


 𝑪𝒂𝒏𝒕𝒐𝒓 :1 משפט
:𝑓תהי  𝐾

∈ℝ𝑛
→ ℝ𝑚 נניח כי ,𝐾 קומפקט ו𝑓 רציפה ב-𝐾 אז ,𝑓 .רציפה במ"ש 

 הוכחה

 לא רציפה במ"ש. 𝑓נניח ש

∃𝜖 > 0 ∀𝛿 > 0 ∃𝑥′, 𝑥′′ ∈ 𝐾, ||𝑥′ − 𝑥′′|| < 𝛿 ∧ ||𝑓(𝑥′) − 𝑓(𝑥′′)|| ≥ 𝜖 

𝛿 ≔
1

𝑘
, 𝑘 = 1,2, … 

𝑥′ ≔ 𝑥𝑘
′  

𝑥′′ ≔ 𝑥𝑘
′′ 

||𝑥𝑘
′ − 𝑥𝑘

′′|| <
1

𝑘
∧ 𝑥𝑘

′ , 𝑥𝑘
′′ ∈ 𝐾 

 וגם

||𝑓(𝑥𝑘
′ ) − 𝑓(𝑥𝑘

′′)|| ≥ 𝜖 

B-W ∃𝑥𝑘𝑖לפי למה 
′ → 𝑥0 ∈ 𝐾 

𝑥𝑘𝑖
′′ = 𝑥𝑘𝑖

′

↓
𝑥0

+ (𝑥𝑘𝑖
′′ − 𝑥𝑘𝑖

′ )
↓
0

 

𝑥𝑘𝑖
′′ , 𝑥𝑘𝑖

′′ → 𝑥0 

𝑓  רציפה ולכן𝑓(𝑥𝑘𝑖
′ ) → 𝑓(𝑥0), 𝑓(𝑥𝑘𝑖

′′ ) → 𝑓(𝑥0) 

lim
𝑖→∞
(𝑓(𝑥𝑘

′ ) − 𝑓(𝑥𝑘
′′)) = 0 

𝑓(𝑥𝑘||אבל 
′ ) − 𝑓(𝑥𝑘

′′)|| ≥ 𝜖 >  בסתירה. 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 דיפרנציאביליות וקיום של נגזרות חלקיות. נוסחא לדיפרנציאל עבור נגזרות חלקיות + דוגמאיחס בין : 2משפט 

 1טענה 

𝑓:Ω → ℝ𝑚, 𝑎 ∈ Ω
𝑜

 

1, אזי לכל 𝑎דפ' בנקודה  𝑓נניח ש ≤ 𝑗 ≤ 𝑛  קיימת
𝜕𝑓

𝜕𝑥𝑗
(𝑎) = 𝑑𝑓𝑎(𝑒𝑗) 

 הוכחה

𝐿 ≔ 𝑑𝑓𝑎 

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝐿(ℎ) + 𝜖(ℎ)||ℎ|| 

lim
ℎ→0

𝑓(𝑎 + 𝑡𝑒𝑗) − 𝑓(𝑎)

𝑡
=
𝜕𝑓

𝜕𝑥𝑗
(𝑎) 

𝑓(𝑎 + 𝑡𝑒𝑗) − 𝑓(𝑎) = 𝐿(𝑡𝑒𝑗) + 𝜖(𝑡𝑒𝑗)|𝑡| ||𝑒𝑗|| 

||𝑒𝑗||מכיוון ש =  והדיפרנציאל הוא אופרטור ליניארי, מקבלים ש:  1

𝐿(𝑡𝑒𝑗) = 𝑡𝐿(𝑒𝑗), ||𝑒𝑗|| = 1 

𝑓(𝑎 + 𝑡𝑒𝑗) − 𝑓(𝑎)

𝑡
= 𝐿(𝑒𝑗) +

|𝑡|

𝑡
𝜖(𝑡 ∗ 𝑒𝑗)⏟      

𝑡→0
→  0

 

 ולכן: 0שואף ל tכאשר  0נשים לב כי הגורם האחרון שואף ל

lim
𝑡→0

𝑓(𝑎 + 𝑡𝑒𝑗) − 𝑓(𝑎)

𝑡
= 𝐿(𝑒𝑗) 

כאשר אגף שמאל זה בידיוק 
𝜕𝑓

𝜕𝑥𝑗
(𝑎)  ואגף ימין בידיוק𝑑𝑓𝑎(𝑒𝑗) .וקיבלנו את הרצוי 

 2טענה 

𝑓:Ω תהי  → ℝ𝑚  כך שΩ ⊆ ℝ𝑛  ותהי𝑎 ∈ 𝑖𝑛𝑡Ω  כך שf  'דיפ' בנקa:אזי מתקיים , 

∀ℎ ∈ ℝ𝑛 ∶ 𝑑𝑓𝑎(ℎ) =∑
𝜕𝑓

𝜕𝑥𝑗
(𝑎)ℎ𝑗

𝑛

𝑗=1

 

 הוכחה

ℎ =∑ℎ𝑗𝑒𝑗

𝑛

𝑗=1

 

𝑑𝑓𝑎(ℎ) = 𝑑𝑓𝑎 (∑ℎ𝑗𝑒𝑗

𝑛

𝑗=1

) =∑ℎ𝑗𝑑𝑓𝑎(𝑒𝑗)

𝑛

𝑗=1

=∑
𝜕𝑓

𝜕𝑥𝑗
(𝑎)ℎ𝑗

𝑛

𝑗=1

 

𝑓 = (𝑓1, … , 𝑓𝑚) 

𝐿 = 𝑑𝑓𝑎(ℎ) = ∑
𝜕𝑓

𝜕𝑥𝑗
(𝑎)

𝑛

𝑖=1

ℎ𝑗 

𝐿(ℎ) = (𝐿1(ℎ), … , 𝐿𝑚(ℎ)) 

∀1 ≤ 𝑗 ≤ 𝑛 ∶ 𝐿𝑗(ℎ) =∑
𝜕𝑓𝑗

𝜕𝑥𝑗

𝑛

𝑗=1

(𝑎)ℎ𝑗 

 

 



 לכן:

(

 
 

𝐿1(ℎ)
⋮
⋮
⋮

𝐿𝑛(ℎ))

 
 
=

(

 
 
 

𝜕𝑓1
𝜕𝑥1

(𝑎) … 
𝜕𝑓1
𝜕𝑥𝑛…

…
𝜕𝑓𝑛
𝜕𝑥1

(𝑎) … 
𝜕𝑓𝑚
𝜕𝑥𝑛)

 
 
 

(

 
 
 

ℎ1
⋮
⋮
⋮
⋮
ℎ𝑛)

 
 
 

 

𝐿מטריצה של האופרטור  = 𝑑𝑓𝑎: ℝ
𝑛 → ℝ𝑚 

𝑑𝑓𝑎~(
𝜕𝑓𝑖
𝜕𝑥𝑗
)
𝑖,𝑗=1

𝑚,𝑛

 

 דוגמה בה כל הנגזרות החלקיות קיימות אבל הפונקציה לא דיפרנציאלית.

{

𝑥𝑦

𝑥2 + 𝑦2
  𝑥2 + 𝑦2 ≠ 0

0           𝑥 = 𝑦 = 0
 

∃
𝜕𝑓

𝜕𝑥
(𝑎),

𝜕𝑓

𝜕𝑦
(𝑎)   לכל∀(𝑥, 𝑦) ∈ ℝ2  אבלf  (0,0)לא דיפרנציאלית ב. 

 ונקבל גבולות שונים( y=kx מסלולים)ניקח  0-הפונקציה אפילו לא רציפה ב

 אך הנגזרות החלקיות קיימות כי מתקיים:

𝜕𝑓

𝜕𝑥
(0,0) = lim

𝑡→0

𝑓(0 + 𝑡, 0) − 𝑓(0,0)

𝑡
= lim
𝑡→0
0 = 0 

 .yובאופן דומה גם לנגזרות של 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 לנוסחה עם נגזרות חלקיות: rהגדרה של דיפרנציאל מסדר : 3משפט 

 הגדרה:

𝑈 ⊂∘ ℝ𝑛; 𝑎 ∈ 𝑈   תהי𝑓 ∈ 𝐶𝑟(𝑈) כך שU  קבוצה פתוחה ומוכלת בℝ𝑛. 

ℎיהי  ∈ ℝ𝑛 : נגדיר .𝜑(𝑡) = 𝑓(𝑎 + 𝑡ℎ) ,𝑈 –  פתוחה, קיים𝛿 > ,𝐵(𝑎כך ש  0 𝛿) ⊂ 𝑈 

|𝑡|||ℎ|| < 𝛿 ⇒ 𝑎 + 𝑡ℎ ∈ 𝐵(𝑎, 𝛿) 

|𝑡| <
𝛿

||ℎ||
 

𝜑 ∈ 𝐶𝑟(𝐼)     𝐼 = (−
𝛿

||ℎ||
,
𝛿

||ℎ||
) 

 . לכן ניתן להגדיר:0-פעמים ב rגזירה  𝜑אז מתקיים ש 

𝑑𝑟𝑓𝑎(ℎ) ≔ 𝜑(𝑟)(0) 

 משפט
𝑈 ⊂∘ ℝ𝑛;  𝑓 ∈ 𝐶𝑟(𝑈); 𝑎 ∈ 𝑈 

 אזי 

𝑑𝑟𝑓𝑎(ℎ) = ∑
𝑟!

𝛼!
𝐷𝛼𝑓(𝑎)ℎ𝛼

|𝛼|=𝑟

 

 עבור 

|𝛼| = 𝛼1 +⋯+ 𝛼𝑛 

𝛼! = 𝛼1! … 𝛼𝑛! 

𝐷𝛼𝑓 =
𝜕|𝛼|𝑓

𝜕𝑥1
𝛼1 …𝜕𝑥𝑛

𝛼𝑛
 

ℎ𝛼 = ℎ1
𝛼1 …ℎ𝑛

𝛼𝑛 

𝑑𝑟𝑓𝑎  פולינום הומוגני מסדר𝑟. 

 הוכחה

𝑟 = 1 

𝑑𝑓𝑎(ℎ) =∑
𝜕𝑓

𝜕𝑥𝑗
(𝑎)ℎ𝑗

𝑛

𝑗=1

 

|𝛼|כלומר כאן  = 𝑟 = 1 ⇐ 𝛼 = 𝛿𝑗 = (0,0, . . ,1, … !αכלומר  (0, = 1 

∑
∂𝑓

∂𝑥𝑗
(𝑎)ℎ𝑗

𝑛

𝑗=1

=∑
1!

1!
𝐷𝑓𝛿𝑗(𝑎)ℎ𝛿𝑗

𝑛

𝑗=1

 

 נניח ש:

𝑑𝑟

𝑑𝑡𝑟
𝑓(𝑎 + 𝑡ℎ)|𝑡=0 = ∑

𝑟!

𝛼!
𝐷𝛼𝑓(𝑎)ℎ𝛼

|𝛼|=𝑟

 

𝑎, נחליף ל𝑎אם הדבר נכון לכל  + 𝑠ℎ  

𝑑𝑟

𝑑𝑡𝑟
𝑓(𝑎 + 𝑠ℎ + 𝑡ℎ)|𝑡=0 = ∑

𝑟!

𝛼!
𝐷𝛼𝑓(𝑎 + 𝑠ℎ)ℎ𝛼

|𝛼|=𝑟

 

𝑑𝑟

𝑑𝑡𝑟
𝑓(𝑎 + ℎ(𝑠 + 𝑡))|𝑡=0 = {𝑢 = 𝑡 + 𝑠} =

𝑑𝑟

𝑑𝑢𝑟
𝑓(𝑎 + ℎ𝑢)|𝑡=0 = ∑

𝑟!

𝛼!
𝐷𝛼𝑓𝛼(𝑎)ℎ𝑎

|𝛼|=𝑟

 



𝑑

𝑑𝑠
: (∗)

𝑑𝑟+1

𝑑𝑠𝑟+1
𝑓(𝑎 + 𝑠ℎ) = ∑

𝑟!

𝛼!

𝑑

𝑑𝑠
𝐷𝛼𝑓(𝑎 + 𝑠ℎ)ℎ𝛼

|𝛼|=1

= ∑
𝑟!

𝛼!
(∑

∂

∂𝑥𝑗
𝐷𝛼𝑓(𝑎 + 𝑠ℎ)ℎ𝑗

𝑛

𝑗=1

)ℎ𝛼

|𝛼|=1

 

δ𝑗נגדיר  = (0,… ,1, . , ,0) 

ℎ𝑗ℎ
𝛼 = ℎ𝛼+𝛿𝑗 ⇒

∂

∂𝑥𝑗
𝐷𝛼𝑓 = 𝐷𝛼+𝛿𝑗𝑓 

(∗) = ∑
𝑟!

𝛼!
∑𝐷𝛼+𝛿𝑗

𝑛

𝑗=1

𝑓(𝑎 + 𝑠ℎ)ℎ𝛼+𝛿𝑗

|𝛼|=𝑟

 

βנסמן  ≔ 𝛼 + 𝛿𝑗 

|𝛽| = 𝑟 + 1 ⇒
β!

β𝑗
= α! ⇒ 

(∗) =∑ ∑
𝑟!𝛽𝑗

β!
𝐷𝛽𝑓(𝑎 + 𝑠ℎ)

|𝛽|=𝑟+1

𝑛

𝑗=1

ℎ𝛽 = ∑
𝑟!

𝛽!
∑𝛽𝑗𝐷

𝛽𝑓(𝑎 + 𝑠ℎ)

𝑛

𝑗=1

ℎ𝛽

|𝛽|=𝑟+1

 

𝛽1 +⋯+ 𝛽𝑛 = |𝛽| = 𝑟 + 1 ⇒∑𝛽𝑗 = 𝑟 + 1

𝑛

𝑗=1

 

⇒ (∗) = ∑
𝑟! (𝑟 + 1)

β!
𝐷𝛽𝑓(𝑎 + 𝑠ℎ)ℎ𝛽

|𝛽|=𝑟+1

 

𝑠 = 0 ⇒
𝑑𝑟+1

𝑑𝑠𝑟+1
𝑓(𝑎 + 𝑠ℎ)|𝑠=0 = ∑

(𝑟 + 1)!

β!
𝐷𝛽𝑓(𝑎)ℎ𝛽

|𝛽|=𝑟+1

 

 ולכן לפי אינדוקציה כדרוש.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 תנאי מספיק לדיפרנציאביליות לפי רציפות נגזרות חלקיות: 4משפט 

𝑓: Ω → ℝ𝑚, 𝑎 ∈ Ω
𝑜

 נניח כי: 

קיימות  (1
𝜕𝑓

𝜕𝑥𝑖
(𝑥)  לכל𝑥  בסביבה𝐵𝑎(𝛿) ⊂ Ω. 

2) ∀𝑖 ∶
𝜕𝑓

𝜕𝑥𝑖
(𝑥) רציפות ב𝐵𝑎(𝛿). 

 .𝑎דיפ' בנקודה  𝑓אזי 

 הוכחה

𝑛ניקח  = 2. 

||ℎ|| < 𝛿 ∶  𝑓(𝑎 + ℎ) − 𝑓(𝑎) =
?
∑

𝜕𝑓

𝜕𝑥𝑖
(𝑎)ℎ𝑖

𝑛

𝑖=1

+ 𝜖(ℎ)||ℎ||⏟      
𝜖(ℎ)

ℎ→0
→   0

 

𝑓(𝑎1 + ℎ1, 𝑎2 + ℎ2) − 𝑓(𝑎1, 𝑎2)

= 𝑓(𝑎1 + ℎ1, 𝑎2 + ℎ2) − 𝑓(𝑎1, 𝑎2 + ℎ2)⏟                        
𝑥 שינוי לגבי

+ 𝑓(𝑎1, 𝑎2 + ℎ2) − 𝑓(𝑎1, 𝑎2)⏟                
𝑦 שינוי לגבי

 

𝑔(𝑥0למשתנה אחד       𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒לפי משפט  + ℎ) − 𝑔(𝑥0) = 𝑔
′(𝑥0 + 𝜃ℎ)ℎ: 

𝑓(𝑎1 + ℎ1, 𝑎2 + ℎ2) − 𝑓(𝑎1, 𝑎2 + ℎ2) =
𝜕𝑓

𝜕𝑥
(𝑎1 + 𝜃1ℎ1, 𝑎2 + ℎ2)ℎ1        0 < 𝜃1 < 1 

𝑓(𝑎1, 𝑎2 + ℎ2) − 𝑓(𝑎1, 𝑎2) =
𝜕𝑓

𝜕𝑦
(𝑎1, 𝑎2 + 𝜃2ℎ2)ℎ2                                     0 < 𝜃2 < 1 

𝑓(𝑎 + ℎ) − 𝑓(𝑎) −
𝜕𝑓

𝜕𝑥
(𝑎)ℎ1 −

𝜕𝑓

𝜕𝑦
(𝑎)ℎ2

=
𝜕𝑓

𝜕𝑥
(𝑎1 + 𝜃1ℎ1, 𝑎2 + ℎ2)ℎ1 +

𝜕𝑓

𝜕𝑦
(𝑎1, 𝑎2 + θ2ℎ2)ℎ2 −

𝜕𝑓

𝜕𝑥
(𝑎)ℎ1 −

𝜕𝑓

𝜕𝑦
(𝑎)ℎ1

= 𝛼(ℎ)ℎ1 + 𝛽(ℎ)ℎ2 

𝛼(ℎ)עבור  =
𝜕𝑓

𝜕𝑥
(𝑎1 + 𝜃1ℎ1, 𝑎2 + ℎ2) −

𝜕𝑓

𝜕𝑥
(𝑎), 𝛽(ℎ) =

𝜕𝑓

𝜕𝑦
(𝑎1, 𝑎2 + θ2ℎ2) −

𝜕𝑓

𝜕𝑦
(𝑎) 

𝑓(𝑎 + ℎ) − 𝑓(𝑎) −
𝜕𝑓

𝜕𝑥
(𝑎)ℎ1 −

𝜕𝑓

𝜕𝑦
(𝑎)ℎ2 = 𝛼(ℎ)ℎ1 + 𝛽(ℎ)ℎ2 

הנגזרות החלקיות רציפות ולכן 
𝛼(ℎ) → 0

𝛽(ℎ) → 0
ℎ→0

 

||𝛼(ℎ)ℎ1 + 𝛽(ℎ)ℎ2|| ≤ |ℎ1| ||𝛼(ℎ)|| + |ℎ2| ||𝛽(ℎ)|| ≤ √||𝛼(ℎ)||
2
+ ||𝛽(ℎ)||

2
√ℎ1

2 + ℎ2
2 

||
𝛼(ℎ)ℎ1 + 𝛽(ℎ)ℎ2

√ℎ1
2 + ℎ2

2
|| ≤ √||𝛼(ℎ)||

2
+ ||𝛽(ℎ)||

2

ℎ→0
→  0 

𝛼(ℎ)ℎ1 + 𝛽(ℎ)ℎ2 = 𝑜 (√ℎ1
2 + ℎ2

2)
ℎ→0

 

 לכן קיבלנו

𝑓(𝑎 + ℎ) − 𝑓(𝑎) =
𝜕𝑓

𝜕𝑥
(𝑎)ℎ1 +

𝜕𝑓

𝜕𝑦
(𝑎)ℎ2 + 𝑜 (√ℎ1

2 + ℎ2
2) 

 . 𝑎דיפ' בנקודה  𝑓ולכן 

 

 



𝒏עבור  > 𝟐 

𝑓(𝑎1 + ℎ1, … , 𝑎𝑛 + ℎ𝑛) − 𝑓(𝑎1, … , 𝑎𝑛) = 

= 𝑓(𝑎1 + ℎ1, … , 𝑎𝑛 + ℎ𝑛) − 𝑓(𝑎1, 𝑎2 + ℎ2, … , 𝑎𝑛 + ℎ𝑛) 

+𝑓(𝑎1, 𝑎2 + ℎ2, … , 𝑎𝑛 + ℎ2) − 𝑓(𝑎1, 𝑎2 + ℎ2, … , 𝑎𝑛 + ℎ2) 

+𝑓(𝑎1, 𝑎2, 𝑎3 + ℎ3, … , 𝑎𝑛 + ℎ𝑛) − 𝑓(𝑎1, 𝑎2, 𝑎3 + ℎ3, … , 𝑎𝑛 + ℎ𝑛) 

+⋯+ 𝑓(𝑎1, … , 𝑎𝑛−1, 𝑎𝑛 + ℎ𝑛) − 𝑓(𝑎1, … , 𝑎𝑛) 

𝑓(𝑎לפי משפט לגראנז'  + ℎ) − 𝑓(𝑎) = 𝛼1(ℎ)ℎ + ⋯+ 𝛼𝑛(ℎ)ℎ𝑛 − ∑
𝜕𝑓

𝜕𝑥𝑖
(𝑎)ℎ𝑖

𝑛
𝑖=1  כאשר𝛼𝑖

ℎ→0
→  0 

||𝑓(𝑎 + ℎ) − 𝑓(𝑎) −∑
𝜕𝑓

𝜕𝑥𝑖
(𝑎)ℎ𝑖

𝑛

𝑖=1

|| ≤ √||𝛼1(ℎ)||
2
+⋯ ||𝛼𝑛||

2
√ℎ1

2 +⋯+ ℎ𝑛
2  

⇒ 𝑓(𝑎 + ℎ) − 𝑓(𝑎) −∑
𝜕𝑓

𝜕𝑥𝑖
(𝑎)ℎ𝑖

𝑛

𝑖=1

= 𝑜(||ℎ||)
ℎ→0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 תנאי מספיק לקיצון מקומי על סמך הדיפרנציאל השני :5 משפט

:𝑓תהי פונ'  𝑈 → ℝ     𝑈 ⊂∘ ℝ𝑛     𝑓 ∈ 𝐶2(𝑈) 

𝑎תהי  ∈ 𝑈  נקודה קריטית, כלומר∇𝑓(𝑎) = 0 

𝑑2𝑓𝑎אם  .1 >  נקודת מינימום מקומי ממש. 𝑎אז  0

𝑑2𝑓𝑎אם  .2 <  נקודת מקסימום מקומי ממש. 𝑎אז  0

 לא נקודת קיצון.  𝑎לא מוגדרת סימן אז  𝑑2𝑓𝑎אם  .3

 הוכחה

1. 𝑄 ≔ 𝑑2𝑓𝑎 > 0 

𝐶לפי המשפט הקודם קיים  > ℎ∀כך ש 0 ∈ ℝ𝑛: 𝑄(ℎ) ≥ 𝐶||ℎ||
2

 

 ::𝑎סביב נקודה  2נוסחת טיילור מסדר 

𝑓(𝑥) = 𝑓(𝑎) + 𝑑𝑓𝑎(𝑥 − 𝑎) +
1

2
𝑑2𝑓𝑎(𝑥 − 𝑎) + 𝜖(𝑥 − 𝑎)||𝑥 − 𝑎||

2
 

𝑑𝑓𝑎(𝑥 − 𝑎) = 〈∇𝑓(𝑎), 𝑥 − 𝑎〉 = 0 

𝑓(𝑥) − 𝑓(𝑎) =
1

2
𝑑2𝑓𝑎(𝑥 − 𝑎) + 𝜖(𝑥 − 𝑎)||𝑥 − 𝑎||

2
=
1

2
𝑄(𝑥 − 𝑎) + 𝜖(𝑥 − 𝑎)||𝑥 − 𝑎||

2

≥
1

2
𝐶||𝑥 − 𝑎||

2
+ 𝜖(𝑥 − 𝑎)||𝑥 − 𝑎||

2
 

𝑓(𝑥) − 𝑓(𝑎) ≥ ||𝑥 − 𝑎||
2
(
1

2
𝐶 + 𝜖(𝑥 − 𝑎)) 

∃𝛿 > 0 ∶   ||𝑥 − 𝑎|| < 𝛿 ⇒ |𝜖(𝑥 − 𝑎)| <
1

4
𝐶 

 בתחום מתקיים: 𝑥לכל 

||𝑥 − 𝑎|| < 𝛿 ⇒ 𝑓(𝑥) − 𝑓(𝑎) ≥
1

4
𝐶||𝑥 − 𝑎|| >

𝑥≠𝑎
0 

∀𝑥 ∈ 𝑈 ∩ 𝐵𝛿(𝑎), 𝑥 ≠ 0 ∶ 𝑓(𝑥) − 𝑓(𝑎) > 0 

 נק' מינימום ממש. 𝑎ולכן 

 . 𝑓−ל 𝑓נחליף  .2

 לא שומרת סימן. Qנניח כי  .3

∃ℎ+ ∈ ℝ
𝑛: 𝑄(ℎ+) > 0 

∃ℎ− ∈ ℝ
𝑛 ∶ 𝑄(ℎ−) < 0 

𝑓(𝑎 + 𝑡ℎ±) = 𝑓(𝑎) + 𝑑𝑓𝑎(𝑡ℎ±) +
1

2
𝑑2𝑓𝑎(𝑡ℎ±) + 𝜖(𝑡ℎ±) ||𝑡ℎ±||

2

 

𝑓(𝑎 + 𝑡ℎ±) − 𝑓(𝑎) =
1

2
𝑄(𝑡ℎ±) + 𝜖(𝑡ℎ±) ||𝑡ℎ±||

2

=
1

2
𝑡2𝑄(ℎ±) + |𝑡|

2𝜖(𝑡ℎ±)||ℎ||
2
= 

= 𝑡2 (
1

2
𝑄(ℎ±) + 𝜖(𝑡ℎ±) ||ℎ±||

2

) 

a. 𝑄(ℎ+) > 0 

∃𝛿 > 0 ∶ |𝑡| < 𝛿 ⇒ |𝜖(𝑡ℎ±) ||ℎ±||
2

| <
1

4
𝑄(ℎ+) 

|𝑡|אז אם  < 𝛿  אזי𝑓(𝑎 + 𝑡ℎ+) − 𝑓(𝑎) >
𝑡≠0
0 

b. 𝑄(ℎ−) < 0 

∃𝛿′ > 0 ∶ |𝜖(𝑡ℎ−)||ℎ−||
2
| <

1

4
|𝑄(ℎ−)| ⇒

1

2
𝑄(ℎ−) + 𝜖(𝑡ℎ−)||ℎ||

2
< 0 

𝑓(𝑎 + 𝑡ℎ−) − 𝑓(𝑎) < 0 

 לא נקודת קיצון. 𝑎ולכן 



 משוואה אחת –: משפט פונקציה סתומה  6 משפט

𝕎תהי  ⊂∘ ℝ𝑛+1 = ℝ𝑛 × ℝ נתונה .𝐹:𝕎 → ℝ ; 𝐹 ∈ 𝐶𝑟(𝕎) 

𝑊נתונה הנקודה  ∋ (𝑎, 𝑏) כך ש𝐹(𝑎, 𝑏) = 0  

 נניח 
𝜕𝐹

𝜕𝑦
(𝑎, 𝑏) ≠ 0 

𝑎אזי קיימות סביבות ב ∈ 𝑈, 𝑏 ∈ 𝑉 כך ש 

∀𝑥 ∈ 𝑈 ∃!⏞
קיים ויחיד

𝑦 ∈ 𝑉  F(𝑥, 𝑦) = 0 

𝑦נסמן  = 𝜑(𝑥)     𝜑: 𝑈 → 𝑉 ו𝜑 ∈ 𝐶𝑟(𝑈) 

 הוכחה
𝜕𝐹

𝜕𝑦
(𝑎, 𝑏) ≠ 0   ;     𝑊𝐿𝑂𝐺   

𝜕𝐹

𝜕𝑦
> 0 

𝜕𝐹

𝜕𝑦
,𝑎)רציפה ב –  𝑏) ולכן 

∃𝐵(𝑎,𝑏)(𝜖): ∀(𝑥, 𝑦) ∈ 𝐵(𝑎,𝑏)(𝜖)  
𝜕𝐹

𝜕𝑏
(𝑥, 𝑦) > 0 

′𝑈∃סביבות  ∋ 𝑎, 𝑉′ ∋ 𝑏 כך ש𝑈′ × 𝑉′ ⊂ 𝐵(𝑎,𝑏)(𝜖) 

בפרט 
𝜕F

𝜕𝑦
(𝑎, 𝑦) > ,𝐹(𝑎כלומר  0 𝑦)  (.𝑦ממש )לפי  ↗

𝑉′ = (𝑏 − ϵ, 𝑏 + 𝜖) 

𝑦 = 𝑏 ∶ 𝐹(𝑎, 𝑏) = 0 

𝑦 = 𝑏 + 𝜖 ∶ 𝐹(𝑎, 𝑏 + 𝜖) > 0 

𝑦 = 𝑏 − 𝜖 ∶ 𝐹(𝑎, 𝑏 − 𝜖) < 0 

𝐹(𝑥, 𝑏 + 𝜖)  רציפה ולכן∃𝑈′′ ∋ 𝑎 ∶  𝐹(𝑥, 𝑏 + 𝜖) > 0 ∀𝑥 ∈ 𝑈′′ 

𝐹(𝑥, 𝑏 − 𝜖)  רציפה ולכן∃𝑈′′′ ∋ 𝑎 ∶  𝐹(𝑥, 𝑏 − 𝜖) < 0 ∀𝑥 ∈ 𝑈′′′ 

 נגדיר

𝑈 ≔ 𝑈′ ∩ 𝑈′′ ∩ 𝑈′′′ 

𝑥נקבע  ∈ 𝑈 

,𝐹(𝑥לפי הבניה  𝑏 − 𝜖) < 0 , 𝐹(𝑥, 𝑏 + 𝜖) > 0 

𝐹(𝑥, 𝑦) –  רציפה לפי𝑦  אם𝑥 .קבוע 

𝐹(𝑥, 𝑏 − 𝜖) < 0, 𝐹(𝑥, 𝑏 + 𝜖 > 𝑦∃ולכן לפי משפט קושי על ערך בינוני  (0 ∶ 𝐹(𝑥, 𝑦) = 0 

𝐹(𝑥,∗)אבל   הוא יחיד. 𝑦ולכן  ↗

𝑦 ∈ (𝑏 − 𝜖, 𝑏 + 𝜖) = 𝑉  ;   𝑦 = 𝜑(𝑥), 𝑥 ∈ 𝑈 

,𝑎)רציפה בנקודה  𝜑צ"ל  (1 𝑏):כלומר צ"ל , 

∀𝜖 > 0∃𝛿 > 0 ∀𝑥 ∈ 𝐵(𝑎, 𝛿) ⊂ 𝑈 ∶ 𝜑(𝑥) ∈ (𝑏 − 𝜖, 𝑏 + 𝜖) 

𝑈קח ני × (𝑏 − 𝜖, 𝑏 + 𝜖)  ולפי הבנייה∃𝑈′ ⊂ 𝑈 

𝑥 ∈ 𝑈′ ⇒ 𝑦 ∈ (𝑏 − 𝜖, 𝑏 + 𝜖) 

𝑈′ = 𝐵(𝑎, 𝛿) 

𝑦 = 𝜑(𝑥) 

∀𝑥 ∈ 𝐵(𝑎, 𝛿) ⇒ 𝜑(𝑥) ∈ (𝜑(𝑎) − 𝜖, 𝜑(𝑎) + 𝜖) 

 רציפה. 𝜑ולכן 

2) 𝜑 ∈ 𝐶𝑟(𝑈) 

,a)בנקודה  𝐹נכתוב נוסחת טיילור ל b)  עם שארית  0עם סדר𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒. 



𝐹(𝑥1, … , 𝑥𝑛 , 𝑦) = 𝐹(𝑎, 𝑏) +∑
𝜕𝐹

𝜕𝑥𝑗
(ξ)(𝑥𝑗 − 𝑎𝑗)

𝑛

𝑗=1

+
𝜕𝐹

𝜕𝑦
(𝜉)(𝑦 − 𝑏) 

𝜉עבור  = (𝑎. 𝑏) + 𝜃((𝑥, 𝑦) − (𝑎, 𝑏))     ;   0 < 𝜃 < 1 

𝑦 = 𝜑(𝑥);    𝑏 = 𝜑(𝑎) 

𝐹(𝑎, 𝑏) = 0 

𝑥 ∈ 𝑈 ∋ 𝑎 ; 𝐹(𝑥, 𝜑(𝑥)) = 0 

0 = 0 +∑
𝜕𝐹

𝜕𝑥𝑗
(ξ)(𝑥𝑗 − 𝑎𝑗)

𝑛

𝑗=1

+
𝜕𝐹

𝜕𝑦
(𝜉)(𝜑(𝑥) − 𝜑(𝑎)) 

𝑥 = (𝑎1, 𝑎2, … , 𝑎𝑘−1, 𝑥𝑘 , 𝑎𝑘+1, … 𝑎𝑛) 

0 =
𝜕𝐹

𝜕𝑥𝑘
(𝜉)(𝑥𝑘 − 𝑎𝑘) +

𝜕𝐹

𝜕𝑦
(𝜉)(𝜑(𝑎1, … , 𝑥𝑘 , . . , 𝑎𝑛) − 𝜑(𝑎)) 

𝜑(𝑎1, … , 𝑥𝑘 , … , 𝑎𝑛) − 𝜑(𝑎1, … , 𝑎𝑛)

𝑥𝑘 − 𝑎𝑘
= −

𝜕𝐹
𝜕𝑥𝑘

(𝜉)

𝜕𝐹
𝜕𝑦
(𝜉)

 

𝜕𝐹

𝜕𝑦
(𝑎, 𝑏) ≠ 0 ⇒

𝜕𝐹

𝜕𝑦
(𝑥),

𝜕𝐹

𝜕𝑦
(𝜉) ≠ 0  ∀||𝑥 − 𝑎|| < 𝛿 

𝑥 → 𝑎 ⇒ 𝜑(𝑥) → 𝑏 = 𝜑(𝑎) 

(𝑥, 𝜑(𝑥)) − (𝑎, 𝑏)
𝑥→𝑎
→  0 

𝜉ולכן 
𝑥→𝑎
→  (𝑎, 𝑏) 

𝜑(𝑎1, … , 𝑥𝑘 , … , 𝑎𝑛) − 𝜑(𝑎1, … , 𝑎𝑛)

𝑥𝑘 − 𝑎𝑘
= −

𝜕𝐹
𝜕𝑥𝑘

(𝑎 + 𝜃(𝑥 − 𝑎), 𝑏 + 𝜃(𝜑(𝑥) − 𝑏))

𝜕𝐹
𝜕𝑦
(𝑎 + 𝜃(𝑥 − 𝑎), 𝑏 + 𝜃(𝜑(𝑥) − 𝑏)

 

lim
𝑥𝑘→𝑎𝑘

𝜑(𝑎1, … , 𝑥𝑘 , … , 𝑎𝑛) − 𝜑(𝑎1, … , 𝑎𝑛)

𝑥𝑘 − 𝑎𝑘
= −

𝜕𝐹
𝜕𝑥𝑘

(𝑎, 𝑏)

𝜕𝐹
𝜕𝑦
(𝑎, 𝑏)

  

∃
𝜕𝜑

𝜕𝑥𝑘
(𝑎) = −

𝜕𝐹
𝜕𝑥𝑘

(𝑎, 𝑏)

𝜕𝐹
𝜕𝑦
(𝑎, 𝑏)

 

𝜕𝐹

𝜕𝑦
(𝑎, 𝑏) ≠ 0 ⇒

𝜕𝐹

𝜕𝑦
(𝑥, 𝑦) ≠ 0 ∀𝑥 ∈ 𝑈𝑎 , 𝑦 ∈ 𝑉𝑏 

,𝑎)לכן אפשר להחליף  אז 𝑏) ל(𝑥, 𝜑(𝑥)) 

 ולכן 

𝜕𝜑

𝜕𝑥𝑘
(𝑥) = −

𝜕𝐹
𝜕𝑥𝑘

(𝑥, 𝜑(𝑥))

𝜕𝐹
𝜕𝑦
(𝑥, 𝜑(𝑥))

𝑥 ∈ 𝑈𝑎
𝑘=1,…,𝑛

 

𝜑 ∈ 𝐶𝑟(𝑈)? 



𝜕F

𝜕𝑥𝑗
, 𝜑  רציפות ולכן−

𝜕𝐹

𝜕𝑥𝑘
(𝑥,𝜑(𝑥))

𝜕𝐹

𝜕𝑦
(𝑥,𝜑(𝑥))

 𝑈רציפה ב 

ולכן 
𝜕𝜑

𝜕𝑥𝑘
(𝑥)  ; 𝑥 ∈ 𝑈, 𝑘 = 1,… , 𝑛  רציפות ולכן𝜑 ∈ 𝐶1(𝑈) 

𝑘נניח כי  < 𝑟 ∶ 𝜑 ∈ 𝐶𝑘(𝑈) 

𝜕𝜑

𝜕𝑥𝑘
,
𝜕𝐹

𝜕𝑦
, 𝜑 ∈ 𝐶𝑘(𝑈) ⇒ −

𝜕𝐹
𝜕𝑥𝑘

(𝑥, 𝜑(𝑥))

𝜕𝐹
𝜕𝑦
(𝑥, 𝜑(𝑥))

∈ 𝐶𝑘(𝑈) 

 ולכן

𝜕𝜑

𝜕𝑥𝑘
∈ 𝐶𝑘(𝑈)  𝑘 = 1, . . , 𝑛 ⇒ 𝜑 ∈ 𝐶𝑘+1(𝑈) 

𝜑ולכן לפי אינדוקציה  ∈ 𝐶𝑟(𝑈). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 : משפט על פונקציה סתומה כללית7 משפט

𝕎תהי  ⊂∘ ℝ𝑛+𝑚 = ℝ𝑛
𝑥∈
× ℝ𝑚

𝑦∈
 

(𝑥, 𝑦) ∈ ℝ𝑛+𝑚 ⇒ 𝑥 ∈ ℝ𝑛, 𝑦 ∈ ℝ𝑚 

𝐹:𝕎תהי  → ℝ𝑚; 𝐹 ∈ 𝐶𝑟(𝕎), 𝑟 ≥ 1 

,𝑎)( תהי 1 𝑏) ∈ 𝕎 כך ש𝐹(𝑎, 𝑏) = 0 

det( נניח כי 2 (

𝜕𝐹1

𝜕𝑦1
(𝑎, 𝑏)…

𝜕𝐹1

𝜕𝑦𝑚
(𝑎, 𝑏)

………………… .
𝜕𝐹𝑚

𝜕𝑦1
(𝑎, 𝑏)…

𝜕𝐹𝑚

𝜕𝑦𝑚
(𝑎, 𝑏)

) ≠ 0 

𝑈אזי קיימות סביבות  ∋ 𝑎, 𝑉 ∋ 𝑏  כך ש∀𝑥 ∈ 𝑈 ∃! 𝑦 ∈ 𝑉 ∶ 𝐹(𝑥, 𝑦) = 0 

𝑦הפונקציה  ≔ 𝜑(𝑥), 𝑥 ∈ 𝑈; 𝜑 ∈ 𝐶𝑟(𝑈) 

 הוכחה של המשפט

  𝑚אינדוקציה לגבי 

𝑚 = 𝑚הוכחנו, נניח כי המשפט נכון עבור  1 − 1 

det

(

 
 

𝜕𝐹1
𝜕𝑦1

(𝑎, 𝑏)…
𝜕𝐹1
𝜕𝑦𝑚

(𝑎, 𝑏)

………………… .
𝜕𝐹𝑚
𝜕𝑦1

(𝑎, 𝑏)…
𝜕𝐹𝑚
𝜕𝑦𝑚

(𝑎, 𝑏)
)

 
 
≠ 0 

WLOG : Δ𝑚−1 ≠ 0 

det

(

 
 

𝜕𝐹1
𝜕𝑦1

(𝑎, 𝑏)…
𝜕𝐹1
𝜕𝑦𝑚−1

(𝑎, 𝑏)

………………… .
𝜕𝐹𝑚−1
𝜕𝑦1

(𝑎, 𝑏)…
𝜕𝐹𝑚−1
𝜕𝑦𝑚−1

(𝑎, 𝑏)
)

 
 
≠ 0 

 מערכת:

{

F1 (𝑥1, … , 𝑥𝑛⏟    , 𝑦1, … , 𝑦𝑚−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑦𝑚⏟) = 0

⋮

𝐹𝑚−1 (𝑥1, … , 𝑥𝑛⏟    , 𝑦1 , … , 𝑦𝑚−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑦𝑚⏟) = 0

 

𝜕(𝐹1, … , 𝐹𝑚−1)

𝜕(𝑦1, . . , 𝑦𝑚−1)
(𝑎, 𝑏) ≠ 0 

 לפי הנחה של אינדוקציה

∃𝑈 ∋ (𝑎, 𝑏𝑚), 𝑉 ∋ (𝑏1, … , 𝑏𝑚−1)  :כך ש 

{
𝑦1 = 𝜑1(𝑥1, … , 𝑥𝑛 , 𝑦𝑚)

⋮
𝑦𝑚−1 = 𝜑𝑚−1(𝑥1, … , 𝑥𝑛 , 𝑦𝑚)

 

(𝑥, 𝑦𝑚) ∈ 𝑈 , 𝑦
′ ≔ (𝑦1, … , 𝑦𝑚−1) ∈ 𝑉 

𝜑𝑗 ∈ 𝐶
𝑟(𝑈) 

𝐹𝑗(𝑥, 𝜑1(𝑥, 𝑦𝑚), …𝜑𝑚−1(𝑥, 𝑦𝑚), 𝑦𝑚) = 0; 1 ≤ 𝑗 ≤ 𝑚 − 1    ;    (𝑥, 𝑦𝑚) ∈ 𝑈 

𝜕

𝜕𝑦𝑚
: (∗)

𝜕𝐹𝑗

𝜕𝑦1
(𝑎, 𝑏)

𝜕𝜑1
𝑦𝑚

(𝑎, 𝑏𝑚) + ⋯+
𝜕𝐹𝑗

𝜕𝑦𝑚−1 
(𝑎, 𝑏)

𝜕𝜑𝑚−1
𝑦𝑚

(𝑎, 𝑏𝑚) +
𝜕𝐹𝑗

𝜕𝑦𝑚
(𝑎, 𝑏) = 0  

 נתבונן במשוואה

𝐺(𝑥, 𝑦𝑚) = 𝐹𝑚(𝑥, 𝜑1(𝑥, 𝑦𝑚), …𝜑𝑚−1(𝑥, 𝑦𝑚), 𝑦𝑚) 

 



𝐺 =  משוואה! 0

𝑥 = (𝑥1, … , 𝑥𝑛) 

1 )0 = 𝐹𝑚(𝑎, 𝑏) = 𝐹𝑚(𝑎, 𝜑1(𝑎, 𝑏𝑚), … , 𝜑𝑚−1(𝑎, 𝑏𝑚), 𝑏𝑚) = 𝐹(𝑎, 𝑏1, … , 𝑏𝑚−1, 𝑏𝑚) = 𝐺(𝑎, 𝑏𝑚) = 0 

2 )
𝜕𝐺

𝜕𝑦𝑚
(𝑎, 𝑏𝑚) ≠

?
0 

ניח כי נ
𝜕𝐺

𝜕𝑦𝑚
(𝑎, 𝑏𝑚) = 0 

(∗∗) 0 =
𝜕𝐺

𝜕𝑦𝑚
(𝑎, 𝑏𝑚) =

𝜕𝐹𝑚
𝜕𝑦1

(𝑎, 𝑏)
𝜕𝜑1
𝜕𝑦𝑚

(𝑎, 𝑏𝑚) + ⋯+
𝜕𝐹𝑚
𝜕𝑦𝑚−1 

(𝑎, 𝑏)
𝜕𝜑𝑚−1
𝜕𝑦𝑚

(𝑎, 𝑏𝑚)  

 :(**),(*)בצורה וקטורית, לפי 

𝜕𝐹

𝜕𝑦1
(𝑎, 𝑏)

𝜕𝜑1
𝜕𝑦𝑚

(𝑎, 𝑏𝑚) + ⋯+
𝜕𝐹

𝜕𝑦𝑚−1
(𝑎, 𝑏)

𝜕𝜑𝑚−1
𝜕𝑦𝑚

(𝑎, 𝑏𝑚) +
∂𝐹

∂ym
(𝑎, 𝑏)

1=מקדם

= 0 ⇒
𝜕(𝐹1, . . , 𝐹𝑚)

𝜕(𝑦1, . . , 𝑦𝑚)

= 0 −  סתירה

𝜕𝐺

𝜕𝑦𝑚
(𝑎, 𝑏𝑚) ≠ 0 

𝐺(𝑎, 𝑏𝑚) = 𝑚לפי משפט למקרה   0 = 1 

𝐹𝑚(𝑥, 𝜑1(𝑥, 𝑦𝑚), … , 𝜑𝑚−1(𝑥, 𝑦𝑚), 𝑦𝑚) = 0 = 𝐺(𝑥, 𝑦𝑚) ⇒ 𝑦𝑚 = 𝜑𝑚(𝑥) ∶ 𝑥 ∈ 𝑈𝑎 , 𝑦 ∈ 𝑉𝑏 

∃𝑈𝑎
′ , 𝑉𝑏

′ ∶

{
 

 
𝑦1 = 𝜑1(𝑥1, … , 𝑥𝑛 , 𝑦𝑚) = 𝜑1(𝑥1, … , 𝑥𝑛 , 𝜑𝑚(𝑥1, . . , 𝑥𝑛))

⋮
𝑦𝑚−1 = 𝜑𝑚−1(𝑥1, . . , 𝑥𝑛 , 𝜑𝑚(𝑥1, … , 𝑥𝑛))

𝑦𝑚 = 𝜑𝑚(𝑥1, . . , 𝑥𝑛)

 

𝑈𝑎בסביבה 
′ × 𝑉𝑏

′ ∋ (𝑎, 𝑏) 

Ψ(𝑥) ∶  {

𝑦1 = Ψ1(𝑥1, . . , 𝑥𝑛)
…

𝑦𝑚−1 = Ψ𝑚−1(𝑥1, . . , 𝑥𝑛)

𝑦𝑚 = 𝜑𝑚(𝑥1, . . , 𝑥𝑛)

 ⇒ 𝑦 = Ψ(𝑥) ∶ (𝑥, 𝑦) ∈ 𝑈𝑎
′ × 𝑉𝑏

′ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 תנאי הכרחי לקיצון על תנאי)עם אילוצים כופלי לגראנג'(:  8משפט 

𝑊יהי  ⊂∘ ℝ𝑛 , 𝑓:𝑊 → ℝ, 𝑓 ∈ 𝐶𝑟(𝑊), 𝑟 ≥ 1. 

 𝐶𝑟   𝑀 = {𝑥 ∈ 𝑊:𝛷1(𝑥) = ⋯ = 𝛷𝑚(𝑥) =  משטח.0

𝑎אם  ∈ 𝑀  נקודת קיצון מקומי עם תנאי𝛷(𝑥) = ,𝜆1אז קיימים מספרים  0 … . , 𝜆𝑚 :כך ש 

𝛻𝑓(𝑎) = 𝜆1𝛷1(𝑎), … . , 𝜆𝑚𝛷𝑚(𝑎)   אזי𝜆1, … . , 𝜆𝑚 .'נקראים כופלי לגראנג 

𝛻𝑓(𝑎)ז"א:  ⊥ 𝑇𝑎(𝑀). 

 הוכחה:

a ∈ M  ,(𝛷1(x), … , 𝛷m(x)) רגולרית ב-a. 

 𝑟𝑎𝑛𝑘 = (
(𝑎) ⋯ (𝑎)
⋮ ⋱ ⋮
(𝑎) ⋯ (𝑎)

) = 𝑚 ולכן ניתן להניח שקיים מינור בגודלm x m  :כך ש∆𝑚≠ 0. 

 לפי משפט על פונק' סתומה:

 ∃𝑈a′  , Va′′:   φ: 𝑈a′ → Va′′      ,k = n − m         ,M∩ (𝑈a′ × Va′′) = Γφ. 

∩Mמכאן :  (𝑈a′ × Va′′) = {(𝑥1, … , 𝑥k, φ1(𝑥x1, … , 𝑥k), … , φm(𝑥1, … , 𝑥k)): 𝑥 ∈ 𝑈a′}. 

,𝑔(𝑥1נגדיר:  … , 𝑥𝑘) = 𝑓(𝑥1, … , 𝑥k, φ1(𝑥1, … , 𝑥k), … , φm(𝑥1, … , 𝑥k)). 

𝑔(𝑎′)נקודת קיצון )בה"כ(, ולכן :  aנניח כי  =  𝑓(𝑎′, φ(a′)) = 𝑓(𝑎). 

 ∀𝑥 ∈ 𝑈a′: g(𝑥) ≥ 𝑔(𝑎
 בלי תנאי. g-נקודת מינימום ל 'a. בנוסף (′

𝑈a′ → ℝ  ,𝑈a′  .j=1,…,k: (a')=0, כלומר gנקודה קריטית ל 'a, ולכן ∘⊃

 :𝑥jלפי  gנגזור את 

(𝑎′) = (𝑎) + ∑ (𝑎)(𝑎′) = 0𝑚
𝑠=1. 

𝛻𝑓(𝑎) ⊥ (0,… . , j
1
, … . ,0, (a′), … , (a′)) =  Ej .1<j<k  : ומכאן נקבל𝛻𝑓(𝑎) ⊥ E1, … , Ek. 

 כעת נוסיף את האילוצים:

 

(𝑥1, … , 𝑥k) ∈ 𝑈a′    ,

{
 
 

 
 𝛷1(𝑥1, … , 𝑥k, φ1

(𝑥1, … , 𝑥k), … , φm(𝑥1, … , 𝑥k)) = 0

𝛷2(𝑥1, … , 𝑥k, φ1(𝑥1, … , 𝑥k), … , φm(𝑥1, … , 𝑥k)) = 0
.
.

𝛷m(𝑥1, … , 𝑥k, φ1(𝑥1, … , 𝑥k),… , φm(𝑥1, … , 𝑥k)) = 0

 

 :𝑥jנגזור עכשיו לפי 

{
 
 
 

 
 
 (𝑎) + ∑(𝑎)(𝑎′) = 0

𝑚

𝑠=1

(𝑎) + ∑(𝑎)(𝑎′) = 0

𝑚

𝑠=1
.
.
.

(𝑎) + ∑ (𝑎)(𝑎′) = 0𝑚
𝑠=1

 

1 מכאן:  ≤ 𝑗 ≤ 𝑘: 〈𝛻𝛷j(a), 𝐸𝑖〉   ← 𝛻𝛷1(a), … ,𝛻𝛷m(a) ⊥ E1, … , Ek 

dim(𝑠𝑝𝑎𝑛{E1, … , Ek}) = k  ולכןdim(𝑠𝑝𝑎𝑛{E1, … , Ek}
⊥) = n − k = m )השלמה אורתוגונאלית( 

 𝛻𝑓(𝑎) 𝛻𝛷1(a), … ,𝛻𝛷m(a)⏟            
בת"ל

⊥ 𝑠𝑝𝑎𝑛{E
1
, … , Ek} 

𝛻𝑓(𝑎)ולכן:  = ∑ 𝜆𝑖𝛻𝛷i(a)
𝑚
𝑖=1 .מש"ל 



 ממדי על סמך סכומים עליונים ותחתונים. n: קריטריון של אינטגרביליות בקטע  9 משפט

 𝑓: 𝑃 → ℝ  :כך ש∃𝐶∀𝑥 ∈ 𝑃: ||𝑓(𝑥)|| ≤ 𝐶 אזי .𝑓 ∈ ℛ(𝑃) : אינטגרבילית לפי רימן( אם ורק אם( 

 ∀ε > 0∃𝑃: 0 ≤ 𝑆̅(𝑓, 𝑃) − 𝑆(𝑓, 𝑃) < 𝜀  כלומר לכל𝜀  קיימת חלוקה כך שההפרש בין הסכומים העליונים לתחתונים

 .𝜀קטן 

 הוכחה:

⟹ 

𝜀יהי  > 0כך ש  Pאזי קיימת חלוקה  0 ≤ 𝑆̅(𝑓, 𝑃) − 𝑆(𝑓, 𝑃) < 𝜀 0. כלומר ≤ 𝑆̅(𝑓, 𝑃) < 𝑆(𝑓, 𝑃) + 𝜀 :ומכאן ש 

  𝐼(𝑓) = 𝑖𝑛𝑓𝑄𝑆̅(𝑓, 𝑃) < 𝑆(𝑓, 𝑃) + 𝜀  אז𝐼(𝑓) − 𝜀 < 𝑆(𝑓, 𝑃) ≤ 𝑠𝑢𝑝𝑄𝑆(𝑓, 𝑃) = 𝐼(𝑓)  ולכן𝐼(𝑓) − 𝐼(𝑓) < 𝜀  

𝜀לכל  > 𝐼(𝑓).  לכן 0 = 𝐼(𝑓) ← 𝐼(𝑓) − 𝐼(𝑓) = 𝑓. ואז 0 ∈ ℛ(𝑃). 

⇐ 

𝑓נניח  ∈ ℛ(𝑃)  אז𝐼(𝑓) = 𝑖𝑛𝑓𝑄𝑆̅(𝑓, 𝑃) = 𝑠𝑢𝑝𝑄𝑆(𝑓, 𝑃) = 𝐼(𝑓) = 𝐼(𝑓). 

𝜀יהי  > :𝑄∃. אז       0 𝐼(𝑓) −
𝜀

2
< 𝑆(𝑓, 𝑄) ≤ 𝐼(𝑓)            ,∃𝑃: 𝐼(𝑓) +

𝜀

2
> 𝑆̅(𝑓, 𝑃) ≥ 𝐼(𝑓). 

𝐼(𝑓)כך ש:  P,Qלכן קיימות חלוקות  −
𝜀

2
< 𝑆(𝑓, 𝑄) ≤ 𝑆̅(𝑓, 𝑃) < 𝐼(𝑓) +

𝜀

2
. 

𝑇נגדיר :  ≔ 𝑃 ∩ 𝑄 מכאן .𝐼(𝑓) −
𝜀

2
< 𝑆(𝑓, 𝑄) ≤ 𝑆(𝑓, 𝑇) ≤ 𝑆̅(𝑓, 𝑇) ≤ 𝑆̅(𝑓, 𝑃) < 𝐼(𝑓) +

𝜀

2
 

,𝑆̅(𝑓לכן :  𝑇) − 𝑆(𝑓, 𝑇) < 𝐼(𝑓) +
𝜀

2
− (𝐼(𝑓) −

𝜀

2
) = 𝜀. 

 


