
Adaptor synthesis for protocol-enhanced component based architectures

Massimo Tivoli
University of L’Aquila

via Vetoio 1, 67100 L’Aquila
tivoli@di.univaq.it

David Garlan
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213-3891
garlan@cs.cmu.edu

Abstract
Correct assembly of software components is an important
issue in Component Based Software Engineering. Compos-
ing a system from reusable components often introduces a
set of problems related to communication and compatibility.
In particular, one of the main problems in component as-
sembly is that components may have incompatible interac-
tion behavior. In this paper, we address this problem using
an architecture-based approach that can detect integration
mismatches, and semi-automatically synthesize a suitable
adaptor, or glue code, to bridge them.

1 Introduction
Correct automatic assembly of software components
is an important issue in Component Based Software
Engineering. Building a system from reusable or from
Commercial-Off-The-Shelf (COTS) components introduces
a set of potential problems related to communication and
compatibility. One of the main problems in component
assembly is that components may have incompatible
interaction behavior. This, in turn, can affect the correct
functioning of the composed system. There are two
common approaches dealing with this problem. One is to
disallow the composition of incompatible components, or
possibly restrict their behaviors to a behavioral subset that
is compatible [1]. The second approach is to modify one
or more of the components to remove the incompatibilities.
Neither is ideal. The former limits the ability to combine
components or achieve the maximum benefit from their
combination. The latter, is often not possible with COTS
components. In this paper we present an approach that
addresses the goal of automatic synthesis of interaction
mechanisms. These mechanisms are synthesized to
bridge component incompatibilities and to enhance the
components interaction protocol in order to introduce
more sophisticated interactions among the components.
Starting from earlier work in synthesizing failure-free
(e.g., deadlock-free) adaptors for component composition
by restricting their behaviors [1], we show here how to
augment that technique with protocol-enhancing extensions
similar to the protocol transformers introduced in [2].

The key idea is to encapsulate protocol enhancements as
policies that can be applied automatically, and incremen-
tally to synthesize new behaviors that eliminate sources
of incompatibility and add new component interactions.
We implemented the approach in our SYNTHESIS tool [3]
(http://www.di.univaq.it/tivoli/SYNTHESIS/synthesis.html).
This paper is a short version of an existent technical
report [4] where we report and compare related work, and
formalize the approach giving also a formal proof of its
correctness. Moreover, in [4], we validate the approach by
means of an industrial case-study. The paper is organized
as follows: Section 2 describes the formal architectural
model underlining our approach. Section 3 discusses
our adaptor synthesis approach for protocol-enhanced
component based architectures. Section 4 summarizes the
contributions of the paper and outlines future work.

2 The reference architectural style
The starting point for our work is the use of a formal archi-
tectural model of the system representing the components
to be integrated and the connectors over which the com-
ponents will communicate. To simplify matters we will
consider the special case of a generic layered architecture
in which components can request services of components
above them, and notify components below them. Specifi-
cally, we assume each component has a top and bottom in-
terface. The top (bottom) interface of a component is a set
of top (bottom) ports. Connectors between components are
synchronous communication channels defining top and bot-
tom ports. Components communicate by passing two types
of messages: notifications and requests. A notification is
sent downward, while a request is sent upward. We will
also distinguish between two kinds of components (i) func-
tional components and (ii) coordinators. Functional com-
ponents implement the system functionality. Coordinators,
on the other hand, simply route messages and each input
they receive is strictly followed by a corresponding output.
We make this distinction in order to clearly separate com-
ponents that are responsible for the functional behavior of a
system and components that are introduced to aid the inte-
gration/communication behavior. Within this architectural

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05)
0-7695-2548-2/05 $20.00 © 2005 IEEE

style, we will refer to a system as a Coordinator-Free Archi-
tecture (CFA) if it is defined without any coordinators. Con-
versely, a system in which coordinators appear is termed a
Coordinator-Based Architecture (CBA) and is defined as a
set of functional components directly connected to one or
more coordinators, through connectors, in a synchronous
way.

3 Adaptor synthesis for protocol enhance-
ment

We recall that we want to automatically synthesize inter-
action mechanisms to bridge component incompatibilities
and add more sophisticated interactions among the com-
ponents. This is done by modifying and augmenting the
failure-free coordinator synthesis approach presented in [1]
with protocol-enhancing extensions. This extension starts
with a deadlock-free CBA system S that exhibits only a
set P of desired behaviors (S is the output of the old ap-
proach) and produces the corresponding protocol-enhanced
CBA system S′.

C1 C2

C5 C6

1 2

5 6

C3

3

C4

4

C7

7

K

K’’

K’

w

11

K 2,3

C1 C2

C5 C6

1 2

5 6

C3

3

C4

4

C7

7

K’’

W

K’

K

K
new

 = (K|K’|K’’|W)

C1 C2

C5 C6

1 2

5 6

C3

3

C4

4

C7

7

K
STEP 1

STEP 2

S

S’

automatically synthesized assembly code

C8

8

C8

8

W_TOP

W_BOTTOM
9

10

Figure 1. Adaptor synthesis for protocol en-
hancement

Our method assumes as input: i) S in terms of the La-
beled Transitions Systems (LTSs) of each component and
deadlock-free coordinator forming it, and of each compo-
nent interaction specified by P ; ii) a basic Message Se-
quence Chart (bMSC) and High-level MSC (HMSC) spec-
ification of the set E of protocol-enhancements that must
be applied. Indeed, by combining our method with the old
approach, the user does not provide the input (i), that is, the
user does not have to provide the LTS of the deadlock-free
coordinator1. In fact, by referring to [1], he/she gives as in-
put to the SYNTHESIS tool only a MSC specification of the
interaction behavior of the functional components forming
S and a LTS specification of the desired interactions in P .
From these specifications and by performing the approach
presented in [1], SYNTHESIS automatically derives the in-
put (i) required by the extension that we discuss in this pa-
per. In the following, we discuss our method proceeding
in two steps as illustrated in Figure 1. In the first step, by
starting from the specification of P and S, if it is possible,
we apply each protocol enhancement in E. By referring to

1Providing this LTS would be impossible for real-scale systems.

Figure 1, this is done by inserting a wrapper component W
between K and the portion of S concerned with a speci-
fied protocol enhancement (i.e., C2 and C3). Depending
on the purposes of the enhancement, some wrapper might
require to use an extra component to accomplish its tasks
(i.e., C8). We first decouple K, C2 and C3 to assure that
they no longer synchronize directly. Then we automatically
derive a behavioral model of W and C8 (i.e., a LTS) from
the MSC specification of E. Finally, if the insertion of W
in S allows the resulting composed system (i.e., S′ after the
execution of the second step) to still satisfy each desired be-
havior in P , W is interposed between K, C2 and C3; and
C8 is assembled with them. To insert W , we automatically
synthesize two new coordinators K ′ and K ′′. In the second
step, we derive the implementation of the synthesized glue
code used to insert W in S and add possible extra compo-
nents. By iterating the whole approach, Knew (see Figure 1)
may be treated as the initial coordinator K with respect to
the enforcing of new desired behaviors and the application
of new enhancements. This allows us to be compositional
in the automatic synthesis of the enhanced glue code.
4 Conclusion and future work
In this paper, we combined the approaches of protocol
transformation formalization [2] and of automatic coordi-
nator synthesis [1] to produce a new technique for auto-
matically synthesizing protocol-enhanced coordinators for
component-based systems. The two approaches take advan-
tage of each other: while the approach of protocol trans-
formations formalization adds compose-ability to the au-
tomatic coordinator synthesis approach, the latter adds au-
tomation to the former. The key results are: (i) our approach
is compositional in the automatic synthesis of the enhanced
coordinator; (ii) this, in turn, allows us to enhance a coordi-
nator with respect to a useful set of protocol transformations
such as the set of transformations described in [2]. The au-
tomation and applicability of our approach is supported by
our tool called SYNTHESIS. As future work, we plan to: (a)
support a specification of the protocol-enhancement poli-
cies which is more used (than bMSCs and HMSCs) in the
practice of software development (e.g., UML2 Interaction
Overview Diagrams and Sequence Diagrams); (b) validate
the applicability of the approach to large-scale examples.

References

[1] P. Inverardi and M. Tivoli. Software Architecture for Correct Compo-
nents Assembly - LNCS 2804. Springer, 2003.

[2] B. Spitznagel and D. Garlan. A compositional formalization of con-
nector wrappers. In proceeding of ICSE’03.

[3] M. Tivoli and M. Autili. Synthesis: a tool for synthesizing correct and
protocol-enhanced adaptors. To appear on L’Object journal.

[4] M. Tivoli and D. Garlan. Adaptor synthesis for protocol-
enhanced component based architectures. Technical report,
Dep. of Computer Science, Carnegie Mellon University -
http://www.di.univaq.it/tivoli/trcs 08.pdf, 2005.

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05)
0-7695-2548-2/05 $20.00 © 2005 IEEE

