The Gyronimo Performance Pad.
The Ultimate Flight Computer for the CESSNA 172 S.

Mass & Balance and Performance Calculations have never been easier and faster. A new precision tool for students, instructors, private and professional pilots.

Calculate and interpolate performance data using the actual values from the Cessna 172 S Pilot's Operating Handbook.

Results are updated immediately and displayed in high resolution graphics. Change all important values quickly using sliders. Experiment with the results and create "what if" scenarios in no time.

Find your optimal cruise altitude, takeoff ground roll, landing distance, climb data and stall speeds.

The CESSNA 172 S Performance Pad.

Available on the iPad App Store
The Setup Pages
Load and Save up to five Aircraft Settings and Scenarios. Send a Mass & Balance Summary to your email address. Visit our video channel and watch tutorials and video manuals.

The Performance Pad can be used in "Individual" and "Plan" Mode. In the Individual Mode all calculations can be done independently from each other. In Plan Mode the calculated values will be forwarded to the next page and an additional "Flight Summary Page" is available. Choose this mode if you want to do a complete performance planning.
The Mass & Balance Page

Set person and baggage weights in seconds using the convenient sliders. Check the CG position using three graphical displays. Send the complete load manifest to your email address.
The Takeoff Page
Using the actual data from the CESSNA 172S Operating Handbook the Performance Pad calculates and displays Ground Roll and Landing Distance based on various factors:
- Aircraft Mass
- Takeoff Elevation in MSL
- Outside Air Temperature (OAT)
- Altimeter Setting
- Runway Conditions (i.e. paved dry to long grass or snow)
- Runway Slope
- Wind Conditions
The Wind Component Calculator

From the Takeoff and Landing Page you have access to the Wind Component Calculator. Here you can determine your headwind or tailwind component.

Rotate the wind dial to set wind direction and set a windspeed. The resultant wind component will be transferred to your takeoff computation automatically!
The Climb Page

Calculate Time, Fuel and Distance as well as Rate of Climb and Speed based on:

- Difference between Takeoff Elevation and Intended Flight Level
- Altimeter Setting
- Outside Air Temperature (OAT)
- Altimeter Setting
- Headwind or Tailwind Component

Climb Page
The Cruise Page

Based on the stored data from the Pilot's Operating Handbook you can determine the optimal cruise altitude based on:
- Trip Distance
- Flight Level
- Engine RPM
- Temperature
- Wind and Altimeter Setting

Fuel Flow, BHP and KIAS are interpolated based on the actual performance figures.
Stored Performance Data

All important performance figures of the CESSNA 172S are stored for computations. You can view the charts for reference by selecting the “Pilot’s Operating Handbook” (POH) Symbol.

Cruise Performance

<table>
<thead>
<tr>
<th>PRESS ALT FT</th>
<th>RPM</th>
<th>% BHP</th>
<th>KTAS</th>
<th>GPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2250</td>
<td>83</td>
<td>117</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>2550</td>
<td>78</td>
<td>115</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>2150</td>
<td>53</td>
<td>99</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>47</td>
<td>92</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>83</td>
<td>120</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>2600</td>
<td>79</td>
<td>118</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>53</td>
<td>99</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>47</td>
<td>92</td>
<td>6.9</td>
<td></td>
</tr>
</tbody>
</table>

Cruise Page with POH information
The Landing Page

Ground Roll and Landing Distance based on various factors:

- Field Elevation in MSL
- Outside Air Temperature (OAT)
- Altimeter Setting
- Runway Conditions
- Runway Slope
- Flap Settings
- Wind Conditions (Wind Component Calculator can be used)
The Stall Speed & Load Factor Page
Calculate the Stall Speed based on Bank Angle and Flap Settings. Stall Speed will be computed as KIAS and KCAS and graphically displayed. Also the Load Factor is computed and displayed in reference to the Normal and Utility Category.