
Laboratory Journal

of

DIGITAL SYSTEM DESIGN

For completion of term work of 6th semester

curriculum program

Bachelor of Technology

In

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION

ENGINEERING

Dr. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY

Lonere-402 103, Tal. Mangaon, Dist. Raigad (MS)

INDIA

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

LIST OF EXPERIMENTS

Sr. No. Title

1 To study different scales of integration and advantages of VLSI

2 To study CMOS logic design

3 Implementation of logic gates using VHDL

4 Implementation of HA and FA

5 To study and design multiplexer and decoder

6 To study flip-flop

7 To design 8-bit counter(up-down) using VHDL

8 Study Experiment

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

EXPERIMENT NO:1

Aim: To study different scales of integration and advantages of VLSI.

Theory:

The no. of components fitted into standard size IC represents its integration scale in other

words. It is density of components. It is classified as follows:

1. SSI(small scale integration):

 It have less than 100 components(about 10 gates).

2. MSI(medium scale integration):

 It contains less than 500 components(more than 10 but less than 100 gates).

3. LSI(large scale integration):

 It contains components between 500&30000(more than 100 gates).

4. VLSI(very large scale integration):

 The no. of components exceeds 30000(more than 1000 gates).

VLSI is the current level of computer microchip miniaturization and refers to microchip

containing in hundred of thousand transistor. VLSI is the method of putting the functionality of

many of different types of electronic component into small space or chip.

This method essentially:

1. Reduce size of device.

2. Reduce cost of device.

3. Reduce current consumption of device.

4. Increase speed of operation.

5. Offers lots of employment.

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

Problem:

Solve one problem of implementing 8:1 MUX using logic gates, 4:1 MUX and 8:1 MUX.

Conclusion:

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

EXPERIMENT NO: 2

Aim: To study CMOS logic design.

Theory:

 A circuit build using opposite type MOSFET transistor in a CMOS circuit. The CMOS is

a form of circuit popular in a diagram circuitry and uses both n-channel and p-channel

enhancement MOSFET transistors. This circuit uses opposite type transistor.

N-MOS on/off operation-

An input of 0v leaves the N-MOS off where as input of +5v turns N-MOS on.

P-MOS on/off operation-

An input of 0v leaves the P-MOS on where as input of +5v turns P-MOS off.

The various circuits can be bulid up using CMOS. Also the basic universal gates can be

implemented by CMOS.

1. NOT gate implemented using CMOS

 The implementation is as shown in figure.It requires two CMOS:1 PMOS & 1 NMOS.

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

2. NAND gate implemented using CMOS

 The implementation is as shown in figure. It requires four CMOS:2 PMOS & 2 NMOS.

3. NOR gate implemented using CMOS

 The implementation is as shown in figure.It requires four CMOS:2 PMOS & 2 NMOS.

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

4. AND gate implemented using CMOS

 The implementation is as shown in figure. The AND gate is implemented by adding an

 invertor circuit to the output of NAND gate. Thus it requires six CMOS:3 PMOS & 3

 NMOS.

5. OR gate implemented using CMOS

The implementation is as shown in figure.The OR gate is implemented by adding an

invertor circuit to the output of NOR implemented circuit.Thus it requires six CMOS:3

PMOS & 3 NMOS.

Conclusion:

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

EXPERIMENT NO: 3

Aim: Implementation of logic gates using VHDL.

1) using dataflow style.
2) using behavioural style.

Theory: Logic gates are classified into three categories.

1. Basic gates
2. Universal gates
3. Special purpose gates.

1. Basic gates:

AND GATE:

The AND gate performs a logical multiplication commonly known as AND function. AND gate
is a logical operator. The output is high when both the inputs are high. The output is low level
when any one of the inputs is low.

Symbol:

Truth table:

 A B Y

 0 0 0

 0 1 0

 1 0 0

 1 1 1

OR GATE:

The OR gate performs a logical addition commonly known as OR function. The output is high
when any one of the inputs is high. The output is low level when both the inputs are low.

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

Symbol:

Truth table:

 A B Y

 0 0 0

 0 1 1

 1 0 1

 1 1 1

NOT GATE:

The NOT gate is called an inverter. The output is high when the input is low. The output is low
when the input is high.

Symbol:

Truth table:

 A Y

 0 1

 1 0

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

2. Universal gates

NAND GATE:

The NAND gate is a contraction of AND-NOT. The output is high when both inputs are low and
any one of the input is low .The output is low level when both inputs are high.

Symbol:

Truth table:

 A B Y

 0 0 1

 0 1 1

 1 0 1

 1 1 0

NOR GATE:

The NOR gate is a contraction of OR-NOT. The output is high when both inputs are low. The
output is low when one or both inputs are high.

Symbol:

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

Truth table:

 A B Y

 0 0 1

 0 1 0

 1 0 0

 1 1 0

3. Special purpose gates

X-OR GATE:

The output is high when any one of the inputs is high. The output is low when both the inputs are
low and both the inputs are high.

Symbol:

Truth table:

 A B Y

 0 0 0

 0 1 1

 1 0 1

 1 1 0

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

X-NOR GATE:

Output is high if both inputs are identical and output is low if input are not identical.

Symbol:

Truth table:

 A B Y

 0 0 1

 0 1 0

 1 0 0

 1 1 1

Conclusion:

Programs:

NOT Gate:

entity not_gate is

port (a :in STD_LOGIC;

 c: out STD_LOGIC);

end not_gate;

architecture dataflow of not_gate is

begin

c<= not a;

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

end dataflow;

AND Gate:

entity and_gate is

port (a, b :in STD_LOGIC;

 c: out STD_LOGIC);

end and_gate;

architecture dataflow of and_gate is

begin

c<= a and b;

end dataflow;

OR Gate:

entity or_gate is

port (a, b :in STD_LOGIC;

 c: out STD_LOGIC);

end or_gate;

architecture dataflow of or_gate is

begin

c<= a or b;

end dataflow;

XOR Gate:

entity xor_gate is

port (a,b :in STD_LOGIC;

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

 c: out STD_LOGIC);

end xor_gate;

architecture dataflow of xor_gate is

begin

c<= a xor b;

end dataflow;

XNOR Gate:

entity xnor_gate is

port (a,b :in STD_LOGIC;

 c: out STD_LOGIC);

end xnor_gate;

architecture dataflow of xnor_gate is

begin

c<= a xnor b;

end dataflow;

NAND Gate:

Using dataflow:

entity nand_gate is

port (a,b :in STD_LOGIC;

 c: out STD_LOGIC);

end nand_gate;

architecture dataflow of nand_gate is

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

begin

c<= a nand b;

end dataflow;

Using behavioural:

entity nand_gate is

port (a,b :in STD_LOGIC;

 c: out STD_LOGIC);

end nand_gate;

architecture behavioural of nand_gate is

begin

c<= ‘0’ when a=’1’ and b=’1’

else ‘1’

end behavioural;

NOR Gate:

Using dataflow:

entity nor_gate is

port (a,b :in STD_LOGIC;

 c: out STD_LOGIC);

end nor_gate;

architecture dataflow of nor_gate is

begin

c<= a nor b;

end dataflow;

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

Using behavioural:

entity nor_gate is

port (a,b :in STD_LOGIC;

 c: out STD_LOGIC);

end nor_gate;

architecture behavioural of nor_gate is

begin

c<= ‘1’ when a=’0’ and b=’0’

else ‘0’

end behavioural;

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

EXPERIMENT NO: 4

Aim: Implementation of half adder and implementation of full adder using half adder using

VHDL.

Theory:

Adders are used for most basic arithematic operation,addition of binary degits.

Four possible elementary operation.

1. 0+0=0

2. 1+0=1

3. 0+1=1

4. 1+1=0

Half adder:

A combinational circuit that performs the addition of two bits is called a half adder.

This circuit needs two binary inputs and two binary outputs.

The input variables designate the augend and addend bits and the output variables designate the

augend and addend bits and the output variables produce the sum and carry.

Truth table:

Simplified Boolean expression are:

S=¯XY+XY¯

C=XY

The half adder can be implemented with an X-OR and AND gate.

 INPUT OUTPUT

 X Y C S

 0 0 0 0

 0 1 0 1

 1 0 0 1

 1 1 1 0

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

Full adder:

A combinational circuit that performs the addition of three bits(two significant bits and a

previous carry) is called a full adder.

It consists of three inputs and two outputs.

Truth table

 INPUT OUTPUT

 X Y Z C S

 0 0 0 0 0

 0 0 1 0 1

 0 1 0 0 1

 0 1 1 1 0

 1 0 0 0 1

 1 0 1 1 0

 1 1 0 1 0

 1 1 1 1 1

Simplified the sum of product expression are

S=X¯Y¯Z+X¯YZ¯+XY¯Z¯+XYZ

C=XY+XZ+YZ

A full adder can be implemented with two half adders and OR gate.

Conclusion:

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

Programs:

Half Adder:

entity ha is

port (a,b :in STD_LOGIC;

 s,c: out STD_LOGIC);

end ha;

architecture dataflow of ha is

begin

s<= a xor b;

c<= a and b;

end dataflow;

Full Adder:

Using Half Adder:

entity fa is

port (a,b,cin :in STD_LOGIC;

 s,cout: out STD_LOGIC);

end fa;

architecture structural of fa is

signal s1, s2,s3:std_logic;

component ha

port (a,b :in STD_LOGIC;

 s,c: out STD_LOGIC);

end component;

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

component or_gate

port(a,b : in STD_LOGIC;

 c: out STD_LOGIC);

end component;

begin

c1:ha

port map(a,b,s1,s2);

c2:ha

port map(s1,cin,s,s3);

c3:or_gate

port map(s2,s3,cout);

end structural;

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

EXPERIMENT NO:5

Aim: To study and design multiplexer and decoder

Theory:

 Multiplexer is a combinational circuit and that has many i/p and select lines to select

appropriate input to the output. For n select lines MUX has 2n inputs and one output.

Mux 4:1

 It has four inputs, two select lines and one output.

 Truth table

Where,

 I0,I1,I2,I3 are input lines

 S1, S2 are select lines

 Y is output

S1 S2 Y
0 0 I0
0 1 I1
1 0 I2
1 1 I3

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

MUX 8:1

 It has three select lines and eight inputs and one output.

 Truth table

Decoder

 A decoder is a combinational circuit that converts binary information from n input lines

to a maximaum and of 2n unique output lines. If the n bit decoded information has unused or

don’t care combinations, decoder output will have less than 2n outputs.

 As we know that sequential statement can be used for both combinational circuits as well

as sequential circuits, we here have coded the decoder with the sequential statement.

Truth table:

Inputs Outputs
X2 X1 X0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

 As we know, unlike MUX there is no select line in decoder. Thus output depends on input

combinations along with En signal.

Conclusion:

S2 S1 S0 Y

0 0 0 I0
0 0 1 I1
0 1 0 I2
0 1 1 I3

1 0 0 I4
1 0 1 I5

1 1 0 I6
1 1 1 I7

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

Program:

MUX 4:1-

entity mux4x1 is

port(s: in STD_LOGIC_VECTOR (1 downto 0)

 x : in STD_LOGIC_VECTOR (3 downto 0)

 y : out STD_LOGIC);

end mux4x1;

architecture Behavioral of mux4x1 is

begin

with s select

y<= x(0) when “00”,

 x(1) when “01”,

 x(2) when “10”,

 x(3) when others;

end Behavioral;

MUX 8:1 using 4:1-

Entity mux8x1 is

Port(I : in STD_LOGIC_VECTOR (7 downto 0);

 sel : in STD_LOGIC_VECTOR (2 downto 0);

 z : out STD_LOGIC);

end mux8x1;

architecture Behavioral of mux8x1 is

signal p1,p2 : std_logic;

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

component mux4x1

port(s: in STD_LOGIC_VECTOR (1 downto 0)

 x : in STD_LOGIC_VECTOR (3 downto 0)

 y : out STD_LOGIC);

end component;

begin

c1:mux4x1

port map (x(3)=>I(7), x(2)=>I(6), x(1)=>I(5), x(0)=>I(4),s(1)=>sel(1),s(0)=>sel(0),y=>p1);

c2: mux4x1

port map (x(3)=>I(3), x(2)=>I(2), x(1)=>I(1), x(0)=>I(0),s(1)=>sel(1),s(0)=>sel(0),y=>p2);

c2: mux4x1

port map (x(3)=>p1, x(2)=>’0’, x(1)=>’0’, x(0)=>p2,s(1)=>sel(2),s(0)=>sel(2),y=>z);

end Behavioral;

Decoder:

entity dec is

 Port (EN : in STD_LOGIC;

 X : in STD_LOGIC_VECTOR (2 downto 0);

 Y : out STD_LOGIC_VECTOR (7 downto 0));

end dec;

architecture Behavioral of dec is

begin

process(EN,X)

begin

if EN='1' then

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

 case X is

 when "000" =>Y<="00000001";

 when "001" =>Y<="00000010";

 when "010" =>Y<="00000100";

 when "011" =>Y<="00001000";

 when "100" =>Y<="00010000";

 when "101" =>Y<="00100000";

 when "110" =>Y<="01000000";

 when "111" =>Y<="10000000";

 when others =>Y<="ZZZZZZZZ";

 end case;

end if;

end process;

end Behavioral;

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

EXPERIMENT NO:6

Aim: To study flip-flop.

Theory:

 Flip flops are basically the sequencial circuits i.e. they require clock for their operation.

The flip flops are nothing but 1 bit storage elements. The different flip flops are D,T,SR, JK flip

flop.

1. D flip flop

The D flip flop is nothing but a latch. It just store the data it receives and on receiving a

clock signal, it gives it as an output.

Truth Table Excitation Table

D Q+
0 0
1 1

2. T flip flop

The ‘T’ letter stands for ‘toggling’. It toggles the i/p provided to it on receiving a clock

signal.

Truth Table Excitation Table

Q Q+ D
0 0 0
0 1 1
1 0 0
1 1 1

T Q+
0 ��
 1 ������

Q Q+ T
0 0 0
0 1 1
1 0 0
1 1 1

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

3. SR flip flop

Here SR stand for set and reset flip flop. In SR flip flop, a race around condition occurs

on receiving both inputs high.

Truth Table Excitation Table

4. JK flip flop

JK flip flop has been designed in such a way that it overcomes the race around condition

of the SR flip flop. It simply toggles the previous output when it receives both high input.

TruthTable Excitation Table

Conclusion:

Q Q+ S R

0 0 0 x

0 1 1 0

1 0 0 1

1 1 x 0

S R Q+

0 0 Q
 0 1 0
1 0 1
1 1 Race

J K Q+

0 0 Q
 0 1 0
1 0 1
1 1 ��

Q Q+ J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

Programs:

D flip flop:

entity dff is

 Port (clk,rst,D : in STD_LOGIC;

 Q : out STD_LOGIC);

end dff;

architecture Behavioral of dff is

begin

process(clk,rst)

begin

 if rst='1' then

 Q<='0';

 elsif rising_edge(clk)then

 Q<=D;

 end if;

end process;

end Behavioral;

T flip flop:

entity tff is

 Port (clk,rst,T : in STD_LOGIC;

 Q : out STD_LOGIC);

end tff;

architecture Behavioral of tff is

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

begin

 process(clk,rst,T)

 variable temp :STD_LOGIC;

 begin

 if rst='1' then

 Q<='0';

 temp:='0';

 elsif rising_edge(clk) then

 if T='0' then

 temp:=temp;

 else

 temp:= not temp;

 end if;

 Q<=temp;

 end if;

 end process;

end Behavioral;

SR flip flop:

entity srff is

 Port (clk,rst,s,r : in STD_LOGIC;

 q : out STD_LOGIC);

end srff;

architecture Behavioral of srff is

begin

process(clk,rst,s,r)

variable t:std_logic;

variable p:std_logic_vector(1 downto 0);

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

begin

p:=s&r;

if rst='0' then

 q<='0';

 t:='0';

elsif rising_edge(clk) then

case p is

 when "00"=>

 t:=t;

 when "01"=>

 t:='0';

 when "10"=>

 t:='1';

 when others=>

 t:=not t;

 end case;

 q<=t;

end if;

end process;

end Behavioral;

JK flip flop:

entity jkff is

 Port (clk,rst : in STD_LOGIC;

 jk :in STD_LOGIC_vector(1 downto 0);

 Q : out STD_LOGIC);

end jkff;

architecture Behavioral of jkff is

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

begin

 process(clk,rst,jk)

 variable temp :STD_LOGIC;

 begin

 if rst='1' then

 Q<='0';

 temp:='0';

 elsif rising_edge(clk) then

 if jk="00" then

 temp:=temp;

 elsif jk="01" then

 temp:='0';

 elsif jk="10" then

 temp:='1';

 else

 temp:= not temp;

 end if;

 Q<=temp;

 end if;

 end process;

end Behavioral;

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

EXPERIMENT NO:7

Aim: To design binary up-down counter using VHDL.

Theory:

 ‘Counter’ as the name suggest are for counting a sequence of values. However, there are

many different types of counters depending on the total no. of count values, the sequence of

values that it outputs, whether it counts up or down and so on. The simplest is a modulo-n

counter that counts the decimal sequence 0-1-2 upto n-1 back to 0.

1. Binary up counter:

As the name suggest, the binary up counter simply counts the value from 0 to n-1 with

the step size of 1. It is generally used for day to day purpose where counting objects is a

task to evaluate.

2. Binary down counter:

Like binary up counter, here too the name itself suggests the counting system of the

binary down counter. This counter counts the values from n-1 down to 0 with step size of

1. It is generally used for gaming purpose where countdown is necessary.

Binary up-down counter:

The binary up-down counter is a combination of ‘up counter’ and ‘down counter’. i.e. it

counts upwardly and downwardly both depending on the select line i.e. mode selection.

 Whenever mode select line=’1’, the counter act as a down counter and when

select line=’0’, the counter act as a up counter.

 Here a 8-bit counter is designed. Thus providing three bits as input along with a

mode select ‘m’ input and also setting 3 bits as output. Depending on the value of ‘m’ the

3 bit counter will act as up or down counter.

Conclusion:

Digital System Design Lab Manual

Department of Electronics and Telecommunication Engineering,
Dr. Babasaheb Ambedkar Technological University, Lonere.

Program:

entity updncnt is

 Port (clk,rst,m : in STD_LOGIC;

 Q : out STD_LOGIC_VECTOR (2 downto 0));

end updncnt;

architecture Behavioral of updncnt is

begin

process(clk,rst,m)

variable temp:std_logic_vector(2 downto 0);

begin

 if rst='1' then

 Q<="000";

 temp:="000";

 elsif rising_edge (clk) then

 if m='0' then

 temp:=temp+1;

 else

 temp:=temp-1;

 end if;

 Q<=temp;

 end if;

end process;

