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ABSTRACT
Software is increasingly produced according to a certain goal
and by integrating existing software produced by third-parties,
typically black-box, and often provided without a machine
readable documentation. This implies that development
processes of the next future have to explicitly deal with an
inherent incompleteness of information about existing soft-
ware, notably on its behaviour. Therefore, on one side a
software producer will less and less know the precise be-
haviour of a third party software service, on the other side
she will need to use it to build her own application.

In this paper we present an innovative development pro-
cess to automatically produce dependable software systems
by integrating existing services under uncertainty and ac-
cording to the specified goal. Moreover, we (i) discuss im-
portant challenges that must be faced while producing the
kind of systems we are targeting, (ii) give an overview of the
state of art related to the identified challenges, and finally
(iii) provide research directions to address these challenges.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General; K.6.3 [Software
Management]: Software development; D.2.9 [Management]:
Software process models

General Terms
Design, Theory

Keywords
Dependable software systems, automated synthesis, model
elicitation, model-driven engineering.

1. INTRODUCTION
In the next future we will be increasingly surrounded by a

virtually infinite number of software applications that pro-
vide computational software resources in the digital space.
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According to John Musser, founder of ProgrammableWeb1,
the production of application programming interfaces (APIs)
growths exponentially and some companies are accounting
for billions of dollars in revenue per year via API links to
their services. Moreover, the evolution of today Internet is
expected to lead to an ultra large number of available ser-
vices, hence increasing their number from 104 services on
2007 to billions of services [62] in the near future.

This situation radically changes the way software will be
produced and used:

• first, software is increasingly produced according to a
certain goal and by integrating existing software;

• second, it shifts the focus of software production on
reuse of third-parties software, typically black-box, that
is often provided without a machine readable docu-
mentation.

The first characteristic implies a goal oriented, oppor-
tunistic use of the software being integrated, i.e. the pro-
ducer will only use a subset of the available functionalities,
some of which may not even be (completely) known. The
second one implies the need to (i) extract suitable obser-
vational models from discoverable and accessible pieces of
software, that are made available as services in the digital
space, and (ii) devise appropriate integration means (e.g., ar-
chitectures, connectors, integration patterns) that ease the
collaboration and integration of existing services in a de-
pendable2 way.

In this paper we refer to an innovative development pro-
cess, called EAGLE, to automatically produce dependable
software systems by integrating existing services under un-
certainty and according to the specified goal. EAGLE lever-
ages the model-based software production paradigm and
permits to move a step forward to face the inherent incom-
pleteness of information about existing software. Moreover,
EAGLE adopts an experimental approach, as opposed to a
creationistic one, to the production of dependable software.
In fact, software development has been so far biased towards
a creationist view: a producer is the owner of the artefact,
and with the right tools she can supply any needed piece of
information (interfaces, behaviours, contracts, etc.). How-
ever, the knowledge of a software artefact is limited to what

1http://www.programmableweb.com/
2We refer to the general notion of dependability, as defined
by IFIP Working Group 10.4: “the trustworthiness of a com-
puting system which allows reliance to be justifiably placed
on the service it delivers”.
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can be observed of it. The more the observations will be
powerful and costly the more the knowledge will be deep, but
always with a certain degree of uncertainty. Indeed, there is
a theoretical barrier that limits, in general, the power and
the extent of observations.

The considerations above lead us to identify important
challenges that must be faced while producing the kind of
systems we are targeting. In this paper we (i) discuss these
challenges, (ii) give an overview of the state of art related
to the identified challenges, and (iii) propose research direc-
tions for addressing them.

Paper structure: Section 2 presents the EAGLE devel-
opment process, by focusing on its phases and challenges
that need to be addressed to realize the EAGLE develop-
ment process. Section 3 presents an explanatory example
to make the EAGLE vision concrete. Sections 4, 5, and 6
present the state of the art and research directions for the
identified challenges. Finally, Section 7 concludes the paper.

2. EAGLE DEVELOPMENT PROCESS
The big challenge the EAGLE process (first results might

be found in [2]) aims at addressing is to live up with the
evidence that this immense software resources availability
corresponds to a lack of knowledge on the software, notably
on its behaviour. A software producer will less and less
know the precise behaviour of a third party software service,
nevertheless she will use it to build her own application. This
very same problem recognized in the software engineering
domain [32] is faced in many other computer science domain,
e.g., exploratory search [69] and search computing [16].

2.1 EAGLE Phases
Once requirements or user needs, i.e., the goal G, have

been specified, EAGLE explores available software and makes
explicit the degree of uncertainty associated with it in rela-
tion to G, and assists the producer in creating the appro-
priate integration means towards G. The goal G can be
specified in different ways depending, e.g., on the technical
requirements on the software-to-be and assumptions on its
environment. In any case, for the goal validation and inte-
gration phases to be automated, a goal G specification for
EAGLE is a machine-readable model achieved by the pro-
ducer through an operationalization of the needs and pref-
erences of the user [66]. In the following we focus on the two
phases that compose EAGLE: elicit and integrate.

• Elicit: given a software service S, elicitation tech-
niques must be defined to produce models as much
complete as possible with respect to an opportunis-
tic goal G. This means that we admit models that
may exhibit a high degree of incompleteness, provided
that they are accurate enough to satisfy user needs and
preferences.

Service	   Model	  elicitation 

observation construction 

G

Figure 1: Elicit phase

As shown in Figure 1, the elicit phase is composed
of two steps, namely observation and construction [3].
Observation, driven by G, produces a set of observa-
tions of the system. In EAGLE we focus on observa-
tions corresponding to identify a set of functional or
non functional behaviours of the system under anal-
ysis, e.g., system response time once executed with a
provided input in the execution environment. Con-
struction, driven by G, takes as input the set of obser-
vations and produces a system model. This model con-
tains the observed behaviours and typically enriches
them with an inference step. Ideally, the elicit phase
produces a set of models that once integrated are cor-
rect and complete with respect to the goal G, i.e., G
holds on the model obtained by integrating the elicited
models iff it holds on S, see Figure 2.a. Unfortunately,
correctness and completeness of the models cannot in
general be achieved. The real situation is shown in Fig-
ure 2.b in which models are neither correct nor com-
plete. This is because the set of observations is always
finite and typically the elicitation phase has to make
an inference step to produce the model.

• Integrate: the integrate phase assists the producer in
creating the appropriate integration means to compose
the observed software together in order to produce an
application that satisfies G.
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observa/ons	  

Service  

observation 

construction 
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Service 

observation 

construction 
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Figure 2: Service, observations, and model

Referring to Figure 3, M1, M2,. . . , Mn obtained through
the elicit phase represent models of the services to be
integrated; each of these models exhibits its own de-
gree of uncertainty µM1 , µM2 ,. . . , µMn , respectively.
For each service multiple models may exist (e.g., be-
havioural, stochastic or Bayesian), each representing
a specific view of the services. Model transforma-
tion techniques will ensure coherence and consistency
among the different views of the system, hence provid-
ing an adequate and systematic support to model in-
teroperability [35]. These models are the input of model
synthesis techniques together with the goal G. Suit-
ably instantiating architectural patterns and styles [60]
and integration patterns [36], the output is an Inte-
gration Architecture (IA) that interrelates the elicited
models together with additional integrator models as
synthesized by EAGLE. Integrator models, besides guar-
anteeing correctness of the interaction logic, e.g., dead-
lock freeness and performance system requirements,
can compensate the lack of knowledge of the composed
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software by also adding extra logic like connectors,
mediators and adapters [61, 37, 46], hence enhancing
dependability. IA plays a crucial role in influencing
the overall uncertainty degree of the final integrated
system S, as different IAs may result in different un-
certainty degrees for S, namely uS. Once obtained an
integration architecture, code synthesis techniques pro-
vided by EAGLE generate integration code that guar-
antees, during the system lifetime, the specified goal
under a controlled uncertainty degree.
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 level 

M1 M2 Mn … 
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Integration 
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uMn uM2 

G 
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Figure 3: Integration activities

Section 2.2 describes the EAGLE challenges that emerge
from the discussion above. Specifically, the three challenges
are: elicitation techniques, integrator synthesis, and model
interoperability and code generation. Each of these chal-
lenges is detailed in Sections 4, 5, and 6.

2.2 EAGLE Challenges
The EAGLE development process poses three challenges

that need to be further investigated. Those challenges are:

• Elicitation techniques: EAGLE asks for elicitation
techniques to automatically explore the available soft-
ware, extract observations, and produce models that,
according to a given goal, abstract the actual runtime
behaviour with the best possible accuracy. We tar-
get observations on black-box software and we are pri-
marily interested in extracting behavioural models of
the software interaction protocols. Moreover, we are
interested in providing a measure of the goodness of
the model with respect to the system and to the goal
that the system has to achieve. Indeed, the elicited
models can be incomplete and/or inaccurate where in-
completeness refers to the behavioural modelling, i.e.,
less and/or more traces; and the inaccuracy refers to
the quantitative modelling, i.e., inaccurate probabili-
ties and/or quantitative indices [48].

• Integrator synthesis: EAGLE requires synthesis tech-
niques to support the automated construction, from
the elicited models, of integration means that are cor-
rect with respect to guaranteeing the specified goal un-
der a controlled uncertainty degree. In order to be able
to make the scenario described above real, several chal-
lenges, with respect to the state of the art, need to be
addressed. One strand of research concerns synthesis
techniques to address the problem of inferring integra-
tion extra-logic that aims at solving unexpected issues
due to the incompleteness of the models the synthesis
process reasons on.

• Model interoperability and code generation: This
objective aims at generating the skeleton code of the
integrator starting from the models produced by the
integrator synthesis activity. Since the generation of
integration code takes into account all the models of
the services composing the system, there is the need for
techniques supporting the specification of model inter-
dependencies, and their retrieval. The management of
model interdependencies may account also for interop-
erability aspects between the different notations used
for specifying the service models [29]. The generation
of code for software artefacts, which are “correct-by-
construction”, and are able to integrate third-parties
software according to their elicited and interrelated
models requires dedicated techniques to identify the
parts of the generated code, which cannot be modi-
fied by developers to not invalidate the goal and the
architectural choices. Advanced techniques are also
required to support the implementation of correct cus-
tom code, which has to be added to complete the gen-
erated skeleton.

3. EXPLANATORY EXAMPLE
To make this vision more concrete let us discuss an hypo-

thetical scenario of EAGLE at work. Let us assume that a
software producer aims at realizing a mobile application for
transportation, App, whose interaction behavior, modeled
as a probabilistic automaton and provided by the developer,
is shown in Figure 4.e. This automaton, together with the
property of interest (Figure 4.f) detailed later, represent the
goal to be achieved. The services that will interact with App
are:

1. TC WS, a web service providing the timetable of a
Transportation Company (TC) and also a service for
subscribed clients to notify their presence on a given
bus by means of a check-in/check-out system.

2. Bus, a system composed of two Near Field Communi-
cation (NFC) endpoints (one for checking in, one for
checking out), a GPS receiver, and a component for
notifying to TC time and position of a client;

3. GPS, the well-known service that allows a device to
know its geographic position;

4. PaypalWS, the well-known web service for seamless
payment processing.

The main feature of the to-be App application is that it
will allow clients to purchase virtual tickets by checking-in
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Figure 4: Example - elicited models and goal

on the bus; when the client gets off the bus a check-out
operation via NFC is sent and the system will trigger the
automatic payment of the virtual ticket via Paypal. As a
possible technique to be used in the elicit phase, we consider
a to-be StrawBerry tool [9] that, for the EAGLE purposes,
is enhanced in order to deal with the uncertainty degree of
the elicited models. The current version of StrawBerry pro-
duces a set of finite state automata modeling the interaction
protocols that must be followed in order to have a correct
interaction among the observed services. For the sake of the
scenario, the enhanced version of StrawBerry shall produce
the probabilistic automata shown in Figure 4.(a-d). Bus
can interact with an NFC receiver by receiving a TouchIn
message; then, the geographical position of the client is ob-
tained by the GPS service and a checkIn message is sent to
TC WS. The special case in which a client checks in and
then forgets to check out is handled by a dedicated opera-
tion, triggered by the expireTrip message, which resets the
state of Bus; in this case the client pays a default amount
of money. The message getPosition has a probability 0.99
to be sent and enables state 3 (e.g., the case of successful
geographical localization). The incompleteness of the model
concerns the remaining cases in which getPosition is sent
with a probability of 0.01. In these cases, the model does
not express what the behavior of Bus may be, i.e., which
states may be reached (e.g., when trying to send a checkIn
message without geographical information). The reason for
this incompleteness of the model may be inherent to the
service or depend on limits of the elicitation process.

TC WS upon reception of the CheckIn message, contain-
ing the timestamp and geographical location of the client,
sends back a unique identifier associated to the bus (this is
done for information purposes only). When the client is get-
ting off the bus, a checkOut message is sent to the TC WS,
which in turn will send reportRun message containing all
the information regarding the specific run. The observed
PaypalWS web service is straightforward: it receives pay-
ment requests and then it responds with a notification of
the occurred payment via a message called ackPayment.

The integrate phase synthesizes the Integrator for the sys-
tem composed of TC WS, Bus, GPS, PaypalWS and App.
Furthermore, concerning the interaction between the Inte-
grator to be synthesized and its environment (i.e., all the
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Figure 5: Synthesized integrator model

other components in the system), the integrated system has
to satisfy the behavioral property shown in Figure 4.(f) and
expressed by using the PSC notation [5]. Informally, this
property represents a business requirement for the system
stating that whenever a client checks-in on the bus then
she has to eventually pay for a virtual ticket and receive
proper notifications. Moreover, by referring to the mes-
sages km2euro and buildResume shown in Figure 4.(f) the
property also expresses requirements on extra logic to be
performed by the Integrator. In particular, km2euro rep-
resents the logic required to establish the price of the vir-
tual ticket out of the distance covered by the bus. buil-
dResume represents the logic needed to combine the infor-
mation in reportRun and ackPayment in order to produce
resumeTrip. Regarding these messages the Integrator’s code
to be synthesized can only be a skeleton code to be com-
pleted by the producer. Figure 5 shows the probabilistic
automaton synthesized for the Integrator (labels are <in-
put>,<output>,<probability>). It suitably mediates the
interactions between App and the considered services in or-
der to achieve the specified business requirement while also
solving the uncertainty degree introduced by the incomplete-
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ness of the elicited Bus model. When the interaction with
GPS fails the Integrator applies a Retry strategy to eventu-
ally perform a successful geographical localization.

The following three sections report on the state of the art
concerning the main areas of interest for EAGLE and, for
each area, discuss research directions that can be undertaken
to address the identified challenges.

4. ELICITATION TECHNIQUES

4.1 State of the Art
Within the domain of Software Engineering, the early

work in 1972 by Biermann and Feldman [10] inspired numer-
ous efforts to infer Finite State Machines (FSMs) of software
systems, such as [22, 1, 25]. Several approaches have recently
addressed the problem of deriving partial behavioural mod-
els from implemented systems. Few approaches have tack-
led the problem in the setting of black box components, such
as [9, 54]. In [9], we propose a method, called StrawBerry, to
automatically derive the behaviour protocol of a web-service
out of its WSDL interface. The method combines synthesis
and testing techniques: the automaton is synthesized based
on syntactic data type analysis, and its conformance to the
implementation of the corresponding web-service is checked
and refined by means of testing. In [54] the authors pro-
pose LearnLib, which is a framework for automata learning
and experimentation. Active automata learning tries to au-
tomatically construct a finite automaton that matches the
behaviour of a given target automaton on the basis of ac-
tive interrogation of target systems and observation of the
produced behaviour.

The authors of [47] describe a learning-based black-box
testing approach in which the problem of testing functional
correctness is reduced to a constraint solving problem. A
general method to solve this problem is presented and it
is based on function approximation. Functional correctness
is modeled by pre- and post-conditions that are first-order
predicate formulas. A successful black-box test is an exe-
cution of the program on a set of input values satisfying
the pre-condition, which terminates by retrieving a set of
output values violating the post-condition. Black-box func-
tional testing is the search for successful tests with respect to
the program pre- and post-conditions. As coverage criterion
the authors formulate a convergence criterion on function
approximation. Their testing process is an iterative process.
At a generic testing step, if a successful test has to be still
found, the approach described in [47] exploits the input and
output assignments obtained by the previous test cases in
order to build an approximation of the system under test-
ing and try to infer a valid input assignments that can lead
the system to produce an output either violating the post-
condition or useful to further refine the system approximated
model.

The work described in [33] (i.e., the SPY approach) aims
to infer a formal specification of stateful black-box compo-
nents that behave as data abstractions (Java classes that
behave as data containers) by observing their run-time be-
havior. SPY proceeds in two main stages: first, SPY infers a
partial model of the considered Java class; second, through
graph transformation, this partial model is generalized to
deal with data values beyond the ones specified by the given
instance pools. The inferred model is partial since it models
the intentional behavior of the class with respect to only a

set of instance pools provided as input, which are used to
get values for method parameters, and an upper bound on
the number of states of the model. The model generaliza-
tion is based on two assumptions: (i) the value of method
parameters does not impact the implementation logic of the
methods of a class; (ii) the behavior observed during the
partial model inference process enjoys the so called “conti-
nuity property” (i.e., a class instance has a kind of “uniform”
behavior). In our context, we cannot rely on the previously
mentioned assumptions.

In [63], the authors propose a novel synthesis technique
that constructs partial behavioural models in the form of
Model Transition Systems from a combination of safety prop-
erties and scenarios. In [43], the authors describe a tech-
nique, called GK-Tail, to automatically generate behavioral
models from (object-oriented) system execution traces. GK-
Tail assumes that execution traces are obtained by monitor-
ing the system through message logging frameworks. For
each system method, an Extended Finite State Machine
(EFSM) is generated. It models the interaction between
the components forming the system in terms of sequences
of method invocations and data constraints on these invo-
cations. The correctness of these data constraints depends
on the completeness of the set of monitored traces with re-
spect to all the possible system executions that might be
infinite. Furthermore, since the set of monitored traces rep-
resents only positive samples of the system execution, this
approach cannot guarantee the complete correctness of the
inferred data constraints.

The approach described in [68], called Jadet, analyzes
Java code to infer sequences of method calls. These se-
quences are then used to produce object usage patterns
that serve to detect object usage violations in the code.
The approach is white-box and focuses on modeling objects
from the point of view of single methods. The work in [24]
presents TAUTOKO, which is an approach that, through a
combination of systematic test case generation and types-
tate mining, infers models of program behaviour. The gen-
eration of test cases permits to cover previously unobserved
behaviour, and systematically extends the execution space,
and enriches the specification. The authors of [8] present
an approach for inferring state machines with an infinite
state space. More precisely, by observing the output that
the system produces when stimulated with selected inputs,
this work extends existing algorithms for regular inference,
which infer finite state machines, to deal with infinite-state
systems.

Indeed, the main problem with all these approaches is to
assess their goodness. A useful basis for empirically compar-
ing candidate techniques has been provide in a competition
to spur the development of inference techniques for FSMs of
software systems [67]. The work in [42] presents an empirical
comparative study between techniques that infer simple au-
tomata and techniques that infer automata extended with
information about data-flow. In EAGLE the problem of
providing methods and metric to express the accuracy of a
model with respect to the system and the goal is of primary
importance. An attempt in this direction can be consid-
ered [34] where for a white box component it is generated
a three-valued interface LTS that explicitly labels states as
unknown to reflect the fact that the given sequence of meth-
ods invocations leads to a component state that the analysis
could not mark as safe or unsafe.
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As far as the use of partial behavioural models is con-
cerned, it should be noted that the degree of uncertainty in
behavioral models may heavily affect the capability of non-
functional analysis techniques. Indeed non-functional (e.g.
performance, reliability) models take most of their struc-
ture and parameters from software behavior representation.
However, this problem is not new, and it has been mitigated
by the wide experience in using (in this domain) stochas-
tic models suited for representing uncertainty. On top of
these models, several techniques have been recently pro-
posed to validate non-functional attributes of software under
uncertainty [48]. The assume-guarantee approaches, typi-
cally adopted in the functional world, translate to bayesian
approaches in the non-functional world. In fact, bayesian
probabilities enable stochastic models to be “conditioned”
to specific events that, in turn, have their own probabil-
ity distributions. Hence, bayesian models (such as Bayesian
Networks [50]) can be considered as the stochastic counter-
part of the assume-guarantee paradigm. In this direction, an
example of bayesian approach for modeling the reliability of
a software component-based system, given the reliability of
its components, has been presented in [57]. More sophis-
ticated stochastic models can be used to take into account
uncertainty in non-functional validation processes. Hidden
Markov Models (HMM) [31] are typically used to model sys-
tems that have markovian characteristics in their behavior,
but they also have some states (and transitions) for which
only limited knowledge is available. An example of approach
based on HMM that aims at evaluating the reliability of a
software component with partial knowledge of its internal
behavior has been provided in [17].

Finally, only few approaches initiated the treatment of
data, and their synthesis although there is no clear evidence
on the effectiveness of their use regarding the goodness of
the generated model [42]. The empirical results of this work
shows the tradeoffs between the considered techniques. The
discussion that is provided in the paper gives indications
that can help software engineers in the choice of proper
model inference solutions.

A more complete discussion about the state of the art in
elicitation techniques might be found in [4].

4.2 Research Directions
As highlighted in the state of the art, the main problem

of existing techniques concerns the lack of a precise estima-
tion of their goodness. Moreover, no work in the literature
addresses the problem of automatically eliciting quantitative
models as well as the possibility to elicit partial models refer-
ring to a specific goal. An interesting work in this direction
is [9]; it makes use of (interface) data flow analysis, synthe-
sis, and testing to elicit the interaction protocol of a web
service. Data flow analysis here plays a key role because it
drives the tests selection. We envisage that this same strat-
egy, i.e., coupling static analysis at the interface level with
test selection, can be used also to obtain partial models rele-
vant to the goal as well as quantitative models. Goodness of
the model can then be defined in terms of the success rates
of the three steps, analysis, synthesis and testing. It is worth
recalling that in the scope of EAGLE the problem of assess-
ing goodness of a model is integration context-sensitive thus
making the problem more tractable.

Notions and metrics to specify the uncertainty degree of
models have the following requirements:

1. Introducing different notions of coverage, pivotal to
metrics, for defining and quantifying the uncertainty
degree of models. Those notions of coverage allow for
assessing the effectiveness of the different elicitation
techniques and hence of the incompleteness and inac-
curacy of the elicited models. For instance, referring to
the example in Figure 4, the integrator model shown in
Figure 5, which is built in the integration phase, aims
at coping with the inherent uncertainty of the elicited
service models. This is done by adding to the model
suitable arcs, together with their probability, whose
aim is to decrease the model incompleteness. The set
of behaviours enabled by these additional arcs together
with their quantitative properties can be considered as
a measure of the model’s uncertainty degree.

2. Identifying the portion of the goal specification that
can be fulfilled by the system under exploration. It is of
paramount importance to identify the role of the pieces
of software under exploration during the integration
phase and in relation with the goal specification.

3. Providing value based mechanisms to select the ex-
ploration techniques and the strategy for their usage
according to costs and uncertainty degrees of elicited
models.

5. INTEGRATOR SYNTHESIS

5.1 State of the Art
Interoperability and mediation have been investigated in

several contexts, among which integration of heterogeneous
data sources [70], architectural patterns [56], patterns of con-
nectors [58], Web services [41, 39], and algebra to solve mis-
matches [30]. Here we discuss the works, from the different
contexts, closest to the synthesis methods and techniques
that we develop within the EAGLE integrate phase. The
interoperability/mediation of protocols have received atten-
tion since the early days of networking. Indeed many efforts
have been done in several directions including for example
formal approaches to protocol conversion, like in [14, 40].

The seminal work in [71] is strictly related to the notions
of integrator introduced by EAGLE. Compared to our inte-
grator synthesis approach, this work does not allow to deal
with the automated inference of the required extra-logic or
with the heterogeneity of the considered services, e.g., het-
erogeneous interfaces and, hence, different granularity of the
elicited models’ languages. Recently, with the emergence of
web services and advocated universal interoperability, the
research community has been studying solutions to the au-
tomatic mediation of business processes [65, 64]. However,
most solutions are discussed informally, making it difficult
to assess their respective advantages and drawbacks.

In [58] the authors present an approach for formally speci-
fying connector wrappers as protocol transformations, mod-
ularizing them, and reasoning about their properties, with
the aim to resolve component mismatches by also consider-
ing the introduction of suitable extra logic.

In [11] the authors present an algebra for five basic state-
less connectors that are symmetry, synchronization, mutual
exclusion, hiding and inaction. They also give the opera-
tional, observational and denotational semantics and a com-
plete normal-form axiomatization. The presented connec-
tors can be composed in series and in parallel. Although
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these formalizations supports connector modularization and,
hence, compositionality of the synthesis process, automated
synthesis is not treated at all hence keeping the focus only
on the design and specification of the integration means.

In [52], the authors use a game theoretic approach for
checking whether incompatible component interfaces can be
made compatible by inserting a converter between them
which satisfies specified requirements. This approach is able
to automatically synthesize the converter. In contrast to the
EAGLE integrator synthesis, this method needs as input a
deadlock-free specification of the requirements that should
be satisfied by the adaptor, by delegating to the software
producer the non-trivial task of specifying that.

In other work in the area of component adaptation [15], it
is shown how to automatically generate a concrete adaptor
from:

• a specification of component interfaces,

• a partial specification of the components interaction
behavior,

• a specification of the adaptation in terms of a set of
correspondences between actions of different compo-
nents and

• a partial specification of the adaptor.

The key result is the setting of a formal foundation for the
adaptation of heterogeneous components that may present
mismatching interaction behavior. Assuming a specification
of the adaptation in terms of a set of correspondences be-
tween methods (and their parameters) of two components
requires to know many implementation details (about the
adaptation) that we do not want to consider in order to
synthesize an integrator.

Within the SYNTHESIS [61, 6] and CONNECT [37, 38]
projects, we show how to automatically derive either a cen-
tralized or distributed connector from a specification of the
components’ interaction and of the requirements that the
composed system must fulfil. However, these approaches
do not take into account uncertainty and non-functional re-
quirements of the system to be integrated.

Within the CHOReOS project [7], we are proposing a dis-
tributed synthesis approach to automatically derive software
entities, called coordination delegates, which implement the
logic to integrate and coordinate a set of software services
according to a BPMN2 choreography specification. The lat-
ter is a model of the goal derived by operationalizing domain
expert and user requirements, after being transformed into
CTT (ConcurTaskTrees) tasks [53]. The services to be inte-
grated are discovered from the service registry and, for each
one of them, a service behavioral model is automatically de-
rived. This models is synthesized by eliciting the behavioral
protocol of the services starting from the interface descrip-
tions of the services, as discovered from the service registry.
The adopted elicitation process extends the work in [9] and
it is based on a combination of syntactic interface analy-
sis and testing. The described CHOReOS approach can be
seen as a particular instance of EAGLE. However, also in
CHOReOS we do not consider the uncertainty and, at the
same time, the accuracy of the elicited models as well as
non-functional properties. This limitation prevents the pro-
ducer from acquiring confidence in the final solution since
there is no way to measure its “goodness”.

5.2 Research Directions
The EAGLE vision asks for techniques to assist the pro-

ducer in creating the appropriate integration means to com-
pose the observed software together in order to produce an
application that satisfies the goal. Architectural patterns
and styles [60] and integration patterns [36] might be suit-
ably exploited and instantiated to produce an integration
architecture that interrelates models, which represent the
software to be used to produce the desired software, with
additional integrator models, which ease the collaboration
and integration of the existing software to be used.

Moreover, formal methods should be exploited to auto-
matically synthesizing integrator models. In particular we
aim at synthesizing the extra-logic required to either cope
with the uncertainty degree of the elicited models or imple-
ments additional logic expressed in the goal specification.
The first case is when additional integration behaviour is
synthesized to deal with interactions that can be performed
by a service although they are not specified in its elicited
model. The second concerns scenarios in which skeleton code
is synthesized so to allow the software producer to complete
it by only providing the functionality to be added without
caring about possible side effects on the achievement of the
goal, which is instead ensured by the synthesized integration
code. Another strand concerns the satisfaction of non func-
tional goals that requires the development of a whole set
of compositional results on the integration means for non
functional properties. First results in this direction might
be found in [45].

6. MODEL INTEROPERABILITY AND
CODE GENERATION

6.1 State of the Art
By shifting the focus of software development from cod-

ing to modelling, Model-Driven Engineering (MDE) refers to
the systematic use of models as first class entities throughout
the software engineering life cycle. The intention is to better
manage the increasing complexity of modern systems while
preserving the values of quality attributes obtained through
the usual code-centric techniques. Coordinated collections
of models and modelling languages are used to describe soft-
ware systems on different abstraction layers and from dif-
ferent perspectives. In general, domains are analysed and
engineered by means of a metamodel, i.e., a coherent set
of interrelated concepts. A model is said to conform to a
metamodel, or in other words it is expressed by the concepts
encoded in the metamodel, constraints are expressed at the
metalevel, and model transformations occurs when a source
model is modified to produce a target model. In particular,
model transformations play a central role since represent
the glue between several levels of abstraction and enable
the generation of different artefacts for documentation or
analysis purposes, and even the generation of implementa-
tion code [13]. Model transformations refine and/or evolve a
model into a different artefact: a new model (e.g., expressed
in a different language), an abstraction of the original model,
text (e.g., source code), or some other representation needed
for a specific domain context [51].

The ability to synthesize artefacts from models helps en-
suring the consistency between different interrelated arti-
facts. The automated transformation process is often re-
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ferred to as “correct-by-construction”, as opposed to conven-
tional handcrafted “construct-by-correction” software devel-
opment processes that are tedious and error prone [55]. At
top level, model transformation approaches can be distin-
guished between model-to-model and model-to-text. The
distinction is that, while a model-to-model transformation
creates its target as a model which conforms to the target
metamodel, the target of a model-to-text transformation es-
sentially consists of strings.

Over the years model transformations have been applied
for different purposes [23], such as to map and synchro-
nize models at the same level or different levels of abstrac-
tion [19], to create different views on a system [12], and
for model evolution tasks such as model refactoring [49, 59]
and model differences [21]. Moreover, model transforma-
tions have been used in different application domains, e.g.
to support the model driven development of Web applica-
tions and their evolution [20], the interoperability among
various ADLs [44], the extensibility of ADLs [29], to man-
age the upgrade of Linux systems [26], and to automatically
synthesize a choreography out of a specification of it and a
set of services discovered as suitable participants [7].

6.2 Research Directions
Within EAGLE, a system is viewed as a community of

interrelated models representing different viewpoints, differ-
ent levels of abstraction, and even their different forms of
integration. Hence, an adequate and systematic support to
model interoperability is required possibly between the dif-
ferent modelling languages [19, 44, 35]. The idea is to con-
form, realise, implement, refine, or compose models form-
ing a coordinated community of models, metamodels and,
more specifically, domain-specific modelling languages. The
disclosed challenge requires suitable correspondences (both
functional and non functional) and fine-grained mappings
which will be evaluated according to the semantics of the
weaving associations specifically defined for the considered
application domain [18].

Another research direction concerns the management of
the evolution of model transformations, which may be changed
in order to accommodate unforeseen requirements or to adapt
the transformations with respect to changes operated on the
corresponding metamodels (we call such a situation as meta-
model/transformation co-evolution). The metamodel/model
co-evolution problem has been already intensively explored
and a research corpus is available (e.g., [27]). Most of the
existing approaches provide tools and techniques to define
and apply migration strategies able to take as input models
conforming to the original metamodel and to produce as out-
put models conforming to the evolved metamodel. On the
contrary, the metamodel/transformation co-evolution prob-
lem is still open and requires further investigations. In fact,
in addition to the conformance relation that must always
hold between models and metamodels, adapting transfor-
mations has to take into account the domain conformance
relation [28] between the definition of a transformation and
its metamodels.

Finally, it is necessary to conceive code generators able to
produce correct-by-construction code required to integrate
the considered and observed third-party services. Dedicated
techniques have to be developed to identify the parts of the
generated code that cannot be modified by developers to not
invalidate the goal and the architectural choices. The code

generators will be configurable and extensible in order to do
not limit its applicability to specific domains. In particular,
depending on the target platform the code generator will
provide the means to retrieve the proper already existing
transformation templates to be applied for the generation,
or to add new ones in case of platforms which have not been
considered before.

7. CONCLUSION
This paper identifies key challenges that we believe will

characterize and steer the research in software in the next
future. Software is increasingly produced by reusing and in-
tegrating third-parties software according to a certain goal.
Moreover, third-parties software is typically black-box and
often provided without a machine readable documentation.
Therefore, software of the next future asks to extract suit-
able observational models from third-parties software and
devise appropriate integration means that permit to obtain
the needed software system that satisfies the goal.

Coping with the identified challenges requires to put at
work different expertises and skills together, hence asking
for a multi-disciplinary research efforts in functional and non
functional system modelling, specification mining, architec-
ture and connector synthesis, model-driven development.
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