
A compositional synthesis of failure-free connectors for
correct components assembly

Paola Inverardi
University of L’Aquila

Dip. Informatica
via Vetoio 1, 67100 L’Aquila, Italy

inverard@di.univaq.it

Massimo Tivoli
University of L’Aquila

Dip. Informatica
via Vetoio 1, 67100 L’Aquila, Italy

tivoli@di.univaq.it

ABSTRACT
Correct automatic assembly of software components is con-
sidered an important issue of CBSE (Component-Based Soft-
ware Engineering). It is related to the ability to establish
properties on the assembly code by only assuming a rela-
tive knowledge of the single components properties. In our
precedent works, we have provided our answer to this prob-
lem by discussing a software architecture based approach
in which the software architecture imposed on the assembly
allows for detection and recovery of COTS (Commercial-
Off-The-Shelf) integration anomalies. One of the crucial
aspects of our assembly technique is related to the ability to
synthesize a specification-satisfying assembly code (i.e. the
failures-free connector) in such a way that the synthesis re-
sults compositional with respect to system evolutions. That
is every time the system evolves, in order to automatically
synthesize the failures-free connector for the new version of
the specification-satisfying system it is enough to repeat the
synthesis only for the part of the system related to its evo-
lution.

1. INTRODUCTION
Correct automatic assembly of software components is con-
sidered an important issue of CBSE [4] (Component-Based
Software Engineering). It is related to the ability to estab-
lish properties on the assembly code by only assuming a
relative knowledge of the single components properties. In
our precedent works [7, 5, 11, 8, 6], we have developed an
architectural approach to the assembly problem. This ap-
proach is to generate systems by assuming a well defined
architectural style [8] in such a way that it is possible to
detect and to fix software behavioral anomalies. We as-
sume that a high-level description of the desired assembled
system is available and that a precise definition of the prop-
erties to satisfy exists. With these assumptions we have
developed a framework that automatically derives the as-
sembly code for a set of components so that, if possible, a

property-satisfying system is generated. The assembly code
implements an explicit software connector which mediates
all interactions among the system components acting as a
new component to be inserted in the composed system. The
connector can then be analyzed and modified in such a way
that the behavioral (i.e. functional) properties of the com-
posed system are satisfied. Depending on the kind of prop-
erty, the analysis of the connector only is enough to obtain
a property satisfying version of the system. Otherwise, the
property is due to some component internal behavior and
cannot be fixed without directly operating on the compo-
nent code. In a component based setting in which we are
assuming black-boxes components, this is the best we can
expect to do.

An important aspect of our assembly technique is related to
the ability to synthesize the specification-satisfying version
of the composed system in such a way that the synthesis re-
sults compositional with respect to system evolutions. That
is every time the system evolves, in order to automatically
synthesize the failures-free connector for the new version of
the specification-satisfying system it is enough to repeat the
synthesis for the part of the system related to its evolution.
Let us suppose that we have synthesized a component-based
system by automatically assembling n components through
a connector in order to satisfy the system’s specification.
Moreover, let us suppose that later on we add m new com-
ponents in order to add functionalities to the system. Then
it is desirable to perform the synthesis for the sub-system
made of the new m components by retaining the behavioral
properties validated for the old n components and by enforc-
ing only the new specified behavioral properties. Thus by
exploiting the old failures-free connector, we can derive the
specification-satisfying assembly code (i.e. a new failure-free
connector) for the whole new system made of the old n plus
the new m components.

In this paper we show by using an explanatory example that
our approach is compositional with respect to the assembled
system evolution. In our context this means that we are
compositional with respect to: i) the automatic synthesis of
the new connector representing the glue code for the com-
ponents constituting the new version of the system and ii)
the set of behavioral properties to be validated; this set is
composed by the set of the new specified behavioral prop-
erties and the set of the old behavioral properties already
validated for the old version of the system (i.e the system

based on the old connector).

We define a connector composition technique that synthe-
sizes a new connector as a function of an already existent
connector. The new connector is automatically synthesized
in such a way that the behavioral properties satisfied by
the already existent connector are maintained. Thus the
new specified behavioral properties are the only properties
to be enforced on the new connector. This makes our ap-
proach compositional. The problem we want to treat can be
phrased as follows: Let S be a system composed of C1, .., Cn

components plus a connector K; let K be the assembly code
for the n components such that it satisfies a set of behavioral
properties P ; build a new connector
K′ = F (K, C1, .., Cn, Cn+1, .., Cn+m) in order to add the
components Cn+1, .., Cn+m to S in such a way that K′ sat-
isfies each property in P and each one in a new specified set
P ′ of behavioral properties. The function F takes a connec-
tor K representing the properties-satisfying assembly code
for C1, .., Cn and returns a connector K′ representing the
properties-satisfying assembly code for
C1, .., Cn, Cn+1, .., Cn+m. F is formally defined in Section 5.

The paper is organized as follows. Section 2 provides back-
ground notions to understand our approach to the assem-
bly problem [7, 5, 11, 8, 6]. Section 3 describes a family
of component-based systems associated to the problem we
want to treat. Section 4 briefly reports our approach in or-
der to show in Section 5 its compositional nature. Section 6
discusses future works and concludes.

2. BACKGROUND
We consider component-based software systems that reflect
an architectural style called Connector Based Architecture
(CBA) [8]. This style consists of components and connec-
tors. Referring to [12], we consider a software component as
”a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software compo-
nent can be deployed independently and is subject to compo-
sition by third parties.” We operate in the domain of black-
box reuse which refers to the concept of reusing implemen-
tations without relying on anything but their interfaces and
specifications. Referring to [3], we consider a software con-
nector as a unit of coordination that mediates the commu-
nication, cooperation and interaction among components.
Moreover, in CBA style components and connectors define a
notion of top and bottom. The top (bottom) of a component
may be connected to the bottom (top) of a single connector.
Components can only communicate via connectors. It is
disallowed the direct connection between connectors. Com-
ponents communicate synchronously by passing two type
of messages: notifications and requests. A notification is
sent downward, while a request is sent up. Connectors are
responsible for the routing of messages and they exhibit a
strictly sequential input-output behavior1. CBA style is a
generic layered style, for the sake of presentation we will
only deal with single layered systems. In [8] we show how
to cope with multi-layered systems. In Figure 1 we show
an instance of CBA style made of two components and one
connector.

1Each input action is strictly followed by the corresponding
output action.

C2

connector (K)

C1

2

1

top

bottom

bottom

top

top

bottom

request notification

Figure 1: An instance of CBA style

3. CONFIGURATION FORMALIZATION
To our purposes we need to formalize two different ways to
compose a system. The first one is called Connector Free
Architecture (CFA) and is defined as a set of components
directly connected in a synchronous way (i.e. without a con-
nector). The second one is called Connector Based Archi-
tecture (CBA) and is defined as a set of components directly
connected in a synchronous way to one or more connec-
tors. In order to describe components and system behav-
iors we use CCS [9] (Calculus of Communicating Systems)
notation. Our framework allows to automatically derive
these CCS descriptions from ”HMSC (High level Message
Sequence Charts)” and ”bMSC (basic Message Sequence
Charts)” [1] specifications of the system [11, 5]. These kinds
of specifications are common practice in real-scale contexts
thus CCS can merely be regarded as an internal to the frame-
work specification language. Since HMSC and bMSC speci-
fications model finite-state behaviors of a system we will use
finite-state CCS:

Definition 1. Connector Free Architecture (CFA).
CFA ≡ (C1 | C2 | ... | Cn)\Sn

i=1 Acti where for all i =
1, .., n, Acti is the actions set of the CCS process Ci.

Definition 2. Connector Based Architecture (CBA).
CBA ≡ (C1[f1] | C2[f2] | ... | Cn[fn] | K)\Sn

i=1 Acti[fi]
where for all i = 1, .., n, Acti is the actions set of the CCS
process Ci and fi is a relabelling functions such that fi(α) =
αi for all α ∈ Acti and K is the CSS process representing
the connector.

4. APPROACH DESCRIPTION
In this section we recall our approach to the automatic
component-based systems generation discussed in our prece-
dent works [7, 5, 11, 8, 6]. We briefly report the aspects of
the approach which are important to show, in Section 5,
its compositionality with respect to system evolution. The
problem treated by our approach was informally phrased as
follows: given a CFA system T for a set of black-box inter-
acting components and a set of properties P automatically
derive the corresponding CBA system V which satisfies every
property in P . We assume that a high-level description of
the system to be assembled was provided. Referring to Def-
inition 1, we assume that for each component a description
of its behavior as finite-state CCS term is provided (i.e. LTS
Labelled Transitions System). Moreover we assume that a
specification of the behavioral properties to be checked ex-
ists. Our method proceeds in three steps as illustrated in
Figure 2.

The first step builds a connector following the CBA style

C1 C2

C3 C4
connectorStep 1: Connector

Synthesis

C1 C2

C3 C4

1 2

3 4
Step 2: Deadlocks

Analysis

deadlock-free
connector

C1 C2

C3 C4

1 2

3 4

Step 3:
Failures
Analysis

failure-free
connector

C1 C2

C3 C4

1 2

3 4

Figure 2: 3 step method

constraints. The second step performs the deadlocks detec-
tion and recovery process. Finally, the third step performs
the check of the specified behavioral properties against the
deadlock-free connector model and then synthesizes a
properties-satisfying connector model. For the aims of this
paper we do not report in detail the steps of our approach.
For a detailed description we refer to [6].

4.1 First step: Connector Synthesis
The first step of our method (see Figure 2) starts with a
CFA system and produces the equivalent CBA system. It
is worthwhile noticing that this can always be done [8]. We
proceed as follows:

i) for each CCS component specification in the CFA system
we derive the corresponding AC-Graph. AC-Graphs model
components behavior in terms of interactions with the exter-
nal environment. AC-Graph carry on information on both
labels and states. In Figure 3 we show the AC-Graphs of
the CFA system of our working example.

b a b a b aAC1: AC2: AC3:

S1

SI1

S2

SI2

S3

SI3

Figure 3: AC-Graphs of the example

In the example, we are considering a client-server (i.e. single-
layer) system with two clients (AC2, AC3) and one server
(AC1). The server component exports two methods (a and
b). It assumes that an its client requires first the method
a and then the method b. The two clients have the same
behavior. Each client sequentially performs first a request
of a and then a request of b.

ii) We derive from AC-Graph the requirements on its en-
vironment that guarantee deadlock freedom. Referring to
Definition 1, the environment of a component Ci is repre-
sented by the set of components Cj (j 6= i) in parallel.
A component will not block if its environment can always
provide the actions it requires for changing state. This is
represented as AS-Graphs (Figure 4).

b a b a b aAS1: AS2: AS3:

S1

SI1

S2

SI2

S3

SI3

Figure 4: AS-Graphs of the example

Now if we consider Definition 2, the environment of a com-
ponent can only be represented by connectors, EX-Graph
represents the behavior that the component expects from
the connectors (Figure 5).

b1

a?

a1

b?
EX1:

b?

a2

a?

b2

b?

a3

a?

b3
EX2: EX3:

S1

SI1

S2

SI2

S3

SI3S1 S2 S3

SI1 SI2 SI3

Figure 5: EX-Graphs of the example

iii) Each EX-Graph represents a partial view of the con-
nector behavior, we derive the connector global behavior
through an EX-Graphs unification algorithm [8, 6]. In Fig-
ure 6 we show the connector graph for our example. The
i − th generated node of the connector graph is annotated
as Ki and its label is reported in the figure. The resulting
CBA system is built as defined in Definition 2.

a3 b3

a1

b1

b2

a1

b1

a2

K1

K2
K4K3 K5

K6 K7

nodes labels:
K1=<S1,S2,S3>

K2=<S1,S2,S3>

K4=<S1,S2,S3>
K3=<SI1,SI2,S3>

K5=<SI1,S2,SI3>

K7=<SI1,S2,SI3>

K6=<SI1,SI2,S3>

Figure 6: Connector graph of the example

In [8] we have proved that the CBA-system obtained by the
connector synthesis process is equivalent to the correspond-
ing CFA-system.

4.2 Second step: Deadlocks recovery
The second step concerns the deadlock freeness analysis,
which is performed on the CBA system. Depending on
the deadlock type we can operate on the connector in or-
der to obtain a deadlock-free equivalent system. In [8], we
have proved that if a wrong coordination deadlock is pos-
sible, then this results in a precise connector behavior that
is detectable by observing the connector graph. To fix this
problem it is enough to prune all the finite branches of the
connector transition graph. The pruned connector preserves
all the correct (with respect to deadlock freeness) behaviors
of the CFA-system. In our example (Figure 6), the connec-
tor graph does not contain wrong coordination deadlocks.
After the elimination of the wrong coordination deadlocks
others deadlocks can still occur (i.e. wrong components as-
sumptions deadlocks [8]). This is possible because these
deadlocks depend on an internal incorrect behavior of the
component (e.g. buffer size), thus they do not result in a
connector behavior. It is worthwhile recalling that we are
dealing with black-box components, whose only known be-
havior concerns the interactions with the others components
into the system. For this reason we have to perform another
set of controls on the CBA-system; we check if for every
component the connector can simulate the environment’s
expected behavior from the component (i.e. component’s
AS-Graph). This check is performed by following a suitable
notion of stuttering equivalence [10]. In [8] we have proved
that if this check is verified then there is no deadlock in the

system. It is easy to perform this check on our working ex-
ample proving that the connector has no wrong components
assumptions deadlocks.

4.3 Third step: Behavioral properties enforc-
ing

The properties we want to enforce are related to behav-
iors of the CFA system. Behaviors that do not satisfy the
specified properties represent behavioral failures of the CFA
system. Since the synthesized CBA system is equivalent to
the CFA system, these behavioral failures are also related
to precise behaviors of the CBA system. Analogously to
deadlock [8, 7], we can not solve behavioral failures of the
CBA system that are not identifiable with precise behaviors
of the synthesized connector. A connector behavior is sim-
ply a connector graph states sequence. Thus the system’s
properties we can deal with are behavioral properties that
can be specified in terms of the connector execution states.
Since in specifying a property we are concerned with the
CFA system, we constrain the set of properties that we can
treat. Actually we deal with behavioral properties specified
in terms of connector execution states that are tuples only of
AC-Graph states. By referring to the usual model checking
approach [2] we specify every behavioral property through a
temporal logic formalism. We choose LTL [2] (Linerar-time
Temporal Logic).

The semantics of a LTL formula is defined with respect to
a model represented by a Kripke structure [2]. We consider
as Kripke structure corresponding to the connector graph K
a connector model KSK that represents the Kripke struc-
ture of K. Let P be the property specification (i.e. a LTL
formula), we can translate P in the corresponding Büchi Au-
tomaton [2] BP . Referring to our example we consider the
following behavioral property: P = G(F (< S′1, S

′
2, S3 >))

∧ G(F (< S′1, S2, S
′
3 >)); this property is the specification

of all CFA system behaviors that guarantee the evolution
of all components in the system. The synthesized connec-
tor avoids starvation and allows the CBA-system to sat-
isfy this property. To a Kripke structure T corresponds a
Büchi Automaton BT [2]. We can derive BKSK as the Büchi
Automaton corresponding to KSK . Thus given BKSK =
(Σ, N, ∆, {s}, N) and
BP = (Σ, S, Γ, {v}, F) the method performs the following
property enforcing procedure in order to synthesize a deadlock-
free connector graph that satisfies P :

1. build the automaton BK,P
intersection that accepts

L(BKSK) ∩ L(BP);

2. if BK,P
intersection is not empty return BK,P

intersection as the
Büchi Automaton corresponding to the P -satisfying ex-
ecution paths of K.

If BK,P
intersection is empty it means that for all possible exe-

cutions of the CBA system the property is violated. In this
case it is impossible to assemble the components through a
property-satisfying connector synthesized with our approach.
Finally our method derives from BK,P

intersection the correspond-
ing connector graph. Then, to terminate the construction
of the failures-free connector graph, the method prunes the
possible branches terminating with stop nodes. In Figure 7

we show the failures-free connector graph for our example.
By visiting this graph and by exploiting the information
stored in the states we can derive the code that imple-
ments the property-satisfying deadlock-free connector (i.e.
the assembly code) analogously to what done for deadlock
free connectors [7]. In [6] we have proved the correctness
of the property enforcing procedure. That is the CBA-
system based on the property-satisfying deadlock-free con-
nector preserves all the property-satisfying behaviors of the
corresponding deadlock-free CFA-system.

<S1,S2,S3>

<S1,S2,S3><SI1,SI2,S3>

<S1,S2,S3>
<SI1,S2,SI3>

<SI1,SI2,S3>

<SI1,S2,SI3>

<S1,S2,S3>
a3 b1

a1

b3

b1 a1

b2

a2

Figure 7: Failures-free connector graph of the ex-
ample

5. COMPOSITIONAL CONNECTORS SYN-
THESIS

Let us suppose that we have to derive the assembly code for
a set of components constituting a CFA system S. To do
this we want to reuse a connector K already synthesized for
a ”reduced” version of S. With the term ”reduced” we mean
a version of S made of a subset of the set of components
constituting it. Referring to Definitions 1 and 2, the problem
we want to treat can be formulated as follows:

• let CBA ≡ (C1[f1] | C2[f2] | ... | Cn[fn] | K)\Sn
i=1 Acti[fi]

be the CBA system made of C1, .., Cn components;

• let CFA′ ≡ (C1 | ... | Cn | Cn+1 | ... | Cn+m)\(Sn
i=1 Acti

∪ Sn+m
j=n+1 Actj) be the CFA system made of C1, .., Cn,

Cn+1, .., Cn+m components;

define a function F in a such way that we automatically de-
rive the CBA system CBA′ corresponding to CFA′, where:

• CBA′ ≡ (C1[f1] | ... | Cn[fn] | Cn+1[fn+1] | ... |
Cn+m[fn+m] | K′)\(Sn

i=1 Acti[fi] ∪
Sn+m

j=n+1 Actj);

• K′ = F (K, C1, .., Cn, Cn+1, .., Cn+m).

In Figure 8 we show an instance of the problem we want to
treat.

C1

K

C2

1

2

C3

3

CBA1:

add C4 and C5
components

C1

K’=F(K,C1,C2,C3,C4,C5)

C2

1

2

C3

3

CBA2:

C4

4

C5

5

Figure 8: Compositional connector synthesis

The function F is defined as a compositional version of the
EX-Graphs unification algorithm defined in [8, 6]. Before

formalizing F , by continuing the example of Section 4 we
show how to perform the compositional EX-Graphs unifica-
tion algorithm. We consider CBA1, C4 and C5 in Figure 8.
In Figure 9 we show the AC-Graphs of the components in
CBA1 and the property-satisfying deadlock-free connector
graph K for CBA1 (Figure 7). We are assuming the behav-
ioral property P specified in Section 4.3. We also show the
AC-Graphs of the components in CBA2 and the connector
graph K′ = F (K, C1, C2, C3, C4, C5) for CBA2.

C1:

b a

a

c

d

a3

b1

a1

b3

b1

a1

b2

a2

C2:

b a b a

K

d c

b

CBA1:

add and components

b a b a b aCBA2: a

c

d c

b

d

a5

a1

c5

c4

b5
b1

d5

d4

d5

d4d4

d5

a
3

b1

a1
b

3

b1

a1
b2

a2

a3

b
1

a1

b3

b1

a1 b
2

a2

KI

S1

SI1

S2

SI2

C3:S3

SI3

C4: S4

SI4

C5: S5

SI5

SII5

SIII5

C1: S1

SI1

C2:S2

SI2

C3:S3

SI3

C4: S4

SI4

C5:S5

SI5

SII5

SIII5

KI1

KI14

Figure 9: K′ = F (K, C1, C2, C3, C4, C5)

In a client-server setting, this example describes a CBA
system (CBA1) made of the connector (server) component
K assembling the server C1 (contained in K) and the two
clients C2 and C3. C1 can sequentially receive two requests
of service modelled by input actions a and b respectively.
C2 and C3 have the same behavior. They first perform a
request of service toward C1 modelled by output action a
and then perform the request modelled by b. The connector
component implements the P -satisfying deadlock-free rout-
ing policy of the two clients requests toward the server con-
tained in the connector itself. Let us suppose we want to
add functionalities to CBA1. For instance we add a new
server C4 and a new client C5 to CBA1. C4 can sequen-
tially receive two requests of service (c and d actions), C5

sequentially performs four requests (a, c, b, d); two requests
(a and b) toward the old server C1 and two (c and d) toward
the added server C4.

To automatically derive the connector K′ representing the
P -satisfying deadlock-free assembly code for C1, C2, C3, C4

and C5 components we can exploit the already generated
connector component K in order to reduce the number of it-
erations of the EX-Graph unification algorithm and to avoid
the enforcing of the already validated property (i.e. P). We
perform a compositional EX-Graphs unification algorithm.
This algorithm defines the function F . The compositional
EX-Graphs unification algorithm gets in input a connector
graph K and the EX-Graphs EXi of every component in
the system to be assembled. Moreover the algorithm de-
notes both the EX-Graphs of the components of the old
CBA system and the EX-Graphs of the new added compo-

nents by maintaining them in two EX-Graphs sets: EXold

and EXnew respectively. Then the algorithm is quite sim-
ilar to the algorithm defined in [8, 6]. The only difference
is in the unification procedure. Informally the unification
procedure is performed only for the unifiable pairs (ti, v?)

where in EXi Si
ti⇒ Si; in EXj Sj

v?⇒ Sj ; i 6= j; and there
exists k with k = i ∨ k = j such that EXk ∈ EXnew.
For all others (ti, v?) unifiable pairs (i.e. the pairs such

that in EXi Si
ti⇒ Si; in EXj Sj

v?⇒ Sj ; i 6= j; and
EXi, EXj ∈ EXold) the unification procedure directly
adds, if they do not already exist, the state transitions of
the connector graph K by starting from the current state
and by suitable relabelling the states in these transitions.
Moreover the compositional unification procedure adds the
state transitions of the connector graph K only in correspon-
dence of current states < S1, S2, S3, S4, S5 > where S1, S2

and S3 are the initial states of EX1, EX2 and EX3 respec-
tively (i.e. < S1, S2, S3 > is the initial state of K). Instead
S4 and S5 can be generic states of EX4 and EX5 respec-
tively. In Figure 10 we show the resulting connector graph
of K′ = F (K, C1, C2, C3, C4, C5) after the first step of the
compositional unification procedure.

a5

c5

d5
b1

a?

a1

b?

a? c?

d?

EX1

b?

a2

a?

b2

EX2

b?

a3

a?

b3

EX3

d4

c?

c4

d?

EX4

b5

b?

EX5

unifiable pairs generated at the first
step of the unificaion procedure:

(a2,a?)
(a3,a?)
(a5,a?)

current state at the
first step of the

unification procedure

current state after the
first step of the

unification procedure

a3

b1

a1

b3

b1

a1

b2

a2 K

a
3

b1

a
1 b

3

b1

a
1

b
2

a
2

KI
a5

a1

Figure 10: Connector graph of K′ after the first step
of the compositional unification procedure

The empty EX-Graphs nodes in Figure 10 represent the EX-
Graphs current states after the first step of the composi-
tional unification procedure. The unification procedure is
performed only for the unifiable pair (a5, a?). For the unifi-
able pairs (a2, a?) and (a3, a?) the unification procedure sim-
ply adds the state transitions in the connector graph K by
starting from the current state. The following is the formal
definition of the function F :

Definition 3. Compositional EX-Graphs Unification.
Let C1, .., Cn+m be the components in CFA-version of the
composed system in such a way that {C1, .., Ch} is the set of
null bottom domain components and {Ch+1, .., Cn+m} is the
set of null top domain components.
Let EX1, .., EXh, EXh+1, .., EXn+m be their corresponding
EX-Graphs.

Let 1, .., h, h + 1, .., n + m be their corresponding communi-
cation channels.
Let S1, .., Sh, Sh + 1, .., Sn+m be their corresponding current
states.
Let K the connector graph already synthesized for the subset
{C1, .., Cn} of the set {C1, .., Cn, Cn+1, .., Cn+m}; K is the
connector for the components in the old CBA-version of the
system.
Let EXold the set of EX-Graphs of the components in the
old CBA-version of the system; EXold = {EX1, .., EXn}.
Let EXnew the set of EX-Graphs of the new added compo-
nents; EXnew = {EXn+1, .., EXn+m}.

At the beginning the current states are the initial states.

1. Create the actual behavior graph of the connector, with
one node (initial state) and no arcs.

2. Set as current states of the components EX −Graphs
the respective initial states.

3. Label the connector initial state with an ordered tuple
composed of the initial states of all components (null
bottom domain and null top domain). For simplicity
of presentation we assume to order them so that the
j− th element of the state label corresponds to the cur-
rent state of the component Cj where j ∈ [1, .., h, h +
1, .., n + m]. This state is set as the connector current
state.

4. Perform the following unification procedure:

(a) Let g be the connector current state. Mark g as
visited.

(b) Let < S1, .., Sh, Sh+1, .., Sn+m > be the state label
of g.

(c) Generate the set TER of action terms and the set
V AR of action variables so that ti ∈ TER, if in

EXi Si
ti⇒ Si. Similarly v? ∈ V AR, if ∃ j in

such a way that in EXj Sj
v?⇒ Sj.

(d) For all unifiable pairs (ti, v?), with i 6= j and
EXi, EXj ∈ EXold, if g =< S1, .., Sn+m > is
such that < S1, .., Sn > is the label of the initial
state of K do: if they do not already exist, add
the state transitions of K by starting from g and
relabel every state < Sk

1 , .., Sk
n > of the added K

with < Sk
1 , .., Sk

n, Sn+1, .., Sn+m >.

(e) For all unifiable pairs (ti, v?), with i 6= j and
there exists k with k = i ∨ k = j such that
EXk ∈ EXnew do:

i. if i ∈ {1, .., h}, j ∈ {h+1, .., n+m} and they
do not already exist then create new nodes (in
the connector graph) gi, gj with state label
< S1, .., Si, .., Sh, Sh+1, .., Sj , .., Sn+m > and
< S1, .., S

′
i, .., Sh, Sh+1, .., S

′
j , .., Sn+m > re-

spectively, where in ASi Si
t⇒ S′i and in ASj

Sj
v⇒ S′j ;

ii. if j ∈ {1, .., h}, i ∈ {h+1, .., n+m} and they
do not already exist then create new nodes (in
the connector graph) gi, gj with state label
< S1, .., Sj , .., Sh, Sh+1, .., Si, .., Sn+m > and

< S1, .., S
′
j , .., Sh, Sh+1, .., S

′
i, .., Sn+m > re-

spectively, where in ASi Si
t⇒ S′i and in ASj

Sj
v⇒ S′j;

iii. create the arc (g, ti, gi) in the connector
graph;

iv. mark gi as visited;

v. create the arc (gi, vj , gj) in the connector
graph.

(f) Perform recursively this procedure on all not marked
(as visited) adjacent nodes of current node.

By Definition 3 is trivially proved the correctness of the com-
positional connectors synthesis. That is K′ =
F (K, C1, .., Cn, Cn+1, .., Cn+m) is equal to K′ simply ob-
tained by performing the unification algorithm defined in [8,
6] on C1, .., Cn, Cn+1, .., Cn+m and by enforcing the behav-
ioral property P . It is worthwhile noticing that P is specified
in terms of tuples of states of components in CBA1. When
we say that K′ satisfies P we mean that K′ satisfies a set
of behavioral properties deriving from the set of all the be-
havioral properties that can be derived by considering P in
CBA2. For instance we have P = G(F (< S′1, S

′
2, S3 >)) ∧

G(F (< S′1, S2, S
′
3 >)). Considering CBA2 we can see P as

the set: {P : P = G(F (< S′1, S
′
2, S3, X, Y >)) ∧

G(F (< S′1, S2, S
′
3, X, Y >)) for all states

g =< S1, S2, S3, X, Y > in K ′ in which the compositional
unification procedure has applied the step (d) }. Thus in our
example P in CBA1 corresponds to the set of properties
{P1, P2} in CBA2 where P1 = G(F (< S′1, S

′
2, S3, S4, S5 >))

∧ G(F (< S′1, S2, S
′
3, S4, S5 >)) and

P2 = G(F (< S′1, S
′
2, S3, S

′
4, S

′′′
5 >)) ∧

G(F (< S′1, S2, S
′
3, S

′
4, S

′′′
5 >)).

6. CONCLUSION AND FUTURE WORKS
In this paper we have have showed the compositional nature
of an architectural approach to the automatic component-
based systems generation. The approach was already de-
veloped in our precedent works [7, 5, 11, 8, 6]. The main
contribution of this paper is to show that our approach is
compositional with respect to the generation of a new ver-
sion of the system and to system’s behavioral specification.
As future works we have to implement the compositional
connectors synthesis algorithm, defined in Section 5, in the
current version of the framework [7, 5, 11, 8, 6]. Moreover
in order to verify the applicability and generality of the ap-
proach, we have to apply this compositional technique to
real-context case studies.

7. REFERENCES
[1] Itu telecommunication standardisation sector, itu-t

reccomendation z.120. message sequence charts.
(msc’96). Geneva.

[2] O. G. Edmund M. Clarke, Jr. and D. A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts,
London, England, 2001.

[3] D. Garlan and D. E. Perry. Introduction to the Special
Issue on Software Architecture, Vol. 21. Num. 4. pp.
269-274, April 1995.

[4] J. S. I. Crnkovic, H. Schmidt and K. Wallnau.
Anatomy of a research project in predictable
assembly. Fifth ICSE Workshop on Component-Based
Software Engineering White paper.

[5] P. Inverardi and M. Tivoli. Correct and automatic
assembly of cots components: an architectural
approach. in proceedings of the 5th ICSE Workshop on
Component-Based Software Engineering: Benchmarks
for Predictable Assembly at 24th ICSE 2002, Orlando,
Florida, USA, May 19-20, 2002.

[6] P. Inverardi and M. Tivoli. Failures-free connector
synthesis for correct components assembly. Submitted
for publication.
http://www.di.univaq.it/∼tivoli/icalp2003.pdf.

[7] P. Inverardi and M. Tivoli. Automatic synthesis of
deadlock free connectors for com/dcom applications.
In ACM Proceedings of the joint 8th ESEC and 9th
FSE, ACM Press, Vienna, Sep 2001.

[8] P. Inverardi and M. Tivoli. Connectors synthesis for
failures-free component based architectures. Technical
Report, University of L’Aquila, Department of
Computer Science,
http://sahara.di.univaq.it/tech.php?id tech=7 or
http://www.di.univaq.it/∼tivoli/ffsynthesis.pdf,
ITALY, January 2003.

[9] R. Milner. Communication and Concurrency. Prentice
Hall, New York, 1989.

[10] R. D. Nicola and F. Vaandrager. Three logics for
branching bisimulation. Journal of the ACM,
42(2):458–487, 1995.

[11] P.Inverardi and M.Tivoli. Automatic failures-free
connector synthesis: An example. Technical Report,
published on the Monterey 2002 Workshop
Proceedings: Radical Innovations of Software and
Systems Engineering in the Future, Universita’ Ca’
Foscari di Venezia, Dip. di Informatica, Technical
Report CS-2002-10, September 2002.

[12] C. Szyperski. Component Software. Beyond Object
Oriented Programming. Addison Wesley, Harlow,
England, 1998.

