Trigonometry

Do Now...
 Find the value of the following to 3dp.

I 1. $\sin 15^{\circ}$
2. $\cos 35^{\circ}$
3. $\tan 65^{\circ}$
4. $\tan 42^{\circ}$
5. $\sin 34^{\circ}$
6. $\sin 49^{\circ}$
7. $\tan 34^{\circ}$
8. $\cos 62^{\circ}$
9. $\cos 2^{\circ}$
10. $\sin 83^{\circ}$

Find the value of the following to 1 dp .
11. $\tan ^{-1}(2.47)$
12. $\sin ^{-1}(0.82)$
13. $\tan ^{-1}(0.0699)$
14. $\sin ^{-1}(0.258)$
15. $\cos ^{-1}(0.258)$
16. $\sin ^{-1}(1)$
17. $\cos ^{-1}(0)$
18. $\cos ^{-1}(0.978)$
19. $\tan ^{-1}(4.70)$
20. $\tan ^{-1}(0.158)$
 | Labelling Triangles
Label the sides of the triangles below in relation to the angle θ.

I 1.

2.

3.

4.

-Using sine

3. $A B C D$ is a rectangular garden. The garden is 15 m long and its diagonal is 30 m . Work out the size of angle ACD.

Using Cosine

$\boldsymbol{\operatorname { c o s }} \theta^{\circ}=\frac{\text { adjacent }}{\text { hypotenuse }}$
adjacent $=\boldsymbol{\operatorname { c o s }} \theta^{\circ} \times$ hypotenuse
hypotenuse $=\underline{\text { adjacent }} \underset{\cos \theta^{\circ}}{ }$

adjacent $=\cos \theta^{\circ} \times$ hypotenuse
adjacent $=\cos 30^{\circ} \times 12$
$x=10.4 \mathrm{~cm}$

hypotenuse $=\frac{\text { adjacent }}{\cos \theta^{\circ}}$

$$
\text { hypotenuse }=\frac{28}{\cos 53^{\circ}}
$$

$x=46.5 \mathrm{~cm}$

$\cos \theta^{\circ}=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\cos \theta^{\circ}=\frac{8}{12}$
$\cos \theta^{\circ}=0.6666666 \ldots$.
$\theta^{\circ}=\cos ^{-1}(0.666666 \ldots)$
$\theta=48.2^{\circ}$

Consolidation 2

I In each of these questions find the length of the side marked x to 1 decimal place.

(1.

2.

20 cm
5.

3.

6.

In each of these questions find the size of the angle marked θ to 1 decimal place.

2. A boy is flying a kite in the park. He has let out 32 m of string when he gets it stuck around a lamppost. The boy is 15 m away from the lamppost. What angle does the string make with the ground?

4. $A B C D$ is a rectangular garden. The garden is 15 m long and its diagonal is 30 m . Work out the size of angle ACD and use this to work out the width of the garden.

Using Tangent

$\tan \theta^{\circ}=\frac{\text { opposite }}{\text { adjacent }}$
opposite $=\tan \theta^{\circ} \times$ adjacent

opposite $=\boldsymbol{\operatorname { t a n }} \theta^{\circ} \times$ adjacent
opposite $=\tan 30^{\circ} \times 12$
$x=6.9 \mathrm{~cm}$

$\tan \theta^{\circ}=\frac{\text { opposite }}{\text { adjacent }}$
adjacent $=\frac{\text { opposite }}{\tan \theta^{\circ}}$
adjacent $=\frac{28}{\tan 53^{\circ}}$
$\tan \theta^{\circ}=\frac{12}{20}$
$x=21.1 \mathrm{~cm}$
$\tan \theta^{\circ}=0.6$
adjacent $=\frac{\text { opposite }}{\tan \theta^{\circ}}$
$\theta^{\circ}=\tan ^{-1}(0.6)$
$\theta=31.0^{\circ}$

Consolidation 3

I In each of these questions find the length of the side marked x to 1 decimal place．
\｜ 1.
ーーーーーーローローロー

2.

28 cm
3.

6.

32 cm
5.

I In each of these questions find the size of the angle marked θ to 1 decimal place．
$\square 7$
17.

6 cm
10.

8.

11.

9.

12.

Extension 3
 1. An access ramp is needed to get up the step of a person's house. The ramp makes an angle of 10° with the horizontal of the garden and is 2 m away from the base of the step. Calculate the height of the ramp.
 Step to house
 Garden

2. A man stands on the beach facing towards a cliff. At the top of the cliff the man sees his wife. The angle of elevation from the man to his wife is 37°. The height of the cliff is 28 m . Find the distance between the man and the base of the cliff.

Which One?

Write down which trig formula you would use to work out x in each of these:

