruscamente a un animal vegetariano le damos carne, lo tenemos en el fenómeno de las "<u>vacas locas</u>". Se utiliza un pienso elaborado con carne de ovejas con una enfermedad llamada <u>"scrapie"</u> (alteraciones neurológicas muy graves provocadas por unas proteínas infectantes llamadas priones) y la enfermedad salta la especie y afecta a las vacas (con un tubo digestivo preparado para la absorción de nutrientes de orígen vegetal, no de proteínas animales).

Insecto	Proteinas(g)	Grasas (g)	Carbohidratos	Calcio (mg)	Hierro (mg
Escarabajo gigante	19.8	8.3	2.1	43.5	13.6
Hormiga roja	13.9	3.5	2.9	47.8	5.7
Gusano de seda	9.6	5.6	2.3	41.7	1.8
Escarabajo pelotero	17.2	4.3	0.2	30.9	7.7
Grillo	12.9	5.5	5.1	75.8	9.5
Saltamontes	20.6	6.1	3.9	35.2	5.0
Langosta (saltamontes gigante)	14.3	3.3	2.2	27.5	3.0
Oruga	6.7	6,2	1,9	28,2	13.1
Termita	14.2	4,2	2,4	38,1	35.5
Coleóptero	6.7	4,8	1,8	40,6	13.1
Ternera	27,4	9	0	15	3,5
Pescado	28,5	7	0	41	1,0

Figura 2.- La alimentación a base de insectos es una buena fuente de proteínas, calcio y hierro. Comparación con la carne de ternera y el pescado.

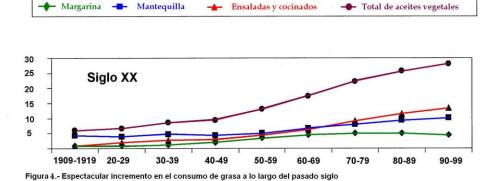

En términos de nutrientes, esta revolución alimenticia significó:

- a) La disminución del porcentaje de ingesta proteica, pasando a ser los carbohidratos y la grasa la fuente principal de calorías.
- b) El cambio de la fuente de grasas, que pasó de ser alta en ácidos grasos poliinsaturados omega 3 a ser rica en grasas saturadas
- c) La alteración en la relación de la fuente de grasas poliinsaturadas que pasó a ser muy alta en omega 6 (aceites de soja, maíz, girasol) frente a omega 3 (pescado)
- d) La fuerte disminución de la fibra, tanto soluble como insoluble.
- e) El déficit de vitaminas y minerales debido a la disminución de la ingesta de verduras, hortalizas y frutas.

El siguiente gran cambio en nuestra alimentación lo ha provocado la sociedad industrial con la aparición de alimentos procesados.

En términos de nutrientes, esta segunda revolución alimenticia significó:

- a) La aparición de los alimentos refinados y la gran explosión del azúcar y derivados, con lo que se perdió la fibra que tomábamos en la dieta (Figura 3)
- b) El aumento de los alimentos con grasas industriales y la presencia de grasas "trans" (un tipo de grasa que apenas está presente en la naturaleza y es muy utilizada por la industria).
- c) La posibilidad de tener alimentos disponibles en cualquier momento, lo que condujo a la ingesta hipercalórica.



Si comparamos la ingesta de vitaminas y minerales de un cazador-recolector del paleolítico con un habitante moderno de un país desarrollado (USA) podremos comprobar una pobreza importante, en nuestra dieta actual, en la mayoría de vitaminas y minerales.

Y si observamos el aumento del consumo de grasa, es escalofriante (Figura 4)

	PALEOLITICO (mg/d)	USA (mg/d)	RELACION	
MINERALES				
CALCIO	1622	920	1,8	
COBRE	12,2	1,2	10,2	
HIERRO	87,4	10,5	8,3	
MAGNESIO	1223	320	3,8	
MANGANESO	13,3	3,0	4,4	
FÓSFORO	3223	1510	2,1	
POTASIO	10500	2500	4,2	
SODIO	768	4000	0,2	
CINC	43,4	12,5	3,5	
VITAMINAS				
VITAMINA C	604	93	6,5	
FOLATO	0,36	0,18	2,0	
VITAMINA B2	6,49	1,71	3,8	
VITAMINA BI	3,91	1,42	2,8	
VITAMINA A	17,2	7,8	2,2	
VITAMINA E	32,8	8,5	3,9	

Tabla I. Diferente ingesta de minerales y vitaminas si comparamos la alimentación de los cazadores recolectores y la de un ciudadano de un país desarrollado. Basada en 3.000 kcl/d en un 35% de plantas. Eaton SB, 2000.

Tomamos menos proteínas, fibra, vitaminas y minerales y más carbohidratos simples y grasas que nuestros antepasados. Además la grasa no es la que tomaban nuestros antepasados hace decenas de miles de años.

Hay que tener en cuenta que los cambios tan bruscos en la alimentación (decenas de años, frente a millones de años conformando nuestros genes en torno a unas necesidades concretas), no pueden ser asumidos por ninguna especie animal -nosotros no somos una excepción-.

Bien, ya tenemos planteado el hecho objetivo: Hemos cambiado la dieta que llevábamos durante decenas de miles de años en dos ocasiones, la primera hace unos 8.000 años y la segunda (y aún más drástica) hace decenas de años (escasamente 30 ó 40 años). La pregunta que debemos hacernos es: ¿Nos hemos adaptado metabólica y genéticamente a este cambio?

U) <u>Cambios en la dieta a lo largo del tiempo</u> (A raposo durmiente, no le amanece la gallina en el vientre)

800.000 A.C.	Homo antecesor en Atapuerca (España). Se dedicaban a la recolección de vegetales y a la caza menor (cazadores-recolectores). Para trabajar usaban lanzas y piedras. Este homínido aun no conocía el fuego. No vivían en cuevas pero las utilizaban para guarecerse de los depredadores y del tiempo.				
100.000	Surge en Átrica el Homo sapiens sapiens. Otros homínidos conviven durante algún tiempo con él, como el Homo neanderthalensis que aparece un poco antes, hacia 150.000 años antes de Cristo. Son cazadores-recolectores y se adaptan muy bien a las condiciones dimáticas de todo el planeta.				
60.000	Abarca el planeta, construye embarcaciones y perfecciona útiles y herramientas				
9.000-8.000	Se inicia la agricultura. Cultivo de cereales (trigo y cebada) en Jordania y Siria. Alfarería e Mureybet (Siria). Cabras y ovejas domesticadas en Irán y Jordania.				
7.000-6.500	Domesticación de bueyes en el Mediterráneo oriental. Domesticación del cerdo en Anato Aparición independiente de la agricultura en el valle del Indo, Nueva Guinea y México.				
6.500	Domesticación de ganado en África. Fecha del primer producto textil que ha llegado ha nosotros. Primeras comunidades agrícolas del sureste de Europa. Cultivo de la patata Perú.				
5.500	Inicio del regadío en Mesopotamia.				
539	Los persas conquistan el imperio neobabilonio. Se ponen en práctica métodos para la oktención del azúcar en estado sólido				
1.492 PC	Descubrimiento de América. Importación del cultivo de la patata, maíz, pimiento, tomate y cacao entre otros.				
1.800	Napoleón utiliza conservas de lata para avituallar a sus tropas. Se empieza a obtener azúcar de la remolacha en Europa. La confitería y la pastelería en Europa disfutan de un gran auge con la aparición de las pastelerías y confiterías modernas, muy parecidas a las que existen en la actualidad.				
1.900	Comienza la industrialización en la comida y aparecen los ácidos grasos "trans"				
1.950	Se generaliza la "comida rápida".				
1.988	Comienzan a producirse alimentos transgénicos				
1.990	La obesidad se convierte en una "pandemia". Se comienza a hablar del síndrome X (hoy conocido como síndrome metabólico), muy relacionado con el sedentarismo y la obesidad.				
2.005	Los alimentos funcionales tratan de paliar los efectos de los procesados industriales sobre los alimentos. Normativas de la Unión Europea en torno a los nutracéuticos y alimentos funcionales				

Tabla II.- Cronología de los cambios en alimentación sufridos por el ser humano. Hingún otro habitante de nuestro planeta ha modificado tan drásticamente su forma de alimentarse a lo largo de su evolución. ¿Nosotros nos hemos adaptado?

Quienes han estudiado los efectos de la alimentación en el ser humano, han aprendido en multitud de ocasiones a base de las bofetadas con las que la realidad nos ha golpeado.

En los años 1950-1953, Estados Unidos estuvo implicado en la llamada "guerra de Corea". Eran años de la postguerra mundial, años de hambre en todo el mundo excepto en USA, en donde se producía un crecimiento industrial acelerado y el llamado "baby boom". Los norteamericanos tomaban cuatro comidas al día y se permitían el lujo de enviar comida a los países que pasábamos hambre. En España, en los Colegios tomábamos en el recreo un humeante vaso de leche reconstituida con leche en polvo norteamericana.

Cuando los forenses militares estudiaban a los jóvenes fallecidos en combate, descubrieron con perplejidad, que las arterias de sus "chicos" estaban llenas de un material amarillento. Los jóvenes saludables norteamericanos, que desayunaban huevos con tocino tenían una enfermedad nueva, la arteriosclerosis, que pasaría a convertirse en una de las mayores causas de fallecimiento en los años posteriores, la cardiopatía isquémica.

Lo tremendo del tema vendría con las investigaciones posteriores en tribus que vivían como nuestros antepasados más remotos. Esquimales, Kikuyu Keniatas, Isleños de Solomon Islands, Indios Navajo, Pastores Masais, Aborígenes Australianos, Bosquimanos del Kalahari, Nativos de New Guinea y Pigmeos del Congo. Todos ellos tenían bajísimos índices de enfermedades cardiovasculares. Es más, cuando algunos de estos pueblos ancestrales cambiaban al estilo de vida (y comida) occidentales como los esquimales que eran absorbidos por el gobierno canadiense, o los aborígenes australianos subvencionados por el gobierno en reservas, tenían incluso mayores niveles de enfermedad que los ciudadanos de países desarrollados. Fue la primera alarma dietética de nuestro estilo de vida occidental. "Las grasas saturadas pueden matar".

V) ¿Dieta mediterránea? ¿Es la solución?

Acababa de finalizar la segunda Guerra mundial cuando los soldados norteamericanos vivieron un nuevo conflicto bélico, la guerra de Corea. Hay que situarse en aquellos momentos de la postguerra mundial; ¡hambre!, sobre todo, ¡hambre!

En ese momento los jóvenes norteamericanos eran los que mejor comían, no pasaban penalidades y, consecuentemente debían estar sanos. Sin embargo, las autopsias que se hicieron a aquellos jóvenes soldados sorprendieron a los médicos norteamericanos; sus arterias estaban amarillas, inelásticas y más apropiadas de ancianos que de jóvenes saludables. ¿Qué estaba pasando con la juventud de USA?

Un fisiólogo estadounidense, Ancel Keys revisó unos escritos realizados gracias a una beca de la Fundación Rockfeller por otro investigador, Leland Allbaugh a finales de 1948. En estos documentos se revisaba una dieta estudiada en la isla de Creta comparándola con la de Grecia y USA. Lo que chocó a Keys es el hecho de que hubiera grandes diferencias dietéticas con la de los jóvenes norteamericanos y que los que estuvieran más sanos fueran los cretenses. En años posteriores, desarrolló una teoría llamada "mediterranean way", manera mediterránea que posteriormente pasó a llamarse coloquialmente "dieta mediterránea".

Conceptos a tener en cuenta

- 1) Esta dieta se estudió, inicialmente, en una isla con un estilo de vida muy activo físicamente (por la escasa mecanización del agro) y frugal (la comida estaba bastante racionada), con una ingestión predominante de productos vegetales y reducida en productos de origen animal.
- 2) La comparación se estableció con una dieta rica en grasas saturadas en una población sedentaria (USA) gracias a la mecanización del campo, la utilización de gruas y sistemas mecánicos sustituyendo el trabajo de descarga en puertos y construcción y el establecimiento de una cultura ciudadana de oficinas.
- 3) Lo que se llamó vía mediterránea era todo un estilo de vida, no solo una dieta.

Y llegó la manipulación dando entrada a la dieta mediterránea en la cual cada industria encontró una justificación para incluir su producto (el vino, el aceite de oliva etc etc). Posteriormente la gran presión de la industria ha dado lugar a decenas de investigaciones sobre las ventajas de cada uno de los supuestos ingredientes de esa "dieta mediterránea". Llega uno a tener la impresión de que sin tomar vino, legumbres, aceite de oliva y demás, no puede estar sano.

Por cierto ¿Y el vino tinto? ¿Es tan bueno como nos dicen?

Se cansa uno de escuchar simplificaciones en boca de todo el mundo dando por sentados argumentos que consideran incuestionables. No es raro cuando se trata de personas con poco conocimiento del tema que tratan, pero cuando se trata de profesionales, el tema es peliagudo.

En realidad, lo que voy a decir podría extenderse a otros muchos productos en los que la industria (es decir, los intereses económicos), mete la mano. Los argumentos a emplear son los ya conocidos y asumidos por toda la población (médicos incluidos, por desgracia); el vino tinto tiene polifenoles que ejercen un efecto cardioprotector, entre otros, aumentando la cantidad de colesterol "bueno", la llamada fracción HDL.

Pues bien, punto primero, como parte del sistema inmune innato, la fracción HDL del colesterol parece haber evolucionado para aumentar la inflamación en presencia de una respuesta de fase aguda pero, también, para inhibir la inflamación en su ausencia, lo que desvela una condición proinflamatoria o antiinflamatoria en función de diversas circunstancias. En un estudio de los seres humanos con enfermedad coronaria, se encontró que los pacientes que tenían HDL proinflamatoria antes de la terapia con estatinas (a pesar de una disminución profunda en los lípidos plasmáticos en la mitad de ellos después de la terapia con estos fármacos), continuaron teniendo HDL proinflamatorias. A su vez, se demostró que las HDL antiinflamatorias eran eficaces en la promoción del eflujo de colesterol (esto es, la habilidad de las partículas de HDL de aceptar colesterol de los macrófagos), mientras que las proinflamatorias fueron relativamente débiles en su capacidad para promover dicho eflujo. Las alteraciones oxidativas de la principal proteína de HDL, la apolipoproteína A1, deterioran su capacidad de promover el eflujo de colesterol de los macrófagos. Por ello, los investigadores asumen que no es el colesterol total, sino la composición de las HDL, su estructura y su función lo que es crucial en los trastornos cardiovasculares. En este

sentido, como puede comprender el lector, todos los estudios en los que no se ha contemplado esta circunstancia de variación entre individuos (es decir, todos los realizados con el vino), no son válidos. Además, HDL y LDL son marcadores de la enfermedad, pero cada uno tiene funciones fisiológicas importantes para el cuerpo, y no se pueden considerar determinantes absolutos de cardioprotección.

Punto segundo, el efecto cardio-protector del alcohol puede estar restringido a los sujetos con un genotipo particular de la proteína de transferencia de ésteres de colesterol (CETP). Hablaremos de genética y abordaremos estos términos un poco complicados en el capítulo siguiente.

Ahora bien, hay un polimorfismo conocido en el gen que codifica CETP llamado TaqIB (un polimorfismo es una variación en la secuencia de un lugar determinado del ADN entre los individuos de una población). Pues bien, dos polimorfismos en el gen CETP afectan las probabilidades de tener enfermedades del corazón en los diversos niveles de consumo de alcohol. Los dos alelos diferentes (variantes de genes) de CETP se denominan B₁ y B₂. B₂ se asocia con disminución de CETP y aumento del colesterol HDL. Dado que tenemos dos copias de cada uno de los genes, las tres opciones diferentes de genotipo en un determinado tema son B₁B₁, B₁B₂ o B₂B₂. Un estudio ya había demostrado que los hombres con genotipo B2B2 que tienen una ingesta de etanol de 50 g (alrededor de tres bebidas) o más al día tenían un riesgo del 60% menor de crisis cardíacas que los que tenían menor o nula ingesta de alcohol. Este efecto protector de grandes cantidades de alcohol no se observó en las personas con las B₁B₁ o B₁B₂ genotipos. Por todo ello, la fracción de prevención para la combinación favorable de genotipo y el consumo de alcohol, es de aproximadamente un 6%, valor que sugiere que el efecto cardio-protector del consumo moderado de alcohol se aplica sólo a un pequeño segmento de la población general.

Es decir, para que usted piense que la copa de vino tinto le viene bien para su corazón, debería saber cuál es su genotipo, identificar los factores que confieren carácter pro o antiinflamatorio a sus HDL, comprobar todos los factores añadidos y que son muy relevantes, como el ejercicio físico que realiza, la dieta que lleva etc etc.

Que no me simplifiquen el tema diciéndome que una copita de vino tinto tiene antioxidantes, sube el colesterol bueno y me viene muy bien para el corazón. Lo siento, señores de la industria, pero no nos engañan. Si quiero tomar una copita de vino, lo haré porque me guste, porque activa zonas de recompensa y me hace sentir "bien" y por todo lo que ustedes quieran, pero no porque es bueno para la salud cardiovascular, porque eso no lo saben

Establezcamos una pequeña comparación entre un cazador recolector de hace cuarenta mil años y un habitante de Creta de los años 50. Ambos tenían un gran gasto calórico, una ingesta frugal basada en pescado (fuente de ácido docosahexaenoico), legumbres, verduras silvestres y pan moreno (alimentos ricos en fibra), uvas (ricas en antioxidantes), huevos y frutos secos, caracoles y moluscos. En definitiva, los cretenses en los años 50 eran bastante parecidos a cazadores y recolectores (nuestro auténtico origen metabólico). Pero para eso no hacía falta irse a Creta, los inuit, los bosquimanos, los pigmeos etc etc, es decir, los actuales cazadores y recolectores no conocen la cardiopatía isquémica, ni la diabetes del adulto, ni la hipertensión etc etc

¡Vaya! Quizás lo que habría que recomendar a la hora de tomar una dieta mediterránea en un restaurante, es ir corriendo hasta la mesa (con al menos una hora o más de actividad física), tomar caracoles, pescado salvaje, verduras y uva. Todo ello muy frugalmente (nada de dos platos colmados, postre, café y un puro regado, todo ello con un buen vino). Con esa recomendación se le acabaría el reclamo a toda una industria irreflexiva y manipuladora.

Una persona que viva en Alicante, trabaje y coma a mediodía fuera de casa, o tome un plato de comida rápida, ingiera pescado esporádicamente (de piscifactoría en muchas ocasiones), tome aceite de oliva, beba algo de vino tinto, se haga un guiso tradicional algún fin de semana y tome fruta bien pelada y tratada, *no sigue la dieta de los cretenses* y solo tendrá ventajas si lo comparamos con un centroeuropeo que tome comida rápida, cocine con mantequilla, se alimente a menudo de carne de rumiantes rica en grasa saturada y coma poca fruta. Es evidente que este último ciudadano es candidato "princeps" a una cardiopatía isquémica, pero el alicantino no la podrá descartar.

Si quiere tener hábitos auténticamente saludables deberá imitar lo más posible a los cazadores recolectores que nos han conformado tal como somos.

Observemos en el siguiente cuadro las grandes diferencias entre distintos pueblos comparados con la dieta ancestral

Alimento	Omega3	Dieta Humana Paleolítica	Dieta moderna en Europa	Dieta moderna en Japón	Dieta tradicional de los <u>Inuit</u>	Dieta tradicional de los aborigen Australianos
Animales Domésticos	151	=	+++	+	5E	=
Alimentos Procesados	=	-	+++	++	3E	-
Cerales y leguminosas cultivados	154	-	+++	++	1 .	=
Verduras y hortalizas cultivadas	(=)	:=0	++	1+	(=	-
Animales de caza	++	4+			++	++
Verduras y frutas salvajes	+	+++	<u>=</u>	N=	+	++
Pescado	++++	+++	-	+++	++++	++

Tabla III.- Comparación de la ingesta de alimentos entre diversas épocas y culturas y su relación con la ingesta de omega-3 (modificado de Stoll AL; The omega-3 connection: First Fireside Edition 2002)

¿Cuál es la diferencia?

Basta seguir las cruces de la tabla anterior y ponerlas en donde deberían estar.

Bien, ya vemos que hay datos incontestables de que al menos en cuanto a la alta ingesta de grasas saturadas no ha habido adaptación. Vamos a repasar los recientes estudios referentes a las consecuencias de la alteración en la relación ácidos grasos omega 6 / omega 3 (seguimos con estas denominaciones, pero quede tranquilo el lector, lo explicaremos con claridad al hablar de las grasas en la alimentación).

Existe una preocupación actual importante en cuanto a un hecho epidemiológico (relacionado con padecimientos de grandes grupos de población), el gran aumento de enfermedades alérgicas, autoinmunes y de componente inflamatorio crónico en los países desarrollados. Pues bien, aunque esta es una investigación con plena vigencia, ya podemos decir algunos datos muy contrastados.

Por ejemplo, podemos decir que los <u>inuit de Groenlandia</u> que consumen alimentos ricos en omega 3 tienen una menor incidencia de enfermedades ateroscleróticas, es decir, enfermedades que lesionan las arterias, pero también inflamatorias, autoinmunitarias y mentales. Sabemos que la suplementación con aceite de pescado reduce los síntomas de la psoriasis (una enfermedad inflamatoria de la piel) y de la colitis ulcerosa (en este caso del intestino).

Pero es que en la elaboración de la respuesta inmunitaria los lípidos de la alimentación son clave. Manipulando su ingesta alteramos la disponibilidad del sustrato de la cicloxigenasa y de la lipoxigenasa, dos intermediarios lipídicos en el control del sistema inmunitario. Además, la membrana celular está compuesta de fosfolípidos (una molécula de glicerol (glicerina) más dos de ácido graso y una de fosfato), sustancias que conforman el esqueleto de las membranas de nuestras células y que se alteran, por tanto, al manipular la ingesta dietética de grasas. La membrana celular es clave para la comunicación de la célula con su entorno, reconoce las sustancias ajenas al organismo frente a las cuales nos defendemos con anticuerpos, o sencillamente destruimos por contacto. Es, por tanto, responsable de defendernos adecuadamente de lo que nos puede matar. Cuando se modifican las propiedades de esta barrera celular de tanta importancia, se producen respuestas anómalas, ya sea por deficiencia (baja inmunidad, infecciones y cáncer), por exceso (enfermedades alérgicas) o por mal reconocimiento de nuestra propia identidad (enfermedades autoinmunes).

Tenemos argumentos, por tanto, para achacarle a la dieta actual, al menos una parte importante en cuanto al aumento de enfermedades de componente infamatorio e inmunitario, pero si unimos la dieta y el sedentarismo, entonces la mezcla es explosiva. Tan solo el síndrome metabólico (que suma ambos factores), supone 1 de cada 5 personas con grave riesgo de desarrollar enfermedades como el infarto de miocardio, la diabetes que aparece en los adultos etc.

La ingesta alterada de carbohidratos (alta tasa de carbohidratos simples y muy baja de fibra) y el desequilibrio en la grasa que se consume colabora en estos padecimientos vía eicosanoides. Esta palabra técnica comprende un grupo de sustancias derivadas de los ácidos grasos insaturados de veinte átomos de carbono (eicosa- es un prefijo griego que significa veinte). Son mediadores locales, es decir, sustancias que el organismo produce en un lugar para provocar una acción específica, por ejemplo, regulando la presión de nuestras arterias. Lo que es interesante desde el punto de vista de la alimentación es que se puede alterar la acción de estas sustancias modificando la dieta, de modo que una alimentación rica en carbohidratos simples (bollería, galletas, azúcar..) y ácidos grasos insaturados del tipo omega 6 significaría perjudicar las acciones naturales de estas sustancias, mientras que una ingesta adecuada de carbohidratos complejos (patatas, pasta, arroz..) y ácidos grasos omega 3 iría a favor de una acción adecuada en el organismo. Este es el argumento de la llamada "dieta ZONA" que busca disminuir la producción de los eicosanoides que favorecen los fenómenos inflamatorios (piense el

lector que las enfermedades que tienen un componente inflamatorio no se circunscriben a las comunes finalizadas en –itis (artritis, pericarditis...), sino a una gran mayoría de nuestros padecimientos (hoy día se considera la enfermedad de las arterias como una enfermedad inflamatoria, por ejemplo). De hecho, las enfermedades inflamatorias que se cronifican, se caracterizan por una regulación incorrecta en la que el organismo no es capaz de limitar el fenómeno inflamatorio, desencadenándose una serie de reacciones que producen alteraciones mucho más graves que la que desencadenó la primera reacción; es el caso de la psoriasis, de la enfermedad de Crohn, de la esclerosis múltiple etc.

Al fin y al cabo el dilema es simple; la naturaleza nos ha preparado evolutivamente para una serie de reacciones químicas y para realizarlas necesita que estén los sustratos con los que debe contar. Si no están todos, o hay algunos que no deberían estar o en cantidades que no son las que nuestro organismo ha manejado durante miles de años, hay problemas de formulación y, al final, el producto no es el deseado.

La nueva pregunta que nos deberíamos formular es si nos podemos adaptar a los cambios de las nuevas reacciones químicas, y en este sentido, la respuesta es sencillamente que no hemos tenido tiempo. No hay, por tanto, adaptación de nuestra química interna a los cambios alimenticios recientes. Ante una afirmación tan categórica uno se pregunta ¿Por qué no existe un consenso a nivel científico y se toman medidas drásticas aumentando impuestos a determinados productos, realizando campañas de información, etc etc?. ¿No sería razonable que las fábricas que lanzan productos como las bebidas azucaradas o los bollos industriales pagasen un impuesto extra?. Bueno, los primeros pasos se van dando poco a poco, de modo que en Gran Bretaña, por ejemplo, a partir de este año está prohibida la venta de estos productos en los Colegios. Por otro lado, se piensa en subvencionar las frutas y verduras destinadas a los comedores escolares. Algo está empezando a cambiar..

Hay dos argumentos que justifican la indecisión de las autoridades sanitarias mundiales. Por un lado la presión de las multinacionales que comercializan los productos, agricultores, intermediarios... Miles y miles de personas que podrían verse afectadas gravemente si se diera una alarma sin plena justificación. En esta nueva sociedad hay tantos factores que han modificado nuestro hábitat que es muy difícil consensuar cada acción. Recordemos que en los años 50 las tabaqueras decían que fumar no era más peligroso que tomar café. Han hecho falta decenas de años, miles de muertes directas, sentencias judiciales y una gran alarma sanitaria, para que en la Unión Europea se prohíba la publicidad del tabaco y se reforme la organización común del mercado del tabaco.

¿Es tan grave? ¿Acaso no podríamos habituarnos poco a poco? ¿Las nuevas tecnologías y los alimentos light, funcionales y transgénicos no pueden salvarnos de esta situación sin tener que comer lo que ya no nos gusta? La respuesta está en el viento (como decía Bob Dylan), y el viento del progreso nos ha traído los conocimientos actuales en genómica. Ahora sabemos que algunos componentes de la dieta juegan un papel clave en la regulación de la expresión genética. El genoma humano es sensible al entorno nutricional, de forma que, algunos genes pueden modificarse en respuesta a los componentes de la dieta. En un futuro próximo podremos establecer nuestra dieta en función de nuestras tendencias a enfermar; será una dieta individualizada y, muchas veces, a base de alimentos nuevos (nutracéuticos).

Expliquemos este tema que es absolutamente novedoso y fundamental. Para ello vamos a explicar algunos conceptos como gen, genoma, expresión génica etc.

W) <u>La nutrigenómica es nuestra esperanza</u> (El día que el pobre come merluza, está malo él o la merluza).

Vamos a repasar algunos conceptos necesarios para entender la palabreja que acabamos de decir. Un gen es una secuencia lineal de nucleótidos (un nucleótido es uno de los constituyentes del ADN o del ARN. Consta de una base (adenina, timina, guanina, uracilo o citosina), más una molécula de azúcar de cinco átomos de carbono (pentosa) y una de ácido fosfórico). La unión de la molécula de ácido fosfórico al azúcar de otro nucleótido cuya molécula de ácido fosfórico está, a su vez, unida al azúcar de un tercer nucleótido, genera cadenas de cientos de miles y millones de nucleótidos. Así se forma el ácido nucleico, que según la base nitrogenada (adenina, guanina, citosina y uracilo) y el tipo de azúcar (ribosa o desoxirribosa) da lugar a ADN o ARN.

El ARN difiere, por tanto, del ADN en que la pentosa de los nucleótidos constituyentes, en lugar de una desoxirribosa es una ribosa, y en que en lugar de las cuatro bases nitrogenadas mayoritarias presentes aparece uracilo en lugar de timina (Figura 5). Las cadenas de ARN son más cortas que las de ADN (el ARN está constituido por una única cadena). Por cierto, todos los seres vivos del planeta utilizan los mismos tipos de ácidos nucleicos, lo que es una prueba indiscutible de nuestro origen común.

Ya sabemos, por tanto, que un gen es una secuencia de nucleótidos de ADN o ARN y que es esencial para realizar una función específica en nuestro organismo.

El cromosoma es el material microscópico constituido por ADN que se encuentra en el núcleo de las nuestras células y el genoma es todo el material genético contenido en los cromosomas.

El 99,9% de la secuencia del genoma humano es la misma para todas las personas, y ahora empezamos a conocer pequeñísimas diferencias de una base (ya saben, la adenina (A), timina (T), guanina (G), citosina (C)) pueden justificar enfermedades graves.

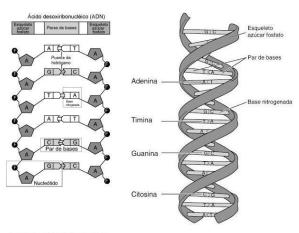


Figura 5.- Estructura del ADN.

Esta imagen o archivo multimedia ha sido cedido al dominio público («public domain») por su autor o su
comunido the equirado. Esta es vidido internacionalmente.

Pero por otro lado, sabemos que alrededor del 2% del genoma codifica instrucciones para la síntesis de proteínas. Se trata de la expresión génica, un proceso muy complejo mediante el cual se logra la síntesis de una cadena polipeptídica a partir de la información hereditaria contenida en el gen correspondiente. La información genética en el ADN se transcribe a una molécula de ARN llamada mensajero, la cual es procesada para dar una molécula de ARN maduro. Este ARN mensajero es transportado desde el núcleo hasta el citoplasma donde es traducido para la síntesis de una proteína. Potencialmente la expresión de un gen puede ser regulada en cualquiera de las etapas que van desde su transcripción hasta

la síntesis de la proteína activa. Pues bien, este estricto y variado sistema de control está influenciado por el estado nutricional del individuo ¡Como no!

Por otro lado, no todos los genes se expresan al mismo tiempo ni en todas las células. Hay sólo un grupo de genes que se expresan en todas las células del organismo y proteínas que son esenciales para el funcionamiento general de las células. El resto de los genes se expresan o no en los diferentes tipos de células, dependiendo de la función de la célula en un tejido particular. De esta forma, las respuestas al ambiente o los procesos de desarrollo no suelen producirse como consecuencia de la activación de un único gen en un momento, sitio o condición determinado, sino que suele ser necesaria la expresión coordinada de un conjunto de ellos para que tenga lugar el efecto. Estos dos hechos complican aún más las cosas y nos confirman la importancia de la expresión génica.

Así, mientras la genómica sigue leyendo en el lenguaje de 4 letras (A, T, C, G), otra disciplina, la proteómica, se encarga de traducir este código al de aminoácidos, es decir, al de proteínas.

Ya sabemos lo que es un gen, lo que es el genoma y lo que es el proteoma. Con lo que hemos visto, también podemos vislumbrar la importancia de la proteómica como factor trascendental en la enfermedad, y hemos visto que su génesis es muy dependiente de factores ambientales, entre los cuales hay dos importantísimos; la dieta y el ejercicio físico.

Existe un criterio muy simplista por el que se asume que la importancia de la alimentación se basa en darle al organismo los nutrientes que necesita para obtener energía (carbohidratos), construir órganos y músculos (proteínas) y mantener las reacciones metabólicas (vitaminas y minerales). Según este criterio, lo básico en nutrición es tomar los alimentos que contienen los nutrientes que necesitamos, punto.

Ahora sabemos que no es así, en absoluto. Las variaciones genéticas individuales pueden alterar el modo en que los nutrientes son asimilados, metabolizados, almacenados, o excretados por parte del organismo, pero es más, los propios nutrientes pueden modificar la expresión génica, haciendo que determinados genes (algunos portadores de enfermedad) lleguen a expresarse o no.

En definitiva, los genes (que conforman nuestra condición humana), presentan variaciones individuales que justifican las diferentes formas de enfrentarse con un medio hostil que tenemos unos y otros (ante una misma trasgresión dietética unos enferman antes). También el medio ambiente modifica la propia expresión génica, con lo que podemos explicar por qué enferma un aborigen australiano al que se le integra "de golpe" en el modo de vida occidental.

¿Sabían que los grupos étnicos que tienen mayor riesgo de padecer de diabetes son los afroamericanos, los nativos de Alaska, los indios americanos, los asiáticos americanos, los hispanoamericanos y americanos de las Islas del Pacífico que adoptan el estilo de vida occidental?

Es decir, la dieta debe ser individualizada en función de las características genéticas propias, debe contemplar nuestros antecedentes prehistóricos y adaptarse a las condiciones específicas del lugar en el que se vive, y debe desarrollarse en un medio ambiente favorable (ejercicio físico). ¡Casi nada! (lo mismo que dicen todos los gurús de las dietas)

De esta forma, queda ya claro que la constitución genética individual no nos tiene predestinada nuestra salud y nuestra calidad de vida. El medio ambiente actúa de forma muy importante mediante la posibilidad de expresión génica (es decir, un gen o grupo de genes que nos predispongan a padecer un cáncer, terminarán generándolo si el medio ambiente lo favorece). Pues bien, los dos factores ambientales que más condicionan esta expresión favorable o no, son la dieta y el ejercicio físico, dos factores sobre los que podemos actuar. ¡No existe razón para que los gobernantes que tienen la responsabilidad de la sanidad no actúen de forma decidida sobre estos dos factores! El hombre no es libre de hacer ejercicio físico o no, ni es libre de comer inadecuadamente o no (si quiere tener una buena calidad de vida).

Ahora, por tanto, sabemos que existen acciones de algunos componentes de la dieta sobre el genoma humano, por ejemplo, la genisteína (una <u>isoflavona de la soja</u>) se une a los receptores de estrógeno del núcleo de las células, especialmente el ER\$1 produciendo acciones miméticas de los estrógenos sobre la maduración de los osteoblastos (células formadoras de hueso), lo cual es de especial importancia en las mujeres menopáusicas que padecen descalcificación ósea.

Sabemos, también, que en algunas personas, la dieta puede ser un factor de riesgo de enfermedad; por ejemplo, una dieta rica en carbohidratos simples provocará picos de insulina en plasma que junto a una ingesta alta de ácidos grasos omega 6 y baja de omega 3, provocarán un aumento de eicosanoides de las series 2 y 4 que son fuertemente proinflamatorios (ya lo hemos comentado anteriormente). Ante cualquier gen que predisponga a esa persona a padecer patologías de componente inflamatorio, la acción ambiental favorecerá la expresión de estos genes y aparecerá la enfermedad. En ambos casos, la ingesta de soja en el primer caso, y la de alimentos como el pescado en la segunda, modificarían el curso de la enfermedad si ésta ya hubiera dado síntomas clínicos.

La influencia de la alimentación sobre la expresión de los genes o nutrigenómica es, pues, de gran importancia como método fundamentalmente preventivo. Son inmensas las posibilidades que nos abre la nutrigenómica, pero desde luego no pasan por comer un determinado alimentos en una determinada ocasión (como parece que se deduce de la publicidad de los alimentos funcionales). Hacen falta amplios conocimientos por personal experto para hacer las dietas individuales y éstas deben seguirse durante mucho tiempo para ser efectivas. ¡Pero es posible ayudar a curar enfermedades simplemente cambiando hábitos dietéticos!

El ejemplo más claro de una patología fruto de la interacción entre genotipo y dieta es la diabetes tipo II que se da en adultos obesos y sedentarios. En este caso, la sintomatología se puede controlar si se realiza ejercicio y se modifican los hábitos dietéticos. ¡Estamos en el umbral de un nuevo concepto "comer para curarnos"! Mientras tanto, deberíamos aplicar lo que sabemos y comer bien para evitar enfermar.

X) La microbiota intestinal

No es algo muy conocido, pero ahora tenemos la certeza de que la inmunidad se gesta en nuestro sistema digestivo. El tracto gastrointestinal humano (TGI) es un ecosistema complejo colonizado por centenares de especies microbianas diversas y la llamada "flora microbiana normal o microbiota" es un delicado equilibrio entre especies que puede variar incluso entre diferentes personas debido a sus características personales y alimentación.

Unas especies viven de los productos generados por otras lo que las hace interdependientes entre ellas y el propio organismo huésped. Las bacterias de la flora intestinal (más del 95% vive en la luz del colon) están adaptadas a su hábitat porque están unidas a la evolución humana. Esta individualización comienza en las primeras etapas de la vida y ejerce una gran influencia sobre muchas características bioquímicas, fisiológicas e inmunológicas del huésped en el que residen. Poco a poco vamos conociendo detalles de esta microflora comprendiendo procesos como adherencia intestinal, colonización, traslocación (paso de las bacterias y sus productos a través de la mucosa gastrointestinal) e inmunomodulación, mecanismos íntimamente ligados a la salud inmunitaria de su huésped.

Sabemos que existe una cantidad importante de bacterias formando la microbiota (1014) de las cuales más del 80% no han llegado a cultivarse en laboratorio. Conocemos por encima de 800 filotipos (caracterización filogenética de un organismo) bacterianos diferentes en el ser humano (entre 130 y 200 filotipos diferentes en un mismo individuo), por lo que podemos decir que la microbiota es tan personal como la huella digital y permanece estable hasta el fallecimiento del huésped. Finalmente, es muy importante tener en cuenta que interaccionan activamente con el huésped.

c. Diferencias entre el hombre actual y los homínidos que han conformado nuestro organismo

Tenemos que tener en cuenta que la dieta actual dista mucho de parecerse a la de nuestros antepasados mientras que, por el contrario, nuestro organismo apenas ha cambiado desde el paleolítico medio, hace más de 40.000 años. "El hombre actual pertenece socialmente al siglo XXI, pero genéticamente sigue en el paleolítico".

Nuestro genoma no ha variado en los últimos 10.000 años, de hecho, más del 95% de nuestra biología está concebida para la función que desempeñábamos como cazadores recolectores. Numerosos alelos se han desarrollado en el ser humano para la supervivencia en la era paleolítica, es decir, para sobrevivir en condiciones de actividad y ciclos de comida y hambre, comían la comida cruda y a menudo fermentada e ingerían 5-10 veces más fibra de lo que nosotros hacemos. La tierra era su comedor, de modo que la comida estaba comúnmente contaminada con ingredientes microbianos. De pronto (en un instante en términos evolutivos), hemos pasado a tomar los alimentos procesados, esterilizados y en ambientes limpios. La seguridad alimentaria es un logro importantísimo en la sociedad occidental, pero tiene un efecto indeseable que es la falta de aporte microbiológico de bacterias favorables.

b. Interacción microbiota-intestino-organismo en general

La interacción de la microflora con el intestino tiene un impacto considerable tanto en los sistemas del huésped como en otras poblaciones bacterianas, tal como se ha podido comprobar mediante la experimentación con animales a los que se les eliminaban los gérmenes y en los que se producían graves complicaciones de salud (concepto MAC/GAC [Microflora-associated characteristics/germ-free animals characteristics]) La mayoría de la microflora no se adhiere directamente a la pared, sino que vive en biofilms asociada a partículas de comida, a moco o a células exfoliadas. El moco lubrica y protege al epitelio intestinal de las bacterias y de la acción de la digestión. Está compuesto de mucinas capaces de atrapar a las bacterias de forma selectiva o indiscriminada. Los polímeros de mucina que constituyen el moco contienen glucoproteínas, cuya parte hidrocarbonada está formada por restos de diferentes azúcares: fucosa, galactosa, N-acetilglucosamina, N-acetilgalactosamina y ácido siálico. Esta porción de hidratos de carbono sirve como nutriente para la microflora, pero también como receptor para toxinas microbianas y como proteína de superficie. Hay un control genético individual de este repertorio de hidratos de carbono y es uno de los modos por los que los genes del huésped pueden utilizar la conducta de los microbios intestinales.

A diferencia de otras mucosas, el sistema inmunológico intestinal tiene que distinguir no sólo entre lo propio y lo no propio, sino también entre antígenos extraños peligrosos y antígenos alimentarios y responder en consecuencia. Se desconoce con exactitud cómo se desarrolla este mecanismo, pero sabemos que involucra la selección cuidadosa de poblaciones linfocitarias apropiadas y la expresión de citoquinas. Hay que considerar además el papel relevante que desempeña la IgA secretora en la exclusión de antígenos de la luz intestinal. Estas características indican que el desarrollo y la expresión del sistema inmunológico intestinal difieren en gran medida de la inmunidad sistémica

Junto con una respuesta celular, la función inmunitaria en el intestino tiene un papel protector previniendo las respuestas inmunitarias a las proteínas de la dieta y evitando sensibilizaciones, mientras que por otro parte induce respuestas inmunitarias específicas mediante la IgA secretora, excretada a la luz y con un papel relevante en la protección frente a la colonización por patógenos.

La microbiota y el intestino se comunican por un lado mediante la activación y el estímulo de las células B y T y por otro mediante la acción sobre receptores específicos de membrana en el enterocito con una misión inmunomoduladora. El sistema inmunitario de individuos sanos está muy activado en respuesta a los antígenos alimentarios, a los patógenos y a la flora normal. Esto resulta en unos linfocitos de las placas de Peyer muy activados, una abundancia de células T CD8+ en el epitelio y de T CD4+ y células plasmáticas IgA en la lámina propia. Los datos procedentes de estudios en animales dejan claro que es la flora normal la que desencadena esta respuesta, y no los patógenos o los antígenos alimentarios

Nuestra mejor arma para mejorar la inmunidad viene, por tanto, de la mano de un ejercicio moderado y de una dieta que incluya los nutrientes que necesitamos. Cuando se desequilibra la balanza, aparecen las infecciones de repetición, los resfriados frecuentes, las viriasis y las micosis.

Pero ¿Qué hay de la relación entre la microbiota intestinal y el rendimiento físico?

Hay muy pocos estudios al respecto, pero algunos datos preliminares experimentales obtenidos a partir de estudios en animales o estudios probióticos muestran resultados interesantes a nivel inmunológico, lo que indica que la microbiota también actúa como un órgano endocrino y es sensible a los cambios homeostáticos y fisiológicos asociados con el ejercicio. Sabemos, por ejemplo, que el ejercicio reduce el tiempo de tránsito de las heces en el intestino, reduciendo el contacto prolongado de los patógenos con la capa mucosa gastrointestinal y el sistema circulatorio. Por otra parte, el ejercicio moderado está asociado con niveles reducidos de cáncer de colon, mientras que el ejercicio exhaustivo se ha asociado con alteraciones en el tracto gastrointestinal debido a los efectos de toxicidad inducidos por la reducción del flujo sanguíneo local y la translocación bacteriana (paso de bacterias al torrente circulatorio). En este sentido, en un estudio realizado en 2008 un investigador llamado Matsumoto, informó de una alteración en el contenido de la microbiota y un aumento de las concentraciones de nbutirato en ratones sometidos a natación extrema (nadar hasta la extenuación). El ejercicio altera, por tanto, la microbiota intestinal en ratones, además, la distancia total a cargo de estos animales se correlaciona inversamente con la relación de Bacteroidetes-Firmicutes, una relación que al alterarse en función de las Firmicutes, se relaciona con obesidad, también.

Un estudio que involucró a jugadores de rugby de elite, también informó de que el ejercicio aumenta la riqueza de la flora intestinal y la diversidad. Por otra parte, este trabajo pionero en humanos mostró que los índices de la diversidad de la microbiota intestinal, se correlacionan positivamente con la ingesta de proteínas y con la concentración de creatina quinasa, lo que sugiere que la dieta y el ejercicio son conductores de la biodiversidad en el intestino. Este trabajo pone de relieve que el ejercicio es otro factor importante en la compleja relación entre el huésped, la inmunidad del huésped y la microbiota en deportistas de élite.

Por otro lado, una de las funciones esenciales del intestino es la de mantener una barrera que impida la entrada de microorganismos potencialmente nocivos para los órganos adyacentes estériles y para otros distantes. Esta barrera mecánica puede ser alterada debido a la hipoxia esplácnica y posterior reperfusión, lo que genera la translocación bacteriana, con la mayor parte de las bacterias procedentes de la translocación de colon. El ejercicio intenso y prolongado, como competiciones y entrenamientos intensos, están asociados con varios niveles de hipoperfusión esplácnica y la isquemia y la reperfusión subsiguiente.

Finalmente, estudios recientes han demostrado que el entrenamiento controlado también ejerció algún efecto beneficioso sobre el microbioma intestinal de ratas obesas e hipertensas y en ratones obesos con un fenotipo inducido por la dieta alta en grasa (HFD). El entrenamiento en cinta continua promovió Allobaculum en SHR y Pseudomonas y Lactobacillus en ratas obesas. Por otra parte, la abundancia de dos bacterias familias (Clostridiaceae y Bacteroidaceae) y géneros (Oscillospira y Ruminocossus) se correlacionó significativamente con la concentración de lactato en sangre. Estos hallazgos indican que el nivel de entrenamiento puede estar vinculado a estas proliferaciones bacterianas específicas.

¿Y tomar un probiótico mejorar el rendimiento deportivo?

La evidencia científica de apoyo en beneficio ergogénico de la suplementación con probióticos es insuficiente. Sin embargo, los suplementos probióticos pueden desempeñar un papel en la reducción de situaciones con las que se enfrentan con frecuencia los deportistas como enfermedades respiratorias y gastrointestinales. En este sentido, comer alimentos fermentados (como el yogur, encurtidos verdaderamente fermentados, chucrut, queso añejo, y el kimchi) para apoyar la flora intestinal es una práctica extremadamente recomendable.

Y) La barrera hematoencefálica

La barrera hematoencefálica es una formación densa, que actúa como un freno al paso habitual de sustancias del plasma a las células del cerebro. Se trata de células endoteliales que están entre los vasos sanguíneos y el sistema nervioso central. La barrera impide que muchas sustancias tóxicas la atraviesen, al tiempo que permite el paso de nutrientes y oxígeno. De no existir esta barrera muchas sustancias nocivas llegarían al cerebro afectando su funcionamiento.

Siempre hemos tenido constancia, en medicina, de la importancia fundamental de esta barrera para, por ejemplo, el paso de fármacos al cerebro en casos en que nos interesara o evitándolo cuando no fuera así, pero ahora comenzamos a saber que hay enfermedades, dietas y sobre todo, la propia microbiota intestinal que la pueden modular, dando lugar a un aumento de su permeabilidad no deseable.

En ratones se han hecho experimentos con madres a las que se ha provocado una liquidación de gérmenes (dentro de límites posibles) frente a madres normales, encontrándose que los ratones de madres libres de baterías tenían una permeabilidad aumentada, asociada con una disminución de la expresión de ocludina, una de las principales proteínas que forman uniones estrechas en la barrera hetatoencefálica. La razón parece ser que los microbios intestinales en las madres con microbiota normal, pueden requerir mayores exigencias nutricionales al final del embarazo, lo que requeriría un control más estricto de la barrera para que estas demandas metabólicas no supusieran un costo sobre el crecimiento del cerebro del feto.

Pero, ¿y en ratones adultos? Pues parece que la permeabilidad de dicha barrera en ratones adultos fue mayor en los ratones libres de gérmenes que en los ratones libres de patógenos en tres pruebas separadas de acreditación de dicha permeabilidad. En este caso, los investigadores se aseguraron de que esta diferencia no se debiera a una mayor penetración de los vasos sanguíneos del cerebro, ya que una mayor densidad de los vasos sanguíneos significaría que hay una mayor probabilidad de que algo iba a penetrar al azar. Las diferencias en la permeabilidad podrían explicarse por las diferencias en las uniones estrechas que se encuentran en los que están libres de gérmenes patógenos. Las uniones estrechas de ratones libres de gérmenes tenían menores niveles de dos proteínas, ocludina y claudina

La permeabilidad de la barrera hematoencefálica puede ser, en parte, afectada por los ácidos grasos de cadena corta producidos por las bacterias intestinales normales, que

viajan por el torrente sanguíneo y, en última instancia, ayudan a hacerla menos permeable.

¿Y si se mantiene un ambiente intestinal bajo en gérmenes durante un tiempo prolongado durante una epata clave de la neurogénesis?

Pues resulta que hay investigaciones que muestran que el intestino puede influir en el desarrollo neuronal local en los ratones en pleno desarrollo, por lo que un impacto en la neurogénesis es, al menos teóricamente, posible. También, un estudio en ratones encontró que la neurogénesis deteriorada debido al estrés podría mejorarse mediante la administración de un probiótico.

¿Qué más influye en la permeabilidad de la barrera hematoencefálica?

Mientras que una falta de microbios intestinales se relaciona con aumento de la permeabilidad, hay muchos otros factores que también aumentan la permeabilidad de la barrera, por ejemplo, el aumento de amoníaco durante la insuficiencia hepática o los altos niveles de proteína C-reactiva, además del alcohol.

Esto es en ratones, pero ¿Qué pasa en humanos? Es evidente que estudios como los realizados en ratones no son posibles éticamente, en humanos, pero todo parece indicar que serían similares.

¿Qué es importante destacar?

Que la microbiota intestinal la hemos modificado drásticamente con las nuevas dietas en los países industriales y su acción deletérea sobre la barrera hematoencefálica puede ser uno más de los factores que inciden en la alta prevalencia de enfermedades mentales en nuestra civilización al afectar a la neurotoxicidad de muchos químicos frente a los que estábamos protegidos.

MICROBIOTA Y ENFERMEDADES MENTALES

Una vez que he comenzado a escribir sobre la microbiota, no me resisto a hablar de su relación con una de las patologías que será "estrella negra" en los próximos años (si la naturaleza nos permite seguir destrozando el planeta), se trata de las enfermedades mentales.

Sabemos que la inflamación crónica de bajo grado provoca (de forma circular) un aumento de las citocinas inflamatorias en el sistema nervioso central a través de la activación de la microglía cuya activación crónica puede comprometer el funcionamiento neuronal poniendo en marcha una cascada proinflamatoria. No olvidemos que las células de la microglía expresan moléculas que tienen por objetivo eliminar células dañadas o infectadas y a agentes patógenos que pudieran ser perjudiciales; sin embargo, estas moléculas también pueden dañar a neuronas sanas. En este sentido, recordemos que se considera que la reina de las enfermedades mentales graves, la esquizofrenia, es una suma de: Antecedentes genéticos (predisposición), estrés infantil → daño neuronal, muerte de neuronas que se pone de manifiesto en la "poda neuronal" de la adolescencia en forma de mal aprendizaje y funcionamiento mental alterado, lo que conduce a "explicaciones" patológicas del cerebro → delirio y

posteriormente más daño y más déficit. Finalmente, apagamos zonas cerebrales con fármacos sedantes, hasta cronificar la situación (y nos quedamos tan panchos).

Por el contrario, los estudios experimentales han demostrado que la administración de bacterias probióticas puede aumentar los niveles de triptófano, y alterar la dopamina y el ciclo de la serotonina en la corteza frontal y el sistema límbico. Del mismo modo, esos probióticos asociados a ingestas de ácidos grasos n3 mejoran parámetros relacionados con la cognición, estado de ánimo y persistencia de ideas delirantes en pacientes.

La vía de investigación abierta es cómo podría iniciarse la inflamación crónica y lo que tiene que ver el intestino en esto; y en este sentido, sabemos que una dieta occidentalizada, plena de alimentos altos en grasa y azúcar, produce un revestimiento intestinal más poroso, cuyas consecuencias incluyen el acceso sistemático a los antígenos de los alimentos, toxinas ambientales y los componentes estructurales de los microbios, tales como las endotoxinas (lipopolisacáridos (LPS)). Las endotoxinas tales como LPS pueden disminuir la disponibilidad de triptófano y de cinc, lo que influye negativamente en la neurotransmisión, pueden también, elevar la inflamación y estrés oxidativo. Las prácticas alimentarias actuales provocan elevaciones de los LPS. Por ejemplo, las bifidobacterias y otros microbios beneficiosos pueden evitar el flujo de salida de LPS en la circulación sistémica, reduciendo la reactividad a la endotoxina.

Una de las cosas que me chocó hace unos años fue la conexión que hacía un psiquiatra norteamericano entre la leche y el autismo y la esquizofrenia. La curiosidad me hizo avanzar en el tema y escribir un artículo al respecto que se puede leer en el siguiente enlace: Péptidos opiáceos. Comprobé, entonces, algo que supuso un gran avance, pero también una tremenda decepción, los genes no son necesariamente determinantes en la aparición de la enfermedad en muchos casos. Necesitan factores ambientales que hagan que se expresen, dando nacimiento a la epigenética. La vulnerabilidad genética, asociada a factores desfavorables, conduce a la enfermedad.

En este sentido, la dieta es uno de los factores ambientales más determinantes, tal como demuestra su relación con múltiples padecimientos actuales. Un intestino permeable a péptidos neuroactivos —contenidos en alimentos tan comunes como algunos lácteos-, hace que se genere citotoxicidad celular a nivel cerebral, y eso es nefasto en un órgano tan complejo como el cerebro del "sapiens".

¿Qué podemos hacer para evitar esa epigenética adversa?

Pues ahí es donde intervienen nuestros aliados los microbios que conviven con nosotros en una relación simbiótica favorable generada a través de cientos de miles de años de evolución. Crear una microbiota adecuada puede ser clave, por ejemplo, la suplementación con Bifidobacterium parece atenuar una respuesta de estrés exagerada y consigue mantener niveles adecuados de factor neurotrófico derivado del cerebro (BDNF), clave en la recuperación de la enfermedad mental en todos sus grados y categorías. En este sentido, cabe destacar que incluso la inflamación crónica leve del tracto gastrointestinal puede provocar ansiedad y disminuir la producción de BDNF en los animales. Al contrario, la suplementación con Bifidobacterium también proporciona protección sistémica contra la peroxidación de lípidos y disminuye la actividad de la monoaminooxidasa cerebro, con lo que podría aumentar los niveles intersinápticos de neurotransmisores.

Un pequeño estudio controlado con placebo de imágenes por resonancia magnética funcional (fMRI) ha demostrado que el consumo de un mes de un alimento fermentado que contiene Bifidobacterium animalis subsp lactis , Streptococcus thermophilus , Lactobacillus bulgaricus y Lactococcus lactis subsp lactis puede influir en la actividad del cerebro, lo que ha generado un entusiasmo importante ya que hasta el momento no hay ninguna publicación que demuestre que la ingesta de bacterias probióticas solas (o los cambios inducidos por la dieta en las bacterias comensales) puede influir en la actividad del cerebro humano.

Estos nuevos descubrimientos justifican un hecho que me sorprendió cuando comencé a estudiar el mundo de las enfermedades mentales en relación con la dieta. Los pacientes de lugares como aldeas en la India, diagnosticados de enfermedad mental grave, tenían mejor pronóstico que jóvenes tratados en hospitales modernos y sometidos a tratamiento con fármacos de última generación (y carísimos, por cierto).

"Si tienes un problema cardiovascular, preferirías ser un ciudadano de Los Angeles antes que de India", dijo hace unos años Benedetto Saraceno, director del departamento de salud mental y abuso de substancias en la sede de la Organización Mundial de la Salud OMS en Ginebra. "Si tuviera cáncer, me gustaría que me trataran en Nueva York antes que en Irán. Pero si tuviera esquizofrenia, no estoy seguro dónde preferiría ser tratado, si en Los Angeles o en India".

Saquemos nuestras propias conclusiones:

Joven de nuestro entorno social, perteneciente a una familia de clase media, diagnosticado de esquizofrenia tras una crisis a los veinte años que requirió internamiento durante un mes. La medicación le produce sedación, cansancio, sobrepeso y por ello comienza a cambiar sus hábitos sociales. Le cuesta relacionarse, no mantiene a sus amistades (que por otra parte se encuentran ante una persona muy diferente a la conocida). No puede mantener los estudios y se recluye en casa, apenas hace otra cosa que fumar y ver TV. Sus padres entran en una de las asociaciones de familiares de enfermos mentales, le llevan a talleres de aprendizaje de labores artesanales y se pasa el día entre el local de la asociación (recluido como un enfermo) y la casa (en donde apenas es capaz de soportar el estrés de las relaciones familiares hundidas tras el diagnóstico del hijo o hermano). Poco a poco va adquiriendo el carácter de enfermo crónico (obeso, fumador, con déficit cognitivo). Come mucho y muy mal, toma alimentos dulces (en muchos casos asociados a un efecto de los propios fármacos), no hace ejercicio y apenas se relaciona. Al final, engrosará la lista de fallecidos por las alteraciones metabólicas asociadas a la esquizofrenia, habiendo vivido (más bien malvivido, diría yo) una media de quince años menos que la población general -y eso en el caso de mantener la medicación, cosa que el 50% de los pacientes no cumple a los cinco años de haber sido diagnosticados-.

Raipur Rani, India. El psiquiatra Naren Wig cruzó una alcantarilla abierta, bordeó una charca y, en la polvorosa tarde, vio algo milagroso. Krishna Devi, una mujer que él había tratado durante años por esquizofrenia, estaba sentada en el patio, rodeada de imágenes religiosas, expuestos ladrillos de la pared y secando ropa. Hace tiempo que Devi había dejado de tomar la medicación, pero su conversación articulada y fácil sonrisa eran un elocuente testimonio de que se había recuperado de una debilitante

enfermedad. Pocos pacientes de esquizofrenia en Estados Unidos tienen tanta suerte, incluso después de años de tratamiento. Pero Devi tenía recursos secretos: una familia cariñosa y una aldea acogedora que nunca la excluyó de ningún evento social, obligaciones familiares o trabajo.

Yo añado... Una dieta adecuada, ejercicio físico, apoyo social.....

Bien, hagamos un sencillo cálculo

El Libro Blanco para estudio socioeconómico del coste social de los trastornos de salud mental en España, cifra en 3.373,47 euros el coste de todos los trastornos mentales en nuestro país. Los costes directos representarían el 38,8 %(1.311,69 euros) y los indirectos el 61% (2.061,77 euros). Dentro de los costes directos, las consultas ambulatorias suponen el 10,4% (352,22 euros), los gastos de farmacia el 7,8%(263,50 euros), la hospitalización el 20,6% (695,97 euros) distinguiendo entre la hospitalización corta con un 3% (98,31 euros) del total de costes por hospitalización y hospitalización larga con un 17,7% (597,66 euros) del total. Entre los costes indirectos, la mortalidad prematura representa el 21,6% (730,12 euros), la incapacidad temporal el 8,7% (294,50 euros), la invalidez el 21,8% (733,82 euros) y la baja productividad el 9% (303,33 euros).

La esquizofrenia representa el 1,9% del presupuesto sanitario total en los países europeos. La situación de dependencia que sufren los pacientes esquizofrénicos, y que hace necesaria la asistencia de familiares y cuidadores, supone un coste anual de 7.000 euros por persona y año en España,

Ante un panorama como éste ¿Cuántos recursos se destinan a crear el entorno social, familiar, laboral y de cuidados dietéticos y ejercicio físico? ¿Cuál es el porcentaje? ¿El 0,01%? Terrible

¿Quién es el responsable de planificar, estudiar, proponer recursos, etc etc en este país? Pues al responsable ese le quitaba yo el sueldo y le ponía a fregar retretes (cosa que haría fatal, seguro).

Z) Entre tanto. ¿podríamos tomar una dieta más cercana a la dieta paleolítica? (Cuando salta la liebre, no hay galgo cojo).

Vamos a identificar las claves para intentar acercarnos a ese tipo de dieta teniendo en cuenta las circunstancias actuales; para ello estudiaremos cada uno de los grandes nutrientes (macronutrientes) de la dieta omnívora humana y veremos la interpretación paleolítica y tecnológica de manera que nuestra dieta sea lo más cercana posible a una "dieta saludable".

2. MACRONUTRIENTES

A) CARBOHIDRATOS O GLÚCIDOS Y FIBRA

Quizás sea el punto más sencillo, ya que en la dieta paleolítica apenas existían, ya que el aparato masticatorio y el intestino humano no estaban preparados para alimentarse de alimentos ricos en hidratos de carbono (cereales).

Los <u>carbohidratos</u> (glúcidos o azúcares), son una familia de moléculas compuestas de carbono, hidrógeno y oxígeno. Aportan 4 kilocalorías por gramo de peso seco (una kilocaloría es una unidad de energía que se define como la cantidad de calor necesario para elevar la temperatura de 1 gramo de agua). Son, por tanto, un alimento fundamentalmente energético, de modo que cuando no se necesita la energía que producen, una pequeña parte se almacena en hígado y músculos como glucógeno (un complejo de moléculas de glucosa) y el resto se acumula en el organismo como tejido adiposo, es decir, grasa.

Observemos un detalle muy importante, el hombre paleolítico tomaba pocos carbohidratos, y los que tomaba eran derivados de la ingesta de glucógeno (en los animales de caza), algunos monosacáridos de las frutas y de polisacáridos con almidón (verduras) y sin almidón (fibra); sin embargo realizaba una gran actividad física y tenía unos grandes requerimientos de energía.

El hombre actual toma muchos más carbohidratos, que en su mayoría derivan de polisacáridos con almidón (patatas, cereales...) y disacáridos (azúcar común) y sin embargo necesita mucha menos energía. ¿Resultado? ¿En que se transforman los carbohidratos que no se utilizan como energía? Grasas y obesidad

Quiero hacer un inciso en este punto, ya que aunque le resulte un poco pesado al lector poco aficionado a las palabrejas técnicas, es muy demostrativo de la importancia de lo que comentamos en términos de dieta evolutiva. Se trata de un carbohidrato perteneciente a los llamados azúcares ácidos, que es el ácido siálico (se trata de un carbohidrato de 9 carbonos, componente estructural y funcional de vital importancia en los gangliósidos cerebrales y que desempeña un papel primordial en la transmisión nerviosa, el desarrollo de la memoria y la comunicación entre células). Pues bien, existe una familia de compuestos pertenecientes a este grupo llamada ácido Nglicolilneuramínico (Neu5Gc) que tiene una especial relevancia ya que es una de las pocas biomoléculas que diferencia al ser humano de los primates superiores. La cuestión es que nosotros no podemos formar esa sustancia porque no tenemos la enzima que la forma (el gen lo tenemos, pero en algún momento hace millones de años dejó de expresarse), eso significa que no existía en el tejido de los homínidos, y si en el de los monos como el chimpancé (este tema tiene una gran importancia paleoantropológica porque es de las pocas diferencias entre los primates y nosotros). Pues bien, los homínidos no lo tenían, mientras que en nosotros se encuentra en pequeñas cantidades. Parece que el origen de esta presencia pudiera ser la dieta, ya que es muy mal digerida y la poca que se absorbe, se acumula en los tejidos; lo malo es que es una sustancia con poder antigénico y puede estar relacionado con el tipo de enfermedades que ahora suponen una auténtica plaga, las enfermedades autoinmunes e inflamatorias.

Muy bien, pues tenemos investigaciones recientes que confirman este hecho y van más allá al relacionar la presencia de este compuesto con el desarrollo de tumores.

Y es que el cuerpo ve a las carnes rojas como un invasor externo que debe ser eliminado, provocando la emisión de una reacción inmunitaria tóxica que produce cáncer. De hecho, los investigadores siempre se han cuestionado cómo los carnívoros pueden tener una alimentación basada en una dieta alta en carnes rojas sin tener ninguna consecuencia adversa para la salud. Ahora se ha descubierto que el cerdo, el vacuno y el cordero contienen el Neu5Gc que se produce naturalmente por otros seres carnívoros pero no por el ser humano. Al no tener relación con ese compuesto previa a la dieta, el organismo humano reacciona como ante un agente potencialmente agresivo, desencadenando una respuesta inmunitaria y produciendo anticuerpos que a su vez generan inflamación y eventualmente cáncer.

En efecto, los tejidos tumorales humanos tienen mucha mayor cantidad de este compuesto, y eso indujo a grupos de investigadores a experimentar con modelos de ratón especialmente criados que carecían de la molécula Neu5Gc (imitando los seres humanos). En los ratones que recibieron anticuerpos, se generó la inflamación, y los tumores crecieron con mayor rapidez. Por el contrario, en los ratones de control que no fueron tratados con anticuerpos, los tumores eran menos agresivos. Los científicos de la Universidad de California comprobaron, entonces, que los ratones que se encontraban genéticamente alterados para no producir esta azúcar, desarrollaron tumores al momento de ingerirla, relacionando la presencia de Neu5Gc en la dieta, la inflamación de bajo grado crónica y la génesis de tumores.

¿Por qué eliminamos ese ácido siálico? Pues en su momento porque nos confería una ventaja evolutiva (Enlace)

¿Saben que alimentos contienen una cantidad significativa de esta sustancia?

Pues fíjense en las cantidades de Neu5Gc que depositarían distintos alimentos si se ingiriesen a diario: 10.000 microgramos para la carne de vacuno; 5.000 para la carne de cerdo o cordero; 5.000 para el queso de cabra; 800 para el salmón; 700 para la leche de vaca. Mientras que tan sólo sería de 20 a 30 para la carne de pollo y pavo, atún y bacalao, siendo 0 para frutas, hortalizas y legumbres.

Es para tener en cuenta nuestros bruscos cambios dietéticos en relación con nuestra evolución ¿No?

TIPOS DE CARBOHIDRATOS

Los carbohidratos complejos, menudo llamados alimentos "ricos en almidón", incluyen:

- Los panes cereales integrales (de aparición reciente en nuestra evolución)
- Las legumbres.

Monosacáridos	Glucosa, fructosa, galactosa, <u>manosa</u>
Disacáridos	Sacarosa (azúcar de mesa), lactosa, maltosa
Oligosacáridos	Maltodextrina, fructo-oligosacáridos
Polisacáridos	Almidón: Amilosa, amilopectina
	Sin almidón: Celulosa, pectinas, inulina

Las verduras ricas en almidón

Tabla IV.- Diferentes tipos de hidratos de carbono. Los de alta carga glucémica son los mono y disacáridos. Los no digeribles (fibra) son la celulosa, pectinas e inulina

Los carbohidratos simples que contienen vitaminas y minerales se encuentran en forma natural en:

- Las frutas
- La leche y sus derivados (de aparición reciente en nuestra evolución)
- Las verduras

Los carbohidratos simples también se encuentran en los azúcares procesados y refinados como:

- Los dulces (de aparición muy reciente en nuestra evolución)
- El azúcar de mesa (de aparición muy reciente en nuestra evolución)
- Los jarabes (de aparición muy reciente en nuestra evolución)
- Las bebidas refrescantes y energéticas (de aparición muy reciente en nuestra evolución)

Los carbohidratos sufren un proceso digestivo que los transforma en glucosa. Las moléculas de glucosa encierran una gran cantidad de energía química (una cucharada de glucosa contiene la suficiente energía como para elevar la temperatura de un litro de agua unos 15 °C.

También podemos obtener energía de las grasas y de las proteínas, pero una parte de nuestro organismo depende, exclusivamente, de la glucosa como fuente energética; nuestro sistema nervioso, nuestro cerebro.

Esta dependencia tan fuerte hace que mantener estable el nivel de glucosa en sangre sea un objetivo tan importante para nosotros que empleamos dos hormonas para su regulación; la insulina y el glucagón. La disminución de producción de insulina da lugar a una de las enfermedades más graves; la diabetes.

La ingesta de carbohidratos supuso una alteración sustancial con el descubrimiento y manejo del fuego (cocción) y de la agricultura. Al comenzar a cosechar y reunir en rebaños especies domesticadas, hace unos 10.000 años, el antaño nómada cazador, pudo almacenar grandes cantidades de alimentos vegetales, tales como semillas y tubérculos, y disponer para su consumo de un suministro de carne y leche. Fabricaron molinos para triturar, en primer lugar cereales salvajes y, posteriormente, cereales cultivados.

La disponibilidad de estos suministros confirió al ser humano una cierta seguridad de poder alimentarse a largo plazo, mientras que con el estilo de vida de los primeros cazadores-recolectores no era posible disponer de un remanente importante de alimentos. Al disponer de mayores suministros de alimentos, el hombre agrícola pudo establecerse en pueblos y tener más hijos (pero recordemos el tributo que esta dependencia alimenticia supuso en la hambruna irlandesa).

El problema surgió al aparecer los llamados hidratos de carbono simples, es decir, el azúcar. Este alimento es muy reciente, apareciendo hacia el año 600 probablemente a raíz de la manipulación de la caña de azúcar en el imperio persa. En sus comienzos, era una rareza y llegaba, incluso, a ser utilizada como una droga.

La presencia del azúcar en nuestra cultura es tal, que su consumo ha pasado de apenas 5 kg por habitante y año, a más de 60 en la actualidad.

¿Qué nos ofrece el azúcar y los alimentos que lo contienen de forma predominante, como bollería, tartas, postres, bebidas etc.?

Pues ahí lo tenemos, en el gráfico generado a partir de un programa informático que representa los valores del azúcar común (sacarosa) tal como publica la base de datos de alimentos del Agricultural Research Service de los Estados Unidos de América. Todo ceros en todos los nutrientes excepto en los carbohidratos y en las calorías, claro. Es decir, calorías vacías.

Ese es el alimento que comemos ahora al tomar bollería, pasteles, bebidas azucaradas, alimentos endulzados (chocolates, etc etc) (Figura 6)

El equilibrio en la ingesta de carbohidratos tiene, pues, dos soluciones:

Macronutrients		%DV per 200 Cal	ovins
Total Fat	0		-/4/6/2
Saturated Fat	0		
Cholesterol	0		
Total Carbohydrate	17	=	
Dietary Fiber	0		
Protein	0		
Vitamins		%DV per 200 Cal	ories
Vitamin A	0		П
Vitamin C	0		
Vitamin D	N		
Vitamin E	0		
Vitamin K	0		
Thiamin	0		
Riboflavin	1		
Niacin	0		
Vitamin B6	0	1 1 1 1	
Folate	0		
Vitamin B12	0		
Pantothenic Acid	0		
Minerals		%DV per 200 Cal	ories
Calcium	0		
Iron	0		
Magnesium	0		
Phosphorus	0		
Potassium	0		
Sodium	0		
Zinc	0		
Copper	0		
Manganese	0		
Selenium	0		

	ein Q			^	-	T COLUMN	,	÷
Essential Amino Acids		96	01	Op	tima	il mi	g/ g	
Tryptophan	0 :							
Threonine	0 1							
Isoleucine	0 1							
Leudne	0							
Lysine	0 1							
Methionine+Cystine	0 1							
Phenylalanine+Tyrosine	0 1							
Valine	0 1							
Histidine	0.1							

Figura 6.- Contenido en nutrientes de 100 g de azúcar (sacarosa)

SOLUCIÓN PALEOLÍTICA

Disminuir, hasta eliminar en la medida de lo posible, el azúcar y derivados de nuestra alimentación. Los carbohidratos no deben superar el 40% de las calorías totales y, deben proceder en su mayoría de los vegetales y hortalizas y de las frutas.

En definitiva, no tomar azúcares y disminuir el consumo de cereales y tubérculos.

Esta solución es poco realista, ya que en nuestra cultura actual se utiliza el azúcar para todo, además, los cereales constituyen una fuente primordial de las calorías que ingerimos. Tan sólo determinados colectivos pueden estar lo suficientemente sensibilizados como para seguir una dieta de restricción total de azúcar y derivados (enfermos, deportistas de alto nivel, modelos...)

SOLUCIÓN APROVECHANDO LA ACTUAL TECNOLOGÍA

Acostumbrarse a tomar los alimentos menos endulzados (guerra al chupete untado en azúcar; a los refrescos para los niños; a los dulces presentados como postre). Aumentar la fibra mediante preparados ricos en fibra soluble e insoluble. Estudiar la llamada "carga glucémica de los alimentos" y tomar los de menor carga.

La respuesta glucémica de los alimentos es un tema de vigente actualidad muy estudiado a raíz de las investigaciones en pacientes con diabetes.

Los monosacáridos y disacáridos se denominan también azúcares simples, por su sabor dulce y el tamaño de su molécula. Los polisacáridos se llaman carbohidratos complejos al estar constituidos por cadenas de mono y disacáridos

Carbohidratos simples son la glucosa, fructosa, sacarosa (azúcar de mesa) lactosa (azúcar de la leche). Carbohidratos complejos son los almidones (patatas, arroz, pasta, cereales...) y la fibra.

Antes se pensaba que un diabético debía tomar carbohidratos complejos para evitar la hiperglucemia que producen los simples. Hacia los años 80 se descubrió que la respuesta glucémica dependía a su vez de una serie de factores tales como la estructura del propio hidrato de carbono, la velocidad de vaciamiento gástrico o la accesibilidad de

los carbohidratos a las enzimas digestivas, factores que condicionan la rapidez de la absorción intestinal. De este modo, la facilidad mayor o menor al ataque enzimático del carbohidrato está influenciado por la técnica culinaria empleada; mientras que el vaciado gástrico está más relacionado con la integridad del gránulo de almidón y el grado de gelatinización (Tabla V).

Naturaleza del componente monosacárido	Glucosa, Fructosa o Galactosa
Naturaleza del almidón	Amilosa y Amilopectina Interacción almidón-nutrientes Almidones resistentes
Proceso de cocinado	Grado de gelatinización del almidón Tamaño de las partículas Forma del alimento Estructura celular
Otros componentes de la comida	Grasas y proteínas, fibra presente, Antimutrientes, ácidos orgánicos

Tabla V.- Factores que afectan a la carga glucémica de un alimento o grupos de alimentos al tomar una comida.

Se vio que era un error pensar que el mayor o menor índice glucémico simplemente dependía de si se trataba de un carbohidrato simple o complejo. De hecho, algunos carbohidratos complejos como las patatas copos de maíz y trigo producían un aumento de la glucemia mayor que algunos carbohidratos simples como la fructosa.

En ese momento se estudió el <u>índice</u> glucémico de los alimentos (IG) (Figura 7) y se elaboró una tabla que incluía no solo alimento por alimento, sino platos y comidas, ya que la interacción entre los alimentos también modifica su índice glucémico.

Ahora bien, el índice glucémico refleja con eficacia la capacidad de un carbohidrato para provocar una respuesta glucémica, pero

Los panes y granos		Almidones		Bebidas	Т
	-	Almidones		Bebidas	+
Arroz, instantáneo	91	Patatas cocidas	83	Bebidas para deportistas	t
Pan integral blanco	70	Patatas instantáneas	83	Bebidas suaves	Ī
Pan de trigo	69	Patatas en puré	73	Zumo naranja	Ī
Harina de maíz	68	Zanahorias	71	Zumo de manzana	Ť
Arroz Blanco	56				Ī
Arroz Integral	55	Legumbres		Leches	T
Pan de grano	45	N 1000			İ
Espagueti blanco	41	Judías cocidas	48	Helados	İ
Espagueti integral	37	Guisantes	33	Yogur bajo en grasa	t
Centeno	34	Judías	31	Leche desnatada	t
Cebada	25	Lenteias	29	Leche entera	t
		Habichuela	27	Lancotto Control Control	_
Frutas					
		Azúcares	71 - 4		
Sandía	72				
Piña	66	Miel	73		
Pasas	64	Sacarosa	65		
Plátano	53	Lactosa	46		
Jva	52	Fructosa	23		
Varanja	43				
Pera	36	Comida ligera			
Manzana	36				
		Palomitas de maíz	55		
Cereales del desayuno		Pasteles de arroces	82		
		Habichuelas de jalea	80		
Copos de maíz	84	Pan de maíz	73		
Copos de arroz	82	Barra de dulce	68		
Jvas pasas	80	Galletas de trigo	67		
Harina de trigo	69	Galletas de avena	55		
Nueces	67	Patatas chips	54		
Name and Address of the Owner o	61	Chocolate	49		
Harina de avena	61	Pastel plátano	47		
Harina de avena Gachas de avena Muesli	52	Cacahuete	14		

la magnitud de ésta depende, muy especialmente, de la cantidad de dicho carbohidrato. Se introdujo, entonces, el concepto de "carga glucémica".

La Carga Glucémica (CG), que se calcula multiplicando el índice glucémico de un alimento por la cantidad de hidratos de carbono que posee y dividiéndolo por 100. CG = IG x % carbohidratos por porción

Por ejemplo:

Una manzana tiene un IG de 38 y contiene aproximadamente 16 gramos de hidratos de carbono por porción. Su carga glucémica es: $(38 \times 16) / 100 = 6,08$.

Un plátano tiene un IG de 52 y 23,09 gramos de hidratos de carbono por porción. Por lo tanto, su CG es: $(52 \times 23,09) / 100 = 12$

Esto significa que la respuesta glucémica será dos veces mayor si tomamos plátano que manzana. Además, la demanda insulínica para metabolizarlo también será dos veces

mayor (Figura 8).

Este aspecto de la demanda de insulina que genera el aumento de la glucosa en sangre es muy interesante. La insulina es una hormona segregada por el páncreas cuya función es aumentar el consumo de glucosa por el organismo cuando se ha producido una comida y hay disponibilidad de ella. La glucosa es un gran combustible, es de rápida utilización, genera pocos residuos (agua), y tiene una gran eficiencia pero energética, tiene dos grandes problemas. El primero es que si baja demasiado, el cerebro sufre su ausencia de modo dramático. El segundo es que para compensar esas posibles bajadas ante la ausencia de ingesta, podemos no almacenar cantidades tal altas como ocurre con las grasas. En el caso de la glucosa, el

		7 22 27 23	12 122	
1994	Bajo IG	Medio IG	Alto IG	
	Manzanas (6,38)	Zanahorias (3,47)	1	
	Fresas (1,40)	Maiz dulce (9,54)	Remolacha (5,64)	
	Guisantes (8,28)	Guisantes hervidos (7,48)	Palomitas de maiz (8,72	
	Uvas (8,46)	Lentejas hervidas (6,30)	Sandia (4,72)	
	Judias riñón (7,28)	Melón (4,65)	Pan integral (9,71)	
Baja CG	Naranjas (5,42)	Piña (7,59)	Pan refinado (10,70)	
	Melocotones (5,42)	Kiwi (7,52)		
	Cacahuetes (3,14)			
	Peras (4,38)			
	Lentejas secas (5,26)			
	Zumo de manzana (11,40)	All Bran (32,42)	1	
	Plátanos (12,52)	Patatas (12,57)	Cheerios (15,74)	
Media CG	Fettucini (18,40)	Batatas (17,61)	Trigo (35,72)	
	Zumo de naranja (12,50)	Arroz integral (18,57)	Trigo integral (32,69)	
	Arroz cocido (17,47)	arrozmicegraf (10,57)		
	Macarrones (23,47)	Conscous (23,65)	Donuts (38,76) Sacarosa (65,65)	
Alta CG	Espaguetti (20,42)	Arroz blanco (23,64)	Cornflakes (73, 84)	
		1	Glucosa (96.8, 97)	

Figura 8.- Comparación de Índice Glucémico y Carga Glucémica en determinados alimentos de referencia. Entre parêntesis (Carga Glucémica, Índice Glucémico). Por ejemplo la manzana tiene (6,88), es decir, Carga Glucémica = 6, Îndice Glucémico = 88

Adaptado de Foster-Powell K and Miller JB, 1995)

almacenamiento se realiza en forma de un conjunto de moléculas de glucosa (glucógeno) y agua y no llega a suponer más del 6% del peso total del hígado y del 1% del músculo, lo cual le da autonomía al organismo para escasas horas.

Nuestra especie ha evolucionado manteniendo un órgano especialmente sensible a la glucosa, ya que es su fuente energética primordial, se trata del cerebro. Ya hemos comentado que es un lujo evolutivo que se ha mantenido porque ha generado toda una serie de ventajas que han superado los inconvenientes. Pues el primer inconveniente es la dependencia de la glucosa, lo que lo convierte en muy vulnerable a las disminuciones de glucosa que pudieran producirse cuando se realiza un esfuerzo físico intenso (por ejemplo, cazar). Para ello nuestro organismo ejerce un control muy severo sobre la glucosa, dedicando dos hormonas a su control (cuando sube la glucosa tras una comida, se segrega insulina, y cuando baja, glucagón).

Para saber la importancia de los efectos de la disminución de la glucosa (hipoglucemia) en el organismo, baste tener en cuenta que si se le presentara a un médico la situación de un coma en un diabético (que puede ser debido a un exceso o a un déficit de glucosa); la acción inmediata en inyectar glucosa, ya que el problema más grave es, sin duda, el déficit prolongado de glucosa en sangre; luego, con más tiempo y tras el resultado del análisis de sangre, si era un problema de hiperglucemia, entonces se pone insulina..

La insulina ejerce, pues, acciones de utilización energética de glucosa y almacenamiento en hígado y músculos, aumenta la síntesis de triglicéridos (tejido adiposo) y la síntesis de proteínas (una de las características de los niños diabéticos sin tratar es la delgadez).

El problema surge cuando se produce lo que se llama "resistencia a la insulina". Esto se debe a que el organismo no reacciona a la insulina circulante y necesita más y más, lo

que va agotando al órgano productor (páncreas) acabando en una forma de diabetes llamada del adulto o tipo II.

Ahora sabemos que todas estas alteraciones metabólicas tienen que ver con dos factores de forma muy directa, la mala alimentación y la ausencia de actividad física (es decir, ir contra nuestros genes). Esa mala alimentación sería la que nos lleva a consumir alimentos que producen constantemente picos de insulina (elevaciones de insulina en plasma como respuesta a la ingesta de alimentos de alto índice glucémico). Por ello, en clínica también es importante el llamado índice insulinémico, ya que hay que intentar no comer alimentos que tengan alto el índice insulinémico. Existen diversas enfermedades que se relacionan con esos aumentos constantes de insulina, como el síndrome de ovario poliquístico, miopía, acné vulgar, síndrome metabólico etc.

En general, los alimentos que tienen alto índice glucémico, también tienen alto el índice insulinémico, aunque hay excepciones, alguna muy notable, como ocurre con la leche. La leche entera tiene un índice glucémico de alrededor de 41 y un índice insulinémico de alrededor de 145. La leche descremada tiene un índice glucémico de 37 y un índice insulinémico de 140. ¿Por qué? Pues parece que debido a la sinergia que se produce entre su azúcar natural (lactosa) y determinados aminoácidos de los que se conoce su efecto insulinotrópico (aumentan la insulina) como son los llamados aminoácidos ramificados (leucina, isoleucina y valina). ¿Y de que nos sirve saber eso? Pues es importante, ya que cuando hay un aumento de insulina y se ingieren ácidos grasos de cadena larga de la serie omega 6, se generan unos componentes proinflamatorios de cierta importancia (prostaglandinas de las series 2 y 4). En definitiva, en contra de la propaganda oficial, un consumo exagerado de lácteos no es siempre beneficioso (por ejemplo en pacientes con enfermedades de componente inflamatorio).

Solo hay un caso en el que se ha demostrado que los alimentos con alta carga glucémica e insulinémica pueden ser beneficiosos, se trata de los deportistas de fondo que acaban de terminar un entrenamiento en el que han agotado todo el glucógeno almacenado. En esa situación, la restauración más rápida y completa del glucógeno se consigue si se suministran, lo antes posible, alimentos con alta carga glucémica. Aquí si se puede utilizar esa capacidad anabolizante de la leche descremada para tomar después de un esfuerzo físico de larga duración (en este caso la leche sería muy beneficiosa). Aun así, este concepto está sometido a matiz, ya que si se les deja de vez en cuando pasar "hambre de carbohidratos" tras el entrenamiento, aumenta la expresión de un transportador de la glucosa dependiente de insulina (GLUT4) a nivel muscular, lo que sería muy favorable en deportistas que utilizan la glucolisis de forma importante. Un deportista puede ayudarse mucho de una alimentación científica; pero cuidado porque hay que ser un gran especialista o se corre el riesgo de perjudicar en vez de mejorar.

La llamada "dieta Zona" está basada en el concepto de disminuir los carbohidratos de la dieta (actualmente representan entre el 50 y 55% de las calorías totales) hasta un 40%, disminuyendo azúcares, cereales y legumbres y bajando el consumo de lácteos. Con este tipo de dieta se consigue disminuir determinadas patologías de componente inflamatorio. No obstante, cuidado, porque esta dieta asume que las personas que la siguen no hacen ejercicio físico, en caso contrario tiene grandes errores de concepto.

LOS CEREALES

Los cereales pertenecen a un grupo de herbáceas que son las gramíneas. Los más utilizados en la alimentación humana son el trigo, el arroz y el maíz, aunque también son importantes la cebada, el centeno, y la avena. Contienen almidón, que es el componente principal de la alimentación humana desde nuestra etapa de agricultores y ganaderos.

Principales formas de consumo de cereales:

- -En granos: arroz, maíz, trigo (a menudo precocido), cebada, avena.
- En forma de harina: trigo, centeno, espelta, para la pastelería (pan, pastas) y tortas;
 - Como sémola: trigo duro (cuscús pasta), maíz (polenta)
 - Copos: avena; maiz
- Pasta: trigo duro, centeno, espelta, arroz. El trigo, fundamentalmente, pero también la cebada, el centeno y la avena o cualquiera de sus variedades o híbridos (espelta, escanda, kamut..., contienen glúten (representa un 80% de las proteínas del trigo). El glúten está compuesto de gliadina y glutenina.

En patología digestiva, la ingesta de trigo y, por tanto, de glúten, está asociada a tres enfermedades importantes

- 1) La alergia al trigo.
- 2) La forma autoinmune (que incluye la enfermedad celíaca, la dermatitis herpetiforme y la ataxia por gluten)
- 3) La sensibilidad al gluten no celíaca.

La enfermedad celíaca no es una enfermedad exclusivamente digestiva sino de clara naturaleza autoinmune y por tanto con afectación multisistémica, en la que se presentan síntomas muy variados. Además, una parte de enfermos celíacos son completamente asintomáticos a nivel digestivo, por períodos de tiempo prolongados. Aunque el diagnóstico final de la enfermedad celíaca debe ser histológico tras la realización de una gastroscopia con biopsias duodenales, según los expertos, la cápsula endoscópica puede aportar información crucial y es una técnica en uso cada vez mayor.

El problema surge en el entorno de lo que se llama "sensibilidad al glúten no celíaca" que era algo poco relevante para los clínicos porque no provocaba una sintomatología importante y no se asociaba a graves trastornos. Sin embargo, han ocurrido tres hechos que la han puesto en primera línea de vigilancia

- 1) El sedentarismo de la población y el sobrepeso, que han generalizado el concepto de enfermedades inflamatorias de bajo grado y han puesto en evidencia la dieta como elemento importantísimo del fenotipo en su acción facilitadora sobre la expresión de genes anómalos
- 2) La lenta manipulación genética a la que se ha sometido a los cereales a lo largo de los siglos XIX y XX, en los que la selección genética activa y la manipulación genética directa han modificado enormemente las variedades de trigo originales (Triticacee), pasando de unos pocos granos con escaso contenido en gluten a grandes cosechas de trigo muy enriquecidas con gluten (50% del contenido proteínico). Esta situación puede haber sido el detonante del gran aumento en la frecuencia de la enfermedad celíaca,

especialmente en poblaciones cuya herencia genética se deriva de grupos muy antiguos que no se adaptaron con éxito a tolerar esta proteína.

3) La exigencia de la sociedad de dietas saludables por encima de las de subsistencia típicas de épocas de guerra y destrucción.

En cuanto a las leguminosas (lentejas, habichuelas...), su introducción en nuestra dieta creció, asimismo, con la desaparición de nuestro nomadismo y gracias a los procesos tecnológicos de cocción. No obstante, algunas leguminosas, como la soja, tienen un consumo actual enorme debido a la producción en masa en cultivos gigantescos enormemente rentables. Así, durante la segunda mitad del siglo 20, la soja se convirtió en un cultivo extensivo y los subproductos de soja inundaron la industria de la alimentación, desde el aceite de soja, harina de soja, leche de soja, proteína de soja y lecitina, hasta chocolates suizos y en productos farmacéuticos. En este sentido, sabemos que el consumo generalizado de productos de soja procesados industrialmente se correlaciona estadísticamente con los niveles de obesidad (no se sabe exactamente por qué, pero puede ser por los fitoestrógenos, que son compuestos químicos no esteroideos similares a los estrógenos humanos, y con acción similar (efecto estrogénico) u opuesta (efecto antiestrogénico) a éstos).

FIBRA

El término fibra alimentaria no es un concepto unitario, ya que, en el mismo, se incluyen un gran número de fibras de origen vegetal. Entre ellas se encuentran la celulosa, la hemicelulosa, las gomas, las pectinas, el ácido fítico, la cutina, lignina y almidón no digerible (aproximadamente un 10% del almidón total). La mayoría son carbohidratos no digeribles (la lignina, cutina y ácido fítico no son carbohidratos pero están incluidos).

En términos generales tienen las características comunes de ser inatacables por los fermentos y enzimas digestivas aunque parcialmente si lo son por las bacterias del colon. Son osmóticamente activas, es decir, absorben agua y forman geles que aumenta fecal y favorecen el tránsito y la evacuación (efecto laxante).

Los cazadores recolectores tomaban más de 100 especies de frutas y vegetales, lo que les aportaba entre 20 y 30 g de fibra al día. En este momento, un ciudadano de nuestro país apenas llega a ingerir un 10%.

Aunque no es una división que separe a la fibra de forma absoluta, se habla de fibra soluble e insoluble.

Fibra soluble: En contacto con el agua forman un gel, fermentan en el colon, alargan el vaciado gástrico y enlentecen la absorción de glucosa. Se encuentra en legumbres, frutas (kiwis especialmente), frutos secos, algas marinas. En las naranjas se encuentra en la parte blanca que está entre la piel y la pulpa.

Fibra insoluble: No fermenta apenas. Tiene un mayor efecto laxante. Se encuentra en cereales integrales (salvado), legumbres, verduras y hortalizas.

Las fibras ingeridas con la alimentación o en forma de suplementos atraviesan todo el aparato digestivo sin sufrir digestión enzimática, ni por lo tanto, absorción. Sin embargo, una vez llegadas al intestino grueso, se encuentran gérmenes capaces de pasar los carbohidratos complejos a disacáridos y monosacáridos mediante una hidrólisis extracelular. Posteriormente, estos azúcares, tras penetrar en el interior de las bacterias, se desintegran completamente (más del 50% de la fibra de las frutas, vegetales y granos enteros se degrada en el colon).

Por otro lado, la fibra estimula el desarrollo de la flora intestinal aerobia frente a la anaerobia (lo cual resulta beneficioso ya que uno de los componentes de la anaerobia, el clostridium, se halla implicado en la formación de sustancias cancerígenas). Su fermentación forma ácidos grasos de cadena corta (responsables de generar gases y, por tanto, flatulencia), uno de los cuales, el butirato es alimento de las células del colon.

A la hora de la protección contra el cáncer colo-rectal, no todas las fibras poseen los mismos efectos, de modo que el salvado es más efectivo contra el de colon, mientras que las fibras contenidas en los vegetales y en las frutas son más eficaces en el del recto. El riesgo a padecer un cáncer de colon tiene cierta relación con la cantidad de fibra contenida en la dieta (quienes consumen menos de 7,5 gr al día,el riesgo es 2,3 veces superior que los que toman más de 15 gr).

El déficit de fibra altera la digestión y el metabolismo, aumentando la absorción de nutrientes (obesidad, aumento de la resistencia a la insulina, hiperlipemias), produce un metabolismo del colon alterado (enfermedad inflamatoria intestinal), enlentece el tránsito fecal (aumento de la presión con diverticulosis, apendicitis, hemorroides y cáncer de colon).

SOLUCIÓN PALEOLÍTICA

Tomar frutas como los cítricos quitando escasamente la capa de piel más superficial (lignina y cutina), comer insectos con caparazón (quitina), raíces y plantas (celulosa).

Es difícil, ya que aunque se están poniendo de moda algunos restaurantes en los que sirven insectos, no deja de ser un alimento de difícil aceptación. Por otro lado, la piel de las frutas acumulan los herbicidas, por lo que es peor el remedio que la enfermedad (salvo que sean frutas ecológicas).

SOLUCIÓN APROVECHANDO LA ACTUAL TECNOLOGÍA

Existen ya en el mercado alimentos integrales, por otro lado se añade fibra a lácteos y yogures e incluso se anuncian alimentos funcionales con el contenido de fibra de más del 50% de la aconsejada diariamente. También hay toda una moda de alimentos llamados "prebióticos" por ejercer de alimento a las bacterias saludables que colonizan a través de la administración de prebióticos como el yogur. En estos casos se dan fructooligosacáridos que es una fibra soluble a base de unidades de fructosa y que existe en algunos alimentos vegetales como la achicoria, la alcachofa, el espárrago, el ajo, la cebolla, el puerro, el tomate o el plátano, aunque en pequeñas cantidades. Ahora se integran en zumos y yogures dándoles las características de alimentos funcionales prebióticos. En este sentido, existe ahora una fibra soluble extraída del alerce, el arabinogalactano, que tiene una acción prebiótica careciendo (a dosis convencionales) del efecto fermentador con flatulencia que generan las otras fibras insolubles.

B) PROTEÍNAS

La proteína es el principal componente de los músculos, los órganos y las glándulas del organismo. Cada célula viva y todos los fluidos corporales, excepto la bilis y la orina, contienen proteínas. Su composición añade nitrógeno al carbono, hidrógeno y oxígeno de los carbohidratos, ésta es la razón por lo que al degradarse producen un componente añadido, la urea.

Las proteínas son moléculas enormes, constituidas por unas moléculas más pequeñas llamados aminoácidos. Los aminoácidos son compuestos formados a partir de un grupo amino (un átomo de nitrógeno unido a dos átomos de hidrógeno; NH₂) y un grupo ácido (con carbono, oxígeno e hidrógeno; COOH), que es el que caracteriza las distintas propiedades de estas biomoléculas. La mayor parte de las proteínas están formadas por un número de entre 100 y 300 aminoácidos (llegando incluso a 2.000), pero sin embargo, el número de aminoácidos distintos es de tan sólo veinte, de los cuales, el organismo no puede sintetizar ocho, esta característica les convierte en imprescindibles en la alimentación diaria (aminoácidos esenciales).

De los llamados aminoácidos esenciales hay cinco que están en cantidades insuficientes en los cereales y legumbres. Esta es la razón por lo que una dieta exclusivamente a base de estos alimentos sería deficitaria y provocaría una malnutrición proteica (que en casos extremos puede llevar incluso a la muerte). El aminoácido cuya concentración es la menor en comparación con los aminoácidos de la proteína del huevo, se llama limitante.

En este tema hay que aclarar dos cosas. En primer lugar la importancia de los aminoácidos esenciales. Vamos a aclararlo simplificando la síntesis de proteínas de nuestro cuerpo. Imaginemos que necesitamos formar una proteína de músculo; el ensamblaje de los aminoácidos que la constituyen se hace en base a aquéllos de los que dispone en ese momento la célula que tiene que formar la proteína. Para ello va cogiendo uno a uno esos aminoácidos y los va ensamblando (como si fuera una cadena). Mientras vaya encontrando cada aminoácido que le toca en el eslabón, todo va bien; el problema surgirá si hace falta un aminoácido (para el siguiente eslabón) que no está. En ese caso el organismo intenta sintetizarlo (a partir de otros), pero siempre que no sea esencial (en cuyo caso no puede). Si se trata de un aminoácido que se puede sintetizar a partir de otros, la formación de esa proteína solo sufrirá un retraso (lo cual en sí mismo puede ser importante en casos especiales como grandes quemados o deportistas).

Si el que faltaba era un aminoácido esencial no se continuará la secuencia y no se formará la proteína (imaginemos la trascendencia del hecho si la proteína a formar es, por ejemplo, una inmunoglobulina necesaria para defendernos de las infecciones). Pues bien, la proteína más completa al tener todos los aminoácidos esenciales es la del huevo. En el caso de las legumbres, las proteínas suelen tener algún aminoácido limitante y, saberlo es importante para complementarlo y obtener una proteína de alta calidad que sustituya a la de la carne, pescado y huevos que son las de mayor calidad, pero también de mayor precio (pensemos en países subdesarrollados). Nuestras abuelas intuían ese hecho y por eso cocinaban el arroz con las lentejas ya que la falta de lisina del arroz la compensaban las lentejas.

Recordemos que las proteínas han sido protagonistas de nuestra evolución, de hecho, la ingesta proteica en nuestra época de cazadores recolectores significaba de un 25 a un 35% del total de calorías ingeridas (frente al 15-20% actual).

Las recomendaciones de los expertos en nutrición en cuanto a la ingesta de proteínas son más bajas de ese 25 a 35% de las calorías totales que idealiza la alimentación que mimetiza la paleolítica. Esto no se debe a la propia ingesta proteica, sino al hecho de que la fuente de proteínas en la actualidad, por excelencia, es la carne de rumiantes y ésta es rica en grasas saturadas cuyo consumo es (como hemos explicado) una novedad en nuestra evolución y, lógicamente, no estamos preparados para su consumo masivo, por lo que ha sido origen de patologías muy graves como la arteriosclerosis.

¡Tenga esto en cuenta el lector! No se trata de ahora se considere que necesitamos menos proteínas, sino que las actuales fuentes proteicas llevan asociada una gran cantidad de grasas saturadas. Aquellos que, en este momento, puedan tomar una cantidad de proteína más alta sin incrementar la ingesta de grasa, pueden tomar el mismo porcentaje que nuestros ancestros; lo cual es algo que sabemos, por experiencia, todos los que tenemos relación con deportistas y observamos su dieta.

El equilibrio en la ingesta de proteínas tiene, pues, dos soluciones:

SOLUCIÓN PALEOLÍTICA

Tomar carne de caza y pescado salvaje (pesca extractiva).

Esta solución es impensable en términos de población en general, ya que los recursos son muy escasos y la mayor parte de la población quedaría al margen.

SOLUCIÓN APROVECHANDO LA ACTUAL TECNOLOGÍA

Quizás la solución sea comer más pescado (magro (libre de grasa) si es de piscifactoría). Carnes magras (ave), embutidos sin grasa (jamón, lomo). Las legumbres pueden ser una buena fuente proteica si se complementa el aminoácido limitante.

C) GRASAS

Las grasas se distinguen de los otros dos principios inmediatos, los hidratos de carbono y las proteínas, por su mayor valor calórico. Por término medio, las grasas van a suministrar al ser oxidadas en el organismo 9 kcal/g. Esta es su característica fundamental desde el punto de vista de la nutrición y la que determina su papel en los procesos nutritivos. Por otro lado, ciertos tipos de lípidos, sobre todo los lípidos complejos, fosfolípidos fundamentalmente, forman parte de las membranas celulares y son, por consiguiente, un elemento indispensable en la construcción de los seres vivos.

Las grasas son un conjunto de biomoléculas que coinciden en su hidrofobia (no les gusta el agua) como elemento común. Pueden ser lípidos complejos y simples, y dentro de estos últimos, están los ácidos grasos, que son ácidos orgánicos monocarboxílicos de cadena lineal, y con un número de átomos de carbono entre 4 y 24, siendo los más abundantes los comprendidos entre 14 y 22. La insaturación se refiere al doble enlace

que pueden tener (CH=CH), lo que se puede indicar mediante la letra C y los subíndices m:n, siendo C el carbono, m el número total de átomos de carbono y n el de insaturaciones (por ejemplo, en el ácido oleico, con 18 carbonos y un solo enlace insaturado, la identificación sería C18:1). Otra denominación, más habitual, es la de nombrar la posición del doble enlace dentro de los últimos 7 carbonos de la cadena a partir del grupo metilo terminal, ocupando la posición 3 (serie n3 u Omega3) o la posición 6 (serie n6 u Omega6) (el linolénico sería un representante de los Omega3. El araquidónico sería un Omega6).

Los lípidos desempeñan, básicamente, cuatro tipos de funciones:

Función de reserva. Son la principal reserva energética del organismo. Un gramo de grasa produce 9 kilocalorías en las reacciones metabólicas de oxidación, mientras que proteínas y glúcidos sólo producen 4 kilocaloría/gr.

Función estructural. Forman las bicapas lipídicas de las membranas. Recubren órganos y le dan consistencia, o protegen mecánicamente. Cuando se produce un adelgazamiento máximo (como en la anorexia nerviosa) los riñones llegan incluso a descolgarse al perderse tejido adiposo de sostén.

Función biocatalizadora. En este papel los lípidos favorecen o facilitan las reacciones químicas que se producen en los seres vivos. Las vitaminas A, D y E, las hormonas sexuales y el cortisol y unas sustancias llamadas prostaglandinas (que funcionan como hormonas locales) formadas a partir de ácidos grasos de cadena larga (20 carbonos), cumplen esa función biocatalizadora.

Función transportadora. El transporte de lípidos desde el intestino hasta su lugar de destino se realiza mediante su emulsión gracias a los ácidos biliares y a los proteolípidos (asociaciones de proteínas con triglicéridos, colesterol, fosfolípidos..)..

También sirven como vehículo para ingerir vitaminas liposolubles como la A, D y E.

El organismo humano puede sintetizar los ácidos grasos de la familia Omega-9, pero no puede sintetizar los de la familia Omega-6 u Omega-3. Entre ellos está el linoleico, el araquidónico y el linolénico. Los vegetales en cambio, pueden sintetizar los de la familia Omega-6 y algunos de ellos (especialmente las algas marinas microscópicas), pueden sintetizar la familia Omega-3. Los peces, por ejemplo, acumulan Omega-6 y Omega-3 y lo hacen a partir del plancton marino que consumen.

El descubrimiento de la importancia de los llamados ácidos grasos esenciales (cuya ingesta es imprescindible), vino de la mano, como no, de otra tragedia humana, esta vez fueron pacientes sometidos a nutrición parenteral (alimentación inyectada en vena directamente) a largo plazo (en cirugía de aparato digestivo, por ejemplo). Pues bien, cuando se empezó a suministrar este tipo de alimentación no se consideró la importancia de los ácidos grasos esenciales (se desconocía su "esencialidad") y aparecieron complicaciones neurológicas tales como entumecimiento, debilidad, incapacidad de caminar, dolor de piernas y distorsión ocular junto con valores sanguíneos muy bajos de ácido linolénico. Todos estos síntomas desaparecieron al incluir el ácido linolénico entre los nutrientes imprescindibles en la alimentación enteral y parenteral.

El problema de una ingesta inadecuada de grasas, viene por dos vías. La primera es la alta ingesta de grasa con relación a nuestras necesidades. Si el total de calorías diarias necesarias lo mantenemos, entonces el problema será que al estar desprovistas las grasas de otros nutrientes muy necesarios como las vitaminas hidrosolubles y los minerales, se producirá una carencia de ellos. Si se toman más calorías diarias de las necesarias, entonces el problema será la obesidad.

El segundo problema es la alteración en el tipo de grasa ingerido. En este sentido, si se toman más grasas saturadas de las que estamos preparados por nuestra evolución, tendremos arteriosclerosis y podremos morir del corazón. Si se toman más ácidos grasos omega 6 con respecto a los omega 3 (también en términos de nuestra adaptación evolutiva), entonces dispararemos unas sustancias que derivan de los ácidos grasos insaturados, que son las prostaglandinas y eicosanoides de las series 2 y 4 (frente a las 3 y 5 que son las que derivan de los omega 3) cuya acción es mucho más pro inflamatoria; es decir, tenderemos a padecer enfermedades de componente inflamatorio crónico (Figura 9).

Hay que añadir un tema de gran importancia y cuyo conocimiento es muy reciente. El hecho es que la membrana celular (de todas las células de nuestro organismo) está compuesta por una capa de lípidos complejos llamados fosfolípidos. Pues bien, resulta que su composición se altera en función de la dieta, es decir, cuando tomamos ácidos grasos insaturados, el ácido graso que conforma el fosfolípido será de este tipo primordialmente.

Niveles óptimos de fluidez en las membranas son importantes para la fisiología celular por varios motivos. En primer lugar, porque permiten que las proteínas difundan con rapidez en el plano de la bicapa y que interactúen entre sí, dos fenómenos esenciales, por ejemplo, para la señalización celular. En segundo lugar, porque posibilitan que los lípidos y las proteínas difundan desde los sitios en los que se insertan en la bicapa lipídica después de su síntesis hacia otras regiones de la célula. En tercer lugar, es esencial en la fusión de las membranas entre sí para que difundan sus moléculas y garantiza que las moléculas de la membrana se distribuyan en forma equitativa entre las células hijas después de la mitosis. De hecho, la tasa de crecimiento en ratones aumenta cuando es mayor el contenido de ácidos grasos insaturados en la membrana y que se asocia con incrementos de fluidez.

El ácido graso que más modifica la elasticidad de la membrane es el DHA (le dedicaremos el espacio que se merece enseguida). El ácido oleico (OA), tiene poco efecto sobre la función de las proteínas de membrana, a pesar de que su coeficiente de adsorción es de un orden de magnitud mayor que el del DHA.

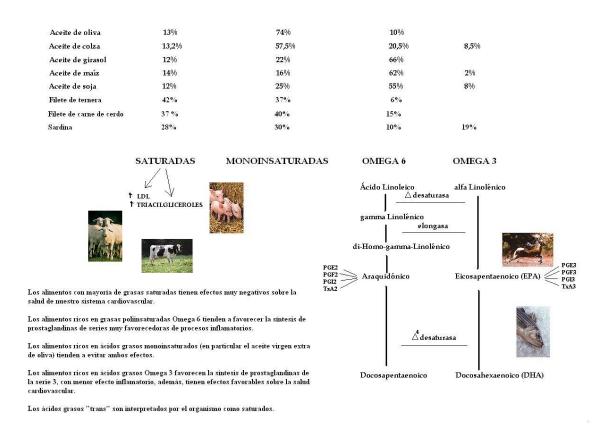


Figura 9.- Acciones de los diferentes tipos de ácidos grasos en los procesos cardiovasculares e inflamatorios. Constituyentes en los alimentos típicos

Tengamos en cuenta que, en este sentido, hay muchas enfermedades que están relacionadas con alteraciones en las propiedades de la membrana celular, por ejemplo la propia esquizofrenia es una alteración del neurodesarrollo que provoca disfunción en los neurotransmisores (sustancias que se secretan por la neurona para establecer comunicación entre ellas a través del espacio que las separa (sinapsis)). El tratamiento de esta enfermedad con ácidos grasos omega 3 mejora los síntomas.

Podríamos hablar de un enorme listado de enfermedades que se relacionan con la escasez de este tipo de ácidos grasos en nuestra alimentación actual; en particular en un momento trascendental, el embarazo y las primeras semanas de vida.

Ya hemos comentado que nuestra especie estaba muy ligada al mar en lo que se llama el nicho ecológico que dio lugar a la aparición de los primeros sapiens sapiens. El cerebro es el órgano más graso del cuerpo; un 60% está formado por lípidos: diversos tipos de sustancias similares a los ácidos grasos. Su contenido en DHA (docosahexaenoico; un omega 3) es de 20 gramos.

EL ÁCIDO DOCOSAHEXAENOICO (DHA)

El DHA (cis-4,7,10,13,16,19 docosahexaenoico) (Figura 10), es el ácido graso más poliinsaturado (con mayor número de dobles enlaces) que es posible encontrar en cantidades apreciables en los tejidos de los mamíferos. Se trata de un ácido graso altamente insaturado (posee 6 dobles enlaces), que pertenece a la serie o familia de ácidos grasos poliinsaturados omega-3 de cadena muy larga (superiores a 18 carbonos).

Las funciones biológicas y los requerimientos nutricionales de este ácido graso han llamado poderosamente la atención en los últimos 10 ó 15 años debido a la disminución en su ingesta en la alimentación actual y a sus extraordinarias propiedades como constituyente de los fosfolípidos de las membranas celulares, particularmente en el sistema nervioso.

Nuestro organismo puede sintetizar la mayoría de los ácidos grasos a partir del acetil coenzima A procedente de los carbohidratos mediante un complejo multienzimático denominado sintetasa de ácidos grasos. Además, tenemos sistemas de alargamiento de la cadena de ácidos grasos, representados por las elongasas, que permiten aumentar los carbonos hasta 18 en el caso de los saturados y hasta 24 en los insaturados; y sistemas para introducir dobles enlaces mediante las desaturasas de ácidos grasos. Sin embargo, no se pueden introducir dobles enlaces en posiciones posteriores al C9, por lo que no podemos sintetizar ácidos grasos n-6 o n-3, entre los que están el linoleico, el araquidónico y el linolénico. Los vegetales en cambio, pueden sintetizar los de la familia n-6 y algunos de ellos (especialmente las algas marinas microscópicas), pueden sintetizar la familia n-3. Los peces, por ejemplo, acumulan n-6 y n-3 y lo hacen a partir del fito-plancton marino que consumen.

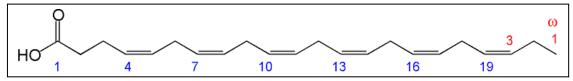


Figura 10. Ácido docosahexaenoico (DHA).

Hace 600 millones de años, un ácido graso n3, el docosahexaenoico (DHA) fue la molécula capaz de convertir los fotones en reacciones biológicas, de esta forma, los detectores en la retina sensorial transforman la energía física de la luz en señales nerviosas que dan como resultado la visión.

El DHA, gracias a sus propiedades físico-químicas, fue dictando los cambios al genoma y dando lugar a los grandes cambios evolutivos en el cerebro.

¿Por qué el tamaño y la velocidad limitan el crecimiento del cerebro?

La razón es que la biosíntesis de AA y DHA es relativamente lenta y puede no ser capaz de seguir el ritmo en los animales de rápido crecimiento. Las ratas y ratones desaturan y alargan los ácidos grasos esenciales para producir grandes cantidades de AA y DHA a partir de sus precursores. Sin embargo, cuando se pasa del conejillo de indias hasta el cerdo salvaje, el impacto de la velocidad de crecimiento conduce a una disminución progresiva de AA y DHA, mientras que los precursores (linoleico y a-linolénico), pasan a ser predominantes en los lípidos del hígado. En lugar de DHA, el n-3 ácido docosapentaenoico (DPA) se convierte en el principal metabolito del ácido linolénico.

Si la velocidad de crecimiento del cuerpo es pequeña, entonces se puede producir la síntesis adecuada de DHA para el crecimiento del cerebro, lo que resulta en una relación cerebro/peso corporal de 42% (por ejemplo, pequeños roedores). A medida que la

velocidad de crecimiento del cuerpo aumenta, la limitación de velocidad de síntesis de DHA domina y el tamaño relativo del cerebro disminuye. En los mamíferos más grandes en tierra la relación se reduce a 0,1% (rinoceronte, búfalo...) a pesar de la abundancia en los tejidos de alfa-linolénico. Una abundante fuente de DHA, como en las dietas de los mamíferos marinos, puede obviar esa baja capacidad de síntesis. Tal evidencia sugiere que la nutrición, especialmente con respecto a DHA, es un factor determinante del tamaño del cerebro. Por ejemplo, el delfín tiene un cerebro de 1.800 g, en comparación con una cebra, de tan solo 360 g. Los seres humanos sólo podemos contar con una conversión de aproximadamente 1% de ácido alfa-linolénico a DHA. Asi pues, en todas las especies de mamíferos, el tamaño del cerebro disminuye logarítmicamente con el aumento de peso corporal, con dos excepciones-los delfines y los humanos. Es evidente que algo en nuestra evolución era diferente.

Con el uso de los isótopos estables del colágeno óseo a partir de restos humanos, es posible estimar la proporción de proteína obtenida en la dieta de pescado y marisco frente a las fuentes terrestres en los últimos 10 años de vida. Además, los isótopos pueden distinguir las proteínas de humedales de agua dulce y las costas marinas. Richards et al. analizaron muestras de hueso que habían vivido en las regiones ahora conocidas como Gran Bretaña, Rusia y la República Checa durante el período del Medio Paleolítico Superior con valores de isótopos de carbono publicados de cinco especímenes de Neandertal, que se remontaba a una época anterior y que habían vivido en regiones geográficas similares.

Los humanos arcaicos tardíos (neandertales), se alimentaban sobre todo de carne de animales cazados. En marcado contraste, el consumo de pescado y marisco era un "elemento básico" de la dieta de los primeros humanos modernos (Paleolítico mediosuperior). Ahí tenemos argumentos para justificar un mayor desarrollo de áreas de integración y abstracción creativa en la mente del sapiens frente al neandertal

En este sentido, existe evidencia humana de ventajas cognitivas y conductuales importantes para los niños a los 8 años de edad cuando las mujeres comen pescado y/o mariscos durante el embarazo a partir del estudio ALSPAC en el Distrito Avon de West England. Este estudio siguió a los hijos nacidos de más de 14.000 embarazos con un rendimiento incrementando en los niños de 8 años de madres que se habían alimentado más de pescados y mariscos durante el embarazo.

Un acceso dietético fácil al DHA podría explicar el poco interés metabólico del organismo por desarrollar sistemas enzimáticos potentes y exclusivos para obtenerlo. De esta forma, también se destinaría poliinsaturados n18 para oxidarlos y obtener energía. Seguimos siendo esencialmente los mismos seres, que dependen de DHA durante 600 millones de años y que no pueden avanzar hacia nuevas metas sin la materia prima. Decía el antropólogo Philip Tobias que los humanos fueron evolucionando en función de donde había agua para beber (no era, por tanto, la árida sabana, sino el litoral marino o fluvial).

Nuestros ancestros vivían pegados al litoral fluvial o marítimo debido a la dependencia del agua para termorregular. Mientras los machos iban a cazar, las hembras preñadas marisqueaban y pescaban dándole al cerebro del bebé en gestación, la enorme capacidad del DHA del pescado para conformar la membrana neuronal.

La neurona es la estructura básica y funcional del sistema nervioso en general y del cerebro y desde el punto de vista bioquímico el cerebro tiene características diferenciales con los otros órganos. Una de ellas es el altísimo contenido de lípidos. Llega al 50% estimado en peso seco. Esos lípidos están constituidos principalmente por los fosfolípidos, fosfatidil etanolamina y fosfatidil colina, por plasmalógenos de etanolamina, por fosfatidil inositol y fosfatidil serina, por esfingolípidos y gangliósidos, y por colesterol

El tejido cerebral no es rico en cualquier tipo de lípidos, predominan en él los ácidos grasos poliinsaturados omega-6 y omega-3 de cadena larga, destacando el ácido araquidónico (C20:4, omega-6, AA) y el ácido docosahexaenoico (C22:6, omega-3, DHA). Estos ácidos grasos se forman a partir de precursores, como el ácido linoleico para al AA y el ácido alfa linolénico para el DHA. El ácido linoleico y el ácido alfa linolénico son abundantes en las plantas oleaginosas, dicotiledóneas arbustivas, esto es de pequeño tamaño al igual que las gramíneas; el AA es abundante en los tejidos de origen animal; y el DHA sólo en los vegetales y animales de origen marino.

Las algas contienen la cantidad más alta del yodo (1-3 % de peso seco) y de enzimas peroxidasas y fueron las primeras células vivas en producir oxígeno. Para defenderse de sus propiedades oxidantes desarrollaron una potente actividad antioxidante aprovechando las propiedades del yodo a través de las enzimas peroxidasas. Los yoduros están muy presentes y disponibles en el mar, en donde el fitoplancton acumula yodo, selenio y ácidos grasos n3. La superabundancia de DHA, junto al Cinc, Cobre, Yodo, Selenio, y mayor ingesta proteica, permitieron una mejor señalización neuronal, favoreció la evolución hacia la autoconciencia y el pensamiento simbólico. Así comenzó nuestra evolución cultural, mucho más rápida y más penetrante que la evolución biológica.

El DHA es el constituyente principal de las membranas de señalización del cerebro y el sistema visual. Este argumento es el mismo para los fotorreceptores de los cefalópodos, peces, anfibios, reptiles, aves y mamíferos. El escenario más probable es que en lugar de convertir la energía fotónica en hidratos de carbono o proteínas, el DHA la convierte en electricidad, de ahí la trascendencia en la evolución del sistema nervioso y en última instancia el cerebro.

El cerebro contiene numerosas proteínas, pero es incapaz de funcionar sin DHA y AA. La hipótesis de Crawford es que las interacciones pi-anión en el DHA tendrían un comportamiento cuántico, explicando el único e ireemplazable papel del DHA en la señalización neuronal. También hay que considerar que más allá de la conciencia, la cohesión entre las regiones del cerebro condujo a la evolución del pensamiento simbólico, que es el sello distintivo de la humanidad.

La pregunta clave que queda por abordar es el significado biológico de las diferencias en la capacidad para la síntesis de DHA entre hombres y mujeres. Es posible que el mantenimiento de las concentraciones de DHA en los tejidos en los hombres puede depender de fuentes de la dieta o de reciclaje en mayor medida que en las mujeres. La capacidad para regular la síntesis de DHA bajo control hormonal en las mujeres, puede ser importante para satisfacer las demandas del feto de DHA durante el embarazo. El aumento de fosfolípidos de DHA en plasma en las mujeres embarazadas puede facilitar DHA para el feto (Postle et al., 1995).

Las diferencias en la capacidad para la síntesis de DHA pueden contribuir a la variación del 50% en la concentración de DHA en plasma entre las mujeres a término. Siendo así, los niños nacidos de madres con una menor capacidad para la síntesis de DHA pueden estar en mayor riesgo de déficit de DHA. Entonces sería importante caracterizar en detalle los factores que determinan la capacidad para la síntesis de DHA en las mujeres

Por otro lado, otro estudio reciente, ha encontrado un grupo de enfermedades relacionadas con déficit de DHA, lo que abre la puerta a considerarlo definitivamente como esencial. Sabemos que las neuronas no son las que sintetizan DHA, sino que tiene que ser transportado a través de la barrera hemato-encefálica (BHE) por el transportador MFSD2A, que puede transportar tanto DHA como otros ácidos grasos poliinsaturados en forma de lisofosfatidilcolina (LPC). Pues bien, en el trabajo publicado recientemente en la revista Nature Genetics, en el que participan los grupos de Joseph Gleeson (University of California) y David Silver (University of Singapore), se caracterizaron dos mutaciones en el gen que codifica para el transportador de lípidos MFSD2A. Los individuos que presentan estas mutaciones exhiben un síndrome de microcefalia letal vinculado a la absorción inadecuada de lípidos en forma de LPC. Los resultados de este trabajo establecen un enlace entre el transporte de lípidos LPC por MFSD2A y la función y crecimiento del cerebro, presentando la primera evidencia de enfermedad monogénica relacionada con el transporte de DHA

Las funciones específicas para la lisofosfatidilcolina en el crecimiento del cerebro no han sido completamente caracterizadas, pero su abundancia en la sangre y la conversión eficiente en las membranas celulares sugieren que tienen un papel clave en la homeostasis celular y en el crecimiento, incluyendo otras funciones como en la proliferación de los progenitores neurales y en la elongación de las neuritas. Este trabajo confirma el papel esencial de los lípidos en forma de LPC en el desarrollo y la función del cerebro en los seres humanos, e indica que la captación cerebral de los lípidos en forma de LPC es importante durante el desarrollo fetal y en la vida adulta.

La dieta cretense (la auténtica dieta mediterránea) tiene una razón omega-6/omega-3 de 1,5:1 y la japonesa de 4:1. En cambio, la dieta actual de los Estados Unidos tiene una razón de 16:1; el Reino Unido y Europa del Norte de 15:1. Los cretenses, que son los que están más cerca de la dieta original, obtienen ácido alfa-linolénico comiendo plantas silvestres, caracoles, nueces, frutas (higos) y huevos; ácido eicosapentaenoico (EPA) y ácido docosahexaenoico (DHA), principalmente, del pescado, y también de huevos, animales de caza y caracoles, y ácido oleico del aceite de oliva. Este aceite, especialmente el recién prensado y no sometido a ningún proceso de refino, es decir, del aceite virgen extra de oliva, se sabe que contiene una sustancia (el oleocanthal) que tiene propiedades antiinflamatorias al inhibir la formación de eicosanoides proinflamatorios de los que ya hemos hablado.

En otros alimentos esta relación varía mucho según el pasto o pienso. La carne de vacas alimentadas con pastos tiene una razón omega-6/omega-3 de aproximadamente 2,5:1; sin embargo, si son alimentadas con granos puede llegar a 20:1. Los huevos corrientes que se venden en Estados Unidos tienen una razón aproximada de 20:1. La grasa del cerdo criado en establo (razas yorkshire y landrace) tiene una relación de grasas saturadas / monoinsaturadas / poliinsaturadas de 4/ 4/ 2; por el contrario, el cerdo ibérico (criado en condiciones semisalvajes alimentado con bellotas tiene una relación de grasas de 2/ 5/ 3).

El equilibrio en la ingesta de grasas tiene, pues, dos soluciones:

SOLUCIÓN PALEOLÍTICA

Tomar carnes de caza y sobre todo pescado salvaje. No desdeñar vísceras, roer huesos y evitar el exceso de fuego en el cocinado

Esta solución tampoco es muy realista, ya que apenas hay carne de caza y el pescado salvaje es prohibitivo. Por otro lado, en nuestra cultura no es apetecible comer carnes poco hechas o tomar vísceras y roer huesos etc

SOLUCIÓN APROVECHANDO LA ACTUAL TECNOLOGÍA

Comer a base de alimentos bajos en grasa (Tabla Vla; Vlb y Vlc). Tomar leche o yogur desnatados. Buscar en las etiquetas de los alimentos aquéllos en los que aparecen ácidos grasos hidrogenados (grasas "trans") y eliminarlos de nuestro menú. Se puede tomar un preparado de ácidos grasos omega 3. Para tomarlo con garantías hay que buscar un laboratorio de confianza, ingerirlos en forma de triglicéridos (que son más absorbibles) y tomarlos con vitamina E, ya que se oxidan con mucha facilidad (se pueden conseguir en farmacias en cápsulas de gelatina blanda), aunque es preferible una buena sardina asada o un boquerón frito (y si se está a la orilla del mar en una playa, en buena compañía y encima le invitan a uno, entonces el placer es total). Para cocinar usar el aceite virgen extra de oliva.

Alimento	Grasas Totales	Grasas saturadas	Grasas monoinsaturadas	Grasas poliinsaturadas	Omega 3 en mg/100 g
Aceites					
Coco	100%	86,50%	5,80%	1,80%	ō
Palma	100	49,3	37	9,3	0
Soja	100	7,8	55,3	32,4	0
Maíz	100	9,3	41,8	44,6	0
Oliva	100	13,5	73,9	10	0
Girasol	100	11,8	28,6	45	0
Margarinas					
Maíz	80	7	38,4	38,6	0
Cacahuete	50	8,1	24,6	14,8	0
Derivados lácteos					
Nata	37	23	10	13	0
Queso fundido	21	8,7	3,6	0,55	0
Crema de queso light	33	23	4	0	0
Leche entera de vaca	3,3	1,9	0,8	0,2	0
Yogur entero	3,3	2,1	0,9	0,1	0
Leche semidesnatada	1,9	1,2	0,7	0	0
Yogur desnatado natural	0,2	0,1	0,05	0,01	0
Yogur light con fruta	1,1	0,6	0	0	0
Leche desnatada	0,9	0,6	0,18	0,2	0
Frutos secos					
Nueces	23,9	3,1	15,1	4,6	0

Tabla VIa.- Contenido en grasas de aceites. margarinas, leche y derivados lácteos

	Grasas	Grasas	Grasas	Grasas	Omega 3 en
Alimento	Totales	saturadas	monoinsaturadas	poliinsaturadas	mg/100 g
Carnes					
Costillas de Ternera	29%	10,50%	10,90%	1,00%	0
Costillas de Cerdo	12	4,9	5,9	1	0
Pollo a l'ast sin piel	6,4	2	2,6	1,6	0
Pescados					
Sardinas en aceite	17,1	2,3	5,8	7,7	1520
Salmón de					
piscifactoría	21,5	4,3	7,7	7,8	3784
Salmón salvaje	6,3	1	2,1	2,5	1715
Anchoas en lata	9,7	2,2	3,8	2,6	2094
Atún en lata	8,1	1,3	3,3	3	214
Atún salvaje	4,9	1,3	1,6	1,4	1320
Salmón ahumando	4,3	0,9	2	1	512
Caballa salvaje	13,9	3,3	5,5	3,3	2452
Gambas	1,7	0,33	0,25	0,67	241
Merluza	1,3	0,25	0,28	0,42	351
Calamares romana	6,4	1,6	2,3	1,8	353
Bacalao cocido	0,9	0,2	0,1	0,3	442
Pulpo cocido	2,1	0,5	0,3	0,5	182
Huevo					351
Yema deshidratada	61	18,4	24,4	7,9	442
Mayonesa	33,4	4,9	9	18	
Clara de huevo	0				
Huevo hervido	10,6	3,3	4,1	1,4	43

Tabla VIb.- Contenido en grasas de carnes, pescados y huevo

Alimento	Grasas Totales	Grasas saturadas	Grasas monoinsaturadas	Grasas poliinsaturadas	Omega 3 en mg/100 g
Cereales	rouncs	Saaraas	- Inonomadanada	pomisauracas	9
Pan de avena	4%	0,70%	1,50%	1,70%	0
Pan de trigo integral	4,2	0,9	1,6	0,1	0
Pan de trigo blanco	3,5	0,8	0,8	1,3	0
Pan de centeno	3,3	0,6	1,3	0,8	0
Arroz tres delicias	5,6	5,4	Ó	Ó	0
Arroz integral	0,8	0,17	0,3	0,3	0
Espaguettis cocidos	0,5	0,1	0,2	0,2	0
Macarrones cocidos	0,5	0,1	0,1	0,1	0
Arroz blanco	0,3	0,2	0,7	0,7	0
Bollería					
Donut de chocolate	22,8	15,8	2,9	4,9	0
Tarta de chocolate	16	8,2	3,3	3,3	0
Chocolate casero	2,3	2,1	0	0	0
Frutas					
Aguacate	14,7	2,1	11,8	1,8	0
Plátanos	0,5	0,1	0,09	0,9	0
Naranjas	0,2	0,04	0,06	0,06	0
Otros					0
Patatas fritas	32,4	8,1	6,5	16,4	0
Patatas hervidas	0,1	0,03	0,04	0	0
Alubias	0,3	0,02	0,17	0,1	0
Tomates	0,3	0	0,14	0,12	0

Tabla VIc.- Contenido en grasas de cereales, bollería y frutas. Fuente: Secretaría de Agricultura de la Administración USA

D) VITAMINAS Y MINERALES

La disminución enorme de la ingesta de frutas y verduras en nuestra cultura con respecto a la ingesta del hombre del paleolítico, así como los hábitos de pelar la fruta, quitar semillas etc, han traído como consecuencia una disminución en la ingesta de vitaminas y minerales, una alteración en el balance ácido-base de los alimentos que tomamos y una caída de la fibra a niveles alarmantes.

En los países desarrollados ya no hay enfermedades graves asociadas a déficits vitamínicos importantes, como ha ocurrido en otras épocas asociadas a grandes hambrunas o a situaciones familiares de pobreza extrema.

VITAMINA	SÍNTOMAS POR DÉFICITS GRAVES
VIT.B1	Anorexia. Irritabilidad. Pérdida de peso. Debilidad. Cefalea.
	Taquicardia. Afecciones de los nervios periféricos. Dolor en los
	miembros inferiores. Apatía. Confusión mental. Debilidad. Ataxia.
	Fotofobia. Nistagmus y parálisis de los nervios oculares. Beriberi
	cardíaco y nervioso.
VIT.B2	Dolor en la boca. Escozor en los ojos. Estomatitis. Dermatitis
	seborreica. Glositis. Anemia. Retraso intelectual. Trastornos de la
	visión.
VIT.B3. NIACINA	Pérdida de apetito y peso. Dolor abdominal. Irritabilidad. Falta de
	concentración. Glositis. Estomatitis y dolor en la boca y en la lengua.
	Lesiones de la piel. Diarrea. Vómitos. Insomnio. Ansiedad. Psicosis.
VIII D.C	Depresión. Alucinaciones. Crisis epilépticas y Demencia.
VIT.B6.	Alteraciones de la boca. Irritabilidad. Debilidad. Depresión. Mareos.
	Afecciones de los nervios. Diarrea. Anemia. Convulsiones en los
VIT.B12	niños.
V11.B12	Anemia perniciosa y sus síntomas asociados: Debilidad, palidez,
	taquicardia, palpitaciones, disnea etc. Afecciones neurológicas y trastornos neuropsiquíatricos.
ACIDO FÓLICO	Disminución de los leucocitos (leucopenia). Anemia macrocitaria.
ACIDO FOLICO	Diarrea. Fatiga.
VIT.C	Malestar general. Debilidad. Disnea. Dolor en los huesos y
VII.C	articulaciones. Hemorragias de la piel y de las encías. Caída de los
	dientes. Laxitud. Irritabilidad. Dolor muscular. Pérdida de peso.
VIT.A	Ceguera nocturna. Sequedad de la conjuntiva ocular. Pérdida del
, , , , , , , , , , , , , , , , , , , ,	sentido del gusto y del olfato. Enfermedades de la piel. Cáncer de
	pulmón.
VIT.D	Raquitismo en los niños y osteomalacia en los adultos
VIT.E	En los niños prematuros produce anemia hemolítica, aumento de las
	plaquetas y alteraciones pulmonares. En los adultos arreflexia,
	oftalmoplejia y trastornos de la marcha.
VIT.K	Tendencia a las hemorragias
TABLA I.	ENFERMEDADES POR DÉFICITS IMPORTANTES DE
	VITAMINAS

Sin embargo, ha aparecido otro concepto médico llamado alteraciones subclínicas por consumo inadecuado de algunas vitaminas o minerales en el conjunto de una dieta incluso con más calorías de las necesarias.

Estos déficits subclínicos no se manifiestan por enfermedades tan graves como las referidas en la Tabla I, sino que cursan con alteraciones menores, difíciles de diagnosticar, como resfriados repetitivos, cansancio, pérdida de pelo, disminución del apetito etc.

Aunque no nos lo parezca, la alimentación actual adolece de falta de fibra, vitaminas y minerales, y es muy exagerada en cuanto a proteínas y grasas, lo cual eleva el

contenido calórico de nuestra dieta y genera obesidad, al mismo tiempo que es deficitaria en otros componentes (paradoja de la sociedad industrial).

Si comparamos la ingesta de vitaminas y minerales de un cazador-recolector del paleolítico con un habitante moderno de un país desarrollado (USA) observamos una pobreza importante, en nuestra dieta actual, en la mayoría de vitaminas y minerales.

	PALEOLÍTICO (mg/d)	USA (mg/d)	RELACIÓN
MINERALES			
CALCIO COBRE HIERRO MAGNESIO MANGANESO FÓSFORO POTASIO SODIO CINC	1622 12,2 87,4 1223 13,3 3223 10500 768 43,4	920 1,2 10,5 320 3,0 1510 2500 4000 12,5	1,8 10,2 8,3 3,8 4,4 2,1 4,2 0,2 3,5
VITAMINAS			
ASCORBATO FOLATO RIBOFLAVINA TIAMINA VITAMINA A VITAMINA E	604 0,36 6,49 3,91 17,2 32,8	93 6,5 0,18 2,0 1,71 3,8 1,42 2,8 7,8 2,2 8,5 3,9	

Basado en 3000 kcal/d. 35% animales 65% plantas

¿A que es debido que una persona con la enorme facilidad de acceder a cualquier alimento como tiene un conciudadano nuestro, llegue a tener un déficit nutricional?

Hay varios factores que explican esta situación:

- 1.- El trabajo fuera de casa nos obliga a un tipo de alimentación basado en comidas de preparación rápida, en las que abunda la grasa, los alimentos enlatados, congelados, la comida preparada y sometida a procesos industriales (grasas trans) etc.
- 2.- Nuestros hábitos alimenticios nos alejan de lo que han sido nuestros alimentos tradicionales durante millones de años; frutas salvajes, raíces, pescado, animales salvajes a los que roíamos los huesos. Cuando nos hicimos agricultores y ganaderos cambiamos drásticamente nuestra alimentación, que pasó a depender de la producción agrícola y del consumo de lácteos y carne de ganado de establo. Finalmente, en muy pocos años hemos llegado a la situación actual, con una alimentación refinada, sin fibra, con exceso de ácidos grasos saturados y un disbalance entre los ácidos grasos n6 y n3, con déficit de hierro absorbible (hierro de las vísceras y de la sangre que ya no son alimentos habituales), con déficit de calcio (que ya solo proviene de los lácteos, ya que no tomamos espinas ni roemos huesos).

3.- La moda exige cuerpos finos esbeltos, practicamos deportes de gran exigencia física que, a veces, requieren cuerpos excesivamente delgados (gimnasia rítmica). Ello obliga a comidas con pocas calorías, en las que la proporción de vitaminas y minerales está por debajo de las necesidades diarias.

Hay, por tanto, una justificación seria para considerar, de nuevo, la suplementación de vitaminas y minerales en situaciones concretas. Práctica deportiva intensa, regímenes de adelgazamiento, estrés laboral, gestación y lactancia, recuperación tras enfermedades víricas etc.

Vamos a fijarnos a las funciones de algo, presumiblemente simple, como son las funciones de la vitamina D.

Inicialmente parece que se trata de una vitamina necesaria para absorber calcio y mantener nuestro esqueleto (evitando la temida osteoporosis). Con esta explicación tan simple, parece que con tomar leche rica en calcio y vitamina D es suficiente, sobre todo si nos exponemos al sol, porque según dicen los médicos, la vitamina D la fabrica el organismo utilizando la energía solar.

Sin embargo, el funcionamiento de lo que en medicina llamamos homeostasis del calcio (algo así como "la autorregulación del calcio") es muchísimo más complejo. Todo comienza con la exposición a la luz ultravioleta del sol, de un derivado del colesterol (el 7-dehidrocolesterol) que hay en las células de la piel. A partir de ahí, se forma en el hígado la 25-hidroxivitamina D3, que es la forma circulante de la vitamina D.

Hasta aquí todo parece razonablemente simple, una sustancia que tenemos en la piel, al darle la luz del sol, se convierte en una vitamina. ¿Pero que hace esa vitamina que está circulando en plasma? ¿Que tiene que ver con el metabolismo del calcio? Pues ocurre que los riñones convierten la 25-hidroxivitamina D3 en 1,25-dihidroxivitamina D3, que es lo que se considera la "forma activa" de la vitamina D, es decir, la forma que hace "algo" ¿Qué?

Los investigadores de varias universidades norteamericanas descubrieron en el siglo pasado que una hormona producida por la glándula paratiroides es crítica para el mantenimiento de una cantidad determinada de la forma "activa" de vitamina D en la sangre; de tal forma que cuando se necesita calcio, la glándula paratiroides envía la hormona paratiroides a los riñones, para que inicien la producción de esa forma activa. Y a su vez, la presencia en plasma de dicha forma activa de vitamina D, implica que los intestinos transfieran el calcio de los alimentos a la sangre. Por todo ello, cuando se toma muy poco calcio en la alimentación, o el calcio no se absorbe suficientemente, tanto la vitamina D como la hormona paratiroidea inician un proceso por el cual el calcio almacenado se obtiene de los huesos, lo que genera su descalcificación (osteoporosis).

Todo este complejo proceso podría resumirse en que hay que tomar calcio, exponerse a la luz solar y tener un hígado y unos riñones sanos. Pero, sin embargo, nuestros ancianos pierden masa ósea, se caen, se fracturan los huesos y quedan encamados y discapacitados en muchas ocasiones en medio de fuertes dolores. ¿Que falla?

Pues bien, hace unos años, unos investigadores norteamericanos descubrieron que si comparábamos la relación entre la 25-hidroxivitamina D3 y la 1,25-dihidroxivitamina D3, en ciudadanos afroamericanos actuales y la comparamos con la de nuestros antepasados, esta relación está muy alterada. En nuestros ancestros dominaba la forma 25 hidroxi, mientras que en los afroamericanos actuales domina la 1,25 dihidroxi. Recordemos que esta es la forma activa, que actúa como una hormona y que provoca alteraciones en la secreción de paratohormona y en el metabolismo del calcio. Esto explicaría una mayor propensión a la obesidad y a la hipertensión en estos ciudadanos afroamericanos, y esto: ¿A que se debe?

Pues parece que precisamente a una alimentación que proporciona poco calcio absorbible. Pensemos.... Cuando estábamos en los albores de nuestra evolución, comíamos insectos (cutículas y calcio), roíamos hueso (calcio), comíamos espinas de pescado (calcio), hortalizas y plantas ricas en calcio..... Ahora le quitamos las espinas al pescado, nadie roe huesos, tomamos pocas verduras y sin embargo, tomamos cereales y alimentos que secuestran calcio y nos contentamos con el hecho de que tomamos leche ¡Y ya está!.

Hacemos poco ejercicio físico, ingerimos poco calcio, tenemos mucha forma activa de la vitamina D y.... finalmente, osteoporosis, claro.

Podríamos pensar, por otro lado, que eso es potestativo de los países fríos o con poca insolación. España está protegida de esta hipovitaminosis ya que el predominio de la luz solar es abrumador en casi todas nuestras regiones. Sin embargo, en un reciente estudio (2005) de la Unidad de Metabolismo Mineral del Hospital Reina Sofía de Córdoba, un grupo de investigadores encontró que más de un 80 por ciento de mujeres posmenopáusicas sanas tenían insuficiencia en vitamina D (menos de 30 ng/ml), mientras un 5 por ciento tenía deficiencia grave (menos 10 ng/ml), lo que confirmaba la evidencia creciente de que la elevada prevalencia (el número de casos en que se produce esta deficiencia) de la insuficiencia en vitamina D en todo el mundo ocurre también en España, pese a que el estudio se hizo en una ciudad como Córdoba que por su latitud (37.85° N) y horas de sol al año posibilita la formación de vitamina D.

Otro ejemplo, la vitamina K, también conocida como fitomenadiona o vitamina antihemorrágica, es un compuesto químico derivado de la 2-metil-naftoquinona. Son vitaminas que se disuelven bien en lípidos y mal en agua y están relacionadas con los procesos de coagulación de la sangre. Se conocen tres formas: filoquinona (vit K_1) presente en plantas verdes; menaquinona (vit K_2), que se produce en la flora intestinal; y el compuesto sintético menadiona (vit K_3).

La vitamina K₂, se pensaba que era producida por la microbiota intestinal y su déficit se creía extraordinariamente raro, pero la microbiota la hemos alterado tanto que ya no es extraño plantearse un déficit de esta vitamina. Pues bien, varios estudios han demostrado que la vitamina K₂ tiene muchos más beneficios para la salud de lo que se pensaba, y que cada vez más se le considera como un ingrediente clave para la salud ósea. La vitamina K₁ tiene una vida relativamente corta, en cuestión de ocho horas se limpia de la sangre y el hígado, mientras que la K₂ dura mucho más, hasta 72 horas. Esa mayor duración significa que permanece biológicamente activa en el cuerpo, por lo que absorbemos mejor la vitamina K₂ que, entre otras funciones, dirige calcio a los huesos y

evita que se depositen donde no debería, como por ejemplo las arterias y los órganos, donde puede causar daño.

Algunos estudios muy recientes, demuestran beneficios en mujeres postmenopáusicas que tomaron suplementos de vitamina K₂ (180 mg/d) sobre la rigidez arterial (lo que es muy interesante en este grupo de edad). Otros estudios muestran una mejora en la capacidad tampón de la saliva. En este sentido, los datos recogidos de varias culturas primitivas han demostrado que la diferencia en la salud dental se podía deber a la dieta y en particular a la vitamina K₂, de hecho, el grupo de la dieta primitiva tenía pocas caries en comparación con el grupo que consumió una dieta rica en azúcar y carbohidratos refinados –parece que las culturas primitivas pudieron incluir las vitaminas solubles en grasa, específicamente K₂, en su dieta-.

La vitamina D3 refuerza la función de las vitaminas K₁ y K₂ en el metabolismo del hueso y la condición del sistema cardiovascular. Además estas sustancias favorecen el transporte del calcio. Es, pues una buena sinergia en la prevención de patologías muy prevalentes en el colectivo de mujeres de edad avanzada.

La vitamina K₂ se encuentra en el queso fermentado, yema de huevo, mantequilla... Los suplementos efectivos utilizan una sustancia base natural llamada "natto". Este producto a base de soja fermentada es una de las mejores fuentes naturales de la vitamina K₂. Contiene sobre todo la forma más favorecedora de la vitamina K₂, la MK-7. Esta última mencionada tiene de 6 a 7 veces más disponibilidad biológica que la vitamina K₁

No son casos aislados, por el contrario, podríamos enumerar una a una vitaminas y minerales con la misma complejidad de interacciones y con similar cambio debido a la brutal modificación de nuestros hábitos alimenticios.

El equilibrio en la ingesta de vitaminas y minerales tiene, pues, dos soluciones:

SOLUCIÓN PALEOLÍTICA

Aquí es más fácil (en teoría), aumentar la ingesta de frutas y verduras, así de simple. Más ensaladas (apio, zanahoria, lechuga, tomate, aceitunas...), más verduras (col, coliflor, acelgas, espinacas, puerros, judías verdes, brécol etc.) y más frutas (con su piel).

Sin embargo, en la práctica, tomar más verduras es muy difícil (precisan tiempo para cocinar y preferimos comida rápida). Las ensaladas las llenamos de aceites y las frutas las tomamos sin piel ni pepitas, todo molesta (muchas veces, incluso, las ingerimos en conserva, es decir, con la mitad de azúcar y la mitad de fruta).

SOLUCIÓN APROVECHANDO LA ACTUAL TECNOLOGÍA

Conocer nuestra dieta mediante una evaluación nutricional realizada por personal experto, y complementar la ingesta de vitaminas y minerales deficitarios mediante preparados específicos de los nutrientes de los que somos deficitarios (no valen preparados polivitamínicos y multiminerales, de lo que se trata es de conocer qué tipo de vitamina o mineral es poco habitual en nuestra alimentación y tomarlo mediante un suplemento. Existe semilla de uva en cápsulas y miles de preparados que contienen extractos de vegetales (manzanilla, té verde...), de hortalizas (carotenoides) etc..

E) ANTIOXIDANTES

Somos seres aerobios, es decir, usamos el oxígeno como comburente, es decir, como sustancia que provoca la combustión de los elementos que incorporamos en la comida para realizar los procesos de obtención de energía con los que funcionan nuestras células.

Nuestro planeta, en un principio, era una mezcla de gases entre los que el poco oxígeno que arrojaban los volcanes o que era producto de la disociación del vapor de agua en la alta atmósfera, era consumido por gases como el monóxido de carbono, el hidrógeno o el metano formando anhídrido carbónico y agua.

Hace unos tres mil millones de años, debido a la acción de los rayos ultravioletas que provenían del sol, el agua y el anhídrido carbónico, comenzaron a reaccionar formando aldehído fórmico. Paralelamente, unos microorganismos fotosintéticos cercanos a las algas, llamadas cianobacterias, comenzaron a favorecer la siguiente reacción clave en la aparición de vida en nuestro planeta:

luz $nCO_2 + nH_2O \rightarrow (HCHO)n + nO_2$

Así fue llenándose nuestra atmósfera de oxigeno, apareciendo compuestos carbonados estables cada vez más complejos; polisacáridos (constituidos por carbono, por hidrógeno y por oxígeno); aminoácidos de cadena corta (constituidos por carbono, por hidrógeno, por oxígeno y por nitrógeno); polipéptidos (cadenas largas de aminoácidos); proteínas (cadenas muy largas de aminoácidos), polinucleótidos etc.

Todo esto se produjo en los océanos primitivos, en donde la presencia del agua favoreció una simbiosis oceánica que permitió combinaciones más sutiles (proteína ~ ácido nucleico); estructuras nuevas que tenían novedosas propiedades, como transmitir información memorizada mediante la duplicación, naciendo así las moléculas iniciales de ARN y ADN (los dos ácidos nucleicos que almacenan la información genética de los organismos vivos y son las responsables de su transmisión hereditaria).

La aparición de oxígeno molecular libre, en las capas altas de la atmósfera se transformó en ozono (una molécula con tres átomos de oxígeno) debido a la radiación ultravioleta del sol. La acumulación del ozono sería otro de los factores que marcó el rumbo de la evolución orgánica en la Tierra, ya que esta capa actúa como un filtro muy eficiente de la radiación ultravioleta dañina para el ADN (el ácido nucleico del que hemos hablado), de los organismos vivos.

El hecho de la aparición del oxígeno en estado libre, es decir, sin estar combinado con otros elementos, supone uno de los saltos más importantes para la evolución. En la actualidad, el oxígeno supone el 21% del gas que respiramos.

Sin embargo, el oxígeno tiene su lado oscuro. Hace años, se comenzó a tratar a los bebés prematuros con oxígeno para combatir el llamado distrés respiratorio (debido a la inmadurez de sus pulmones). El resultado fue muy malo, ya que desarrollaban una enfermedad ocular llamada retinopatía del prematuro. Con el tiempo se descubrió que el uso excesivo de oxígeno para tratar a los bebés que nacían antes de tiempo, estimulaba el crecimiento anormal de los vasos sanguíneos de la retina. Este fue el primer indicio de que el oxígeno en altas concentraciones era tóxico.

En otras circunstancias se observaron efectos similares. Como ejemplo, a intoxicación por oxígeno (llamada hiperoxia) se da en buceo cuando se usa oxígeno puro de forma prolongada, y puede llevar incluso al fallecimiento del buceador.

¿Qué hace que el oxígeno pueda ser letal?

El oxígeno, ya hemos comentado, es un agente que se reduce fácilmente y, por lo tanto, es un eficaz oxidante. Estos procesos van unidos a reacciones entre moléculas pasándose electrones de su superficie en busca de la mayor estabilidad eléctrica. Pues bien, de un 2 a un 4% del oxígeno que consumimos acaba provocando la formación de unos compuestos

En la fotosíntesis la energía solar impulsa la reducción del anhídrido carbónico y la oxidación del agua formando hidratos de carbono y oxígeno molecular. En el metabolismo aeróbico (que usa oxígeno para obtener energía), tiene lugar un proceso inverso a la fotosíntesis, que permite almacenar la energía libre producida en la oxidación de los carbohidratos y de otros compuestos orgánicos, en forma de ATP (una molécula que usa el organismo como moneda energética, al tener almacenada una gran energía).

En estos procesos de oxidación reducción, el oxígeno puede capturar un electrón apareciendo un compuesto llamado anión superóxido, que es muy inestable y busca con rapidez la forma de estabilizarse (desestabilizando al vecino). Generalmente, el producto final de una reacción en la que intervenga un radical libre, es el comienzo de otra, por lo que el daño oxidativo se mantiene.

A estos compuestos inestables se les llama radicales libres, y al producto de su acción sobre moléculas vecinas se le denomina daño oxidativo. Hasta 1954 no se reconoció el poder destructivo de los radicales libres en los organismos vivos; irónicamente la culpa recayó sobre el oxígeno, elemento esencial para la vida.

Los radicales libres son tanto más peligrosos cuanto mayor es su reactividad, concentración, persistencia y duración de su acción

Aunque parezca un error de la naturaleza, el daño oxidativo se usa de manera muy eficaz por nuestro organismo para defenderse de las agresiones de microorganismos, por ejemplo. En este sentido, los macrófagos producen radicales libres en la proximidad de la membrana de la bacteria atacante, rompiéndola y matándola, por tanto. Ahora bien, antes hemos comentado que el daño oxidativo una vez comenzado tiende a mantenerse, por lo que parecería un mal asunto abrir la caja de Pandora y para matar al intruso, desencadenar un proceso que pudiera acabar con el huésped.

Para evitar este problema, el organismo se defiende muy bien de los radicales libres (que en circunstancias él mismo crea) generando unas sustancias que actúan como antídotos llamadas antioxidantes. La batalla entre unas y otras da como resultado el predominio del daño oxidativo o el mantenimiento de la situación bajo control.

Los procesos que generan radicales libres son muy numerosos (infecciones, inflamación, traumas, ejercicio físico...) y por si fueran pocos, nosotros nos empeñamos

en aumentarlos con agentes externos (tabaco, alcohol, insecticidas, exposición inadecuada al sol...). Las enfermedades que están muy relacionadas con el daño oxidativo son (entre otras muchas): arteriosclerosis, enfermedad de Parkinson y de Alzheimer, cáncer, demencias, diabetes, enfermedades autoinmunes, inflamatorias crónicas, cataratas etc. El propio envejecimiento se ve acelerado por el daño oxidativo.

Los antioxidantes que necesitamos los producimos nosotros mismos. Son de dos tipos, los llamados sistemas enzimáticos (superóxido dismutasa, catalasas y glutation peroxidasa) y no enzimáticos (ácido úrico, bilirrubina, vitaminas antioxidantes etc.). En su conjunto, la suma de todos ellos se llama estado antioxidante total (TAS)

El ejercicio físico es un gran generador de radicales libres formados en la llamada "cadena transportadora de electrones", que es el mecanismo de la más eficiente producción energética celular. En los sucesivos pasos de esa cadena, hay una discreta fuga de algunos electrones, lo cual genera la formación de radicales libres. Sin embargo, el entrenamiento promueve los mecanismos internos de defensa mediante la producción de antioxidantes, prestos a actuar en el lugar y momento en que se necesitan. El deportista bien entrenado no debe estar preocupado, por tanto. Ahora bien, hay dos situaciones en las que el ejercicio físico puede ser fuente de oxidación y envejecimiento: Por un lado, en el caso de una alimentación inadecuada o deficitaria, en la que no se ingieren los nutrientes que el organismo precisa para producir esos antioxidantes propios (glutatión peroxidasa, superóxido dismutasa y catalasa). Por otro lado, en el llamado "deporte de fin de semana", ya que el organismo no se adapta al esfuerzo y cada fin de semana se genera un estrés nuevo para el organismo frente al que no tiene preparación previa.

Aprovecho la ocasión para hacerme eco de un tópico habitual en los medios del deporte de ocio y tiempo libre. Es común escuchar a los deportistas ocasionales decir que los suplementos de vitaminas, minerales, antioxidantes etc, son para los atletas olímpicos. Sin pretenderlo, relacionan las necesidades nutritivas con el éxito deportivo. Nada más lejos de la realidad; son los deportistas mediocres (pero esforzados), los esporádicos, los de fin de semana etc; ellos son los que sufren más estrés oxidativo. La situación se presta a un símil; nadie diría que gastar 1.000 euros es igual para todo el mundo; a una persona rica gastar 10.000 euros no le supone ningún problema; a una persona pobre gastar 100 euros puede resultarle dramático. En realidad no se trata de la cantidad de estrés oxidativo producido por un esfuerzo; lo realmente importante es la cantidad de radicales libres formados que el deportista no puede contrarrestar; y en este sentido los que tienen más posibilidades son los que están mejor dotados genéticamente; están mejor entrenados y alimentados.

El equilibrio en la ingesta de antioxidantes tiene, pues, dos soluciones:

SOLUCIÓN PALELOLÍTICA

Tomar uvas con sus semillas, tomates y zanahorias, cítricos, aguacates, vegetales de hoja verde, frutas rojas (fresas, arándanos, grosellas..)

El problema aquí es el precio, ya que todas estas frutas están en nuestros supermercados durante todo el año.

SOLUCIÓN APROVECHANDO LA ACTUAL TECNOLOGÍA

La naturaleza nos ha ido programando para una eficaz lucha por la vida. De esta forma, los seres vivos han utilizado sus propios recursos y los de los demás, para mantener su equilibrio interno.

En cuanto a los propios recursos, lo que debemos hacer es proporcionar los precursores de las sustancias que el organismo debe formar (los hemos comentado antes). Por ejemplo, para que el organismo fabrique glutation, debe disponer de sus precursores (cisteína, ácido glutámico y glicina), y estos los puede obtener de las frutas y verduras, pescado y carne. Los espárragos, el aguacate y las nueces son alimentos especialmente ricos en glutation.

Respecto a utilizar los recursos de otras formas de vida que también luchan contra la oxidación, pues lo que hay que hacer es aprovecharlos. En este sentido, podríamos tomar alimentos ricos en las vitaminas antioxidantes, como la vitamina A (zanahoria, tomate..), C (cítricos, vegetales verdes..), E (frutos secos, yema de huevo, vegetales verdes..). Asimismo, sería bueno ingerir sustancias ricas en otros antioxidantes como los polifenoles (taninos y antocianos) y flavonoides de las plantas (abundan en tallo, hojas y frutos), y ejercen una función repelente de insectos y otras plagas. Algunos son muy conocidos y están de actualidad como los que contiene el té verde, el vino tinto etc.

Lista de alimentos ricos en antioxidantes (Tabla VII).

	Fuente Alimentaria	
Vitamina E	Fuentes más importantes	Aceites vegetales, aceites de semillas prensadas en frío, gérmen de trigo, gérmen de maíz, almendras, avellanas, girasol, soja, nuez.
	Otras fuentes significativas	Patatas frescas, pimentón, aguacate, apio, repollo, verdolaga, espárragos, guisantes frutas, pollo, pescado. Algunas frutas (albaricoque, melocotón).
Vitamina C	Frutas	Limón, limón dulce (lima), naranja, guayaba, mango, <u>kiwi,</u> fresa, papaya, mora, piña mango.
	Verduras	Pimientos, acerola, tomate, verduras de hojas verdes (espinacas, perejil, hojas de rábano), repollo, coliflor, brócoli, pimentón, lechuga.
Carotenoides	Beta Caroteno	Verduras y frutas amarillas y anaranjadas (calabaza, zanahoria), verduras verde oscuro (verdolaga, espinacas, borraja, espárragos)
	Alfa Caroteno	Žanahoria
	Licopeno	Tomate
	Luteína y zexantina	Verduras de hoja verde oscuro, brócoli
	Beta criptoxantina	Frutas cítricas
Ácido Alfa Lipoico		Carnes rojas
Glutation	Fuentes más importantes	Brócolis (piel), tomate, ajo, patata, espinacas, verdolaga
Polifenoles	Citroflavonoides	Quercetina (cebolla, manzanas, brócolis, cerezas, uvas); Hesperidina (corteza de limón y pomelo); Narinjina (corteza de naranja); Limoneno (limón y lima)
	Isoflavonoides	Genisteína y daidzeína (soja)
	Proantocianidinas	Semilla de uva, vino tinto, corteza de pino marino.
	Antocianidinas	Cerezas, arándanos, grosella
	Ácido elágico	Uva y verduras
	Catequina	Té verde y negro
	Kaemferol	Puerros, brócoles, rábano, endibias y remolacha roja
Minerales	Cobre	Hígado, pescado, marisco, cereales completos y vegetales verdes
	Selenio	Carnes, pescados, marisco, cereales, huevos, frutas y verduras.
	Cinc	Carnes y vísceras, los pescados, los huevos, los cereales completos y las legumbres
Aminoácidos	Cisteína	Carnes, pescados, huevos y lácteos

Tabla VII. Listado de alimentos ricos en antioxidantes

TOP 10 de antioxidantes

1) Arándano salvaje	2) Arándanos cultivados	3) Alcachofas cocinadas
4) Zarzamora	5) Frambuesas	6) Fresas
7) Manzana roja	8) Cerezas	9) Ciruela negra
10) Manzana Royal Gala		

F) EL AGUA, LA FUENTE DE LA VIDA. (Come poco, bebe el doble, duerme el triple, ríe cuatro veces y llegarás a viejo).

El agua constituye una parte esencial nuestra (65-70%) y eso es así porque tiene una serie de características físico-químicas que la hacen inigualable:

Elevada temperatura de ebullición (lo que posibilita su estado líquido en las temperaturas que permiten la existencia de vida). Elevado calor específico y elevada conductividad calorífica (lo que la hace muy útil para estabilizar la temperatura corporal) Capacidad de hidratación y de disolución de sustancias (es el disolvente universal)

El agua que ingresa en el organismo procede de dos fuentes principales: La que se ingiere como agua o líquidos en general (zumos, bebidas..), o formando parte de los alimentos sólidos. En total unos 2 litros y medio al día, aunque es una cifra que depende mucho del nivel de actividad de la persona y del clima o lugar en donde se desenvuelve su actividad.

Las pérdidas de agua se deben a procesos fisiológicos como la excreción, respiración, transpiración, orina y heces. Algunas pérdidas líquidas no pueden ser reguladas con exactitud, como la debida a la evaporación en el aparato respiratorio y a través de la piel. La cantidad de líquido que se pierde por el sudor es muy variable y depende del ejercicio físico y la temperatura ambiente.

Por la respiración se pierden unos 500 ml, por el sudor (si no se hace una actividad física y el ambiente es normocalórico) se eliminan unos 700 ml, por la orina alrededor de 1.400 ml y en las heces unos 100 ml.

El contenido total de agua corporal normalmente se mantiene dejando un pequeño margen de fluctuación diaria para la ingesta de comida y bebida y la excreción de orina. La mayoría de nuestro consumo de agua se relaciona con el hábito más que con la sed, pero después de periodos de déficit, el mecanismo de la sed es el más efectivo a la hora de motivar la ingestión. Sin embargo, hay que tener muy en cuenta que cuando se tiene sed, ya se está algo deshidratado, por lo que sería aconsejable beber agua de vez en cuando, creando un rutinario y beneficioso hábito.

El margen de volumen de agua que puede ingerirse está determinado por la capacidad del riñón para concentrar y diluir la orina. Un adulto medio con función renal normal necesita de 400 a 500 ml de agua para excretar la carga de solutos diaria producida por nuestro catabolismo en una orina de concentración máxima. Si tenemos en cuenta que producimos alrededor de 200 a 300 ml/d de agua debido a nuestro catabolismo tisular, la ingesta de agua imprescindible al día sería de tan solo 200 a 300 ml/d. Es decir, podemos vivir varias semanas sin probar alimento sólido, pero sin beber agua solo podemos estar días (nadie hace huelga de ingerir líquidos, sería poco eficaz).

La hiperhidratación (beber más de lo necesario), se corrige mediante un incremento en la producción de orina, y la hipohidratación mediante un incremento en la ingesta de agua por medio de la comida o la bebida debido a la sensación de sed.

Beber agua es, pues, imprescindible. La cuestión es si hay cantidades fijas y si todas las aguas son iguales.

Respecto a las cantidades, tenemos que tener en cuenta que nuestra especie termorregula (elimina calor corporal) de forma muy eficiente mediante la evaporación de líquido (sudor) producido por glándulas en la piel (glándulas sudoríparas). También utilizamos el agua como medio para eliminar sustancias indeseables por la orina y sirve para eliminar las heces en forma semilíquida.

Si bebemos agua de forma insuficiente tendremos problemas de eliminación de calor al hacer ejercicio físico (posible patología por calor), de eliminación de sustancias por la orina (orina concentrada y posibilidad de arenilla y cólicos nefríticos), de eliminación de heces (estreñimiento).

Como norma general hay que plantearse beber un vaso de agua a media mañana y media tarde aunque no se tenga sed.

¿Y todas las aguas son iguales?

Podemos beber agua del grifo o tomar en consideración la elección de las llamadas aguas minerales que se clasifican, según su grado de contenido en sales minerales, en:

- a) Aguas de mineralización fuerte (por encima de 1501 mg de minerales por litro)
- b) Aguas de mineralización débil (hasta 500 de minerales por litro)
- c) Aguas de mineralización muy débil (por debajo de 51 mg de minerales por litro)

Todas ellas deben estar dentro de los parámetros de exigencia en cuanto al contenido de sustancias peligrosas (Figura 10)

España tiene cerca de 2.000 manantiales y casi un centenar de marcas con las que se comercializa el agua y se clasifican según su origen en:

Componentes	Límites máximos (mg/l)		
Antimonio	0,0050		
Arsénico	0,010 (total)		
Bario	1,0		
Boro	P.M. (*)		
Cadmio	0,003		
Cromo	0,050		
Cobre	1,0		
Cianuro	0,070		
Fluoruros	5,0		
Plomo	0,010		
Manganeso	0,50		
Mercurio	0,0010		
Níquel	0,020		
Nitratos	50		
Nitritos	0,1		
Selenio	0,010		

^(*) El límite máximo para el boro se fijará si fuera necesario, previo dictamen de la Autoridad Europea de Seguridad Alimentaria y a propuesta de la Comisión, antes del 1 de enero de 2006.

Figura 10 Componentes presentes en las aguas minerales y límites de peligrosidad

Minerales naturales. Son de origen subterráneo, bacteriológicamente sanas, con una composición constante en sus minerales y otros componentes. Son las más consumidas en España y representan el 83,84% de la producción total

De manantial. Son también aguas subterráneas y bacteriológicamente sanas. Pero, en lugar de tener minerales y otros elementos en condiciones apreciables, sólo se definen como aguas "potables"; representan el 13,19% del total.

Potables preparadas. Al contrario de las minerales naturales y de las de manantial, son aguas sometidas a tratamientos físico-químicos que cumplen los requisitos sanitarios exigidos para su consumo. Apenas representan el 2,97% del total

Aguas de consumo público envasadas. Es agua del grifo envasada que pasa unos filtros para eliminar arenilla o exceso de cal.

Con gas. Pueden ser minerales naturales o de manantial. Son aquéllas que tienen un cierto contenido en anhídrido carbónico (CO₂).

En términos generales podríamos decir que beber agua es muy importante. Hay que beber sin esperar a tener sensación de sed, ya que la sed indica cierto grado de deshidratación. La elección de un agua mineral se basa exclusivamente en la disponibilidad de agua potable, ya que no ofrece ninguna ventaja sobre ésta. La indicación de fluorar el agua potable es adecuada si se realiza en los límites correctos y se hace para prevenir enfermedades dentales.

La ingesta adecuada de agua es fundamental en condiciones de calor, especialmente cuando se hace ejercicio y hay humedad. Todos los deportistas y personas que realizan labores pesadas (trabajo agrícola o de construcción) deberían conocer los riesgos de padecer una patología por calor si no se beben líquidos y se evita la exposición prolongada al sol en los meses de verano. Nuestro país sigue padeciendo la plaga de fallecimientos por "golpes de calor" que es la forma extrema de manifestarse un aumento de la temperatura interna que sobrepasa los 40 °C en personas que por distintas circunstancias no consiguen termorregular adecuadamente. En este sentido, la deshidratación es un factor muy dañino que es muy fácilmente evitable (basta beber agua).

En un estudio sobre los hábitos dietéticos de un colectivo de 124 deportistas, jugadores de fútbol y baloncesto, se señalan los síntomas siguientes como los más frecuentes de una inadecuada hidratación: cansancio, sed intensa, calambres, fatiga, piel seca, orina escasa, taquicardia, vómitos, debilidad y globos oculares hundidos.

De una manera general una deshidratación hipertónica (la pérdida de agua es mayor que la de electrolitos), presenta algunas señales características que son: dolor de cabeza, fatiga, reducción del apetito, intolerancia al calor, boca y ojos secos, ardor estomacal, y orina oscura con fuerte olor.

EVALUACIÓN DEL NIVEL DE DESHIDRATACIÓN

Es posible evaluar el nivel de deshidratación por medio de técnicas de laboratorio empleando varios métodos, entre ellos destacan: a) densidad de la orina; b) osmolalidad de la orina; c) osmolalidad del plasma; d) valor del hematocrito y e) contenido de sodio plasmático.

El empleo del hematocrito como medio para evaluar el grado de deshidratación se basa en que la pérdida de agua provoca hemoconcentración, de manera que el hematocrito representa un buen método de evaluar la magnitud de la pérdida hídrica o de sodio. Los valores normales para el hematocrito están comprendidos en el rango de 42 - 52% para los hombres y 35 - 47% para las mujeres.

En la práctica, el nivel de deshidratación se puede calcular por otros medios, tales como el nivel de sed, la diferencia del peso corporal antes y después del ejercicio, y por último la coloración de la orina.

Según el primer método se tendrá en cuenta que, si se siente sed, y son mínimas otras señales físicas y clínicas de deshidratación, es posible admitir que la deshidratación está en torno al 2% del peso corporal. De esta manera, un deportista con 70 Kg. habrá perdido aproximadamente 1.400 ml.

De acuerdo con el segundo método, si un atleta tiene por costumbre pesarse en una báscula antes y después de una actividad física, será muy fácil establecer una relación, pues al perder 4 Kg. de peso habrá perdido aproximadamente 4 litros de agua

Por último, la observación del color de la orina en tres niveles, en la que una orina clara y transparente caracterizaría un nivel de hidratación adecuada, mientras que una orina de color amarillo oscuro indicaría un nivel de deshidratación aguda.

DESHIDRATACIÓN EN RELACIÓN CON LA ACTIVIDAD FÍSICA

El proceso de pérdida de agua corporal está íntimamente asociado a la práctica de actividades físicas. Esta situación está provocada por la necesidad de perder el calor metabólico producido durante un ejercicio, y por ser la evaporación del sudor el mecanismo más eficiente en estas condiciones. La evaporación ocurre a través de la producción de sudor, así cuanto mayor es la producción de sudor, mayor será la pérdida de agua corporal, pudiéndose desarrollar un cuadro de deshidratación, principalmente en situaciones que no van acompañadas de una hidratación óptima para compensar esta pérdida.

Actualmente existe consenso entre los científicos en torno a la importancia de realizar una hidratación constante durante todo el periodo de entrenamiento o competición para conseguir el mantenimiento del agua corporal, tanto intra como extracelular. Sin embargo, no es raro encontrarse con entrenadores y deportistas con una idea completamente equivocada sobre el tema, que consideran importante entrenar sin consumo de líquidos para mejorar la resistencia a altas temperaturas. Un ejemplo de esta situación se observó al hacer un seguimiento de los procedimientos dietéticos durante una prueba de "Triatlon Ironman", con una duración media de \approx 12 horas, realizada en un ambiente caluroso (Río de Janeiro en verano) y en la que hubo algunos triatletas que no bebieron líquidos. Sorprendentemente, también en un trabajo sobre los ultramaratonianos brasileños, un 14,3% de los deportistas no consumían ningún tipo de solución líquida durante los entrenamientos más largos. En el caso de maratonianos Españoles, se registró que un 11,3% no tienen como costumbre consumir líquidos. Por otro lado, en un colectivo de triatletas Españoles, solamente un 2,63% no ingieren líquidos, dada esta baja incidencia, se demuestra que estos deportistas están muy concienciados con el tema de la hidratación.

Es importante señalar que aun realizando una hidratación, es posible que se produzca déficit de agua, ya que la capacidad de vaciamiento gástrico de un sujeto adulto varón está alrededor de 1 a 1,5 litros por hora y la pérdida de agua podrá llegar a 2 litros por hora. En algunas situaciones especiales, como por ejemplo en un ambiente muy caluroso, un deportista entrenado puede llegar a perder hasta 3 litros por hora. Los deportistas habitualmente inician su entrenamiento o competición en condiciones

normales de equilibrio hídrico. Sin embargo, no tienen la costumbre de hidratarse de forma planificada durante la actividad, ocasionándose así un cuadro de deshidratación. En la práctica la hidratación en maratonianos es de apenas 200 ml/h; no es frecuente un consumo superior a los 500 ml/h, lo que contribuye de forma significativa para que surja un cuadro de deshidratación.

Es interesante señalar que deportistas que participan en pruebas de muy larga duración, como el ciclismo de carretera y el triatlon, requieren también entrenamientos diarios muy largos, y por ello pueden desarrollar un cuadro de deshidratación crónica.

La deshidratación está íntimamente asociada a la reducción de la calidad del ejercicio, siendo considerada un factor importante en el descenso del rendimiento.

Varios son los elementos fisiológicos que se ven alterados en un cuadro de deshidratación durante una competición o entrenamiento, cambiando de forma significativa la calidad del trabajo realizado. Alteraciones en el equilibrio osmótico producen modificaciones en la distribución de los iones entre el medio intra y extracelular, que, como consecuencia, degenera en graves problemas en la transmisión nerviosa o en la contracción muscular, facilitando de esta manera la aparición de calambres y la reducción de la calidad del movimiento (técnica), añádanse a esto modificaciones en el sistema cardiovascular y el control térmico corporal. Todos estos factores, actuando de forma conjunta, además de perjudicar el rendimiento, pueden, llegar a poner en riesgo la salud del deportista cuando la pérdida hídrica corporal alcanza valores de entre el 9 y el 12%.

Estudio relacionando el porcentaje de pérdida hídrica corporal con el deterioro del rendimiento. Analizando este cuadro, es posible notar que el ejercicio físico presenta grandes dificultades de realización cuando la deshidratación alcanza valores superiores al 6%.

Relación de % de reducción de peso corporal y respuesta orgánica % de reducción del peso corporal

Respuesta orgánica:

- 1) Umbral de la sed, umbral para las primeras señales de reducción de la capacidad física
- 2) Sed intensa, poco apetito, pequeña incomodidad y sentimiento de opresión
- 3) Aumento en las tasas de hemoconcentración, reducción de la producción urinaria, boca seca.
- 4) Reducción de 20 30% en la capacidad física
- 5) Dificultad de concentración, dolor de cabeza, impaciencia y somnolencia
- 6) Empeoramiento significativo de la capacidad termorreguladora durante el ejercicio, aumento de la tasa respiratoria, hormigueo e insensibilidad en las extremidades.
- 7) Señales de colapso si se combinan calor y ejercicio.

Algunos autores establecen relaciones entre la pérdida de peso corporal en agua - expresada en porcentajes- y sus consecuencias para el rendimiento. Estas son:

- a) La reducción del 2% en el ritmo de ejercicio para una pérdida de peso corporal del 1%
- b) La reducción del 1 % del peso corporal se correlaciona con un aumento de 0,10 a 0,40°C en la temperatura interna
- c) El aumento de 6 lpm para cada 1% de incremento en el grado de deshidratación.

Se observa por lo tanto, que la reducción del rendimiento originado por un cuadro de deshidratación está causada por un conjunto de factores que, dependiendo de la magnitud y de la respuesta individual, podrán ocurrir de manera aislada o combinada.

La utilización de aguas minerales carbónicas nos acercan más a la dieta paleolítica ya que alcalinizan ligeramente y compensan algo el desequilibrio actual ácido de la dieta frente a la ancestral que era más alcalina (verduras, frutas, fibra...)

G) ALIMENTOS BAJOS EN CALORÍAS (LIGHT) (Mal ayuna el que mal come).

La industria busca satisfacer las apetencias de los consumidores. Si se demanda algo, inmediatamente hay alguien dispuesto a ponérselo en una estantería de un supermercado. Este es el principio básico del libre comercio.

Hemos comentado en páginas anteriores los drásticos cambios experimentados por los consumidores a lo largo del siglo XX. Alimentos más dulces, con más grasa, más rápidos de consumir, en definitiva, la llamada comida rápida. También hemos visto la rápida solución que dio la industria al crear la bollería, por ejemplo, con centenares de productos que sustituían al tradicional bocadillo.

Un ejemplo es el Bollycao, en cuya composición destaca su alto contenido en sacarosa (azúcar de mesa), lo que significa que la mitad del producto es azúcar, siendo la cantidad del grasa superior a un 25% con la presencia de ácidos grasos hidrogenados (ácidos grasos trans). Cuando el consumidor (básicamente niños) es alertado por las autoridades sanitarias mediante información referente al exceso de carbohidratos simples y su relación con la obesidad infantil, la empresa lanza el Bollycao balance, con una reducción de carbohidratos de un 9% (un 30% dice la marca), y una reducción de grasa de un 35% (un 40% dice la marca) (Tabla VIII).

Marca c	omercial	Calorías	% reducción Calorías	Proteínas g	Grasas g	% reducción de grasa	Carbohidratos g	% reducción de CH
Panrico	Bollycao c/leche	401		9	17		53	9%
Panrico	Bollycao leche balance	323	19%	8	11	35%	48	

Tabla VIII. Composición por 100 g de productos de bollería de una marca comercial

Este es un ejemplo de cambio de estrategia de la industria cuando el consumidor modifica sus criterios.

Este tipo de alimentos se denominó light (ligero) y comenzaron a ser importantes en la oferta de productos alimenticios a finales del siglo pasado. La legislación española obliga a las siguientes condiciones para denominar a un alimento como ligero:

- 1.- Debe presentarse a partir de un homólogo que ya exista en el mercado, es decir, no puede aparecer un producto nuevo como light si previamente no existía.
- 2.- Debe presentar una reducción de al menos un 30% del valor energético (las calorías).

Sin embargo, según un estudio realizado por la Unión de Consumidores de España (UCE), el grado de cumplimiento de este acuerdo es muy bajo, ya que el informe afirma que sólo dos de los 14 productos que esta asociación examinó cumplían la normativa española sobre productos denominados ligeros.

Bebidas refrescantes, salsas de mesa como tomate o mayonesa, derivados cárnicos, platos preparados, conservas de pescado, mermeladas y productos lácteos (helados, mantequilla y queso) son los diferentes tipos de productos que ha examinado la UCE. El problema encontrado es que no se trata del mismo alimento que el homólogo, sino de uno completamente distinto.

Por otro lado, el hecho de que un alimento sea light no significa que no sea muy calórico, por ejemplo, la leche condensada light disminuye un 15% las calorías, pero aún así sigue siendo un alimento muy energético.

¿Y cómo consiguen estos alimentos ser light?

Pues la mayoría cambiando el azúcar por edulcorantes y la grasa por sustitutivos químicos miméticos, aunque en algunos alimentos se dan paradojas, como por ejemplo la mayonesa, en la que la reducción en la cantidad de aceite y huevo se compensa con la adición de agua; a pesar de lo cual las mayonesas light son un 15% más caras que las convencionales.

En algunos casos se consigue el fin propuesto, como es el caso de los quesos fundidos light, en los que la reducción en calorías se consigue omitiendo como ingrediente la mantequilla o empleándola en menor cantidad e incluyendo leche en polvo o concentrada semidesnatada o desnatada. Algunos llevan además aditivos estabilizantes que ayudan a conseguir una consistencia similar a la del queso fundido normal. El aporte calórico medio de estos quesos es de unas 150 calorías, y el de grasa ronda los 10 gramos por cada 100 gramos de producto (Tabla IX).

Marca comercial		Calorías	% reducción Calorías	Proteínas g	Grasas g	% reducción de grasas (g)	
Hochland Lonchas normal 242		242,6	242,6		17,9	F00/	
Hochland	Lonchas diet	175	28%	21,0	9	50%	
Kraft	El caserío loncha normal	259	2/0/	12,4	21,4	7.40	
Kraft	El caserío loncha ligero	165	36%	18,1	7,7	64%	
Kraft	El caserío porción normal	221	250/	9,2	18,5	20%	
Kraft	El caserío porción ligero	166	25%	12,1	11,3	39%	
Bel España	Vaca que ríe	226	220/	10,5	18	E00/	
Bel España	Vaca que ríe ligero	151	33%	11,5	9	50%	
San Millán	De untar natural	231	220/	9,3	20	F00/	
San Millán	Ligero	154	33%	11,30	10	50%	

Tabla IX. Listado comparativo de quesos fundidos normales frente a ligeros composición por 100 gramos

SOLUCIÓN PALEOLÍTICA

No tomar productos light, ya que es un contrasentido que a un alimento supuestamente equilibrado le quitemos parte de su composición para hacerlo menos calórico (si es por exceso de grasa es que no era un alimento aconsejable)

SOLUCIÓN APROVECHANDO LA ACTUAL TECNOLOGÍA

Loa limentos light pueden ser alimentos a considerar en regímenes de adelgazamiento, pero hay que asegurarse de que no nos toman el pelo. Hay que analizar el etiquetado, compararlo con su equivalente no light (debería poder hacerse en el propio etiquetado del alimento ligero, pero si no es así, pues se compara con el homólogo no light).

En torno a su consumo se nos pueden plantear varias posibilidades:

- 1.- Si la reducción de grasa y azúcar es significativa, y el consumo de ese alimento nos satisface, entonces adelante con la compra.
- 2.- Si la reducción de grasa y azúcar es significativa, pero podemos pasar de ese alimento (por ejemplo, ante la alternativa leche condensada light, mejor tomar leche desnatada sin azúcar), entonces es preferible dejarlo.
- 3.- Si la reducción de grasa y azúcar no es significativa, y el consumo de ese alimento nos satisface, entonces valorar la relación precio de uno a otro
- 4.- Si el alimento light incluye sustancias no deseadas como aditivos, edulcorantes etc., mejor consumirlo con mucha moderación.

H) ALIMENTOS FUNCIONALES (Menea la cola el can, no por ti sino por el pan.).

A finales del siglo pasado y comienzos del actual, con el progreso de la tecnología de alimentos, se estudió la posibilidad de modificar algunos nutrientes específicos que podían ser los no deseables en dicho alimento (por ejemplo cambiar la grasa saturada de la leche por otra fuente grasa deseable como el ácido oleico o los omega 3), naciendo los alimentos llamados "funcionales".

Los alimentos funcionales, o medicinales (nutracéuticos) se han definido como cualquier sustancia que, como alimento o parte de un alimento, proporciona beneficios médicos o para la salud, incluyendo la prevención y tratamiento de la enfermedad (Figura 11). Al abrirse un nuevo gran mercado, la presión de las grandes industrias

sobre este tipo de alimentos y la publicidad, ha generado una información manipulada y parcial que, cuando menos, sirve para incrementar hasta en un 200% el precio base del alimento en cuestión.

En este sentido, la publicidad ha llegado antes al ciudadano que el conocimiento sobre el producto, de

Figura 11- Alegaciones de salud de los alimentos. Sustancias añadidas que les dan el carácter de "funcionales"

modo que se venden yogures con fitoesteroles, leche con ácido linoleico conjugado, galletas con l-carnitina etc sin que el consumidor conozca siquiera el producto del que le están hablando.

Los primeros alimentos funcionales han venido de la mano de intentos de modificar la composición de alimentos con algún tipo de nutriente indeseable, por ejemplo, la leche de vaca tiene en su composición 3,7 g de grasas por 100 g de leche, y de ellas, el mayor porcentaje corresponde a las grasas saturadas. La idea de eliminar la grasa es, pues, muy sensata, sobre todo en personas con sobrepeso. Veamos los contenidos en nutrientes de 100 g de leche de vaca con distintos contenidos en grasa (Tabla X)

Leche	Kcal	Proteínas (g)	Grasas (g)	Hidratos de carbono (g)	Calcio (mg)	Vit. B ₁	Vit. A	Vit. D (mcg)	AGS (g)	AGM (g)	AGP (g)	Colesterol (mg)
Entera	65,0	3,3	3,7	5,0	121,0	0,3	48,0	0,03	2,2	1,2	0,1	14,0
Semidesnatada	49,0	3,5	1,7	5,0	125,0	0,3	23,0	0,01	1,1	0,6	0,0	9,0
Desnatada	33,0	3,4	0,1	5,0	130,0	0,3	0,0	0,0	0,1	0,0	0,0	2,0

AGS= grasas saturadas / AGM= grasas monoinsaturadas / AGP= grasas poliinsaturadas / mcg= microgramos

Tabla X.- Tabla de composición nutritiva (por 100 g de porción comestible) de tres tipos de leche de vaca

Ahora bien, la leche descremada tiene un sabor diferente al que estamos acostumbrados, de modo que surgió la pregunta ¿Y si le añadimos una grasa más saludable que la saturada, por ejemplo ácidos grasos omega 3? A partir de ahí tenemos un alimento funcional, leche con ácidos grasos omega 3.

Del mismo modo, hay yogures con toda clase de alteraciones; con ácido linoleico conjugado (una grasa a la que se le conceden propiedades como bajar el peso); con

omega 3, con aloe vera etc etc. Margarinas con <u>esteroles y estanoles</u> (sustancias de origen vegetal que disminuyen la absorción de colesterol). Huevos con omega 3 (gallinas alimentadas con algas). Bebidas con oligosacáridos (fibra no digerible que ayuda a mantener una colonización de bacterias favorables en el colon). Sal baja en sodio (con más potasio) etc.

La industria ha aprendido rápidamente el concepto de alimento saludable y ha comenzado a plantear lo que se llaman "alegaciones de salud", por ejemplo: "margarina que baja el colesterol", "leche que adelgaza", "bebidas que aumentan la inmunidad natural", "sal buena para el corazón" etc etc

Ante esta explosión de argumentos, en su mayoría sin contrastar con los adecuados ensayos científicos, las legislaciones de los países intentan poner orden con normativas que básicamente vienen a decir: "Si usted dice que su producto hace tal cosa, demuéstrelo". Sin embargo, en España aún no existe una normativa que recoja estos alimentos de forma específica y espera a la legislación comunitaria que está próxima a salir.

Podríamos establecer una categoría de estos nuevos alimentos mediante el siguiente símil:

- Un alimento básico sería la soja (una leguminosa rica en aminoácidos esenciales)
- Un alimento procesado sería el tofu o queso de soja (un preparado a base de soja que no tiene nada que ver con la leche)
- Un alimento reforzado sería la leche de soja con calcio (licuado de soja al que se le añade calcio)
- Un alimento funcional sería la leche de soja con isoflavonas, calcio y magnesio (buscando aumentar la potencia anti-osteoporótica de la soja sola en mujeres menopáusicas)
- Un nutracéutico seria dar isoflavonas (obtenidas de la soja) en comprimidos

SOLUCIÓN PALEOLÍTICA

No tiene sentido si se siguen los criterios de una alimentación paleolítica, tomar alimentos funcionales.

SOLUCIÓN APROVECHANDO LA ACTUAL TECNOLOGÍA

Informarse de la característica que hace "funcional" al alimento en cuestión. Si nos hace falta en nuestra alimentación o nos aporta algo positivo, valorar la relación precio del alimento normal + precio del compuesto aportado y ver si la suma es mayor o menor que el precio del alimento funcional. De cualquier forma, hay que tener en cuenta que al tomar el alimento funcional ingerimos el nutracéutico, pero también el alimento "base".

Vamos a analizar las alegaciones que se hacen en los alimentos funcionales:

1) Actividad hipoglucémica

Alegación de salud: Basada en la incorporación de fibra insoluble (salvado de trigo por ejemplo) y soluble (fibras de los cereales como la avena) a los alimentos refinados (pan y cereales integrales). Suelen incorporar vitaminas y minerales como el calcio.

SOLUCIÓN PALEOLÍTICA

Mucha menor ingesta de carbohidratos y nunca refinados. Nada de azúcar ni derivados.

2) Actividad antihipertensiva

Alegación de salud: Basada en cambiar parte de las sales de sodio de los alimentos por sales de potasio.

SOLUCIÓN PALEOLÍTICA

Reducir drásticamente la ingesta de sodio.

3) Actividad proinmunitaria

Basada en ingerir un microorganismo no patógeno resistente a la digestión normal (probiótico), que llega al colon en forma viable, donde tiene un efecto promotor de la salud para el huésped.

SOLUCIÓN PALEOLÍTICA

Tomar alimentos en cierto grado de putrefacción (incompatible con las normas de seguridad alimentaria actuales).

4) Actividad antioxidante

Basada en la incorporación de antioxidantes a la alimentación. Leche con soja, bebidas de té verde, vinos tintos, chocolate negro...

SOLUCIÓN PALEOLÍTICA

Tomar frutas con piel y semilla. Cebollas, ajo, brócoli etc.

5) Actividad antitumoral

Se basa en el hecho de que una acción negativa de las llamadas especies reactivas de oxígeno (que producen estrés oxidativo) se efectúa a nivel del ADN, provocando mutagénesis (una de las causas de cáncer). Los polifenoles podrían ejercer un efecto antitumoral evitando dicho daño, al tiempo que inhiben el crecimiento celular.

SOLUCIÓN PALEOLÍTICA

Tomar frutas con piel y semilla. Cebollas, ajo, brócoli etc.

6) Acción anticolesterol

Los fitoesteroles y fitoestanoles (que son la forma saturada de los fitoesteroles), son esteroles de origen vegetal (están presentes de forma natural, en pequeñas cantidades, en muchas frutas, verduras, nueces, semillas, cereales, legumbres, aceites vegetales y otras fuentes similares). Tienen una formulación muy similar al colesterol y se caracterizan por inhibir su absorción siendo a su vez escasamente absorbidos por el organismo.

La alegación de que disminuyen el colesterol en sangre y de que no son absorbidos, los convierte en un gran reclamo industrial incluyéndose en margarinas y yogures con supuestos efectos cardiosaludables.

La ingesta de estos compuestos en una dieta habitual en nuestro entorno se sitúa entre los 160 y 500 mg/día, mientras que la acción hipocolesterolemiante precisa de entre 0,8-2 g/día de fitoestanoles y 1,3 g/día de fitoesteroles, con lo que se lograría una reducción diaria de un 10% del colesterol en sangre.

SOLUCIÓN PALEOLÍTICA

Nunca ha sido un problema el colesterol entre los pueblos cazadores recolectores.

Como vemos, la solución paleolítica sigue siendo muy utópica. ¿Nos deja eso necesariamente en manos de los alimentos funcionales?

Hablemos con un poco de "rigor científico"

Existen algunas condiciones, desde un punto de vista científico, al uso de los alimentos funcionales. En primer lugar faltan estudios contrastados y bien realizados de la mayoría de las alegaciones que hace la industria. En segundo lugar, el enriquecimiento de una gran parte de los alimentos con vitaminas y minerales genera una ingesta de estos nutrientes que puede sobrepasar el umbral de tolerancia.

En cuanto al primer punto vamos a ver algunos ejemplos:

En cuanto a los alimentos y los suplementos alimenticios enriquecidos con microorganismos, se debe considerar: 1º Que muchos de estos microorganismos no sobreviven al contacto con ácido, bilis y antibióticos; 2º que si fueran resistentes a los antibióticos, su seguridad necesitaría ser evaluada seriamente por el peligro de transferir esta resistencia intrínseca a la microflora autóctona o a los gérmenes patógenos. Algunos estudios realizados en yogures, por ejemplo, no encuentran ninguna bacteria viva en el intestino tras su administración. Sin embargo, en el otro extremo, existen estudios rigurosos sobre el papel beneficioso de microorganismos probióticos (Bifidobacterium lactis y Lactobacillus reuteri) en lactantes, aunque su seguridad no está suficientemente contrastada.

Por otro lado, los antioxidantes usados en grandes cantidades pueden tener efecto pro oxidante, además, en muchos casos se desconoce su biodisponibilidad, es decir, la cantidad real de ellos que queda a disposición del organismo tras el proceso digestivo y apenas sabemos si su ingesta modifica algunos de los procesos oxidativos que se producen muy puntualmente y en escasos milisegundos. Por ejemplo, una de las frutas con mayor poder antioxidante es la granada, sin embargo prácticamente en su totalidad

sus antioxidantes son destruidos en el proceso digestivo. En otros casos (betacarotenos) incluso hay estudios que relacionan su ingesta elevada con un peor pronóstico en el cáncer de pulmón.

No sabemos orquestar, en este momento, la enormidad de instrumentos musicales (antioxidantes) que existen, es decir, conocemos el sonido de muchos de ellos (su acción está probada en animales), pero no sabemos como encajarlos (biodisponibilidad) para que suenen como una orquesta afinada (hagan su función real de antioxidantes en el momento oportuno de la manera adecuada).

De la actividad antitumoral, para qué hablar. El cáncer es relativamente fácil de prevenir, pero su diagnóstico sigue siendo dramático. El paciente necesita quimioterapia, a veces radioterapia e incluso ambas cosas. Son tratamientos agresivos, con tremendos efectos secundarios como para lanzar frases de esperanza basadas en la ilusión más que en la realidad.

Pongamos un ejemplo: Un varón de 40 años que fuma, puede seguir los siguientes pasos para evitar morir de un cáncer de pulmón. El mejor sería dejar de fumar (apenas tiene efectos secundarios si se siguen las recomendaciones de los expertos). Probablemente con ello habrá vencido a la enfermedad que lo puede matar. Si a pesar de ello quiere seguir tentando a su suerte, puede tomar vitamina C, hacer ejercicio y tomar una dieta que incluya una buena cantidad de polifenoles (antioxidantes). En este caso nadie garantiza que no acabe mal, pero le está dando a su organismo una de cal y otra de arena (sustancias cancerígenas por un lado y sustancias para defenderse del cáncer por otro). Si sigue fumando, no hace ejercicio y su dieta es baja en antioxidantes (lo más habitual), el cóctel es abrumador hacia una cardiopatía isquémica o un cáncer de pulmón. Si, finalmente aparece el cáncer de pulmón, entonces todos los antioxidantes del mundo tienen poco valor. Lo único que valdrá será la fase en la que se encuentre y el tratamiento médico agresivo de la medicina científica.

En este contexto, hablar de efectos anticancerígenos no deja de ser palabrería. Lo mejor, indiscutiblemente, es abandonar hábitos provocadores (recuerden, medio ambiente que permite la expresión de genes defectuosos); como fumar, beber en exceso (yo en realidad no se que es beber con moderación, porque el alcohol no es un nutriente, pero dejémoslo así); exponerse al sol sin protección, no hacer ejercicio físico, tomar comida basura (poca fibra, pocos antioxidantes, mucha grasa inadecuada)....

En cuanto al uso de sustancias para bajar el colesterol, pues casi nada. En primer lugar, el colesterol es imprescindible para el ser humano, luego no se trata de bajarlo porque sí. En segundo lugar, si aumenta el colesterol debido a una enfermedad hereditaria ocasionada por un defecto genético, poco podemos hacer con ningún alimento funcional. En tercer lugar, si aumenta porque no hacemos ejercicio físico y tomamos mucha grasa saturada, pues ya sabemos, hay que hacer ejercicio y alimentarnos mejor. En cuarto lugar, si tenemos cifras de colesterol no muy altas y comemos algo mejor y hacemos un poco de ejercicio, una medida más podría ser tomar esos fitoestanoles, pero hay que tener en cuenta que: 1) El consumo de fitoesteroles y fitoestanoles reduce ligeramente la absorción de vitaminas y antioxidantes liposolubles como el betacaroteno, licopeno y α -tocoferol (vitamina E). 2) Puede que la ingesta de fitoesteroles no sea adecuada en mujeres embarazadas, en períodos de lactancia, adolescencia y en niños menores de 5 años. 3) Algunos estudios muestran que después

de haber consumido en forma continua y por tiempo prolongado alimentos con fitoesteroles y fitoestanoles, al suspender la ingesta se puede producir un aumento de los niveles de colesterol o efecto de rebote.

Otro tema de especial dedicación por parte de la industria es la menopausia femenina y los <u>fitoestrógenos de la soja</u>.

La menopausia se define como la ausencia permanente de menstruación tras un periodo de amenorrea (estar sin regla) de un año. Generalmente se presenta entre los 45 y los 55 años, con una media de 50 años. Se produce debido al cese de la función de los ovarios (al agotarse los óvulos), lo que provoca una disminución importante de los niveles de estrógenos (hormonas producidas por los ovarios), que es la responsable de la aparición de los síntomas que acompañan a la menopausia.

Los síntomas más conocidos son los psicológicos y emocionales (fatiga, irritabilidad, insomnio, nerviosismo) y parecen ser causados por la disminución de los estrógenos. Sin embargo hay otros que son más preocupantes desde el punto de vista de la salud, como la osteoporosis (pérdida de densidad ósea) y las enfermedades cardiovasculares. La osteoporosis avanza con rapidez durante los 5 años posteriores a la menopausia (se pierde del 3 al 5 por ciento de masa ósea por año) y es responsable de fracturas vertebrales, fémur y huesos de las muñecas.

Para evitar estos efectos se puso de moda hace años la llamada "terapia hormonal sustitutiva", en la que se daban estrógenos y progesterona a la mujer menopáusica (los estrógenos solos se han relacionado con la aparición de cáncer de endometrio). Este tratamiento ha sido sometido a distintas revisiones e interpretaciones por su asociación a cáncer de endometrio y cáncer de mama. De hecho, en la actualidad, la asociación de hormonas (estrógenos y progesterona) se considera un factor cancerígeno más por la Agencia de Drogas Norteamericana (FDA).

Sin embargo, esta terapia es efectiva y mejoró la sintomatología de muchas mujeres que se negaron a quedarse sin alternativa. En ese momento se miró hacia oriente, en donde las mujeres tenían muchos menos problemas relacionados con la menopausia. ¿Qué hacía inmunes a las mujeres orientales a los síntomas negativos de la menopausia? La respuesta vino de unos compuestos parecidos a los estrógenos que tiene la soja, los llamados fitoestrógenos.

La acción de los estrógenos en los tejidos se debe a que éstos reconocen a los esteroides hormonales mediante una especie de receptor que se encuentra en el núcleo de sus células. Este receptor estrogénico cuya estimulación al llegar la hormona provoca el efecto celular de los estrógenos (son causa de crecimiento de la mayor parte de caracteres sexuales secundarios en la mujer), también es estimulado por unas sustancias que hay en determinadas plantas llamadas isoflavonas. La acción mimética que ejercen sobre estos receptores las ha llevado a la denominación de fitoestrógenos.

Los fitoestrógenos son ligandos más débiles que los estrógenos naturales (p.ej. el estradiol) y mucho menos que los sintéticos. También son mucho menos "tóxicos" permitiendo su administración en dosis elevadas, lo que garantizaría su efecto. Existen unos 230 tipos de isoflavonas, siendo 3 de ellas -daidzeína, genisteína y gliciteína- las

que tienen mayor importancia clínica. Se estima que en 100 gramos de soja se encuentran unos 300 miligramos de estas sustancias.

En países como Japón, el consumo de isoflavonas es unas 10 veces mayor al de España, y la incidencia de cáncer de mama es 5 veces menor. Las mujeres menopáusicas tienen menor incidencia de osteoporosis y de enfermedades cardiovasculares y los síntomas de la menopausia son mucho menores.

Todo parece del lado del consejo firme de aumentar el consumo de soja. De hecho, la industria ya se ha decantado por este hecho y ha lanzado alimentos funcionales con soja (leches con soja, zumos con soja, yogur con soja, pan de soja etc) e incluso isoflavonas en forma de lo que ahora se conoce como nutracéuticos (alimentos o ingredientes de ellos que proporcionen un beneficio probado a la salud humana). ¿Pero realmente son efectivos? ¿Y seguros?

El problema es que la efectividad probada de estos compuestos solo se ha demostrado en las poblaciones en las que las mujeres consumen soja y derivados de forma significativa desde pequeñas. Es más, el consumo exagerado de isoflavonas está desaconsejado en mujeres fértiles ya que hay estudios en ratas que demuestran ligeras alteraciones fetales en relación con altos consumos de dichas isoflavonas. Es decir, tomar soja como un alimento más es bueno. Si eso se realiza desde pequeñas, es más efectivo. Por el contrario, tomar isoflavonas en altas cantidades (comprimidos) solo estaría aconsejado en mujeres menopáusicas.

Los datos vistos en estudios experimentales en humanos muestran algún efecto protector sobre la masa ósea por parte de las isoflavonas. No obstante, los datos son contradictorios (dosis de 80 mg al día durante 6 meses parecen disminuir la pérdida de masa ósea en la columna vertebral); mientras que estudios en ratas han demostrado que el consumo de grandes cantidades de soja en la dieta no implica un incremento significativo de la densidad ósea. En consecuencia, aunque la soja pueda tener un efecto beneficioso; es probable que los efectos positivos de la dieta oriental sobre la osteoporosis estén relacionados con otros productos y con hábitos culturales, de ejercicio físico y de estilo de vida.

No obstante, tomar isoflavonas por parte de la mujer menopáusica tiene algo muy positivo, carece de efectos secundarios, incluso los fitoestrógenos también han registrado una cierta actividad anticarcinogénica. De hecho, las dietas ricas en soja repercuten favorablemente en un descenso de los casos de cáncer de mama, próstata, pulmón y páncreas, entre otros. Algunos estudios también han reflejado que la ginesteína puede producir apoptosis tumoral (apoptosis es la muerte celular que en los tumores está inhibida) y controlar la acción de algunas enzimas involucradas en la activación de factores de crecimiento tumoral.

Ahora valoremos la situación con sentido común.

Mariana tiene 49 años, es una mujer blanca, casada y con dos hijos, trabajadora de una empresa de tejidos, fumadora y sedentaria. Mide 161 cm y pesa 73 kg (sobrepeso) tiene la tensión ligeramente alta y el colesterol en el límite de tratamiento farmacológico. Su dieta es irregular ya que come fuera de casa y solo cocina el fin de semana. Le gusta la carne, toma poco pescado, una copa de vez en cuando y su ración de leche al día no

supera un vaso (200 cc). Lleva sin tener la regla varios meses y empieza a tener sofocos. Está preocupada porque se ve "menos mujer", tiene menos apetito sexual y las relaciones son dolorosas (sequedad vaginal). Algunas compañeras le dicen que eso no es nada, que se compre lubrificantes vaginales, que vaya más a la peluquería y que tome isoflavonas (las encontrará sin receta médica en una parafarmacia) y leche con calcio.

Mariana debería estar mucho más preocupada del estado de sus arterias (en particular las coronarias) y de su esqueleto. A partir del momento en que cesan los estrógenos se pierde una protección natural frente a la arteriosclerosis (que ya se vislumbra en sus analíticas de sangre) y pequeñas placas en las coronarias pueden inestabilizarse súbitamente y provocarle un síndrome coronario agudo (que en la mujer tiene peor pronóstico, por cierto). También su masa ósea va a sufrir un serio revés; los factores mujer blanca, fumadora, y sedentaria van a provocarle una pérdida de masa ósea que la puede llevar en unos años a la rotura de la cabeza del cuello del fémur y luego a dolores de espalda muy invalidantes. Lo aconsejable sería ir al ginecólogo y valorar la terapia hormonal, además de cambiar hábitos de vida (dejar de fumar el primero) e iniciar tratamiento para la hipercolesterolemia.

Mariana podría haber evitado esta situación desde joven. Si hubiera hecho ejercicio físico y practicado algún deporte además de ingerir una dieta rica en calcio e isoflavonas (alimentos a base de soja), habría preparado un buen "capital óseo" del que restar en el momento de la menopausia. También le habría servido para no coger el hábito de fumar ni entrar en sobrepeso. Con estos factores ambientales es difícil que tuviera problemas de colesterol y su imagen de mujer sufriría menos el paso del tiempo.

SOLUCIÓN PALEOLÍTICA

Aquí la dieta paleolítica tiene poco que decir porque muy pocas tatarabuelas nuestras de hace decenas de miles de años llegaban a la menopausia.

No obstante, si la presión de la industria se encauza dentro de los límites del conocimiento científico y la experimentación clínica mediante la regulación correspondiente por parte de la U.E. (en Europa), tendríamos la respuesta tecnológica a la transformación (para mal) de la dieta del ser humano debida a los factores que ya hemos comentado. Los alimentos funcionales no son ni buenos ni malos en si mismos, de hecho los hay muy buenos y absolutamente inútiles. Lo importante es aprovechar la capacidad tecnológica de la industria y crear una información adecuada en el consumidor que sirva para generar "tendencias" de consumo que guíen a la industria para producir los alimentos funcionales adecuados.

De momento el único criterio que sigue la industria es el de poner en los supermercados decenas de productos y bombardearnos con alegaciones saludables en muchos casos cuestionables o insuficientemente probadas. Solo vale el margen de beneficio que genera en la empresa.

Pongamos un ejemplo. Una galleta funcional de la marca Cuétara tiene los siguientes ingredientes: harina de cereales (trigo, integral de trigo, avena y centeno), grasa vegetal parcialmente hidrogenada, azúcar, fibra alimentaria, jarabe de glucosa, gasificantes, miel, sal, L-Carnitina, emulgente, aroma y antioxidante. El hecho de incorporar carnitina (un transportador de la grasa al interior de la mitocondria), induce a la publicidad a decir que "ayuda a eliminar la grasa transportándola al interior de las células hasta las mitocondrias, llamadas "incineradores de grasa", donde se queman

transformándose en energía". Es una alegación que incita al consumidor a tomar un alimento que no le va a engordar, sino todo lo contrario, le va a ayudar a quemar su grasa (la que le sobra por su exceso de peso), lo cual no es cierto en absoluto. La carnitina extra que se tome al margen de la que el propio organismo sintetiza, no se ha demostrado que potencie el transporte de grasa al interior de la mitocondria (que sería extraordinario para muchos deportistas); pero aunque así fuera, de ahí no podría desprenderse que se quemara más grasa de la que el organismo necesita utilizar como sustrato energético; en definitiva, tomando galletas con carnitina se ingieren calorías, no se queman. Sin embargo, esas mismas galletas incorporan una grasa vegetal parcialmente hidrogenada, es decir, un ácido graso "trans" que ya hemos comentado que no es deseable. Es por tanto un ejemplo de un alimento funcional que no funciona. Sin embargo, si en lugar de carnitina se le eliminara la grasa "trans", dada su composición de fibra alimentaria, se le podría llamar un alimento funcional que si funcionaría.

¿PODEMOS HACER NUESTROS PROPIOS ALIMENTOS FUNCIONALES?

Veamos las alegaciones de salud de los alimentos funcionales y estudiemos la posibilidad de aplicar caseramente los beneficios

1) Actividad hipoglucémica

Estudiar la llamada "carga glucémica" de los alimentos, tratando de escoger los de menor carga glucémica (ver el apartado correspondiente a los carbohidratos).

2) Actividad antihipertensiva

Disminuir la ingesta en sales de sodio (un cazador recolector tomaba cinco veces menos de sales de sodio que nosotros).

Aumentar la actividad física (nuestros ancestros se calcula que realizaban una actividad física equivalente a andar cuarenta kilómetros diarios).

3) Actividad proinmunitaria

Podemos tomar yogur o kéfir y añadir a nuestra alimentación habitual compuestos con fructooligosacáridos como la alcachofa, el espárrago, el ajo, la cebolla, el puerro, el tomate o el plátano

4) La actividad anticancerígena se obtiene llevando un tipo de vida saludable, realizando actividad física. No fumando y consumiendo alcohol de forma muy moderada (no más de un vaso de vino al día). Tomando una alimentación rica en frutas y verduras y evitando la exposición a agentes cancerígenos (por ejemplo el sol).

Respecto a los alimentos funcionales no se puede ser dogmático, hay que analizar alimento por alimento. Vamos a poner algunos ejemplos:

Leche: Un alimento con poco sentido desde el punto de vista ancestral (se toma leche siendo adulto solo a partir de la introducción de la ganadería). Sin embargo se ha convertido en un alimento crucial en la actualidad. Se considera que apenas hay alternativas a la leche para ingerir el calcio que necesitamos. Sin embargo, los reclamos de tomar más leche con calcio para mejorar la salud ósea son publicitarios, no científicos. Los estudios sobre la supuesta mejoría del capital óseo a base de leche con calcio o suplementos de éste no han dado resultados satisfactorios. Más bien parece que lo importante es no perder hueso, y en ese sentido el ejercicio físico es mucho más efectivo. No obstante, para las personas con buena tolerancia a la leche y para los jóvenes, la leche es un buen alimento (sobre todo si es descremada).

Zumos de frutas: Tomarlos tal cual, sin azúcar, ni conservantes, ni añadidos funcionales (en la dieta paleolítica diríamos que en ningún caso sustituyen a la fruta con su piel etc, aunque siempre mejor la fruta completa que el zumo de fruta, aunque sea casero y con licuadora).

Margarinas: ¿Para qué? Más grasa no tiene sentido, y menos cuando son mayoritariamente omega 6 y ácidos grasos hidrogenados ("trans"). Las mantequillas sin comentarios.

Huevos: Alimento excepcional tal cual (vigilar la alimentación de las gallinas, mejor las que se alimentan al aire libre "gallinas de corral" fuera de zonas contaminadas).

Cereales: Una vez sometidos a procesos que los hacen digeribles por nuestro organismo (nosotros no somos pájaros para comer trigo crudo, necesitamos someterlo a múltiples procesos (molienda, cocinado..) para que podamos digerirlo), enriquecerlo con vitaminas y minerales en las cantidades en que figuran las "fortificaciones" de las marcas comerciales, es poco relevante. El añadido de fibra es positivo, ya que una de las grandes carencias de nuestra alimentación es la fibra. A las galletas hay que quitarles las grasas "trans" y las saturadas. El gérmen de trigo es muy interesante (rico en vitamina E) y debería incluirse en todos los panes, galletas etc.

Alimentos bajos en sodio. Es una medida excelente, sin lugar a duda. Existen unas sales de bajas en sodio que llevan sales de potasio y magnesio y son muy adecuadas para ayudar en la reducción de sales de sodio ingeridas.

Soja: Una leguminosa más que hay que incluir en la alimentación de vez en cuando. Sus derivados como la leche de soja, el tofu etc son una fuente interesante de proteínas. El consumo a lo largo de la vida es favorecedor especialmente para las mujeres. En la menopausia se pueden tomar isoflavonas como nutracéutico tras consultar con el ginecólogo, aunque la alternativa de tomar lácteos funcionales (con isoflavonas) es positiva (en principio).

Fibra dietética: Hay que aumentar la ingesta de verdura, hortalizas y cereales integrales. El hecho de tomar fibra en forma de salvado o preparados comerciales de fibra soluble es reconocer nuestra incapacidad para tomar los alimentos apropiados. No obstante, cuando es imposible seguir la dieta recomendada, añadir salvado en forma de copos de cereales o tal cual, es mejor que nada.

Prebióticos: Las llamadas fibras solubles ejercen un efecto en el colon proinmunitario, luego a tomar la zona blanca de la naranja (y no tirarla al pelarla), kiwis, frutos secos, legumbres, verduras, manzanas.

Probióticos: A tomar yogur y kéfir, pero asegurémonos de que contienen lactobacilos de probado efecto prebiótico y que llegan vivos al colon (confiar en una marca de garantía).

A PESAR DE TODO SOY UNA PERSONA DE LA ERA TECNOLÓGICA Y QUIERO COMER BIEN. ¿QUÉ ALIMENTOS FUNCIONALES ME DAN LO QUE NECESITO?

Pues si, a pesar de todo lo comentado, no queremos emplear tiempo en comprar y prepararnos alimentos sanos; pero queremos tomar alimentos modificados para mejorar nuestra salud, podemos tener en cuenta las siguientes recomendaciones:

A) Para personas con resistencia a la insulina (diabetes tipo II, síndrome metabólico...)

Se basan en la capacidad de la fibra (básicamente la insoluble) para evitar un excesivo aumento de la glucosa en sangre después de comer. Estos picos llamados hiperglucémicos tienen que ver con la llamada resistencia a la insulina típica en las enfermedades de nuestro siglo. El mecanismo es simple, la fibra retiene agua, disminuye la difusión de glucosa en la capa que recubre la célula mucosa y el acceso de alfa-amilasa (el enzima que descompone el alimidón para dar glucosa) a los carbohidratos ingeridos.

Alimentos funcionales con esa alegación:

- Leche desnatada con fibra. Lleva entre 1 y 2 g de fibra soluble (generalmente inulina). Tiene mejor textura que la leche desnatada.
- Zumos de fruta con fructo-oligosacáridos. Añaden más fibra insoluble a la del zumo (disminuida con respecto a la fruta convencional).
- Galletas y cereales. Llevan, fundamentalmente, fibra insoluble (con el término "integral"), aunque algunas llevan fibras insolubles (con la denominación "fibra no visible").

En proceso industrial:

- Hamburguesas con fibra de naranja
- Patés y embutidos con fibra

Consejos: El límite individual de ingesta de fibra insoluble lo va a dar la sensación de flatulencia. Las recomendaciones actuales de fibra en adultos oscilan entre 25 a 30 g /día o bien de 10 a 13 g/ 1000 Kcal., debiendo ser la relación insoluble/ soluble de 3/1, es decir, unos 20 g de fibra insoluble al día, lo que equivale a 10 litros de leche con fibra o 1 kg de galletas con fibra "no visible", por ejemplo (considerando que no se tomara otra fuente de fibra con los alimentos). En este sentido, una manzana tiene 1,8 g de fibra insoluble (como 2 litros de leche con fibra); una zanahoria 3,2 y una almendra con piel (ración de 138 g) 15,4.

B) Para personas con hipertensión.

El exceso de sales de sodio (cloruro sódico o sal común) es un hecho en la dieta actual y, como es lógico, se ha relacionado con alteraciones graves, en este caso el aumento de la presión arterial.

La solución más sencilla sería adecuarnos desde la infancia a saborear alimentos poco salados, pero como la sal común está en todas partes (embutidos, enlatados, comidas

preparadas, pan, etc), la industria ha encontrado dos formas de actuar. Por un lado creando los alimentos bajos en sal, y por otro fabricando sal baja en sodio (a base de sales de potasio y magnesio).

Existiendo esta sal disponible con el 60% menos de sodio, es inmediato que comiencen los primeros alimentos funcionales con ese tipo de sal baja en sodio (frutos secos, patatas fritas etc). De momento se pueden consumir alimentos bajos en sodio (mantequilla sin sal, queso bajo en sodio, embutidos pobres en sodio etc.)

Consejos: Cocinar con sal baja en sodio. Tomar frutos secos (y en general productos salados) con sal baja en sodio.

C) Alimentos para mejorar la inmunidad (defensa frente a las infecciones).

1) Alimentos probióticos.

Se basan en estudios realizados a nivel intestinal en los que se demuestra la importancia de lo que se denomina "efecto barrera" sobre la inmunidad general del organismo. Hasta hace poco, se pensaba en el tránsito intestinal como una zona de lucha entre organismos patógenos del medio externo (que entran con los alimentos) y el sistema defensivo del individuo. En esa lucha, cuando se perdía la batalla se producía la infección intestinal (típica de la salmonelosis por ejemplo) con diarrea, fiebre etc. Ahora se sabe que la microflora existente de manera habitual en nuestro intestino y que es "tolerada" por el sistema inmunológico, sirve de defensa intestinal frente a patógenos, pero no solo eso, sino que si esa microflora tiene una composición determinada puede, incluso, mejorar la inmunidad general del organismo huésped.

En la década pasada se hicieron estudios en los que se demostró, en humanos, que la ingesta de leches fermentadas (yogures) con lactobacilos y bifidobacterias y que alteraban la microflora intestinal, provocaban un aumento de la actividad fagocítica en la sangre, es decir, mejoraban la capacidad de las células defensivas de nuestro organismo en zonas alejadas del propio intestino. En este sentido ya hay estudios en los que se verifican efectos beneficiosos en las diarreas infantiles, alergias, intolerancia a la lactosa (en niños) y enfermedades inflamatorias.

Consejos: Hay que ser cautos y exigir que la leche fermentada (yogur) que nos vendan con la alegación de que "nos mejora por dentro", demuestren que sus bacterias pasan la barrera del pH del estómago vivas, que cambian la microflora intestinal y que han probado en estudios científicos sus efectos favorables sobre la inmunidad y su tolerancia a las dosis aplicadas. Esto es especialmente importante en un campo en el que aún quedan muchos temas por resolver, como la naturaleza de la interacción de las leches fermentadas a nivel de la mucosa intestinal y los mecanismos implicados; la relación entre la respuesta inmune y los efectos beneficiosos observados en la salud, las cepas de lactobacilos más beneficiosas para cada alegación, cantidades etc etc.

2) Prebióticos

Son sustancias no digeribles que estimulan el crecimiento de bacterias que actúan como probióticos, es decir, lactobacilos o bifidobacterias ingeridas en leches fermentadas. Son

oligosacáridos (cadenas cortas de monosacáridos, como la inulina que es un polímero de la d-fructosa; o el arabinogalactano, oligosacárido del alerce). Son, en definitiva, carbohidratos no digeribles (calificados como fibra insoluble) con la cualidad de servir de nutriente a las bacterias de efecto beneficioso que ingerimos con los yogures ricos en lactobacilos o bifidobacterias. Son muy seguros y se pueden tomar cantidades de hasta 40 g al día, teniendo en cuenta que el arabinogalactano tiene un efecto prebiótico a partir de 4,5 g.

Consejos: La ingesta de un fructooligosacárido con efecto prebiótico que además posee los efectos de la fibra soluble ya comentados, es aconsejable. La cuestión es si se prefiere tomar achicoria, espárragos, cebollas alcachofas etc., o directamente tomamos un zumo con fructooligosacáridos por ejemplo. Por cierto, también existen en el mercado productos llamados "simbióticos" ya que tienen ambos efectos, pro y prebiótico (leche fermentada con fibra por ejemplo).

3) Actividad antioxidante.

Básicamente en base a productos ricos en vitaminas antioxidantes o polifenoles.

Alimentos como las espinacas o el huevo (muy ricos en luteína y zeaxantina que han demostrado su importancia para una vista óptima) son considerados alimentos funcionales y, de hecho, ya se incluyen estos carotenoides (pigmentos naturales liposolubles que se encuentran en las frutas y los vegetales y les proporcionan coloración amarilla, anaranjada y roja) en forma de nutracéuticos en complejos vitamínicos etc.

Otras vitaminas antioxidantes, como la C y la E se emplean para fortificar numerosos productos (la vitamina C se añade a zumos y la E a galletas, aceites etc.).

Los polifenoles, que son sustancias producidas por las plantas para defenderse de la oxidación (tienen un fuerte poder antioxidante), se emplean asociados a multitud de alimentos (baste recordar el resveratrol del vino tinto, los del té verde, del chocolate etc.). El problema es que su llamada biodisponibilidad, es decir, la cantidad que se absorbe y se utiliza por el organismo es incierta y discutible. Los polifenoles del vino tinto parece que se benefician del efecto del etanol favoreciendo su absorción. En otros casos, como en el té verde, parece que las sinergias son importantes y el efecto final está bastante comprobado.

Consejos (recordemos que estamos en el apartado de no tomar los alimentos naturalmente ricos en estas sustancias, sino los "funcionales", es decir, suplementados o enriquecidos). Pues en este caso, la idea de tomar un yogur con té verde, o una bebida con naringina, o una mermelada con antocianos, no me parece nada mal. Hay que tener en cuenta que, en estos casos, se toma el producto base (una leche fermentada) asociada a un polifenol que, cuando menos, es otro alimento más.

4) Fortificantes.

Son asociaciones de vitaminas y/o minerales a productos pobres en ellos de por si o debido a la manipulación industrial.

En principio se pensó para hacer llegar algún nutriente deficitario en un grupo amplio de población, como fue el caso del ácido fólico, una vitamina cuya ingesta está absolutamente probado que es beneficiosa, durante el embarazo, para un buen desarrollo fetal. Del mismo modo se consideró incluir yodo en la sal común (para combatir enfermedades carenciales de yodo que afectaban al tiroides) y flúor en el agua (para prevenir caries).

Posteriormente se fortifican de forma habitual, cereales para niños (vitaminas y hierro), leche desnatada con vitamina A y D, leche con calcio, zumos con vitamina C, bollería con hierro y fósforo, etc etc.

Consejos: Aquí el problema es que si alguien adquiriera todos los productos fortificados, se pasaría claramente del umbral de tolerancia para algunas vitaminas y minerales lo cual, aunque raro, no es descartable. Lo ideal es tener una buena información nutricional de modo que si toma leche desnatada, lo haga con una que lleve añadidas las vitaminas que desaparecen en el proceso de eliminar la grasa (vitaminas liposolubles A y D); si toma un aceite muy insaturado, compre uno que lleve vitamina E; si toma zumo de naranja embotellado, que utilice uno con vitamina C etc.

5) Simuladores de estrógenos (fitoestrógenos).

Bueno, pues ya hemos hablado largo y tendido. Si al final nos decantamos por tomar alimentos con soja, debemos tomar algunas precauciones. En primer lugar la soja genera algunas reacciones alérgicas, en segundo lugar, la acción de las isoflavonas (fitoestrógenos de la soja) puede ser perjudicial en mujeres jóvenes en altas cantidades.

No obstante, hay que reconocerle a la soja su alto contenido en proteínas de alta calidad, por lo que alimentos como batidos de soja etc, pueden ser un buen complemento alimenticio.

6) Alimentos para bajar el colesterol

Pues también hemos hablado de los fitoesteroles y fitoestanoles de las plantas que se utilizan por la industria de las margarinas para elaborar grasas que "bajan el colesterol". Aquí me niego a dar un consejo favorable, porque si bien en todas las demás entiendo que hay una justificación razonable (aunque sea la comodidad), en este caso basta con no tomar grasa y punto.

7) Alimentos con supuesta acción antitumoral

En este caso también hay muchos reclamos, aunque lo cierto es que si bien la dieta es muy importante, no se han establecido mecanismos específicos y nutrientes individuales que ejerzan una acción antitumoral clara. Existe, sin embargo, una acción llamada proapoptótica de gran importancia en el desarrollo tumoral (la apoptosis es una especie de muerte celular programada que frena el tejido tumoral para poder crecer sin freno). En este sentido, polifenoles y ácidos grasos omega 3 tienen una acción reconocida y, en este sentido, están siendo estudiados. Hay un ácido graso poliinsaturado, llamado docosahexaenoico (DHA) que se encuentra en el pescado y que tiene una importante función de este tipo. No obstante, este es un mundo de investigación y toda alegación es, de momento, prematura.

8) Alimentos enriquecidos en ácido linoleico conjugado (CLA).

Fundamentalmente lácteos desnatados con ácido linoleico conjugado añadido. El CLA es un ácido graso que se encuentra de forma natural en la grasa de alimentos derivados de rumiantes y se estudia en relación con la disminución de peso total (básicamente peso graso) en sujetos a los que se les administra durante al menos 12 semanas (a dosis de 3,4 g diarios). No posee efectos secundarios a esas dosis y se están estudiando otros posibles efectos beneficiosos sobre la inflamación, colesterol alto etc.

Consejos: No hay problema en tomar leche con tonalin® (CLA) si mantenemos baja la ingesta de otros ácidos grasos "trans".

9) Alimentos enriquecidos en ácidos grasos omega 3

Se basan en el desequilibrio de la dieta actual entre ácidos grasos omega 6 y omega 3, intentando suplir la ingesta de pescado con alimentos enriquecidos con omega 3. Se añaden a lácteos desnatados, leches fermentadas, huevos (gallinas alimentadas con pienso de algas), etc.

Consejos: Se trata de una práctica aconsejable que tiene un claro fundamento empírico. Aquí me "mojo" ya que conozco las acciones del DHA (como investigador) publicadas y no publicadas y son espectaculares. El tiempo dirá.....

I) ALIMENTOS TRANSGÉNICOS (Quien quiera peces, que se moje el culo).

La biotecnología incluye las técnicas de ingeniería genética que aislan porciones de material genético de un ser vivo (segmentos de su ADN), para introducirlos en el de otro, es decir, cogemos un gen cuya "expresión" nos interese (por ejemplo la resistencia al frío) y lo introducimos en el ADN de la planta a la que queremos hacer resistente al frío. Se usa la técnica del ADN recombinante (molécula de ADN formada in vitro a partir de fragmentos de ADN procedentes de otros genomas). Por ejemplo, si "cortamos" un gen humano que fabrica insulina y se lo pegamos al ADN de una bacteria, conseguiríamos que la bacteria trabajara para nosotros fabricando insulina. Por tanto, la capacidad revolucionaria de la biotecnología se demuestra en la capacidad de generar sustancias que no existen o de los que hay cantidades muy pequeñas; o disminuir el costo de alimentos de recursos limitados, o más seguros etc.

Aunque nos planteemos ahora el hecho de que es una gran revolución tecnológica y que va a cambiar los hábitos alimenticios del ser humano, en realidad, significará un impacto muchísimo menor del que supuso la introducción de la agricultura y la ganadería. De hecho, desde los albores del abandono de nuestra actividad inicial de cazadores recolectores, la manipulación genética se ha realizado, aunque de forma lenta y grosera. Yo de niño no conocía la nectarina y, en mi época juvenil todas las sandías tenían pepitas. La manipulación del melocotonero dio lugar a la nectarina y no digamos lo que pasaría si intentáramos comer una sandía salvaje, su sabor es muy amargo y no la reconoceríamos; pero es que encima, al cruzar sandías normales con otras tratadas con una sustancia obtenida de una planta de la familia de las liliáceas, los agricultores han

obtenido una exigencia del mercado, las sandías sin pepitas. ¿Cómo podemos pensar que la manipulación genética sea una novedad?

Hace años que se usan elementos químicos o radiactivos (rayos gamma o neutrones) para producir mutaciones en las semillas mediante las cuales se han conseguido variedades más resistentes o más productivas de determinadas plantas. Actualmente, las mejores variedades de cebada que se cultivan en Europa, el trigo cultivado en Italia y el arroz cultivado en California, provienen de mutaciones inducidas.

La tecnología actual permite que estas prácticas sean más rápidas y eficientes. Permite seleccionar puntualmente el gen (o genes) que otorgan la cualidad que deseamos, evitando otras no deseadas. Permite también transferir genes entre especies (lo cual no es nada raro, ya que todos los seres vivos compartimos la mayoría del material genético).

Existen varios métodos para crear vegetales transgénicos, el más interesante emplea una bacteria que inserta sus genes dentro del genoma de cada planta (los científicos aprovechan esta cualidad para insertar los genes que les interesan en las plantas que deciden).

Existen centenares de alimentos transgénicos desarrollados en laboratorios de compañías privadas u organismos públicos de investigación. Se han construido plantas transgénicas que resisten el ataque de viroides, virus, bacterias, hongos o insectos. El más conocido es el maíz transgénico que resiste el ataque del taladro al portar un gen proveniente de la bacteria Bacillus thuringiensis y que sintetiza una proteína tóxica. Hay desarrollos mucho más espectaculares. Por ejemplo, patatas transgénicas que inmunizan contra el cólera o diarreas bacterianas, o una variedad de arroz transgénico capaz de producir provitamina A.

En todo el mundo se han comercializado hasta ahora ochenta alimentos transgénicos, aunque muchos otros están en fase de experimentación o comercialización. En la Unión Europea sólo han obtenido el permiso de comercialización un maíz y una soja transgénica, y también una colza transgénica de la que se podría extraer aceite para consumo humano. España siguió siendo el único país de la Unión Europea que sembró una superficie importante con cultivos biotecnológicos, 58.000 hectáreas de maíz Bt, lo que supuso un aumento del 80 por ciento respecto al año pasado.

Seguridad:

Estamos en 1989, comienzan a producirse un inusual número de casos de una enfermedad llamada síndrome de esosinofília-mialgia y algunos pacientes comienzan a fallecer. Las autoridades establecen un cerco y descubren que la inmensa mayoría de los 1500 afectados son pacientes de psiquiatras que recetan triptófano (un aminoácido precursor de la serotonina, un neurotransmisor implicado en los trastornos del humor). Siguen investigando y descubren que el causante es un producto que contiene exclusivamente triptófano y que está hecho mediante ingeniería genética por una empresa japonesa. Fallecieron 37 personas y aún no se ha dilucidado con precisión cual fue el agente causante (quizás algún tipo de contaminación durante el proceso). No era en absoluto previsible que fuera peligroso un aminoácido que ingerimos en los

alimentos y que era producido de forma teóricamente perfecta mediante un sistema de ingeniería genética.

En Brasil genes de nueces se incorporaron a la soja y provocaron reacciones alérgicas severas en personas alérgicas a las nueces que tomaron soja y nunca pensaron que estaban tomando nueces.

Podríamos continuar con noticias, anécdotas e incluso información subjetiva y manipulada por organismos que tienen intereses comerciales o simplemente escrúpulos de conciencia frente a la manipulación genética.

Debemos huir de las posturas extremistas y podríamos concluir que la manipulación genética no es nueva; no es antinatura y puede ser muy segura si se ponen los medios adecuados y se exige el control y los ensayos clínicos necesarios con cada producto que se lance al consumidor. Los beneficios potenciales son inmensos en el campo de la salud, no solo en el plano comercial (que es en la batalla en la que todos se mueven).

No se trata de impedir la investigación científica, pero no hay que ceder a la presión de las multinacionales (y de los países que las representan) permitiendo la presencia indiscriminada de esos productos en el mercado. Por el contrario, hay que establecer estudios rigurosos y ensayos clínicos que demuestren la inocuidad de cada alimento obtenido por manipulación genética. La energía nuclear nos da electricidad, pero también puede servir para fabricar bombas atómicas.

LEGISLACIÓN

La posición favorable de la Comisión de la Unión Europea se apoya en la consideración de que la nueva legislación comunitaria sobre etiquetado y seguimiento de los OGM, que entró en vigor el pasado 18 de abril de 2005, es suficiente para garantizar que los transgénicos que se comercialicen en el mercado de la Unión no supongan ningún riesgo para la salud. Esa legislación establece que las empresas que comercialicen alimentos o piensos deberán etiquetar todos los productos que contengan más de un 0,9% de organismos modificados genéticamente. La etiqueta incluirá menciones como «este producto contiene OGM» o «está obtenido con OGM». Esta exigencia no se aplicará a productos como carne, leche o huevos que procedan de animales que hayan consumido alimentos o medicinas que contengan OGM. De todos los países comunitarios, España es el único en el que se producen OGM con fines comerciales, en concreto un maíz destinado a la fabricación de piensos para animales

Próximos a salir al mercado:

Aceites, como por ejemplo, el de soja y canola, desarrollados de manera tal que contengan más estearatos, lo que hará que las margarinas y las grasas vegetales sean más saludables

Melones más pequeños sin semilla

Plátanos y piñas con cualidades de maduración retrasadas

Maíz con un mejor equilibrio proteico

Plátanos resistentes a los hongos

Tomates con mayor contenido de antioxidantes (licopeno) que las variedades actuales Frutas y vegetales que contengan mayores niveles de vitaminas C y E

Cabezas de ajo con más alicina, sustancia que posiblemente ayude a reducir los niveles de colesterol

Arroz más rico en proteínas, que utiliza genes transferidos de las plantas de guisantes. Fresas con mejores rendimientos y mayor duración, mejor sabor y textura y mayores niveles de ácido elágico, un antioxidante

El problema de los alimentos modificados genéticamente es que hay muchos intereses económicos alterando el lógico transcurrir de la aplicación tecnológica y los ensayos humanos. Las multinacionales han empleado muchos recursos financieros y quieren empezar a recuperar la inversión lo antes posible. Hay un país en particular (USA) en el que están implantadas la mayoría de estas multinacionales y, lógicamente, presiona para introducir esos alimentos en los mercados internacionales. La opinión pública ha sido muy manipulada por colectivos reticentes a determinados avances tecnológicos (a veces se habla de la manipulación de genes como si inmediatamente se estuviera alterando la naturaleza). Todo ello crea un ambiente alejado del desarrollo científico que debe basarse en el desarrollo tecnológico, la aplicación en laboratorio, el ensayo en animales y finalmente la experimentación clínica y si todo está bien, entonces al mercado con plenas garantías.

¿Qué falló en las muertes por triptófano proveniente de modificación genética? Respuesta: No hubo experimentación clínica.

SOLUCIÓN PALEOLÍTICA

Aquí la dieta paleolítica tiene poco que decir, lógicamente.

J) HABLEMOS DE TEMAS COTIDIANOS POR EJEMPLO ¿CUANTAS COMIDAS DEBEMOS HACER AL DÍA? ¿MERECE LA PENA AYUNAR? (Comer hasta enfermar y ayunar hasta sanar).

Nuestro organismo está preparado evolutivamente para un ciclo diario basado en la actividad de los cazadores recolectores. De este modo, tras un descanso nocturno, las concentraciones plasmáticas de glucosa e insulina se encuentran en sus valores más bajos de todo el ciclo de 24 horas, mientras que los ácidos grasos no esterificados se encuentran en los valores más altos. El organismo utiliza poca cantidad de glucosa y la reserva para los órganos que dependen de forma exclusiva de ella (cerebro y eritrocitos o células rojas de la sangre). Se produce una degradación neta de proteínas del músculo (por el bajo nivel de insulina), mientras que la falta de inhibición de la lipasa sensible a insulina (por la baja presencia de esta en sangre), permite que los ácidos grasos liberados por el tejido adiposo se conviertan en el sustrato energético de preferencia para el músculo.

En este punto, el recolector del que estamos hablando (nuestros antepasados de hace 200.000 años), ingiere sus primeros alimentos, basados en frutas y raíces. Se absorbe glucosa y aumenta la glucemia, lo que provoca un inmediato aumento de la insulina en plasma. El hígado capta glucosa (amortiguando la llegada de glucosa a sangre) y el metabolismo hepático del glucógeno cambia de signo (pasa de degradación a síntesis). También extrae aminoácidos de la circulación portal (aminoácidos que vienen directamente de la digestión de las proteínas), dejando los ramificados a expensas de la

metabolización en músculo en donde sus grupos amino son transferidos al piruvato pasando a alanina (sustrato de la gluconeogénesis). El incremento de las concentraciones de glucosa e insulina actúan sobre el tejido adiposo reduciendo la liberación de ácidos grasos no esterificados, con lo que el músculo deja de utilizarlos como fuente energética y pasa a buscar la glucosa para obtener la energía con la que contraerse.

Nuestro recolector prepara sus útiles y se va de caza, lo cual le supone un ejercicio físico de intensidad moderada pero que ocupará gran parte del día. A continuación aumenta su tensión y el ejercicio físico (está andando, leyendo huellas, acechando...). Esto provoca un aumento de la actividad del sistema nervioso simpático, lo que supone mayor frecuencia cardiaca, mayor fuerza de bombeo del corazón, mayor frecuencia respiratoria (estado de alerta) y aumento de contracciones musculares. En términos metabólicos eso supone que la glucosa será sustrato energético, la insulina no aumenta ya que la glucosa entra en el músculo al hacerse permeable a ella por el propio ejercicio físico (la tendencia a conservar las reservas lipídicas será menor). La inhibición de glucagón por concentraciones elevadas de glucosa es menor, con lo que el "tono hormonal" cambia de una tendencia a almacenar sustratos a la de utilizarlos.

Ha cazado y regresa al grupo en donde se prepara la gran comida del día. No se desdeñan las vísceras, se roen los huesos y se toman verduras para digerir mejor la caza. No hay apenas grasa en esos animales salvajes y la que hay es más bien rica en ácidos grasos insaturados.

Ahora vamos a estudiar a un joven ejecutivo en nuestro ambiente (siglo XXI). Suena el despertador y toma un café solo. Sus concentraciones plasmáticas de glucosa e insulina se encuentran en sus valores más bajos de todo el ciclo de 24 horas, mientras que los ácidos grasos no esterificados se encuentran en los valores más altos. El café estimula la utilización de los ácidos grasos, la glucosa sigue baja tras el ayuno nocturno y la energía va a proceder de las proteínas musculares y de los ácidos grasos liberados del tejido adiposo. La baja concentración de glucosa produce ligeros mareos y reduce la eficiencia cognitiva cerebral. Hay un ligero mal aliento provocado por los cuerpos cetónicos derivados el uso de ácidos grasos como gran fuente energética. La tensión de las reuniones provoca un aumento de la actividad simpática, pero al no haber ejercicio físico, el corazón aumenta su frecuencia cardiaca pero no hay mayor fuerza de bombeo. Nuestro ejecutivo ha terminado la primera reunión y sale con el resto de compañeros a tomar "algo". Pide unas tostadas de mantequilla y un vaso pequeño de leche con café. En términos nutricionales eso supone carbohidratos (pan blanco y leche), grasas saturadas (mantequilla y leche) y algo de proteínas (leche). La alta carga glucémica de un desayuno de ese tipo provoca una rápida respuesta insulínica, con lo que se frena la degradación proteica y se reducen la liberación de ácidos grasos no esterificados, pero la alta ingesta de grasas saturadas y la ausencia de actividad física produce un brusco aumento de triglicéridos plasmáticos.

Llega el momento de almorzar y nuestro joven amigo ha quedado con unos clientes en un restaurante cercano. Es una "comida de negocios". El camarero llega para entregar la carta y pregunta por la bebida para el aperitivo mientras trae pan, mantequilla, aceitunas y otros pequeños entrantes mientras llega la comida principal (alcohol, carbohidratos simples, grasas saturadas, sal...). La decisión ha sido un entrecot con guarnición (proteínas, grasas saturadas, carbohidratos, algo de vitaminas y pocos minerales) y de

postre un café (no ha pedido tarta porque hay que cuidarse). Conversación animada (y a veces tensa) es decir, más activación del simpático y nada de ejercicio, lo que a nivel metabólico supone un alto pico de glucosa, una rápida respuesta insulínica, un fuerte aumento de los lípidos en sangre (la ingesta de grasa saturada aumenta los triglicéridos en plasma) y una importante carga digestiva que le provoca una ligera somnolencia que combatirá con otro café.

Faltan antioxidantes, fibra, vitaminas y minerales y sobra grasa. Si además nuestro amigo fuma, empezará a jugar a la ruleta de la cardiopatía isquémica. Pero esta no es una situación de "todo o nada", es decir, no se trata de que o le da un infarto o no tiene problemas, en realidad es mucho más complicado. ¿Se acuerdan de lo que comentábamos de la expresión génica? Pues este medio ambiente que se crea con una alimentación tan "antinatura" es lo peor que puede haber para que los genes se expresen adecuadamente. La ingesta hipercalórica (prácticamente segura con una alimentación así), le llevará a la obesidad. Los picos de insulina generados por una alimentación con una carga glucémica tan alta serán un factor añadido que, junto al sobrepeso y la falta de ejercicio unido al bajo consumo de antioxidantes le llevará a un síndrome metabólico y una diabetes de adulto (tipo II). Además, esos picos de lipemia postprandial (es decir, ese aumento de grasa después de comer) genera un tremendo riesgo coronario a medio plazo (aumento de tensión arterial y aumento de lipoproteínas de baja densidad). Por otro lado, tampoco son buenos esos picos de insulina que, unidos al desequilibrio entre ácidos grasos omega 6 y omega 3 (en una dieta como la comentada pierden los omega 3), se produce un aumento de derivados de los ácidos grasos insaturados (prostaglandinas y eicosanoides) de características proinflamatorias, lo cual redunda en un mayor riesgo de que terminen expresándose genes que tengan relación con procesos autoinmunes o enfermedades alérgicas. La carne pone carne, el pan pone la panza, y el vino guía la danza.

¿Qué podríamos decirle a nuestro joven ejecutivo para que tuviera una larga vida y disfrutara de su bien ganados bienes materiales?

Pues empecemos por el desayuno. Un zumo de naranja (vitaminas y antioxidantes), yogur desnatado (proteínas y efecto probiótico) con pasta de arándanos (polifenoles antioxidantes) y un sándwich de jamón serrano (proteínas y algo de carbohidratos) con aceite de oliva virgen extra (oleocanthal) y tomate (licopenos). Luego la reunión y después la salida en grupo a la cafetería, en donde puede pedir un café solo con sacarina. Luego, en la comida de negocios, pediría un vaso de agua con gas (mientras los demás toman aperitivos con alcohol y trocitos de pan con mantequilla). De primer plato una parrillada de verduras asadas y de segundo una lubina a la espalda, y de postre, fruta del tiempo. Ni café, ni copa, ni puro, eso se lo daría a la competencia (para que dure poco).

Luego, a media tarde aprovecharía para bajar al gimnasio de la empresa a hacer unos cuarenta minutos de bicicleta o cinta junto a algunos ejercicios de fuerza para los brazos, hombros y espalda. El efecto buscado sería el que comentamos antes con los cazadores recolectores, aprovechar el efecto anabólico del aumento de insulina y de aminoácidos (por las proteínas de la comida) para aumentar la masa muscular y "quemar" calorías al tiempo de mantener un tono cardiovascular un mejor funcionamiento articular etc, creando el ambiente favorable para evitar que se expresen genes desfavorables y prevenir, por tanto, la enfermedad.

Patologías tan terribles y difíciles de enfrentar por la medicina, como el Alzheimer, se cuecen desde mucho antes de manifestarse. Cuando este ejecutivo joven, fuerte, agresivo, de mente ágil y brillante está en plenitud de forma, no es capaz de pensar que un día pueda ser presa de una enfermedad que le haga olvidar el nombre de su propio hijo. Sin embargo, ahora sabemos que factores como seguir una dieta sana, hacer ejercicio aerobio (de fondo), mantener un peso estable y restringir ligeramente las calorías ingeridas a partir de los 50 años, contrarresta la proliferación de una proteína llamada GFAP (proteína acídica fibrilar glial), relacionada con esta enfermedad.

¡Qué fácil es prevenir!

K) ¿Y LOS DEPORTISTAS, QUE DEBEN COMER? (Canas y dientes, son accidentes; arrastrar los pies, eso sí es vejez).

La manipulación dietética en el deportista de alto rendimiento es tan eficaz y tan importante en este momento que requeriría un libro con dedicación exclusiva. No obstante, vamos a poner algunos ejemplos de practicantes de deportes a un nivel competitivo pero más moderado para tener una guía de por donde camina la nutrición deportiva en estos momentos.

Juan es ciclista aficionado. Se levanta y hace un poco de rodillo en ayunas con una botella de agua y un zumo de naranja para ir dando sorbos mientras se ejercita. Al estar en situación de ayuno, la glucemia está baja mientras que los ácidos grasos no esterificados se encuentran elevados, lo que aprovecha para realizar un ejercicio muy suave obligando a todo su metabolismo aerobio a funcionar expresando enzimas del ciclo de Krebs y aumentando su eficiencia metabólica. Tras unos cuarenta minutos rodando muy suave se prepara el desayuno. Busca alimentos con una carga glucémica baja, ricos en carbohidratos y proteínas, antioxidantes y vitaminas, de modo que toma frutas (antioxidantes y vitaminas), leche descremada y cereales (carbohidratos y proteínas), jamón cocido y huevo (proteínas). Trabaja por la mañana, de modo que apenas tiene tiempo de tomar una manzana y un yogur a media mañana. El almuerzo es una comida muy equilibrada, consiste en ensalada (apio, zanahoria, lechuga, aceitunas, tomate), macarrones (carbohidratos de baja carga glucémica) y sardinas asadas (proteínas y ácidos grasos omega 3). De postre toma un kiwi. El entrenamiento es a media tarde y se lleva un bidón de agua y un par de sobres de liofilizado de bebida isotónica que prepara aprovechando una breve parada en algún bar de la carretera en donde pide agua y reconstituye el liofilizado tomando el equivalente a un vaso cada quince minutos. Tiene ya mucha experiencia y utiliza diversas mezclas según el clima y la temperatura, de modo que baja un poco la concentración del prospecto cuando la temperatura es alta, para que la bebida vacíe más rápidamente en el estómago. Cuando termina el entrenamiento sabe que debe ingerir inmediatamente una mezcla de carbohidratos de alta carga glucémica y algo de proteínas, de modo que si le coincide la hora aprovecha y cena inmediatamente; si no, toma medio litro de una bebida postcompetitiva diseñada justo para después del entrenamiento. Finalmente la cena la realiza a base de sopa de verduras (vitaminas y antioxidantes), patatas cocidas (alta carga glucémica) filete de pavo a la plancha (proteínas bajas en grasa) y fruta (vitaminas y antioxidantes). Antes de ir a la cama toma un vaso tibio de leche descremada que le ayuda a dormir más relajado (el triptófano de la leche aumenta la serotonina y provoca una mayor somnolencia).

Miriam es una niña de 13 años que practica gimnasia rítmica. Tiene una gran proyección y está ocupando una plaza en un Centro de Tecnificación Deportiva (CTD). Las normativas de ayuda al deportista le permiten acudir a clases en un colegio cercano y entrenar durante toda la tarde. La comida se la dan en el centro, por lo que apenas debe preocuparse ya que el centro médico la revisa, estudia los cambios de composición corporal y supervisa la alimentación (además de una analítica de sangre cada tres meses). Su jornada comienza muy temprano, a las 7:00 ya debe levantarse. Se pesa y anota el resultado (tiene que dárselo a la entrenadora cada mañana). Baja a desayunar al buffet, aunque lleva anotado lo que debe coger, un zumo, una manzana, un yogur descremado, unas galletas muesli y un poco de jamón cocido que toma con una pequeña rebanada de pan integral. Tiene que tomar una pastilla que le han dado en el centro médico, es un complemento de vitaminas y minerales para una dieta que debe mantener una ajustada ingesta calórica que mantenga el peso bajo mínimos (cualquier aumento de peso es preocupante). No hay otra cosa que agua a lo largo de la mañana. El almuerzo vuelve a ser en el CTD y consiste en ensalada (zanahoria, lechuga, tomate, remolacha, aceitunas) sin aceite, merluza congelada hervida con unas patatas cocidas y una pieza de fruta. Apenas grasa, apenas sabor en las comidas, pero el sacrificio es parte del entrenamiento. Luego toda la tarde en el gimnasio en el que solo hay una bebida hipotónica (apenas una mínima cantidad de carbohidratos (maltodextrina) e iones (básicamente sodio)) cuando hace calor. La cena vuelve a se muy parca; verduras sin aceite, huevo duro, fruta y un vaso de leche descremada junto a otra pastilla del mismo complejo vitamínico.

Jaime es jugador de balonmano, tiene 24 años y está en un equipo profesional. El club le ha conseguido la matrícula en la universidad para seguir sus estudios aunque está un poco retrasado ya que la exigencia del deporte profesional le hace descuidar, a veces, su carrera. Le han fichado en un club fuera de su residencia familiar, por lo que vive en un piso con otros dos compañeros del mismo club. Se levantan todos a la vez y desayunan juntos. Es un poco caótico, ya que los otros compañeros apenas le dan importancia a la alimentación y son muy descuidados. A veces falta leche o no hay pan. Sin embargo Pedro ha aprendido a cuidarse, estudia la diplomatura de nutrición y conoce la importancia que puede tener para su rendimiento como jugador llevar una buena dieta. Es el motivo de las bromas de sus compañeros de piso, que consideran que se pasa de cuidados mientras que ellos van a lo bruto. No obstante, Pedro es muy rígido en su plan, desayuna un zumo, tostadas con jamón cocido, yogur y café y toma una cápsula de antioxidantes (polifenoles y vitaminas C y E). Luego va a entrenar con su botella de bebida isotónica (aprovecha el menor descanso para tomar un trago). Ha encontrado una tienda cercana al piso en donde hacen comida casera y allí suele comprar un guiso (a veces arroz, otras pasta, en ocasiones olla de verduras o lentejas estofadas etc), el segundo plato suele ser un filete de pollo o de pavo asado (en el congelador guarda la compra que hace todas las semanas en la carnicería cercana, en donde cuando hay buen hígado de ternera le guardan unos filetes), luego toma fruta y una pastilla de un ácido graso omega 3 que sabe que necesita porque el pescado no lo puede tomar tanto como quisiera (necesitaría ir a la pescadería y no tiene tiempo). Luego va a la universidad en donde apenas tiene tiempo de tomar un zumo en la cafetería a media tarde. La cena suele ser ensalada (ha encontrado unas ensaladas preparadas en el supermercado que están muy bien), pasta, tortilla y fruta. También se lleva su vaso de leche descremada a la cama mientras lee un rato y se queda dormido.

Luisa es maratoniana. Trabaja en una oficina y tiene un horario muy rígido. Desayuna un zumo, leche con cereales y cacao y sale rápidamente para el trabajo. A lo largo de la mañana, en el momento en que tiene ocasión toma una manzana y un batido de soja (ahora tiene suerte porque el mercado se ha llenado de sabores deliciosos). Llega tarde a comer, pero tiene suerte porque su marido tiene un trabajo autónomo y suele llegar antes y hacer la comida. Han llegado a un pacto, él hace la comida los días laborables y Luisa cocina los fines de semana. También han llegado a un acuerdo muy importante para ella; cuando cocine él, los platos los hará sin grasa, luego él se añadirá aparte el aliño para hacerlos más jugosos. Sabe que la alimentación es muy importante para ella, este año quiere bajar de las 2 h 30 minutos y necesita toda la energía de su cuerpo, no puede dejar un ápice a la fortuna. De hecho, ha tenido que soportar alimentos de los que no sabía ni que existieran; hígado dos veces a la semana pero ¿sangre frita? ¿Quién había oído hablar de que se comiera la sangre frita? Sin embargo ahora sabe que el hierro absorbible solo está en el hierro de la sangre (algo también en mejillones y berberechos). Pero eso no es todo; ahora sabe que cuando se toma un plato de lentejas (que contienen algo de hierro pero poco absorbible), si se asocia un par de kiwis (ricos en vitamina C), mejora la absorción del hierro. ¡Quien le iba a decir a él que iba a saber tanto de alimentación! ¡Él que estaba acostumbrado a comer cualquier cosa que llevara mayonesa! Luego llega el entrenamiento, pero eso no es todo, resulta que hay una bebida para tomar media hora antes de entrenar, otra para tomar durante el esfuerzo y otra para ingerir inmediatamente después. Luisa es muy metódica en esas cosas desde que corrió una prueba con calor y perdió más de 10 minutos por saltarse un avituallamiento, acabando con calambres y vomitando. Fue una experiencia que no quiere que vuelva a suceder. En otra ocasión, un descuido en las analíticas (no pidió la ferritina y aparentemente las analíticas eran normales) tuvo como consecuencia una anemia que le hizo perder varios meses. Desde entonces es feroz con el tema del hierro, sin embargo prefiere seguir los consejos de su médico y no toma pastillas de hierro salvo cuando la ferritina está baja, considera que con cuidar la alimentación es suficiente y se evita tomar un elemento que es un oxidante. ¿La cena? Otro calvario para el marido (menos mal que son jóvenes y luego se compensa todo). Verduras, pavo asado, fruta y leche. Todo aderezado con unas pastillas que tiene que tomar para no se qué del calcio, el ácido fólico y no se que más cosas (parece que en relación con los anticonceptivos y el deporte).

Jesús es culturista. Vive para su deporte, de hecho fue un competidor y ahora tiene un gimnasio que es un buen negocio. La alimentación para él es casi tan importante como el entrenamiento. Antes le llevaba un médico que le hablaba de que no eran necesarias tantas proteínas, que muchas de las cosas que tomaba no servían para nada etc. No fue efectivo y perdió fuerza, de modo que ahora está en manos de un especialista en medicina deportiva. Lleva un control muy riguroso y ha conseguido mantener la masa muscular sin tener que tomar anabolizantes como hacía antes. Ahora sabe que lleva una vida más sana, aunque reconoce que en la competición ya no podría estar. Parece que es imposible competir con la nandrolona. Sin embargo ha conseguido mantenerse y ser admirado en el gimnasio atrayendo a un buen número de jóvenes que quisieran tener su figura. Para él no tienen misterio nombres como glutamina, aminoácidos ramificados, acetil carnitina, quercetina etc. Sabe por experiencia que no son los compuestos, sino cuando se toman y en que orden, lo que hace que sean efectivos. Otros compañeros

siguen las instrucciones de revistas o de casas comerciales, incluso algunos son imagen para determinados productos y cuentan con el asesoramiento de los técnicos, pero él ha aprendido que hay que dar con un experto. Lo importante es que su cuerpo tenga alanina cuando la necesita, que no baje la glutamina por un entrenamiento intenso, que no haya una caloría de más y que en el momento en que tenga que definir más su musculatura no haya una pizca de grasa en el panículo adiposo subcutáneo. Sus comidas son un artificio de mezclas de pastillas y platos insulsos, a veces incluso monótonos, pero cada bocado es energía para sus músculos. Él sigue la dieta de los cazadores recolectores de antaño, un 35 % de calorías derivan de las proteínas (carnes y pescados muy bajos en grasa, sin aderezos ni aceites), un 40 % de carbohidratos y un 25 % de las grasas. Lo que ellos tomaban y ahora es imposible, lo consume en pastillas (antioxidantes, omega 3, vitaminas, minerales). Su gran fuente proteica son los huevos y el suero de leche. Ahora ha conseguido clara de huevo liofilizada que mezcla con suero de leche en polvo y añade al desayuno junto con aminoácidos ramificados. Por la noche toma un vaso de leche descremada con una cápsula de triptófano procedente de remolacha.

L) ¿PUEDEN LOS ENFERMOS CONSIDERAR LA ALIMENTACIÓN COMO UNA AYUDA EN SU RETORNO A LA SALUD? (La mejor receta, la dieta)

Durante todo el libro he presentado una visión con cierto tinte radical, de hecho, alguno de los puristas que me puedan leer quizás consideren un tanto alarmista y catastrofista mi visión del estado actual de la alimentación en nuestra sociedad occidental. Su sentencia podría ser algo así como que el hombre ya ha demostrado que puede adaptarse a los alimentos que toma actualmente y que en cualquier caso lo peor de todo es no tener qué comer.

Desde luego no pretendo dogmatizar en este libro, y mucho menos seguir una doctrina, pensamiento o escuela. Creo que es muy conveniente mantener fría la razón y caliente el corazón, y me parece que las teorías hay que contrastarlas con firmeza antes de que se conviertan en modas muy sutilmente aprovechadas. De hecho, en Estados Unidos están de moda los restaurantes de la Paleodieta (digo yo que saldrán a cazar la carne que ofrecen, a las praderas del paleolítico).

Pienso, más bien, que el que esté sano debe preocuparse en mantener su salud, y el que esté enfermo debería tener muy en cuenta lo que come por si los conocimientos recientes pudieran ayudarle a recuperar su salud. En el área preventiva, a la luz de los conocimientos de la genética y de la paleoantropología, podemos afirmar que el hombre debe hacer ejercicio físico y comer menos dulces y grasas totales y más micronutrientes y ácidos grasos omega 3. En cuanto al que esté enfermo, debería prestarle atención a lo que come y consultar a su médico sobre qué alimentos le podrían mejorar. En este último caso, quizás el recuerdo de lo que nosotros comimos en un pasado que todavía nos condiciona, pudiera serles útil y en ese sentido está escrito este libro.

Por cierto, este planteamiento empieza a ser contrastado a nivel de estudios experimentales, de hecho, recientemente investigadores de la Universidad Johns Hopkins de Baltimore (Estados Unidos), han publicado en una prestigiosa revista médica (Journal of the American Medical Association (JAMA)), que una dieta rica en proteínas, la mitad de ellas de origen vegetal, puede mejorar los niveles de colesterol, disminuir la presión sanguínea y reducir el riesgo cardiovascular en pacientes con

hipertensión leve. Esto supondría, a juicio de los autores, sustituir parcialmente con proteínas y grasas monoinsaturadas los carbohidratos (justo lo que mantenemos en toda nuestra exposición).

Enfermedades de marcado componente inflamatorio (artritis reumatoide, psoriasis, asma..).

Objetivo: Disminuir la producción de prostaglandinas y eicosanoides de las series 2 y 4

Método: Evitar períodos interdigestivos largos. Evitar picos glucémicos con alimentos bajos en carbohidratos y de baja carga glucémica. Moderar la absorción de glucosa con fibra insoluble. Disminuir la ingesta total de grasa y en particular los ácidos grasos omega 6 y aumentar los omega 3.

Ejemplo de dieta:

Desayuno: Naranja (eliminar solo la capa superficial de la piel). Yogur descremado con cereales integrales. Pequeña tostada integral con jamón cocido.

Media mañana: Zanahoria cruda

Almuerzo: Ensalada (apio, lechuga, tomate, aceitunas) con aceite virgen extra de oliva.

Filete de atún a la plancha. Kiwi. Agua de mesa carbónica

Merienda: Yogur descremado Cena: Acelgas. Tortilla. Ciruelas

Enfermedades con fuerte carácter pro-oxidante (enfermedades mitocondriales, neurodegenerativas..)

Objetivo: Disminuir la producción de especies reactivas de oxígeno.

Método: Evitar períodos interdigestivos largos. Evitar picos glucémicos con alimentos bajos en carbohidratos y de baja carga glucémica. Aumentar la defensa antioxidante del organismo. Ingerir alimentos ricos en vitaminas A, C y E, selenio, cinc y polifenoles.

Ejemplo de dieta:

Desayuno: Naranja (eliminar solo la capa superficial de la piel). Yogur descremado con pasta de arándano. Pequeña tostada integral con jamón cocido.

Media mañana: Zanahoria cruda

Almuerzo: Ensalada (apio, lechuga, tomate, aceitunas) con aceite virgen extra de oliva.

Pollo asado. Uva negra. Agua de mesa carbónica

Merienda: Yogur descremado con fresas Cena: Brócoli. Trucha a la plancha. Ciruelas

Enfermedades cardiovasculares

Objetivo: Disminuir el colesterol LDL y los triglicéridos en plasma. Reducir la hipertensión

Método: Ingerir lo menos posible grasas saturadas y grasas "trans". Disminuir las calorías totales de la ingesta diaria. Tomar sustancias ricas en fibra insoluble para disminuir la absorción de colesterol. Bajar la ingesta de sales de sodio.

Ejemplo de dieta:

Desayuno: Naranja (eliminar solo la capa superficial de la piel). Yogur descremado con cereales integrales. Pequeña tostada integral con fiambre de pavo bajo en sodio.

Media mañana: Zanahoria cruda

Almuerzo: Ensalada (apio, lechuga, tomate, aceitunas) con aceite virgen extra de oliva.

Boquerón frito (en aceite de oliva). Manzana. Agua de mesa carbónica

Cena: Acelgas. Huevo hervido. Pera

Sarcopenia y Osteoporosis (pérdida de masa muscular y de densidad ósea)

Objetivo: Disminuir el catabolismo, aumentar la síntesis proteica y la masa ósea

Método: Aumentar la síntesis de proteínas mediante una dieta hiperproteica. Aumentar la ingesta de alimentos ricos en calcio absorbible. Mejorar la capacidad antioxidante del organismo.

Ejemplo de dieta:

Desayuno: Naranja (eliminar solo la capa superficial de la piel). Yogur descremado con pasta de arándano. Pequeña tostada integral con jamón cocido.

Media mañana: Batido de soja

Almuerzo: Ensalada (apio, lechuga, tomate, aceitunas) con aceite virgen extra de oliva.

Filete de atún a la plancha. Piña natural. Agua de mesa carbónica

Merienda: Yogur descremado

Cena: Espinacas. Huevo cocido. Ciruelas

Es muy importante la realización de actividad física

Otras enfermedades muy relacionadas con la alimentación como la intolerancia al glúten, diabetes juvenil, etc son patologías que exceden el marco general en el que está desarrollado este libro.

M) RECOMENDACIONES EN LA LUCHA CONTRA EL SOBREPESO Y LA OBESIDAD (Entre col y col, lechuga).

Ya hemos comentado que más del 95% de nuestra biología está concebida para la función que desempeñábamos como cazadores recolectores. En este sentido, nuestra genética se ha adaptado de condiciones de vida duras en las cuales la actividad física y los ciclos de hambre y saciedad eran constantes. En estas condiciones, la vida actual, sedentaria y con una alimentación constante y rica en grasas supone una agresión. Irónicamente, los genes que han permitido sobrevivir a nuestra especie en condiciones extremas de hambre y abundancia, disminuyen la esperanza de vida en las poblaciones sedentarias con acceso continuado a la comida. Como ejemplo, la esperanza de vida de los diabéticos es inferior en 12 años a la población general

Se calcula que el gasto energético del Homo sapiens sapiens hace 100.000 años era de 49 kcal/kg/día (comparémoslo con las 32 kcal/kg/día del hombre contemporáneo (y eso teniendo en cuenta que el gasto energético en reposo sigue siendo el mismo). Un

antepasado nuestro dedicado a la caza, pesca y obtención de recursos naturales diariamente, consumía el nivel de energía equivalente a caminar de 20 a 30 km diarios (para una persona de unos 70 kg).

Los cambios asociados a la inactividad física suponen menos fuerza y tamaño muscular; menor capacidad del músculo esquelético para oxidar carbohidratos y grasas; aumento de la resistencia a la insulina; menor capacidad para mantener la homeostasis celular para una carga de trabajo determinada; menor vasodilatación periférica y menor rendimiento cardíaco y sarcopenia. La sarcopenia (disminución de la masa muscular) amenaza a nuestra calidad de vida en la madurez y es una plaga a la que tendremos que enfrentarnos también.

Pues bien, una de las consecuencias de este estado de cosas es el sobrepeso y la obesidad, una auténtica pandemia mundial, ya que no solo afecta a las poblaciones ricas, sino que ha contagiado a todas las sociedades modernas.

Nuestro país no se salva de esta circunstancia y registra una tasa de obesidad general y, especialmente infantil, muy próxima al resto de los estados europeos (aunque algo alejada de la norteamericana). La obesidad infantil es una preocupación sanitaria de primer orden y debe ser objetivo primordial de toda política sanitaria que considere la prevención.

La búsqueda de un "peso ideal" que es un concepto muy difundido en general, pero poco apreciado por los médicos, ha llevado a organismos sanitarios de distintos países a elaborar fórmulas matemáticas (a partir de datos de población) para estandarizar y unificar el concepto de obesidad. De esta forma, la Sociedad Americana de Obesidad tiene un estándar llamado Índice de Masa Corporal (Body Mass Index) calculado a partir del peso y la talla según la fórmula: IMC = Peso (kg)/ Talla² (m²⁾

Según el IMC se clasifica a la población en: delgadez, normalidad, sobrepeso y obesidad. (Tabla XI)

En España, las tablas utilizadas son las de la Sociedad Española de Obesidad (Tabla XII), que añade una división más (sobrepeso grado I y grado II), con el criterio de evitar el tratamiento sistemático de los pacientes sobrepeso grado I y dejando intervención en este colectivo en función de la acumulación de algún otro factor de riesgo.

En función del cálculo del IMC hay fórmulas
para determinar el % de grasa

Clasificaciones del IMC					
Clasificación	Riesgo	Desviación			
Delgadez	Moderado	Menos de 18,5			
Normal	Muy bajo	18,5 - 24,9			
Sobrepeso	Bajo	25,0 - 29,9			
Obesidad clase 1	Moderado	30,0 - 34,9			
Obesidad clase 2	Alto	35,0 - 39,9			
Obesidad extrema	Muy alto	Por encima de 40,0			

Tabla XI. Clasificación del Índice de Masa Corporal según la Sociedad Americana de Obesidad

Clasificación	Riesgo	Desviación		
Peso insuficiente	Moderado	Menos de 18,5		
Normopeso	Muy bajo	18,5 - 24,9		
Sobrepeso: grado I	Bajo	25,0 - 26,9		
Sobrepeso: grado II (preobesidad)	Medio	27 - 29,9		
Obesidad: grado I	Moderado	30 - 34,9		
Obesidad: grado II	Alto	35 - 39,9		
Obesidad: grado III (mórbida)	Muy alto	40 - 49,9		
Obesidad: grado IV (extrema)	Extremo	Por encima de 50		

Niños (<16 años): % Grasa = $(1.51 \times IMC) - (0.7 \times Edad) - (3.6 \times Género) + 1.4$ % Grasa = (1.2xIMC) + (0.23xEdad) - (10.8xGénero) - 5.4Adultos

Siendo Género = 1 para varones y 0 para mujeres

Para saber su composición de grasa, músculo y hueso, no solo mediante estas fórmulas sino utilizando técnicas profesionales, puede entrar generales,

<u>www.ayudaaldeportista.com</u> y tendrá un programa gratuito de determinación de la composición corporal.

Lo cierto, es que ahora se considera el sobrepeso y la obesidad como factores de riesgo y estados patológicos sobre los que hay que intervenir para evitar problemas serios como el llamado síndrome metabólico y diferentes patologías (enfermedades cardiovasculares, diabetes tipo II, apnea del sueño, osteoartritis, etc) que van asociadas a la obesidad. Si antes ser gordito era una señal de salud, ahora es todo lo contrario.

Vale, hay que estar más delgado ¿Cuál es la fórmula magistral?

Aquí aparece el vellocino de oro y todo el mundo tiene algo que decir, ya que quien de con la solución tendrá la fama, honor y riquezas. Por las riquezas va todo el mundo de la charlatanería, y en este submundo todos tienen cabida, clínicas de adelgazamiento, garantizado, maestros de la persuasión, embaucadores....¿Por qué existen si no consiguen su objetivo? ¿O es que si lo consiguen?

Una de las características de la obesidad es la facilidad para perder peso de forma rápida ante determinados cambios dietéticos. La persona que acude a una consulta con obesidad, lleva consigo su "voluntad" por hacer lo que sea para adelgazar, incluso pasar hambre. Comienza el tratamiento y comienza a bajar peso ¡Funciona! Pasa la voz y llena la consulta de más pacientes esperanzados. Y eso simplemente disminuyendo calorías, modificando algún hábito desaconsejable y haciendo algo de ejercicio, no digamos si encima recibe alguna ayudita farmacológica (incluso sin saberlo, como ha ocurrido con las fórmulas magistrales ocultas de algunos desaprensivos).

Pero pasa el tiempo (apenas unas semanas) y empieza a desfallecer, capitula la voluntad y comienza el cuerpo a encontrar fórmulas de justificación ¡Con esto ya me basta por ahora! ¡No voy a estar toda la vida así! ¡Total la vida son dos días! ¡Mi metabolismo es así! ¡No se puede renunciar a los placeres de la vida!... Y empieza a ganar peso hasta llegar al que tenía meses antes. Decepción, ansiedad, incluso depresión. Pero nunca le echarán la culpa al tratamiento, sino a sí mismos. No tengo voluntad, siempre seré un/a gordo/a, la culpa es mía. Y vuelta a empezar, otra clínica, otro tratamiento, otro fracaso.

Lo primero que hay que saber es que no hay fuerza de voluntad que gane a un instinto básico. La fuerza de voluntad se basa en un razonamiento consciente y tiene la limitación de tiempo que supone la consciencia del hecho. El instinto está ahí, esperando para aparecer cuando la voluntad se tome un descanso. Se reviste de muchas formas, pero siempre gana. No, el régimen no funciona si no es para toda la vida. De hecho, las clínicas serias en las que se consiguen éxitos más o menos duraderos, se basan en modificar hábitos de vida, no solo dietéticos. Tienen grupos de ayuda, hacen sesiones de ejercicio físico, enseñan a comer, gratifican cada gramo que se pierde y crean un hábito. Solo eso puede funcionar.

La actividad física no solo es gastar energía y por tanto mejorar el balance entre ingresos y gastos, es mucho más... ¿Sabían ustedes que al hacer ejercicio físico intenso se disparan unos ciclos metabólicos que consumen energía hasta 12 horas después de finalizada la actividad? Ahora sabemos que el ejercicio físico no solo utiliza energía durante su ejecución, sino que provoca alteraciones metabólicas que consumen energía después de finalizada la propia actividad.

¿La farmacología? Miren, nuestro organismo se ha preparado durante miles y miles de años para almacenar cada gramo de comida no utilizado. Cada vez que un científico descubre un factor relacionado con la obesidad, aparecen tres más (Figura 12). En opinión de Jeffrey Friedman, investigador que clonó y secuenció la leptina (una hormona que se expresa en tejido adiposo) en 1994, la pretensión de que el hombre podrá tomar una píldora en poco tiempo que le haga ser delgado está muy lejos de ser vislumbrada por los científicos que trabajan en el tema. En opinión suya, la obesidad tiene mucha mejor prevención que tratamiento y, en cualquier caso, la prevención pasa por el ejercicio físico y una dieta adecuada.

Nuestros niños y jóvenes han dejado de jugar en las calles, patios y casas, para estar sentados frente al video juego, el televisor o el ordenador. Paralelamente gozan de un gran poder adquisitivo que les permite comprar chucherías, las cuales tienen al alcance de la mano (siempre hay un puesto cerca de la entrada de un Colegio). Los padres, muchas veces separados o divorciados, ejercen poca autoridad sobre las normas de

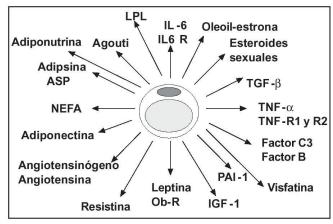


Figura 12.- El adipocito no es un simple almacén de grasa, interactúa con el organismo a través de decenas de factores regulando la reserva energética del organismo. Tomado de Valenzuela A., 2004.

alimentación e incluso a veces, para atraerse el cariño del niño al que no ven en toda la semana, son excesivamente condescendientes a la hora de sustituir comidas nutritivas convencionales por comida rápida (pizzas, hamburguesas, etc). En Estados Unidos (siempre hay que hablar del imperio porque son ellos los que hacen estadísticas) el consumo de refrescos ha aumentado en un 300% en los últimos 20 años, de modo que entre los adolescentes, hasta un 20% consume 4 ó más refrescos diariamente (hay estudios que asocian un aumento de 4,9 kg de peso si durante cuatro años se toma un refresco al día, y lo que aún es peor, el riesgo de diabetes juvenil asciende a un 83%).

En EE.UU. (nuevamente ellos), el consumo de fructosa en los siropes de muchos de estos refrescos ha aumentado en un 1.000% desde 1970 a 1990, y la fructosa es especialmente preocupante porque su metabolismo es diferente al del azúcar común (sacarosa), no pasa al cerebro y no da sensación de saciedad, no estimula la secreción de insulina ni de leptina, con lo cual no hay inhibición del apetito, por lo que el joven puede tomarse tres o cuatro refrescos mientras ve la televisión y acto seguido cenar con apetito (centenares de calorías no utilizadas para realizar una actividad física ¿Dónde creen que pueden ir a parar?

Si esto es así, ¿que nos queda por hacer? Pues todo. Antes que nada tenemos que prevenir, luego tenemos que informar y ayudar.

1º Prevenir mediante el convencimiento previo de que la actividad física no es negociable. El sedentarismo no es una opción y, por tanto, hay que acabar con él desde la infancia. La alimentación debe ser materia de estudio desde preescolar. Los gustos hay que educarlos desde los primeros meses. Menos alimentos salados, más verduras, menos grasas, más pescado, menos dulces.

2º Informar de la trascendencia de una buena alimentación. Hay que crear un estado de opinión en los consumidores que les permita estar bien informados y defenderse de la manipulación publicitaria. Potenciar las asociaciones de consumidores y obligar, mediante normativas, a las empresas relacionadas con la alimentación, a que demuestren lo que dicen. Quien afirme en una campaña publicitaria que el colesterol disminuye con su producto, debe demostrarlo científicamente. Los médicos estamos habituados a filtrar la información que nos dan los laboratorios (para los que sus productos son maravillosos siempre y curan sin lugar a dudas, lo que pasa es que si eso fuera cierto no tendríamos enfermos). Los consumidores deberían tener fuentes independientes de información, fiables y contrastables (y si las potenciamos, esas fuentes podrían ser las asociaciones de consumidores).

3º Ayudar a los que ya son obesos. La sociedad crea sus modelos, y no ayuda en nada a los que padecen sobrepeso y obesidad que la imagen de belleza femenina sea una modelo anoréxica. Cuando uno tiene metas posibles se esfuerza, cuando de entrada son imposibles, ni siquiera lo intenta. Para una mujer con sobrepeso (talla 46), el objetivo no puede ser parecerse a una chica de talla 36. Hay que incrementar los impuestos indirectos sobre los productos que no ofrezcan cualidades nutritivas y, en cualquier caso, deben situarse fuera del ambiente juvenil (colegios, zonas de recreo, pabellones deportivos etc).

Por otro lado, hay un elemento poco conocido pero enormemente preocupante que es el llamado "síndrome del varón abandonado" muy bien descrito por Carlos Bauzá, ex presidente de la Asociación Cordobesa de Obesidad de Argentina. Se trata de los maridos (en general los parientes cercanos) de las mujeres que siguen dietas de adelgazamiento con éxito. Muchas veces el propio marido se convierte en un obstaculizador del seguimiento de la dieta exitosa por parte de su mujer. ¿Cómo es posible? Pues el caso es que es muy común. Son maridos que se sienten amenazados por el éxito de su mujer al sentirse más guapa, más atractiva, al volver a ser mirada por los varones. Su estrategia (muchísimas veces no consciente) consiste en sabotear el régimen llevándole "cosas ricas" diciéndoles que un poquito de eso no le va a hacer daño, incluso, convirtiéndose en expertos al aclarar que tal alimento no engorda. En casos extremos llega a ser más agresiva la acción, aprovechando cualquier excusa para dejar caer frases como "este régimen te está cambiando el carácter" "te prefería como eras antes" "estabas más guapa antes" etc etc.

La lucha contra la obesidad es una lucha de todos, ya que nos afecta a todos de forma directa o indirecta (para los más reticentes les diré que si piensan que eso no va con ellos, echen una ojeada a sus impuestos, ya que en España se estima que el coste económico de la obesidad derivado de los costes directos e indirectos es de unos 2.000 millones de euros anuales).

La comunidad científica internacional está de acuerdo en la importancia del ejercicio físico para prevenir y tratar el sobrepeso y la obesidad. Ante una realidad tan palpable la impresión es que no se hace lo suficiente desde los poderes públicos. ¿Qué es lo que se les debe exigir a nuestros representantes en las Instituciones?

1) Educación. Hay que explicar en las escuelas, en las asociaciones de amas de casa, en cualquier colectivo de ciudadanos, que la actividad física es irrenunciable. No hay alternativa, ya lo hemos comentado muchas veces, nuestra evolución solo contempla el supuesto de una actividad física diaria.

- 2) Potenciación de instalaciones de actividad física multitudinaria. No me valen instalaciones deportivas para el deporte competitivo, en donde se generan tasas y al final es una recaudación más. Hablo de carriles bici en las ciudades, de senderos en los montes, de disuadir la circulación de coches por el centro histórico y comercial de la ciudad. Hablo de imaginación para afrontar un problema que es "nuevo" para nuestra especie. ¿Sabían que en un experimento que hicieron en unos grandes almacenes, cuando mejoraron la iluminación y colocaron música ambiental y una decoración agradable en las escaleras, bajó el número de los que subían por el ascensor o utilizaban escaleras mecánicas de planta a planta?
- 3) Subvencionar las iniciativas privadas encaminadas a realizar actividad física terapéutica. Cuando a un ciudadano le cueste más caro el alcohol y el tabaco y menos apuntarse a un gimnasio a realizar actividad física de mantenimiento, se produce un flujo natural de los hábitos tóxicos hacia las costumbres saludables.
- 4) Todas las que a ustedes se les ocurran y que deben ser escuchadas.
 - N) FINALICEMOS MIRANDO HACIA ATRÁS "SIN IRA" (De refranes y cantares tiene el pueblo mil millares)

La mirada atrás en la alimentación, asume los conceptos que ha expuesto uno de los mayores estudiosos del tema, el Profesor Stanley Boyd Eaton de la Universidad Emory, en Atlanta (Estados Unidos). Es curioso como se llega a determinados puntos de encuentro, ya que el Prof. Eaton proviene del campo de la radiología, pero ha sido director del Policlínico de la Villa Olímpica en 1966 y luego se dedicó apasionadamente a la dieta de los homínidos que nos precedieron relacionando su alimentación con la que actualmente llevamos en nuestra opulenta sociedad actual.

Paralelamente Loren Cordain, otro profesor norteamericano (Universidad de Colorado), proveniente del campo de las ciencias del deporte y actividad física, aporta ideas similares, llamando la atención sobre el alto nivel de consumo de cereales propuesto en la Pirámide de los Alimentos que edita el Departamento de Agricultura de Estados Unidos (http://www.mypyramid.gov/). En este sentido, también es fuertemente crítico el Dr. Willet de la Escuela de Salud Pública de Harvard, quien ha llegado a poner en duda la actualización de los encargados de establecer los requerimientos dietéticos para la población norteamericana. Bueno, todo ellos es, sin duda, discutible, pero algo cambia cuando en la última edición algunas de las propuestas de los citados autores se empiezan a tener en cuenta y ¡aparece por primera vez la actividad física en la pirámide nutricional! (se ve una persona subiendo la pirámide a la carrera).

Las críticas que se producen hoy día a los cambios propuestos en base a los conocimientos de la dieta de nuestros ancestros, tienen dos líneas básicas. La primera la han expresado colegas como el Dr Walker del Instituto de Investigación Médica de Johannesburgo y la Dra Milton de la Universidad de California en el sentido de la dificultad de poner en práctica unos hábitos de hace cientos de miles de años en un medio ambiente muy diferente del actual, por un lado, y de la imposibilidad de cambiar de golpe la alimentación de millones de personas que consideran la comida no solo como la forma de satisfacer un instinto, sino como un hecho cultural y social. La segunda proviene del campo de clínicos y epidemiólogos que ven en la comida un factor

más, pero no el único, de enfermedad (junto a factores como la contaminación, ámbito urbano, falta de ejercicio, estrés etc.)

Lo cierto es que no son críticas al fondo, sino a la forma. Es decir, no se discute que si alguien fuera capaz, hoy día, de seguir una dieta similar a la de los cazadores recolectores, hiciera el mismo ejercicio y encima tuviera la asistencia médica del siglo XXI y el control de infecciones, seguridad alimentaria etc etc, tendría una salud de hierro. El problema es como llegar a ello de forma seria (no como se hace en la llamada moda de la comida paleolítica en Estados Unidos), y contemplando la situación "real" de los recursos alimentarios mundiales. Es decir, nadie duda de que en este momento unos cuantos ciudadanos de países ricos, con gran poder adquisitivo y muy bien informados, pudiera seguir una dieta enormemente saludable (a la luz de los conocimientos actuales), el problema es como llevamos a todos los ciudadanos a esa situación.

En cualquier caso, yo he cumplido mi papel que es el de informar, de modo que ahora es el lector el dueño de su actuación. ¿Quiere usted comer mejor? ¿Tiene dinero para invertir? Pues siga estos consejos:

No desdeñe determinadas fuentes de alimentación simplemente por el rechazo cultural (saltamontes, termitas, larvas del gusano de seda...) (fuente de proteínas escasa en grasa). Si se le presenta la ocasión de conocer determinados platos exóticos pues pruébelos (ya hay restaurantes en España especializados).

Consuma huevos de pájaros (palomas, codornices en estado salvaje) (los pájaros en libertad consumen cereales con una justa proporción de ácidos grasos, toman carotenoides etc)

Tome más nueces, castañas, anacardos, almendras, avellanas...(ricos en ácidos grasos omega 3, fitosteroles, fibra..). Caracoles, ranas, pequeños reptiles (ricos en aminoácidos esenciales y en otros de mucho interés para nuestro organismo, como la arginina, ornitina, glutamina..). Liebre, conejo de monte, faisán salvaje (los cartílagos aportan glucosalina y condroitin de gran importancia en la prevención de enfermedades articulares). Moluscos, crustáceos, anguilas y pescados azules (ácidos grasos omega 3)

Cebolla, alcachofas, zanahoria, tomates (todos lo más alejados de cultivos intensivos) (antioxidantes, fibra). Achicoria, espárragos salvajes, acelgas de campo, espinacas.... (antioxidantes, fibra). Frutas de bosque (arándanos, fresas, frambuesas...)(antioxidantes, vitaminas). Champiñones y setas de bosque (carotenoides). Especies, flores, plantas comestibles, lechuga salvaje (fibra y vitaminas)

Si no quiere (o no puede) ser tan sofisticado, siga estos consejos más apropiados a la realidad:

Tome más ensaladas, frutas y verduras. No quite la piel a la fruta y consúmalas (en la medida de lo posible) crudas (aproveche las ventajas de la agricultura ecológica). Consuma más pescado (en todas sus formas, pero preferentemente de pesca extractiva). Los platos de carne que sean magros (quítele la grasa y cocine a la parrilla pero sin quemar los alimentos). Consuma vísceras que tengan garantía sanitaria (hígado, riñones...). Utilice aceite virgen de oliva para cocinar. Tome agua de mesa con gas

Evite, disminuya o elimine (en la medida de sus posibilidades): Grasas saturadas (quesos, mantequilla, grasa animal, patés....). Cereales (particularmente bollería). Aceites ricos en omega 6 (maíz, margarinas, mayonesas..). Ácidos grasos "trans". Bebidas alcohólicas. Carnes grasas (cordero, cerdo, capón, oca..). Zumos embotellados

Como ayuda a disminuir el consumo de grasas, se pueden seguir consejos como los que cito en la siguiente tabla, aprovechando la múltiple información que existe en Internet sobre métodos de cocina sin grasa (Tabla XIII).

Alimentos ricos en grasas	Sustituir por
Productos lácteos	
Leche entera	Leche descremada o semidescremada.
Crema o leche evaporada	Leche descremada evaporada o leche evaporada más diluida
Yogures	Yogur descremado.
Quesos	Quesos frescos con mucha moderación ya que siguen siendo ricos en grasa (15% de media)
Helado	Helado bajo en grasa, yogur bajo en grasa, sorbete, paletas o sustitutos de helado libres de grasa. Vigilar el contenido en grasas "trans" (en el etiquetado aparecen como "grasas vegetales parcialmente hidrogenadas")
Mantequilla	No hay alternativa, solo vale eliminarla
Aceites	
Aceites para cocinar	Emplear aceite virgen de oliva que soporta mejor las altas temperaturas y disminuirlo lo más posible.
Aceites para freir	Aceite virgen de oliva. Cuando se haya frito el alimento, colocar sobre papel secante para empapar el aceite.
Mayonesa	Sustituir por saborizantes naturales
Aderezos para ensalada (ricos en aceite)	Sustituir por hierbas aromatizantes
Mantequilla de cacahuete	Eliminar
Carnes	
Costilla y carne picada	Filete o lomo de ternera magro. Una vez comprada la pieza, se le pide al carnicero que la pique.
Tocino o salchichas de cerdo	Eliminar
Embutidos (mortadela, salamí, salchichón, paté de cerdo, foie gras)	Jamón cocido o pavo cocido. Lomo, jamón serrano (fiambres magros)
Platos combinados	
Verduras son salsas o mantequilla	Verduras con sustitutos de mantequilla o especias
Comidas completas congeladas	Comprobar la cantidad de calorías provenientes de las grasas. Rechazar las que sobrepasen el 20%.
Bollería y galletas	
Panecillos, donuts o galletas dulces (comerciales)	Pan tostado, galletas dietéticas (Light) bajas en grasas (en especial hay que vigilar el contenido en grasas "trans")
Chocolates	Polvo de cacao, sin azúcar, 3 cucharadas o polvo de algarrobo, 3 cucharadas, más aceite o margarina, 1 cucharada. (El azúcar puede disminuirse en 1/4 porque el algarrobo es más dulce que el cacao.)
Barras energéticas Conservas	Buscar que estén libres de grasas "trans"
Atún, sardinas etc. Cuando estén conservados en aceite	Buscar la alternativa de conserva sin aceite, si no es posible, procurar escurrir al máximo el alimento enlatado

Tabla XIII.- Algunos consejos caseros para disminuir el consumo de grasas en la comida diaria sin hacer grandes revoluciones dietéticas

A MODO DE COROLARIO (Es más fácil tapar el sol con un dedo que la verdad con una montaña de mentiras).

A lo largo de mi formación he percibido que por un lado va el conocimiento científico de las ciencias de la alimentación humana, y por otro va la percepción de la gente de la calle enormemente influida por la charlatanería y la presión industrial y mediática, pero

esto es algo habitual en nuestra sociedad en la que la información (de todo tipo) es enormemente abundante y, a veces, sorprendentemente manipuladora.

La información oficial, supuestamente científica, que dan los organismos públicos encargados de velar por nuestra salud, no está libre de la manipulación, en este caso procedente del dogmatismo de determinadas cátedras o asociaciones que funcionan más como grupo de poder que como reducto de la ciencia y del saber. Me preocupa enormemente el hecho de que 6 de los 11 expertos responsables de las nuevas recomendaciones alimentarias (RDA) dictadas por el Department of Health and Human Services (HHS) y el Department of Agriculture (USDA), estén ligados a la industria agroalimentaria según la denuncia interpuesta contra dichas agencias por una asociación de médicos norteamericana. También me preocupa la relación que se establece en Europa vía dietas, congresos, conferencias y demás prevendas entre los responsables de las normativas legales europeas y las industrias agroalimentarias. De hecho me hago dos importantes preguntas ¿Por qué no constan en el etiquetado las grasas "trans"? ¿Por qué no aparece el índice y la carga glucémica? La industria simplemente dirá que porque no es obligatorio pero quien legisla; ¿por qué no lo hace?

Un ejemplo de la intervención de factores ajenos al conocimiento puramente científico en temas de alimentación lo tenemos en la llamada guerra del chocolate que perdieron España e Italia frente al resto de países miembros de la Unión Europea. España e Italia fueron condenados por el Tribunal de Justicia de las Comunidades Europeas el 16 de enero de 2003 por el caso de la denominación «Chocolate, asuntos C-12/00 y C-14/00». El Tribunal acogió en su resolución la propuesta de condena del Abogado General por haber infringido ambos Estados el Tratado CE, al prohibir la comercialización, bajo la denominación de «chocolate», de productos que, además de manteca de cacao, contenían otras grasas vegetales.

España e Italia pretendían que los productos elaborados con cacao y grasas diferentes a la manteca de cacao se denominaran sucedáneos de chocolate. Pero ¿Por qué defender una grasa rica en ácidos grasos saturados frente a posibles grasas dietéticamente más saludables? La respuesta hay que buscarla en las presiones comerciales. Todo el sector del cacao se caracteriza por un grado elevado de concentración: siete países producen el 85% del cacao, cinco empresas controlan el 80% del comercio, otras cinco el 70% de la transformación y seis multinacionales del chocolate acaparan el 80% de este mercado. ¿Quién puede pensar que la decisión iba a basarse exclusivamente en aspectos científicos?

Pues cuando uno coge esas grasas que supuestamente iban a mejorar la composición de un alimento muy utilizado en la infancia, se encuentra con grasas de illipe, aceite de palma, kokum gurgi, hueso de mango y aceite de coco, todas ellas grasas peores que la manteca de cacao. ¿Por qué utilizarlas? Porque son más baratas. ¡La guerra era puramente comercial!

Todos los investigadores necesitamos patrocinadores. ¿Es independiente el hecho del "boom" comercial de la soja (especialmente tansgénica) con la presión publicitaria sobre las bondades de los derivados de la soja? ¿Y el descubrimiento de las capacidades antioxidantes del vino tinto que, por cierto, rápidamente vinieron seguidas de las de la cerveza?

Soy escéptico cuando tengo que valorar la buena voluntad de las empresas cuya principal estrategia es conseguir el mayor beneficio para su accionista. Recuerdo las enrevesadas normativas que tenían hace años en nuestro país la sencilla fecha de caducidad de las latas (aún me acuerdo de cómo se quedaban mirándome en las tiendas cuando les pedía la lata y me ponía a descifrar la letra para saber el año de fabricación). Todo se solucionó poniendo el año en números que todo el mundo entendía ¿Por qué no se hacía desde siempre? ¿Quién podría tener interés en que la gente no tuviera acceso a la fecha de caducidad? ¿Acaso no hemos ganado todos ahora?

Es ingenuo pensar que una empresa que fabrica bollos con ácidos grasos trans y un elevado índice glucémico ponga una advertencia que indique que no es un producto saludable y que está formalmente desaconsejado en jóvenes con sobrepeso y personas con enfermedades inflamatorias o que tengan un síndrome metabólico etc etc

La paleodieta ha sido la base de mi exposición, en cierto modo es mi ideal en cuanto a la mejor forma de alimentarse, pero desgraciadamente no se ha salvado de la manipulación y en Estados Unidos (y muy pronto aquí) existe toda una diversidad de alimentos supuestamente paleolíticos, restaurantes, páginas web que venden algo, en fin, lo de siempre, surge un concepto que es aprovechable y a vender. Ya he expuesto mi opinión al respecto, y afirmo que intentar seguir una dieta como la de nuestros antepasados dejando el resto de factores ambientales sin tocar, es algo así como aprender a conducir un Ferrari y pretender conseguir sus prestaciones a bordo de un utilitario. No es real (aunque sea futurible) pretender comer insectos, tomar platos sin grasa (que es la que le da el sabor a todos los platos de restaurante), buscar huevos de pájaros o espárragos silvestres es una aventura más que una comida diaria. Por otro lado, una ración de tarta "selva negra" jestá tan rica!.

La solución está en la tecnología, la industria debe encaminar su desarrollo tecnológico hacia los alimentos saludables, no hacia los más rentables. Para ello solo hay un camino, crear una corriente de consumo. Si hay consumidores de alimentos sanos, la industria cubrirá esa área y las empresas competirán por ese mercado. La información independiente, sin manipulación, es la que puede crear en los consumidores una decisión de compra que obligue a las grandes empresas a ocupar ese espacio con los alimentos adecuados.

Una legislación clara y contundente y unos consumidores informados junto a poderosas e independientes asociaciones de ellos, es algo que le viene bien a todo el mundo, porque aunque no lo creamos, las industrias agroalimentarias siguen la corriente que les dicta el consumo. Si hay negocio en un tipo de alimentación más saludable, la industria la hará más apetecible. Ese es el camino a seguir; más lento desde luego, pero mucho más rentable en términos de salud, y no olvidemos que la enfermedad la pagamos entre todos.

Finalmente, no olvidemos que una característica de nuestra especie es alterar el hecho puramente instintivo y convertirlo en cultural y social. La comida es no solo la satisfacción de un instinto, sino la posibilidad de pasar un buen rato con unos amigos, de tantear al sexo contrario para un posible encuentro, de hacer negocios (fiesta sin comida, no es fiesta cumplida). No dejemos que nos amarguen esos momentos con reglas, normas estrictas y muchas veces manipuladoras. Ante un caldero come a gusto y placentero, y que ayune tu heredero, dice el refrán.

BIBLIOGRAFIA

- 1. Bauzá C. Escollos para el tratamiento de la obesidad. El síndrome del varón abandonado. Rev Esp Obes. 2004;2(5):305-307.
- 2. Broughton KS, Whelan J, Hardardottir I, Kinsella JE. Effect of increasing the dietary (n-3) to (n-6) polyunsaturated fatty acid ratio on murine liver and peritoneal cell fatty acids and eicosanoid formation. J Nutr. 1991;121(2):155-64.
- 3. Calder PC. Dietary modification of inflammation with lipids. Proc Nutr Soc. 2002;61(3):345-58.
- 4. Campillo A. Las perspectivas evolucionistas de la obesidad. Rev Esp Obes 2004;3:139-151
- 5. Carbonell E, Bermúdez de Castro JM. Atapuerca, perdidos en la colina. Edt. Destino. Barcelona 2004.
- 6. Cordain L, Gotshall RW, Eaton SB, Eaton SB 3rd. Physical activity, energy expenditure and fitness: an evolutionary perspective. Int J Sports Med. 1998;19(5):328-335.
- 7. Crawford, M. A. The early development and evolution of the human brain. Ups J Med Sci Suppl. 1990;48:43-78.
- 8. Dewailly E, Blanchet C, Lemieux S, et al., n-3 Fatty acids and cardiovascular disease risk factors among the Inuit of Nunavik. Am J Clin Nutr. 2001;74:464–73.
- 9. Dietary Reference Intakes (DRI) and Recommended Dietary Allowances (RDA). Food and Nutrition Information Center. <u>U.S. Department of Agriculture</u> (USDA) Fecha de acceso 07/12/2004. URL disponible en: http://www.nal.usda.gov/fnic/etext/000105.html
- 10. Duplus E, Glorian M, Forest C. Fatty Acid Regulation of Gene Transcription. J Biol Chem. 2000;275(40): 30749 30752.
- 11. Eaton SB, Eaton SB 3rd. Paleolithic vs. modern diets--selected pathophysiological implications. Eur J Nutr. 2000;39(2):67-70.
- 12. Hirai A, Terano T, Tamura Y, Yoshida S. Eicosapentaenoic acid and adult diseases in Japan: epidemiological and clinical aspects. J Intern Med Suppl. 1989;225(731):69-75.
- 13. Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem. 2003;278(17):14677-87.
- 14. Kim HK, Choi H. Dietary alpha-linolenic acid lowers postprandial lipid levels with increase of eicosapentaenoic and docosahexaenoic acid contents in rat hepatic membrane. Lipids. 2001;36(12):1331-6.
- 15. Kromhout D, Bosschieter EB, de Lezenne C. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N Engl J Med. 1985;312(19):1205-1209.
- 16. Lee TH, Arm JP, Horton CE, Crea AE, Mencia-Huerta JM, Spur BW. Effects of dietary fish oil lipids on allergic and inflammatory diseases. Allergy Proc. 1991;12(5):299-303.
- 17. McGrath-Hanna NK, Greene DM, Tavernier RJ, Bult-Ito A. Diet and mental health in the Arctic: is diet an important risk factor for mental health in circumpolar peoples?--a review. Int J Circumpolar Health. 2003;62(3):228-41.

- 18. Mickleborough TD, Murray RL, Ionescu AA, Lindley MR. Fish oil supplementation reduces severity of exercise-induced bronchoconstriction in elite athletes. Am J Respir Crit Care Med. 2003;168(10):1181-9.
- 19. Price PT, Nelson CM, Clarke SD. Omega-3 polyunsaturated fatty acid regulation of gene expression. Curr Opin Lipidol. 2000;11:3-7.
- 20. SEEDO.Consenso SEEDO '2000 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica.Nutrición y Obesidad 2000;3:285-99.
- 21. Simopoulos AP. The Mediterranean Diets: What Is So Special about the Diet of Greece? The Scientific Evidence. J Nutr. 2001;131:3065-3073.
- 22. Valenzuela A. Tejido adiposo, algo más que grasa corporal. Rev Esp Obes. 2004;2(6):327-350.
- 23. Weber C, Erl E, Pietsch A, Danesch U, Weber P. Docosahexaenoic acid selectively attenuates induction of vascular cell adhesion molecule-1 and subsequent monocytic cell adhesion to human endothelial cells stimulated by tumor necrosis fact-α. Arterioscler Thromb Vasc Biol. 1995;15:622-628.
- 24. Wu D, Meydani M, Leka LS, Nightingale Z, Handelman GJ, Blumberg JB, Meydani SN. Effect of dietary supplementation with black currant seed oil on the immune response of healthy elderly subjects. Am J Clin Nutr. 1999;70(4):536-43.

Libros para leer sobre distintos aspectos de la alimentación:

La alimentación y la vida de Francisco Grande Covian. Editorial: debate 2000

El mono obeso. la evolución humana y las enfermedades de la opulencia: obesidad, diabetes, hipertensión y arterioesclerosis de José Enrique Campillo Alvarez. Editorial: Critica 2004

El libro de la obesidad de Juan Madrid Conesa. Ediciones Arán. 1998

Nutrición y ayudas ergogénicas en el deporte. Javier González Gallego y José G Villa Vicente. Edit Síntesis. 1998

El Autor:

José Antonio Villegas García es Médico Especialista en Medicina del Deporte por la Universidad Louis Pasteur de Estrasburgo (Francia). Catedrático de Fisiología de la Universidad Católica de Murcia (España)

Autor de 4 libros, coautor de 2 más y participante en otros 14.

Autor de decenas de Conferencias en Congresos Médicos, Comunicaciones y Artículos publicados en Revistas Médicas.

Fue primer premio de investigación "Alimentación y Calidad de Vida" en la convocatoria de 1987, obteniendo posteriormente diversos premios entre los que destacan el premio a la investigación en el deporte de la Asamblea Regional de Murcia y el premio a la Investigación en Medicina del Deporte de la Universidad de Oviedo en 1999

En la actualidad:

- Revisor de artículos de la revista "Archivos de Medicina del Deporte".
- Miembro del Comité de Redacción de la revista Medicina Ambiental.
- Miembro del Consejo Científico de la revista "Medicina de Rehabilitación"
- Director del Grupo de Nutrición de la Federación Española de Medicina del Deporte
- Miembro numerario de la Academia de Medicina y Cirugía de Murcia