
1

Laboratory Journal

of

MICROPROCESSOR

For completion of term work of 5th semester

curriculum program

Bachelor of Technology

In

ELECTRONICS AND TELECOMMUNICATION

ENGINEERING

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION

ENGINEERING

Dr. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY

Lonere-402 103, Tal. Mangaon, Dist. Raigad (MS)

INDIA

 2

List of Experiments

Sr. No. Name of Experiment Page No.

1 Introduction To 8085 2

2
A) 8 Bit Data Addition 5

B) 8 Bit Data Subtraction 8

3
A) 8 Bit Data Multiplication 11

B) 8 Bit Data Division 15

4
A) 16 Bit Data Addition 18

B) 16 Bit Data Subtraction 21

5
A) 16 Bit Data Multiplication 24

B) 16 Bit Data Division 28

6
A) Largest Element In An Array 32

B) Smallest Element In An Array 35

7
A) Ascending Order 38

B) Descending Order 42

8
A) Code Conversion –Decimal To Hex 46

B) Code Conversion –Hex To Decimal 49

9
A) BCD Addition 52

B) BCD Subtraction 55

10 2 X 2 Matrix Multiplication 58

11 8086 String Manipulation – Search A Word 63

12 8086 String Manipulation –Find And Replace A Word 65

13 8086 String Manipulation – Copy A String 67

14 8086 String Manipulation – Sorting 69

 3

1. INTRODUCTION TO 8085

INTEL 8085 is one of the most popular 8-bit microprocessor capable of

addressing 64 KB of memory and its architecture is simple. The device has 40 pins,

requires +5 V power supply and can operate with 3MHz single phase clock.

ALU (Arithmetic Logic Unit):

The 8085A has a simple 8-bit ALU and it works in coordination with the

accumulator, temporary registers, 5 flags and arithmetic and logic circuits. ALU has

the capability of performing several mathematical and logical operations. The

temporary registers are used to hold the data during an arithmetic and logic operation.

The result is stored in the accumulator and the flags are set or reset according to the

result of the operation. The flags are affected by the arithmetic and logic operation.

They are as follows:

 Sign flag

After the execution of the arithmetic - logic operation if the bit D7

of the result is 1, the sign flag is set. This flag is used with signed

numbers. If it is 1, it is a negative number and if it is 0, it is a positive

number.

 Zero flag

The zero flag is set if the ALU operation results in zero. This flag

is modified by the result in the accumulator as well as in other registers.

 Auxillary carry flag

In an arithmetic operation when a carry is generated by digit D3

and passed on to D4, the auxillary flag is set.

 Parity flag

After arithmetic – logic operation, if the result has an even number

of 1’s the flag is set. If it has odd number of 1’s it is reset.

 Carry flag

If an arithmetic operation results in a carry, the carry flag is set.

The carry flag also serves as a borrow flag for subtraction.

 4

Timing and control unit

 This unit synchronizes all the microprocessor operation with a clock and

generates the control signals necessary for communication between the

microprocessor and peripherals. The control signals RD (read) and WR (write)

indicate the availability of data on the data bus.

Instruction register and decoder

 The instruction register and decoder are part of the ALU. When an instruction is

fetched from memory it is loaded in the instruction register. The decoder decodes the

instruction and establishes the sequence of events to follow.

Register array

 The 8085 has six general purpose registers to store 8-bit data during program

execution. These registers are identified as B, C, D, E, H and L. they can be combined

as BC, DE and HL to perform 16-bit operation.

Accumulator

 Accumulator is an 8-bit register that is part of the ALU. This register is used to

store 8-bit data and to perform arithmetic and logic operation. The result of an

operation is stored in the accumulator.

Program counter

The program counter is a 16-bit register used to point to the memory address of

the next instruction to be executed.

Stack pointer

It is a 16-bit register which points to the memory location in R/W memory, called

the Stack.

 5

Communication lines

8085 microprocessor performs data transfer operations using three communication

lines called buses. They are address bus, data bus and control bus.

 Address bus – it is a group of 16-bit lines generally identified as A0 – A15.

The address bus is unidirectional i.e., the bits flow in one direction from

microprocessor to the peripheral devices. It is capable of addressing 216

memory locations.

 Data bus – it is a group of 8 lines used for data flow and it is bidirectional.

The data ranges from 00 – FF.

 Control bus – it consist of various single lines that carry synchronizing

signals. The microprocessor uses such signals for timing purpose.

 6

2(A). 8 BIT DATA ADDITION

AIM:

 To add two 8 bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.
2. Get the first number from memory in accumulator.
3. Get the second number and add it to the accumulator.
4. Store the answer at another memory location.

RESULT:

Thus the 8 bit numbers stored at 4500 &4501 are added and the result stored at 4502 &
4503.

 7

FLOW CHART:

 NO

 YES

START

[HL] 4500H

[A] [M]

[A] [A]+[M]

[HL] [HL]+1

STOP

[HL] [HL]+1

[M] [A]

[C] 00H

[M] [C]

[HL] [HL]+1

Is there a
 Carry ?

[C] [C]+1

 8

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI C, 00 Clear C reg.
4101
4102 LXI H, 4500 Initialize HL reg. to

4500 4103
4104
4105 MOV A, M Transfer first data to

accumulator
4106 INX H Increment HL reg. to

point next memory
Location.

4107 ADD M Add first number to
acc. Content.

4108 JNC L1 Jump to location if
result does not yield

carry.
4109
410A

410B INR C Increment C reg.
410C L1 INX H Increment HL reg. to

point next memory
Location.

410D MOV M, A Transfer the result from
acc. to memory.

410E INX H Increment HL reg. to
point next memory

Location.
410F MOV M, C Move carry to memory
4110 HLT Stop the program

OBSERVATION:

INPUT OUTPUT
4500 4502
4501 4503

 9

2(B). 8 BIT DATA SUBTRACTION

AIM:

 To Subtract two 8 bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.
2. Get the first number from memory in accumulator.
3. Get the second number and subtract from the accumulator.
4. If the result yields a borrow, the content of the acc. is complemented and 01H is

added to it (2’s complement). A register is cleared and the content of that reg. is
incremented in case there is a borrow. If there is no borrow the content of the acc.
is directly taken as the result.

5. Store the answer at next memory location.

RESULT:

Thus the 8 bit numbers stored at 4500 &4501 are subtracted and the result stored at 4502
& 4503.

 10

FLOW CHART:

 NO

 YES

START

[HL] 4500H

[A] [M]

Is there a
 Borrow ?

[A] [A]-[M]

[HL] [HL]+1

[C] 00H

[C] [C]+1

STOP

[HL] [HL]+1

[M] [A]

[M] [C]

[HL] [HL]+1

Complement [A]
Add 01H to [A]

 11

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI C, 00 Clear C reg.
4102
4102 LXI H, 4500 Initialize HL reg. to

4500 4103
4104
4105 MOV A, M Transfer first data to

accumulator
4106 INX H Increment HL reg. to

point next mem.
Location.

4107 SUB M Subtract first number
from acc. Content.

4108 JNC L1 Jump to location if
result does not yield

borrow.
4109
410A

410B INR C Increment C reg.
410C CMA Complement the Acc.

content
410D ADI 01H Add 01H to content of

acc. 410E
410F L1 INX H Increment HL reg. to

point next mem.
Location.

4110 MOV M, A Transfer the result from
acc. to memory.

4111 INX H Increment HL reg. to
point next mem.

Location.
4112 MOV M, C Move carry to mem.
4113 HLT Stop the program

OBSERVATION:

INPUT OUTPUT
4500 4502
4501 4503

 12

3(A). 8 BIT DATA MULTIPLICATION

AIM:

 To multiply two 8 bit numbers stored at consecutive memory locations and store
the result in memory.

ALGORITHM:

LOGIC: Multiplication can be done by repeated addition.

1. Initialize memory pointer to data location.
2. Move multiplicand to a register.
3. Move the multiplier to another register.
4. Clear the accumulator.
5. Add multiplicand to accumulator
6. Decrement multiplier
7. Repeat step 5 till multiplier comes to zero.
8. The result, which is in the accumulator, is stored in a memory location.

RESULT:

Thus the 8-bit multiplication was done in 8085p using repeated addition method.

 13

FLOW CHART:

 NO

 YES

 NO

 YES

[HL] 4500

 B M

 A 00

 C 00

Is there
any carry

 C C+1

 B B-1

 [A] [A] +[M]

[HL] [HL]+1

IS B=0

A

START

 14

A

STOP

[HL] [HL]+1

[M] [A]

[M] [C]

[HL] [HL]+1

 15

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START LXI H, 4500 Initialize HL reg. to
4500

Transfer first data to
reg. B

4101
4102
4103 MOV B, M

4104 INX H Increment HL reg. to
point next mem.

Location.
4105 MVI A, 00H Clear the acc.

 4106
4107 MVI C, 00H Clear C reg for carry

4108

4109 L1 ADD M Add multiplicand
multiplier times.

410A JNC NEXT Jump to NEXT if there
is no carry 410B

410C

410D INR C Increment C reg

410E NEXT DCR B Decrement B reg
410F JNZ L1 Jump to L1 if B is not

zero. 4110
4111
4112 INX H Increment HL reg. to

point next mem.
Location.

4113 MOV M, A Transfer the result from
acc. to memory.

4114 INX H Increment HL reg. to
point next mem.

Location.
4115 MOV M, C Transfer the result from

C reg. to memory.
4116 HLT Stop the program

OBSERVATION:

INPUT OUTPUT
4500 4502
4501 4503

 16

3(B). 8 BIT DIVISION

AIM:

 To divide two 8-bit numbers and store the result in memory.

ALGORITHM:

LOGIC: Division is done using the method Repeated subtraction.

1. Load Divisor and Dividend
2. Subtract divisor from dividend
3. Count the number of times of subtraction which equals the quotient
4. Stop subtraction when the dividend is less than the divisor .The dividend now

becomes the remainder. Otherwise go to step 2.
5. stop the program execution.

RESULT:

 Thus an ALP was written for 8-bit division using repeated subtraction method and
executed using 8085 p kits

 17

FLOWCHART:

 NO

 YES

B 00

M A-M

 [B] [B] +1

IS A<0

 A A+ M

 B B-1

[HL] 4500

 A M

[HL] [HL]+1

START

STOP

[HL] [HL]+1

[M] [A]

[M] [B]

[HL] [HL]+1

 18

PROGRAM:

ADDRESS OPCODE LABEL MNEMO

NICS
OPERA
ND

COMMENTS

4100 MVI B,00 Clear B reg for quotient
4101
4102 LXI H,4500 Initialize HL reg. to

4500H 4103
4104
4105 MOV A,M Transfer dividend to acc.
4106 INX H Increment HL reg. to point

next mem. Location.
4107 LOOP SUB M Subtract divisor from dividend
4108 INR B Increment B reg
4109 JNC LOOP Jump to LOOP if result does

not yield borrow 410A
410B
410C ADD M Add divisor to acc.
410D DCR B Decrement B reg
410E INX H Increment HL reg. to point

next mem. Location.
410F MOV M,A Transfer the remainder from

acc. to memory.
4110 INX H Increment HL reg. to point

next mem. Location.
4111 MOV M,B Transfer the quotient from B

reg. to memory.
4112 HLT Stop the program

OBSERVATION:

S.NO INPUT OUTPUT
ADDRESS DATA ADDRESS DATA

1 4500 4502
4501 4503

2 4500 4502
 4501 4503

 19

4(A). 16 BIT DATA ADDITION

AIM:

 To add two 16-bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.
2. Get the first number from memory and store in Register pair.
3. Get the second number in memory and add it to the Register pair.
4. Store the sum & carry in separate memory locations.

RESULT:

Thus an ALP program for 16-bit addition was written and executed in 8085p
using special instructions.

 20

FLOW CHART:

 NO

 YES

START

[DE] [HL]

[L] [8052H]
[H] [8053H]

[A] 00H

[HL] [HL]+[DE]

[L] [8050 H]
[H] [8051 H]

Is there a
 Carry?

STOP

[8054] [L]

[8055] [H]

[A] [A]+1

[8056] [A]

 21

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT
8000 START LHLD 8050H Load the augend in DE

pair through HL pair. 8001
8002
8003 XCHG
8004 LHLD 8052H Load the addend in HL

pair. 8005
8006
8007 MVI A, 00H Initialize reg. A for

carry 8008
8009 DAD D Add the contents of HL

Pair with that of DE
pair.

800A JNC LOOP If there is no carry, go
to the instruction
labeled LOOP.

800B
800C
800D INR A Otherwise increment

reg. A
800E LOOP SHLD 8054H Store the content of HL

Pair in 8054H(LSB of
sum)

800F
8010
8011 STA 8056H Store the carry in

8056H through Acc.
(MSB of sum).

8012
8013
8014 HLT Stop the program.

OBSERVATION:

INPUT OUTPUT
ADDRESS DATA ADDRESS DATA

8050H 8054H
8051H 8055H
8052H 8056H
8053H

 22

4(B). 16 BIT DATA SUBTRACTION

AIM:

 To subtract two 16-bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.
2. Get the subtrahend from memory and transfer it to register pair.
3. Get the minuend from memory and store it in another register pair.
4. Subtract subtrahend from minuend.
5. Store the difference and borrow in different memory locations.

RESULT:

Thus an ALP program for subtracting two 16-bit numbers was written and
executed.

 23

FLOW CHART:

 NO

 YES

START

[DE] [HL]

[L] [8052H]
[H] [8053H]

[HL] [HL]-[DE]

[L] [8050 H]
[H] [8051 H]

Is there a
 borrow?

STOP

[8054] [L]

[8055] [H]

[C] [C]+1

[8056] [C]

 24

PROGRAM:
ADDRESS OPCODE LABEL MNEMO

NICS
OPER
AND

COMMENTS

8000 START MVI C, 00 Initialize C reg.
8001
8002 LHLD 8050H Load the subtrahend in DE

reg. Pair through HL reg.
pair.

8003
8004
8005 XCHG
8006 LHLD 8052H Load the minuend in HL reg.

Pair. 8007
8008
8009 MOV A, L Move the content of reg. L to

Acc.
800A SUB E Subtract the content of reg.

E from that of acc.
800B MOV L, A Move the content of Acc. to

reg. L
800C MOV A, H Move the content of reg. H

to Acc.
800D SBB D Subtract content of reg. D

with that of Acc.
800E MOV H, A Transfer content of acc. to

reg. H
800F SHLD 8054H Store the content of HL pair

in memory location 8504H. 8010
8011
8012 JNC NEXT If there is borrow, go to the

instruction labeled NEXT. 8013
8014
8015 INR C Increment reg. C
8016 NEXT MOV A, C Transfer the content of reg. C

to Acc.
8017 STA 8056H Store the content of acc. to

the memory location 8506H 8018
8019
801A HLT Stop the program execution.

OBSERVATION:

INPUT OUTPUT
ADDRESS DATA ADDRESS DATA

8050H 8054H
8051H 8055H
8052H 8056H
8053H

 25

5(A). 16 BIT MULTIPLICATION

AIM:

 To multiply two 16 bit numbers and store the result in memory.

ALGORITHM:

1. Get the multiplier and multiplicand.
2. Initialize a register to store partial product.
3. Add multiplicand, multiplier times.
4. Store the result in consecutive memory locations.

RESULT:

Thus the 16-bit multiplication was done in 8085p using repeated addition
method.

 26

FLOWCHART:

 NO

 YES

 NO

 YES

START

L [8050]
H [8051]

L [8052]
H [8053]

SP HL

DE HL

HL 0000
BC 0000

HL HL+SP

Is Carry
flag set?

BC BC+1

DE DE+1

Is Zero flag
set?

A

 27

A

[8054] L
[8055] H

[8056] C
[8057] B

STOP

 28

ADDRESS OPCODE LABEL MNEM
ONICS

OPERAN
D

COMMENTS

8000 START LHLD 8050 Load the first No. in stack pointer
through HL reg. pair 8001

8002
8003 SPHL
8004 LHLD 8052 Load the second No. in HL reg.

pair
& Exchange with DE reg. pair.

8005
8006
8007 XCHG
8008 LXI H, 0000H

Clear HL & DE reg. pairs.

8009
800A
800B LXI B, 0000H
800C
800D
800E LOOP DAD SP Add SP with HL pair.
800F JNC NEXT If there is no carry, go to the

instruction labeled NEXT 8010
8011
8012 INX B Increment BC reg. pair
8013 NEXT DCX D Decrement DE reg. pair.
8014 MOV A,E Move the content of reg. E to Acc.
8015 ORA D OR Acc. with D reg.
8016 JNZ LOOP If there is no zero, go to

instruction labeled LOOP 8017
8018
8019 SHLD 8054 Store the content of HL pair in

memory locations 8054 & 8055. 801A
801B
801C MOV A, C Move the content of reg. C to Acc.
801D STA 8056 Store the content of Acc. in

memory location 8056. 801E
801F
8020 MOV A, B Move the content of reg. B to Acc.
8021 STA 8057 Store the content of Acc. in

memory location 8056. 8022
8023
8024 HLT Stop program execution
OBSERVATION:

INPUT OUTPUT
ADDRESS DATA ADDRESS DATA

8050 8054
8051 8055
8052 8056
8053 8057

 29

5(B). 16- BIT DIVISION

AIM:

 To divide two 16-bit numbers and store the result in memory using 8085
mnemonics.

ALGORITHM:

1. Get the dividend and divisor.
2. Initialize the register for quotient.
3. Repeatedly subtract divisor from dividend till dividend becomes less than divisor.
4. Count the number of subtraction which equals the quotient.
5. Store the result in memory.

RESULT:

Thus the 16-bit Division was done in 8085p using repeated subtraction method.

 30

FLOWCHART:

 NO

 YES

START

L [8051]
H [8052]

HL DE

L [8050]
H [8051]

BC 0000H

A L; A A- E
L A

A H
A A- H- Borrow
H A

BC BC+ 1

Is Carry
flag set ?

A

 31

A

BC BC- 1
HL HL+DE

L [8054]
H [8055]

A C

[8056] A

A B

[8057] A

STOP

 32

PROGRAM:
ADDRESS OPCODE LABEL MNEM

ONICS
OPERA
ND

COMMENTS

8000 START LHLD 8052 Load the first No. in stack pointer
through HL reg. pair 8001

8002
8003 XCHG
8004 LHLD 8050 Load the second No. in HL reg. pair

& Exchange with DE reg. pair. 8005
8006
8007 LXI B, 0000H

Clear BC reg. pair. 8008
8009
800A LOOP MOV A, L Move the content of reg. L to Acc.
800B SUB E Subtract reg. E from that of Acc.
800C MOV L, A Move the content of Acc to L.
800D MOV A, H Move the content of reg. H Acc.
800E SBB D Subtract reg. D from that of Acc.
800F MOV H, A Move the content of Acc to H.
8010 INX B Increment reg. Pair BC
8011 JNC LOOP If there is no carry, go to the location

labeled LOOP. 8012
8013
8014 DCX B Decrement BC reg. pair.
8015 DAD D Add content of HL and DE reg. pairs.
8016 SHLD 8054 Store the content of HL pair in 8054 &

8055. 8017
8018
8019 MOV A, C Move the content of reg. C to Acc.
801A STA 8056 Store the content of Acc. in memory

8056 801B
801C
801D MOV A, B Move the content of reg. B to Acc.
801E STA 8057 Store the content of Acc. in memory

8057. 801F
8020
8021 HLT Stop the program execution.

OBSERVATION:

INPUT OUTPUT
ADDRESS DATA ADDRESS DATA
8050 8054
8051 8055
8052 8056
8053 8057

 33

6(A). LARGEST ELEMENT IN AN ARRAY

AIM:

 To find the largest element in an array.

ALGORITHM:

1. Place all the elements of an array in the consecutive memory locations.

2. Fetch the first element from the memory location and load it in the accumulator.

3. Initialize a counter (register) with the total number of elements in an array.

4. Decrement the counter by 1.

5. Increment the memory pointer to point to the next element.

6. Compare the accumulator content with the memory content (next

element).

7. If the accumulator content is smaller, then move the memory content

(largest element) to the accumulator. Else continue.

8. Decrement the counter by 1.

9. Repeat steps 5 to 8 until the counter reaches zero

10. Store the result (accumulator content) in the specified memory location.

RESULT:

 Thus the largest number in the given array is found out.

 34

FLOW CHART:

 NO

 YES

 NO

 YES

[B] 04H

[HL] [8100H]

[A] [HL]

[HL [HL] + 1

IS
[A] < [HL]?

[A] [HL]

[8105] [A]

 START

[B] [B]-1

IS
[B] = 0?

 STOP

 35

PROGRAM:

ADDRE

SS
OPCO

DE
LABEL MNEM

ONICS
OPER
AND

COMMENTS

8001 LXI H,8100 Initialize HL reg. to
8100H 8002

8003
8004 MVI B,04 Initialize B reg with no. of

comparisons(n-1) 8005
8006 MOV A,M Transfer first data to acc.
8007 LOOP1 INX H Increment HL reg. to point

next memory location
8008 CMP M Compare M & A
8009 JNC LOOP If A is greater than M then go

to loop 800A
800B
800C MOV A,M Transfer data from M to A reg
800D LOOP DCR B Decrement B reg
800E JNZ LOOP1 If B is not Zero go to loop1
800F
8010
8011 STA 8105 Store the result in a memory

location. 8012
8013
8014 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA
8100 8105
8101
8102
8103
8104

 36

6(B). SMALLEST ELEMENT IN AN ARRAY

AIM:

 To find the smallest element in an array.

ALGORITHM:

1. Place all the elements of an array in the consecutive memory locations.

2. Fetch the first element from the memory location and load it in the accumulator.

3. Initialize a counter (register) with the total number of elements in an array.

4. Decrement the counter by 1.

5. Increment the memory pointer to point to the next element.

6. Compare the accumulator content with the memory content (next

element).

7. If the accumulator content is smaller, then move the memory content

(largest element) to the accumulator. Else continue.

8. Decrement the counter by 1.

9. Repeat steps 5 to 8 until the counter reaches zero

10. Store the result (accumulator content) in the specified memory location.

RESULT:

 Thus the smallest number in the given array is found out.

 37

FLOW CHART:

 YES

 NO

 NO

 YES

[B] 04H

[HL] [8100H]

[A] [HL]

[HL [HL] + 1

IS
[A] < [HL]?

[A] [HL]

[8105] [A]

 START

[B] [B]-1

IS
[B] = 0?

 STOP

 38

PROGRAM:

ADDRE
SS

OPCO
DE

LABEL MNEM
ONICS

OPER
AND

COMMENTS

8001 LXI H,8100 Initialize HL reg. to
8100H 8002

8003
8004 MVI B,04 Initialize B reg with no. of

comparisons(n-1) 8005
8006 MOV A,M Transfer first data to acc.
8007 LOOP1 INX H Increment HL reg. to point

next memory location
8008 CMP M Compare M & A
8009 JC LOOP If A is lesser than M then go

to loop 800A
800B
800C MOV A,M Transfer data from M to A reg
800D LOOP DCR B Decrement B reg
800E JNZ LOOP1 If B is not Zero go to loop1
800F
8010
8011 STA 8105 Store the result in a memory

location. 8012
8013
8014 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA
8100 8105
8101
8102
8103
8104

 39

7(A).ASCENDING ORDER

AIM:
 To sort the given number in the ascending order using 8085 microprocessor.

ALGORITHM:

 1. Get the numbers to be sorted from the memory locations.
 2. Compare the first two numbers and if the first number is larger than second then I
interchange the number.
3. If the first number is smaller, go to step 4
 4. Repeat steps 2 and 3 until the numbers are in required order

RESULT:

 Thus the ascending order program is executed and thus the numbers are arranged
in ascending order.

 40

FLOWCHART:

 YES

 NO

[B] 04H

[HL] [8100H]

[A] [HL]

[HL [HL] + 1

IS
[A] < [HL]?

[D] [HL]

[HL] [A]

[HL] [HL] - 1

[HL] [D]

[HL] [HL] + 1

[C] [C] – 01 H

A

[C] 04H

 START

 41

 NO

 YES

 NO

 YES

IS
[C] = 0?

A

[B] [B]-1

IS
[B] = 0?

 STOP

 42

PROGRAM:

ADDR

E
SS

OPCO
DE

LABEL MNEM
ONICS

OPER
AND

COMMENTS

8000 MVI B,04 Initialize B reg with number
of comparisons (n-1) 8001

8002 LOOP 3 LXI H,8100 Initialize HL reg. to
8100H 8003

8004
8005 MVI C,04 Initialize C reg with no. of

comparisons(n-1) 8006
8007 LOOP2 MOV A,M Transfer first data to acc.
8008 INX H Increment HL reg. to point

next memory location
8009 CMP M Compare M & A
800A JC LOOP1 If A is less than M then go to

loop1 800B
800C
800D MOV D,M Transfer data from M to D reg
800E MOV M,A Transfer data from acc to M
800F DCX H Decrement HL pair
8010 MOV M,D Transfer data from D to M
8011 INX H Increment HL pair
8012 LOOP1 DCR C Decrement C reg
8013 JNZ LOOP2 If C is not zero go to loop2
8014
8015
8016 DCR B Decrement B reg
8017 JNZ LOOP3 If B is not Zero go to loop3
8018
8019
801A HLT Stop the program

OBSERVATION:

INPUT OUTPUT
MEMORY

LOCATION
DATA MEMORY

LOCATION
DATA

8100 8100
8101 8101
8102 8102
8103 8103
8104 8104

 43

7(B). DESCENDING ORDER

AIM:
 To sort the given number in the descending order using 8085 microprocessor.

ALGORITHM:

 1. Get the numbers to be sorted from the memory locations.
 2. Compare the first two numbers and if the first number is smaller than second then I
interchange the number.
3. If the first number is larger, go to step 4
 4. Repeat steps 2 and 3 until the numbers are in required order

RESULT:

 Thus the descending order program is executed and thus the numbers are arranged
in descending order.

 44

FLOWCHART:

 NO

 YES

[B] 04H

[HL] [8100H]

[A] [HL]

[HL [HL] + 1

IS
[A] < [HL]?

[D] [HL]

[HL] [A]

[HL] [HL] - 1

[HL] [D]

[HL] [HL] + 1

[C] [C] – 01 H

A

[C] 04H

 START

 45

 NO

 YES

 NO

 YES

IS
[C] = 0?

A

[B] [B]-1

IS
[B] = 0?

 STOP

 46

PROGRAM:

ADDRE

SS
OPCO

DE
LABEL MNEM

ONICS
OPER
AND

COMMENTS

8000 MVI B,04 Initialize B reg with number
of comparisons (n-1) 8001

8002 LOOP 3 LXI H,8100 Initialize HL reg. to
8100H 8003

8004
8005 MVI C,04 Initialize C reg with no. of

comparisons(n-1) 8006
8007 LOOP2 MOV A,M Transfer first data to acc.
8008 INX H Increment HL reg. to point

next memory location
8009 CMP M Compare M & A
800A JNC LOOP1 If A is greater than M then go

to loop1 800B
800C
800D MOV D,M Transfer data from M to D reg
800E MOV M,A Transfer data from acc to M
800F DCX H Decrement HL pair
8010 MOV M,D Transfer data from D to M
8011 INX H Increment HL pair
8012 LOOP1 DCR C Decrement C reg
8013 JNZ LOOP2 If C is not zero go to loop2
8014
8015
8016 DCR B Decrement B reg
8017 JNZ LOOP3 If B is not Zero go to loop3
8018
8019
801A HLT Stop the program

OBSERVATION:

INPUT OUTPUT
MEMORY

LOCATION
DATA MEMORY

LOCATION
DATA

8100 8100
8101 8101
8102 8102
8103 8103
8104 8104

 47

8(A). CODE CONVERSION –DECIMAL TO HEX

AIM:

 To convert a given decimal number to hexadecimal.

ALGORITHM:

1. Initialize the memory location to the data pointer.
2. Increment B register.
3. Increment accumulator by 1 and adjust it to decimal every time.
4. Compare the given decimal number with accumulator value.
5. When both matches, the equivalent hexadecimal value is in B register.
6. Store the resultant in memory location.

RESULT:

Thus an ALP program for conversion of decimal to hexadecimal was written and
executed.

 48

FLOWCHART:

 NO

 YES

 START

HL 4500H

A 00

B 00H

A A +1

Decimal adjust
accumulator

B B+1

A B

 Is
A=M?

8101 A

Stop

 49

PROGRAM:

ADDRE

SS
OPCO

DE
LABEL MNEM

ONICS
OPER
AND

COMMENTS

8000 LXI H,8100 Initialize HL reg. to
8100H 8001

8002
8003 MVI A,00 Initialize A register.
8004
8005 MVI B,00 Initialize B register..
8006
8007 LOOP INR B Increment B reg.
8008 ADI 01 Increment A reg
8009
800A DAA Decimal Adjust Accumulator
800B CMP M Compare M & A
800C JNZ LOOP If acc and given number are

not equal, then go to LOOP 800D
800E
800F MOV A,B Transfer B reg to acc.
8010 STA 8101 Store the result in a memory

location. 8011
8012
8013 HLT Stop the program

RESULT:

INPUT OUTPUT
ADDRESS DATA ADDRESS DATA

 8100 8101

 50

8(B). CODE CONVERSION –HEXADECIMAL TO DECIMAL

AIM:

 To convert a given hexadecimal number to decimal.

ALGORITHM:

1. Initialize the memory location to the data pointer.
2. Increment B register.
3. Increment accumulator by 1 and adjust it to decimal every time.
4. Compare the given hexadecimal number with B register value.
5. When both match, the equivalent decimal value is in A register.
6. Store the resultant in memory location.

RESULT:

Thus an ALP program for conversion of hexadecimal to decimal was written and
executed.

 51

FLOWCHART:

 NO

 YES

 Stop

 START

HL 8100H

A 00

B 00H

A A +1

Decimal adjust
accumulator

B B+1

D A, A B,

 Is
A=M?

8101 A, A C
8102 A

C 00H

C C+1

 Is there
carry?

 52

PROGRAM:

ADDRE

SS
OPCO

DE
LABEL MNEM

ONICS
OPER
AND

COMMENTS

8000 LXI H,8100 Initialize HL reg. to
8100H 8001

8002
8003 MVI A,00 Initialize A register.
8004
8005 MVI B,00 Initialize B register.
8006
8007 MVI C,00 Initialize C register for carry.
8008
8009 LOOP INR B Increment B reg.
800A ADI 01 Increment A reg
800B
800C DAA Decimal Adjust Accumulator
800D JNC NEXT If there is no carry go to

NEXT. 800E
800F
8010 INR C Increment c register.
8011 NEXT MOV D,A Transfer A to D
8012 MOV A,B Transfer B to A
8013 CMP M Compare M & A
8014 MOV A,D Transfer D to A
8015 JNZ LOOP If acc and given number are

not equal, then go to LOOP 8016
8017
8018 STA 8101 Store the result in a memory

location. 8019
801A
801B MOV A,C Transfer C to A
801C STA 8102 Store the carry in another

memory location. 801D
801E
801F HLT Stop the program

RESULT:

INPUT OUTPUT
ADDRESS DATA ADDRESS DATA

8100 8101
8102

 53

9(A) BCD ADDITION
AIM:

 To add two 8 bit BCD numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.
2. Get the first number from memory in accumulator.
3. Get the second number and add it to the accumulator
4. Adjust the accumulator value to the proper BCD value using DAA instruction.
5. Store the answer at another memory location.

RESULT:

Thus the 8 bit BCD numbers stored at 4500 &4501 are added and the result stored at
4502 & 4503.

 54

FLOW CHART:

 NO

 YES

START

[HL] 4500H

[A] [M]

[A] [A]+[M]
Decimal Adjust Accumulator

[HL] [HL]+1

STOP

[HL] [HL]+1

[M] [A]

[C] 00H

[M] [C]

[HL] [HL]+1

Is there a
 Carry ?

[C] [C]+1

 55

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI C, 00 Clear C reg.
4103
4102 LXI H, 4500 Initialize HL reg. to

4500 4103
4104
4105 MOV A, M Transfer first data to

accumulator
4106 INX H Increment HL reg. to

point next memory
Location.

4107 ADD M Add first number to
acc. Content.

4108 DAA Decimal adjust
accumulator

4109 JNC L1 Jump to location if
result does not yield

carry.
410A
410B

410C INR C Increment C reg.
410D L1 INX H Increment HL reg. to

point next memory
Location.

410E MOV M, A Transfer the result from
acc. to memory.

410F INX H Increment HL reg. to
point next memory

Location.
4110 MOV M, C Move carry to memory
4111 HLT Stop the program

OBSERVATION:

INPUT OUTPUT
4500 4502
4501 4503

 56

9(B). BCD SUBTRACTION

AIM:

 To Subtract two 8 bit BCD numbers stored at consecutive memory locations.

ALGORITHM:

1. Load the minuend and subtrahend in two registers.
2. Initialize Borrow register to 0.
3. Take the 100’s complement of the subtrahend.
4. Add the result with the minuend which yields the result.
5. Adjust the accumulator value to the proper BCD value using DAA instruction.

If there is a carry ignore it.
6. If there is no carry, increment the carry register by 1
7. Store the content of the accumulator (result)and borrow register in the

specified memory location

RESULT:

Thus the 8 bit BCD numbers stored at 4500 &4501 are subtracted and the result stored at
4502 & 4503.

 57

FLOW CHART:

 YES

 NO

START

HL HL+ 1
C M
A 99

[A] [A] – [C]
[A] [A]+1

Is there a
 Carry ?

[A] [A]+[B]
DAA

[D] 00H
HL 4500
B M

STOP

[D] [D]+1

[4502] A
[4503] D

[HL] [HL]+1

 58

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI D, 00 Clear D reg.
4101
4102 LXI H, 4500 Initialize HL reg. to

4500 4103
4104
4105 MOV B, M Transfer first data to

accumulator
4106 INX H Increment HL reg. to

point next mem.
Location.

4107 MOV C, M Move second no. to B
reg.

4108 MVI A, 99 Move 99 to the
Accumulator 4109

410A SUB C Subtract [C] from acc.
Content.

410B INR A Increment A register
410C ADD B Add [B] with [A]
410D DAA Adjust Accumulator

value for Decimal digits
410E JC LOOP Jump on carry to loop

410F

4110

4111 INR D Increment D reg.
4112 LOOP INX H Increment HL register

pair
4113 MOV M , A Move the Acc.content to

the memory location
4114 INX H Increment HL reg. to

point next mem.
Location.

4115 MOV M, D Transfer D register
content to memory.

4116 HLT Stop the program

OBSERVATION:

INPUT OUTPUT
4500 4502
4501 4503

 59

10. 2 X 2 MATRIX MULTIPLICATION

AIM:

 To perform the 2 x 2 matrix multiplication.

ALGORITHM:

1. Load the 2 input matrices in the separate address and initialize the HL and the DE
register pair with the starting address respectively.

2. Call a subroutine for performing the multiplication of one element of a matrix
with the other element of the other matrix.

3. Call a subroutine to store the resultant values in a separate matrix.

RESULT:

Thus the 2 x 2 matrix multiplication is performed and the result is stored at 4700,4701 ,
4702 & 4703.

 60

FLOW CHART:

 YES

 NO

HL HL+1
DE DE+1; DE DE+1

Is
A=04H?

Increment HL
reg. pair

C 00H
HL 8500H

DE 8600H

HL HL+1
DE DE+1; DE DE+1

B A

A A+B

START

HL HL-1
DE DE-1;

B A

A

Call subroutine
MUL

Call subroutine
 STORE

A

Call subroutine
MUL

Call subroutine
MUL

A A+B

Call subroutine
 STORE

Call subroutine
MUL

A C

B

B
STOP

 61

 YES

 NO

 NO

 YES

MUL

H H- 1

Is H=0 ?

[A] [[DE]]
D A
H M

[D] [D]+1

[H] 85; [D] 86

H H- 1

Is H=0 ?

RET

STORE

B 87

[A] [[BC]]

C C+ 1

RET

 62

PROGRAM:

ADDRESS OPCOD

E
LABEL MNEM

ONICS
OPERAN
D

COMMENT

8100 MVI C, 00 Clear C reg.
8101
8102 LXI H, 8500 Initialize HL reg. to

4500 8103
8104
8105 LOOP2 LXI D, 8600 Load DE register pair
8106
8107
8108 CALL MUL Call subroutine MUL
8109
810A
810B MOV B,A Move A to B reg.
810C INX H Increment HL register pair .
810D INX D Increment DE register pair
810E INX D Increment DE register pair
810F CALL MUL Call subroutine MUL
8110
8111
8112 ADD B Add [B] with [A]
8113 CALL STORE Call subroutine STORE
8114
8115
8116 DCX H Decrement HL register pair

8117 DCX D Decrement DE register pair

8118 CALL MUL Call subroutine MUL

8119

811A

811B MOV B,A Transfer A reg content to B reg.
811C INX H Increment HL register pair
811D INX D Increment DE register pair
811E INX D Increment DE register pair
811F CALL MUL Call subroutine MUL
8120
8121
8122 ADD B Add A with B
8123 CALL STORE Call subroutine MUL
8124
8125
8126 MOV A,C Transfer C register content to Acc.

 63

8127 CPI 04 Compare with 04 to check whether
all elements are multiplied. 8128

8129 JZ LOOP1 If completed, go to loop1
812A
812B
812C INX H Increment HL register Pair.
812D JMP LOOP2 Jump to LOOP2.
812E
812F
8130 LOOP1 HLT Stop the program.
8131 MUL LDAX D Load acc from the memory location

pointed by DE pair.
8132 MOV D,A Transfer acc content to D register.
8133 MOV H,M Transfer from memory to H register.
8134 DCR H Decrement H register.
8135 JZ LOOP3 If H is zero go to LOOP3.
8136
8137
8138 LOOP4 ADD D Add Acc with D reg
8139 DCR H Decrement H register.
813A JNZ LOOP4 If H is not zero go to LOOP4.
813B
813C
813D LOOP3 MVI H,85 Transfer 85 TO H register.
813E
813F MVI D,86 Transfer 86 to D register.
8140
8141 RET Return to main program.
8142 STORE MVI B,87 Transfer 87 to B register.
8143
8144 STAX B Load A from memory location

pointed by BC pair.
8145 INR C Increment C register.
8146 RET Return to main program.

OBSERVATION:

INPUT OUTPUT
4500 4600 4700
4501 4601 4701
4502 4602 4702
4503 4603 4703

 64

11.8086 STRING MANIPULATION – SEARCH A WORD

AIM:

To search a word from a string.

ALGORITHM:

1. Load the source and destination index register with starting and the ending

address respectively.

2. Initialize the counter with the total number of words to be copied.

3. Clear the direction flag for auto incrementing mode of transfer.

4. Use the string manipulation instruction SCASW with the prefix REP to

search a word from string.

5. If a match is found (z=1), display 01 in destination address. Otherwise,

display 00 in destination address.

RESULT:

 A word is searched and the count of number of appearances is displayed.

 65

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

LIST DW 53H, 15H, 19H, 02H

DEST EQU 3000H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV AX, 15H

 MOV SI, OFFSET LIST

 MOV DI, DEST

 MOV CX, COUNT

 MOV AX, 00

 CLD

REP SCASW

 JZ LOOP

 MOV AX, 01

LOOP MOV [DI], AX

 MOV AH, 4CH

 INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 15H, 19H, 02H

OUTPUT:

 3000 01

 66

12.8086 STRING MANIPULATION –FIND AND REPLACE A WORD

AIM:

To find and replace a word from a string.

ALGORITHM:

1. Load the source and destination index register with starting and the

ending address respectively.

2. Initialize the counter with the total number of words to be copied.

3. Clear the direction flag for auto incrementing mode of transfer.

4. Use the string manipulation instruction SCASW with the prefix REP

to search a word from string.

5. If a match is found (z=1), replace the old word with the current word

in destination address. Otherwise, stop.

RESULT:

A word is found and replaced from a string.

 67

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

LIST DW 53H, 15H, 19H, 02H

REPLACE EQU 30H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV AX, 15H

 MOV SI, OFFSET LIST

 MOV CX, COUNT

 MOV AX, 00

 CLD

REP SCASW

 JNZ LOOP

 MOV DI, LABEL LIST

 MOV [DI], REPLACE

LOOP MOV AH, 4CH

 INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 15H, 19H, 02H

OUTPUT:

LIST: 53H, 30H, 19H, 02H

 68

13. 8086 STRING MANIPULATION – COPY A STRING

AIM:

To copy a string of data words from one location to the other.

ALGORITHM:

6. Load the source and destination index register with starting and the ending

address respectively.

7. Initialize the counter with the total number of words to be copied.

8. Clear the direction flag for auto incrementing mode of transfer.

9. Use the string manipulation instruction MOVSW with the prefix REP to

copy a string from source to destination.

RESULT:

 A string of data words is copied from one location to other.

 69

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

SOURCE EQU 2000H

DEST EQU 3000H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV ES, AX

 MOV SI, SOURCE

 MOV DI, DEST

 MOV CX, COUNT

 CLD

REP MOVSW

 MOV AH, 4CH

 INT 21H

CODE ENDS

END START

INPUT: OUTPUT:

2000 48 3000 48

2001 84 3001 84

2002 67 3002 67

2003 90 3003 90

2004 21 3004 21

 70

14.8086 STRING MANIPULATION – SORTING

AIM:

To sort a group of data bytes.

ALGORITHM:

 Place all the elements of an array named list (in the consecutive

memory locations).

 Initialize two counters DX & CX with the total number of elements in

the array.

 Do the following steps until the counter B reaches 0.

o Load the first element in the accumulator

o Do the following steps until the counter C reaches 0.

1. Compare the accumulator content with the next element
present in the next memory location. If the accumulator
content is smaller go to next step; otherwise, swap the
content of accumulator with the content of memory
location.

2. Increment the memory pointer to point to the next element.
3. Decrement the counter C by 1.

 Stop the execution.

RESULT:

 A group of data bytes are arranged in ascending order.

 71

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

LIST DW 53H, 25H, 19H, 02H

COUNT EQU 04H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV DX, COUNT-1

LOOP2: MOV CX, DX

 MOV SI, OFFSET LIST

AGAIN: MOV AX, [SI]

 CMP AX, [SI+2]

 JC LOOP1

 XCHG [SI +2], AX

 XCHG [SI], AX

LOOP1: ADD SI, 02

 LOOP AGAIN

 DEC DX

 JNZ LOOP2

 MOV AH, 4CH

 INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 25H, 19H, 02H

OUTPUT:

 LIST: 02H, 19H, 25H, 53H

