
Automatic Failures-Free Connector Synthesis:
An Example

Paola Inverardi and Massimo Tivoli

University of L’Aquila
(Dip. Informatica)

via Vetoio 1, 67100 L’Aquila, Italy
{inverard,tivoli}@di.univaq.it

Abstract. Many software projects are based on the integration of inde-
pendently designed software components that are acquired on the market
rather than developed within the project itself. This type of components
is well known as COTS (Commercial-Off-The-Shelf) components. Nowa-
days component based technologies provide interoperability and compo-
sition mechanisms that cannot solve the COTS components assembly
problem in an automatic way. One of the main problems in components
assembly is related to the ability to establish properties on the assem-
bly code by only assuming a limited knowledge of the single components
properties. Our answer to this problem is a software architecture based
approach in which the software architecture imposed on the assembly,
allows for detection and recovery of COTS integration anomalies. We
build applications by assuming a defined architectural style. Then, we
compose a system in such a way that it is possible to check whether
and why the system presents some software anomalies (e.g.: deadlock,
livelock). Depending on the kind of failures a recovery policy which can
avoid the anomalies and obtain a correct assembly can be performed. A
tool can then synthesize the assembly code (as a failures-free connector
component) to glue together a set of COTS components. This glue code
must be synthesized in such a way that (a well defined set of) functional
properties required for the composed system are automatically guaran-
teed. In the paper we briefly describe our approach and then we present
its application to an example.

1 Introduction

Many software projects are based on the integration of independently designed
software components that are acquired on the market rather than developed
within the project itself. This type of components is well known as COTS
(Commercial-Off-The-Shelf) components. One of the main problems in assem-
bling COTS components is related to the ability to establish properties on the
assembly code by only assuming a limited knowledge of the single components
properties. Our answer to this problem is a software architecture based approach
in which the software architecture imposed on the assembly, allows for detec-
tion and recovery of COTS integration anomalies. Notably, in the context of

M. Wirsing et al. (Eds.): RISSEF 2002, LNCS 2941, pp. 184–198, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Automatic Failures-Free Connector Synthesis: An Example 185

component based concurrent systems, COTS components integration may cause
deadlocks or other software anomalies within the system [18,1,12,13]. The use
of COTS components in system construction presents new challenges to system
architects and designers [14]. Building a system from a set of COTS components
introduces a set of problems. Many of these problems arise because of the nature
of COTS components. They are truly black-box and developers have no method
of looking inside the box. This limit is coupled with an insufficient behavioral
specification of the component which does not allow to understand the com-
ponent interaction behavior. Component assembling can result in architectural
mismatches when trying to integrate components with incompatible interaction
behavior [3]. Thus if we want to assure that a component based system validates
specified behavioral properties, we must take into account the component in-
teraction behavior. In this context, the notion of software architecture assumes
a key role since it represents the reference skeleton used to compose compo-
nents and let them interact. In the software architecture domain, the interaction
among the components is represented by the notion of software connector.

Our aim is to analyze and fix dynamic behavioral problems that can arise
from components composition. We propose an architectural connector-based ap-
proach [8,10,9]. The idea is to build applications by assuming a defined archi-
tectural style, namely a modified version of the C2 architectural style [15]. We
compose a system in such a way that it is possible to check whether and why the
system presents some software anomalies (e.g.: deadlock). We can then derive,
in an automatic way, directly from the COTS (black-box) components, the code
that implements a new component to insert in the composed system. This new
component implements an explicit software connector. This code is derived in
such a way that the functional properties of the composed system are satisfied.
We assume that a behavioral specification of the composed system is available.
This specification is provided through Message Sequence Chart (MSC) and High
Level MSC (HMSC) specifications [21,20,22]. Moreover we also assume that a
precise definition of the properties to satisfy exists through LTL (Linear-time
Temporal Logic) formulas definition [2,6,4,5].

The paper is organized as follows. In Section 2 we introduce the problem we
want to address and some background. Section 3 presents the technique to allow
failures-free connectors synthesis [11] which is then applied in Section 4 on an
example. Section 5 concludes.

2 Problem Description

We consider COTS components which are truly black-box components. The
properties we want to check are functional properties as deadlock-freeness or
general safety and liveness properties which describe expected behaviors of the
system. The assembly A depends on the constraints induced by the architectural
model the system is based on. The present architectural model, which defines
the rules used to build the composed, is a modified version of the C2 architec-
tural style. This modified version of C2 architectural style is called CBA (i.e.
Connector Based Architecture) style and it is described in detail in [11].

186 Paola Inverardi and Massimo Tivoli

Fig. 1. Tool Architecture for the Automatic Failures-free Connector Synthesis.

It is important to notice that, besides assuming that the system architec-
ture must reflect the rules of a well defined architectural style, we also assume
that a system behavioral specification is provided through message sequence
chart (MSC) and High level MSC (HMSC) specifications. Then we can derive,
in an automatic way, from the MSC and HMSC specification, the behavioral
description of each component in the composed system. This behavioral descrip-
tion can be derived by suitable applying the algorithm described in [21,20,22].
Each component behavioral description take a form of graph. Informally our
approach is the following. The method starts off a set of components, and builds
a connector following the reference style constraints. Components are enriched
with additional information on their dynamic behavior which takes the form of
graphs. Then property analysis is performed. If the synthesized connector con-
tains property violating behaviors, a recovery policy is applied. Depending on
the kind of property, the analysis of only the connector is enough to obtain a
property-satisfying version of the system. Otherwise, the property is due to some
component internal behavior and cannot be fixed without directly operating on
the component code. In a component based setting in which we are assuming
black-boxes components this is the best we can expect to do.

3 Connector Synthesis

Our goal is to develop a tool that performs an automatic software connector
synthesis. The aim of this synthesis process is to derive the glue code for the
components that constitute the composed system. The glue code is automati-
cally synthesized directly from the partial specification of the composed system
(MSCs and HMSC). The composed system automatically synthesized must sat-
isfy the behavioral properties expected from the system designers and architects.
In Figure 1 we illustrate the automatic synthesis tool architecture.

Automatic Failures-Free Connector Synthesis: An Example 187

We represent with labelled boxes the components of the synthesis tool and
with the labels the input and output data for each functional component of
the tool. We have represented with the labels followed by a gray bold arrow
intermediate data that are necessary to perform some transformations on the
output data of the “From (H)MSC to LTS Translator” component. We perform
these transformations in order to obtain the input data for the “Unification
Algorithm” component. The gray bold arrows represent these transformations.

We model components as labelled transition systems (LTS) where labels rep-
resent messages that the components can input and output on the communi-
cation channel. We consider the system as a parallel composition of all com-
ponents. In literature many approaches to build, in an automatic way, an LTS
from an MSC specification exist; we are entirely based on the approach described
in [21,20,22]. We adapt these algorithms to build the actual behavior graph (AC-
Graph) [8,10,9] of the system components directly from the MSC specifications.
A formal definition of AC-Graph is in [8]. Informally we can say that an AC-
Graph for a component C describes the interaction behavior of C with its ex-
ternal environment. This environment is modelled as the parallel composition of
all the others components in the system. We wish to derive from a component
behavior the requirements on its environment that guarantee deadlock-freedom.
From the AC-Graphs we can automatically derive the corresponding AS (AS-
sumption) graphs. The AS-Graph is different from the corresponding AC-Graph
only in the arcs labels. Actually these labels are symmetric since they model the
deadlock-free environment as each component expects it. This is true because we
assume synchronous communication between components of the system. Given
the CBA style [8], the component environment can only be represented by one
or more connectors, thus we refine the definition of AS-Graph into a new graph,
the EX-Graph, that represents the behavior that the component expects from
the connector. Each component EX-Graph represents a partial view of the con-
nector expected behavior. It is partial since it only reflects the expectations of a
single component. Actually in the EX-Graph of a component C we have actions
on a communication channel that is unknown for C and actions on a communi-
cation channel that links C with the connector. The global connector behavior
will be derived by taking into account all the EX-graphs. This will be done
through a sort of unification algorithm [8]. The role of the connector is to route
every component request to the request receiver component. Then it returns
the request response to the component which fired the request. We automati-
cally synthesize a model of the behavior of the connector which contains all the
possible request routing policies. Then we perform analysis of properties and re-
covery. This means that we could allow a designer to assign a precise scheduling
policy to the connector. Referring to the usual model checking approach [2,7],
we can think of defining the properties that the system must satisfy by using
Linear-time Temporal Logic (LTL) formulas [6,4,5]. We can specify the set P
of properties that describe the expected behaviors of the system. The synthesis
tool uses the set of properties P to identify connector graph portions that do
not satisfy the requested routing policy. Therefore every property in P is used
to check if the connector contains an unexpected behavior. For each property

188 Paola Inverardi and Massimo Tivoli

pi ∈ P the synthesis tool derives the Büchi Automaton [2,6,4] BAi correspond-
ing to the LTL formula !pi, where the symbol ! is the logical negation operator.
Then the tool verifies if in the connector graph a (possibly infinite) arc labels
sequence t (an execution trace) exists in such a way that an accepting execution
of BAi on the word corresponding to t exists. We have explained formally this
test in [11]. Informally, an execution trace t on the connector graph represents
a connector behavior that satisfies the negation of the property pi, thus it rep-
resents an unexpected behavior of the connector. At this point the tool could
apply two possible recovery strategies to guarantee the desired behavior: i) It
does not modify the connector semantics or ii) it modifies the connector seman-
tics. In the first case the tool, in the code derivation step, considers the connector
graph portions marked as unexpected behavior, as exceptional running traces.
Thus it derives for them a code that implements an exception handling block.
In the second case the tool simply cuts the connector graph portions marked as
unexpected behavior. Thus the code derivation step does not implement these
unexpected running traces. Finally the synthesis tool verifies if the connector en-
sures the expected behavior for all components connected to it. In this last step
the tool compares any AS-Graph with a corresponding connector graph portion
by using a sort of state-based equivalence (CB-Simulation) [8]. After we have
obtained the connector graph that satisfies a particular routing policy, the tool
automatically derives the code of a new component, the connector component,
to insert in the composed system. This new component routes the requests of
the components connected to it in such a way that, by construction, the com-
posed system behaves as required. It is important to notice, in Figure 1, that
every LTS corresponding to a component is expressed by using a data struc-
ture that takes the form of automata (the AC-Graph). We can give a textual
representation for each AC-Graph by using a process algebra specification (e.g.
Calculus of Communicating Systems (CCS) [16]). The following are the steps of
the algorithm used to build the failures-free connector graph and to derive the
failures-free assembly code:
1. let K be the connector to build;
2. FOR EACH component Ci build the EX-Graph EXi for Ci;
3. IF it is impossible to unify all the EX-Graphs EXi THEN exit(FAILURE)

ELSE unify all the EX-Graphs EXi and put in K the EX-Graphs unification
result;

4. FOR EACH property pi in the set P of properties to be validated, build the
Büchi Automaton BA!pi

for the logical negation of pi;
5. IF a Connector Graph Execution Trace tj exists (in K) in such a way that

an accepting execution of BA!pi on tj exists, THEN mark the trace tj for
all j;

6. remove from K all the paths that contain a marked Connector Graph Exe-
cution Trace;

7. FOR EACH component Ci IF CBSimulation(ASi, CBi) does not success-
fully terminate THEN exit(FAILURE) ELSE derive from K the assembly
code implementation;

8. exit(SUCCESS);
where:

Automatic Failures-Free Connector Synthesis: An Example 189

ASi is the AS-Graph of the component Ci which is connected to the connec-
tor; CBi is the CB-Graph [11] for Ci. This graph represents the portion of the
connector graph that communicates with the component Ci.

CBSimulation(ASi, CBi) successfully terminates if the expected behavior
of the environment for the component Ci (ASi) is CB -simulated [11] from the
portion of the connector behavior regarding the communication with a given
component (Ci). CBSimulation(ASi, CBi) is performed by not considering the
expected environment behaviors (paths of ASi) corresponding to execution paths
in BA!pi . Informally CB-Simulation is a notion of simulation based on stuttering
equivalence [17].

4 Example: The Dining Philosophers

This example is an instance of the well known Dining Philosophers problem [19]
in which we consider two philosophers and two forks. We present the component
structure of the dining philosophers problem in Figure 2.

Fork1 Fork2

Philosopher2Philosopher1

Fig. 2. Architectural View of the Dining Philosophers Problem.

There are 4 components: i) the first fork (Fork1), ii) the second fork (Fork2),
iii) the first philosopher (Philosopher1), and iv) the second philosopher (Philo-
sopher2). The forks components can iteratively wait for a request, give the
fork, and then wait for the fork to be released. The philosophers can non-
deterministically choose to ask for a fork, get it, then ask for the other, eat
and then release the forks. Since a philosopher to eat needs both the forks it
is obvious that in the following scenario a deadlock could arise: 1) component
Philosopher1 requests and gets the resource of component Fork1; 2) component
Philosopher2 requests and gets the resource of component Fork2; 3) component
Philosopher1 requests and waits for the resource of component Fork2; 4) com-
ponent Philosopher2 requests and waits for the resource of component Fork1. In
this scenario Philosopher1 is waiting for Fork2 release. Since Philosopher2 gets
the resource of Fork2, this event can be caused only by Philosopher2 who is wait-
ing for Fork1 release. Since Philosopher1 gets the resource of Fork1, this event
can be caused only by Philosopher1. Thus each system component is waiting for
an event that only another system component can cause. It means a deadlock.

190 Paola Inverardi and Massimo Tivoli

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

Fork1 Fork2

Philosopher1 Philosopher2

CONNECTOR

Fig. 3. Architectural View of the Connector-based Dining Philosophers Problem.

MSC specification 1 MSC specification 2

fork1 fork2 philosopher1 philosopher2

Fork1

Ok1

Fork2

Ok2

Leave1

Leave2

fork1 fork2 philosopher1 philosopher2

Fork1

Ok1

Fork2

Ok2

Leave1

Leave2

MSC specification 3 MSC specification 4

fork1 fork2 philosopher1 philosopher2

Fork1

Ok1

Fork2

Ok2

Leave1

Leave2

fork1 fork2 philosopher1 philosopher2

Fork1

Ok1

Fork2

Ok2

Leave1

Leave2

Fig. 4. Basic MSC specification of the composed system.

Now we present the connector based component structure of the dining
philosophers problem in Figure 3. The role of the connector is to route every com-
ponent request to the request receiver component. Then it returns the request
response to the component which fired the request. Through the routing policy
it implements, the connector can decide to accept or to reject a specific request.
Suppose that we can benefit of the behavioral specification of the composed
system given in Figures 4 and 5 as MSC and HMSC specification respectively.

By applying the MSC to LTS translation algorithm described in [11], and
based on an our purpose adapted version of the algorithm described in [21,20,22],
we can obtain the AC-Graphs for each component in the composed system

Automatic Failures-Free Connector Synthesis: An Example 191

MSC Specification 1 MSC Specification 2 MSC Specification 3 MSC Specification 4

Fig. 5. High Level MSC specification of the composed system.

Fork1Fork2Ok2

Leave1 Leave2

Fork1Fork2 Ok2 Ok1

Leave1 Leave2

Ok1

Fork1 Ok1

Leave1

Ok2

Leave2

Fork2

AC-Graph of the component Fork2AC-Graph of the component Fork1

AC-Graph of the components Philosopher1 and Philosopher2

Fig. 6. AC-Graphs of the Dining Philosophers components.

(Fork1, Fork2, Philosopher1 and Philosopher2). We show these AC-Graphs
in Figure 6.

From these graphs we derive the AS-Graphs showed in Figure 7 and from
the AS-Graphs we derive the EX-graphs in Figure 8. From the EX-Graphs by
applying the unification algorithm described in Section 3 we can obtain the
connector graph illustrated in Figure 9.

As showed in Figure 9, we automatically synthesize a model of the behavior
of the connector which contains all the possible request routing policies. Then we
perform analysis of deadlocks and recovery. The deadlocks analysis step consists
of searching for stop nodes in the connector behavioral graph. These nodes rep-
resent states in which the system does not perform any action. Thus stop nodes
represent deadlock states. The deadlocks recovery step consists of cutting the
connector graph branches that lead to stop nodes. In Figure 11 we have showed
the deadlock-free connector graph.

It is worthwhile noticing that before the possible deadlocks are fixed the
connector contains all possible composed system behaviors. This means that it

192 Paola Inverardi and Massimo Tivoli

Fork1 OK1

Leave1

AS-Graph of the component fork1

Fork2 OK2

Leave2

AS-Graph of the component fork2

AS-Graph of the components philosopher1 and philosopher2

Fork1OK1Fork2OK2

Leave1 Leave2

Fork2 OK2 Fork1 OK1

Leave2Leave1

Fig. 7. AS-Graphs of the Dining Philosophers Components.

Leave1

EX-Graph of the component fork1

EX-Graph of the component philosopher1

Fork1 ? Fork11 OK11 OK1?

1
Leave1 ? Leave2

EX-Graph of the component fork2

Fork2 ? Fork22 OK22 OK2?

2
Leave2 ?

Fork13 Fork1? Fork2
3

Fork2?

OK1? OK13

OK2?
OK23

Leave1 3Leave1 ?
Leave2 3

Leave2 ?

Fork2 3Fork2?

Fork1?

Fork13 OK2?OK23

OK1?
OK13

Leave2 3 Leave2 ?
Leave1 3

Leave1 ?

EX-Graph of the component philosopher2

Fork1 4 Fork1? Fork2
4

Fork2?

OK1? OK14

OK2?
OK24

Leave1 4Leave1 ?
Leave2 4

Leave2 ?

Fork2 4Fork2?

Fork1?

Fork1 4 OK2?OK24

OK1?
OK14

Leave2 4 Leave2 ?
Leave1 4

Leave1 ?

Fig. 8. EX-Graphs of the Dining Philosophers Components.

Leave2 B

Fork1Fork1

Fork1 Fork1

Ok1Ok1

Ok1 Ok1

Fork2Fork2

Fork2Fork2

Ok2Ok2

Ok2 Ok2

Leave1Leave1

Leave1 Leave1

Leave2

CCCCC

D
DDDD AAA

A AA

B

BB

B

B

Fork1 D
Fork1 A Ok1 A Ok1 D Leave2 C

Fork1

Fork1 A
C

Ok1 A Ok1 C Leave2 D Leave2 B

Leave2 B

Fork2

Fork2 C

D

Leave2 D

Leave2 C

Fork2 BOk2Ok2 BD

Fork2Ok2Ok2 BBC

DEADLOCK

DEADLOCK

Fork2 Fork2

Fork2Fork2

Ok2 Ok2

Ok2

Fork1

Fork1

Ok1 Ok1

Ok1Ok1

Leave2 Leave2

Leave2Leave2

Leave2

Fork2
Fork2Ok2Ok2Leave1

Fork2

Fork2Ok2Ok2Leave1
Leave1

Leave1

Fork1

Leave1

Leave2

Fork1 Ok1 Ok1

DEADLOCK

DEADLOCK

Fork1

DOk1AOk1AFork1

A

C

D

C B B C C A A C C B

DABDC

A D C A A

C

BDDAADFork1

A

DOk2
BBD

Fork1C

D

CAA

Leave2

Leave2 B

D

Leave2 B

Leave2 C

A

Leave1

Leave1

Leave1

Leave1

Leave1

A

C

A

D

Fig. 9. Automatically Synthesized Connector.

Automatic Failures-Free Connector Synthesis: An Example 193

contains all possible routing policies. A designer can now think not only of a
deadlock-free routing policy but of a precise scheduling one. For instance he
might want the philosophers to eat in turn or that the Philosopher1 always eats
twice before Philosopher2. This means that we could allow a designer to assign
a precise scheduling policy to the connector. Suppose that the composed system
designer has specified the following properties:

– PROPERTY 1:
LP1 ≡ []((Ok1C ∧ Ok2C) −→ X([](!(Ok1C ∧ Ok2C))));

– PROPERTY 2:
LP2 ≡ []((Ok1D ∧ Ok2D) −→ X([](!(Ok1D ∧ Ok2D)))).

With these two properties, the system designer specifies two expected system
behaviors that have been specified to avoid this two possible scenarios: i) the
first philosopher eats and the second philosopher waits for the forks forever and
ii) the second philosopher eats and the first philosopher waits for the forks for-
ever. These two conditions are important for the progress of the system because
they implies that both the two philosophers eat an equal number of times. More
exactly for equal number of times we means the same number of times in quan-
tity order. By satisfying LP1 and LP2 the connector can avoid the starvation.
For example with LP1 the user specifies that for all executions (in the connector
model that we are considering), in which the first philosopher has requested and
obtained both the two forks then it will have to be always true that the first
philosopher does not obtain both the two forks again. Analogously for LP2.

To limit the size of the paper, we describe the behavioral properties analysis
step only for the property LP1. The following approach is completely equivalent
for LP2. We derive, in an automatic way, a suitable form of the Büchi Automaton
BA!LP1 corresponding to the property !LP1 in order to search, in the graph of
Figure 11, Connector Graph Execution Traces tj in such a way that an accepting
execution of BA!LP1 on tj exists. In Figure 10 we have illustrated the Büchi
Automaton, corresponding to !LP1.

The reader, by looking the Figure 11, can easily see that there are infi-
nite Connector Graph Execution Traces tj , corresponding to the two paths
LP1 Failure1 and LP1 Failure2 in Figure 11 respectively, in such a way that
an accepting execution of BA!LP1 on tj exists. This means that the deadlock-free
connector model satisfies the LTL formula !LP1 since there is at least one execu-
tion trace in which only the first philosopher requests and obtains the two forks
and the second one waits for the forks forever. Thus the derived deadlock-free
connector model is a really deadlock-free model of the connector but it does not
guarantee the progress of the system.

4.1 Behavioral Failures Recovery

After we have performed the behavioral failures analysis step, we can have pos-
sible traces or paths in the connector graph in which the properties are not

194 Paola Inverardi and Massimo Tivoli

!LP = !([]((Ok1 Ok2) -> X([](!(Ok1 Ok2)))))1 C C

From LTL to Buchi
Automata Translation

..

init

accept

Ok1 Ok2C C Equivalent
Buchi

Automaton

..

Ok1 Ok2C C

C C

init

Ok1C

Ok1COk2C

Ok2C

Ok1C

Ok1C
Ok2C

Ok2C

Ok1C

Ok1C
Ok2C

Ok2C

accept1 accept2 accept3 accept4

Fig. 10. Equivalent Büchi Automata corresponding to LTL property !LP1.

satisfied (behavioral failures). We propose a strategy based on the elimination
of all the paths, in the connector graph, in which we have found a Connec-
tor Graph Execution Trace accepted by the Büchi Automaton BA!LP1 . Then,
for every component Ci, we checked if its AS-Graph ASi is simulated by the
CB-Graph CBi of Ci under the notion of CB-Simulation. We have seen, by per-
forming the analysis step on properties LP1 and LP2, that there are two paths,
in the deadlock-free connector graph, in which the property LP1 is not satisfied
and there are others two paths in which LP2 is not satisfied. In Figure 11 we
have represented this four paths by coloring gray the nodes in the paths.

We have called the two paths that not satisfy the property LP1 as
LP1 Failure1 and LP1 Failure2 respectively and the two paths that not
satisfy the property LP2 as LP2 Failure1 and LP2 Failure2 respectively. By
cutting those paths from the connector graph we obtain the Deadlock-Free and
Progress-Satisfying Connector Graph of Figure 12.

By the Figure 12, we can see that this model of the connector forces the
two philosophers to eat in an alternate way. This is true because every time the
first philosopher eats then necessarily the second philosophers will eat too and
viceversa. This implies that this model of the connector satisfies the properties
LP1 and LP2. The reader can easy verifies that for every component Ci the CB-
Graph CBi (of the connector graph of Figure 12) for Ci simulates the AS-Graph
ASi under the notion of CB-Simulation1.

5 Conclusions and Future Works

In this paper we have presented an example of application of our approach to
compose a system out of a set of black-box components in a behavioral failures-
free way. A key feature of the approach is that the system architecture follows
1 Except for the paths of ASi that are also execution paths of BA!LP1 .

Automatic Failures-Free Connector Synthesis: An Example 195

LP1_Failure2LP1_Failure1

LP2_Failure1LP2_Failure2

Fork2

Fork2 Ok2 Ok2 Fork1 Fork1 Ok1 Ok1 Leave2 Leave2

Leave1Leave1

Leave1

Leave1

D

D D D D

D

B B BA A

A

A

C

Fork2

Fork2Ok2Ok2Leave1

Leave1

Leave1

C

C AA

A

A

D

Fork2 C

Fork2 B
Ok2B Ok2 C Fork1C Fork1A Ok1A Ok1C Leave2CLeave2 B

Leave1 C
Leave1A

Fork2 D

Leave1D

Leave1A

Leave1C Ok2 D Ok2B Fork2 A

Fork1
D

Fork1
AOk1AOk1DFork2 DFork2 B

Ok2 BOk2 D
Leave1 DLeave1A

Leave2 D Leave2 B

Leave2 C

Leave2 B

Fork1
C

Fork1
A Ok1A Ok1C Leave2 D

Leave2 B

Leave2 BLeave2 B

Leave2 D

Fork1 A

Fork1
D

Ok1A Ok1D Leave2 C Fork1
C

Fork1
AOk1AOk1C

Fork2 CFork2 BOk2 BOk2CLeave1 CLeave1A

Leave2 C Leave2 B

Fig. 11. Deadlock-Free Connector Graph not-satisfying the properties LP1 and LP2.

Fork2

Fork2 Ok2 Ok2 Fork1 Fork1 Ok1 Ok1 Leave2 Leave2

Leave1

Leave1

D

D D D DB B BA A

A

C

Fork2

Fork2Ok2Ok2Leave1

Leave1

Leave1

C

C AA

A

A

D

Fork2 C

Fork2 B
Ok2B Ok2 C Fork1C Fork1A Ok1A Ok1C Leave2CLeave2 B

Fork2 D

Leave1D

Leave1A

Leave1C Ok2 D Ok2B Fork2 A

Fork1
D

Fork1
AOk1AOk1DFork2 DFork2 B

Ok2 BOk2 D
Leave1 DLeave1A

Leave2 C

Leave2 B

Fork1
C

Fork1
A Ok1A Ok1C Leave2 D

Leave2 B

Leave2 BLeave2 B

Leave2 D

Fork1 A

Fork1
D

Ok1A Ok1D Leave2 C Fork1
C

Fork1
AOk1AOk1C

Fork2 CFork2 BOk2 BOk2CLeave1 CLeave1A

Fig. 12. Deadlock-Free and Progress-Satisfying Connector Graph.

a precise architectural style; this makes the automatic synthesis of connectors
possible. Furthermore, the fact that it is known how the components will inter-
act through the connectors makes behavioral failures analysis and/or recovery
possible. The approach thus exploits the knowledge of the system architecture in
order to improve the quality of the resulting system with respect to architectural
mismatches.

As far as complexity is concerned, our approach, contrary to [12], does not
improve standard analysis techniques. From this point of view our method shares
the same problems of the techniques based on analysis performed on the global
system behavioral model. The added-value of our method is the ability to gen-
erate a failures-free system, by automatically synthesizing a safe connector.

196 Paola Inverardi and Massimo Tivoli

At present we have applied the approach in a real scale context, namely in
the context of COM/DCOM applications [9]. At a very high level of descrip-
tion, what has been done is to recast the notions and techniques introduced
in the paper in the COM/DCOM context by suitably extending the IDL in
order to accommodate our notion of AC-graph in the component interface de-
scription. Then the application is build according to the CBA style by letting
a COM/DCOM server to act as the synthesized connector. Behavioral failures
freedom is then checked by following our definitions. To our respect, it showed
the feasibility of our approach and its applicability in commercial component
based contexts. As far as components are concerned we only assumed to have
a description of the composed system behavior by means of MSCs, which is, in
our view, an acceptable hypothesis.

In [10] we mentioned that our method can be applied to multi-layered sys-
tems as well. When more than two layers are considered we have to split AS-
Graphs according to the two component domains top and bottom. From these
we can generate the corresponding pairs of expected graphs which should then
be unified. The unification algorithm must be slightly modified to cope with
this extension. Our method can have better state complexity results in a layered
system, since the connector corresponding to each layer must only consider the
subset of components that interact with it.

References

1. B. Boehm and C. Abts. Cots integration: Plug and pray? IEEE Computer, 32(1),
Jan. 1999.

2. O. G. Edmund M. Clarke, Jr. and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, London, England, 2001.

3. D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so
hard. IEEE Software, 12(6), Nov. 1995.

4. P. Gastin and D. Oddoux. Fast ltl to buchi automata translation. in Proceedings
of CAV’01, 2001.

5. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of liner temporal logic. in Proc. of the 15th IFIP/WG6.1 Symposium
on Protocol Specification, Testing and Verification (PSTV’95), 1995.

6. D. Giannakopoulou and K. Havelund. Automata-based verification of temporal
properties on running programs. RIACS Technical Report 01.21, 2001.

7. D. Giannakopoulou, J. Kramer, and S. Cheung. Behaviour analysis of distributed
systems using the tracta approach. Journal of Automated Software Engineering,
special issue on Automated Analysis of Software, 6(1):7–35, January 1999.

8. P. Inverardi and S. Scriboni. Connectors syntesis for deadlock-free component
based architectures. 16th ASE, Coronado Island, California, November 2001.

9. P. Inverardi and M. Tivoli. Automatic synthesis of deadlock free connectors for
com/dcom applications. In ACM Proceedings of the joint 8th ESEC and 9th FSE,
ACM Press, Vienna, Sep 2001.

10. P. Inverardi and M. Tivoli. Deadlock-free software architectures for com/dcom
applications. to appear on Elsevier Journal of Systems and Software Special Issue
on Component-based Software Engineering, Nov. 2001.

Automatic Failures-Free Connector Synthesis: An Example 197

11. P. Inverardi and M. Tivoli. Connectors synthesis for failures-free component based
architectures. Technical Report, University of L’Aquila, Department of Computer
Science, http://www.di.univaq.it/tivoli/ffsynthesis.ps, ITALY, August 2002.

12. P. Inverardi and S. Uchitel. Proving deadlock freedom in component-based pro-
gramming. Proceed. FASE 2001, LNCS 2029 pp. 60-75, April 2001.

13. N. Kaveh and W. Emmerich. Deadlock detection in distributed object system. 8th
FSE/ESEC, Vienna, September 2001.

14. D. Mark, R. Vigder, and J. Dean. An architectural approach to building systems
from cots software components. National Research Council Report Number 40221.

15. N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of off-the-shelf components
in c2-style architectures. In In Proceedings of the 1997 Symposium on Software
Reusability and Proceedings of the 1997 International Conference on Software En-
gineering, May 1997.

16. R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.
17. R. D. Nicola and F. Vaandrager. Three logics for branching bisimulation. Journal

of the ACM, 42(2):458–487, 1995.
18. C. Szyperski. Component Software. Beyond Object Oriented Programming. Addi-

son Wesley, Harlow, England, 1998.
19. A. S. Tanenbaum. Modern Operating Systems. Prentice Hall Inc., 1992.
20. S. Uchitel and J. Kramer. A workbench for synthesising behaviour models from

scenarios. In in proceeding of the 23rd IEEE International Conference on Software
Engineering (ICSE’01), Toronto, Canada. May 2001.

21. S. Uchitel, J. Kramer, and J. Magee. Detecting implied scenarios in message
sequence chart specifications. In ACM Proceedings of the joint 8th ESEC and 9th
FSE, ACM Press, Vienna, Sep 2001.

22. S. Uchitel, J. Kramer, and J. Magee. From sequence diagrams to behaviour mod-
els. In In WTUML: Workshop on Transformations in UML. Satellite event of the
European Joint Conferences on Theory and and Practice of Software (ETAPS’01),
Genova, Italy. April 2001.

	1 Introduction
	2 Problem Description
	3 Connector Synthesis
	4 Example: The Dining Philosophers
	4.1 Behavioral Failures Recovery

	5 Conclusions and Future Works
	References

