
מטרי מרחב

הגדרה

שמתקיים: כך d : M ×M → [0,∞) ופונקציה M קבוצה הוא מטרי מרחב

ואם d (x, x) = 0 x ∈ M לכל x(כלומר = y אם״ם d (x, y) = 0 ,x, y ∈ M לכל .1

(d (x, y) 6= 0 אז x 6= y

d (x, y) = d (y, x) ,x, y ∈ M לכל .2

המשולש) שוויון (אי d (x, z) ≤ d (x, y) + d (y, z) ,x, y, z ∈ M לכל .3

M״. על ״מטריקה נקראת d הפונקציה

דוגמאות

.d (x, y) := |x− y| המטריקה עם R .1

נקראת זאת .d ((x1, ...xn) , (y1, ...yn)) :=

√

n
∑

i=1

(xi − yi)
2

המטריקה עם Rn .2

(d2 (מסומנת Rn״, על האוקלידית ״המטריקה

.(d∞ d(מסומנת ((x1, ...xn) , (y1, ...yn)) = max
1≤i≤n

|xi − yi| המטריקה עם Rn .3

נוכיח .d (x, y) :=

{

0 x = y

1 x 6= y
המטריקה את M על נגדיר כלשהי. קבוצה M תהי .4

מטריקה: שזו

המשולש שוויון שאי נוכיח מההגדרה. אוטומטית מתקיימים הראשונים התנאים שני

מתקיים:

d (x, z)
?

≤ d (x, y) + d (y, z)

להיות יכול שמאל שבצד ומכיוון ,2 ימין בצד נקבל אז x 6= y, y 6= z אם •
מתקיים. זה .1 מקסימום

לצד שווה גדול מקרה בכל וזה ,1 ימין בצד נקבל אז ,y 6= z או x 6= y אם •
שמאל.

הצדדים. בשני 0 נקבל ולכן ,x = z כלומר x = y = z אז y = zו x = y אם •

M״ על הדיסקרטית ״המטריקה נקראת הזאת המטריקה
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הגדרה

מטרי. מרחב (M,d) יהי

.A על מטריקה מהווה A×Aל d של הצמצום אזי כלשהי. קבוצה תת A ⊆ M תהי

נקרא A זו מטריקה ועם מM״, A על המושרה ״המטריקה נקראת A על הזו המטריקה

.M של מטרי מרחב תת

דוגמאות

Q ⊆ R .1

.Rn+1 של מרחב תת Sn ,Sn =

{

(x1, ...xn+1) ∈ Rn+1

∣

∣

∣

∣

n
∑

i=1

x2
i
= 1

}

.2

היחידה. מעגל הוא S1 ⊆ R2 •

.1 רדיוס עם כדור הוא S2 ⊆ R3 •

מימדית״ nה ״הספירה נקראת Sn ⊆ Rn+1 •

כעל עליו להסתכל אפשר אבל ־ מימדי n + 1 במרחב נמצא Sn שאמנם לב נשים

מימדי. n מרחב

סדרות של התכנסות

הגדרה

.a : N → M פונקציה היא Mב סדרה

.an כך: a (n) את לסמן נהוג

הגדרה

{an} שהסדרה נאמר אנו .M ∋ b ותהי ,Mב סדרה an תהי מטרי. מרחב (M,d) יהי

.d (an, b) < ǫ מתקיים n ≥ n0 שלכל כך n0 יש ǫ > 0 לכל אם ,bל מתכנסת

סימונים

an → b

an
n→∞
−−−−→ b

lim
n→∞

an = b
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טענה

יחיד. הוא {an}אז לסדרה גבול קיים אם

הוכחה

כי ǫ > 0 .ǫ =
1

2
d (b, c) ניקח .b 6= c שונים גבולות שני {an}יש שלסדרה בשלילה נניח

.b 6= c

.n ≥ n0 לכל d (an, b) < ǫש כך n0 קיים an → bש כיוון •

.n ≥ n1 לכל d (an, c) < ǫש כך n1 קיים an → cש כיוון •

אזי ,N = max (n0, n1) ניקח

d (aN , b) < ǫ

d (aN , c) < ǫ

נקבל המשולש שוויון מאי

d (b, c) ≤ d (b, aN ) + d (aN , c) < ǫ+ ǫ = d (b, c)

סתירה! וקיבלנו

טענה

d (an, b) → 0 אם״ם an → b

הוכחה

קיים bל an מהתכנסות .ǫ > 0 נתון יהא .d (an, b) → 0 וצ״ל an → b נניח ⇐
,n ≥ n0 שלכל מתקיים n0 אותו עבור .d (an, b) < ǫ ,n ≥ n0 שלכל כך n0

.|d (an, b)− 0| < ǫ

,n ≥ n0 שלכל כך n0 קיים ǫ > 0 בהינתן .an → b וצ״ל d (am, b) → 0 נניח ⇒
.d (an, b) < ǫ כלומר ,|d (an, b)− 0| < ǫ

נכונות שאינן האוקלידית המטריקה עם Rn של לתכונות דוגמאות

כללי באופן מטריים במרחבים

קושי סדרת ־ 1 דוגמה

ǫ > 0 לכל אם קושי סדרת נקראת Mב {an} סדרה מטרי. מרחב (M,d) יהי הגדרה

d (an, am) מתקיים n,m ≥ n0 שלכל כך n0 קיים

קושי. סדרת היא מתכנסת סדרה כל טענה
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מהגדרת .ǫ > 0 נתון יהא .bל המתכנסת סדרה {an} תהי הוכחה

לכן .d (an, b) <
ǫ

2
,n ≥ n0 שלכל כך n0 קיים

ǫ

2
עם ההתכנסות

n,m ≥ 0 לכל

d (an, am) ≤ d (an, b) + d (an, b) <
ǫ

2
+

ǫ

2
= ǫ

במרחבים נכון איננו זה מתכנסת. קושי סדרת כל ההפוכה: הטענה את גם הוכחנו Rnב

כללי. באופן מטריים

דוגמאות:

Qת .1

מתכנסת. איננה היא אך ,(0, ב(1 קושי סדרת היא

{

1

n

}

הסדרה .(0, 1) .2

שם(הגדרה)

שלם״. מטרי ״מרחב נקרא מתכנס קושי סדרת כל שבו מטרי מרחב

חסומה סדרה ־ 2 דוגמה

.n לכל d (an, b) ≤ Rש כך R > 0 וקיים M ∋ b קיים אם חסומה נקראת {an} סדרה

מתכנסת. סדרה תת יש חסומה סדרה לכל Rnב

שני כל בין המרחק ולכן שונים, איבריה כל שבה סדרה נבחר דיסקרטי, מטרי במרחב

איברים שני בין המרחק שלה סדרה תת בכל גם אבל חסומה. הסדרה לכן ־ 1 הוא איברים

מתכנסת. לא היא ולכן קושי, סדרת להיות יכולה לא היא ולכן ,1 הוא

סימון

נסמן: .r > 0 ,a ∈ M מטרי, מרחב (M,d) יהי

B (a, r) := {x ∈ M |d (x, a) < r}

r״. ברדיוס a סביב הפתוח ״הכדור נקראת B (a, r)

.xn ∈ B (a, ǫ) ,n ≥ n0 שלכל כך n0 יש ǫ > 0 לכל אם xn → a לכתוב: ניתן כעת

פונציות של התכנסות

הגדרה

.a ∈ M ותהי פונקציה, N : M → N תהי מטריים. מרחבים שני (N, ρ) ,(M,d) יהיו
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אז d (x, a) < δ אם x ∈ M שלכל כך δ > 0 יש ǫ > 0 לכל אם aב רציפה fש נאמר

.ρ (f (x) , f (a)) < ǫ

ש כך δ > 0 יש ǫ > 0 לכל אם aב רציפה fש נאמר כדורים: ובלשון

f
(

BM (a, δ)
)

⊆ BN (f (a) , ǫ)

רציפה. fל קוראים אנו אז ,M ∋ a נקודה בכל רציפה f : M → N אם

משפט

לכל אם״ם aב רציפה f אזי .a ∈ M ,f : M → N מטריים, מרחבים (N, ρ) ,(M,d) יהיו

f (xn) → f (a)ש מתקיים aל שמתכנסת {xn} נקודות סדרת

הוכחה

.f (xn) → f (a) צ״ל .aל המתכנסת Mב סדרה xn ותהי ,aב רציפה f נניח ⇐

.f (B (a, δ)) ⊆ B (f (a) , c)ש כך δ > 0 יש לכן ,aב רציפה f .ǫ > 0 נתון יהא

n ≥ n0 עבור ולכן ,xn ∈ B (a, δ) ,n ≥ n0 שלכל כך n0 יש לכן ,xn → a

.f (xn) ∈ B (f (a) , ǫ) יתקיים

.f (x) 6→ f (a) זאת ובכל ,xn → a סדרה למצוא עלינו .aב רציפה לא f נניח ⇒
d (x, a) < δש כך x יש δ > 0 שלכל כך ǫ > 0 קיים לא כלומר ,aב רציפה לא f

לכל כלומר .
1

n
מהצורה δ לכל נכון זה בפרט .ρ (f (x) , f (a)) ≥ ǫ זאת ובכל

כזה x נבחר .ρ (f (x) , f (u)) ≥ ǫ זאת ובכל d (x, a) <
1

n
ש כך x יש n

.{xn} סדרה ביחד קיבלנו הללו הבחירות מכל .xn לו ונקרא

.xn → a לכן2 .d (xn, a) → 0 לכן1 .0 ≤ d (xn, a) <
1

n
.xn → aש נראה

.n לכל ρ (f (xn) , f (a)) ≥ ǫ שלנו, ǫה עבור כי ,f (xn) 6→ f (a) אולם

פתוחות קבוצות

הגדרה

מטרי. מרחב (M,d) יהי

כך ρ > 0 יש x ∈ U לכל אם בM״ פתוחה ״קבוצה תקרא U ⊆ M קבוצה תת

.B (x, r) ⊆ Uש

1 אינפי של החומר 1לפי

הזה בשיעור שנלמד מה 2לפי
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דוגמה

פתוחה. קבוצה הוא Rב פתוח קטע

טענה

פתוחה. קבוצה הוא פתוח כדור

הוכחה

.x ∈ B (a, r) ותהי פתוח, כדור B (a, r) יהי

ונראה ,ǫ > 0 ולכן d (a, x) < rש מתקיים B (a, r) מהגדרת .ǫ = r − d (a, x) נסמן

.d (a, y) < r אז d (x, y) < ǫ אם yשלכל להראות צריך כלומר, .B (x, ǫ) ⊆ B (a, r)ש
אז d (a, x) < ǫ אם ואכן,

d (a, y) ≤ d (a, x) + d (x, y) < d (a, x) + (r − d (a, x)) = r

הגדרה

.Mב פתוחות קבוצות M, ∅ .1

פתוחה קבוצה
⋃

α∈I

Uα גם אז Mב פתוחות קבוצות של כלשהו אוסף {uα}α∈I
אם .2

.Mב

יש לכן ,Mב פתוחה Uα .x ∈ Uαש כך α ∈ I יש אזי ,x ∈
⋃

α∈I

uα יהי הוכחה

B (x, r) ⊆
⋃

α∈r

Uα ודאי לכן ,B (x, r) ⊆ Uαש כך r > 0

U1 ∩ אזי סופי) באוסף מדובר כאן לב, בM(שימו פתוחות קבוצות U1, U2, ...Un אם .3

.Mב פתוחה U2 ∩ ... ∩ Un

אזי: .x ∈ U1 ∩ ... ∩ Un יהי הוכחה

B (x, ǫ1) ⊆ U1ש כך ǫ1 > 0 יש לכן x ∈ U1 •

B (x, ǫ2) ⊆ U2ש כך ǫ2 > 0 יש לכן x ∈ U2 •

.

.

.

B (x, ǫn) ⊆ Unש כך ǫn > 0 יש לכן x ∈ Un •

חיוביים מספרים של סופי אוסף שזהו כיוון .r = min {ǫ1, ...ǫn} נסמן

מתקיים 1 ≤ i ≤ n ולכל ממש, חיובי הוא r המינימום גם ממש,

.B (x, r) ⊆ U1 ∩ U2 ∩ ... ∩ Un ולכן ,B (x, r) ⊆ Ui
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מינוח

הנקודה. את שכוללת פתוחה קבוצה פירושו x של סביבה ,x ∈ M אם

טענה

.a ∈ M ,f : M → N מטריים, מרחבים M,N יהיו

.f (v) ⊆ Uש כך a של V סביבה קיימת f (a) של U סביבה לכל אם״ם aב רציפה f אזי

משמעות

במטריקה. צורך ללא הפתוחות, הקבוצות באמצעות הרציפות את להגדיר ניתן

ניתן לא שכן יותר, חלש מושג הן אבל המטריקה, ע״י מוגדרות הפתוחות הקבוצות אמנם

פתוחות. קבוצות לפי מטריקה להגדיר

מטריקה, לנו ואין הפתוחות הקבוצות של החלקי המידע את רק לנו יש אם גם לכן,

רציפות. להגדיר אפשר

הפתוחות. הקבוצות אם רק ולהישאר מהמטריקה להיפטר האפשרות את לנו יתן זה

הטענה הוכחת

.f (a) של סביבה U ותהי ,aב רציפה f נניח ⇐
.B (f (a) , ǫ) ⊆ Uש כך ǫ > 0 יש לכן ,f (a) ∈ U פתוחה, U

.f (B (a, δ)) ⊆ B (f (a) , ǫ) ⊆ Uש כך δ > 0 יש לכן ,Aב רציפה f

.U = B (a, δ) ניקח

סביבה היא B (f (a) , ǫ) .ǫ > 0 ויהי סביבות, על התנאי שמתקיים נניח ⇒
.f (v) ⊆ B (f (a) , ǫ)ש כך a של V סביבה יש לכן ,f (a)של
ונקבל ,B (a, δ) ⊆ V ש כך δ > 0 יש לכן ,a ∈ V פתוחה, V

f (B (a, δ)) ⊆ B (f (a) , ǫ)

טענה

.f : M → N מטריים, מרחבים M,N יהיו

.Mב פתוחה f−1 (U)ש מתקיים Nב פתוחה u ⊆ N לכל אם״ם רציפה f אזי

f−1 (C) := {a ∈ A|f (a) ∈ C} אזי ,C ⊆ Bו f : A → B אם תזכורת:

פתוחה. קבוצה היא פתוחה קבוצה של הפוכה תמונה אם״ם רציפה f ־ במילים

הוכחה

פתוחה. f−1 (U) צ״ל פתוחה. U ⊆ N ותהי רציפה f נניח

כך a של Va סביבה יש הקודמת הטענה לפי לכן ,aב רציפה f .a ∈ f−1 (U) תהי

.Va ⊆ f−1 (u)ש מכאן1 .f (Va) ⊆ Uש

C ⊆ f−1 (D) אם״ם f (C) ⊆ D אזי D ⊆ B ,C ⊆ A ,f : A → B 1אם

1
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מעט). עוד שנוכיח השימושית, (הלמה
⋃

a∈f−1(U)

Va = f−1 (U)ש נובע מכאן

פתוחה. קבוצה היא לכן פתוחות. קבוצות של כאיחוד f−1 (U) את הצגנו כלומר,

השימושית(ל״ש)תכף הלמה

אזי .x ∈ Ex ⊆ A נתון x ∈ A לכל ונניח קבוצה, A תהי

⋃

x∈A

Ex = A

הוכחה

.x ∈ ⋃

x∈A

Ex ולכן ההגדרה, לפי x ∈ Ex ,x ∈ A לכל ⊇

נראה a ∈ M ולכל פתוחה, קבוצה היא פתוחה קבוצה של הפוכה תמונה נניח ⊆
..aב רציפה fש

היא .V = f−1 (U) ניקח .f (a) של U סביבה נתונה ותהא ,a נתונה תהא

.f (V ) ⊆ U ומתקיים ,a ∈ V וגם פתוחה,

הגדרה

פתוחה היא U ⊆ M קבוצה אם שקולות נקראות M קבוצה אותה על d, ρ מטריקות שתי

.ρ לפי פתוחה היא ⇔ d לפי

שקולות למטריקות דוגמאות

שקולות. המטריקות ־ (M, 5d) כלשהו. מטרי מרחב (M,d)

טענה

שקולות. המקסימום) ו∞d(מטריקת האוקלידית) d2(המטריקה המטריקות R
n על

עזר טענת

.r > 0 ,a ∈ R
n עבור

B2 (a, r) ⊆ B∞ (a, r) B∞ (a, r) ⊆ B2
(

a,
√
nr
)
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העזר טענת הוכחת

x = (x1, ...xn) a = (a1, ...an)

ראשונה הכלה •
כלומר .i לכל (xi − ai)

2
< r2 ⇐

n
∑

i=1

(xi − ai)
2
< r2 ⇐ x ∈ B2 (a, r) נניח

x ∈ B∞ (a, r) ⇐ max
1≤i≤n

|xi − ai| < r לכן .i לכל |xi − ai| < r

שנייה הכלה •
⇐ i לכל |xi − ai|2 < r2 ⇐ i לכל |xi − ai| < r ⇐ x ∈ B∞ (a, r) נניח

x ∈ B (a,
√
nr) ⇐

√

n
∑

i=1

|xi − ai|2 <
√
nr ⇐

n
∑

i=1

|xi − ai|2 < nr2

שקולות MAX ומטריקת האוקלידית שהמטריקה הטענה הוכחת

לפי פתוחה גם שהיא נראה האוקלידית. המטריקה לפי פתוחה U ⊆ R
n תהי ⇐

.MAX מטריקת

כך r > 0 יש האוקלידית. המטריקה לפי פתוחה שהיא כיוון .a ∈ U תהי

אזי .B2 (a, r) ⊆ Uש

B∞

(

a,
r√
n

)

⊆ B2 (a, r) ⊆ U

תרגיל ⇒

שקולות לא למטריקות דוגמה

האוקלידית. למטריקה שקולה אינה הדיסקרטית המטריקה

כל כי הקבוצות! כל ?X קבוצה על הדיסקרטית למטריקה הפתוחות הקבוצות מיהן

נקודה. אותה סביב 1 ברדיוס פתוח כדור הוא נקודון

.B2 (a, r) 6⊆ {a} ,r > 0 לכן האוקלידית, במטריקה זאת לעומת

מרחב תת של פתוחות קבוצות

תת של הפתוחות הקבוצות תתי את גם לנו נותנת מרחב של הפתוחות הקבוצות ידיעת האם

מרחב?

כן היא התשובה

3



טענה

מרחב. תת A ⊆ M מטרי, מרחב M יהי

.U = W∩Aש כך Mב פתוחה קבוצה W ⊆ M יש אם״ם Aב פתוחה קבוצה U ⊆ A אזי

עזר טענת

,a ∈ A עבור

BA (a, r) = {x ∈ A|d (x, a) < r}

BM (a, r) = {x ∈ M |d (x, a) < r}

BA = BM ∩A

הראשית הטענה הוכחת

.Aב פתוחה U = W ∩Aש נראה .Mב פתוחה W נניח ⇐
⇐ BM (a, r) ⊆ Wש כך r > 0 יש לכן .a ∈ W לכן .a ∈ U יהי

.BA (a, r) = Bn (a, r) ∩A ⊆ W ∩A = U

.U = W ∩Aש כך Mב פתוחה W ⊆ M נבנה .Aב פתוחה U ⊆ A נניח ⇒
⋃

x∈U

BA (x, rx) = נקבל .BA (x, rx) ≤ Uש כך rx > 0 יש x ∈ U לכל

U(ל״ש).

אזי פתוחות. קבוצות של כאיחוד פתוחה היא ־ W =
⋃

x∈U

BM (x, rx) נגדיר

W∩A =

(

⋃

x∈U

BM (x, rx)

)

∩A =
⋃

x∈U

(

BM (x, rx) ∩A
)

=
⋃

x∈U

(

BM (x, rx) ∩A
)

=
⋃

x∈U

BA (x, rx) = U

הערות

U = U ∩A כי ,Aב פתוחה U ודאי אז Mב פתוחה U ו U ⊆ A אם •

U = A ∩W כי ,Mב פתוחה גם U אז ,Aב פתוחה U ⊆ Aו פתוחה, A אם •

הגדרה

פתוחה. Sc אם סגורה נקראת S ⊆ M מטרי. מרחב M יהי
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תכונות

נקבל: דה־מורגן ומכללי פתוחות קבוצות של מהתכונות

סגורות. ∅,M .1

סגורה.
⋂

α∈I

Sα גם אז סגורות קבוצות של כלשהו אוסף {Sα}α∈I אם .2

סגורה. S1 ∪ ... ∪ Sn גם אז סגורות קבוצות של סופי אוסף S1, ...Sn אם .3

משפט

קבוצה. תת A ⊆ M מטרי, מרחב M יהי

הבאה: התכונה את מקיימת היא אם״ם Mב סגורה A אזי

יש לA(אם שייך הגבול אז Mב מתכנסת הסדרה אם ,Aב {xn} נקודות סדרת לכל

(p ∈ A אז xn → pש כך p ∈ M

הוכחה

כלשהו). p ∈ M )xn → pש כך Aב נקודות סדרת {xn} ונניח סגורה, A נניח ⇐
.p ∈ Aש נראה

אבל .B (p, r) ⊆ Acש כך r > 0 יש לכן פתוחה. Ac ,p ∈ Ac שלא: נניח

.xn ∈ B (p, r) ⊆ Ac ,n ≥ n0 שלכל כך n0 יש לכן ,xn → p

.xn ∈ A שני, מצד

סתירה.

שיש נראה כלומר סדרות. על התנאי מתקיים שלא ונראה סגורה, לא Aש נניח ⇒
.Aל מחוץ לנקודה שמתכנסת Aב נקודות של אחת סדרה לפחות

,ǫ > 0 לכל שעבורה p ∈ Ac נקודה יש לכן פתוחה, לא Ac לכן סגורה, לא A

שאיננה xn ∈ B

(

p,
1

n

)

נקודה ניקח ǫ =
1

n
עבור n לכל .B (p, ǫ) 6⊆ Ac

.x ∈ A כלומר ,Acב

אולם ,xn → p לכן d (xn, p) <
1

n
.Aב נקודות של {xn} סדרה קיבלנו

.p 6∈ A

תרגיל

.p ∈ M ,Mב נקודות סדרת {xi} מטרי. מרחב M יהי

.xn ∈ U ,n ≥ n0 שלכל כך n0 יש p של U סביבה לכל אם״ם xn → p אזי

5



הצטברות נקודות

הגדרה

.p ∈ M ,A ⊆ M מטרי, מרחב M יהי

.0 < d (x, p) < rש כך x ∈ A יש r > 0 לכל אם A של הצטברות נקודת נקראת p

שקולים ניסוחים

d (x, p) < rש כך p 6= x ∈ A יש r > 0 לכל .1

x ∈ Uש כך p 6= x ∈ A יש p של U סביבה לכל .2

U ∩ (A− {p}) 6= ∅ ,p של U סביבה לכל .3

(U − {p}) ∩A 6= ∅ ,p של U סביבה לכל .4

טענה

וכולן pמ שונות שכולן {xn} Aב נקודות סדרת קיימת אז ,A של הצטברות נקודת p אם

.xn → pש כך מזו זו שונות

הוכחה

.d (x1, p) < 1 ,x1 6= pש כך x1 ∈ A יש •

.d (x2, p) < min

(

1

2
, d (x1, p)

)

ש כך A ∋ x2 6= p יש •

d (xn, p) < min

(

1

n
, d (xn−1, p)

)

ש כך p 6= xn ∈ A נבחר רקורסיבי באופן •

כנדרש. xn סדרה נקבל

מסקנה

0 < d (x, p) ש> כך x ∈ A נקודות אינסוף יש r > 0 לכל אז ,A של הצטברות נקודת p אם

.r
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מטריים) קומפקטיות(במרחבים

הגדרות

נתון. מ״מ M נניח

⋃

i∈I

Ui = M ש כך Mב קבוצות תת של {Ui}i∈I אוסף זה M של כיסוי (א)

Mב פתוחה Ui כל אם פתוח כיסוי אומרים

⋃

j∈J

Uj = וגם J ⊆ I אם {Ui}i∈I של כיסוי תת נקרא {Uj}j∈J
חלקי אוסף (ב)

M

.M עבור פתוח כיסוי של פרטי מקרה זה γǫ := {B (x, ǫ)}x∈M (ג)

{Ui}i∈I פתוח כיסוי עבור (Lebesgue)לבג מספר הוא δ > 0 שמספר אומרים (ד)

{ui}i∈I את ״מעדן״ γδ = {B (x, δ)}x∈M אם

B (x, δ) ⊆ Ui0ש כך I ∋ i0 קיים B (x, δ) לכל ז״א = ״מעדן״

(Compact Spaces)קומפקטיות של הגדרה

סופי. תת־כיסוי קיים M של α = {Ui}i∈I פתוח כיסוי לכל אם קומפקטי Mש אומרים

דוגמאות

קומפקטי. לא R .1

נקבל אחרת סופיף כיסוי תת אין אבל פתוח. כיסוי {Un = (n, n)}n∈N
למשל,

חסום. לא R כי סתירה וזו ,∃n0 = max {n1, n2, . . . nm} כי R = (−n0, n0)ש

טענה .2
חסום.1 הוא קומפקטי מטרי מרחב כל

.M של פתוח כיסוי
⋃

n∈N

B (x0, n) = M .x0 ∈ M ד=נבחר הוכחה:

אזי סופי. כיסוי תת קיים ⇐ קומפקטי M

∃n0(=max{n1,n2,...nm}M = B (x0, n0)

.M = B (x0, n1) ∪ · · · ∪B (x0, nm) אז סופי כיסוי תת קיים אם כי

חסום. Mש נובע מהשוויון

M = B (x, r)
∃x∈M∃r>0

⇔ ∀x,y∈Md (x, y) ≤ c ש כך 0 < c קיים 1ז״א

1

3 האצרה



משפט

שקולים: הבאים התנאים מטרי. מרחב (M,d) נניח

קומפקטי M .1

.E של הצטברות נקודת קיימת M ⊇ E אינסופית קבוצה תת לכל .2

מתכנסת סדרה תת יש Mב סדרה לכל .3

הוכחה

ללא M ⊇ E אינסופית קבוצה תת קיימת ז״א מתקיים, לא ש2 בשלילה נניח 2 ⇐ 1
ש כך 0 < ǫx קיים M ∋ x לכל לכן, הצטברות. נקודות

B (x, ǫx) ∩ E\ {x} = ∅

.B (x, ǫx) ∩ E =

{

{x} x ∈ E

∅ x /∈ E
מכאן

.M של פתוח כיסוי {B (x, ǫx)}x∈M

⋃

α∈M

B (x, ǫx) = M

M ∋ x1, x2, ...xm קיימים ז״א סופי, כיסוי תת קיים ⇐ M של הקומפקטיות בגלל

ש כך

m
⋃

i=1

B (xi, ǫxi
) = M

m
⋃

i=1

(E ∩B (xi, ǫxi
)) = E ∩M = E

⇓

סתירה. וזו סופית קבוצה E לכן העצמה, |E| ≤ m < ∞

מתכנסת. סדרה תת קיימת צ״ל .Mב נתונה סדרה {xn} נניח 3 ⇐ 2

אינסוף שמופיע אחד ערך לפחות יש אז בסדרה, ערכים של סופי מספר יש אם

כמובן קבועה(והיא סדרה תת לבחור אפשר טריוויאלי באופן לכן פעמים,

ערכים. אינסוף שיש להניח אפשר בה״כ לכן מתכסנת).

אינסופית. קבוצה E הסדרה. של ערכים Eב נסמן

.E קבוצה עבור M ∋ p הצטברות נקודת קיימת 2 נתון לפי

∣

∣

∣

∣

∣

B

(

p,
1

m

)

∩ E\P

∣

∣

∣

∣

∣

≥ ℵ0

2



מזה: זה שונים איברים של סדרה תת לבנות ניתן

∃xn1
∈ B

(

p,
1

1

)

∩ (E\ {p})

∃xn2
∈ B

(

p,
1

2

)

∩ (E\ {p}) xn2
6= xn1

, n2 > n1

∃xn3
∈ B

(

p,
1

3

)

∩ (E\ {p}) xn3
/∈ {xn1

, xn2
} , n3 > n2

סדרה תת נקבל ואז כך נמשיך

xn1
, xn2

, . . .

של האיברים כל את כמעט מכיל p של כדור כל כי ,xnk

M
−→ pש כך {xn} של

הבנייה. לפי {xnk
}

סופי. כיסוי תת שיש צ״ל .M של פתוח כיסוי {Ui}i∈I נניח 1 ⇐ 3

.{Ui}i∈I עבור 0 < δ לבג מספר שקיים נוכיח I שלב

של עידון γδ = {B (x, δ)}x∈Mש כך 0 < δ שקיים נוכיח ז״א

ז״א: .{Ui}

∃δ>0 ∀x∈M∃i0∈IB (x, δ) ⊆ Ui0

מתקיים: לא שזה בשלילה נניח

(

∀ 1

n

)

∀n ∃xn∈M∀i∈IB

(

xn

1

n

)

⊆ Ui

.Mב{xn} סדרה קיבלנו

כך M ∋ p קיים ז״א .{xnk
} מתכנסת סדרה תת קיימת ⇐ 3 לפי

xnk

M
−−−−→
k→∞

pש

⋃

i∈I

Ui = M ∋ p

⇓

∃i0∈Ip ∈ Ui0

ש כך 0 < ǫ קיים לכן פתוחה. קבוצה Ui0 נתון

B (p, ǫ) ⊆ Ui0
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שמתקיים כך גדול מספיק nk ניקח















1

nk

<
ǫ

2

d (xnk
, p) <

ǫ

2

B

(

xnk
,
1

nk

)

⊆ Ui0 מתקיים אז















d (x, xnk
) <

1

nk

<
ǫ

2

d (xnk
, p) <

ǫ

2

⇐ x ∈ B

(

xnk
,
1

nk

)

הסבר:

.d (x, p) < ǫ נקבל המשולש שוויון ומאי

x ∈ B

(

xnk
,
1

nk

)

⇒ x ∈ B (p, ǫ)

⇓ B (p, ǫ) ⊆ Ui0

B

(

xnk
,
1

nk

)

⊆ Ui0

.0 < δ לבג מספר יש ז״א ,I שלב את הוכחנו ⇐ סתירה ⇐

1(קומפקטיות). צ״ל ,3 נתון II שלב

α = פתוח כיסוי קיים ז״א קומפקטי. לא Mש בשלילה נניח

סופי. תת־כיסוי בלי {Ui}i∈I

γδ = {B (x, δ)}i∈M ≺)0 < δ הוא נניח לבג. מספר קיים I שלב לפי

(α
.x1 ∈ M נבחר

∃x2 /∈ B (x1, δ)

∃x3 /∈ B (x1, δ) ∪B (x2, δ)

∃x4 /∈ B (x1, δ) ∪B (x2, δ) ∪B (x3, δ)

כך: נמשיך

∃xn+1 /∈ B (x1, δ) ∪ · · · ∪B (xn, δ)

.M = B (x1, δ) ∪ · · · ∪B (xn, δ) נקבל אחרת כי n לכל קיים

כך Uik ∈ α קיים 1 ≤ k ≤ n ,xk לכל לבג מס׳ הגדרת לפי

4



. B (xk, δ) ⊆ Uik ש

נקבל:

M = Ui1 ∪ Ui2 ∪ · · · ∪ Uin

לבחירת בסתירה ,M של סופי תת־כיסוי {Ui1 , Ui2 , . . . Uin} ז״א

.
d (xi, xj) ≥ δ

i 6= j
התכונה עם {xn} סדרה קיבלנו לכן .α

� ־ נכון לא 3 לכן קושי!) סדרת תת מתכנסת(אין סדרה תת אין

הערה

קיים פתוח כיסוי לכל מטרי קומפקטי מרחב בכל לכן שקולים. 1,2,3 הקודם המשפט לפי

לבג. מספר

טענה

dY (y1, y2) = ,Y ⊆ M מטרי(כלומר מרחב תת (Y, dY ) מטרי, מרחב (M,d) נניח

.(d (y1, y2)
.Mב סגורה קבוצה תת Y אזי קומפקטי מרחב (Y, dY ) אם

הוכחה

קיימת לכן הגבולות. לגבי Mב סגורה לא Y ז״א .M במרחב סגורה לא Y ש בשלילה נניח
{

yn
M
−→ p ∈ M
p /∈ Y

שקיים כך Y ∋ yn סדרה

סדרה תת קיימת ⇐ במשפט) 3 מתקיים סדרתית״(ז״א ״קומפקטי Y ⇐ קומפקטי Y

שונים גבולות 2 שיש נקבל .(d|Y = dY (כי ynk

M
−→ q אז .(qל)Y ב מתכנסת {ynk

}
� ⇐ סתירה ־ {ynk

} סדרה לאותה Y ∋ q 6= p /∈ Y

Heine-Borel משפט

שקולים: התנאים .M ⊆ R
n נניח

מרחב) קומפקטי(כתת M .1

(Rn במרחב קבוצה וסגור(כתת חסום M .2

הוכחה

שהוכחנו! טענות 2 של שילוב 2 ⇐ 1

המשפט). סדרתית(בגלל לקומפקטיות שקול קומפקטיות. 1 צ״ל 2 ⇒ 1
.Mב {vk}k∈N

סדרה נניח

vk =
(

xk
1 , x

k
2 , . . . x

k
k

)

k∈N

⇐ ∀k ‖vk‖ ≤ cש כך קבוע 0 < c קיים ⇐ חסום M

5



.Mב סדרה

בהתאמה .
{

xk
1

}

k∈N
מתכנסת סדרה תת קיימת ווירשטראס בולצנו משפט לפי

שני. רכיב עבור דומה באופן נמשיך .{vk} של סדרה תת נקבל

סדרה תת נקבל צעדים n אחרי כזאת, בצורה שהתקבלה סדרה בתת נמשיך אם

שמתכנסת nיות של סדרה {vkm
ש{ נקבל .{vk} של {vkm

} של מסויימת

נקבל פשוטה) בדיקה לפי בRn(או התכנסות של התאור בגלל לכן רכיב. רכיב

.Rnב מתכנסת היא שהסדרה

.Mב גם מתכנסת ,M של הסגירות בגלל

תרגיל

קומפקטית R
nב שספירה להוכיח .1

קומפקטית. לא וסגורה חסומה Y ⊆ M קבוצה ותת M מטרי מרחב למצוא .2

אינסופי... דיסקרטי מרחב רמז:

6



הגדרה

המקיימת: ,X של קבוצות תתי של T ומשפחה X קבוצה הוא (X,T ) טופולוגי מרחב

∅, X ∈ T .1

⋃

α∈I

Uα ∈ T גם אז ,α ∈ I לכל Uα ∈ Tש בך קבוצות אוסף {Uα}α∈I אם .2

גם אז 1 ≤ i ≤ n לכל Ui ∈ Tש כך קבוצות של סופי אוסף U1, U2, . . . Un אם .3
⋂

1≤i≤n

Ui ∈ T

.Xב פתוחות קבוצות יקראו Tב והקבוצות ,X על טופולוגיה תיקרא T כזה, במקרה

טופולוגיים למרחבים דוגמאות

.d המטריקה באממצעות המוגדרות הפתוחות הקבוצות אוסף T ו מטרי מרחב (X, d) .1

.d המטריקה ע״י המושרה הטופולוגיה נקראת אז T

.X על הטריוויאלית הטופולוגיה נקראת זו .T = {∅, X} כלשהי, קבוצה X .2

.X על הדיסקרטית הטופולוגיה נקראת זו .T = P (X) לקחת אפשר X קבוצה לכל .3

הגדרה

.T את משרה dש כך X הקבוצה על d מטריקה יש אם מטריזבילי יקרא (X,T )

טענה

מטריזבילית. היא הדיסקרטית הטופולוגיה

הוכחה

הדיסקרטית. המטריקה את קחו

מטריזבילית. איננה הטריוויאלית המטריקה אז אחת מנקודה יותר Xב אם

ניקח הטריוויאלית. הטופולוגיה שאיננה טופולוגיה משרה X על מטריקה שכל נראה

:U = B (a, r) בקבוצה ונביט r = d (a, b) נסמן כלשהם. a 6= b ∈ X

פתוח כדור היא כי פתוחה קבוצה U •

a ∈ U כי U 6= ∅ •

b /∈ U כי U 6= X •

1
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תרגיל

M −{a} אחרות במילים או סגורה {a} הקבוצה a ∈ M לכל אזי מטרי. מרחב (M,d) יהי

מהעוצמה הוא {M − {a}}a∈M האוסף כי פתוחות בנות קבוצות |N| לנו שיש מכאן פתוחה.

הזאת.

דוגמה

T =






A ⊆ X

∣
∣
∣
∣
∣
∣

|X −A| < ∞
∨

A = ∅






ונגדיר קבוצה, X תהי .5

טופולוגיה זוהי (א) תרגיל:

מטריזבילית איננה X אינסופית X עבור (ב)

הגדרה

טופולוגיים. מרחבים שני (Y, S) ,(X,T ) יהיו

f−1 (U) ∈ Tש מתקיים U ∈ S לכל אם רציפה תקרא f : X → Y
.Xב פתוחה f−1 (U)ש מתקיים פתוחה U ⊆ Y לכל במילים:

פתוחה. קבוצה היא פתוחה קבוצה של הפוכה תמונה במילים: יותר עוד

טענה

טופולוגיים. מרחבים שלושה (X,T1) , (Y, T2) , (Z, T3) אם

רציפה. כן גם g ◦ f : X → Z אז רציפה g : Y → Zו רציפה f : X → Y אם

הוכחה

אזי פתוחה. U ⊆ Z תהי

(g ◦ f)−1
(U) = f−1

(
g−1 (U)

)

.Xב פתוחה

טענה

רציפה. Id : X → X הזהות העתקת (X,T ) טופולוגי מרחב לכל .1

.Xב פתוחה כמובן לכן Id
−1 (U) = u אזי .Xב פתוחה U ⊆ X תהי הוכחה:

זו .Kb (x) := b ,x ∈ X לכל ע״י Kb : X → Y נגדיר .b ∈ Y מ״ט, X,Y יהיו .2

.b הוא הקבוע שערכה קבועה פונקציה נקראת

רציפה Kb טענה:

K−1
b (U) =

{

X b ∈ U

∅ b /∈ U
אזי פתוחה. U ⊆ Y תהי הוכחה:

2



הגדרה

.a ∈ X מ״ט, X יהי

.a ∈ U ו פתוחה U אם a של סביבה נקראת U ⊆ X

הגדרה

.xa ∈ X ,f : X → Y מ״ט, X,Y יהיו

כך (Xב)a של V סביבה יש (Y f(ב (a) של U סביבה לכל אם aב רציפה תקרא f אזי

f (V ) ⊆ Uש

טענה

.x ∈ X נקודה בכל רציפה היא אם״ם רציפה f : X → Y

הוכחה

סביבה f−1 (U) אזי .f (a) של של סביבה U תהי .a ∈ X תהי רציפה. f נניח ⇐
.f
(
f−1 (U)

)
⊆ U ומתקיים ,a של

a ∈ f−1 (U) תהי .Xב פתוחה f−1 (U)ש נראה פתוחה. U ⊆ Y תהי ⇒
כלומר ,f (Va) ⊆ Uש כך a של סביבה Va קיימת לכן .f (a) ∈ U כלומר

השימושית מהלמה כעת .Va ⊆ f−1 (U)

⋃

a∈f−1(U)

Va = f−1 (U)

פתוחה. f−1 (U) לכן

הגדרה

.A ⊆ X ותהי מ״ט (X,T ) יהי

הבא: באופן מוגדרת A על המרחב״ ״תת טופולוגיית

הבא: באופן S ⊆ P (A) אוסף נגדיר

S = {u ⊆ A|∃V ∈TU = V ∩A}

טענה

A על טופולוגיה היא S

3



הוכחה

∅ = ∅ ∩A כי ∅ ∈ S • .1

A = X ∩A כי A ∈ S •

.Uα = Vα∩Aש כך Vα ∈ T יש α לכל כלומר .S ∋ Uα α שלכל כך אוסף {Uα} נניח .2

אזי

⋃

Uα =
⋃

(Vα ∩A) =
(⋃

Vα

)

∩A ∈ S

Ui = Vi ∩Aש כך T ∋ Vi יש i לכל כלומר .U1, . . . Un ∈ S נניח .3

⋂

1≤i≤n

Ui =
⋂

1≤i≤n

(Vi ∩A) =




⋂

1≤i≤n

Vi



 ∩A ∈ S

הגדרה

i (a) = a ע״י i : A → X ההכלה העתקת מוגדרת .A ⊆ X

טענה

רציפה. i : A → X ההכלה העתקת אזי מרחב, תת A ⊆ Xו מ״ט X אם

הוכחה

.Xב פתוחה U ⊆ X תהי

i−1 (U) = U ∩A

.Aב פתוחה ולכן

הגדרה

.f |A (a) := f (a) ע״י f |A : A → Y נגדיר A ⊆ Xו f : X → Y אם

f |A = f ◦ iש מתקיים

טענה

רציפה. f |A : A → Y אז ,A ⊆ X רציפה, f : X → Y אם

הוכחה

רציפה. ולכן f |A = f ◦ i

4



משפט

ע״י f̂ : X → B להגדיר ניתן אזי .f (X) ⊆ B ⊆ Y רציפה, f : X → Y מ״ט, X,Y יהיו

רציפה. f̂ גם אזי .f̂ (x) = f (x)

הוכחה

.Xב פתוחה f̂−1 (U) צ״ל .Bב פתוחה U ⊆ B תהי

U = V ∩Bש כך Y ב פתוחה V ⊆ Y שקיימת פרושו Bב פתוחה U

f̂−1 (U) =
{

x ∈ X
∣
∣
∣f̂ (x) ∈ U

}

= {x ∈ X|f (x) ∈ U=V ∩B} = {x ∈ X|f (x) ∈ V } = f−1 (V )
︸ ︷︷ ︸

open

.f (x) ∈ V אם״ם f (x) ∈ V ∩B לכן ,f (x) ∈ Bש ממילא מתקיים x ∈ X לכל

הערה

כהעתקה רציהפ היא f אזי (Bל רציפה(כהעתקה f̂ שאם ודאי כי אם״ם היא הטענה למעשה

f = i ◦ f̂ כי ,Y ל

הגדרה

פתוחה. Kc אם סגורה תיקרא K ⊆ X מ״ט. X יהי

תכונות

סגורות: קבוצות של הבאות התכונות את נקבל טופולוגיה מהגדרת

סגורות ∅, X .1

סגורה. קבוצה
⋂

α∈I

Sα אזי סגורות קבוצות של כלשהו אוסף {Sα}α∈I אם .2

סגורה. קבוצה
⋂

1≤i≤n

Si אזי סגורות קבוצות של סופי אוסף S1, . . . Sn אם .3

5



הגדרה

.A ⊆ X מ״ט, X יהי

כך: מוגדר
◦

A שמסומן ,A של הפנים

◦

A=
⋃

U ⊆ A

U is open

U

תכונות
◦

A⊆ A .1

פתוחה
◦

A .2

(Aב המוכלת המקסימלית הפתוחה הקבוצה
◦

A U(כלומר ⊆
◦

A אז פתוחה, U ⊆ A אם .3

.
◦

A את מאפיינות הללו התכונות שלושת

למשלימים: מעבר ע״י

◦

A=
(

(Ac)
)c

תרגיל הוכחה:

הגדרה

.A ⊆ X מ״ט, X יהי

.A = X אם Xב צפוף יקרא A

.A את חותכת ריקה לא פתוחה קבוצה כל אם״ם Xב צפופה A כלומר

.A ⊆ B ⊆ X מ״ט, X

A
X

כעת נסמן אותו Xב A של בסגור להביט ניתן •

A
B

כעת נסמן אותו Bב A של בסגור להביט ניתן •

?A
B
ל A

X
בין הקשר מה

A
B
=

⋂

A ⊆ S ⊆ B

S is close in B

S =
⋂

Q is cloes in X

A ⊆ Q

=










⋂

Q is close in X

A ⊆ Q

Q










∩B = A
X∩B

(A ⊆ Q אם״ם A ⊆ Q∩B אולם ,A ⊆ Q∩B לכתוב צריכים היינו לכאורה השני, (בחיתוך

1
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דוגמה

X = R B = (0, 1) A =

(

0,
1

2

)

A
X

=

[

0,
1

2

]

A
B
=

(

0,
1

2

]

דוגמה עוד

A ⊆ B ⊆ X

(0, 1) ∩Q ⊆ Q ⊆ R

◦

A
X

= ∅
◦

A
B

= A

הערה

◦

A= A אם״ם פתוחה A

(A = A אם״ם סגורה Aש שעבר בשבוע לטענה (דומה

טענה

◦

A
B

⊇
◦

A
X

הוכחה

את המגדיר באיחוד המשותף האוסף לכן .Bב פתוחה U ודאי אז ,Xב פתוחה U ⊆ A אם

.
◦

A
X

את המגידר באיחוד המשותך באוסף מוכל
◦

A
B

טענה

A ⊆ B ⊆ X

A
X ⊇ B אם״ם Bב צפופה A אזי

2



הוכחה

.A
X ⊇ B אם״ם ,A

X ∩B = B אם״ם ,A
B
= B אם״ם Bב צפופה A

הגדרה
⋃

α∈I

Uα = Xש כך Xב פתוחות קבוצות של {Uα}α∈I אוסף הוא X של פתוח כיסוי

משפט

אם״ם רציפה f אזי פונקציה. f : X → Y ,X של פתוח כיסוי {Uα}α∈I מ״ט, X,Y יהיו

.α ∈ I לכל רציפה f |Uα
: Uα → Y

פתרון

.α לכל רציפה f |Uα
אז רציפה f אם ⇐

רציף. fש נראה .α לכל רציף f |Uα
נניח ⇒

מתקיים: פתוחה. f−1 (U) צ״ל פתוחה, U ⊆ Y תהי

f−1 (U) =
⋃

α∈I

(
f |Uα

)−1

(U)

ולכן ,Xב פתוחה Uα אולם .Uαב פתוחה f |−1

Uα
(U) רציפה, f |Uα

ש כיוון

.Xב פתוחה קבוצה
⋃

α∈I

f |−1

Uα
(U) האיחוד ולכן ,Xב גם פתוחה f |−1

Uα
(U)

משפט

.S1 ∪ S2 ∪ · · · ∪ Sn = Xש כך Xב סגורות קבוצות של סופי אוסף S1, . . . Sn נניח

1 ≤ i ≤ n לכל רציפה f |Si
: Si → Y אם״ם רציפה f : X → Y

הוכחה

שקול פתוחה קבוצה היא פתוחה קבוצה של הפוכה שתמונה התנאי שכן הקודם, המשפט כמו

פתוחה. היא פתוחה קבוצה של הפוכה שקבוצה לתנאי

הגדרה

.U ∪V = Xש כך ריקות ולא זרות פתוחות, U, V ⊆ X קיימות לא אם קשיר נקרא X מ״ט

שקולות הגדרות

K ∪L = Xש כך ריקות ולא זרות סגורות K,L קבוצות קיימות לא אם״ם קשיר X •

סגורה. וגם פתוחה Aש כך ∅ 6= A 6= X קיימת לא אם״ם קשיר X •

3



עתה) הגדרה(לעת

ולכל f : X → R רציפה פונקציה לכל אם הביניים ערך תכונת את מקיים שמ״ט נאמר

.f (c) = tש כך c ∈ X יש אז f (a) < t < f (b) אם ,a, b ∈ X

דוגמה

הביניים. ערך תכונת את מקיים R

משפט

קשיר. X אם״ם הביניים ערך תכונת את מקיים X

הוכחה

וקיימים f : X → R קיימת כלומר הביניים. ערך תכונת את מקיים לא X נניח ⇐
.f (x) 6= t ,x ∈ X ולכל f (a) < t < f (b)ש כך t ∈ R וקיים a, b ∈ X

ריקות: לא פתוחות U, V אזי .V = f−1 ((−∞, t)) ,U = f−1 ((t,∞)) נגדיר

הנחנו כי ,X כל ואיחודן זרות) (−∞, t),(t,∞) זרות(כי a ∈ V ,b ∈ U כי

קשיר. לא X ⇐ f (x) 6= t x ∈ X שלכל

.U ∪ V = Xש כך ריקות לא זרות פתוחות U, V יהיו קשיר. לא X נניח ⇒
ע״י f : X → R נגדיר

f (x) =

{

0 x ∈ U

1 x ∈ V

מקיים לא Xש מכאן פתוח״. לכיסוי פוקנציה ״צמצום על מהמשפט רציפה f

הביניים. ערך תכונת את

דוגמה

קשיר לא Q

:U, V ל דוגמה

U =
(

−∞,
√
2
)

∩Q V =
(√

2,∞
)

∩Q

משפט

קשיר R

הוכחה

א׳ משנה הביניים ערך +משפט קודם שהוכחנו השקילות

4



טענה

נקודות. שתי בין דיסקרטי מרחב על Xמ רציפה פונקציה קיימת לא אם״ם קשיר X

הוכחה

קודם. שהוכחנו לשקילות זהה

הערה

ערך למשפט לקשר כדי רק היא Rל העתקים מופיעים שבה שקילות הוכחנו שקודם הסיבה

א׳. משנה הביניים

משפט

קשיר. Y אזי .Y ועל רציפה f : X → Y קשיר, X מ״ט, X,Y יהיו

הוכחה

U ∪V ש= כך ריקות לא זרות פתוחות U, V ⊆ Y קיימות כלומר קשיר. לא Y בשלילה נניח

לא זרות), U, V זרות(כי רציפה), f פתוחות(כי הן אזי ,f−1 (U) , f−1 (V ) ⊆ X .Y

כי ,f−1 (U) ∪ f−1 (V ) = X וכן על), f ו ריקות לא U, V ריקות(כי

f−1 (U) ∪ f−1 (V ) = f−1 (U ∪ V ) = f−1 (Y ) = X

.X לקשירות סתירה

משפט כמסקנה נקבל

קשיר. מרחב f (X) אזי רציפה. f : X → Y קשיר, X מ״ט, X,Y יהיו

הוכחה

על. גם והיא ,f : X → f (X) פונקציה נקבל הטווח צמצום ע״י

קשיר. מרחב היא קשיר מרחב של רציפה תמונה במילים:

סיפור

של מרחבים תתי שאיזהשהם להראות רק והצלחנו קשיר, Xש להראות מעוניינים שאנו נניח

קשיר? כולו Xש מכך להסיק נוכל מתי קשירים. הם X

קטנה למה

תת A ⊆ X ונניח ,U ∪ V = Xש כך ריקות ולא זרות פתוחות קבוצות U, V מ״ט, X יהי

A ⊆ V או או A ⊆ U אזי קשיר. מרחב

5



הוכחה

סותרים A ∩ V וגם A ∩ U הזוג אזי .A ∩ V 6= ∅ וגם A ∩ U 6= ∅ אזי שלא, בשלילה נניח

.A קשירות את

(A שאיחודן ריקות ולא זרות Aב פתוחות Aב קבוצות שתי (אלה

1 טענה

.a, b ∈ Aש כך A קשיר מרחב תת יש a, b ∈ X לכל אם״ם קשיר X אזי מ״ט, X יהי

הוכחה

U∪V ש= כך ריקות לא זרות פתוחות U, V יש אזי קשיר. לא Xש בשלילה נניח ⇒
שני מצד .a, b ∈ Aש כך קשיר A ⊆ X יש מההנחה .a ∈ U, b ∈ V ניקח .X

סתירה. ־ A ⊆ V או A ⊆ U מהלמה

.A = X ניקח a, b לכל אזי קשיר X נניח ⇐

2 טענה

קשיר. A ∪B אזי A ∩B 6= ∅ קשירים, A,B ,A,B ⊆ X אם

הוכחה

כך ריקות ולא זרות A ∪ Bב פתוחות קבוצות שתי יש אזי קשיר. לא A ∪ B בשלילה נניח

אופן ובאותו ,A ⊆ V או A ⊆ U מתקיים A ∪ B עבור מהלמה אזי .U ∪ V = A ∪ Bש

.B ⊆ V או B ⊆ U

בה״כ מכאן .A ∪ B ⊆ U ( A ∪ B את כי לא! ?B ⊆ U וגם A ⊆ Uש ייתכן האם

.A ∩B 6= ש∅ לכך סתירה ־ B ⊆ V ,A ⊆ U

משפט

תתי של A1, . . . An סופי אוסף יש a, b ∈ X לכל הבאה: התכונה את המקיים מ״ט X יהי

ש כך X של קשירים מרחבים

a ∈ A1 A1 ∩A2 6= ∅, A2 ∩A3 6= ∅, . . . An−1 ∩An 6= ∅ b ∈ An

קשיר. X אזי

הוכחה

של בסופו הלאה. וכן קשיר, A1 ∪A2 ∪A3 גם ולכן קשיר, A1 ∪A2 הקודמת, הטענה לפי

הראשונה מהטענה לכן a, b ∈ A1 ∪ · · · ∪An מתקיים: קשיר. A1 ∪ · · · ∪Anש נקבל דבר

קשיר. X

6



מסקנה

ש כך קשירים מרחבים תתי של אוסף {Aα}α∈I מ״ט, X אם

⋃

α∈I

Aα = X
⋂

α∈I

Aα 6= ∅

קשיר. X אזי

הוכחה

הקודמת. בטענה נשתמש

לא החיתוך Aα(כי ∩ Aβ 6= ∅ .b ∈ Aβש כך β יש .a ∈ Aαש כך α יש .a, b ∈ X יהיו

.Aα, Aβ השרשרת עם המקורית הטענה של התנאי שמתקיים מכאן ריק)

משפט

קשיר. X אזי קשיר. מרחב תת שהיא צפופה קבוצה A ⊆ X מ״ט, X יהי

הוכחה

נביט .U ∪V = Xש כך ריקות ולא זרות פתוחות U, V יש אזי קשיר. לא Xש בשלילה נניח

צפוף. A כי ריקות לא שתיהן .A איחודן זרות, ,Aב פתוחות הן .U ∩A, V ∩Aב

משפט

קשירים כולם הם Rב למיניהם הקטעים

למשל

(−∞, b] (a,∞) (a, b] [a, b)

הוכחה

למיניהם, הפתוחים הקטעים לכל הומאומורפי (−∞,∞) קשיר. ש(∞,∞−) הוכחנו כבר

קשירים. אלה גם לכן

.(a, b)
︸ ︷︷ ︸

A

⊆ [a, b)
︸︷︷︸

B

ב נביט קשיר? [a, b) מדוע

A ⊆ B ⊆ R A
R ⊇ B

קשיר. B לכן ,Bב צפופה Aו קשירה A

7



טענה

הומאומורפיזם. לא [a, b) , (c, d)

הוכחה

הומאומורפיזם שיש בשלילה נניח

h : [a, b) → (c, d)

.f ◦ g = Id g ◦ f = Idש כך g : (c, d) → [a, b) רציפה g וקיימת רציפה, h כלומר

להמשך טופולוגי רעיון

קשיר נשאר זה זורקים שאם אחת נקודה בדיוק יש ,[∗, ∗) עבור •

קשיר נשאר זה זורקים שאם נקודה אף אין ,(∗, ∗) עבור •

קשיר נשאר זה זורקים שאם נקודות שתי בדיוק יש ,[∗, ∗] עבור •

הומאומורפיזם. לא הקטעים הזה הטופולוגי ההבדר בגלל

8



הומיאומורפיזם. למצוא מספיק הומיאומורפים, הם טופולוגיים מרחבים ששני להראות כדי

הומיאומורפיזם. ביניהם להיות יכול שלא להוכיח צריך הומיאומורפים, לא שהם להראות כדי

בשני. ואין באחד שיש טופולוגית תכונה מציאת ידי על זאת לעשות ניתן

דוגמה

קשירות. היא כזו טופולוגית לתכונה דוגמה

(0, 1) [0, 1) [0, 1]

לא הם ולכן קשירות, על ולשמור אותן לזרוק שניתן שונה נקודות מספר יש מהם אחד בכל

הומיאומורפים.

פורמלית בצורה ההוכחה

רציפה g וקיימת רציפה h כלומר .h : [a, b) → (c, d) הומאומורפיזם שיש בשלילה נניח

ש כך g : (c, d) → [a, b)

g ◦ h = Id[a,b) h ◦ g = Id(c,d)

בצמצום נביט

h|(a,b) : (a, b) → (c, d)

נקבל הטווח צמצום ע״י אזי

h|(a,b)



 (a, b)
︸ ︷︷ ︸

connected



 = (c, d)− h (a)
︸ ︷︷ ︸

disconnected

קשיר. מרחב להיות צריכה קשיר מרחב של שהתמונה לכך בסתירה

כללי באופן

ועבור ,h : X → Y הומיאומורפיזם שיש מניחים ,X,Y טופולוגים מרחבים שני יש אם

התחום את מצמצמים כלשהי A ⊆ X קבוצה

h|X−A : X −A→ Y

הטווח את גם מצמצמים זה ואחרי

h|X−A : X −A→ Y − h (A)

כי הומיאומורפיזם זהו

g|Y−h(A) : Y − h (A) → X −A

1
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.IdX−A, IdY−h(A) היא הכיוונים בשני וההרכבה רציפה,

המבחן על מילים כמה

בכיתה. שלמדנו מה כל להוכיח לדעת צריך מהכיתה. משפטים יופיעו •

בית משיעורי שאלות יהיו •

בנייה/הגדרה

הבא: השקילות יחס את X על נגדיר מ״ט. X יהי

.a, b ∈ Aש כך A ⊆ X קשיר מרחב תת קיים אם a ∼ b אז ,a, b ∈ X

שקילות: יחס אכן זהו

a ∼ a לכן קשיר, בהגדרה {a}ו ,a, a ∈ {a} ,a ∈ X לכל ־ רפלקסיביות .1

טריוויאלי ־ סימטריות .2

כך קשירים A,B קיימים ,a ∼ b, b ∼ cש כך a, b, c ∈ X לכל ־ טרנזיטיביות .3

A∩B 6= ו∅ קשירים A,B שכן קשיר A∪Bו ,a, c ∈ A∪B ואז ,a, b ∈ A, b, c ∈ Cש

.b ∈ A ∩B שכן

.X של הקשירות מרכיבי נקראים ∼ השקילות יחס של השקילות מחלקות

תכונות

a, b ∈ A לכל כי ,X של הקשירות ממרכיבי באחד מוכל A אז קשיר A ⊆ X אם .1

ממחלקות באחת מוכל A לכן לזו, זו שקולות Aב הנקודות על כלומר ,a ∼ b מתקיים

הקשירות. ממרכיבי באחד כלומר השקילות,

כלומר ,a, b ∈ C ונניח ,X של קשירות מרכיב C נניח קשירים: הם הקשירות מרכיבי .2

ממרכיבי באחד מוכל A (1) מתכונה .a, b ∈ Aש כך קשיר A ⊆ X יש כלומר ,a ∼ b

עצמו. C הוא הזה המרכיב בהכרח שם) נמצאים a, b)A ∩ C 6= ש∅ וכיוון הקשירות,

טענה לפי .a, b ∈ Aש כך קשיר A ⊆ C מרחב תת יש a, b ∈ C שלכל קיבלנו

קשיר. Cש נובע הקודם מהשיעור

ביניים מסקנת

מרחב תת כל בX(כלומר המקסימליים הקשירים המרחבים תתי הם הקשירות מרכיבי

מהם) באחד מוכל קשיר

מסקנה בפרט

קשיר. לא A אז A % Cו קשירות מרכיב C אם

סגורות קבוצות הם הקשירות מרכיבי .3

2



הוכחה

,C = Cש מכאן ,C ⊇ C קשיר. C לכן ,Cב צפוף C אז קשירות. מרכיב C יהי

סגור. C כלומר

פתוחים. גם הם אז קשירות מרכיבי של סופי מספר רק יש אם .4

הוכחה

קבוצה הוא Ci שכל אומרת 3 תכונה .X של הקשירות מרכיבי הם C1, . . . Cn נניח

סגורה.

Ci =










⋃

k 6= j

1 ≤ k ≤ n

Ck










c

,Ci שלו, המשלים לכן סגור, ולכן סגורות, קבוצות של סופי איחוד הוא הזה האיחוד

פתוחה. קבוצה

דוגמה

הם הקשירות מרכיבי ,R− Z עבור
⋃

n∈Z

(n, n+ 1) ⊆ R

טענה

{p} מהצורה כולם הקשירות מרכיבי ,Q המרחב עבור

הוכחה

.a < b בה״כ נניח קשיר. לא Aש נראה .a 6= b ∈ A נקודות שתי לפחות ובו A ⊆ Q נניח

עבור אזי .a < t < bש כך אי־רציונלי t קיים

U = (−∞, t) ∩A V = (t,∞) ∩A

קשיר. לא Aש מראים U, V ⊆ A

הגדרה

מ״ט. X יהי

.ϕ : [0, 1] → X רציפה פונקציה היא Xב מסילה

לb״. a״מ היא שהמסילה נאמר אנו אז ϕ (1) = bו ϕ (0) = a אם

3



הגדרה

מ״ט. X יהי

.bל aמ מסילה יש a, b ∈ X לכל אם מסילתית קשיר נקרא X

משפט

קשיר. X אז מסילתית קשיר X אם

הוכחה

.a, b ∈ Aש כך X ⊇ A קשיר מרחב תת נמצא a, b ∈ X לכל

ניקח .ϕ (1) = bו ϕ (0) = aש כך ϕ : [0, 1] → X מסילה יש X ∋ a, b בהינתן אכן,

וזה ,a, b ∈ A .[0, 1] הקשיר המרחב של רציפה תמונה הוא A כי קשיר A .A = ϕ ([0, 1])
קשיר. X שעבר משבוע התנאי לפי לכן ,a, b לכל

משפט

מסילתית. קשיר Y אז ,Y ועל רציפה f : X → Y מסילתית, קשיר X אם

הוכחה

קשיר Xש כיוון .f (v) = a, f (y) = bש כך x, y ∈ X יש על, fש כיוון .a, b ∈ Y יהיו

f ◦ ϕ : [0, 1] → Y אזי .ϕ (0) = x, ϕ (1) = yש כך רציפה ϕ : [0, 1] → X יש מסילתית

שמקיימת מסילה היא

f ◦ ϕ (0) = a f ◦ ϕ (1) = b

מסקנה

מסילתית. קשיר f (X) אזי רציפה, f : X → Y מסילתית, קשיר X אם

הוכחה

:f (X)ל הטווח צמצום

מסילתית. קשיר f (X) המשפט לפי אז על, כבר וזה f : X → f (X)

הגדרה

.ϕ (1) = ψ ש(0) ונניח מסילות, שתי ϕ, ψ : [0, 1] יהי

חדשה מסילה נגדיר

ϕ ∗ ψ : [0, 1] → X
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הבא: באופן

ϕ ∗ ψ (t) :=







ϕ (2t) 0 ≤ t ≤
1

2
⇒ t ∈

[

0,
1

2

]

ψ (2t− 1)
1

2
≤ t ≤ 1 ⇒ t ∈

[

1

2
, 1

]

.ψו ϕ של השרשור נקרא ϕ ∗ ψ
ש להראות מספיק רציף. ϕ ∗ ψש להראות צריך מסילה תהיה שזו כדי

[

0,
1

2

]

t 7→ϕ(2t)
−−−−−→ X

[

1

2
, 1

]

t 7→ψ(2t−1)
−−−−−−−→ X

ולכן רציפות פונקציות של הרכבות שתיהן אבל .[0, ב[1 סגורות קבוות אלה כי רציפות,

בעצמן. רציפות

הגדרה/בניה

.X על ≡ שקילות יחס X על נגדיר X מ״ט בהינתן

bל aמ מסילה יש אם a ≡ b ,a, b ∈ X עבור

שקילות: יחס אכן זה

קבועה מסילה רפלקסיביות: .1

ϕ (0) ש= כך ϕ : [0, 1] → X מסילה קיימת כלומר a ≡ b נניח סימטריות: .2

ϕ (t) := ע״י ϕ : [0, 1] → X נגדיר ϕ : [0, 1] → X מסילה בהינתן .a, ϕ (1) = b

.a ≡ b לכן ,
ϕ (0) = b

ϕ (1) = a
מתקיים אזי .ϕ (1− t)

.cל aמ מסילה היא ϕ ∗ ψ אזי ,b ≡ c ונניח ,bל aמ ϕ מסילה יש כלומר ,a ≡ b נניח .3

.X של המסילתית הקשירות מרכיבי קוראים אנו זה שקילות יחס של השקילות למחלקות

תכונות

של המסילתית הקשירות ממרכיבי באחד מוכל A אזי מסילתית, קשיר A ⊆ X נניח .1

.X

הוכחה

ϕ (0) ש= כך ϕ : [0, 1] → A מסילה יש לכן מסילתית. קשיר A ,a, b ∈ A יהיו

מסילה, i◦ϕ : [0, 1] → X אזי ההכלה. העתקת את i : A→ X נסמן .a, ψ (1) = b

באחת מוכל A ולכן לזו זו שקולות Aב נקודות שתי כל כלומר .Xב a ≡ b ולכן

.X של הקשירות ממרכיבי באחד כלומר השקילות, ממחלקות

מסילתית. קשירים הם המסילתית הקשירות מרכיבי .2

5



לסיכום

קשירות: למרכיבי בדומה

מהווים והם מקסימליים, מסילתית קשירים מרחבים תתי הם המסילתית הקשירות מרכיבי

.X של חלוקה

דוגמה

X ⊆ R2

X = {(x, y)|x = 0,−1 ≤ y ≤ 1}
︸ ︷︷ ︸

A

∪

{

(x, y)

∣
∣
∣
∣
∣
x =

1

n
,−1 ≤ y ≤ 1

}

︸ ︷︷ ︸

B

∪

∪
⋃

n ∈ N
odd

{

(x, y)

∣
∣
∣
∣
∣
y = 1,

1

n+ 1
≤ x ≤

1

n

}

∪
⋃

n ∈ N
even

{

(x, y)

∣
∣
∣
∣
∣
y = −1,

1

n+ 1
≤ x ≤

1

n

}

︸ ︷︷ ︸

B
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X = A ∪B הקווים, שאר הוא B הראשון, הקו הוא A

טענות

קשירים) מסילתית(בפרט קשירים Bו A

קשיר. X גם ולכן Xב צפוף B

אין אז b ∈ Bו a ∈ A שאם להראות עלינו מסילתית, קשיר איננו Xש להראות כדי

.bל aמ מסילה
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הקודם) השיעור מסוף הדוגמה (המשך

A,B ⊆ R
2

X = A ∪B

.t ∈ [0, 1] לכל ϕ (t) ∈ A שבהכרח נראה .ϕ (0) ∈ Aש כך מסילה ϕ : [0, 1] → X נניח

:ϕ−1 (A)ב נביט

(0 ∈ ϕ−1 (A) ריקה(כי לא היא .1

(Xב סגורה A סגורה(כי היא .2

פתוחה. גם שהיא נוכיח כעת .3

נניח .t ∈ [0, 1] לכל ϕ (t) ∈ A כלומר ,ϕ−1 (A) = [0, 1] נקבל בהכרח קשיר [0, ש[1 כיוון

.(ϕ (s) ∈ A)s ∈ ϕ−1 (A) גם |s− t| שלכל כך ε > 0 שיש נראה .(ϕ (t) ∈ A)t ∈ ϕ−1 (A)
ב נביט .ϕ (t)|y > −1 בה״כ נניח

U =
{

a ∈ X
∣

∣

∣a|y > −1
}

.ϕ (t) של סביבה והיא ,Xב פתוחה קבוצה זוהי

|s− t| < ε המקיים s ∈ [0, 1] לכל ϕ (s) ∈ Uש כך ε > 0 יש רציפה ϕש כיוון

a ∈ R
2

הקואורדינטה. את יסמנו a|x , a|y אז

.t ∈ [0, 1] לכל ϕ (t) ∈ A שבכהרח נראה .ϕ (0) ∈ Aש כך מסילה ϕ : [0, 1] → X נניח

טענה

של המסילתית הקשירות ומרכיבי מסילתית, קשיר A אם״ם קשיר A אז פתוחה. A ⊆ R
n

פתוחים. והם מלתכדים, A

הפוך בסדר הוכחה

.Aב פתוחות ודאי ולכן Rnב פתוחות קבוצותו הם המסילתית הקשירות מרכיבי ⇐

איחוד הוא קשירות ומרכיב קשירות, במרכבים מוכל מסילתית קשירות מרכיב כל

בו. שמוכלים המסילתית הקשירות מרכיבי

מסילתית קשירות ממרכיב יותר מכיל שהוא בשלילה ונניח קשירות מרכיב C יהי

אחד.

C =
⋃

α∈I

Dα

הצגה ונקבל β ∈ I ניקח .|I| > 1 ונניח מסילתית. קשירות מרכיבי Dα

קשיר. Cש לכך סתירה ־ C = Dβ ∪

(

⋃

α 6=β

Dα

)

מ״ט X יהי

1
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הגדרות

אם: X של פתוח כיסוי נקרא {Uα}α∈I קבוצות אוסף .1

⋃

α∈I Uα = X .i ⇐ כיסוי

פתוח Uα כל .i ⇐ פתוח

.
⋃

α∈J

Uα = Xש כך J ⊆ I פירושו כיסוי תת כיסוי, {Uα}α∈I אם .2

סופית. קבוצה J שעבורו כיסוי תת הוא סופי כיסוי תת .3

הגדרה

סופי. כיסוי תת יש X של פתוח כיסוי לכל אם קומפקטי נקרא X אזי מ״ט, X יהי

R
n קומפקטי: שאיננו למרחב דוגמה

{B (0, n)}n∈N

סופי. כיסוי תת לו שאין פתוח כיסוי הוא

הגדרה

.A ⊆ X מ״ט, X יהי
⋃

α∈I

Uα ש⊆ כך Sב פתוחות קבוצות תתי של {Uα}α∈I אוסף הוא Xב A של פתוח כיסוי

.A
.
⋃

α∈J

Uα ⊇ Aש כך J ⊆ I הוא כיסוי תת

משפט

תת יש Xב A של פתוח כיסוי לכל אם״ם קומפקטי A אזי .A ⊆ X כלשהו, מ״ט X יהי

סופי. כיסוי

הוכחה

{Uα ∩A}α∈I האוסף אזי ,Xב A של פתוח כיסוי {Uα}α∈I ו קומפקטי A נניח ⇐
⋃

α∈J

(Uα ∩A) ש= כך סופי J ⊆ I יש לכן קומפקטי, A .A של פתוח כיסוי הוא

.
⋃

α∈J

Uα ⊇ A ,J אותו שעבור ומכאן ,A

{Vα}α∈I יהי קומפקטי. מרחב Aש ונניח מתקיים, Xב כיסויים על שהתנאי נניח ⇒
.(
⋃

α∈I

Vα = A ,Aב פתוחים Vα ,Vα ⊆ A A(כלומר של פתוח כיסוי

2



כך Xב פתוחה Uα ⊆ X קבוצה יש α ∈ I לכל A על הטופולוגיה מהגדרת

.Vα = Uα ∩Aש

אזי .
⋃

α∈J

Uα ⊇ Aש כך סופית J ⊆ I קיימת מהתנאי .
⋃

α∈I

Uα ⊇ A

⋃

α∈J

=
⋃

α∈J

(Uα ∩A) =

(

⋃

α∈J

Uα

)

∩A = A

משפט

ועל. רציפה f : X → Y קומפקטי, X מ״ט, X,Y יהיו

קומפקטי. Y אזי

מסקנה

קומפקטי. f (X)ש נכון אז על, fש הדרישה מלבד כנ״ל הכל אם

המשפט הוכחת

סופי. כיסוי תת לו למצוא צריך .Y של פתוח כיסוי {Uα}α∈I יהי

.X של פתוח כיסוי
{

f−1 (Uα)
}

α∈I
האוסף

⋃

α∈I

f−1 (Uα) = f−1

(

⋃

α∈I

Uα

)

= f−1 (Y ) = X

⋃

α∈J

f−1 (Uα) = Xש כך סופית J ⊆ I יש לכן קומפקטי, X

⋃

α∈J

Uα = Y מתקיים J סופית קבוצה אותה עבור טענה:

ולכן
⋃

α∈J

f−1 (Uα) = X ,f
(

f−1 (Uα)
)

⊆ Uα נכון: תמיד זה

Y = f (X) = f

(

⋃

α∈J

f−1 (Uα)

)

=
⋃

α∈J

f
(

f−1 (Uα)
)

⊆
⋃

α∈J

Uα

.Y =
⋃

a∈J

Uα לכן

משפט

.Xב סגורה1 A ⊆ X קומפקטי, מ״ט X יהי

קומפקטי2. A אזי

קבוצות. של תכונה זו סגירות קבוצה. A כי ־ נקבה בלשון 1״סגורה״

מרחבים. של תכונה זו קומפקטיות מרחב. A כי ־ זכר בלשון 2״קומפקטי״

3



הוכחה

מרחב. תת של לקומפקטיות שהוכחנו בתנאים נשתמש

.(
⋃

α∈I

Uα ⊇ A ,Xב פתוחים Uα ,Uα ⊆ X בX(כלומר A של פתוח כיסוי {Uα}α∈I יהי

:X של פתוח כיסוי הוא הבא האוסף אזי

{Uα}α∈I ∪ {Ac}

סגורה) A כי פתוחה Ac)

משתתף Acש נניח הכלליות הגבלת בלי סופי. כיסוי תת הנ״ל לכיסוי יש לכן קומפקטי, X
.Uα1

∪ · · · ∪ Uαn
⊇ A כלומר .A של כיסוי Uα1

, . . . Uαn
אזי הסופי. הכיסוי בתת

הגדרה

פתוחות קבוצות יש a 6= b ∈ X לכל אם (T2 האוסדורף(או הוא Xש נאמר אנו מ״ט. X יהי

.a ∈ U, b ∈ V ש כך U, V זרות

דוגמה

האוסדורף. הוא מטרי מרחב כל

הוכחה

ונקבל ,a 6= b כי r > 0 .r =
1

2
d (a, b) נסמן .a 6= b ∈ M יהיו מטרי. מרחב M יהי

סביבות

B (a, r) B (b, r)

המשולש) שוויון אי עם זרות(תרגיל הן

הגדרה

סגורה. קבוצה הוא {p} נקודות כל T1אם נקרא מרחב

טענה

T2 ⇒ T1

4



הוכחה

זרות פתוחות Ux, Vx יש x 6= p לכל אזי .p ∈ X ותהי האוסדורף) T2(כלומר הוא X נניח

ש כך

p ∈ Ux x ∈ Vx

{p}
c

ולכן שימושית), למה ־ (ל״ש
⋃

x∈{p}c

= {p}
c

לכן .Vx ⊆ {p}
c

כלומר ,p /∈ Vx בפרט

פתוחה.

משפט

.A ⊆ X יהי האוסדורף. מ״ט X יהי

האוסדורף. כן גם A אזי

הוכחה

.a ∈ U, b ∈ V ש כך ,Xב פתוחות זרות, U, V ⊆ X יש האוסדורף, Xש כיוון .a 6= b ∈ A יהי

.a ∈ U ∩A, b ∈ V ∩A ומקיימות Aב פתוחות זרות, U ∩A, V ∩A הקבוצות

משפט

.Xב סגורה קבוצה A אזי קומפקטי. A ⊆ X יהי האוסדורף. מ״ט X יהי

הוכחה

פתוחה. Acש נקבל מהל״ש ולכן ,U ⊆ Acש כך U סביבה נמצא אנו p /∈ A לכל

ש כך Xב Ua, Va זרות סביבות יש a ∈ A לכל

a ∈ Ua p ∈ Va

a1, . . . an סופי אוסף יש לכן קומפקטי, A .Xב A של פתוח כיסוי הוא {Ua}a∈A האוסף

.V =
⋂

1≤i≤n

Vai
נסמן .

⋃

1≤i≤n

Uai
⊇ Aש כך

ai לכל p ∈ Vai
כי ודאי ־ p ∈ V ⊆ Ac טענה:

ו ,Vai
⊆ U c

ai
מתקיים .V ⊆ Ac להראות נותר

⋂

1≤i≤n

Vai
⊆

⋃

1≤i≤n

U c
aI

=





⋃

1≤i≤n

Uai





c

⊆ Ac

(
⋃

1≤i≤n

Uai
⊇ Aש מכך נובעת האחרונה (ההכלה

תזכורת

.Y ב סגורה f (S) מתקיים Xב סגורה S ⊆ X לכל אם סגורה נקראת f : X → Y
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משפט

רציפה. f : X → Y ותהי האוסדורף, Y קומפקטי, X מ״ט, X,Y יהיו

סגורה. f אזי

הוכחה

סגורה. S ⊆ X תהי

(Xב סגורה S קומפקטי(כי S לכן קומפקטי, X א.

קומפקטי) שהוא S של רציפה קומפקטי(תמונה f (S) ב.

.Y ב סגורה f (S) לכן קומפקטי, f (S) האוסדורף, Y ג.

מסקנה

ועל. חח״ע רציפה, f : X → Y האוסדורף, Y קומפקטי, X מ״ט, X,Y יהיו

הומאומורפיזם. היא f אזי

הגדרה

מ״ט. X,Y יהי

f : X → ההעתקה f (X)ל הטווח צמצום אחרי אם שיכון נקראת f : X → Y העתקה

מזה) יותר מקיימת היא אך וחח״ע, רציפה f (בפרט הומאומורפיזם. היא f (X)

דוגמה

הטווח צמצום אחרי אז ההכלה, i : A → X אם כי שיכון, תמיד היא ההכלה העתקת

Id : A → A

שיכון שאינה רציפה להעתקה דוגמה

הומאומורפיזם איננה שכן ־ שיכון איננה f (x) = (cosx, sinx) למישור [0, 2π) מהקטע העתקה

למעגל. הומאומורפי אינו [0, 2π) הקטע ־

משפט

וחח״ע. רציפה f : X → Y האוסדורף. Y קומפקטי, X מ״ט, X,Y יהיו

שיכון. היא f אזי

הוכחה

.Y של מרחב תת הוא כי האוסדורף f (x)
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בסיס

הגדרה

טופולוגי. מרחב (X,T ) יהי

אם: T עבור בסיס נקרא X של קבוצות תתי של B אוסף

B ⊆ T (א)

a ∈ V ⊆ Uש כך V ∈ B יש a ∈ U ולכל U ∈ T לכל (ב)

ל״ש: באמצעות ל(ב) שקול ניסוח (ב׳)

.Bמ קבוצות של איחוד היא פתוחה קבוצה כל

בסיס. קבוצות נקראות Bב הקבוצות

טענה

.Rn של לטופולוגיה בסיס הם r ∈ Q+ ,q ∈ Qn ,B (q, r) מהצורה Rnב הפתוחים הכדורים

הוכחה

קיים .B (p, ε) ⊆ Uש כך ε > 0 קיים ולכן פתוחה U .p ∈ U פתוחה, U ⊆ Rn תהי

ואז ,d (p, a) < r <
ε

2
ש כך r ∈ Q ניקח .d (p, q) <

ε

2
ש כך a ∈ Qn

p ∈ B (a, r) ⊆ B (p, ε) ⊆ U

מסקנה

שני, מצד .|T | ≤ P (ℵ0) = ℵ ולכן על, שהיא איחוד) P(לקיחת (B) → T פונקציה לנו יש

.|T | = ℵ לכן .ℵ בעצמה הם הראשית סביב הפתוחים הכדורים רק ־ |T | ≥ ℵ

טענה

מ״ט. עוד Y ,T ל בסיס B מ״ט, (X,T ) יהי

מתקיים V ∈ B בסיס קבוצת לכל אם״ם רציפה f f : Y → X פונקציה לכל אזי

.Y ב פתוחה f−1 (V ש(

הוכחה

.B ⊆ T כי ברור ⇐

1
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אזי כלשהי. פתוחה קבוצה U ⊆ X ותהי ,V ∈ B לכל מתקיים שהתנאי נניח ⇒
.α לכל Vα ∈ B כאשר U =

⋃

α∈I

Vα

f−1 (U) = f−1

(
⋃

α

Vα

)

=
⋃

α

f−1 (Vα)

פתוחה. f−1 (U) לכן

תרגיל

בסיס הוא {V ∩A|} הקבוצות אוסף אזי .A ⊆ X ויהי ,T ל בסיס Bו מ״ט (X,T ) יהי

.(Xמ A על המושרה A(הטופולוגיה של לטופולוגיה

שלו האיחודים אוסף אם כלומר ־ בסיס הוא אם לדעת נרצה קבוצות, של אוסף בהינתן

טופולוגיה. מהווה

חיתוך. תחת ולא איחוד תחת סגורים לא בסיסים הערה:

משפט

קבוצות. תתי של אוסף B ⊆ P (X) קבוצה, X תהי

הבאים: התנאים שני את מקיימת B אם״ם X על לטופולוגיה בסיס היא B אזי

⋃

V ∈B

V = X (א)

.a ∈ W ⊆ U ∩ V ש כך W ∈ B קיים a ∈ U ∩ V ולכל U, V ∈ B לכל (ב)

ל״ש: באמצעות ל(ב) שקול ניסוח (ב׳)

.Bמ קבוצות של איחוד הוא U ∩ V ש מתקיים U, V ∈ B לכל

הוכחה

T ל בסיס Bו X ∈ Tש כיוון אזי ,T לטופולוגיה בסיס B אם הכרחי: התנאי ⇐
אם וכן .B קבוצות כל של איחוד וודאי ולכן Bמ קבוצות של איחוד X אזי

קבוצות של איחוד היא U ∩V ולכן U ∩V ∈ T ולכן U, V ∈ T אזי U, V ∈ B

.Bמ

קבוצות תתי אוסף נגדיר ו(ב), (א) את המקיים קבוצות תתי של B אוסף בהינתן ⇒
הבא: באופן T את נבנה .T עבור בסיס Bוש טופולוגיה היא Tש נראה .T

.a ∈ V ⊆ Uש כך V ∈ B יש a ∈ U לכל אם T ל שייך יהיה U ⊆ X בניה:

.Bמ קבוצות של איחוד הוא אם T ל שייך יהיה U ⊆ X(לבניה (שקול בניה׳:

רק נותר לכן עבורה, בסיס B אז טופולוגיה היא T שאם בסיס מהגדרת ברור

טופולוגיה. Tש להראות

2



טופולוגיה היא בבניה שהגדרנו Tש הוכחה

.
√

־ ∅ ∈ T ,X ∈ T א.
⋃

α∈I

Uα ש∋ להוכיח צריך .α לכל Uα ∈ Tש כך קבוצות אוסף {Uα}α∈I יהי ב.

שיש פירושו Uα0
∈ T .a ∈ Uα0

ש כך α ∈ I יש אזי ,a ∈ ⋃

α∈I

Uα יהי .T

.a ∈ V ⊆ ⋃

α∈I

Uα ולכן ,a ∈ V ⊆ Uα0
ש כך V ∈ B

שסגור ינבע באינדוקציה קבוצות שתי של חיתוכים תחת שסגור נוכיח אם ג.

כלשהם. סופיים איחודים תחת

.U ∩ V ∈ T צ״ל ,U, V ∈ T יהיו

:a ∈ U ∩ V בהינתן

a ∈ U0 ⊆ Uש כך U0 ∈ B יש לכן U ∈ T •
a ∈ V0 ⊆ V ש כך V0 ∈ B יש לכן V ∈ T •

כך W ∈ B יש B האוסף על מהתנאי .a ∈ U0 ∩ V0 ,U0, V0 ∈ B

לכן ־ a ∈ U ∩ V לכל וזה ,a ∈ W ⊆ U ∩ V ולכן a ∈ W ⊆ U0 ∩ V0ש

.T ∋ U ∩ V

מסקנה

.X על לטופולוגיה בסיס Bש לכך הכרחי) לא (אך מספיק תנאי הוא B על הבא התנאי

.Bב הקבוצות כאיחוד מתקבל X .1

.U ∩ V ∈ B אז U, V ∈ B אם .2

מכפלה טופולוגיית

תזכורת

אזי קבוצות. A1, A2, . . . An יהיו

A1 ×A2 × · · · ×An = {(a1, a2, . . . an)|a1 ∈ A1, a2 ∈ A2, . . . an ∈ An}

למכפלה? נשים טופולוגיה איזו ־ טופולוגיה האלו לקבוצות יש אם אבל

הגדרה

טופולוגיים. מרחבים n (X1, T1) , (X2, T2) , . . . (Xn, Tn) יהיו

.X1 ×X2 × · · · ×Xn הקבוצה על טופולוגיה להגדיר רוצים אנו

נסמן:

B = {U1 × U2 × · · · × Un|U1 ∈ T1, U2 ∈ T2, . . . Un ∈ Tn}

(B = T1 × T2 × · · · × Tn (כלומר

3



טענה

בסיס שהוא לכך המספיק התנאי את קשמיים X1× · · ·×Xn של קבוצות תתי של אוסף B

..X1 × · · · ×Xn על לטופולוגיה

הוכחה

.X1 ×X2 × · · · ×Xn ∈ B כי הכל, הוא האיחוד (א)

אזי ,
U1 ∈ T1, . . . Un ∈ Tn

V1 ∈ T1, . . . Vn ∈ Tn
כלומר ,U1 × · · · × Un, V1 × · · · × Vn ∈ B אם (ב)

(U1 × · · · × Un)∩(V1 × · · · × Vn) = (U1 ∩ V1)×(U2 ∩ V2)×· · ·×(Un ∩ Vn) ∈ B

שתמיד הטופולוגיה והיא המכפלה, טופולוגיית נקראת עבורה בסיס הוא Bש T הטופולוגיה

כנ״ל. מכפלה על ניקח

תרגילים

בסיס Bn...,T2ל בסיס B2 ,T1ל בסיס B1 ויהי מ״ט, (X1, T1) , . . . (Xn, Tn) יהיו .1

של לטופולוגיה בסיס הוא {V1 × V2 × · · · × Vn|Vi ∈ Bi} הקבוצות אוסף אזי .Tnל

כעת). שהגדרנו X1 × · · · ×Xn על המכפלה לטופולוגיית X1(כלומר × · · · ×Xn

.Rn על הרגילה(המטרית) הטופולוגיה עם מתלכדת R× R× · · · × R
︸ ︷︷ ︸

n times

על הטופולוגיה .2

טופולוגיים. מרחבים n+m ,X1, . . . Xn, Y1, . . . Ym .3

(X1 × · · · ×Xn)×(Y1 × · · · × Yn) X1×X2×· · ·×Xn×Y1×Y2×· · ·×Yn

מתלכדות. הללו הטופולוגיות ששתי הראו

הגדרה

טבעיות העתקות n ישנן A1, . . . An קבוצות בהנתן

Pi : A1 × · · · ×An → Ai

כך: המוגדר

Pi ((a1, . . . ai, . . . an)) := ai

.iה הרכיב על ההטלה נקראת Pi

טענה

ופתוחות. רציפות הן Pi : X1×· · ·×Xn → Xi ההטלה העתקות אזי מ״ט. X1, . . . Xn יהיו

4



הוכחה

פתוחה. U ⊆ Xi תהי

P−1

i (U) = X1 ×X2 × · · · × U × · · · ×Xn

פתוחה. קבוצה בפרט בבסיס קבוצה וכל

משפט

.f : Y → X1 × · · · ×Xn תהי טופולוגיים. מרחבים Y ו X1, . . . Xn יהיו

.1 ≤ i ≤ n לכל רציפה Pi ◦ f אם״ם רציפה f אזי

הוכחה

רציפה. Pi כי רציפה Pi ◦ f ,i לכל אז רציפה f אם ⇐

קבוצה היא בסיס קבוצת של הפוכה שתמונה לבדוק מספיק קודמת, מטענה ⇒
פתוחה.

U1 X1(כלומר × · · · × Xn של לטופולוגיה בסיס קבוצת U1 × · · · × Un תהי

וכו׳). X2ב פתוחה U2 ,X1ב פתוחה

f−1 (U1 × U2 × · · · × Un) = {g ∈ Y |f (y) ∈ U1 × · · · × Un} =

= {y ∈ Y |P1 ◦ f (y) ∈ U1, P2 ◦ f (y) ∈ U2, . . . Pn ◦ f (y) ∈ Un} =

=
⋂

1≤i≤n

{y ∈ Y |Pi ◦ f (y) ∈ Ui} =
⋂

1≤i≤n

(Pi ◦ f)−1
(Ui)

︸ ︷︷ ︸

open

פתוח. החיתוך ולכן

�

מסקנה

רציפות פונקציות n נתונות ונניח מ״ט, עוד Y ו מ״ט X1, . . . Xn יהיו

1 ≤ i ≤ n fi : Y → Xi

פונקציה ביחד מגדירות הן אזי

(fi)1≤i≤n : Y → X1 × · · · ×Xn

((f1, f2, . . . fn) ־ אחר (סימון

(fi)1≤i≤n (y) := (f1 (y) , f2 (y) , . . . fn (y))

5



רציפה. (fi)1≤i≤y הפונקציה גם רציפות fiה כל אם אזי

Pj ◦ (fi)1≤i≤n = fj הקודם: המשפט בזכות רציפה היא

בדידה במתמטיקה פרק

המכפלה קבוצת את להגדיר נרצה קבוצות. של סופי) דווקא אוסף(לאו {Aα}α∈I יהי

שתסומן

∏

α∈I

Aα

לב נשים

הפונקציות כל כאוסף A1 × · · · ×An המכפלה על לחשוב ניתן







f : {1, 2, . . . n} → A1 ∪ · · · ∪An

∣
∣
∣
∣
∣
∣
∣
∣
∣

f (1) ∈ A1

f (2) ∈ A2

.

.

.

f (n) ∈ An







סדרה(סופית): להגדרת דומה שזה לב נשים

(f (1) , f (2) , f (3) , . . . f (n)) = (a1, a2, . . . an)

לסדר. חשיבות אין לסדרה, בניגוד שכאן, למרות

נגדיר קבוצות, של כלשהו אוסף {Aα}α∈I אם אינסופי: לאוסף נכליל

∏

α∈I

Aα :=

{

f : I →
⋃

α∈I

Ai

∣
∣
∣
∣
∣
∀α∈If (α) ∈ Aα

}

הערות

למשל קבוצות. של לא פונקציות, של קבוצה זוהי •

f (1) = 1 f (2) = 2 f (3) = 4

g (1) = 4 g (2) = 2 g (3) = 1

בנפרד יחשב מהם אחד כל ולכן ,f ({1, 2, 3}) = g ({1, 2, ש({3 למרות f 6= g

הפונקציות. בקבוצת

הקבוצה סדר. דורשת הנייר על הכתיבה רק ־ הקבוצה בתוך מסויים בסדר צורך אין •
סדורה. קבוצה איננה I

6



משפט

קומפקטי. X × Y גם אזי קומפקטיים, מ״ט X,Y יהיו

קומפקטי.) X1×· · ·×Xn גם קומפקטיים מ״ט של X1, . . . Xn סופי, אוסף לכל (מסקנה:

טענה

Z של כיסוי לכל אם״ם קומפקטי Z אזי ,Z על לטופולוגיה בסיס B טופולוגי, מרחב Z אם

סופי. כיסוי תת יש Bמ קבוצות ע״י

המשפט להוכחת חזרה

פתוחה Vα ⊆ Y ,Xב פתוחה Uα ⊆ X בסיס(כלומר קבוצות של אוסף {Uα × Vα}α∈I יהי

.(α לכל Y ב

...

{a} × Y ולכן {a} × Y ∼= Y .X × Y ⊃ {a} × Y המרחב בתת נביט a ∈ X לכל

קומפקטי.

.X × Y ב {a} × Y של פתוח כיסוי {Uα × Vα}αjiI האוסף

באוסף נביט אם מזאת, יתרה

J := {α ∈ I|a ∈ Ua}

{a} × Y ל זר Uα × Vα אז a /∈ Uα אם כי ,{a} × Y של כיסוי {Uα × Vα}α∈J גם אזי

יכוסו. X × Y נקודות כל ועדיין זו קבוצה להשמיט ניתן ולכן

α1, . . . αn כלומר סופי, כיסוי תת {Uα × Vα}α∈J לכיסוי יש ולכן קומפקטי {a} × Y
.1 ≤ i ≤ n לכל a ∈ Uαi

וגם {a} × Y ⊆
⋃

1≤i≤n

Uαi
× Vαi

ש כך

הקבוצות באחת ,a)נמצאת y) הנק׳ y ∈ Y בהינתן כי
⋃

1≤i≤n

Vαi
= Y שבהכרח לב נשים

.y ∈ Vαi
בפרט כלומר ,UαI

× Vαi

Wa×Y ⊆
⋃

1≤i≤n

Uαi
× מתקיים וכן ,a ∈ Wa וכן פתוחה Wa .Wa =

⋂

1≤i≤n

Uαi
נסמן

מתקיים {Bα}α∈K , {Aα}α∈K אופסים שני שלכל קבוצות, של כללי משוויון נובע זה .Vαi

(x, y) ∈

(

⋃

α∈K

Aα

)

×

(

⋃

α∈K

Bα

)

⊆
⋃

a∈K

(Aα ×Bα)

⇐ (α ∈ K לכל x ∈ Aα x(כי ∈ Aβ מתקיים βה אותו עבור .y ∈ Bβש כך β ∈ K יש

.(x, y) ∈ Aβ ×Bβ

מכאן

Wa × Y =





⋂

1≤i≤n

Uαi



×





⋃

1≤i≤n

Vαi



 ⊆
⋃

1≤i≤n

Uαi
× Vαi

באיחוד מוכל Wa ,a ∈ X לכל .Wa סביבה יגדיר a ∈ X כל וכך a ∈ X לכל נשעה כך

הכיסוי. קבוצות מבין סופי אוסף של

1
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כך a1, . . . al יש לכן קומפקטי. X .X של פתוח כיסוי הוא {Wa}a∈X האוסף

.
⋃

1≤j≤l

Waj
= Xש

מוכל Waj
× Y ש כך Uα × Vα מהצורה קבוצות של סופי מספר יש 1 ≤ j ≤ l לכל

באיחודן.

של סופי אוסף נקבל 1 ≤ j ≤ l עבור הללו Uα × Vα הקבוצות כל את נצרף כאשר

.X × Y כל הוא שאיחודן המקורי מהכיסוי קבוצות

שונה מעט במצב נביט

fα : Yα → רציפה פונקציה יש α ∈ i ולכן אינדקסים), קבוצת α∈I{Yα}(אותה ,{Xα}α∈I

נגדיר .Xα

(Πα∈Ifα) :
∏

α∈I

Yα →
∏

α∈I

Xα

.fα (yα) הוא αב שהרכיב ,
∏

α∈I

Xαב האיבר הוא

(

∏

α∈I

fα

)

(

(yα)α∈I

)

,1(yα)α∈I בהנתן

כך: זאת לסמן ניתן

(

∏

α∈I

fα

)

(

(yα)α∈I

)

= (fα (yα))α∈I

βה והרכיב רציף, שלה מהרכיבים אחד שכל לבדוק צריך רציפה
∏

α∈I

fαש לראות כדי

הפונקציות של הרכבה היא כי רציפה היא .(yα)α∈I 7→ fβ (yβ) הוא

∏

α∈I

Yα
projection
−−−−−−→ Yβ

fβ
−→ Xβ

רציפה.
∏

α∈I

fα הפונקציה לכן רציף.
∏

α∈I

fα של βה שהרכיב ראינו β שלכל כיוון

משפט

רציפה. f · g רציפה, f + g אזי רציפות. פונקציות שתי f, g : X → R כלשהו, מ״ט X יהי

רציפה. 1
f

אז מקום בשום מתאפסת לא f אם

לדוגמה

ניתן f ◦ g את .(x, yב פולינום רציפה(זהו m : R× R → R
(x,y) 7→x·y

הפונקציה ראשית, .f · g ניקח

כהרכבה להציג

X
(f,g)
−−−→ R× R

m
−→ R

x 7→ (f (x) , g (x)) 7→ f (x) · g (x)

.yα הוא הרכיב αה שבמקום סדורה, דווקא לאו ל|I|יה, היא בסימון 1הכוונה
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זר איחוד

נתונים: טופולוגיים מרחבים מתוך חדשים טופולוגיים מרחבים לבנות דרכים 2 כבר ראינו

מרחבים תת .1

מרחבים של קרטזית מכפלה .2

מרחבים. של זר איחוד ־ שלישית דרך נראה כעת

הגדרה

טופולוגיים. מרחבים של אוסף {xα}α∈I יהיו

לזה. זה זרים יהיו כולם שהם באופן Xα בכל הנקודות קבוצות את נחליף ראשית

שהוא נדע ואז ,(x, α)ל יהפוך x ∈ Xα Xα(כלומר ×{α}ב Xα כל להחליף ניתן למשל,

.(Xαמ בא

זרים. כולם Xαש מניחים אנו הזאת הפעולה ביצוע אחרי

הבא: באופן זר״) ״איחוד (נקרא
∐

α∈I

Xα מ״ט נגדיר כעת

X =
⋃

α∈I

Xα היא הנקודות קבוצת •

והטופולוגיה: •

פתוחה Uα ⊆ Xα כאשר
⋃

α∈I

Uα מהצורה היא אם פתוחה תחשב X של קבוצה תת

.Xαב

Xβ ⊆
∐

α∈I

Xα ,β שלכל נובע מהבניה

דוגמה

:R
∐

Rל שהומאומורפי R2ב מרחב תת יש ־ R
∐

R

· · · · · ·

· · · · · ·

טענה

שיכון. היא בפרט ופתוחה. רציפה היא iβ : Xβ →
∐

α∈I

Xα ההכלה העתקת

3



טענה

.α לכל רציפה f ◦ iα אם״ם רציפה f ,f :
∐

α∈I

Xα → Y לכל

צמצומים של בלשון

.α לכל רציפה f |Xα
אם״ם רציפה f :

∐

α

Xα → Y

מנה מרחבי

קיימים. מרחבים מתוך חדשים טופולוגיים מרחבים לבנות הרביעית הדרך את נראה כעת

הגדרה

.X על שקילות יחס ∼ ויהי טופולוגי מרחב X יהי

.X̂ על טופולוגיה לבנות נרצה השקילות. מחלקות קבוצת את X̂ב נסמן

.ρ (a) = [a] ע״י המוגדרת ρ : X → X̂ הטבעית ההעתקה קיימת

.Xב פתוחה ρ−1 (V ) אם פתוחה תחשב V ⊆ X̂
(V ב המחלקות איחוד הוא ρ−1 (V ) :ρ−1 (V ) על לחשוב אחרת (דרך

תרגיל. ־ טופולוגיה אכן שזהו להראות צריך

משפט

רציפה. ρ : X̂ → X ההעתקה (א)

רציפה. f ◦ ρ אם״ם רציפה f ,f : X̂ → Y העתקה ולכל Y מ״ט לכל (ב)

X
f◦ρ

//

ρ

&&

Y

X̂

f

88

הוכחה

.X̂ על הטופולוגיה מהגדרת פתוחה ρ−1 (V ) אזי פתוחה. V ⊆ X̂ תהי (א)

רציפה) ρ שעבורה המקסימלית הטופולוגיה היא X̂ על שבחרנו (הטופולוגיה

רציפה. f ◦ gש נובע מ(א) רציפה, f אם ⇐ (ב)

ידוע פתוחה. f−1 (w) צ״ל פתוחה. w ⊆ Y תהי רציפה. f ◦ ρש נניח ⇒

אולם פתוחה, (f ◦ g)
−1

(w)ש

(f ◦ g)
−1

(w) = ρ−1
(

f−1 (w)
)

4



.Xב ρ−1פתוחה
(

f−1 (w)
)

ש מקיימת f−1 (w) ⊆ X̂ הקבוצה

פתוחה. f−1 (w)ש נקבל X̂ב הטופולוגיה מהגדרת

במשפט שימוש

X
g

//

ρ

&&

Y

X̂

ĝ

88

אם a, b ∈ X לכל כלומר השקילות, יחס את שמכבדת רציפה פונקציה g : X → Y אם

.ĝ ([a]) := g (a) ע״י ĝ : X̂ → Y פונקציה משרה g אזי ,g (a) = g (b) אז a ∼ b
השקילות. יחס את מכבדת g כי בנציג תלויה בלתי ההגדרה

רציפה. ĝש נובע ומהמשפט רציפה, gש הנחנו .g = ĝ ◦ ρ מתקיים

דוגמה

.0 ∼ 1 ידי על הנוצר השקילות יחס X = [0, 1]
(0 ∼ 1 את שכולל המינימלי השקילות יחס (כלומר

?[̂0, 1] → R רציפה העתקה מגדירים כיצד

.f (0) = f (1) שמקיימת f : [0, 1] → Y רציפה העתקה ע״י מושרית תמיד היא

היחידה) Y(מעגל = S1 =
{

(x, y) ∈ R2
∣

∣x2 + y2 = 1
}

[0, 1] → R2

t 7→ (cos 2πt, sin 2πt)

.S1ל הטווח צמצום ואח״כ

להגדיר ניתן לדוגמה, חח״ע. להיות חייבת לא g הערה:

h : [0, 1] → R

t 7→ sinπt

משרה

ĥ : [0, 1] → R

הנ״ל: בדוגמאות

חח״ע ĝ •

חח״ע אינה ĥ •

S1ו קומפקטי, [̂0, 1] כן כמו הומאומורפיזם. ĝ לכן ⇐ ועל חח״ע רציפה, ĝ : [̂0, 1] → S1

האוסדורף. הוא

5



דוגמה עוד

.a− b ∈ Z אם a ∼ b הבא: השקילות יחס נגדיר R על

.R/Zב הנ״ל R̂ את מסמנים באלגברה

לכן השקילות, יחס את מכבדת k .k (t) := (cos 2πt, sin 2πt) ע״י k : R → S1 נגדיר

.k̂ : R̂ → S1 משרה

כלומר ,a − b ∈ Zש מתקיים k (a) = k (b)ש פעם בכל כלומר נכון. השני הכיוון גם

על. גם היא חח״ע. היא k̂ ולכן .a ∼ b
ועל. חח״ע רציפה, k̂ : R̂ → S1

R̂ ולכן ,0]קומפקטי, 1] ועל. רציפה ρ|[0,1] : [0, 1] → R̂ הצמצום .ρ : R → R̂ נגדיר

קומפקטי.

6



המשך ־ מנה מרחבי

.[0, 1]× [0, 1] הריבוע את לדוגמה ניקח

[0, 1]×[0, 1] ∼= D2
{

(x, y) ∈ R
2
∣

∣x2 + y2 ≤ 1
}

־ סגור לעיגול הומאומורפי עצמו הריבוע •

.(t, 0) ∼ (t, 1) העליונה: בצלע לה למקבילה שקולה התחתונה בצלע נקודה שכל נגדיר •
על גם דבר אותו נגדיר אם גליל. ולקבל ־ הצלעות שתי את להדביק שאפשר אומר זה

לבסיסים אותן(שהפכו גם להדביק נוכל ־ (0, t) ∼ (1, t) ־ והימנית השמאלית הצלע

טורוס. ולקבל ־ הגליל) של

נקבל ־ (t, 0) ∼ (1− t, 1) ־ העליונה הצלע ״נהפוך״ שבו שקילות יחס ניקח אם •
מביוס״. ״טבעת

בסיס עם לחרוט דומה משהו נקבל ־ (t, 0) ∼ (0, t) ־ סמוכות צלעות שתי נצמיד אם •
סגור. לעיגול הומאומורפי שהוא שמקבלים), ממה חלק לא הבסיס של נטוי(הפנים

טבעת שוב נקבל ־ (t, 0) ∼ (0, 1− t) ־ מהן אחת נהפוך אבל סמוכות, שתי נצמיד אם •
(t, 0) ∼ (0, 1− t) השקילות לפי ומדביקים האלכסון על שחותכים הוא הרעיון מביוס.

נגדיות צלעות שני עם מקבילית מקבלים שקילות, יוצר האלכסון על שהחיתוך ומכיוון ־

הפוך. שקולות

נצמיד האחרות המקבילות הצלעות שתי ואת ישר, מקבילות צלעות שתי נצמיד אם •

,R3ב כזה דבר לבנות אפשר אי קליין. בקבוק נקבל ־
(t, 0) ∼ (t, 1)

(0, t) ∼ (1, 1− t)
־ הפוך

אותו להכניס בשביל הרביעי המימד את מנצלים ואז אחד, צד כשהופכים ־ R
ב4 רק

בכיוון ויתחברו כיוון מאותו יבואו הבסיסים שני וככה ־ אותו לחתוך בלי הגליל לתוך

הנכון. הסיבוב

קיים עדיין הוא ־ R
n בשום הזה המרחב את לשכן יכולים היינו לא אם גם הערה:

טופולוגית. מבחינה

ששני עיגול נקבל ־
(t, 0) ∼ (1− t, 1)
(0, t) ∼ (1, 1− t)

־ הפוך מקבילות צלעות זוג כל נצמיד אם •

פרוייקטיבי. מישור נקרא הזה המרחב הפוך. מוצמדות שלו המעגלים חצאי

מימדית דו ספירה נקבל ־
(t, 0) ∼ (0, t)
(t, 1) ∼ (1, t)

־ סמוכות צלעות של זוגות שני נצמיד אם •

.S2 ־

לחבר, נוספות דרכים יש אבל ־ [0, 1] × [0, 1] מהריבוע לקבל שניתן המרחבים כל אלו

אחרות. בדרכים הנ״ל המרחבים את לקבל ניתן שבעזרתן

הגדרה

טופולוגיים. מרחבים X,Y יהיו

אם: מנה״ ״העתקת נקראת f : X → Y

על f .1

1
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.Xב פתוחה f−1 (U) אם״ם Y ב פתוחה U ⊆ Y .2

אחד. כיוון רק דורשת רציפות ־ מרציפות חזקה יותר דרישה הוא 2 תנאי הערה:

ההערה

איבר יש (X̂ב מנה(איבר קבוצת לכל כי על היא ־ מנה העתקת היא ρ : X → X̂ ההעתקה

.X̂ על הטופולוגיה את הגדרנו ככה כי 2 תנאי את מקיימת והיא ,Xב

טענה

אם a ∼ b הבא: באופן X על שקילות יחס נגדיר מנה, העתקת f : X → Y אם

.f (a) = f (b)

הערה

.Y → X לשיכון A ⊆ X בין ההבדל כמו הוא מנה להעתקת ρ בין ההבדל

X
f

��
ρ

��

X̂
f̂

// Y

טענה

הבאים: התנאים שני מתקיימים אם״ם מנה העתקת f : X → Y

על f .1

Xב סגורה f−1 (S) אם״ם Y ב סגורה S ⊆ Y .2

תרגיל הוכחה:

f−1 (Ac) =
(

f−1 (A)
)c

רמז:

טענה

מנה. העתקת היא מנה העתקות של הרכבה

2



הוכחה

מנה. העתקות שתי X
f
−→ Y

g
−→ Z יהיו

על. היא על העתקות של הרכבה .1

f−1
(

g−1 (A)
)

אם״ם נכון וזה פתוחה, g−1 (A) אם״ם פתוחה A .A ⊆ Z תהי .2

אם״ם פתוחה A קיבלנו כלומר .f−1
(

g−1 (A)
)

= (g ◦ f)−1
(A) אולם פתוחה.

פתוחה. (g ◦ f)−1
(A)

משפט

מנה העתקת f אז ופתוחה רציפה על f אם .1

מנה העתקת f אז וסגורה רציפה על f אם .2

הוכחה

ופתוחה. רציפה על f : X → Y תהי .1

על. fש נתון א.

פתוחה. f−1 (A) גם רציפה fש כיוון אזי פתוחה. A ⊆ Y תהי ⇐ ב.

פתוחה. Aש צ״ל פתוחה. f−1 (A) המקיימת קבוצה A ⊆ Y תהי ⇒
ולכן על היא f אולם פתוחה, f

(

f−1 (A)
)

לכן פתוחה העתקה f

.f
(

f−1 (A)
)

= A

לנ״ל) זהה טיעון תרגיל(רמז: .2

מסקנה

ורציפה. על f : X → Y האוסדורף, מ״ט Y קומפקטי, מ״ט X יהי

מנה. העתקת היא f אזי

הוכחה

סגורה. f ולכן האוסדורף, Y ל קומפקטי Xמ רציפה f

.x ∼ −x ,x לכל שקילות: יחס נגדיר R על

טענה

R̂ ∼= [0,∞)

3



הוכחה

.f (t) = |t| ע״י f : R → [0,∞) נגדיר

:f̂ : R̂ → [0,∞) רציפה העתקה משרה ולכן השקילות יחס את מכבד f

R
f

//

��

[0,∞)

R̂

f̂

==

.f̂ ({x,−x}) = |x|

הומאומורפיזם f̂ טענה:

.1g := ρ · i ע״י g : [0,∞) → R̂ נגדיר הוכחה:

,g◦ f̂ = Id
R̂
ש לוודא ונא רציפות, העתקות שתי של ρ◦i הרכבה היא כי רציפה g

.f̂ ◦ g = Id[0,∞)

המנה. מרחב של הקנונית העתקה ρ : R → R̂ ההכלה, העתקת i : [0,∞) → R
1
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הפרדה תכונות

פתוחות. קבוצות באמצעות דברים להפריד האפשרות זה טופולוגי במרחב הפרדה

שתי באמצעות נקודות שתי להפריד אפשר שבה ־ T2 ־ האוסדורף תכונת את ראינו •
זרות. פתוחות קבוצות

סגור נקודון כל שבה ־ T1 ־ חלשה יותר תכונה גם ראינו •

T2 ⇒ T1

a ∈ U, b ש∋/ כך פתוחה U יש a, b ∈ X לכל הפרדה: כתכונת לבטא ניתן T1 את גם

.U

T4 ⇒ T3 ⇒ T2 ⇒ T1 ־ עדינות ויותר יותר הפרדה תכונות למצוא הלאה, להמשיך נרצה

הגדרות

אם: T3 יקרא X מ״ט (א)

.T1 הוא X .1

קיימות a /∈ S המקיימים S ⊆ X סגורה קבוצה ולכל a ∈ X נקודה לכל .2

.a ∈ U, S ⊆ V ש כך U, V זרות פתוחות קבוצות

אם: T4 נקרא X מ״ט (ב)

.T1 הוא X .1

כך U, V זרות פתוחות קבוצות קיימות S, T זרות סגורות קבוצות שתי לכל .2

.S ⊆ U, T ⊆ V ש

T3(נבחר גם הוא T4וש נקודון) להיות הסגורה הקבוצה את T2(נבחר גם הוא T3ש לב נשים

נקודון). להיות הסגורות מהקבוצות אחת

משפט

T4 הוא מטרי מרחב כל

הוכחה

.T1 ולכן T2 הוא מטרי מרחב .1

זרות. סגורות קבוצות S, T יהיו .2

B (a, εa) ש⊇ כך εa > 0 יש לכן פתוחה. קבוצה שהיא a ∈ T c מתקיים a ∈ S לכל

.T ל זר B (a, εa) כלומר ,T c

זר B (b, δb)ש כך δb > 0 נבחר b ∈ T לכל אופן באותו כזה. ε נבחר a ∈ S לכל

.Sל

5



⋃

B (b, εb)ו
⋃

B (a, εa) הקבוצות את לבחור ניתן שעכשיו נראה אמנם הערה:

הכדורים: בין חפיפה להיות יכולה זרות! שהן לנו מובטח לא אבל ־

נגדיר:

U =
⋃

a∈S

B
(

a,
εa
2

)

V =
⋃

b∈T

B

(

b,
δb
2

)

.U ∩ V = ש∅ נראה .S ⊆ U, T ⊆ V מתקיים

d (z, a) ש> כך a ∈ S, b ∈ T יש כלומר .z ∈ U ∩ V בשלילה נניח הוכחה:

נקבל: .εa ≤ δbש בה״כ נניח .
εa
2
, d (z, b) <

εb
2

d (A, b) <
εa
2

+
δb
2

≤ δb

.Sל Bזר (b, δb)ש לכך בסתירה ,a ∈ B (b, δb) כלומר

משפט

T4 הוא X אזי קומפקטי. האוסדורף מ״א X יהי

הוכחה

שלבים: בשני

T3 Xש נוכיח א׳: שלב

T4 Xש נוכיח ב׳: שלב

6



א שלב

.a /∈ S סגורה, S נניח

.a ∈ Vxו x ∈ Uxש כך Ux, Vx זרות פתוחות קבוצות יש האוסדורף Xש כיוון x ∈ S לכל

של פתוח כיסוי הוא {Ux}x∈S שהאוסף מתקיים כאלה. Ux, Vx נבחר x ∈ S כל עבור

.Xב S
,Xב סופי כיסוי תת יש ולכן קומפקטי S ולכן קומפקטי, שהוא X במרחב סגורה S

ש כך סופי) ,x1(אוסף x2, . . . xn יש כלומר

U =
⋃

1≤i≤n

Uxi
⊇ S

לכן Uxi
⊆ V c

xi
כי U ∩ V = ∅ שמתקיים נראה וגם a ∈ V אז V =

⋂

1≤i≤n

Vxi
ניקח אם

.U ∩ V = ∅ ⇐
⋃

i

Uxi
⊆

⋃

i

V c
xi

=
⋂

i

V c
xi

דבר: אותו בדיוק כמעט ־ ב שלב

.S ∩ T = ∅ סגורה, T סגורה, S נניח

.T ⊆ Vxו x ∈ Uxש כך Ux, Vx זרות פתוחות קבוצות יש T3 Xש כיוון x ∈ S לכל

של פתוח כיסוי הוא {Ux}x∈S שהאוסף מתקיים כאלה. Ux, Vx נבחר x ∈ S כל עבור

.Xב S
,Xב סופי כיסוי תת יש ולכן קומפקטי S ולכן קומפקטי, שהוא X במרחב סגורה S

ש כך סופי) ,x1(אוסף x2, . . . xn יש כלומר

U =
⋃

1≤i≤n

Uxi
⊇ S

לכן Uxi
⊆ V c

xi
כי U ∩ V = ∅ שמתקיים נראה וגם T ⊆ V אז V =

⋂

1≤i≤n

Vxi
ניקח אם

.U ∩ V = ∅ ⇐
⋃

i

Uxi
⊆

⋃

i

V c
xi

=
⋂

i

V c
xi
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