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 ʷʸ6פ-ʺʥʶʩʸʨʮ ʷʥʸʩפ

Square 
matrix  

General 
cases    

P*A=L*U nxn - ʤʶʩʸʨʮ A [L,U,P]=lu(A) LU 
Decomposition

- ʤʶʩʸʨʮ A
  ʺʸʣʢʥʮʥ ʺʩʸʨʮʩʱ

ʺʩʡʥʩʧ

U=chol(A) Cholesky

U=rref(A) Reduced row 
echelon form

A=Q*R,

Q-orthogonal

[Q,R]=qr(A) QR 
Decomposition

A=S*D*V,

S,V- unitary

D - diagonal

[S,D,V]=

svd(A)

Singular Value 
Decomposition

2n

Triangular,

Tridiagonal

ʺʥʠʸʥʤ ʤʩʹʥʮʩʹʬ ʭʩʠʰʺ ʺʥʬʥʲפʤ ʺʥʮʫ   ʺʣʥʷפ
ʡMATLAB

ʤʨʩʹ

3/n3

6/n3

3/n3
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3/n3

2/n 2Special 
cases   
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MATLAB  ʡ [L,U,P]=lu(A)      ʥʠ [P][A]=[L][U]
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Q-  ʩנלʥʢʥʨʸʥʠ ʤʶʩʸʨמ

R-ʤנʥʩלʹʺ עלʥʹמ

T1 QQ 

 

 

   

 














































































































2/31/32/3

1/32/32/3

2/32/31/3

              

224 

2

2

4

24
1

100

010

001

ww2IH

224
24

1
2231

24

1
ww

24)13)(3(2)xg(g2s

3gxsign      ;3221xxxg

  

2

2

1

1:,Ax   ; 

212

122

121

A

)1(

)1(

1

1
2222

3
2
2

2
1 



 ʷʸ7פ.ʭʩʮʶʲ ʭʩʫʸʲ ʡʥʹʩʧ

  ʷʥʸʩפ ʭʺʩʸʥʢʬʠ  ʩפʬ               ʺʸʣʩʱ ʸʥʶʩʬQR:
for I = 1:N,

      ]Q,R] = qr(A); A=R*Q; 
end

  ʺʥʩʶʸʨʩʠʤ ʦʠʥA ʭʩʮʶʲ ʭʩʫʸʲ ʭʲ ʤʰʥʩʬʲ ʺʹʬʥʹʮ ʤʶʩʸʨʮʬ ʺʥפʩʠʹ
ʯʥʱʫʬʠʡ   :

)n(A

•    ʭʲ
ʩʮʶʲ ʪʸʲʬ ʭʩʨʮʹ ʩʮʶʲ ʸʥʨʷʥʥʤ ʠʥʤ         ʦʠ

•ʺʩʰʩʩפʥʠ ʤʠʥʥʹʮʤ

vAv 

 v

0)IAdet( 



 ʡ  ʤמʢʥʣMATLAB

» A=[1 2 -1; 2 2 -1; 2 -1 2]
A =

1     2    -1

2     2    -1

2    -1     2

» [Q,R]=qr(A) QR ʷוʸפי
Q =

-0.3333   -0.5788   -0.7442

-0.6667   -0.4134    0.6202

-0.6667    0.7029   -0.2481

R =

-3.0000   -1.3333   -0.3333

0.0000   -2.6874    2.3980

0.0000    0.0000   -0.3721

» N=7;  
for I = 1:N, 

[Q,R]=qr(A); A=R*Q; 

end 

A

A =

2.4142    1.8597   -1.3934

-0.0000    3.0000    1.8974

0.0000   -0.0000   -0.4142

» [V,D]=eig(A)
V =

0.4472    0.4472   -0.5571

0.6325   -0.6325   -0.7428

0.6325   -0.6325   -0.3714

D =

2.4142         0         0

0   -0.4142         0

0         0    3.0000



 ʷʸ8פ .InterpolationSplineCubic

ʯʥתרʩ:
 ʺʥʣʥʷʰ ʬʫʡS(xi), Sצ(xi), S”(xi) ʺʥפʩʶʸ ʯʤ

 ʸʥʡʲNATURAL SPLINESS”(x0)= S”(xn) =0   
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Natural Cubic Spline 
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Natural Cubic Spline 
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 ʷʸ9פ .Least square approximations 
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ʺʩʸʠʩʰʩʬ ʤʩʱʸʢʸ
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 ʷʸ10פ .ʭʩפʩʶʸ ʭʩʸʥʲʦʮ ʭʩʥʡʩʸ

                                               ʭʥʰʩʬʥפ             ʤʩʶʷʰʥפʬ ʭʩʠʺʤʬ
ʩʬʮʩʰʩʮ ʤʩʤʺ ʭʩʸʥʲʦʮ ʭʩʩʥʡʩʸʤ ʬʸʢʨʰʩʠ ʬʹ ʪʸʲʹ ʪʫ:
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ʤʮʢʥʣʬ  :               ʤʩʶʷʰʥפ ʤʰʥʺʰ  ʲʨʷʡ[0,1]
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2102 xaxaaxp ʯʺʥʰʹ                                                   ʺʩʥʡʩʸ ʭʥʰʩʬʥפ ʠʥʶʮʬ ʹʩ
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ʬʹ ʭʩʮʥʰʩʬʥפʤ ʺʸʦʲʡLegendre ʤʩʶʷʰʥפʤ ʬʫ ʢʩʶʤʬ ʸʹפʠ:
       xPaxPaxPaxf nn1100  

 ʷʸ11פ .ʭʩʩʬʰʥʢʥʺʸʥʠ ʭʩʮʥʰʩʬʥפ
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Legendre Polynomial

How would you work with a least square fit of a 
function.
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Legendre Polynomial
How would you work with a least square fit of a 
function.
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Legendre Polynomial
The coefficient a0 is determined by the 
orthogonality of the Legendre polynomials:
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Legendre Polynomial Example

Given a simple polynomial:

  22xxs 

We want to throw a loop, letצs model it from 0 
to 4 with f(x):
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Legendre Polynomial Example

The first step will be to scale the function:

bmux 
We know that at the ends are 0 and 4 for x and 
-1 to 1 for u so 
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Legendre Polynomial Example
The coefficients are
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Legendre Polynomial Example
The Legendre functions 
must be adjusted to 
handle the scaling:

Legendre Polynomial Example
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Tchebyshev Polynomial

The Tchebyshev polynomials are another set of 
orthogonal functions, which can be used to represent a 
function as components of a function.
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Tchebyshev Polynomial
These function are orthogonal over a range [ -1, 1 ].  
This range can be scaled to fit the function.   The 
orthogonal functions are defined as:
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Tchebyshev Polynomial

The Tchebyschev functions are:
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Tchebyshev Polynomial

How would you work with a least square fit of a 
function.
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Tchebyshev Polynomial
How would you work with a least square fit of a 
function.
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