Linux Kernel Networking

Rami Rosen
ramirose@gmail.com
Haifux, August 2007

mailto:ramirose@gmail.com

Disclaimer

Everything in this lecture shall not, under any
circumstances, hold any legal liability whatsoever.

Any usage of the data and information in this document
shall be solely on the responsibility of the user.

This lecture is not given on behalf of any company

or organization.

Warning

A\

* This lecture will deal with design functional
description side by side with many implementation details;

some knowledge of “C” is preferred.

General

* The Linux networking kernel code (including network device
drivers) is a large part of the Linux kernel code.

* Scope: We will not deal with wireless, IPv6, and multicasting.

— Also not with user space routing daemons/apps, and with
security attacks (like DoS, spoofing, etc.) .

* Understanding a packet walkthrough in the kernel is a key to
understanding kernel networking. Understanding it is a must if

we want to understand Netfilter or IPSec internals, and more.

* Thereis a 10 pages Linux kernel networking walkthrouh document

2 "

General - Contd.

* Though it deals with 2.4.20 Linux kernel, most of it is relevant.

* This lecture will concentrate on this walkthrough (design and
implementation details).

* References to code in this lecture are based on linux-2.6.23-rc2.

* There was some serious cleanup in 2.6.23

Hierarchy of networking layers

* The layers that we will deal with (based on the 7 layers model) are:

Transport Layer (L4) (udp,tcp...)

Network Layer (L3) (ip)

Link Layer (L2) (ethernet)

Networking Data Structures

* The two most important structures of linux kernel network layer
are:

— sk_buff (defined in include/linux/skbuft. h)
— netdevice (defined in include/linux/netdevice.h)

* Itis better to know a bit about them before delving into the
walkthrough code.

SK_BUFF

* sk _buff represents data and headers.
* sk _buff APl (examples)

— sk_Dbuff allocation is done with alloc_skb() or dev_alloc_skb(),
drivers use dev_alloc_skb(),. (free by kfree skb() and
dev_kfree skb().

* unsigned char” data : points to the current header.

* skb_pull(int len) — removes data from the start of a buffer by
advancing data to data+len and by decreasing len.

* Almost always sk _buff instances appear as “skb” in the kernel
code.

SK BUFF - contd

* sk _buff includes 3 unions; each corresponds to a kernel network
layer:

* transport_header (previously called h) — for layer 4, the transport
layer (can include tcp header or udp header or icmp header, and
more)

* network header — (previously called nh) for layer 3, the network
layer (can include ip header or ipv6 header or arp header).

* mac_header — (previously called mac) for layer 2, the link layer.

* skb_network header(skb), skb_transport _header(skb) and
skb_mac_header(skb) return pointer to the header.

SK_ BUFF - contd.

* struct dst _entry *dst — the route for this sk_buff; this route is
determined by the routing subsystem.

— It has 2 important function pointers:
* int ("input)(struct sk_buff*);
* int (“output)(struct sk_buff*);

* Input() can be assigned to one of the following : ip_local_deliver,
ip_forward, ip_mr_input, ip_error or dst_discard_in.

* output() can be assigned to one of the following :ip_output,
Ip_mc_output, ip_rt_bug, or dst_discard out.

- we will deal more with det when talkina ahoiit rotitina

SK_ BUFF - contd.

* In the usual case, there is only one dst_entry for every skb.

* When using IPSec, there is a linked list of dst_entries and only the
last one is for routing; all other dst_entries are for IPSec
transformers ; these other dst _entries have the DST NOHASH

flag set.
* tstamp (of type ktime_t) : time stamp of receiving the packet.

— net_enable timestamp() must be called in order to get values.

net_device

* net_device represents a network interface card.
* There are cases when we work with virtual devices.

— For example, bonding (setting the same IP for two or more
NICs, for load balancing and for high availability.)

— Many times this is implemented using the private data of the
device (the void *priv member of net_device);

— In OpenSolaris there is a special pseudo driver called “vnic”
which enables bandwidth allocation (project CrossBow).

* Important members:

het _device - contd

* unsigned int mtu — Maximum Transmission Unit: the maximum
size of frame the device can handle.

* Each protocol has mtu of its own; the default is 1500 for Ethernet.
* you can change the mtu with ifconfig; for example,like this:

- Ifconfig ethO mtu 1400

— You cannot of course, change it to values higher than 1500 on
10Mb/s network:

— ifconfig ethO mtu 1501 will give:
- SIOCSIFMTU: Invalid argument

het _device - contd

* unsigned int flags - (which you see or set using ifconfig utility):
for example, RUNNING or NOARP.

* unsigned char dev_addr[MAX ADDR_LEN] : the MAC address
of the device (6 bytes).

* int (*hard_start_xmit)(struct sk_buff *skb,
struct net_device *dev);

— a pointer to the device transmit method.

* int promiscuity; (a counter of the times a NIC is told to set to
work in promiscuous mode; used to enable more than one sniffing
client)

het _device - contd

* You are likely to encounter macros starting with IN_DEV like:

IN. DEV_FORWARD() or IN. DEV_RX REDIRECTS(). How are the
related to net_device ? How are these macros implemented ?

* void *ip_ptr: IPv4 specific data. This pointer is assigned to a
pointer to in_device in inetdev _init() (net/ipv4/devinet.c)

het _device - Contd.

* struct in_device have a member named cnf (instance of
ipv4_devconf). Setting /proc/sys/net/ipv4/conf/all/forwarding

eventually sets the forwarding member of in_device to 1.
The same is true to accept_redirects and send_redirects; both
are also members of cnf (ipv4_devconf).

* In most distros, /proc/sys/net/ipv4/conf/all/forwarding=0

* But probably this is not so on your ADSL router.

network interface drivers

* Most of the nics are PCI devices:; there are also some USB
network devices.

* The drivers for network PCI devices use the generic PCI calls, like
pci_register_driver() and pci_enable device().

* For more info on nic drives see the article “Writing Network
Device Driver for Linux” (link no. 9 in links) and chap17 in ldd3.

* There are two modes in which a NIC can receive a packet.

— The traditional way is interrupt-driven : each received packet is
an asynchronous event which causes an interrupt.

NAPI

* NAPI (new API).

— The NIC works in polling mode.

— In order that the nic will work in polling mode it should be built
with a proper flag.

— Most of the new drivers support this feature.
— When working with NAPI and when there is a very high load,

packets are lost; but this occurs before they are fed into the
network stack. (in the non-NAPI driver they pass into the stack)

— in Solaris, polling is built into the kernel (no need to build

Arivvare in anv enacial wav)

User Space Tools

* iputils (including ping, arping, and more)
* net-tools (ifconfig, netstat, , route, arp and more)
* IPROUTEZ2 (ip command with many options)

- Uses rtnetlink API.

— Has much wider functionalities; for example, you can create
tunnels with “ip” command.

— Note: no need for “-n” flag when using IPROUTEZ2 (because it
does not work with DNS).

Routing Subsystem

The routing table and the routing cache enable us to find the net
device and the address of the host to which a packet will be sent.

Reading entries in the routing table is done by calling
fib_lookup(const struct flowi *flp, struct fib_result *res)

FIB is the “Forwarding Information Base”.
There are two routing tables by default: (non Policy Routing case)

— local FIB table (ip_fib_local table ; ID 255).
— main FIB table (ip_fib_main_table ; 1D 254)
— See ! include/net/ip_fib.h.

Routing Subsystem - contd.

* Routes can be added into the main routing table in one of 3 ways:

— By sys admin command (route add/ip route).
— By routing daemons.

— As aresult of ICMP (REDIRECT).

* A routing table is implemented by struct fib_table.

Routing Tables

fib_lookup() first searches the local FIB table (ip_fib_local table).

In case it does not find an entry, it looks in the main FIB table
(ip_fib_main_table).

Why is it in this order ?
There is one routing cache, regardless of how many routing tables

there are.

You can see the routing cache by running “route -C”.
Alternatively, you can see it by : “cat /proc/net/rt_cache”.

— con: this way, the addresses are in hex format

Routing Cache

* The routing cache is built of rtable elements:

* struct rtable (see: /include/net/route.h)
{
union {
struct dst_entry dst;

} U;

Routing Cache - contd

The dst_entry is the protocol-independent part.

— Thus, for example, we have a dst_entry member (also
called dst) in rt6_info in ipv6. (include/net/ip6 _fib.h)

The key for a lookup operation in the routing cache is an IP
address (whereas in the routing table the key is a subnet).

Inserting elements into the routing cache by : rt_intern_hash()

There is an alternate mechanism for route cache lookup,
called fib_trie, which is inside the kernel tree
(net/ipv4/fib_trie.c)

Routing Cache - contd

* It is based on extending the lookup key.
* You should set: CONFIG_IP_FIB_TRIE (=y)
- (instead of CONFIG_IP_FIB _HASH)

* By Robert Olsson et al (see links).

Creating a Routing Cache Entry

* Allocation of rtable instance (rth) is done by: dst_alloc().

— dst_alloc() in fact creates and returns a pointer to
dst_entry and we cast it to rtable (net/core/dst.c).

* Setting input and output methods of dst:
- (rth->u.dst.input and rth->u.dst.input)
* Setting the flowi member of dst (rth->fl)

— Next time there is a lookup in the cache,for example ,
ip_route_input(), we will compare against rth->fl.

Routing Cache - Contd.

* A garbage collection call which delete
eligible entries from the routing cache.

* Which entries are not eligible ?

Policy Routing (multiple tables)

* Generic routing uses destination-address based decisions.

* There are cases when the destination-address is not the sole
parameter to decide which route to give; Policy Routing comes to
enable this.

Policy Routing (multiple tables)-contd.

Adding a routing table : by adding a line to: /etc/iproute2/rt _tables.

— For example: add the line “252 my_rt_table”.
— There can be up to 255 routing tables.

Policy routing should be enabled when building the kernel
(CONFIG_IP_MULTIPLE_TABLES should be set.)

Example of adding a route in this table:
> ip route add default via 192.168.0.1 table my_rt_table
Show the table by:

— Ip route show table my rt_table

Policy Routing (multiple tables)-contd.

* You can add a rule to the routing policy database (RPDB)
by “ip rule add ...”

- The rule can be based on input interface, TOS, fwmark
(from netfilter).

* Ip rule list— show all rules.

Policy Routing: add/delete a rule - example

* Ip rule add tos 0x04 table 252
— This will cause packets with tos=0x08 (in the iphdr)
to be routed by looking into the table we added (252)

— So the default gw for these type of packets will be
192.168.0.1

— ip rule show will give:

- 32765: from all tos reliability lookup my_rt_table

Policy Routing: add/delete a rule - example

* Delete arule : ip rule del tos 0x04 table 252

ip_route_input() in: net/ipv4/route.c Cache lookup

Routing Lookup

Hit

ip_route_input_slow()
in: net/ipv4/route.c

fib_lookup() in Hit

Deliver packet by:
ip_local deliver()

ip_fib_local_table

fib_lookup() in
ip_fib_main_table

Miss

Drop packet

or ip_forward()
according to result

33

Routing Table Diagram

fib _table

tb_lookup()
tb_insert()
tb_delete()

struct fn_zone
struct fn_zone

struct fn_zone

struct fn_zone struct fib_node fib_node
hlist_head
> et > in_alias
hlist_head fn_alias
fn_key
hlist_head y [n_key
struct fib_alias
fz_divisor
hlist_head _
fa_info
v

struct fib_info

fio_nh

Routing Tables

* Breaking the fib_table into multiple data structures gives
flexibility and enables fine grained and high level of sharing.

— Suppose that we 10 routes to 10 different networks have
the same next hop gw.

— We can have one fib_info which will be shared by 10
fib aliases.

— fz_divisor is the number of buckets

Routing Tables - contd

* Each fib_ node element represents a unique subnet.

- The fn_key member of fib_ node is the subnet (32 bit)

Routing Tables - contd

Suppose that a device goes down or enabled.
We need to disable/enable all routes which use this device.
But how can we know which routes use this device ?

In order to know it efficiently, there is the fib_info_devhash
table.

This table is indexed by the device identifier.
See fib_sync _down() and fib_sync _up() in

net/ipv4/fib_semantics.c

Routing Table lookup algorithm

* LPM (Longest Prefix Match) is the lookup algorithm.
* The route with the longest netmask is the one chosen.

* Netmask 0, which is the shortest netmask, is for the default
gateway.

— What happens when there are multiple entries with
netmask=07?

— fib_lookup() returns the first entry it finds in the fib table
where netmask length is 0.

Routing Table lookup - contd.

* It may be that this is not the best choice default gateway.

* So in case that netmask is 0 (prefixlen of the fib_result returned
from fib_look is 0) we call fib_select default|().

* fib_select default() will select the route with the lowest priority

(metric) (by comparing to fib_priority values of all default
gateways).

Receiving a packet

When working in interrupt-driven model, the nic registers an
interrupt handler with the IRQ with which the device works by
calling request irq().

This interrupt handler will be called when a frame is received
The same interrupt handler will be called when transmission of a

frame is finished and under other conditions. (depends on the
NIC; sometimes, the interrupt handler will be called when there is

some error).

Receiving a packet - contd

* Typically in the handler, we allocate sk_buff by calling
dev_alloc _skb() ; also eth _type trans() is called; among other
things it advances the data pointer of the sk_buff to point to the IP
header ; this is done by calling skb_pull(skb, ETH_HLEN).

* See : net/ethernet/eth.c

- ETH _HLEN is 14, the size of ethernet header.

Receiving a packet - contd

* The handler for receiving a packet is ip_rcv(). (net/ipv4/ip_input.c)
* Handler for the protocols are registered at init phase.

— Likewise, arp_rcv() is the handler for ARP packets.
* First, ip_rcv() performs some sanity checks. For example:
if (iph->ihl < 5 || iph->version != 4)
goto inhdr_error;
— iphis the ip header ; iph->ihl is the ip header length (4 bits).
— The ip header must be at least 20 bytes.

- |t can be up to 60 bytes (when we use ip options)

Receiving a packet - contd

* Thenitcalls ip_rcv_finish(), by:

NF_HOOK(PF_INET, NF_IP_PRE ROUTING, skb, dev, NULL,
ip_rcv_finish);

* This division of methods into two stages (where the second has
the same name with the suffix finish or slow, is typical for
networking kernel code.)

* In many cases the second method has a “slow” suffix instead of
“finish”; this usually happens when the first method looks in some
cache and the second method performs a lookup in a table, which
IS slower.

Receiving a packet - contd

* jp_rcv_finish() implementation:
if (skb->dst == NULL) {
int err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos,
Sskb->dev);

return dst_input(skb);

Receiving a packet - contd

* Ip_route_input():

First performs a lookup in the routing cache to see if there is a
match. If there is no match (cache miss), calls
ip_route_input_slow() to perform a lookup in the routing table.
(This lookup is done by calling fib_lookup()).

* fib_lookup(const struct flowi *flp, struct fib_result *res)
The results are kept in fib_result.

* ip_route_input() returns 0 upon successful lookup. (also when
there is a cache miss but a successful lookup in the routing table.)

Receiving a packet - contd

According to the results of fib_lookup(), we know if the frame is for
local delivery or for forwarding or to be dropped.

* If the frame is for local delivery , we will set the input() function
pointer of the route to ip _local deliver().

rth->u.dst.input= ip_local _deliver,

* If the frame is to be forwarded, we will set the input() function
pointer to ip_forward():

rth->u.dst.input = ip_forward,

Local Delivery

Prototype:

ip_local _deliver(struct sk_buff *skb) (net/ipv4/ip_input.c).

- calls NF_HOOK(PF_INET, NF _IP_LOCAL IN, skb, skb->dev,
NULL,ip local deliver finish);

* Delivers the packet to the higher protocol layers according to its
type.

Forwarding

* Prototype:

— Int ip_forward(struct sk_buff *skb)
* (net/ipv4/ip_forward.c)

— decreases the ttl in the ip header

— Ifthe ttl is <=1, the methods send ICMP message
(ICMP_TIME EXCEEDED) and drops the packet.

- Calls NF_HOOK(PF _INET,NF _IP_FORWARD, skb, skb->dev,
rt->u.dst.dev, ip_forward finish);

Forwarding- Contd

* ip_forward finish(): sends the packet out by calling
dst_output(skb).

* dst _output(skb) is just a wrapper, which calls

Sskb->dst->output(skb). (see include/net/dst.h)

Sending a Packet

Handling of sending a packet is done by
ip_route_output_key().

We need to perform routing lookup also in the case of
transmission.
In case of a cache miss, we calls ip_route output _slow(),

which looks in the routing table (by calling fib_lookup(), as
also is done in ip_route_input_slow).)

If the packet is for a remote host, we set dst->output to
ip output()

Sending a Packet-contd

* Ip_output() will call ip_finish_output()
— Thisisthe NF_IP_POST_ ROUTING point.

* Ip_finish_output() will eventually send the packet from a
neighbor by:

— dst->neighbour->output(skb)

— arp_bind _neighbour() sees to it that the L2 address of the
next hop will be known. (net/ipv4/arp.c)

Sending a Packet - Contd.

* If the packet is for the local machine:
— dst->output = ip_output
— dst->input = ip_local deliver
— Ip_output() will send the packet on the loopback device,

- Then we will go into ip_rev() and ip_recv _finish(), but this
time dst is NOT null; so we will end in ip_local_deliver().

* See: net/ipv4/route.c

Multipath routing

This feature enables the administrator to set multiple next
hops for a destination.

To enable multipath routing,
CONFIG_IP_ROUTE_MULTIPATH should be set when
building the kernel.

There was also an option for multipath caching: (by setting
CONFIG_IP_ROUTE_MULTIPATH_CACHED).

It was experimental and removed in 2.6.23 - See links (6).

£5 Applications Places System %e&.ﬁgd@ 5@ us o %36PM @)

= mc - root@rr:/proc/net/stat _|[=][x
Fle Edit View Terminal Tabs Help

[mc - root@rr:/proc/net/stat 3¢ | Terminal 3 mc - root@rr:fworkjpng b3

Linux Kernel v2.6.21-rc7 Configuration

Networking options
Arrow Kkeys navigate the menu. <Enter> selects submenus --->. Highlighted letters are
hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press
<Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded
<M> module < > module capable

[1] Network packet debugging
<*> Packet socket
[*] Packet socket: mmapped IO
<*> Unix domain sockets
<*> Transformation user configuration interface
[1 Transformation sub policy support (EXPERIMENTAL)
[1 Transformation migrate database (EXPERIMENTAL)
<M> PF_KEY sockets
[] PF_KEY MIGRATE (EXPERIMENTAL)
[*] TCP/IP networking
[*] IP: multicasting
[*] IP: advanced router
Choose IP: FIB lookup algorithm (choose FIB HASH if unsure) (FIB HASH)
[*] IP: policy routing
[*] IP: equal cost multipath
[*] IP: equal cost multipath with caching support (EXPERIMENTAL)
<¥> MULTIPATH: round robin algorith
< MULTIPATH: random algorithm (NEW)
< > MULTIPATH: weighted random algorithm (NEW)
< > MULTIPATH: interface round robin algorithm (NEW)

< Exit > < Help >

e iEdit - Mdet a4 MNnbox £ Mintit COne Netwn Mtectl || @l e -1 MNawval Downl Tadohe |E8l [i—]

Netfilter

* Netfilter is the kernel layer to support applying iptables rultes.

- It enables:
* Filtering
* Changing packets (masquerading)

* Connection Tracking

Netfilter rule - example

Short example:
Applying the following iptables rule:

— Iptables -A INPUT -p udp --dport 9999 - DROP
Thisis NF_IP_LOCAL _IN rule;

The packet will go to:
ip_rev()
and then: ip_rcv_finish()

And then ip_local deliver()

Netfilter rule - example (contd)

but it will NOT proceed to ip_local deliver finish() as in the
usual case, without this rule.

As a result of applying this rule it reaches nf_hook slow()
with verdict == NF_DROP (calls skb_free() to free the packet)

See /net/netfilter/core.c.

ICMP redirect message

ICMP protocol is used to notify about problems.

A REDIRECT message is sent in case the route
Is suboptimal (inefficient).

There are in fact 4 types of REDIRECT

Only one is used :

— Redirect Host (ICMP_REDIR_HOST)
See RFC 1812 (Requirements for IP Version 4 Routers).

ICMP redirect message - contd.

* To support sending ICMP redirects, the machine should be
configured to send redirect messages.

— /proc/sys/net/ipv4/conf/all/send_redirects should be 1.

* |n order that the other side will receive redirects, we should
set

/proc/sys/net/ipv4/conf/all/accept_redirects to 1.

ICMP redirect message - contd.

* Example:
* Add a suboptimal route on 192.168.0.31:

* route add -net 192.168.0.10 netmask 255.255.255.255 gw
192.168.0.121

* Running now “route” on 192.168.0.31 will show a new entry:
Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.0.10 192.168.0.121 255.255.255.255 UGH 0 0 0 eth0

ICMP redirect message - contd.
Send packets from 192.168.0.31 to 192.168.0.10 :

ping 192.168.0.10 (from 192.168.0.31)
We will see (on 192.168.0.31):

- From 192.168.0.121: icmp_seqg=2 Redirect Host(New
nexthop: 192.168.0.10)

now, running on 192.168.0.121:
- route -Cn | grep .10

shows that there is a new entry in the routing cache:

ICMP redirect message - contd.

* 192.168.0.31 192.168.0.10 192.168.0.10 ri0 0 34 eth0
* The “r” in the flags column means: RTCF_DOREDIRECT.

* The 192.168.0.121 machine had sent a redirect by calling
ip_rt_send redirect() from ip_forward().

(net/ipv4/ip_forward.c)

ICMP redirect message - contd.

And on 192.168.0.31, running “route -C | grep .10” shows
now a new entry in the routing cache: (in case
accept_redirects=1)

192.168.0.31 192.168.0.10 192.168.0.10 0 O 1
eth0

In case accept_redirects=0 (on 192.168.0.31), we will see:
192.168.0.31 192.168.0.10 192.168.0.121 0 0 0 ethO

which means that the gw is still 192.168.0.121 (which is the
rotite that we added in the beainnina)

ICMP redirect message - contd.

* Adding an entry to the routing cache as a result of getting
ICMP REDIRECT is done in ip_rt_redirect(), net/ipv4/route.c.

* The entry in the routing table is not deleted.

Neighboring Subsystem

* Most known protocol: ARP (in IPV6: ND, neighbour discovery)
* ARP table.
* Ethernet header is 14 bytes long:

— Source mac address (6 bytes).
— Destination mac address (6 bytes).
- Type (2 bytes).
* 0x0800 is the type for IP packet (ETH_P_IP)
* 0x0806 is the type for ARP packet (ETH_P_ARP)

* see: include/linux/if _ether.h

Neighboring Subsystem - contd

* When there is no entry in the ARP cache for the destination IP
address of a packet, a broadcast is sent (ARP request,
ARPOP_REQUEST: who has IP address x.y.z...). This is done by
a method called arp_solicit(). (net/ipv4/arp.c)

* You can see the contents of the arp table by running:
“cat /proc/net/arp’ or by running the “arp” from a command line .

* You can delete and add entries to the arp table; see man arp.

Bridging Subsystem
You can define a bridge and add NICs to it (“enslaving
ports”) using brctl (from bridge-utils).

You can have up to 1024 ports for every bridge device
(BR_LMAX_PORTS) .

Example:
brctl addbr mybr
brctl addif mybr ethO

brctl show

Bridging Subsystem - contd.

* When a NIC is configured as a bridge port, the br_port
member of net_device is initialized.

— (br_port is an instance of struct net_bridge pori).

* When we receive a frame, netif_receive skb() calls
handle bridge().

Bridging Subsystem - contd.

The bridging forwarding database is searched for the

destination MAC address.

In case of a hit, the frame is sent to the bridge port with
br_forward() (net/bridge/br_forward.c).

If there is a miss, the frame is flooded on all
bridge ports using br_flood() (net/bridge/br_forward.c).
Note: this is not a broadcast !

The ebtables mechanism is the L2 parallel of L3 Netfilter.

Bridging Subsystem- contd

* Ebtables enable us to filter and mangle packets

at the link layer (L2).

IPSec

Works at network IP layer (L3)
Used in many forms of secured networks like VPNSs.
Mandatory in IPv6. (not in IPv4)

Implemented in many operating systems: Linux, Solaris, Windows,
and more.

RFC2401
In 2.6 kernel : implemented by Dave Miller and Alexey Kuznetsov.
Transformation bundles.

Chain of dst entries; only the last one is for routing.

IPSec-cont.

User space tools: http://ipsec-tools.sf.net
Building VPN : http://www.openswan.org/ (Open Source).
There are also non IPSec solutions for VPN
— example: pptp
struct xfrm_policy has the following member:

— struct dst_entry *bundles.

- _ xfrm4_bundle_create() creates dst_entries (with the
DST_NOHASH flag) see: net/ipv4/xfrm4_policy.c

Transport Mode and Tunnel Mode.

http://ipsec-tools.sf.net/
http://www.openswan.org/

IPSec-contd.

* Show the security policies:
— Ip xfrm policy show

* Create RSA keys:
— Ipsec rsasigkey --verbose 2048 > keys.txt
— Ipsec showhostkey --left > left.publickey
— ipsec showhostkey --right > right.publickey

IPSec-contd.

Example: Host to Host VPN (using openswan)
In /etc/ipsec.cont:

conn linux-to-linux
left=192.168.0.189
leftnexthop=%direct
leftrsasigkey=0sAQPPQ...
right=192.168.0.45
rightnexthop=%Cdirect
rightrsasigkey=0sAQNwb...
type=tunnel

auto=start

IPSec-contd.

service ipsec start (to start the service)

ipsec verify — Check your system to see if IPsec got installed and
started correcily.

ipsec auto —status

— If you see “IPsec SA established”, this implies success.

Look for errors in /var/log/secure (tedora core) or in kernel syslog

Tips for hacking

* Documentation/networking/ip-sysctl.txt: networking kernel tunabels
* Example of reading a hex address:
* iph->daddr == 0xOAO0A8CO or

means checking if the address is 192.168.0.10 (C0=192,A8=168,
00=0,0A=10).

Tips for hacking - Contd.

Disable ping reply:

echo 1 >/proc/sys/net/ipv4/icmp_echo_ignore_all

Disable arp: ip link set eth0 arp off (the NOARP flag will be set)
Also ifconfig eth0 -arp has the same effect.

How can you get the Path MTU to a destination (PMTU)?

— Use tracepath (see man tracepath).

— Tracepath is from iputils.

Tips for hacking - Contd.

* Keep iphdr struct handy (printout): (from linux/ip.h)

struct iphdr {

__u8 ihl:4,
version:4;
___u8 tos;
__bel16 tot_len;
__bel6 id;
__be16 frag_off;
_u8 ttl;
__u8 protocol;
__sumi6 check;
__be32 saddr;
__be32 daddr;

/*The options start here. */

|§

Tips for hacking - Contd.

* NIPQUAD() : macro for printing hex addresses
* CONFIG_NET_DMA is for TCP/IP offload.

* When you encounter: xfrm / CONFIG_XFRM this has to to do with
IPSEC. (transformers).

New and future trends

IO/AT.

NetChannels (Van Jacobson and Evgeniy Polyakov).

TCP Offloading.

RDMA.

Mulitqueus. : some new nics, like e1000 and IPW2200,
allow two or more hardware Tx queues. There are already

patches to enable this.

New and future trends - contd.

See: “Enabling Linux Network Support of Hardware
Multigueue Devices”, OLS 2007.

Some more info in: Documentation/networking/multiqueue.txt
In recent Linux kernels.

Devices with multiple TX/RX queues will have the
NETIF_F MULTI QUEUE feature (include/linux/netdevice.h)

MQ nic drivers will call alloc_etherdev_mq() or
alloc_netdev_mq() instead of alloc_etherdev() or
alloc_netdev().

Links and more info

1) Linux Network Stack Walkthrough (2.4.20):
http://gicl.cs.drexel.edu/people/sevy/network/Linux_network stack we
2) Understanding the Linux Kernel, Second Edition

By Daniel P. Bovet, Marco Cesati

Second Edition December 2002

chapter 18: networking.

- Understanding Linux Network Internals, Christian benvenuti

Oreilly , First Edition.

http://gicl.cs.drexel.edu/people/sevy/network/Linux_network_stack_walkthrough.html

Links and more info

3) Linux Device Driver, by Jonathan Corbet, Alessandro Rubini, Greg
Kroah-Hartman

Third Edition February 2005.
— Chapter 17, Network Drivers
4) Linux networking: (a lot of docs about specific networking topics)
— http://linux-net.osdl.org/index.php/Main_Page

5) netdev mailing list: http://www.spinics.net/lists/netdev/

http://linux-net.osdl.org/index.php/Main_Page
http://www.spinics.net/lists/netdev/

Links and more info

6) Removal of multipath routing cache from kernel code:

http://lists.openwall.net/netdev/2007/03/12/76
http://lwn.net/Articles/241465/

7) Linux Advanced Routing & Traffic Control :
http://lartc.org/
8) ebtables — a filtering tool for a bridging:

http://ebtables.sourceforge.net/

http://lists.openwall.net/netdev/2007/03/12/76
http://lwn.net/Articles/241465/
http://lartc.org/
http://ebtables.sourceforge.net/

Links and more info

9) Writing Network Device Driver for Linux: (article)

- http://app.linux.org.mt/article/writing-netdrivers?locale=en

http://app.linux.org.mt/article/writing-netdrivers?locale=en

Links and more info

10) Netconf — a yearly networking conference; first was in 2004.

- http://vger.kernel.org/netconf2004.html
— http://vger.kernel.org/netconf2005.htm|
- http://vger.kernel.org/netconf2006.html

— Next one: Linux Conf Australia, January 2008,Melbourne

— David S. Miller, James Morris , Rusty Russell , Jamal Hadi Salim ,Stephen Hemminger
, Harald Welte, Hideaki YOSHIFUJI, Herbert Xu ,Thomas Graf ,Robert Olsson ,Arnaldo
Carvalho de Melo and others

http://vger.kernel.org/netconf2004.html
http://vger.kernel.org/netconf2005.html
http://vger.kernel.org/netconf2006.html

Links and more info

11) Policy Routing With Linux - Online Book Edition

- by Matthew G. Marsh (Sams).
- http://www.policyrouting.org/PolicyRoutingBook/
12) THRASH - A dynamic LC-trie and hash data structure:

Robert Olsson Stefan Nilsson, August 2006
http://www.csc.kth.se/~snilsson/public/papers/trash/trash.pdf
13) IPSec howto:

http://www.ipsec-howto.org/t1.html

http://www.policyrouting.org/PolicyRoutingBook/
http://www.csc.kth.se/~snilsson/public/papers/trash/trash.pdf
http://www.ipsec-howto.org/t1.html

Links and more info

14) Openswan: Building and Integrating Virtual Private
Networks , by Paul Wouters, Ken Bantoft

http://www.packtpub.com/book/openswan/mid/061205jqgdnh2by
publisher: Packt Publishing.

http://www.packtpub.com/book/openswan/mid/061205jqdnh2by

Linux Kernel Networking-
advanced topics:
Neighboring and IPsec

Rami Rosen
ramirose@gmail.com
laifux, January 2008
%]D-aﬁ% www.haifux.org

mailto:ramirose@gmail.com

Contents

e Short rehearsal (4 slides)

* Neighboring Subsystem

struct neighbour

arp

arp_bind_neighbour() method
Duplicate Address Detection (DAD)
LVS (Linux Virtual Sever)

ARPD — arp user space daemon
Neighbour states

Change of IP address/Mac address

e |Psec

Scope

« We will not deal with multicast and with ipv6 and with wireless.
« The L3 network protocol we deal with is ipv4, and the
L2 Link Layer protocol is Ethernet.

Neighboring Subsystem

* All code in this lecture is taken from linux-2.6.24-rc4
e 04-Dec-2007

« (Can be obtained from
http://www.kernel.org/pub/linux/kernel/v2.6/testing/ (and mirrors)

http://www.kernel.org/pub/linux/kernel/v2.6/testing/

Short rehearsal (4 slides)

« The layers that we will deal with (based on the 7 layers model)
are:

Transport Layer (L4) (udp,tcp...)

Network Layer (L3) (ip)

Link Layer (L2) (ethernet)

Short rehearsal (4 slides)

Two most Important data structures: sk _buff and net_device.

sk buff:

dst is an instance of dst_entry; dst is a member in sk_buff.

The lookup in the routing subsystem constructs dst.

It decides how the packet will continue its traversal.

This is done by assigning methods to its input()/output() functions
Each dst_entry has a neighbour member.(with IPSec it is NULL).

When working with IPSec, the dst in fact represents a linked
list of dst_entries. Only the last one is for routing; all previous
dst_entries are for IPSec transformers.

Short rehearsal (4 slides)

net device

net_device represents a Network Interface Card.

net_device has members like mtu, dev_addr (device MAC
address), promiscuity,name of device (eth0,eth1,lo, etc), and
more.

An important member of net_device is flags.
You can disable ARP replies on a NIC by setting IFF_NOARP flag:
ifconfig eth0 -arp
- ifconfig eth0 will show:

« UP BROADCAST RUNNING NOARP MULTICAST ...
- Enabling ARP again is done by: ifconfig eth0 arp.

Short rehearsal (4 slides)

e Ip_input_route() method: performs a lookup in the routing

subsystem for each incoming packet. Looks first in the
routing cache; in case there is a cache miss, looks into the
routing table and inserts an entry into the routing cache. Calls
arp_bind_neighbour() for UNICAST packets only. Returns 0
upon success.

« dev_queue_xmit(struct sk_buff *skb) is called to transmit

the packet, when it is ready. (has L2 destination address)
(net/core/dev.c)

- dev_queue_xmit() passes the packet to the nic device driver
for transmission using the device driver hard_start_xmit()
method.

Neighboring Subsystem

Goals: what is the neighboring subsystem for?

“The world is a jungle in general, and the networking game
contributes many animals.” (from RFC 826, ARP, 1982)

In IPV4 implemented by ARP; in IPv6: ND, neighbour discovery.

Ethernet header is 14 bytes long:

Source Mac address and destination Mac address - 6 bytes each.
- Type (2 bytes). For example, (include/linux/if_ether.h)
* 0x0800 is the type for IP packet (ETH_P_IP)
* 0x0806 is the type for ARP packet (ETH _P_ARP)
« 0X8035 is the type for RARP packet (ETH_P_RARP)

Neighboring Subsystem — struct neighbour

« neighbour (instance of struct neighbour) is embedded in dst,
which is in turn is embedded in sk_buff:

sk_buff

dst

Neighbour
ha
primary_key

Neighboring Subsystem — struct neighbour

* Implementation - important data structures
 struct neighbour (/include/et/neighbour.h)

- ha - the hardware address (MAC address when dealing with
Ethernet) of the neighbour. This field is filled when an ARP
response arrives.

- primary_key — The IP address (L3) of the neighbour.

* lookup in the arp table is done with the primary_key.
- nud_state represents the Network Unreachability Detection

state of the neighbor. (for example, NUD_REACHABLE).

Neighboring Subsystem — struct neighbour
contd

* A neighbour can change its state to NUD_ REACHABLE by
one of three ways:

L4 confirmation.

» Receive ARP reply for the first time or receiving an ARP reply
in response to an ARP request when in NUD_ PROBE state.

« Confirmation can be done also by issuing a sysadmin
command (but it is rare).

Neighboring Subsystem — struct neighbour
contd

* int ("output)(struct sk_buff *skb);

— output() can be assigned to different methods according to the
state of the neighbour. For example, neigh_resolve_output()
and neigh_connected_output(). Initially, it is
neigh_blackhole().

- When a state changes, than also the output function may be
assigned to a different function.

« refcnt -incremented by neigh hold(); decremented by

neigh _release(). We don't free a neighbour when the refcnt
IS higher than 1; instead, we set dead (a member of neighbour)
to 1.

Neighboring Subsystem — struct neighbour
contd

« timer (The callback method is neigh timer_handler()).

» struct hh_cache *hh (defined in include/linux/netdevice.h)

« confirmed — confirmation timestamp.

Confirmation can done from L4 (transport layer).

For example, dst_confirm() calls neigh_confirm().
dst_confirm() is called from tcp_ack() (net/ipv4/tcp_input.c)

and by udp_sendmsg() (net/ipv4/udp.c) and more.
neigh_confirm() does NOT change the state — it is the job

of neigh_timer_handler().

Neighboring Subsystem — struct neighbour
contd

* dev (net_device from which we send packets to the neighbour).
e struct neigh_parms *parms;

- parms include mostly timer tunables, net structure (network
namespaces), etc.

- network namespaces enable multiple instances of the network
stack to the user space.

* A network device belongs to exactly one network namespace.
« CONFIG_NET _NS when building the kernel.

Neighboring Subsystem — struct neighbour
contd

e arp_queue
- every neighbour has a small arp queue of itself.
- There can be only 3 elements by default in an arp_queue.

- This is configurable:/proc/sys/net/ipv4/neigh/default/unres _qlen

struct neigh_table

 struct neigh_table represents a neighboring table

(/include/net/neighbour.h)
The arp table (arp_tbl) is a neigh_table. (/include/net/arp.h)

In IPv6, nd_tbl (Neighbor Discovery table) is a neigh_table
also (include/net/ndisc.h)

There is also dn_neigh_table (DECnet)
(linux/net/decnet/dn_neigh.c) and clip_tbl (for ATM) (net/atm/clip.c)

gc_timer : neigh_periodic_timer() is the callback for garbage
collection.

neigh _periodic_timer() deletes FAILED entries from the ARP
table.

Neighboring Subsystem - arp

 When there is no entry in the ARP cache for the destination IP
address of a packet, a broadcast is sent (ARP request,
ARPOP_REQUEST: who has IP address x.y.z...). This is done by
a method called arp_solicit(). (net/ipv4/arp.c)

- In IPv6, the parallel mechanism is called ND (Neighbor
discovery) and is implemented as part of ICMPV6.

- A multicast is sent in IPv6 (and not a broadcast).

 |f there is no answer in time to this arp request, then we will end up
with sending back an ICMP error (Destination Host Unreachable).

* This is done by arp_error_report() , which indirectly calls
ipv4_link_failure() ; see net/ipv4/route.c.

ARP table

Neighbour Neighbour Neighbour

Neighboring Subsystem - arp

* You can see the contents of the arp table by running:
“cat /proc/net/arp’ or by running the “arp” from a command line .
* |p neigh show is the new method to show arp (from IPROUTE2)

* You can delete and add entries to the arp table; see man arp/man
Ip.

 When using “ip neigh add” you can specify the state of the entry
which you are adding (like permanent,stale,reachable, etc).

Neighboring Subsystem — arp table

« arp command does not show reachability states except the
incomplete state and permanent state:
Permanent entries are marked with M in Flags:

example : arp output

Address HWtype HWaddress Flags Mask Iface
10.0.0.2 (incomplete) ethO
10.0.0.3 ether 00:01:02:03:04:05 CM ethO

10.0.0.138 ether 00:20:8F:0C:68:03 C ethO

Neighboring Subsystem — ip show neigh

 We can see the current neighbour states:

 Example :

« Ip neigh show

192.168.0.254 dev eth0 lladdr 00:03:27:f1:a1:31 REACHABLE
192.168.0.152 dev eth0 lladdr 00:00:00:cc:bb:aa STALE
192.168.0.121 dev ethO lladdr 00:10:18:1b:1c:14 PERMANENT
192.168.0.54 dev ethO lladdr aa:ab:ac:ad:ae:af STALE
192.168.0.98 dev eth0 INCOMPLETE

Neighboring Subsystem — arp

e arp_process() handles both ARP requests and ARP responses.
- net/ipv4/arp.c

- If the target ip (tip) address in the arp header is the loopback
then arp_process() drops it since loopback does not need ARP.

if (LOOPBACK(tip) || MULTICAST(tip))
goto out;

out:

kfree_skb(skb);

return O;

Neighboring Subsystem - arp

(see: #define LOOPBACK(x) (((x) & htonl(0xff000000)) == htonl(0x7f000000)) in
linux/in.h

If it is an ARP request (ARPOP_REQUEST)

we call ip_route _input().

Why ?

In case it is for us, (RTN_LOCAL) we send and ARP reply.
- arp_send(ARPOP_REPLY,ETH P _ARP,sip,dev,tip,sha

,dev->dev_addr,sha),

- We also update our arp table with the sender entry (ip/mac).

Special case: ARP proxy server.

Neighboring Subsystem - arp

* In case we receive an ARP reply — (ARPOP_REPLY)

- We perform a lookup in the arp table. (by calling
___neigh_lookup())

- If we find an entry, we update the arp table by

neigh _update().

Neighboring Subsystem - arp

 If there is no entry and there is NO support for unsolicited ARP we
don't create an entry in the arp table.

- Support for unsolicited ARP by
setting /proc/sys/net/ipv4/conf/all/arp_accept to 1.

- The corresponding macro is:
IPV4 DEVCONF _ALL(ARP_ACCEPT))

- In older kernels, support for unsolicited ARP was done by:
- CONFIG IP_ACCEPT UNSOLICITED ARP

Neighboring Subsystem — lookup

« Lookup in the neighboring subsystem is done via: neigh_lookup()
parameters:

- neigh_table (arp_tbl)

- pkey (ip address, the primary_key of neighbour struct)

- dev (net_device)

- There are 2 wrappers:

- neigh_lookup()

* just one more parameter: creat (a flag: to create a neighbor
by neigh_create() or not))

« and __ neigh lookup _errno()

Neighboring Subsystem — static entries

« Adding a static entry is done by arp -s ipAddress MacAddress
« Alternatively, this can be done by:
ip neigh add ipAddress dev eth0 lladdr MacAddress nud permanent
« The state (nud_state) of this entry will be NUD_PERMANENT
- ip neigh show will show it as PERMANENT.
« Why do we need PERMANENT entries ?

arp_bind_neighbour() method

« Suppose we are sending a packet to a host for the first time.
e adst_entry is added to the routing cache by rt_intern_hash().
« We should know the L2 address of that host.

- 8o rt_intern_hash() calls arp_bind_neighbour().

« only for RTN_UNICAST (not for multicast/broadcast).

- arp_bind_neighbour(): net/iov4/arp.c

- dst->neighbour=NULL, so it calls _neigh lookup errno().

- There is no such entry in the arp table.

- S0 we will create a neighbour with neigh _create() and add
it to the arp table.

arp_bind_neighbour() method

* neigh create() creates a neighbour with NUD_NONE state
- setting nud_state to NUD_NONE is done in neigh_alloc()

Neighboring Subsystem — IFF_NOARP flag

Disabling and enabling arp

ifconfig eth1 -arp
- You will see the NOARP flag now in ifconfig -a

ifconfig eth1 arp (to enable arp of the device).
In fact, this sets the IFF_NOARP flag of net_device.
There are cases where the interface by default is with the

IFF_NOARRP flag (for example, ppp interface,

see ppp_setup() (drivers/net/opp_generic.c)

Changing IP address

« Suppose we try to set eth1 to an IP address of a different
machine on the LAN:

« First, we will set an ip for eth1 in (in FC8,for example)
« /etc/sysconfig/network-scripts/ifcfg-eth

IPADDR=192.168.0.122

and than run:
o ifup etht

Changing IP address - contd.

« we will get:

Error, sone other host already uses address
192.168. 0. 122.

« But:
ifconfig eth0 192.168.0.122
works ok !
Why is it so ?
ifup is from the Initscripts package.

Duplicate Address Detection (DAD)

Duplicate Address Detection mode (DAD)
arping -l eth0 -D 192.168.0.10

- sends a broadcast packet whose source address
is 0.0.0.0.

0.0.0.0 is not a valid IP address (for example, you cannot

set an ip address to 0.0.0.0 with ifconfig)
The mac address of the sender is the real one.

-D flag is for Duplicate Address Detection mode.

File Edi e Go Capture Al 5i 5 He
B e @ & g Q?t..”'“iél@liﬁl WY EX 8

iC)()AbltComp 93:ac:af Broadcast ARP Who has 192.168.0.107? Tell 0.0.0.0 [

»Frame 1 (42 bytes on wire, 42 bytes captured)
-Ethernet II, Src: AbitComp 93:ac:af (00:50:8d:93:ac:af), Dst: Broadcast
»Destination: Broadcast (ff:ff:ff:ff:ff:ff)
»Source: AbitComp 93:ac:af (00:50:8d:93:ac:af)
Type: ARP (0x0806)
- Address Resolution Protocol (request)
Hardware type: Ethernet (0x0001)
Protocol type: IP (Ox0800)
Hardware size: 6
Protocol size: 4
Opcode: request (0x0001)
Sender MAC address: AbitComp 93:ac:af (00:50:8d:93:ac:af)
Sender IP address: 0.0.0.0 (0.0.0.0)
Target MAC address: Broadcast (ff:ff:ff:ff:ff:ff)

Target IP address: 192.168.0.10 (192.168.0.10)
& [>
0010 08 00 06 04 00 01 00 50 8d 93 ac af [ELMOIMGILONG P

NADYN £ £ £ ££ £ £ ££ F££ Py T s | NN N~
(= |
Sender IP address (arp.src.proto_ipvd), 4 bytes P:1D:1M:0

Duplicate Address Detection -contd

Code: (from arp_process() ; see /net/ipva/arp.c)

/* Special case: IPv4 duplicate address detection packet (RFC2131)
*/

if (sip ==0) {

if (arp->ar_op == htons(ARPOP_REQUEST) &&
inet_addr_type(tip) == RTN_LOCAL &&
larp_ignore(in_dev,dev,sip,tip))

arp_send(ARPOP_REPLY,ETH_P_ARP,tip,dev,tip,sha,dev-
>dev_addr,dev->dev_addr);

goto oui;

}

Neighboring Subsystem — Garbage
Collection

« Garbage Collection
- neigh_periodic_timer()
- neigh_timer_handler()

- neigh_periodic_timer() removes entires which are in
NUD_FAILED state. This is done by setting dead to 1, and
calling neigh_release(). The refcnt must be 1 to ensure no one
else uses this neighbour. Also expired entries are removed.

« NUD_FAILED entries don't have MAC address ; see “ip neigh
show” in the example above).

Neighboring Subsystem — Asynchronous
Garbage Collection

* neigh forced gc() performs synchronous garbage collection.

 ltis called from neigh_alloc() when the number of the entries
in the arp table exceeds a (configurable) limit.

« This limit is configurable (gc_thresh2,gc_thresh3)
/proc/sys/net/ipv4/neigh/default/gc_thresh2
/proc/sys/net/ipv4/neigh/default/gc_thresh3
- The default for gc_thresh3 is 1024.

- Candidates for cleanup: Entries which their reference
count is 1, or which their state is NOT permanent.

Neighboring Subsystem — Garbage
Collection

« Changing the neighbour state is done only in
neigh _timer_handler() .

LVS (Linux Virtual Sever)

http://www.linuxvirtualserver.org/

Integrated into the Linux kernel (in 2.4 kernel it was a patch).
Located in: net/ipv4/ipvs in the kernel tree. No IPV6 support.
LVS has eight scheduling algorithms.

LVS/DR is LVS with direct routing (a load balancing solution).

ipvsadm is the user space management tools (available in
most distros).

Direct Routing is the packet-forwarding-method.
* -0, --gatewaying => Use gatewaying (direct routing)
e See man ipvsadm.

http://www.linuxvirtualserver.org/

LVS/DR

« Example: 3 Real Servers and the Director all have the same
Virtual IP (VIP).

VIP (Virtual IP) VIP

/ Real Server 1

>

Real Server 2 VIP

Linux Director

VIP

Real Server 3

clients

LVS and ARP

« There is an ARP problem in this configuration.

 When you send an ARP broadcast, and the receiving
machine has two or more NICs, each of them responds to
this ARP request.

« Example: a machine with two NICs ;
* ethOis 192.168.0.151 and eth1 is 192.168.0.152.

rat 54.eth - Wireshark - A x
Fle Edit WView Go Capture Analyze Statistics Help

i e Exged herra Ty EE e W@ X 8

E]Eilter:l v | 4p Expression...| 4 Clear | «// Apply

k.4

Destination Protocol Info

Broadcast Who has 192.168.0.151? Tell 192.168.0.54

aa:ab:ac:ad:ae:af ARP 192.168.0.151 is at 00:00:00:aa:bb:cc
aa:ab:ac:ad:ae:af ARP 192.168.0.151 1is at 00:00:00:cc:bb:aa

- Ethernet II, Src: aa:ab:ac:ad:ae:af (aa:ab:ac:ad:ae:af), Dst: Broadce"
»Destination: Broadcast (ff:ff:ff:ff:ff:ff)
»Source: aa:ab:ac:ad:ae:af (aa:ab:ac:ad:ae:af)
Type: ARP (0x0806)
~Address Resolution Protocol (request)
Hardware type: Ethernet (0x0001)
Protocol type: IP (0x0800)
Hardware size: 6
Protocol size: 4
Opcode: request (0x0001)
Sender MAC address: aa:ab:ac:ad:ae:af (aa:ab:ac:ad:ae:af)
Sender IP address: 192.168.0.54 (192.168.0.54)
Target MAC address: Broadcast (ff:ff:ff:ff:ff:ff)
Target IP address: 192.168.0.151 (192.168.0.151)

>

e ff ff ff ff ff ff aa ab ac ad ae af 08 06 00 01

(ATATINA] N AN NE MAA QAN A1 A ah Aar ad anAa af ~Q A0 QAR 2R

File: "fwork/doc/54.eth" 234 Bytes 00:00:00 P:3D:3M:0

LVS and ARP

« Solutions
1) Set ARP_IGNORE to 1:
- echo “1” > /proc/sys/net/ipv4/conf/ethO/arp_ignore
- echo “1” > /proc/sys/net/ipv4/conf/eth1/arp_ignore
2) Use arptables.

- There are 3 points in the arp walkthrough:
(include/linux/netfilter_arp.h)

- NF_ARP_IN (in arp_rcv() , net/ipv4/arp.c).
- NF_ARP_OUT (in arp_xmit()),net/ipv4/arp.c)

- NF_ARP_FORWARD (in br_nf forward_arp(),
net/bridge/br_netfilter.c)

LVS and ARP

» http://ebtables.sourceforge.net/download.html
- Ebtables is in fact the parallel of netfilter but in L2.

http://ebtables.sourceforge.net/download.html

LVS example (ipvsadm)

* An example for setting LVS/DR on TCP port 80 with three
real servers:

» fpvsadm -C // clear the LVS table

* jpvsadm -A -t DirectorIPAddress:80

« ipvsadm -a -t DirectorlPAddress:80 -r RealServer1 -g
 ipvsadm -a -t DirectorlPAddress:80 -r RealServer2 -g
* ipvsadm -a -t DirectorlPAddress:80 -r RealServer3 -g

« This example deals with tcp connections (for udp
connection we should use -u instead of -t in the last 3 lines).

LVS example:

« fpvsadm -Ln //listthe LVS table
« /proc/sys/net/ipv4/ip_forward should be set to 1

 |n this example, packets sent to VIP will be sent to the load
balancer; it will delegate them to the real server according

to its scheduler. The dest MAC address in L2 header will be
the MAC address of the real server to which the packet will
be sent. The dest IP header will be VIP.

« This is done with NF_IP_LOCAL_IN.

ARPD — arp user space daemon

« ARPD is a user space daemon; it can be used if we want to
remove some work from the kernel.

* The user space daemon is part of iproute2 (/misc/arpd.c)
 ARPD has support for negative entries and for dead hosts.

- The kernel arp code does NOT support these type of
entries!

« The kernel by default is not compiled with ARPD support; we
should set CONFIG_ARPD for using it:

* Networking Support->Networking Options->IP: ARP daemon
support. (It is considered “Experimental®).

* See: /usr/share/doc/iproute-2.6.22/arpd.ps (Alexey Kuznetsov).

ARPD

 We should also set app_probes to a value greater than 0 by
setting

— /proc/sys/net/ipv4/neigh/ethO/app_solicit
— This can be done also by the -a (active_probes) parameter.

- The value of this parameter tells how many ARP requests to
send before that neighbour is considered dead.

* The -k parameter tells the kernel not to send ARP broadcast; in
such case, the arpd daemon is not only listening to ARP requests,
but also send ARP broadcasts.

« We can tune kernel parameters as we like; in fact, we can tune it
so that arp requests will be send only from the daemon and not
from the kernel at all.

ARPD

Activation:
arpd -a 1 -k ethO &

On some distros, you will get the error db_open: No such file

or directory unless you simply run mkdir /var/lib/arpd/ before
(for the arpd.db file).

Pay attention: you can start arpd daemon when there is no
support in the kernel (CONFIG_ARPD is not set).

In this case you, arp packets are still caught by arpd daemon
get_arp pkt() (misc/arpd.c)

But you don't get messages from the kernel.

get_arp_pkt() is not called. (misc/arpd.c)

ARPD

« Tip: to check if CONFIG_ARPD is set, simply see if there are
any resulrs from

- cat /proc/kallsyms | grep neigh_app

Mac addresses

« MAC address (Media Access Control)
« According to specs, MAC address should be unique.
« The 3 first bytes specify a hw manufacturer of the card.

 Allocated by IANA.
- There are exceptions to this rule.
— Technion (?)
- Ethernet HWaddr 00:16:3E:3F.6E:5D

ARPwatch (detect ARP cache
p0|son|ng)

« Changing MAC address can be as a result of some security
attack (ARP cache poisoning, ARP spoofing).

« Arpwatch is an open source tool;helps to detect such attack.
 Activation: arpwatch -d -i ethO (output to stderr)

« Arpwatch keeps a table of ip/mac addresses and senses
when there is a change.

« -dis for redirecting the log to stderr (no syslog, no mail).

* In case someone changed MAC address on the same
network, you will get a message like this:

ARPwatch - Example

From: root (Arpwatch)

To: root

Subject: changed ethernet address (jupiter)
hostname: jupiter
Ip address: 192.168.0.54
ethernet address: aa:bb:cc:dd:ee:ff
ethernet vendor: <unknown>
old ethernet address: 0:20:18:61:e5:e0
old ethernet vendor: ...

Change of IP address/Mac address

« Change of IP address does not trigger notifying its
neighbours.

« Change of MAC address , NETDEV_CHANGEADDR also does
not trigger notifying its neighbours.

|t does update the local arp table by neigh changeaddr().
- Exception to this is irlan eth:
irlan_eth _send gratuitous_arp()

- (net/irda/irlan/irlan_eth.c)

- Some nics don't permit changing of MAC address — you get:
SIOCSIFHWADDR: Device or resource busy

- Sometimes you should only bring down the nic before.

Flushing the arp table

* Flushing the arp:
* |p -statistics neigh flush dev eth0O

« *** Round 1, deleting 7 entries
« *** Flush is complete after 1 round ***

Flushing the arp table -contd

« Specifying twice -statistics will also show which entries were
deleted, their mac addresses, etc...

* |p -statistics -statistics neigh flush dev ethO

e 192.168.0.254 lladdr 00:04:27:fd:ad:30 ref 17 used 0/0/0
REACHABLE

 *™ Round 1, deleting 1 entries ***

o *™ Flush is complete after 1 round ***

« calls neigh_delete() in net/core/neighbour.c
« Changes the state to NUD_FAILED

Neighbour states

* neighbour states

neigh_alloc()

None

4>

Incomplete

Reachable

\

Stale

\

Delay

\

Probe

Neighboring Subsystem — states

« NUD states
- NUD NONE

- NUD_REACHABLE
- NUD_STALE
- NUD_DELAY
D PROBE
- NUD_FAILED
D INCOMPLETE

Neighboring Subsystem — states

 From the beginning of core/neighbour.c:
« Isita (latent) bug ?
if (I(state & NUD _IN_TIMER)) {
#ifndef CONFIG_SMP
printk(KERN_WARNING "neigh: timer & Inud_in_timen\n");
#endif
goto out;

}

Neighboring Subsystem — states

e Special states:
« NUD NOARP
« NUD PERMANENT

 No state transitions are allowed from these states to another
state.

Neighboring Subsystem — states

« NUD state combinations:

« NUD_IN_TIMER (NUD_INCOMPLETE|NUD_REACHABLE|
NUD_DELAY|NUD_PROBE)

- When removing a neighbour, we stop the timer (call
del timer()) only if the state is NUD_IN_TIMER.

« NUD_VALID (NUD_PERMANENT|NUD_NOARP|
NUD_REACHABLE|NUD_PROBE|NUD_STALE|NUD_DELAY)

« NUD_CONNECTED (NUD_PERMANENT|NUD_NOARP|
NUD_REACHABLE)

Neighbour states

 When a neighbour is in a STALE state it will remain in this
state until one of the two will occur

- a packet is sent to this neighbour.
- lts state changes to FAILED.

* neigh_resolve output() and neigh _connected output().

net/core/neighbour.c

* A neighbour in INCOMPLETE state does not have MAC address
set yet (ha member of neighbour)

 So when neigh _resolve output() is called, the neighbour state
is changed to INCOMPLETE.

Neighbour states

 When neigh_connected output() is called, the MAC address of the
neighbour is known; so we end up with calling dev_queue xmit(),
which calls the hard _start xmit() method of the NIC device driver.

» The hard start xmit() method actually puts the frame on the wire.

IPSec

 Works at network IP layer (L3)
« Used in many forms of secured networks like VPNSs.
 Mandatory in IPv6. (not in IPv4)

* Implemented in many operating systems: Linux, Solaris, Windows,
and more.

* In 2.6 kernel : implemented by Dave Miller and Alexey Kuznetsov.
« Transformation bundles.

« Chain of dst entries; only the last one is for routing.

« The dst entries in the chain have A NULL Neighbor as a member.

- (except the last one)

IPSec-cont.

. RFC2401

IPSec-cont.

« User space tools: http://ipsec-tools.sf.net
« Building VPN : http://www.openswan.org/ (Open Source).
« There are also non IPSec solutions for VPN
- OpenVPN uses ssl/tls.
- example: pptp
 struct xfrm_policy has the following member:
- struct dst_entry *bundles.

- _ xfrm4_bundle_create() creates dst_entries (with the
DST_NOHASH flag) see: net/ipv4/xfrm4_policy.c

« Transport Mode and Tunnel Mode.

http://ipsec-tools.sf.net/
http://www.openswan.org/

IPSec-contd.

« Show the security policies:
- Ip xfrm policy show

* Create RSA keys:
- Ipsec rsasigkey --verbose 2048 > keys.txt
- Ipsec showhostkey --left > left.publickey
- ipsec showhostkey --right > right.publickey

IPSec-contd.

Example: Host to Host VPN (using openswan)
In /etc/ipsec.cont:

conn linux-to-linux
left=192.168.0.189
leftnexthop=%direct
leftrsasigkey=0sAQPPAQ...
right=192.168.0.45
rightnexthop=%adirect
rightrsasigkey=0sAQNwD...
type=tunnel

auto=start

IPSec-contd.

service ipsec start (to start the service)

ipsec verify — Check your system to see if IPsec got installed and
started correctly.

psec auto —status

- If you see “IPsec SA established”, this implies success.

Look for errors in /var/log/secure (tedora core) or in kernel syslog

Tips for hacking

« Documentation/networking/ip-sysctl.txt: networking kernel tunabels

« Example of reading a hex address:

* iph->daddr == 0xOAO0A8CO or

means checking if the address is 192.168.0.10 (C0=192,A8=168, 00=0,0A=10).
« A BASH script for getting MAC address from |IP address: (ipToHex.sh)
#!/bin/sh

IP_ADDR=$1

for 1in $(echo ${IP_ADDRY}| sed -e "s/\./ /g"); do

printf '%02X" $I

done

echo

usage example: ./ipToHex.sh 192.168.0.1 => COA80001

Tips for hacking - Contd.

« Disable ping reply:
« echo 1 >/proc/sys/net/ipv4/icmp_echo_ignore_all
« Disable arp: ip link set eth0 arp off (the NOARP flag will be set)
» Also ifconfig eth0 -arp has the same effect.
 How can you get the Path MTU to a destination (PMTU)?
- Use tracepath (see man tracepath).

- Tracepath is from iputils.

Tips for hacking - Contd.

e inet_addr_type() method: returns the address type; the input to this
method is the IP address. The return value can be RTN_LOCAL,

RTN _UNICAST, RTN _BROADCAST, RTN_MULTICAST etc.
See: net/ipv4/fib_frontend.c

Tips for hacking - Contd.

* |n case you want to send a packet from a user space application
through a specified device without altering any routing tables:

struct ifreq interface;

strncpy(interface.ifr_ifrn.ifrn_name, "eth1",IFNAMSIZ);

if (setsockopt(s, SOL_SOCKET, SO_BINDTODEVICE, (char
“)&interface, sizeof(interface)) < 0)

{
printf("error setting SO_BINDTODEVICE");

exit(1);
}

Tips for hacking - Contd.

» Keep iphdr struct handy (printout): (from linux/ip.h)

struct iphdr {

__u8 ihl:4,
version:4;
___u8 tos;
__bel16 tot_len;
__be16 id;
__bel6 frag_off;
__u8 ttl;
__u8 protocol;
__sumi16 check;
___be32 saddr;
___be32 daddr;

/*The options start here. */

b

Tips for hacking - Contd.

« NIPQUAD() : macro for printing hex addresses
* Printing mac address (from net_device):

printk("sk_buff->dev =%02x:%02x:%02x:%02x:%02x:%02x\n",
((skb)->dev)->dev_addr[0], ((skb)->dev)->dev_addr|[1],

((skb)->dev)->dev_addr[2],((skb)->dev)->dev_addr[3],
((skb)->dev)->dev_addr[4], ((skb)->dev)->dev_addr[5]);
* Printing IP address (primary_key) of a neighbour (in hex format):
printk("neigh->primary_key =%02X.%02x.%02x.%02x\n",

neigh->primary_key[0], neigh->primary_key[1],
neigh->primary_key[2],neigh->primary_key[3]);

Tips for hacking - Contd.

« Or:

printk("***neigh->primary_key= %u.%U.%u.%u\n",
NIPQUAD((*(u32*)neigh->primary_key));

« CONFIG_NET_DMA is for TCP/IP offload.

* When you encounter: xfrm / CONFIG_XFRM this has to to do with
IPSEC. (transformers).

Tips for hacking - Contd.

« Showing arp statistics by:
« cat /proc/net/stat/arp_cache

entries allocs destroys hash_grows lookups hits res_failed
rcv_probes_mcast rcv_probes_ucast periodic_gc runs
forced_gc _runs

periodic_gc_runs: statistics of how many times the
neigh _periodic_timer() is called.

Links and more Info

1) Linux Network Stack Walkthrough (2.4.20):
http://gicl.cs.drexel.edu/people/sevy/network/Linux_network stack we
2) Understanding the Linux Kernel, Second Edition

By Daniel P. Bovet, Marco Cesati

Second Edition December 2002

chapter 18: networking.

- Understanding Linux Network Internals, Christian benvenuti

Oreilly , First Edition.

http://gicl.cs.drexel.edu/people/sevy/network/Linux_network_stack_walkthrough.html

Links and more Info

3) Linux Device Driver, by Jonathan Corbet, Alessandro Rubini, Greg
Kroah-Hartman

Third Edition February 2005.
- Chapter 17, Network Drivers
4) Linux networking: (a lot of docs about specific networking topics)
- http://linux-net.osdl.org/index.php/Main_Page

5) netdev mailing list: http://www.spinics.net/lists/netdev/

http://linux-net.osdl.org/index.php/Main_Page
http://www.spinics.net/lists/netdev/

Links and more Info

6) Removal of multipath routing cache from kernel code:

http://lists.openwall.net/netdev/2007/03/12/76
http://lwn.net/Articles/241465/

7) Linux Advanced Routing & Traffic Control :
http://lartc.org/
8) ebtables — a filtering tool for a bridging:

http://ebtables.sourceforge.net/

http://lists.openwall.net/netdev/2007/03/12/76
http://lwn.net/Articles/241465/
http://lartc.org/
http://ebtables.sourceforge.net/

Links and more Info

9) Writing Network Device Driver for Linux: (article)

- http://app.linux.org.mt/article/writing-netdrivers?locale=en

http://app.linux.org.mt/article/writing-netdrivers?locale=en

Links and more Info

10) Netconf — a yearly networking conference; first was in 2004.
- http://vger.kernel.org/netconf2004.html
- http://vger.kernel.org/netconf2005.html
- http://vger.kernel.org/netconf2006.html
- Next one: Linux Conf Australia, January 2008,Melbourne

- David S. Miller, James Morris , Rusty Russell , Jamal Hadi Salim ,Stephen
Hemminger , Harald Welte, Hideaki YOSHIFUJI, Herbert Xu ,Thomas Graf ,Robert
Olsson ,Arnaldo Carvalho de Melo and others

http://vger.kernel.org/netconf2004.html
http://vger.kernel.org/netconf2005.html
http://vger.kernel.org/netconf2006.html

Links and more Info

11) Policy Routing With Linux - Online Book Edition
- by Matthew G. Marsh (Sams).
- http://www.policyrouting.org/PolicyRoutingBook/

12) THRASH - A dynamic LC-trie and hash data structure:
Robert Olsson Stefan Nilsson, August 2006
http://www.csc.kth.se/~snilsson/public/papers/trash/trash.pdf

13) IPSec howto:
http://www.ipsec-howto.org/t1.html

http://www.policyrouting.org/PolicyRoutingBook/
http://www.csc.kth.se/~snilsson/public/papers/trash/trash.pdf
http://www.ipsec-howto.org/t1.html

Links and more Info

14) Openswan: Building and Integrating Virtual Private
Networks , by Paul Wouters, Ken Bantoft

http://www.packtpub.com/book/openswan/mid/061205jqdnh2by
publisher: Packt Publishing.
15) a book including chapters about LVS:

“The Linux Enterprise Cluster- Build a Highly Available Cluster
with Commodity Hardware and Free Software”, By Karl
Kopper.

http://www.nostarch.com/frameset.php?startat=cluster
15) http://www.vyatta.com - Open-Source Networking

http://www.packtpub.com/book/openswan/mid/061205jqdnh2by
http://www.nostarch.com/frameset.php?startat=cluster
http://www.vyatta.com/

Links and more Info

16) Address Resolution Protocol (ARP)

- http://linux-ip.net/html/ether-arp.html
17) ARPWatch — a tool for monitor incoming ARP traffic.

Lawrence Berkeley National Laboratory -
ftp://ftip.ee.lbl.gov/arpwatch.tar.gz.

18) arptables:
http://ebtables.sourceforge.net/download.html

19) TCP/IP lllustrated, Volume 1: The Protocols
By W. Richard Stevens
http://www.informit.com/store/product.aspx?isbn=0201633469

http://linux-ip.net/html/ether-arp.html
ftp://ftp.ee.lbl.gov/arpwatch.tar.gz
http://ebtables.sourceforge.net/download.html

Links and more Info

20) Unix Network Programming, Volume 1: The Sockets
Networking API (3rd Edition) (Addison-Wesley Professional
Computing Series) (Hardcover)

by W. Richard Stevens (Author), Bill Fenner (Author), Andrew M.
Rudoff (Author)

Questions

» Questions ?
e Thank You !

IPV6

Linux Kernel Networking (3)-
advanced topics

Rami Rosen
ramirose@gmail.com
Haifux, April 2008
1@@% www.haifux.org

mailto:ramirose@gmail.com

Linux Kernel Networking (3)-
advanced topics

Note:
This lecture is a sequel to the following two lectures | gave:

Linux Kernel Networking lecture

- http://www.haifux.org/lectures/172/
- slides:http://www.haifux.org/lectures/172/netLec.pdf

Advanced Linux Kernel Networking - Neighboring
Subsystem and IPSec lecture

- http://www.haifux.org/lectures/180/
- slides:http://www.haifux.org/lectures/180/netLec2.pdf

http://www.haifux.org/lectures/172/
http://www.haifux.org/lectures/172/netLec.pdf
http://www.haifux.org/lectures/180/
http://www.haifux.org/lectures/180/netLec2.pdf

Contents

IPV6

» General

« ICMPV6

« Radvd

» Autoconfiguration
Network Namespaces

Bridging Subsystem
Pktgen kernel module.
Tips

Links and more info

Scope

« We will not deal with wireless.
 The L3 network protocol we deal with is ipv4/ipv6, and the
L2 Link Layer protocol is Ethernet.

IPV6 -General

« Discussions started at IETF in 1992 (IPng).
 First Specification: RFC1883 (1995).
« Was deprecated by RFC2460 (1998)
« Main reason for IPV6: shortage of IPv4 addresses.
- The address space is enlarged in IPV6 from
2732 to 2"128. (which is by 2"96).
« Secondary reason: improvements over |IPV4.

- For example: using ICMPV®6 as a neighbour protocol
iInstead of ARP.

- Fixed IP header (40 bytes) (in IPV4 it is 20-60 bytes).

IPV6 -General

« Usually in IPV4, Mobile devices are behind NAT.

« Using mobile IPV6 devices which are not behind a NAT can
avoid the need to send Keep-Alive.

« Growing market of mobile devices

- Some say number of mobile devices will exceed 4 billion
In the end of 2008.

« |IPSec is mandatory in IPV6 and optional in IPV4.

- Though most operating systems implemented IPSec also
in IPv4.

IPV6 - history

 |Inthe end of 1997 IBM's AIX 4.3 was the first commercial
platform that supported IPv6

« Sun Solaris has IPv6 support since Solaris 8 in February
2000.

« 2007: Microsoft Windows Vista (2007) has IPv6 supported
and enabled by default.

* February 2008: IANA added DNS records for the IPv6
addresses of six of the thirteen root name servers to
enable Internet host to communicate by IPV6.

 Around the world

- There was a big IPV6 experiment in China

- USA, Japan, Korea, France: sites which operate
with IPVG6.

- Israel: experiment in Intenet Zahav
- http://www.m6bone.net/

- Freenet6: http://go6.net/4105/freenet.asp

http://www.m6bone.net/
http://go6.net/4105/freenet.asp

IPV6 In the Linux Kernel

* |PV6 Kernel part was started long ago - 1996 (by Pedro
Roque), based on the BSD API; It was Linux kernel 2.1.8.

 When adding IPV6 support to the Linux kernel, almost only
the Network layer (L3) is changed.

- Almost no other layer needs to be changed
because each layer operates independently.

IPV6 In the Linux Kernel-contd.

« USAGI Project was founded in 2000 in Japan.
- “Universal Playground for Ipv6”.

- Held by volunteers, mostly from Japan. The USAGI aimed
at providing missing implementation according to the new
IPV6 RFCs.

- Awarded with IPV6 ready logo

 Yoshifuki Hideaki-member of USAGI Project; Keio W
University HERD 4

« comaintainer of IPV6 in the Linux Kernel.(also maintainer of
iputils)

IPV6 -General

* Yoshfuji git tree.

From time to time, the main networking tree pulls this git tree.
git-clone qit://git.linux-ipv6.org/gitroot/yoshfuji/linux-2.6-dev.qgit inet-2.6.26

This git tree supports IPV6 Multicast Routing. (with pim6sd
daemon, ported from kame; PIM-SM stands for Protocol
Independent Multicast—Sparse Mode).

- Based on Mickael Hoerdt IPv6 Multicast Forwarding Patch.
— http://clarinet.u-strasbg.fr/~hoerdt/

- Hoerdt's patch is partially based on mrouted.
Many patches in 2.6.* kernel are from the USAGI project.

http://clarinet.u-strasbg.fr/~hoerdt/

There was also the KAME project in Japan, sponsored by six
large companies.

It aimed at providing a free stack of IPv6, IPsec, and Mobile
IPv6 for BSD variants.

http://www.kame.net/
Sponsored by Hitachi and Toshiba and others.
Mobile IPV6:

- HUT - Helsinki University of Technology
- http://www.mobile-ipv6.org/

http://www.kame.net/
http://www.mobile-ipv6.org/

IPV6 -General

« Many router vendors support IPV6:
- Cisco supports IPv6 since IOS 12.2(2)T
- Hitachi
- Nortel Networks

- Juniper Networks, others.

- http://www.ietf.org/IESG/Implementations/ipv6-implementations.txt

« Drawbacks of IPV6
— Currently LVS is not implemented in IPV6.
- Takes effort to port existing, IPV4 applications.
- Tunnels, transitions (IPv6 and IPv4)

http://www.ietf.org/IESG/Implementations/ipv6-implementations.txt

IPV6 Addresses

« RFC 4291, IP Version 6 Addressing Architecture
 Format of IPV6 address:
« 8 blocks of 16 bits => 128 bits.
o XXXXIXXXX XXX EXXXX IXXXX I XXXX XXX X XXX X
 Where x is a hexadecimal digit.
« Leading zeroes can be replaced with "::" , but only once.
e Localhost address:
- 0000:0000:0000:0000:0000:0000:0000:0001
— Or, in compressed form:
- 1

IPV6 Addresses - contd

* No broadcast address in IPV6 as in IPV4.
« Global addresses: 2001:...

- There are more.
« Link Local : FE8O:...

IPV6 -General

e« Caveat:

- Sometimes ipv6 is configured as a module.
- You cannot rmmod the ipv6 module.

How can | know if my kernel has support for IPV6?

- Run: Is /proc/net/if _inet6

Managing IP address:
ifconfig ethO inet6 add 2001:db8:0:1:240:95ff:fe30:b0a3/64
ifconfig ethO inet6 del 2001:db8:0:1:240:95ff:fe30:00a3/64

IPV6 -General

« Can be done also by “ip” command (IPROUTEZ2).
e Ip -6 addr
« Using tcpdump to monitor ipv6 traffic:
— tcpdump ip6
« or, for example:

- tcpdump ip6 and udp port 9999.

 For wireshark fans:

- tethereal -R ipv6

IPV6 -General

* To show the Kernel IPv6 routing table :

- route -A ineté

- Also: ip -6 route show
* ssh usage: ssh-6 2001:db8:0:1:230:48ff:fe61:e5e0
 lraceroute6 -i eth0 fe80::20d.60ff.fe9a:26d2
* netstat -A ineté6

» |p6tables solution exist in IPV6.

IPV6 -General

» tracepath6 finds PMTU (path MTU).
- This is done using IPV6_MTU_DISCOVER and

IPV6_PMTUDISC PROBE socket options.
- using a UDP socket.

ICMPV6

« In IPV6, the neighboring subsystem uses ICMPV®6 for
Neighboring messages (instead of ARP in IPV4).

« There are 5 types of ICMP codes for neighbour discovery
messages:

Message ICMPV6 code

NEIGHBOUR SOLICITATION (135) -parallel to ARP request
in IPV4

NEIGHBOUR ADVERTISEMENT (136) -parallel to ARP reply in
IPV4

ROUTER SOLICITATION (133)
ROUTER ADVERTISEMENT (134) // see snif below

REDIRECT (137)

« ROUTER ADVERTISEMENT can be periodic or on demand.
« When ROUTER ADVERTISEMENT is sent as a reply to a
ROUTER SOLICITATION, the destination address is unicast.

When it is periodic, the destination address is a multicast (all
hosts).

Statefull and Stateless config

« There are two ways to configure IPV6 addresses on hosts
(except configuring it manually):

o Statefull: DHCPV6 on a server.

- RFC3315, Dynamic Host Configuration Protocol for IPv6
(DHCPvV6).

« Stateless: for example, RADVD or Quagga on a server.
- RFC 4862 - IPv6 Stateless Address Autoconfiguration
(SLAAC) from 2007 ; Obsoletes RFC 2462 (1998).

In RADVD, you declare a prefix that only hosts (not routers)
use. You can define more than one prefix.

« Special Addresses:
- All nodes (or : All hosts) address: FF02::1

- Ipv6_addr_all nodes() sets address to FF02::1

- All Routers address: FF02::2
- Ipv6_addr_all routers() sets address to FF02::2
Both in include/net/addrconf.h

IPV6: All addresses starting with FF are multicast address.
IPV4: Addresses in the range 224.0.0.0 — 239.255.255.255

are multicast addresses (class D).

see http://www.iana.org/assignments/ipv6-address-space

http://www.iana.org/assignments/ipv6-address-space

e ping6 -l eth0 FF02::2 or ping6 -I eth0 1f02:0:0:0:0:0:0:2
will cause all the routers to reply.
« This means that all machines on which

/proc/sys/net/ipvé/cont/eth”/forwarding is 1 will reply.

RADVD

« RADVD stands for ROUTER ADVERTISEMENT daemon.
« Maintainer: Pekka Savola

« http://www.litech.org/radvd/

« Sends ROUTER ADVERTISEMENT messages.

* The handler for all neighboring messages is ndisc_rcv().
(net/ipvé/ndisc.c)

« When NDISC_ROUTER_ADVERTISEMENT message
arrives from radvd, it calls ndisc_router _discovery().

(net/ipv6/ndisc.c)

http://www.litech.org/radvd/

RADVD - contd

 If the receiving machine is a router (or is configured not to
accept router advertisement), the Router Advertisement is
not handled: see this code fragment from
ndisc_router _discovery() (net/ijpvé/ndisc.c)

if (in6_dev->cnf.forwarding /| lin6_dev->cnf.accept ra) {
In6_dev _put(in6_dev),
return,

» addrconf _prefix_rcv() eventually tries to create an address
using the prefix received from radvd and the mac address of
the machine (net/ipvé/addrconf.c).

RADVD - contd

« Adding the IPV6 address is done in ipv6_add addr()

- How can we be sure that there is no same
address on the LAN ?

- We can't !
- Therefore we set this address first to be tentative
- In ipv6_add_addr():

. ifa->flags = flags | IFA_F_TENTATIVE:

* This means that initially this address cannot
communicate with other hosts. (except for neighboring
messages).

RADVD - contd

 Then we start DAD (by calling addrconf _dad _start())
 DAD is “Duplicate Address Detection”.

« Upon successful completion of DAD, the IFA_F TENTATIVE
flag is removed and the host can communicate with other
hosts on the LAN. The flag is set ti be IFA_F PERMANENT.

« Upon failure of DAD, the address is deleted.
* You see a message like this in the kernel log:

- eth0: duplicate address detected!

RADVD - contd

e« Caveat:

« When using radvd official FC8 rpm, you will see,
in /var/log/messages, the following message after starting the
daemon:

radvd[2614]: version 1.0 started

radvd[2615]: failed to set CurHopLimit (64) for eth0

* You may ignore this message.

e This is due to that we run the daemon as user radvd.

« This was fixed in radvd 1.1 (still no Fedora official rpm).

RADVD - contd

« radvd: sending router advertisement
// from radvd-1.0/send.c
send_ra()

{

addr.sin6_family = AF_INET®;
addr.sin6_port = htons(IPPROTO_ICMPV6);

memcpy(&addr.sin6_addr, dest, sizeof(struct in6_addr));

memset(&buff. 0. sizeof(buff)):

radvert = (struct nd_router_advert *) buff;
radvert->nd _ra_type = ND_ROUTER_ADVERT;

« and we have in /usr/include/netinet/icmpve6.h:

- #define ND_ROUTER_SOLICIT 133
- #define ND_ROUTER_ADVERT 134

 This Router Advertisement is sent to all hosts address:

- FF02::1

nd_router_ advert structure is declared
In /usr/include/netinet/icmpé.h.

It includes icmpv6 header.
Is there a protection against sending malicious Router
Advertisements ?

No thing as rejecting “unsolicited arp replies” as in IPV4
(which is the default behaviour, in order to prevent ARP
Cache poisoning)

radvd.conf - example:

interface ethO #see man radvd.conf
{
AdvSendAdvert on;
MaxRtrAdvinterval 30;
prefix 2002:db8:0:1::/64
{
AdvOnLink on;

AdvAutonomous on;

X

radvd.conf — example (contd)

« The prefix length MUST be 64.

« See RFC2464, Transmission of IPv6 Packets over Ethernet
Networks and RFC4291- IP Version 6 Addressing Architecture.

« Caveat:

« If the prefix length will be different than 64 than the Router
Advertisement will be rejected.

« Caveat: You will not notice it, unless your syslog prints
KERN_DEBUG messages (see man syslog.conf)

* In case the syslog is configured for printing kernel debug
messages, you will see this messages in the kernel log

IPv6 addrcontf: prefix with wrong length

radvd.conf — example (contd)

« Caveat 2:

 You cannot start radvd service if there is no link local address
configured on your machine. Trying to to do will result with:

radvd: no linklocal address configured for (null)

radvd: error parsing or activating the config file:
[FAILED]

« Evenifit was possible, the kernel would reject a Router
Advertisements originating from machines without link local
IPV6 address.

e radvd -d 5 -m stderr (for starting with many debug messages)

Router Advertisement with Prefix
Information option snif

LT radvd.eth - Wireshark - 0 'x

wn

File Edit Wiew SGo Capture Analyze tatistics Help

Bl alao o @82 x @ & s * F ¥ Tl BE M 3 @

|E]£ilter: || ~ || -.-Expressicn...”

No. Time Source . Destination Protocol Info =S
1 0.000000 fe80: :215:58Ff: fe95: 5beb : ICMPvE Router advertisement —

Gl [B

T 1ype: 1Pvb (uxsbad) [~]

~ Internet Protocol VWVersion 6
0110 = Version: 6
OO OOPE+ +i:s4s e 2w = Traffic class: OxO000OQOOO0O
e e e e e e 0000 EOEO 0O OO PO = Flowlabel: OxPOEEOOOO
Payload length: 56
Next header: ICMPve (O0x3a)
Hop limit: 255
Source: fTe80::215:58ff: fe95:5be6 (Te80::215:58fFf: fe95:5beb)
Destination: fTf02::1 (ffO2::1)
< Internet Control Message Protocol vé
Type: 134 (Router advertisement)
Code: ©
Checksum: ©®x97b5 [correct]
Cur hop lLimit: 64
> Flags: Ox00
Router lifetime: ©
Reachable time: ©
Retrans timer: ©
= ICMPv6 Option (Prefix information)
Type: Prefix information (3)
Length: 32
Prefix length: 64
> Flags: 0OxcO Bl
Valid lifetime: 2592000
Preferred lifetime: 604800
Prefix: 2002:db8:0:1:: =
=1 [>]
Type {icmpwve.type), 1 byte P:3D:3M:0

valid_Ift - how long this prefix is valid, in seconds.

preferred_Ift - how long this address can be in preferred
state, in seconds.

Ip -6 addr (note: ifconfig does not show these time values)

. eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu
1500 glen 1000

ineté 2004:db8:0:1:240:951f:fe30:b0a3/64 scope global dynamic
valid_Ift 279sec preferred_Ift 99sec

iInet6 fe80::240:951f:fe30:b0a3/64 scope link
valid_Ift forever preferred_lft forever

When preferred time is finished, this IPv6 address will stop
communicating. (will not answer ping6, etc).

When the valid time is over, the IPV6 address is removed.

iIpv6 _del _addr() in net/ipv6/addrcont.c is responsible for
deleting non valid addresses (called from addrconf verify())

This is useful for renumbering.
- RFC 2894 - Router Renumbering for IPv6

« Radvd also send its mac address of itself as part of the options.

« This enable the receiving host to add/update it neighbour table
accordingly with the mac address of the router:

 From ndisc router _discovery(). (net/ipv6/ndisc.c)

lladdr=ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr,skb->dev);

neigh_update(neigh, lladdr, ...)

 |laddr is the mac address of the router, passed in the options
of Router Advertisement.

Router Advertisement with Link
Layer option snif

radvdEtheré.eth - Wireshark — g =
FEile Edit View Go Capture Analyze Statistics Help
S 2l 2 B x &2 & | #a "'?i@la(@;ﬁ & M 3 &
|E]£ilter: || I;” <= Expression... || & glear”Qfapply|

Ssource . Destination Protocol Info

fe80::215:58ff: fe95:5 ffO2: : ICMPv6 Router advertisemen

2001 :db8:0:1:290:27Fff 2001:7b8:3:1T:0:2:53 DNS Standard query A 13
2001 :db8:0:1:290:27Fff 2001:7b8:3:1T:0:2:53 DNS Standard query A 13
fe80::215:58ff:fe95:5 ffoz2::1 ICMPVv6 Router advertisemen

fe80::290:27ff:fe34:2 fe80::215:58ffF: fe95:

ICMPVv6 Neighbor solicitati
fe80::215:58fFffT:Te95:5 fe80: :290:27ff:fe34:

ICMPVG6 Neighbor advertisem

Rl im

[@

Cur hop limit: 64
» Flags: 0Ox00
Router lLifetime: 90
Reachable time: 0
Retrans timer: ©
~ ICMPv6 Option (Source link-layver address)
Type: Source link-layer address (1)
Length: 8
Link-lTlayer address: 00:15:58:95:5b:e6

I] N
Option (icmpwve.option), 32 bytes P:6D: 6 M: 0

radvd.conf and a default router

« Specifying AdvDefaultLifetime in radvd.conf will cause the
host to add the radvd router as a default router.

- Unless /proc/sys/net/ipv6/cont/ethO/accept ra_defrtris 0.

« This default router has a limited lifetime. It will expire after the
value specified for AdvDefaultLifetime.

« Maximum AdvDefaultLifetime value is 18.2 hours.

Example (after setting AdvDefaultLifetime to 8000)

* |p -6 route show default

« default via f€80::215:58ff.fe95:5be6 dev ethO proto kernel
metric 1024 expires 7996sec mtu 1420 advmss 1360
hoolimit 64

radvd.conf and default router-cont.

 When we stop the radvd daemon this will send a Neighbour
Advertisement with Router Lifetime as 0.

* This will cause the hosts which receive this message to
delete the default router.

* Implemented by: ip6 _del rt() called from
ndisc_router_discovery() in net/ipvé/ndisc.c

e You can also set MTU in radvd.conf

« This is not the MTU you see in ifconfig, but you see it
in /proc/sys/net/ipvé/conf/ethO/mtu.

« Radvd builtin util: radvdump prints out the contents of
iIncoming router advertisements sent by radvd.

IPV6 :Neighboring Solicitation snif

ipv6_ping_and_neighbour.cap - Wireshark

File Edit View Go Capture Analyze Statistics Help

QE X2 MAesaTS (EBE e @EMmRX ©

|E]E|Iter: || |;|| <= Expression... ” f Clear ”Ja;aply |

Destination Protocol Info

:215:58ff:fe95:5be6 Te80::240:95fFffF:fe30:b ICMPVv6 Echo request
:240:95FfT:Te30:ba3 Te80::215:58TT:Te95:5 ICMPv6 Echo reply

:5 TCMPv6 Neighbor solicitation

:215:58FTfT: Te95:5be6 Te80::240:95FfT:Te30:b ICMPv6 Neighbor advertisemen

[<] [] [>]

~Internet Protocol Version 6
116 = Version: 6
0000 0O

. e e e e e e e 0000 0O 0O OO 000606 Flowlabel: Ox00000000

Payload length: 32

Next header: ICMPv6 (0Ox3a)

Hop limit: 255

Source: TeB80::240:95Fff:fTe30:b0a3 (Te80: :240:95FTfFf:Te30:b0a3)

Destination: Te80::215:58ff:fe95:5be6 (Te80::215:58ff: Te95:5beb6)
~Internet Control Message Protocol v6

Type: 135 (Neighbor solicitation)

Code: ©O

Checksum: 0x83d7 [correct]

Target: fe80::215:58fTf:Te95:5be6 (Te80::215:58ff:fe95:5beb)

» TCMPv6 Option (Source link-layer address)

Y ELener e u i, DI C . "_RE1T4L1HnLeEeEr DUl pu.do WU . 409 . 0 OO0 DU do), LS LG roxocolll

Traffic class: OxO00000000

(£
Type (icmpwvs.type), 1 byte P: 19 D: 19 M: O

(=]

al

Quagga

« Quagga replaces Zebra
 http://www.quagga.net/
« Many routing protocols (BGP, OSPF, RIP, others)
e Supports IPV6
e Supports sending Router Advertisements.
interface eth0

Ipv6 nd send-ra

ipv6 nd prefix-advertisement 2001:0db8:0005:0006::/64

http://www.quagga.net/

Privacy Extensions

« Since the address is build using a prefix and MAC address,
the identity of the machine can be found.
« To avoid this, you can use Privacy Extensions.

- This adds randomness to the IPV6 address
creation process. (calling get random bytes() for
example).

« RFC 3041 - Privacy Extensions for Stateless Address

Autoconfiguration in IPv6.

 You need CONFIG_IPV6_PRIVACY to be set when building
the kernel.

« Hosts can disable receiving Router Advertisements by setting
/proc/sys/net/ipve/cont/all/accept rato 0.
» Hosts can request Router Advertisements by sending

a Router Solicitation message.

Autoconfiguration

 When a host boots, (and its cable is connected) it first
creates a Link Local Address.

- A Link Local address starts with FES8O0.

- This address is tentative (only works with ND messages).
« The host sends a Neighbour Solicitation message.

- The target is its tentative address, the source is all zeros.

- This is DAD (Double Address Detection).

 |f there is no answer in due time, the state is changed to
permanent. (IFA_F PERMANENT)

Autoconfiguration - contd.

« Then the host send Router Solicitation.

- The target address of the Router Solicitation
message Is the All Routers multicast address
FF02::2

- All the routers reply with a Router Advertisement
message.

- The host sets address/addresses according to
the prefix/prefixes received and starts the DAD
process as before.

Autoconfiguration - contd.

« At the end of the process, the host will have two (or more)
IPv6 addresses:

— Link Local IPV6 address.

- The IPV6 address/addresses which was built
using the prefix. (in case that there is one or more
routers sending RAs).

» There are three trials by default for sending Router
Solicitation.

- It can be configured by:

* /proc/sys/net/ipvé/conf/ethO/router _solicitations

 |If a host boots when its cable is disconnected it will not get an
IPV6 address.

« Connecting the cable will trigger an event
(NETDEV_CHANGE) in addrconf _notify() and will result in
sending Router Solicits (calling ndisc_send_rs) and
eventually autoconfiguration will set an IPV6 address to the

host.

Optimistic DAD

« Do not wait till DAD is completed, and allow hosts to
communicate with peers before DAD has finished
successfully

« Target: to reduce latencies in the DAD process.
 The kernel should be build with: CONFIG_IPV6_OPTIMISTIC_ DAD.

« Very few apps need Optimistic DAD ; Usually the DAD
process of DAD takes less than 2 seconds.

« RFC 4429 , Optimistic Duplicate Address Detection (DAD) for
IPv6.

IPV6 Fragmentation

* In IPV6, fragmentation is not done by routers (as in IPV4).
e The Minimum MTU is IPV6 is 1280.

|t is the responsibility of the host (sender) to fragment
packets.

« Path MTU discovery is done by ICMPV6
- ICMPV6_PKT _TOOBIG messages.
- RFC 1981, Path MTU Discovery for IP version 6.

* Lookup in the IPV6 routing tables is done by fib6 lookup()
- (net/ipvé6/ip6_fib.c)

* The parameters for the lookup are the root of the table and
the source and destination IPV6 address. (struct in6_addr)

* The result of the lookup is saved in rt6_info.
* rt6_info is the parallel of rtable in IPV4.

/] from include/net/ip6_fib.h

struct rt6_info

{

union {
struct dst_entry dst;

} U;

IPV6 - contd

« Enable forwarding:
« echo "1" > /proc/sys/net/ipv6/conf/all/forwarding
« For Multicast Routing forwarding, there will be in the future:

- /proc/sys/net/ipv6/conf/all/mc_forwarding

IPV6 header — 40 bytes

* include/linux/ipv6.h

IPV6 header - contd.

« The IPV6 header length is fixed: 40 bytes.
» Therefore there is no header length field as in IPV4.

* In IPV4 the ip header is of variable size: 20 - 60 bytes; so we
need the header length field. We can add to the base ip header
by multiplications of 4 bytes up to 60 bytes.

« Extension headers in ipv6.

IPV6 header — Hop Limit

The hop limit is by default 64.
- IPV6e_DEFAULT_HOPLIMIT is 64.
This is the parallel of ttl field in ip header.

ip6_forward() checks the hop_limit ; when it reaches 0,
it sends an ICMP message:
- (ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT...
and the packet is dropped.
Note: there is NO checksum field (as in IPV4).

Extension Headers

« Hop-by-hop options (IPPROTO_HOPOPTS)

* Routing packet header extension (IPPROTO_ROUTING)

« Fragment packet header extension (IPPROTO_FRAGMENT)
« ICMPV6 options (IPPROTO_ICMPV6)

* No next header (IPPROTO_NONE)

« Destination options (IPPROTO_DSTOPTS)

« Mobility options (IPPROTO_MH)

e Other Protocols (TCP,UDP,...)

- See include/linux/in6.h

- There are some types of Next Headers which cannot have a Next Header
field. For example, ICMPV6, TCP, UDP, no next header (IPPROTO_NONE).

Extension Headers - contd.

» All thses protocols are registered by inet6_add protocol()

 If a host tries to parse an extension header which it does not
recognize, then an ICMP error will be sent, notifying about a

parameter problem. (type: ICMPV6 PARAMPROB, code:
ICMPV6 _UNK _NEXTHDR) and the packet will be dropped.

 For example, in ip6_input _finish() (in net/ipv6/ip6_input.c)

* // next header does not specified a registered protocol

icmpv6_send(skb, ICMPV6_PARAMPROB,
ICMPV6_UNK_NEXTHDR, nhoff, skb->dev):

Extension Headers - contd

* Router Alert is a subtype of Hop-by-hop option, and it tells
the router to process the packet besides forwarding it. It is
used in multicasting.

DHCPV6

The DHCPV6 client runs on UDP port 546.
The DHCPvV6 server runs on UDP port 547.
* Projects:

« Dibbler:

e http://klub.com.pl/dhcpv6/

- Linux and windows

 https://fedorahosted.org/dhcpv6/
« Maintained by David Cantrell (Red Hat)
* No mailing list...

http://klub.com.pl/dhcpv6/
https://fedorahosted.org/dhcpv6/

WIDE-DHCPv6
- originally developed in KAME project,

— for BSD and Linux

DHCPVG6 clients send SOLICIT requests in order to find
DHCPVG6 servers.

Hosts send DHCPV6 solicit messages are sent on to the all-
DHCPv6 multicast address (FF02::1:2).

DHCPv6 Servers reply with advertisements.

Socket API

« By default, the port space is not shared between IPV6 and
IPVA4.

« Simple example for creating TCP server with IPV6:
unsigned short port=9999;

struct sockaddr _In6 server;

struct sockaddr _in6 from;

sock = socket(AF _INET6, SOCK_STREAM, 0);
server.sin6_family = AF_INET6;

server.sin6_addr = in6addr_any;

Socket API - contd.

server.sin6_port = htons(port);

bind(sock,(struct sockaddr*)&server, sizeof(server));
fromlen = sizeof(from);

If (listen(sock,5)<0)

printf("error listening\n");

while (1)

{

newsock = (int*)malloc(sizeof(int));

“newsock = accept(sock, (struct sockaddr *)&from,&fromien);

Socket API - contd.

* When trying to run a similar application in IPV4 on the same
port simultanously, you will get the following error:

binding socket error
bind
: Address already in use

It will succeed if you set IPV6_V60ONLY option in IPV6
socket:

int on=1;
if (setsockopt(sock, IPPROTQO_IPV6, IPV6 _VEONLY,
(char *)&on, sizeof(on)) == -1)

Receiving an IPV6 packet

ipv6_rcv() is the handler for IPV6 packet (net/ipvé/ip6_input.c)
Performs some sanity checks and then calls:

return NF_ HOOK(PF _INET6, NF _IP6_PRE ROUTING, skb,
dev, NULL, ip6 _rcv_finish);

ip6_rcv_finish() performs a lookup in the routing subsystem
by calling ip6_route input(skb) in order to construct skb->dst.

IPV6 — address types

« Unicast
- The target is a single interface;
- packet is delivered to a single interface.
« Anycast (new ! Does not exist in IPV4).
- The target is a set of interfaces;
- packet is delivered to a single interface.
* Multicast
- The target is a set of interfaces;
- packet is delivered to all the interfaces in this set.

* |p6_mc input() currently only verifies that the packet is
iIndeed for a multicast address of which the netdevice device
IS a member and calls ip6_input()

« The Multicast Routing patch (CONFIG_IPV6_MROUTE)
adds a call to ip6_mr_input().

- net/ipv6/ip6_input.c

- There is a user space daemon (pim6sd) which works in
conjunction with multicast routing.

- Configuration file: /usr/local/etc/pim6sd.conf

- pim6sd is part of mcast-tools

MLD

 MLD - Multicast Listener Discovery
— also known as Multicast Group Management.

 MLD is similar to IGMP in IPV4 but used ICMPv6 messages

« MLD messages are sent via ICMPV6.

« MLDV2: RFC 3810 (added filtering abilities).

« The MLD is used by routers to discover the presence of
Multicast listeners.

« MLDV2 is based on IGMPvS.

MLD - contd.

A host can belong to more than one multicast group.

The Ethernet frame for a multicast address starts with
0x3333

In IPV4, in multicast addresses, the first bit is 1 in the
Ethernet frame (this is half of the MAC addresses!).

The hop limit is always 1 in MLD messages so that a router
will not forward them.

netstat -g -n : show IPv6/IPv4 Group Memberships.
Ip -6 maddr show
mcjoin: a util for joining an IPv6 Multicast Group

— htto://www benediki-<tockebrand net/hacks e hitml

MLD - contd.

 When a host boots, it first sends an MLDV2 message in
ICMPV®6. This is Type 143 message (ICMP code), and it is a
Multicast Listener Discovery 2 Report Message. The report
message tells routers and multicast-aware switches that the
host wants to receive messages sent to the multicast address
of the group it joined. This message has a hop limit of 1, so
that it won't be forwarded outside. It is sent to FF02::16 (A
multicast address, which represents the all MLDv2-capable
routers multicast group).

MLD - contd.

» addrconf_add_linklocal() calls ipv6_add addr() which
eventually calls igmp6_group_added(), mld_newpack() ,
setting type to ICMPV6_MLD2 REPORT and send an ICMP

message.

(net/ipv6/mcast.c)

« The source address of the MLD message can be a Link Local
address or the unspecified address (::)

« When a host boots, it has a tentative address (until DAD is
finished) and it sends an MLD report message to join the
solicited node multicast group.

» addrconf _join_solict() calls ipv6_dev_mc_inc() net/ipvé/addrcont.c

MLD - contd.

 In this case , the source address of the MLD messages is the
unspecified address (::)

« "Change to Exclude" in MLDV?2 report.

 When a host leaves a group, it sends an MLDv2
ICMPV6_MGM_REDUCTION message

(igmp6_leave group() in /net/ipv6/mcast.c)

« This message is sent to the all routers multicast address
(note the difference against REPORT, which is sent to
FF02::16).

MLD snif

mid_6.eth - Wireshark

Qe e E X @ A~ F 3 EE e @ WEE X ©
() gitter: | | ~ | # Expression...|| 4 clear | <7 apply |
MNo. . Time Source Destination Protocol
10.000000 - ICMPv6
20.006605 fTfo2::16 ICMPV6
30.526702 - Tfo2::1:Fff6l:e5e0 ICMPv6
41.000496 fe80::230:48FffF:fe6l:e ffOo2::2 ICMPV6
52.103048 fe80::230:48Fff:feb6l:e ffO02::16 ICMPv6
61.903151 fe80::230:48FffF:fe6l:e ffOo2::2 ICMPV6
7 3.995303 fe80::230:48Fff:Tfeb6l:e ffOo2::2 ICMPv6
==] [>]
»Frame 1 (90 bytes on wire, 90 bytes captured)
»Ethernet II, Src: Supermic 6l:e5:e@ (00:30:48:61l:e5:e@), Dst: IPv6-Ne
~Internet Protocol Version 6
0110 = Version: ©6
0000 0000 &t i te seee eeee aw.w. = Traffic class: Ox00000000
e e e e e e 0000 O0POO OO POEO OO = FlLowlabel: O0xE0000000
Payload length: 36
Next header: IPv6 hop-by-hop option (0x00)
Source: :: (::)
Destination: Tf02::16 (ff02::16)

(=l

Hop limit (ipw&.hlim), 1 byte

P: 7 D: 7 M: 0

B!

MLD - contd.

* A router will recognize this MLD message by the hop-by-hop
option in the extended header.

« NEXTHDR HORP in include/net/ipv6.h
« RFC 2711 - IPv6 Router Alert Option.

MLD - contd.

« There are two types of messages in MLDV2:

- Query (130) (ICMPV6_MGM_QUERY)
* In icmp6 header, icmp6_type = 130

- Report (143) ICMPV6_MLD2 REPORT
 In icmp6 header, icmp6_type = 143

- Reports are sent by MLDV2 with destination
address of FF02::16 (FF02:0:0:0:0:0:0:16)

Network Namespaces

Two types of virtualization in the Linux Kernel

OS virtualization.

process/container virtulaization. (Like solaris zones).
OS virtualization:

- Xen
- Kvm (hardware virtualization)

- Lguest (Only 32 bit; there is a RedHat trial to
write 64 bit version).

Network Namespaces - contd.

OpenVZ project (http://openvz.org/).

— Currently only for Linux (the FreeBSD port was
dropped).

- There is a serious effort to integrate it into
mainline Linux kernel.

Many patches recently to netdev kernel mailing list.

struct net (include/net/net_namespace.h)

Adding support for namespaces in IPV4 is finished.

— Currently work is being done on adding support
for namespaces in IPV6.

http://openvz.org/

Packet Generator

» Pktgen kernel module (Robert ollson)

- Works also with IPV®6.

Bridging Subsystem

* You can define a bridge and add NICs to it (“enslaving
ports”) using brctl (from bridge-utils).

* You can have up to 1024 for every bridge device
(BR_MAX_PORTS).

« Example:

 brctl addbr mybr

 brctl addif mybr ethO #adding interface to a bridge
 brctl show

Simple example

 In this simple example, you can connect a PC to a bridge
without any configuration on the PC.

PC

Bridge

Bridging Subsystem-contd

There are devices which you cannot add to a bridge (by
addif); like another bridge or a loopback device or a tunnel
device or any other device which has no HW address.

You can add a tap device (but not a tun device) (?)

When a NIC is configured as a bridge port, the br_port
member of net_device is initialized.

(br_port is an instance of struct net_bridge_port).

When we receive a frame, netif_receive _skb() calls
handle_bridge().

Bridging Subsystem-contd

« br_handle frame() is invoked (net/bridge/br_input.c)

« NF_HOOK(PF_BRIDGE, NF_BR_PRE_ROUTING, skb,
skb->dev, NULL, br_handle_frame_finish);

 br_handle frame_finish() checks the MAC destination of the
packet.

- If the packet is for the local machine, we do not
forward the packet but call br_pass frame _up().

- br_pass_frame _up() calls:

- NF_HOOK(PF _BRIDGE, NF_ BR LOCAL IN,
skb, indev, NULL,netif receive skb);

Bridging Subsystem-contd

 |f the packet is for the local machine we forward the packet:

- by br_forward() if the address is in the
forwarding DB.

- br_flood forward() if the address is in not the
forwarding DB.

Bridging Subsystem-contd

The bridging forwarding database is searched for the
destination MAC address.

In case of a hit, the frame is sent to the bridge port with
br_forward() (net/bridge/br _forward.c).

If there is a miss, the frame is flooded on all

bridge ports using br_flood() (net/bridge/br_forward.c).
Note: this is not a broadcast !

The ebtables mechanism is the L2 parallel of L3 Netfilter.

Bridging Subsystem-contd

« Ebtables enable us to filter and mangle packets
at the link layer (L2).

Tips for hacking

« Documentation/networking/ip-sysctl.txt: networking kernel tunabels

« Example of reading a hex address:

* iph->daddr == 0xOAO0A8CO or

means checking if the address is 192.168.0.10 (C0=192,A8=168, 00=0,0A=10).
« A BASH script for getting MAC address from |IP address: (ipToHex.sh)
#!/bin/sh

IP_ADDR=$1

for 1in $(echo ${IP_ADDRY}| sed -e "s/\./ /g"); do

printf '%02X" $I

done

echo

usage example: ./ipToHex.sh 192.168.0.1 => COA80001

Tips for hacking - Contd.

« Disable ping reply:
« echo 1 >/proc/sys/net/ipv4/icmp_echo_ignore_all
« Disable arp: ip link set eth0 arp off (the NOARP flag will be set)
» Also ifconfig eth0 -arp has the same effect.
 How can you get the Path MTU to a destination (PMTU)?
- Use tracepath (see man tracepath).

- Tracepath is from iputils.

Tips for hacking - Contd.

e inet_addr_type() method: returns the address type; the input to this
method is the IP address. The return value can be RTN_LOCAL,

RTN _UNICAST, RTN _BROADCAST, RTN_MULTICAST etc.
See: net/ipv4/fib_frontend.c

Tips for hacking - Contd.

* |n case you want to send a packet from a user space application
through a specified device without altering any routing tables:

struct ifreq interface;

strncpy(interface.ifr_ifrn.ifrn_name, "eth1",IFNAMSIZ);

if (setsockopt(s, SOL_SOCKET, SO_BINDTODEVICE, (char
“)&interface, sizeof(interface)) < 0)

{
printf("error setting SO_BINDTODEVICE");

exit(1);
}

Tips for hacking - Contd.

» Keep iphdr struct handy (printout): (from linux/ip.h)

struct iphdr {

__u8 ihl:4,
version:4;
___u8 tos;
__bel16 tot_len;
__be16 id;
__bel6 frag_off;
__u8 ttl;
__u8 protocol;
__sumi16 check;
___be32 saddr;
___be32 daddr;

/*The options start here. */

b

Tips for hacking - Contd.

« NIPQUAD() : macro for printing hex addresses
* Printing mac address (from net_device):

printk("sk_buff->dev =%02x:%02x:%02x:%02x:%02x:%02x\n",
((skb)->dev)->dev_addr[0], ((skb)->dev)->dev_addr|[1],

((skb)->dev)->dev_addr[2],((skb)->dev)->dev_addr[3],
((skb)->dev)->dev_addr[4], ((skb)->dev)->dev_addr[5]);
* Printing IP address (primary_key) of a neighbour (in hex format):
printk("neigh->primary_key =%02X.%02x.%02x.%02x\n",

neigh->primary_key[0], neigh->primary_key[1],
neigh->primary_key[2],neigh->primary_key[3]);

Tips for hacking - Contd.

« Or:

printk("***neigh->primary_key= %u.%U.%u.%u\n",
NIPQUAD((*(u32*)neigh->primary_key));

« CONFIG_NET_DMA is for TCP/IP offload.

* When you encounter: xfrm / CONFIG_XFRM this has to to do with
IPSEC. (transformers).

Tips for hacking - Contd.

« Showing arp statistics by:
« cat /proc/net/stat/arp_cache

entries allocs destroys hash_grows lookups hits res_failed
rcv_probes_mcast rcv_probes_ucast periodic_gc runs
forced_gc _runs

periodic_gc_runs: statistics of how many times the
neigh _periodic_timer() is called.

Links and more Info

* |PV6 howto (Peter Bieringer) :

http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/pdf/Linux+IPv6-HOWTO.pdf

« USAGI Project - Linux IPv6 Development Project
- http://www.linux-ipv6.org/

« Porting applications to IPv6 HowTo BY Eva M. Castro:
- http://gsyc.es/~eva/IPv6-web/ipv6.html

« RFC 3493: Basic Socket Interface Extensions for IPv6.

« RFC 3542: Advanced Sockets Application Program Interface
(API) for IPv6.

http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/pdf/Linux+IPv6-HOWTO.pdf
http://www.linux-ipv6.org/
http://gsyc.es/~eva/IPv6-web/ipv6.html

Links and more Info

« Books:

* |Pv6 Essentials, Second Edition (OReilly)
- A book By Silvia Hagen

- Second Edition May 2006

- Pages: 436
- ISBN 10: 0-596-10058-2 | ISBN 13: 9780596100582

Links and more Info

IPv6 in Practice: A Unixer's Guide to the Next Generation
Internet

by Benedikt Stockebrand (Author) ; Springer; 1 edition,
2006.

Talks about implementation of IPv6 is Linux, Solaris, BSD.

http://www.benedikt-stockebrand.net/books_e.html

http://www.benedikt-stockebrand.net/books_e.html

Links and more Info

1) IPv6 Advanced Protocols Implementation (2007)
2) IPv6 Core Protocols Implementation (2006)

Both books were written by Qing Li, Tatuya Jinmei and Keiichi
Shima

- published by Morgan Kaufmann Series in Networking.

- Both books discuss the Kame implementation of
IPV6. (in BSD).

Links and more Info

« |Pv6 Information Page!

- http://www.ipv6.0rg/

« What's up in the Linux IPv6 Stack

« Lecture slides by Hideaki YOSHIFUJI from lca2008.
- Kelio University
- USAGI/WIDE Project

* http://mirror.linux.org.au/pub/linux.conf.au/2008/slides/131-200801-LCA2008-LinuxIPv6.pdf

« Html: http://www.linux-ipv6.org/materials/200801-LCA2008/

http://www.ipv6.org/
http://mirror.linux.org.au/pub/linux.conf.au/2008/slides/131-200801-LCA2008-LinuxIPv6.pdf
http://www.linux-ipv6.org/materials/200801-LCA2008/

Links and more Info

Linux Network Stack Walkthrough (2.4.20):

http://gicl.cs.drexel.edu/people/sevy/network/Linux_network stack we

Understanding the Linux Kernel, Second Edition
By Daniel P. Bovet, Marco Cesati
Second Edition December 2002
chapter 18: networking.
- Understanding Linux Network Internals, Christian benvenuti
Oreilly , First Edition.

http://gicl.cs.drexel.edu/people/sevy/network/Linux_network_stack_walkthrough.html

Links and more Info

Linux Device Driver, by Jonathan Corbet, Alessandro Rubini, Greg
Kroah-Hartman

Third Edition February 2005.
- Chapter 17, Network Drivers
Linux networking: (a lot of docs about specific networking topics)
- http://www.linux-foundation.org/en/Net:Main_Page

netdev mailing list: http://www.spinics.net/lists/netdev/

http://www.linux-foundation.org/en/Net:Main_Page
http://www.spinics.net/lists/netdev/

Links and more Info

Removal of multipath routing cache from kernel code:

http://lists.openwall.net/netdev/2007/03/12/76
http://lwn.net/Articles/241465/

Linux Advanced Routing & Traffic Control :
http://lartc.org/
ebtables — a filtering tool for a bridging:

http://ebtables.sourceforge.net/

http://lists.openwall.net/netdev/2007/03/12/76
http://lwn.net/Articles/241465/
http://lartc.org/
http://ebtables.sourceforge.net/

Links and more Info

Writing Network Device Driver for Linux: (article)

- http://app.linux.org.mt/article/writing-netdrivers?locale=en

http://app.linux.org.mt/article/writing-netdrivers?locale=en

Links and more Info

Netconf — a yearly networking conference; first was in 2004.
- http://vger.kernel.org/netconf2004.html
- http://vger.kernel.org/netconf2005.html
- http://vger.kernel.org/netconf2006.html
- Next one: Linux Conf Australia, January 2008,Melbourne

- David S. Miller, James Morris , Rusty Russell , Jamal Hadi Salim ,Stephen
Hemminger , Harald Welte, Hideaki YOSHIFUJI, Herbert Xu ,Thomas Graf ,Robert
Olsson ,Arnaldo Carvalho de Melo and others

http://vger.kernel.org/netconf2004.html
http://vger.kernel.org/netconf2005.html
http://vger.kernel.org/netconf2006.html

Links and more Info

Policy Routing With Linux - Online Book Edition

- by Matthew G. Marsh (Sams).

- http://www.policyrouting.org/PolicyRoutingBook/
THRASH - A dynamic LC-trie and hash data structure:
Robert Olsson Stefan Nilsson, August 2006

http://www.csc.kth.se/~snilsson/public/papers/trash/trash.pdf
IPSec howto:

http://www.ipsec-howto.org/t1.html

http://www.policyrouting.org/PolicyRoutingBook/
http://www.csc.kth.se/~snilsson/public/papers/trash/trash.pdf
http://www.ipsec-howto.org/t1.html

Links and more Info

Openswan: Building and Integrating Virtual Private Networks ,
by Paul Wouters, Ken Bantoft

http://www.packtpub.com/book/openswan/mid/061205jqdnh2by
publisher: Packt Publishing.
a book including chapters about LVS:

“The Linux Enterprise Cluster- Build a Highly Available Cluster
with Commodity Hardware and Free Software”, By Karl
Kopper.

http://www.nostarch.com/frameset.php?startat=cluster
http://www.vyatta.com - Open-Source Networking

http://www.packtpub.com/book/openswan/mid/061205jqdnh2by
http://www.nostarch.com/frameset.php?startat=cluster
http://www.vyatta.com/

Links and more Info

Address Resolution Protocol (ARP)
- http://linux-ip.net/html/ether-arp.html

ARPWatch — a tool for monitor incoming ARP traffic.
Lawrence Berkeley National Laboratory -
ftp://ftip.ee.lbl.gov/arpwatch.tar.gz.

arptables:
http://ebtables.sourceforge.net/download.html

TCP/IP lllustrated, Volume 1: The Protocols
By W. Richard Stevens
http://www.informit.com/store/product.aspx?isbn=0201633469

http://linux-ip.net/html/ether-arp.html
ftp://ftp.ee.lbl.gov/arpwatch.tar.gz
http://ebtables.sourceforge.net/download.html

Links and more Info

Unix Network Programming, Volume 1: The Sockets = Networking
API (3rd Edition) (Addison-Wesley Professional Computing Series)
(Hardcover)

by W. Richard Stevens (Author), Bill Fenner (Author), Andrew M.
Rudoff (Author)

Linux Ethernet Bridging mailing list:

http://www.spinics.net/lists/linux-ethernet-bridging/

http://www.spinics.net/lists/linux-ethernet-bridging/

Questions

» Questions ?
e Thank You !

Linux Wireless -
Linux Kernel Networking (4)-
advanced topics

Rami Rosen
ramirose@gmail.com

Haifux, March 2009
www. haifux.org

mailto:ramirose@gmail.com

Linux Kernel Networking (4)-
advanced topics

e Note:

* This lecture Is a sequel to the following 3
lectures | gave:

1) Linux Kernel Networking lecture

- http://www.haifux.org/lectures/172/
- slides:nhttp://www.haifux.org/lectures/172/netLec.pdf

2) Advanced Linux Kernel Networking -
Neighboring Subsystem and IPSec lecture

- http://www.haifux.org/lectures/180/
- slides:http://www.haifux.org/lectures/180/netLec2.pdf

http://www.haifux.org/lectures/172/
http://www.haifux.org/lectures/172/netLec.pdf
http://www.haifux.org/lectures/180/
http://www.haifux.org/lectures/180/netLec2.pdf

Linux Kernel Networking (4)-
advanced topics

3) Advanced Linux Kernel Networking -
IPv6 In the Linux Kernel lecture

* http://www.haifux.org/lectures/187/
- Slides: http://www.haifux.org/lectures/187/netLec3.pdf

http://www.haifux.org/lectures/187/
http://www.haifux.org/lectures/187/netLec3.pdf

Ccontents:

e General.

- |[EEE80211 specs.
- SoftMAC and FullMAC:; mac80211.

 Modes: (802.11 Topologies)

— Infrastructure mode.

» Association.
* Scanning.

e Hostapd
 Power save In Infrastructure mode.

- IBSS (Ad Hoc mode).
- Mesh mode (802115s).

« 802.11 Physical Modes.

* Appendix: mac80211- implementation details.
 Tips.

» Glossary.

e Links.

* Images
* Beacon filter — Wireshark sniff.
» edimax router user manual page (BR-6504N).

Note: we will not deal with security/encryption,
regulation, fragmentation in the linux wireless
stack and not deal with tools (NetworkManager,
kwifimanager,etc). and not with billing (Radius,
etc).

You might find help on these topics in two Haifux lectures:

Wireless management (WiFi (802.11) in GNU/Linux by Ohad
Lutzky):

- http://www.haifux.org/lectures/138/
Wireless security (Firewall Piercing, by Alon Altman):

- http://www.haifux.org/lectures/124/
Note: We will not delve into hardware features.

http://www.haifux.org/lectures/138/
http://www.haifux.org/lectures/124/

General

* Wireless networks market grows constantly

* Two items from recent month newspaper:
(ynet.co.ll)

— Qver 12,000 wireless room hotels in Israel.

- Over 50,000 wireless networks in Europe.

e In the late nineties there were discussions In
IEEE committees regarding the 802.11 protocol.

e 1999 : The first spec (about 500 pages).

— (see no 1 in the list of links below).

« 2007: A second spec (1232 pages) ; and there
were some amendments since then.

SoftMAC and FullMAC

* |n 2000-2001, the market became abound with
laptops with wireless nics.

* |t was important to produce wireless driver and
wireless stack Linux solutions in time.

 The goal was then, as Jeff Garzik (the previous
wireless Maintainer) put it: “They just want their
hardware to work...".

« mac80211 - new Linux softmac layer.

- formerly called d80211 of Devicescape)

* Current mac80211 maintainer: Johannes Berg
from sipsolutions.

« Mac80211 merged into Kernel mainstream
(upstream) starting 2.6.22, July 2007.

* Drivers were adjusted to use mac80211
afterwards.

* Devicescape Is a wireless networking company.
- http://devicescape.com/pub/home.do
e Location In the kernel tree: net/mac80211.

A kernel module named mac80211.ko.

* Most wireless drivers were ported to use
mac30211.

- There Is a little number of exceptions though.

» Libertas (Marvell) does not work with
mac80211.

* libertas tf (Marvell) uses thin firmware ; so it
does use mac80211.

- libertas_tf supports Access Point and Mesh Point.
- Both are in OLPC project.

* When starting development of a new driver,
most chances are that it will use mac80211 API.

Modes: Infrastructure BSS

INfrastructure BSS

Access Point

pu-)

=

Classic ESS (Extended Service Set)

ESS = two or more BSSs.
Infrastructure BSS

wired

ess
Access Point D Access Point

5o 4

BSS BSS

 What is an Access Point ?
e Edimax MIMO nMax BR-6504n Router

* Linksys WRT54GL 54Mbps Route

* NOTE: Infrastructure BSS != IBSS
- IBSS = Independent BSS. (Ad-Hoc mode)

 Access Point: A wireless device acting In
master mode with some hw enhancements and
a management software (like hostapd).

— A wireless device In master mode cannot scan

(as opposed to other modes).
* Also a wireless device in monitor mode cannot scan.

 Master Mode Is one of 7 modes In which a
wireless card can be configured.

» All stations must authenticate and associate
and with the Access Point prior to
communicating.

e Stations sometimes perform scanning prior to
authentication and association in order to get
details about the Access Point (like mac
address, essid, and more).

Scanning

e Scanning can be:

- Active (send broadcast Probe request) scanning.
- Passive (Listening for beacons) scanning.

— Some drivers support passive scanning. (see the
IEEES80211 CHAN_ PASSIVE SCAN flag).

- Passive scanning is needed in some higher
802.11A frequency bands,as you're not allowed to
transmit anything at all until you've heard an AP
beacon.

» scanning with "iwlist wlanO scan" Is In fact
sending an IOCTL (SIOCSIWSCAN).

Scanning-contd.

* It is handled by ieee80211 ioctl_siwscan().

* This is part of the Wireless-Extensions
mechanism. (aka WE).

» Also other operations like setting the mode to
Ad-Hoc or Managed can be done via IOCTLs.

e The Wireless Extensions module; see:
net/mac80211/wext.c

* Eventually, the scanning starts by calling
leee80211 sta start scan() method ,In
net/mac80211/mime.c.

« MLME = MAC Layer Management Entity.

Scanning-contd.

* Active Scanning is performed by sending Probe
Requests on all the channels which are
supported by the station.

- One station in each BSS will respond to a Probe
Request.

— That station Is the one which transmitted the last
beacon in that BSS.
* In infrastructure BSS, this stations Is the Access Point.

« Simply because there are no other stations in BSS which
send beacons.

e In IBSS, the station which sent the last beacon can
change during time.

Scanning-contd.

* You can also sometimes scan for a specific
BSS:

— Jwlist wlanl scan essid homeNet,
— Also In this case, a broadcast Is sent.

- (sometimes, this will return homeNetl also and
homeNet2).

Example of scan results

Iwlist wlan2 scan

wlan2 Scan completed :

Cell 01 - Address: 00:16:E3:F0:FB:39
ESSID:"SIEMENS-FOFB39"
Mode:Master
Channel:6
Frequency:2.437 GHz (Channel 6)
Quality=5/100 Signal level:25/100
Encryption key:on
IE: Unknown: 000E5349454D454E532D463046423339
IE: Unknown: 010882848B962430486C
IE: Unknown: 030106
IE: Unknown: 2A0100

IE: Unknown: 32040C121860

|IE: Unknown: DD06001018020000

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 18 Mb/s
24 Mb/s; 36 Mb/s; 54 Mb/s; 6 Mb/s; 9 Mb/s
12 Mb/s; 48 Mb/s

Extra:tsf=00000063cbf32479

Extra: Last beacon: 470ms ago

Cell 02 - Address: 00:13:46:73:D4:F1
ESSID:"D-Link"

Mode:Master
Channel:6
Frequency:2.437 GHz (Channel 6)

Authentication

* Open-system authentication
(WLAN_AUTH_OPEN) Is the only mandatory
authentication method required by 802.11.

* The AP does not check the identity of the
station.

* Authentication Algorithm Identification = O.

* Authentication frames are management frames.

Association

* At a given moment, a station may be
assoclated with no more than one AP.

* A Station (“STA") can select a BSS and
authenticate and associate to It.

* (In Ad-Hoc : authentication is not defined).

Assoclation-contd.

* Trying this:
- Iwconfig wlanO essid AP1 ap macAddressl1
- iwconfig wlanO essid AP2 ap macAddress?2

* WIll cause first associating to AP1, and then
disassociating from AP1 and associating to
AP2.

* AP will not receive any data frames from a
station before it it iIs associated with the AP.

Assoclation-contd.

* An Access Point which receive an association
request will check whether the mobile station
parameters match the Access point parameters.

- These parameters are SSID, Supported Rates and
capabillity information. The Access Point also define
a Listen Interval.

 When a station associates to an Access Point, it
gets an ASSOCIATION ID (AID) in the range
1-2007.

Assoclation-contd.

* Trying unsuccessfully to associate more than 3
times results with this message in the kernel

log:

« “apDeviceName: association with AP apMacAddress timed out” and
ths state is changed to IEEE80211_STA_MLME_DISABLED.

e Also if does not match securly requirement, will return
IEEE80211_STA_MLME_DISABLED.

Hostapd

hostapd Is a user space daemon implementing
access point functionality (and authentication
servers). It supports Linux and FreeBSD.

http://hostap.epitest.fi/hostapd/
Developed by Jouni Malinen.

nostapd.conf is the configuration file.

 Example of a very simple hostapd.conf file:

Interface=wlan0
driver=ni80211
hw_mode=g
channel=1
ssid=homeNet

http://hostap.epitest.fi/hostapd/

Hostapd-cont.

* Launching hostapd.:

- ./hostapd hostapd.conf

- (add -dd for getting more verbose debug
messages)

» Certain devices, which support Master Mode,
can be operated as Access Points by running
the hostapd daemon.

* Hostapd implements part of the MLME AP code
which is not in the kernel
« and probably will not be in the near future.

* For example: handling association requests which are
received from wireless clients.

Hostapd-cont.

 Hostapd uses the nl80211 API (netlink socket
based , as opposed to ioctl based).

Hostapd-cont.

* The hostapd starts the device in monitor mode:

drv->monitor_ifidx =

nl80211 create_iface(drv, buf, NL80211 IFTYPE_MONITOR, NULL);
The hostapd opens a raw socket with this device:
drv->monitor_sock = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL)),
(hostapd/driver_nl80211.c)

The packets which arrive at this socket are handled by the AP.

* Receiving in monitor mode means that a special header
(RADIOTAP) is added to the received packet.

* The hostapd changes management and control packets.
* The packet is sent by the sendmsg() system call:
e sendmsg(drv->monitor_sock, &msg, flags),

Hostapd-cont.

* This means sending directly from the raw
socket (PF_PACKET) and putting on the
transmit queue (by dev_queue_xmit()), without
going through the 80211 stack and without the
driver).

 When the packet is transmitted, an “INJECTED”
flags Is added. This tells the other side, which
will receive the packet, to remove the radiotap
header. (IEEE80211 TX CTL INJECTED)

Hostapd-cont.

 Hostapd manages:

» Association/Disassociation requests.
» Authentication/deauthentication requests.

 The Hostapd keeps an array of stations; When
an association request of a new station arrives
at the AP, a new station Is added to this array.

Hostapd-cont.

* There are three types of IEEE80211 packets:

* The type and subtype of the packet are
represented by the frame control field in the
802.11 header.

- Management (IEEE80211 FTYPE MGMT)

- Each management frame contains information
elements (IEs). For example, beacons has the ssid
(network name) ,ESS/IBSS bits (10=AP,01=IBSS),
and more.

- (WLAN_CAPABILITY_ESS/WLAN_CAPABILITY_IBSS in ieee80211.h.)

- There are 47 types of information elements (IEs) in current
Implementation

— All in /include/lintix/ieeel0211 h

- Association and Authentication are management
packets.

- Beacons are also management frames.
- IEEE80211 STYPE_BEACON

Hostapd-cont.

- Control (IEEE80211_FTYPE_CTL)

- For example, PSPOLL
IEEE80211 STYPE PSPOLL

e Also ACK, RTS/CTS.
- Data (IEEE80211 FTYPE_DATA)

* See: include/linux/ieee80211.h

- The hostapd daemon sends special management packets
called beacons (Access Points send usually 10 beacons in
a second; this can be configured (see the router manual
page at the bottom)).

 The area in which these beacons appear define
the basic service area.

From /net/mac80211/rx.c (with remarks)

* |EEE 802.11 address fields:

ToDS FromDS Addrl Addr2 Addr3 Addr4d

0

0
1
1

0

1
0
1

DA SA BSSID n/a
DA BSSID SA n/a
BSSID SA DA n/a
RA TA DA SA

AdHoc

Infra (From AP)
To AP (Infra)
WDS (Bridge)

My laptop as an access point

My laptop as an access point: There Is an
Israeli Start Up company which develops free
access point Windows sw which enables your
aptop to be an access point.

nttp://www.bzeek.com/static/index.html
Currently it is for Intel PRO/Wireless 3945.
In the future: Intel PRO/Wireless 4965.

http://www.bzeek.com/static/index.html

 Power Save It a hot subject.

e Intel linux Power Save site:

- http://www.lesswatts.org/

- PowerTOP util:

 PowerTOP is a tool that helps you find which software is
using the most power.

http://www.lesswatts.org/

Power Save In Infrastructure Mode-
cont

» Usual case (Infrastructure BSS).

* Mobile devices are usually battery powered
most of the time.

» A station may be in one of two different modes:

- Awake (fully powered)
- Asleep (also termed “dozed” in the specs)

* Access points never enters power save mode
and does not transmit Null packets.

* In power save mode, the station Is not able to
transmit or recelve and consumes very low
power.

« Until recently, power management worked only
with devices which handled power save In
firmware.

 From time to time, a station enters power save
mode.

* This is done by:

- firmware, or

- by using mac80211 API

 Dynamic power management patches that were recently
sent by Kalle Valo (Nokia).

 How do we Initiate power save?

* jwconfig wlanO power timeout 5
— Sets the timeout to 5 seconds.

* Note: this can be done only with the beta
version of Wireless Tools (version 30-pre7
(beta)).

« http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html

* |n case the firmware has support for power
save, drivers can disable this feature by setting
IEEE80211 HW_NO_STACK_DYNAMIC_PS

flag In the driver configuration.

* The Access Point is notified about it by a null frame
which is sent from the client (which calls
leee80211 send_nullfunc()). The PM bit is set in this
packet (Power Management).

« When STAZ2 Is In power saving mode:

* AP has two buffers: (a doubly linked list of
sk_buff structures, sk_buff head).

- For unicast frames (ps_tx_buf in sta; one queue for
each station).

- For multicast/broadcast frames. (ps_bc_buf ,one for
AP).

STA1 AP STA2

 Each AP has an array of its associated stations inside
(sta_info objects). Each one has ps_tx_buf queue inside,
(for unicasts), and ps_bc_buf (for multicast/broadcasts)

AP

STA_INFO

ps_tx_buf

ps_bc buf

 The size of ps_tx_buf and of ps_bc_buf is 128 packets

o #define STA_ MAX TX BUFFER 128 in
net/mac80211/sta_info.h

e #define AP_MAX BC BUFFER 128 in
net/mac80211/ieee80211 i.h

* Adding to the queue: done by skb_queue_tall().

e There IS however, a common counter
(total _ps_buffered) which sums both buffered
unicasts and multicasts.

e When a station enters PS mode it turns off its
RF. From time to time it turns the RF on, but
only for receiving beacons.

* When buffering in AP, every packet (unicast and
multicast) Is saved Iin the corresponding key.

* The only exception is when strict ordering
between unicast and multicast is enforced. This
IS a service which MAC layer supply. However,
it Is rarely in use.

* From net/mac80211/tx.c:
leee80211 tx_h multicast _ps_buf() {

* no buffering for ordered frames */
If (leee80211 has_order(hdr->frame_control))

return TX CONTINUE;

 The AP sends a TIM (Traffic Indication Map)
with each beacon.

* Beacons are sent periodically from the AP.

 TIM[i]=1 => The AP has buffered traffic for a
station with Association ID=lI.

- In fact, a partial virtual bitmap is sent — which is a
smaller data structure in most cases.

 The STA sends a PS-POLL packet (Power
Saving Poll) to tell the AP that it is awake.

AP sends the buffered frame.

pspoll diagram

Access Point

PSPOLL @

\>

y
IEEEB0211_FCTL_MOREDATA

N
Frame2

IEEEB0Z211 FCTL MOREDATA

PSPOLL

Frame3

IBSS Mode

* IBSS — without an access point.

IBSS (Independent BSS)

;/
i

IBSS Mode - contd

* |IBSS network Is often formed without pre-
planning, for only as long as the LAN Is needed.

* This type of operation Is often referred to as an
Ad Hoc network.

— Also sometimes called “Peer To Peer” network.

» Creating Ad-Hoc network:

- Iwconfig wlanO0 mode ad-hoc

- (note: if the nic Is running, you should run before
this: ifconfig wlanO down)

- Iwconfig wlan0O essid myEssid

- The essid has to be distributed manually (or
otherwise) to everyone who wishes to connect
to the Ad-Hoc network.

« The BSSID is a random MAC address.
- (in fact, 46 bits of it are random).

* “iIwconfig wlanO essid myEssid” triggers Ibss
creation by calling ieee80211_sta_create ibss()

- net/mac80211/mime.c

e Joining an IBSS:

- All members of the IBSS participate in beacon
generation.

- The members are synchronized (TSF).

- The beacon interval within an IBSS Is established
by the STA that instantiates the IBSS.

- leee80211_sta_create 1bss() (mime.c)

- The bssid of the ibss is a random address (based on mixing
get_random_bytes() and MAC address).

Mesh Mode (802115s)

Full Mesh:In the full mesh topology, each
node is connected directly to each of the
others. —

N

Sl

Mesh Mode (802115s)

Partial Mesh:nodes are connected to only
some, nhot all.

/‘é Mesh
Access Pc::i'rf
jp—]
\\g

802.11s (Mesh)

« 802.11s started as a Study Group of IEEE
802.11 in September 2003, and became a TG
(Task Group) in 2004. (name: TGS)

* |n 2006, two proposals, out of 15, (the "SEE-
Mesh" and "Wi-Mesh" proposals) were merged

Into one. This
e Wireless Mes

e Wireless mes

IS draft DO.01.
N Networks are also called WMN.

N networks forward data packets

over multiple wireless hops. Each mesh node
acts as relay point/router for other mesh nodes.

* |n 2.6.26, the network stack added support for
the draft of wireless mesh networking (802.11s),
thanks to the open80211s project (
http://www.open80211s.org/).

- There is still no final spec.

— There are currently five drivers in linux with support
to mesh networking (ath5k,b43,libertas tf,p54,
zd1211rw), and one is under development (rt2x00).

http://www.open80211s.org/

 Open80211.s

* Goal: To create the first open implementation of
802.11s.

- SpPonNsors:
 OLPC project.

* Cozybit (http://www.cozybit.com/), the company that
developed the mesh software on the OLPC Laptop.

- Luis Carlos Cobo and Javier Cardona (both from Cozybit)
developed the Linux mac80211 mesh code.

* Nortel

 80211.s defines a default routing protocol called
HWMP (Hybrid Wireless Mesh Protocol)

« Based on: Ad Hoc Demand Distance Vector
(AODV) routing (C. Perkins); rfc3561.

« The HWMP protocol works with layer 2 (Mac
addresses).

e The 80211 header was extended:
- A ttl field was added to avoid loops.

* The current implementation uses on demand
path selection.

* The draft also talks about proactive path
selection.

- This is not implemented yet in the Linux Kernel.

- Uses Root Announcement (RANN) messages and
Mesh Portal as a root.

* As with IPV4 static routes, you can force a
specific next hop for a mesh station
(MESH_PATH_FIXED flag)

- (mesh_path_fix_nexthop() in mesh_pathtbl.c)
e Every station is called an MP. (Mesh Point)

« MPP is a Mesh Portal. (For example, when an MP is used to
connect to external network, like the Internet).

« Each station holds a routing table (struct mesh_table) — helps to
decide which route to take.

 In the initial state, when a packet is sent to another station,
there is first a lookup in the mesh table; there is no hit, so a
PREQ (Path Request) is sent as a broadcast.

- When the PREQ is received on all stations except the final
destination, it is forwarded.

- When the PREQ is received on the final station, a PREP is
sent (Path Reply).

- If there is some failure on the way, a PERR is sent.(Path
Error).

« Handled by mesh_path_error_tx(), mesh_hwmp.c
* The route take into consideration an airtime metric

— Calculated in airtime_link_metric_get() (based on rate and other hw
parameters).

« POWER SAVING in the MESH spec is optional.

Advantage:

- Rapid deployment.

- Minimal configuration; inexpensive.

- Easy to deploy in hard-to-wire environments.
Disadvantage:

- Many broadcasts limit network performance

You can set a wireless device to work in mesh mode only with
the iw command (You cannot perform this with the wireless
tools).

Example: setting a wireless nic to work in mesh mode:

- Iw dev wilanl interface add mesh type mp mesh_id 1
- (type = mp => Mesh Point)

802.11 Physical Modes

« 802.11 (WIFI) Is a set of standards for wireless
networking, which were defined in 1997 but
started to become popular in the market
around 2001.

« 802.11a (1999) at 5 GHz, 54MBIt maximum
speed; range about 30m.

e« 802.11b (1999) at 2.4GHz, 11Mbit maximum
speed, range about 30m.

« 802.119g (2003) at 2.4GHz, 54Mbit maximum
speed, range about 30m.

e 802.11n (2008) at 2.4GHz/5GHz, 200 Mbit
(typical), range about 50m.

* IS planned to support up to about 540Mbit/ 600
MDbit.

* Improves the previous 802.11 standards by
adding multiple-input multiple-output (MIMO)
- multiple antennas.
- High Throughput (HT).
- Use packet aggregation

* The ability to send several packets together at one time.

» Still Is considered a proposal.

- Expected to be approved only in December 2009 or
later.

» iwlagn and ath9k are the only drivers that
support 80211.n in the Linux kernel at the

moment.

» Tip: how can | know whether my wireless nic
supports 80211.n7?

- Run: iwconfig
- You should see : "IEEE 802.11abgn" or somesuch.

Appendix: mac80211
Implementation detalls

e BSSID = Basic Service Set Identification.
e Each BSS has an BSSID.

 BSSID is an 48 bit number (like MAC address).

- This avoids getting broadcasts from other networks
which may be physically overlapping.

- In infrastructure BSS, the BSSID is the MAC
address of the Access Point which created the BSS.

- In IBSS, the BSSID Is generated from calling a
random function (generating 46 random bits; the
other 2 are fixed).

Modes of operation

A wireless interface always operates in one of
the following modes:

Infrastructure mode: with an AccessPoint (AP)

— The access point hold a list of associated stations.
- also called managed)

IBSS (Independent BSS,Ad-Hoc) mode
- When using ad-hoc, an access point is not needed.
Monitor mode

WDS (Wireless Distribution System)

Modes of operation - contd.

- Wireless Distribution System (WDS) - allows access
points to talk to other access points.

e Mesh

see: include/linux/nl80211.h:

enum nl80211_iftype {
NL80211 IFTYPE_UNSPECIFIED,
NL80211 IFTYPE ADHOC,
NL80211 IFTYPE_STATION,
NL80211 IFTYPE_AP,
NL80211 IFTYPE_AP_VLAN,
NL80211 IFTYPE_WDS,
NL80211 IFTYPE MONITOR,
NL80211 IFTYPE_MESH_POINT,

cfg80211 and nl80211

* Wireless-Extensions has a new replacement;

|t is cfg80211 and nl80211 (message-based
mechanism, using netlink interface).

e |W uses the nl80211 interface.

- You can compare it the the old ioctl-based net-tools
versus the new rtnetlink IPROUTEZ set of tools.

- You cannot set master mode with iw.
- You cannot change the channel with iw.

* Wireless git trees:

Wireless-testing
Was started on February 14, 2008 by John Linville.

- primary development target.
- the bleeding edge Linux wireless developments.
wireless-next-2.6

Wireless-2.6

Daily compat-wireless tar ball in:
http://www.orbit-lab.org/kernel/compat-wireless-2.6/

The compat-wireless tar ball includes only part of the kernel

- (Essentially it includes wireless drivers and wireless stack)

http://www.orbit-lab.org/kernel/compat-wireless-2.6/

* Fedora kernels are usually up-to-date with wireless-testing git
tree.

 There is usually at least one pull request (or more) in a week,
to the netdev mailing list (main Linux kernel networking mailing

list).

 The Maintainer of the wireless (802.11) in the Linux kernel is
John Linville (RedHat), starting from January 2006.

* For helping in delving into the mac80211 code little help.

* Important data structures:

» struct ieee80211 hw — represents hardware information and
state (include/net/mac80211.h).

- Important member: void *priv (pointer to private area).

- Most drivers define a struct for this private area , like
Ibtf_private (Marvell) or iwl_priv (iwlwifi of Intel) or
mac80211_hwsim_data in mac80211 hwsim.

- Every driver allocates it by ieee80211_alloc_hw()

— A pointer to ieee80211_ops (see later) is passed as a
parameter to ieee80211_alloc_hw().

- Every driver calls ieee80211_register_hw() to create wlanO
and wmasterO and for various initializations.

* You set the machine mode prior to calling
leee80211_register_hw() by assigning flags for the
Interface_modes flags of wiphy member

- wiphy itself is a member of ieee80211 hw structure.
- For example,
hw->wiphy->interface_modes =
BIT(NL80211 IFTYPE_STATION) |
BIT(NL80211 IFTYPE_AP);
* This sets the machine to be in Access Point mode.

e struct ieee80211 if ap — represents an access point. (see
leee80211_i.h)

 Power saving members of ieee80211 if ap:

- ps_bc_buf (multicast/broadcast buffer).
- num_sta_ps (number of stations in PS mode).

o struct ieee80211 ops — The drivers use its members. (include/net/
mac80211.h).

* For example, config (to change a channel) or config_interface
to change bssid.

« Some drivers upload firmware at the start() method, like
Ibtf _op_start() in libetras_tf driver or zd_op_start() (which calls
zd_op_start() to upload firmware zd1211rw

* All methods of this struct get a pointer to struct ieee80211 hw
as a first parameter.

— There are 24 methods In this struct.

- Seven of them are mandatory:
tx,start,stop,add _interface,remove _interface,config and
configure_filter.

— (If anvone of them i< missina we end in BLIG ONO))

* Receiving a packet is done by calling
leee80211 rx_irgsafe() from the low level

driver. Eventually, the packet is handled by
__leee80211_rx():

* |eee80211 rx()(struct ieee80211 hw *hw,

struct sk_buff *skb,
struct ieee80211 rx_status *status);

e jeee80211 rx_irgsafe() can be called from interrupt
context.

— There Is only one more mac80211 method which can
be called from interrupt context:

- leee80211_tx_status_irgsafe()

e Data frames

— AC
— AC
- AOC

- AC

C
C
C

C

rl — destination (receiver MAC address).

r2 — source
r3 - DS Info
r4 — for WDS.

(transmitter MAC address).

« Management frames

- AOC
- AC

— AC

C
C

C

rl — destination (receiver MAC address).

r2 — source
r3 - DS info

(transmitter MAC address).

Firmware

e Firmware:

- Most wireless drivers load firmware in the probe
method (by calling request_firmware())

- Usually the firmware Is not open source.
- Open FirmWare for WiFI networks site:

— http://lwww.ing.unibs.it/openfwwif/
* Written in assembler.

- B43 firmware will be replaced by open source
firmware.

- ath5k/athk9k driver doesn't load firmware. (its fw is
burnt into an onchip ROM)

http://www.ing.unibs.it/openfwwf/

Wireless Future trends (WiMax)

 WiMax - IEEE 802.16.

* There are already laptops which are sold with
* WiMax chips (Toshiba, Lenovo).

 WiMax and Linux:

o http://linuxwimax.org/

* Inaky Perez-Gonzalez from Intel
- (formerly a kernel USB developer)
* Location in the kernel tree: drivers/net/wimax.

http://linuxwimax.org/

Wireless Future trends (WiMax) -
contd

* Two parts:
« Kernel module driver

* User space management stack, WIMAX
Network Service.

* Arequest to merge linux-wimax GIT tree with
the netdev GIT tree was sent in 26.11.08

o http://www.spinics.net/lists/netdev/imsg81902.html

e There is also an initiative from Nokia for a WiMax stack for
Linux.

http://www.spinics.net/lists/netdev/msg81902.html

Tips

How can | know If my wireless nic was
configured to support power management ?

- Look in iwconfig for “Power Management” entry.

How do | know If my USB nic has support In
Linux?

- http://lwww.gbik.ch/usb/devices/
How do | know which Wireless Extensions does

my
Gre

Kernel use?
0 for #define WIRELESS EXT In

Include/linux/wireless.h in your kernel tree.

http://www.qbik.ch/usb/devices/

e How can | know the channel number from a
sniff?

- Look at the radiotap header in the sniffer output;
channel frequency translates to a channel number
(1to 1.)

- See also Table 15-7—DSSS PHY frequency
channel plan, in the 2007 80211

- Often, the channel number appears in square
brackets. Like:

- channel frequency 2437 [BG 6]
- BG stands for 802.11B/802.11G, respectively

 Channel 14 for example would show as B,

because you're not allowed to transmit 802.11G
on It.

* |srael regdomain:

- http://wireless.kernel.org/en/developers/Regulatory/Database?alpha2=IL
- ILis in the range 1-13.
- With US configuration, only channel 1 to 11 are selectable. Not 12,13.

- Many Aps ares shipped on a US configuration.

http://wireless.kernel.org/en/developers/Regulatory/Database?alpha2=IL

 What Is the MAC address of my nic?
- cat /sys/class/ieee80211/phy*/macaddress

- Common Filters for wireshark sniffer:
Management Frames wlan.fc.type eq O
Control Frames wlan.fc.type eq 1
Data Frames wlan.fc.type eq 2
Association Request wlan.fc.type subtype eq O
Association response wlan.fc.type_ subtype eq 1
Reassociation Request wlan.fc.type subtype eq 2
Reassociation Response wlan.fc.type subtype eq 3

Probe Request wlan.fc.type subtype eq 4

Probe Response wlan.fc.type subtype eq 5

Beacon wlan.fc.type subtype eq 8

Announcement Traffic Indication Map (ATIM) wlan.fc.type subtype eq 9
Disassociate wlan.fc.type subtype eq 10

Authentication wlan.fc.type_subtype eq 11

Deauthentication wlan.fc.type subtype eq 12

Action Frames wlan.fc.type_subtype eq 13

Block Acknowledgement (ACK) Request wlan.fc.type subtype eq 24
Block ACK wlan.fc.type subtype eq 25

Power-Save Poll wlan.fc.type_subtype eq 26

Request to Send wlan.fc.type_subtype eq 27

Sniffing a WLAN

* You could sniff with wireshark

 Sometime you can't put the wireless interface to
promiscuous mode (or it Is not enough). You
should set the interface to work in monitor
mode (For example: iwconfig wlanO mode
monitior).

* |f you want to capture traffic on networks other
than the one with which you're associated, you
will have to capture in monitor mode.

Sniffing a WLAN - contd.

» See the following wireshark wiki page, talking
about various wireless cards and sniffing in
Linux;

« WLAN (IEEE 802.11) capture setup:
- http://wiki.wireshark.org/CaptureSetup/WLAN#head-
» Using a filter from command line:

- tshark -R wlan -1 wlanO
- tethereal -R wlan -1 wlanO -w wlan.eth

- You will see this message in the kernel log:
* “device wlan0 entered promiscuous mode”

http://wiki.wireshark.org/CaptureSetup/WLAN#head-bb8373ef4903fe9da2b8375331726541fb1ad32d

Sniffing a WLAN - contd.

 Sometimes you will have to set a different
channel than the default one in order to see
beacon frames (try channels 1,6,11)

- Iwconfig wlanl channel 11

- Tip: usefull wireshark display filter:
* For showing only beacons:
e wilan.fc.type_ subtype eq 8

- For tshark command line:

e tshark -R "wlan.fc.type_subtype eq 8" - wlanO
e (this will sniff for beacons).

Glossary

AMPDU=Application Message Protocol Data
unit.

CRDA = Central Regulatory Domain Agent

CSMA/CA = Carrier Sense Multiple Access with
Collision Avoidance

CSMA/CD Carrier Sense Multiple Access with
Collision Detection

DS = Distribution System
EAP = The Extensible Authentication Protocol
ERP = extended rate PHY

+ HWMP =

Hybrid Wireless Mesh Protocol

 MPDU = MAC Protocol Data Unit

e MIMO =

« PSAP =
e PS p—

Multiple-Input/Multiple-Output
Power Saving Access Points

Power Saving.

« RSSI = Recelve signal strength indicator.

« TIM = Traffic Indication Map
« WPA = WI-FI Protected Access
« WME = Wireless Multimedia Extensions

Links

» 1) IEEE 80211 specs:
- http://standards.ieee.org/getieee802/802.11.html

e 2) Linux wireless status June - 2008

- http://www.kernel.org/pub/linux/kernel/people/mcgro
f/presentations/linux-wireless-status.pdf

« 3) official Linux Wireless wiki hosted by
Johannes Berg.

- http://wireless.kernel.org/
— or http://linuxwireless.org/

http://standards.ieee.org/getieee802/802.11.html

* 4) A book:

- 802.11 Wireless Networks: The Definitive Guide
- by Matthew Gast

- Publisher: O'Rellly

* 5) Wireless Sniffing with Wireshark - Chapter 6 of Syngress
Wireshark and Ethereal Network Protocol Analyzer Toolkit.

e 6) http://www.lesswatts.org/

- Saving power with Linux (an Intel site)

http://www.lesswatts.org/

* 7) Abook: Wireless Mesh Networking:
Architectures, Protocols And Standards

by Yan Zhang, Jijun Luo, Honglin Hu (Hardcover
— 2006)

Auerbach Publications
8) http://www.radiotap.org/

Images

e Beacon wireshark filter:

» wlan.fc.type subtype eq 8
- shows only beacons.

Beacon filter — sniff

adHocHome.eth - Wireshark

Eile Edit Miew Go Capture Analyze Statistics Help

@l @ o o Ex 2 e +»F 8 [EE @aa oM X 8

\BPeiter: [wlan . fc.type_subtype eq 8 | ~ || # Expression || £ clear | <7 appiy |

§7No. = Time Source Destination Protocol Info ::;_?
35 2009-02-01 21:19:26.869991 00:21:91:80:ba:2d Broadcast IEEE 802 Beacon frame, SN=34, FN=0, F1|
36 2009-02-01 21:19:26.971987 00:21:91:80:ba:2d Broadcast IEEE 802 Beacon frame, SN=35, FN=0, F1|
37 2009-02-01 21:19:27 .075004 00:21:91:80:ba:2d Broadcast IEEE 802 Beacon frame, SN=36, FN=0, F1|
38 2009-02-01 21:19:27.177043 00:21:91:80:ba:2d Broadcast TEEE 802 Beacon fTrame, SN=37, FN=0, F1|
39 2009-02-01 21:19:27 .280007 00:21:91:80:ba:2d Broadcast IEEE 802 Beacon frame, SN=38, FN=0, F1|
40 2009-02-01 21:19:27 .382008 00:21:91:80:ba:2d Broadcast IEEE 802 Beacon frame, SN=39, FN=0@, F1
41 2009-02-01 21:19:27 .484010 00:21:91:80:ba:2d Broadcast IEEE 802 Beacon frame, SN=40, FN=0, F1|
42 2009-02-01 21:19:27 .587003 00:21:91:80:ba:2d Broadcast IEEE 802 Beacon frame, SN=41l, FN=0, F1|
43 2009-02-01 21:19:27 .689025 00:21:91:80:ba:2d Broadcast TEEE 802 Beacon fTrame, SN=42, FN=0, F1|
44 2009-02-01 21:19:27.792008 00:21:91:80:ba:2d Broadcast TIEEE 802 Beacon frame, SN=43, FN=0, Fr

2009-02-01 2 ; .894004 5 3 : 4 2 Broadcast Beacon B

46 2009-02-01 21:19:27.996001 00:21:91:80:ba:2d Broadcast IEEE 802 Beacon frame, SN=45, FN=0O, F1
47 2009-02-01 21:19:28.098987 00:21:91:80:ba:2d Broadcast IEEE 802 Beacon frame, SN=46, FN=0Q, F1
48 2009-02-01 21:19:28 .200998 00:21:91:80:ba:2d Broadcast TIEEE 802 Beacon fTrame, SN=47, FN=0, FI1
49 2009-02-01 21:19:28.304004 00:21:91:80:ba:2d Broadcast IEEE 802 Beacon frame, SN=48, FN=0, F1
50 2009-02-01 21:19:28.406004 00:21:91:80:ba:2d Broadcast IEEE 802 Beacon frame, SN=49, FN=0, F1
51 2009-02-01 21:19:28.508992 00:21:91:80:ba:2d Broadcast IEEE 802 Beacon frame, SN=50, FN=0, F1
52 2009-02-01 21:19:28.611003 00:21:91:80:ba:2d Broadcast IEEE 802 Beacon frame, SN=51, FN=0Q, F1
53 2009-02-01 21:19:28.714004 00:21:91:80:ba:2d Broadcast TEEE 802 Beacon fTrame, SN=52, FN=0, F1
E A T ioadmins I T § ma A 2 A0 TO CTEOTMA A 7 01 cO0m o b= oA Dl — e TCC OMTY D = e F = CRl_E D | il Y P]]:',.V

[l] [>]

[b Radiotap Header v@, Length 24 1=

~ IEEE 802.11 Beacon frame, Eigos e C W

Type/Subtype: Beacon frame (0x08)

b Frame Control: O0x0080 (Normal)
Duration: 0
Destination address: Broadcast (ff:ff:ff:ff:fFf:FF)
Source address: 00:21:91:80:ba:2d (00:21:91:80:ba:2d)
BSS Id: 22:3T:b7:97:3e:45 (22:3T:b7:97:3e:45)

I nm o mn o nm TN AP S ~ 1

oePE® 00 0O 18 00 Pe 58 00 0O 16 82 6¢Cc 09 a® 0O 0O 5b Koo amedfllemeaaa| ([
©@ele 00 00 00 00 0O 00 00 00 80 90 08 B TF TF 1 T wweeeses sorerames |
©ozo ff ff 60 21 91 80 ba 2d 22 3T b7 97 3e 45 cBO 02 N SR R Y e

O30 a6 a3 0T OO 0O OO 00 GO 64 OO 02 OO O 07 68 6T (o AP ho —

e x - —— = A o= £ b -
File: "adHocHome.eth" 6994 Bytes 00:01:27 Packets: 68 Displayed: 34 Marked: 0

Beacon interval and DTIM period In
edimax router (BR-6504N) (From
the manual

H

. -
2 DIMAX e
NETWORKING PEOPLE TOGETHER ‘UIC". SEtUp “’ ﬁG‘eneral SE[UP i \ Estem Tools

L=

Advance Settings

These zettings are only for mare technically advanced users who have a sufficient knowledge sbout
wireless LAN, These settings should not e changed unless you knowve what effect the changes will have
on your Broadband router,

Fraamert Threshald: 2346 | (256-2346)
RTS Threshold: 2347 |(0-2347)
Beacan Interyal 100 [[20- 1024 mz)
DTIM Period: | (110
Diata Rate: Auto ¥

#® Firowall hl Ciata Rate: Auta ¥
Channel Width: (%) suto 2040 MHZ O 20 MHZ
Preamble Type: (%) Short Preamble ' Long Preamble
Broadcast Essid: (%) Enable () Disable
CTS Protect: O ae O shways () None
Tx Potvet: 100 % »
Turbo Made: (*) Enable () Disable

VA, () Enable (%) Disable

Thank You !

Linux Kernel Networking —
advanced topics (5)

Sockets in the kernel

Rami Rosen
ramirose@gmail.com
Haifux, August 2009
www. haifux.org

All rights reserved.

mailto:ramirose@gmail.com
http://www.haifux.org/

Linux Kernel Networking (5)-
advanced topics

e Note:

* This lecture Is a sequel to the following 4
lectures | gave in Haifux:

1) Linux Kernel Networking lecture

- http://www.haifux.org/lectures/172/
- slides:nhttp://www.haifux.org/lectures/172/netLec.pdf

2) Advanced Linux Kernel Networking -
Neighboring Subsystem and IPSec lecture

- http://www.haifux.org/lectures/180/
- slides:http://www.haifux.org/lectures/180/netLec2.pdf

http://www.haifux.org/lectures/172/
http://www.haifux.org/lectures/172/netLec.pdf
http://www.haifux.org/lectures/180/
http://www.haifux.org/lectures/180/netLec2.pdf

Linux Kernel Networking (5)-
advanced topics

3) Advanced Linux Kernel Networking -
IPv6 In the Linux Kernel lecture

* http://www.haifux.org/lectures/187/
— Slides: http://www.haifux.org/lectures/187/netLec3.pdf

4) Wireless in Linux
http://www.haifux.org/lectures/206/

- Slides: http://www.haifux.org/lectures/206/wirelesslLec.pdf

http://www.haifux.org/lectures/187/
http://www.haifux.org/lectures/187/netLec3.pdf
http://www.haifux.org/lectures/206/
http://www.haifux.org/lectures/206/wirelessLec.pdf

 Table of contents:

- The socket() system call.
- UDP protocol.

- Control Messages.

- Appendixes.

* Note: All code examples in this lecture refer to
the recent 2.6.30 version of the Linux kernel.

TCP socket UDP Socket

Userspace

Layer 4 (TCP,UDP,SCTP.,...)

Layer 3 (Network layer: IPV4/IPV6)

Layer 2 (MAC layer)

kernel

* |n user space, we have application, session and presentation
layers(tcp/ip refers to all 3 as application layer)

» creating a socket from user space is done by
the socket() system call:

- Int socket (int family, int type, int protocol);

— From man 2 socket:
- RETURN VALUE

— On success, a file descriptor for the new socket is returned.

- For open() system call (for files), we also get a file descriptor
as the return value.

— “Everything is a file” Unix paradigm.

* The first parameter, family, is also sometimes referred to as “domain”.

The family is PF_INET for IPV4 or PF_INET6 for IPV6.

- The family is PF_PACKET for Packet sockets, which operate
at the device driver layer. (Layer 2).

pcap library for Linux uses PF_PACKET sockets:

— pcap library is in use by sniffers such as tcpdump.
Also hostapd uses PF_PACKET sockets:

(hostapd is a wireless access point management project)
From hostapd:

— drv->monitor_sock = socket(PF_ PACKET, SOCK_ RAW,
htons(ETH_P_ALL));

 Type:

- SOCK_STREAM and SOCK_DGRAM are the mostly used
types.

« SOCK _STREAM for TCP, SCTP, BLUETOOTH.
« SOCK _DGRAM for UDP.
« SOCK_ RAW for RAW sockets.

* There are cases where protocol can be either
SOCK_STREAM or SOCK_DGRAM; for example, Unix
domain socket (AF_UNIX).

— Protocol:usually O (IPPROTO_IP is 0, see:
include/linux/in.h).

- For SCTP, the protocol is IPPROTO_SCTP:
* sockfd=socket(AF INET, SOCK_STREAM,IPPROTO_SCTP),

 For bluetooth/RFCOMM:

. socket(AF BLUETOOTH, SOCK_STREAM,
BTPROTO RFCOMM);

e SCTP: Stream Control Transmission Protocol.

* For every socket which is created by a userspace
application, there is a corresponding socket struct and
sock struct in the kernel.

* This system call eventually invokes the sock create()
method in the kernel.

— An instance of struct socket is created (inciudesinuxmetn)

struct socket has only 8 members; struct sock has more than 20,
and is one of the biggest structures in the networking stack. You
can easily be confused between them. So the convention is this:

sock always refers to struct socket.
sk always refers to struct sock.

struct sock: (include/net/sock.h)

struct sock {

struct socket *ssocket;

}

struct socket (include/linux/net.h)

struct socket {

socket_state state;

short type;
unsigned long flags;
struct fasync_struct *fasync_list;

wait_queue head t walit;
struct file *file:
struct sock *sk:

const struct proto ops *ops:

The state can be

- SS_FREE

- SS_UNCONNECTED
- SS_CONNECTING

- SS CONNECTED

- SS DISCONNECTING

These states are not layer 4 states (like TCP_ESTABLISHED
or TCP_CLOSE).

The sk_protocol member of struct sock equals to the third
parameter (protocol) of the socket() system call.

 struct proto_ops (interface of struct socket)

inet_stream_ops
(i.e., TCP sockets)

inet_dgram_ops
(i.e., UDP sockets)

inet_sockraw_ops
(i.e., RAW sockets)

family
.owner
release
bind
.connect
.socketpair
.accept
.getname
poll

Joctl

Jisten
.shutdown
.setsockopt
.getsockopt
.sendmsg
.recvmsg
.mmap
.sendpage
.splice_read

PF_INET

THIS_MODULE
inet_release

inet_bind
inet_stream_connect

sock _no_socketpair
inet_accept

inet_getname

tcp_poll

inet_ioctl

inet_listen

inet_shutdown

sock _common_setsockopt
sock_common_getsockopt
tcp_sendmsg
sock_common_recvmsg
sock _no_mmap
tcp_sendpage
tcp_splice_read

PF_INET

THIS_ MODULE
inet_release

inet_bind
inet_dgram_connect

sock _no_socketpair

sock _no_accept
inet_getname

udp_poll

inet_ioctl

sock_no_listen
inet_shutdown

sock _common_setsockopt
sock_common_getsockopt
inet_sendmsg
sock_common_recvimsg
sock _no_mmap
inet_sendpage

PF_INET

THIS_ MODULE
inet_release

inet_bind
inet_dgram_connect

sock _no_socketpair

sock _no_accept
inet_getname
datagram_poll

inet_ioctl

sock_no_listen
inet_shutdown

sock _common_setsockopt
sock_common_getsockopt
inet_sendmsg
sock_common_recvmsg
sock _no_mmap
inet_sendpage

 Note: The inet_dgram_ops and inet_sockraw_ops differ only in
the .poll member:

- ininet_dgram_ops it is udp_poll().
- In Inet_sockraw_ops, it is datagram_poll().

5 | struct Inet sock
 Diagram: —

struct ip_options *opt;
__u8tos;
__u8recverr:1;

__u8 hdrincl:1;

Inet_sk(sock *sk) => returns the inet_sock which contains sk

» struct sock has three queues: rx , tx and err.

sk_buff

sk_buff

sk_buff

sk_buff

sk_buff

sk_buff

sk_buff

sk_buff

sk_buff

sk receive_queue

sk_write_queue

sk _error_queue

« Each queue has a lock (spinlock)

* skb_queue_tail() : Adding to the queue

* skb_dequeue() : removing from the queue

- With MSG_PEEK, this is done in two stages:
- Skb_peek()

— __Skb_unlink(). (to remove the sk_buff from the
queue).

* For the error queue: sock queue_err_skb() adds
to its tall (ncudemersock.y. EVenNtually, it also calls

skb_queue _talil().
 Errors can be ICMP errors or EMSGSIZE errors.
* For more about errors,see APPENDIX F: UDP errors.

UDP and TCP

* No explicit connection setup is done with UDP.
- In TCP there Is a preliminary connection setup.

» Packets can be lost in UDP (there is no
retransmission mechanism in the kernel). TCP
on the other hand is reliable (there Is a
retransmission mechanism).

* Most of the Internet traffic is TCP (like http,
ssh).
- UDP is for audio/video (RTP)/streaming.

* Note: streaming with VLC is by UDP (RTP).
e Streaming via YouTube is tcp (http).

The udp header

 There are a very few UDP-based servers like DNS, NTP,
DHCP, TFTP and more.

 For DHCP, it is quite natural to be UDP (Since many times with
DHCP, you don't have a source address, which is a must for TCP).

 TCP implementation is much more complex

- The TCP header is much bigger than UDP header.
The udp header: include/linux/udp.h
struct udphdr {
___bel6source;
__bel6dest;
__belé6len;

__suml6 check;

3

 UDP packet = UDP header + payload
* All members are 2 bytes (16 bits)

source port

dest port

len

checksum

Payload

Recelving packets in UDP from

 UDP kernel sockets can get traffic either from userspace or
from kernel.
USER SPACE
A UDP sockets
sock_queue_rcv_skb() UDP — layer 4
T KERNEL
ip_local_deliver_finish()
calls udp_rcv() IPv4 - layer 3

NF INET LOCAL_IN
hook

|

Layer 2 (Ethernet)

 From user space, you can receive udp traffic in
three system calls:

- recv() (when the socket is connecteq)
- recvfrom()

- recvmsg()

 All three are handled by udp_recvmsg() in the kernel.

* Note that fourth parameter of these 3 methods is flags,
however, this parameter is NOT changed upon return. If you are
interested In returned flags , you must use only recvmsg(), and
to retrieve the msg.msg_flags member.

* For example, suppose you have a client-server udp
applications, and the sender sends a packets which is longer
then what the client had allocated for input buffer. The kernel
than truncates the packet, and send MSG_TRUNC flag. In
order to retrieve it, you should use something like:

recvmsg(udpSocket, &msg, flags);
If (msg.msg_flags & MSG_TRUNC)
printf("MSG_TRUNC\n");
 There was a new suggestion recently for

recvmmsg() system call for receiving multiple
messages (By Arnaldo Carvalho de Melo)

 The recvmmsg() will reduce the overhead caused by multiple
system calls of recvmsg() in the usual case.

Recelving packets in UDP from user

 UDP kernel sockets can get traffic either from userspace or
from kernel. USER SPACE
UDP sockets
recv() syscall call recvfrom() system call recvmsg() syscall
|
udp_recvmsg() UDP — layer 4
i L KERNEL
IPv4 - layer 3
__Skb_recv_datagram() :
reads from sk->sk_receive_queue i

Layer 2 (Ethernet)

Recelving packets - udp rcv()

* udp_rcv() is the handler for all UDP packets
from the IP layer. It handles all incoming
packets in which the protocol field in the Ip
header is IPPROTO _UDP (17) after ip layer
finished with them.

See the udp_protocol definition: (net/ipv4/af inet.c)
struct net_protocol udp_protocol = {
handler = udp_rcyv,

.err_handler = udp_err,

* |n the same way we have :

- raw_rcv() as a handler for raw packets.
- tcp_v4 _rcv() as a handler for TCP packets.
- Icmp_rcv() as a handler for ICMP packets.

» Kernel implementation: the proto_register()

method registers a protocol handler.
(net/core/sock.c)

udp_rcv() implementation:

* For broadcasts and multicast — there Is a special
treatment:
if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
return __ udp4 lib_mcast_deliver(net, skb, uh,

saddr, daddr, udptable);
 Then perform a lookup in a hashtable of struct sock.

- Hash key is created from destination port in the udp header.

- If there is no entry in the hashtable, then there is no sock
listening on this UDP destination port => so send ICMP
back: (of port unreachable).

- Icmp_send(skb, ICMP_DEST_ UNREACH,
ICMP_PORT_UNREACH, 0);

udp_rcv()

* |n this case, a corresponding SNMP MIB
counter IS iIncremented
(UDP_MIB_NOPORTS).

« UDP_INC_STATS_ BH(net, UDP_MIB_NOPORTS, proto ==
IPPROTO_UDPLITE);

* YOou can see It by:
netstat -s

35 packets to unknown port received.

udp_rcv() - contd

e Or, by:
 cat /proc/net/snmp | grep Udp:

Udp: InDatagrams NoPorts InErrors
OutDatagrams RcvbufErrors SndbufErrors

Udp: 143503000

* |f there Is a sock listening on the destination
port, call udp_queue_rcv_skb().

— Eventually calls sock_queue_rcv_skb().

 Which adds the packet to the sk_receive_queue by
skb_queue_tail()

udp_rcv() diagram

udp_rcv()

~ » __udp4 lib_rcv

Multicast

Unicast

Y

>

___udp4_lib_mcast_deliver

__udp4 _lib_lookup_skb

Find a sock in udptable

icmp_send()
ICMP_DEST _UNREACH,

- » | ICMP_PORT_UNREACH

Don't find a sock

udp_queue_rcv_skb

sock queue_rcv_skb

* udp recvmsqg():

» Calls___skb recv_datagram() , for receiving
one sk_buff.

- The ___skb_recv_datagram() may block.

- Eventually, what _ skb recv_datagram() does is
read one sk_buff from the sk_receive_queue
gueue.

« memcpy_toiovec() performs the actual copy to
user space by invoking copy_to_user().

* One of the parameters of udp_recvmsg() Is a
pointer to struct msghdr. Let's take a look:

MSGHDR

From include/linux/socket.h:

struct msghdr {

%

void *msg_name; [* Socket name

Int msg_namelen; [* Length of name

struct iovec *msg_iov; [* Data blocks
kernel size t msg_lovlen; /* Number of blocks

voild *msg_control;

__kernel _size _t msg_controllen; /* Length of cmsg list
unsigned msg_flags;

*/
*/
*/
*/

*/

Control messages (ancillary
messages)

 The msg_control member of msgdhr represent a control
message.

- Sometimes you need to perform some special
things. For example, getting to know what was the
destination address of a received packet.

e Sometimes there iIs more than one address on a machine
(and also you can have multiple addresses on the same
nic).

- How can we know the destination address of the ip
header in the application?

— struct cmsghdr (/usr/include/bits/socket.h)
represents a control message.

 cmsghdr members can mean different things based on the type
of socket.

 There is a set of macros for handling cmsghdr like
CMSG_FIRSTHDR(), CMSG_NXTHDR(), CMSG_DATA(),
CMSG_LEN() and more.

 There are no control messages for TCP sockets.

Socket options:

In order to tell the socket to get the information about the packet
destination, we should call setsockopt().

» setsockopt() and getsockopt() - set and get options on a socket.
- Both methods return 0 on success and -1 on error.

* Prototype: int setsockopt(int sockfd, int level, int optname,...

There are two levels of socket options:

To manipulate options at the sockets API level: SOL_SOCKET

To manipulate options at a protocol level, that protocol number

should be used:

- for example, for UDP it is IPPROTO_UDP or SOL_UDP
(both are equal 17) ; see include/linux/in.h and include/linux/socket.h

.« SOL_IPis 0.

 There are currently 19 Linux socket options and one
another on option for BSD compatibility.

See Appendix B for a full list of socket options.
 There is an option called IP_PKTINFO.

- We will set the IP_PKTINFO option on a socket in the
following example.

/I from /usr/include/bits/in.h
#define IP_PKTINFO 8 /* bool */

[* Structure used for IP_PKTINFO. */
struct in_pktinfo
{
Int ipi_ifindex; [* Interface index */
struct in_addr ipi_spec_dst; /* Routing destination address */

struct in_addr ipi_addr; [* Header destination address */

%

constinton = 1;

sockfd = socket(AF_INET, SOCK _DGRAM,0);

If (setsockopt(sockfd, SOL _IP, IP_PKTINFO, &on,
sizeof(on))<0)

perror('setsockopt");

When calling recvmsg(), we will parse the msghr like this:
for (cmptr=CMSG_FIRSTHDR(&msg); cmptr!'=NULL;
cmptr=CMSG_NXTHDR(&msg,cmptr))

{

If (cmptr->cmsg_level == SOL_IP && cmptr->cmsg_type ==
IP_PKTINFO)

{
pktinfo = (struct in_pktinfo*)CMSG_ DATA(cmptr);
printf("destination=%s\n", inet_ntop(AF_INET, &pktinfo->ipi_addr,
str, sizeof(str)));

* In the kernel, this calls ip_cmsg_recv() In
net/ipv4/ip _sockglue.c. (which eventually calls
Ip_cmsqg_recv_pktinfo()).

* You can in this way retrieve other fields of the ip
header:

- For getting the TTL:

 setsockopt(sockfd, SOL_IP, IP_RECVTTL, &on,
sizeof(on))<0).

 But: cmsg _type == 1P_TTL.
- For getting iIp_options:
 setsockopt() with IP_OPTIONS.

* Note: you cannot get/set ip_options in Java
app.

Sending packets in UDP

 From user space, you can send udp traffic with
three system calls:

- send() (when the socket is connected).
- sendto()

- sendmsg()

 All three are handled by udp _sendmsg() in the kernel.

* udp_sendmsg() is much simpler than the tcp parallel
method , tcp_sendmsg().

* udp_sendpage() is called when user space calls
sendfile() (to copy a file into a udp socket).

- sendfile() can be used also to copy data between one file
descriptor and another.

- udp_sendpage() invokes udp_sendmsg().

» udp_sendpage() will work only if the nic supports
Scatter/Gather (NETIF_F_SG feature is supported).

Example — udp client

#include <stdio.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#include <string.h>

int main()

{
Int s;
struct sockaddr_in target;
Int res;
char buf[10];

target.sin_family = AF_INET;
target.sin_port=htons(999);
iInet_aton("192.168.0.121",&target.sin_addr);
strcpy(buf,"message 1:");
s = socket(AF _INET, SOCK_DGRAM, 0);
If (s<0)

perror(“socket");

res = sendto(s, buf, sizeof(buf), 0,(struct sockaddr*)&target,
sizeof(struct sockaddr_in));

If (res<0)
perror("sendto");
else

printf("%d bytes were sent\n",res);

» For comparison, there is a tcp client in appendix C

* The source port of the UDP packet here Is
chosen randomly in the kernel.

 |f | want to send from a specified port ?

You can bind to a specific source port (888 in this example) by

adding:
source.sin_family = AF_INET,
source.sin_port = htons(888);

source.sin_addr.s_addr = htonl(INADDR_ANY);

If (bind(s, (struct sockaddr*)&source, sizeof(struct
sockaddr_in)) == -1)

perror("bind");

e You cannot bind to privileged ports (ports lower
than 1024) when you are not root !
- Trying to do this will give:
- “Permission denied” (EPERM).

- You can enable non root binding on privileged port
by running as root: (You will need at least a 2.6.24
kernel)

- setcap 'cap_net_bind_service=+ep' udpclient

— This sets the CAP NET BIND SERVICE
capability.

* You cannot bind on a port which is already
bound.

- Trying to do this will give:
- “Address already in use” (EADDRINUSE)

* You cannot bind twice or more with the same
UDP socket (even if you change the port).

- You will get “bind: Invalid argument” error in such
case (EINVAL)

* |f you try connect() on an unbound UDP socket
and then bind() you will also get the EINVAL
error. The reason Is that connecting to an
unbound socket will call inet_autobind() to
automatically bind an unbound socket (on a
random port). So after connect(), the socket is
bounded. And the calling bind() again will falil
with EINVAL (since the socket is already
bonded).

* Binding In the kernel for UDP Is implemented In
Inet_bind() and inet_autobind()

~ (in IPV6: inet6_bind())

Non local bind

* What happens if we try to bind on a non local address ? (a hon
local address can be for example, an address of interface which
IS temporarily down)

- We get EADDRNOTAVAIL error:
- “bind: Cannot assign requested address.”

- However, If we set
/proc/sys/net/ipv4/ip_nonlocal bind to 1, by

- echo "1" > /proc/sys/net/ipv4/ip_nonlocal bind

- Or adding in /etc/sysctl.contf:
net.ipv4.ip_nonlocal bind=1

- The bind() will succeed, but it may sometimes break
applications.

« What will happen if in the above udp client example, we will try
setting a broadcast address as the destination (instead of
192.168.0.121), thus:
Inet_aton("255.255.255.255",&target.sin_addr);

 We will get EACCESS error (“Permission denied”) for sendto().
* |n order that UDP broadcast will work, we have to add:
int flag = 1,

If (setsockopt (s, SOL_SOCKET, SO_BROADCAST,&flag,
sizeof(flag)) < 0)

perror("setsockopt");

UDP socket options

 For IPPROTO_UDPISOL_UDP level, we have
two socket options:

« UDP_CORK socket option.
- Added In Linux kernel 2.5.44.

Int state=1:

setsockopt(s, IPPROTO_UDP, UDP_CORK, &state,
sizeof(state));

for (j=1;]<1000;j++)
sendto(s,bufl,...)
state=0;

setsockopt(s, IPPROTO_UDP, UDP_CORK, &state,
sizeof(state));

* The above code fragment will call
udp_sendmsg() 1000 times without actually
sending anything on the wire (in the usual case,
when without setsockopt() with UDP_CORK,
1000 packets will be send).

* Only after the second setsockopt() is called,
with UDP_CORK and state=0, one packet is
sent on the wire.

« Kernel implementation: when using
UDP_CORK, udp_sendmsg() passes
MSG_MORE to ip_append_data().

- Implementation detail: UDP_CORK is not in glibc-header
(/usr/include/netinet/udp.h); you need to add in your
program:

- #define UDP_CORK 1
« UDP_ENCAP socket option.

- For usage with IPSEC.

» Used, for example, in ipsec-tools.

 Note: UDP_ENCAP does not appear yet in the man page
of udp (UDP_CORK does appear).

* Note that there are other socket options at the

SO
UD

disa

| SOCKET level which you can get/set on
P sockets: for example, SO NO_CHECK (to

nle checksum on UDP recelive). (see Appendix E).

SO DONTROUTE (equivalent to MSG_DONTROUTE in send().

The SO_DONTROUTE option tells “don't send via a gateway,
only send to directly connected hosts.”

Adding:

- setsockopt(s, SOL _SOCKET, SO DONTROUTE, val,
sizeof(one)) < 0)

- And sending the packet to a host on a different network will
cause “Network is unreachable” error to be received.
(ENETUNREACH)

- The same will happen when MSG_DONTROUTE flag is set
In sendto().

SO SNDBUF.
getsockopt(s, SOL_SOCKET, SO_SNDBUF, (void *) &sndbuf).

e Suppose we want to receive ICMP errors with the UDP client
example (like ICMP destination unreachable/port unreachable).

 How can we achieve this ?
* First, we should set this socket option:
- int val=1,
- setsockopt(s, SOL_IP, IP_RECVERR,(char*)&val, sizeof(val));

* Then, we should add a call to a method like this
for recelving error messages:

int recv_err(int s)

{

int res;

char cbuf[512];

struct iovec iov;

struct msghdr msg;

struct cmsghdr *cmsg;

struct sock _extended_err *e;

struct icmphdr icmph;

struct sockaddr _in target;

for (;;)

{

lov.iov_base = &icmph;

lov.iov_len = sizeof(icmph);
msg.msg_nhame = (void*)⌖
msg.msg_namelen = sizeof(target);
msg.msg_iov = &iov,
msg.msg_iovlen =1;
msg.msg_flags =0;
msg.msg_control = cbuf;
msg.msg_controllen = sizeof(cbuf);

res = recvmsg(s, &msg, MSG_ERRQUEUE | MSG_WAITALL);

if (res<0)
continue;
for (cmsg = CMSG_FIRSTHDR(&msg);cmsg; cmsg =CMSG_NXTHDR(&msg, cmsg))

{
if (cmsg->cmsg_level == SOL_IP)
If (cmsg->cmsg_type == IP_ RECVERR)
{
printf("got IP_RECVERR message\n");
e = (struct sock_extended_err*)CMSG_DATA(cmsg);
if (e)
if (e->ee_origin == SO_EE_ORIGIN_ICMP) {

struct sockaddr_in *sin = (struct sockaddr_in *)(e+1);

if ((e->ee_type == ICMP_DEST_UNREACH) && (e->ee_code ==
ICMP_PORT_UNREACH))

printf("Destination port unreachable\n");

}
}

udp sendmsg()

* udp_sendmsg(struct kiocb *iocb, struct sock
*sk, struct msghdr *msg, size t len)

e Sanity checks in udp_sendmsg():

* The destination UDP port must not be 0.

* If we try destination port of 0 we get EINVAL
error as a return value of udp_sendmsg()

— The destination UDP Is embedded inside the
msghdr parameter (In fact, msg->msg_name
represents a sockaddr_in; sin_port is sockaddr _iIn
IS the destination port number).

« MSG_OOB is the only illegal flag for UDP.
Returns EOPNOTSUPP error if such a flag is
passed. (only permitted to SOCK_STREAM)

« MSG_OOB is also illegal in AF_UNIX.

e OOB stands for “Out Of Band data”.

« The MSG_OOB flag Is permitted in TCP.

- It enables sending one byte of data in urgent mode.
- (telnet , “ctrl/c” for example).

 The destination must be either:

- specified in the msghdr (the name field in msghdr).

— Or the socket Is connected.

e sk->sk_state == TCP_ESTABLISHED
- Notice that though this is UDP, we use TCP semantics here.

Sending packets in UDP (contd)

* |n case the socket Is not connected, we should
find a route to It; this is done by calling
Ip_route_output_flow().

* In case it Is connected, we use the route from
the sock (sk_dst_cache member of sk, which is
an instance of dst_entry).

- When the connect() system call was invoked,
Ip4_datagram_connect() find the route by
Ip_route_connect() and set sk->sk_dst_cache In
sk _dst_set()

* Moving the packet to Layer 3 (IP layer) is done
by ip_append_data().

* In TCP, moving the packet to Layer 3 is done
with ip_queue_xmit().

- What's the difference ?

 UDP does not handle fragmentation;
Ip_append_data() does handle fragmentation.

- TCP handles fragmentation in layer 4. So no need
for ip_append_data().

* Ip_queue_xmit() is (naturally) a simpler method.

» Basically what the udp_sendmsg() method
does is:

* Finds the route for the packet by
Ip_route_output_flow()

» Sends the packet with
Ip_local_out(skb)

Asynchronous I/O

* There Is support for Asynchronous |/O in UDP
sockets.

* This means that instead of polling to know If
there is data (by select(), for example), the
kernel sends a SIGIO signal in such a case.

* Using Asynchronous I/O UDP In a user space
application is done in three stages:

- 1) Adding a SIGIO signal handler by calling
sigaction() system call

- 2) Calling fentl() with F_ SETOWN and the pid of our
process to tell the process that it is the owner of the

socket (so that SIGIO signals will be delivered to It).
Several processes can access a socket. If we will not call
fentl() with F_ SETOWN, there can be ambiguity as to which
process will get the SIGIO signal. For example, if we call
fork() the owner of the SIGIO is the parent; but we can call,
In the son, fentl(s,F_ SETOWN, getpid()).

- 3) Setting flags: calling fcntl() with F_SETFL and
O NONBLOCK | FASYNC.

 In the SIGIO handler, we call recvfrom().
 Example:

struct sockaddr_in source;

struct sigaction handler,

source.sin_family = AF_INET;

source.sin_port = htons(888),
source.sin_addr.s_addr = htonl(INADDR _ANY);
servSocket = socket(AF_INET, SOCK_DGRAM, 0),

bind(servSocket,(struct sockaddr*)&source,sizeof(struct
sockaddr_in)),

handler.sa_handler = SIGIOHandler;
sigfillset(&handler.sa_mask),

handler.sa_flags = O;

sigaction(SIGIO, &handler, 0);

fentl(servSocket,F SETOWN, getpid()),
fcntl(servSocket,F_SETFL, O_NONBLOCK | FASYNC),

* The fentl() which sets the O_NONBLOCK | FASYNC flags
Invokes sock_fasync() in net/socket.c to add the socket.

- The SIGIOHandler() method will be called when there is
data (since a SIGIO signal was generated) ; it should call
recvmsg().

Appendix B : Socket options

» Socket options by protocol:

IP protocol (SOL_IP) 19 socket options:

IP_TOS IP_TTL

IP_HDRINCL IP_OPTIONS

IP ROUTER_ALERT IP_RECVOPTS
IP_RETOPTS IP_PKTINFO
IP_PKTOPTIONS IP_MTU_DISCOVER
IP_ RECVERR IP_RECVTTL

IP_ RECVTOS IP_MTU
IP_FREEBIND IP_IPSEC_POLICY
IP_XFRM_POLICY IP_PASSSEC

IP_TRANSPARENT

Note: For BSD compatibility there is IP_ RECVRETOPTS (which is identical to
IP_RETOPTS).

AF_UNIX:
- SO_PASSCRED for AF_UNIX sockets.

- Note:For historical reasons these socket options are specified with a
SOL_SOCKET type even though they are PF_UNIX specific.

UDP:

- UDP_CORK (IPPROTO_UDP level).
RAW:

- ICMP_FILTER
TCP:

- TCP_CORK

- TCP_DEFER_ACCEPT
- TCP_INFO

- TCP_KEEPCNT

TCP_KEEPIDLE
TCP_KEEPINTVL
TCP_LINGER2
TCP_MAXSEG
TCP_NODELAY
TCP_QUICKACK
TCP_SYNCNT
TCP_WINDOW_CLAMP

AF_PACKET

PACKET_ADD_MEMBERSHIP
PACKET_DROP_MEMBERSHIP

Socket options for socket level:
SO DEBUG

SO _REUSEADDR
SO TYPE

SO _ERROR

SO DONTROUTE
SO BROADCAST
SO _SNDBUF

SO RCVBUF

SO _SNDBUFFORCE
SO _RCVBUFFORCE
SO_KEEPALIVE
SO_OOBINLINE

SO_NO_CHECK
SO_PRIORITY
SO_LINGER
SO_BSDCOMPAT

Appendix C: tcp client

#include <fcntl.h>
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <sys/sendfile.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

#include <arpa/inet.h>

int main()

{

tcp client - contd.

struct sockaddr_in sa;
int sd = socket(PF_INET, SOCK_STREAM, 0);
if (sd<0)
printf("error");
memset(&sa, 0, sizeof(struct sockaddr_in));
sa.sin_family = AF_INET;
sa.sin_port = htons(853);
inet_aton("192.168.0.121",&sa.sin_addr);
if (connect(sd, (struct sockaddr*)&sa, sizeof(sa))<0) {

perror("connect");
exit(0);
}

close(sd);

}

tcp client - contd.

 If on the other side (192.168.0.121 in this example) there is no
TCP server listening on this port (853) you will get this error for
the socket() system call:

- connect: Connection refused.
e You can send data on this socket by adding, for example:

const char *message = "mymessage”;
int length;
length = strlen(message)+1;

res = write(sd, message, length);

« write() Is the same as send(), but with no flags.

Appendix D : ICMP options

 These are ICMP options you can set with
setsockopt on RAW ICMP socket: (see
/usr/include/netinet/ip_icmp.h)

ICMP_ECHOREPLY
ICMP_DEST_UNREACH
ICMP_SOURCE_QUENCH
ICMP_REDIRECT
ICMP_ECHO
ICMP_TIME_EXCEEDED
ICMP_PARAMETERPROB
ICMP_TIMESTAMP

ICMP_TIMESTAMPREPLY
ICMP_INFO_REQUEST
ICMP_INFO_REPLY
ICMP_ADDRESS
ICMP_ADDRESSREPLY

APPENDIX E: flags for send/receive

MSG_OOB

MSG_PEEK

MSG_DONTROUTE

MSG_TRYHARD - Synonym for MSG_DONTROUTE for DECnet
MSG_CTRUNC

MSG_PROBE - Do not send. Only probe path f.e. for MTU
MSG_TRUNC

MSG_DONTWAIT - Nonblocking io

MSG EOR - End of record

MSG_WAITALL - Wait for a full request

MSG_FIN

MSG_SYN

MSG CONFIRM - Confirm path validity

MSG_RST

MSG_ERRQUEUE - Fetch message from error queue
MSG_NOSIGNAL - Do not generate SIGPIPE

MSG MORE 0x8000 - Sender will send more.

Example: set and get an option

e This simple example demonstrates how to set and get an IP layer option:
#include <stdio.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <string.h>

int main()

{

int s;

int opt;

int res;

int one = 1;

int size = sizeof(opt);

s = socket(AF_INET, SOCK_DGRAM, 0);
if (s<0)
perror(“socket");
res = setsockopt(s, SOL_IP, IP_RECVERR, &one, sizeof(one));
if (res==-1)
perror("setsockopt");
res = getsockopt(s, SOL_IP, IP_ RECVERR,&opt,&size);
if (res==-1)
perror("getsockopt");
printf("opt = %d\n",opt);
close(s);

}

Example: record route option

* This example shows how to send a record route

option.

#define NROUTES 9

int main()

{

int s;

int optlen=0;

struct sockaddr_in target;

int res;

char rspace[3+4*NROUTES+1];
char buf[10];
target.sin_family = AF_INET;
target.sin_port=htons(999);
inet_aton("194.90.1.5",&target.sin_addr);
strcpy(buf,"message 1:");
s = socket(AF_INET, SOCK_DGRAM, 0);
if (s<0)

perror("socket");
memset(rspace, 0, sizeof(rspace));
rspace[0] = IPOPT_NOP;
rspace[1+IPOPT_OPTVAL] = IPOPT_RR;
rspace[l+IPOPT_OLEN] = sizeof(rspace)-1;

rspace[1+IPOPT_OFFSET] = IPOPT_MINOFF;
optlen=40;

if (setsockopt(s, IPPROTO_IP, IP_OPTIONS, rspace,
sizeof(rspace))<0)

{

perror("record route\n");
exit(2);

APPENDIX F: UDP errors

Running :
cat /proc/net/snmp | grep Udp:
will give something like:

Udp: InDatagrams NoPorts InErrors OutDatagrams RcvbufErrors
SndbufErrors

Udp: 262510210000
InErrors - (UDP_MIB_INERRORYS)
RcvbufErrors — UDP_MIB_ RCVBUFERRORS:

- Incremented in___udp_queue_rcv_skb() (net/ipv4/udp.c).
SndbufErrors — (UDP_MIB_SNDBUFERRORS)

- Incremented in udp_sendmsg()

 Another metric:

- cat /proc/net/udp

- The last column in: drops

* Represents sk->sk_drops.

* Incremented in ___udp_queue_rcv_skb()
- net/ipv4/udp.c

e When do RcvbufErrors occur ?

- The total number of bytes queued in sk_receive queue
gueue of a socket is sk->sk_rmem_alloc.

- The total allowed memory of a socket is sk->sk_rcvbuf.
e It can be retrieved with getsockopt() using SO _RCVBUF.

 Each time a packet Is received, the sk-
>sk_rmem_alloc IS INncremented by skb->truesize:

- skb->truesize it the size (in bytes) allocated for the data of
the skb plus the size of sk_buff structure itself.

— This incrementation is done in skb_set owner _r()

atomic_add(skb->truesize, &sk->sk_rmem_alloc);

- see: Include/net/sock.h

* When the packet is freed by kfree_skb(), we decrement sk-
>sk_rmem_alloc by skb->truesize; this is done in
sock_rfree():

e sock rfree()

atomic_sub(skb->truesize, &sk->sk_rmem_alloc);

Immediately in the beginning of sock queue_rcv_skb(), we
have this check:

If (atomic_read(&sk->sk _rmem_alloc) + skb->truesize >=
(unsigned)sk->sk_rcvbuf) {
err = -ENOMEM;

 When returning -ENOMEM, this notifies the
caller to drop the packet.

 Thisis donein__udp _queue_rcv_skb() method:
static int ___udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)

{

if ((rc = sock_queue_rcv_skb(sk, skb)) < 0) {

/* Note that an ENOMEM error is charged twice */

if (rc == -ENOMEM) {

UDP_INC_STATS_BH(sock net(sk), UDP_MIB_RCVBUFERRORS,
Is_udplite);

atomic_inc(&sk->sk_drops);

« The default size of sk->sk rcvbufis SK RMEM_ MAX
(sysctl_rmem_max).

* |t equals to
 (sizeof(struct sk_buff) + 256) * 256

« See: SK_ RMEM_ MAX definition In
net/core/sock.c

* This can be viewed and modified by:

- /proc/sys/net/core/rmem_default entry.
— getsockopt()/setsockopt() with SO_RCVBUF.

* For the send queue (sk_write_queue), we have in
Ip_append_data() a call to sock_alloc_send_skb(), which
eventually invokes sock _alloc_send_pskb().

* In sock_alloc_send_pskb(), we peform this check:

if (atomic_read(&sk->sk_wmem _alloc) < sk->sk_sndbuf)

o [fitis true, everything is fine.

* [f not, we end with setting SOCK_ASYNC_NOSPACE and
SOCK_NOSPACE flags of the socket:

set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags),
set bit(SOCK_NOSPACE, &sk->sk_socket->flags),

* In udp_sendmsg(), we check the SOCK_NOSPACE flag. If it is
set, we increment the UDP_MIB_SNDBUFERRORS counter.

» sock alloc_send _pskb() calls skb_set owner_w().

* In skb_set _owner_w(), we have:

atomic_add(skb->truesize, &sk->sk_wmem_alloc),

When the packet is freed by kfree _skb(), we decrement
sk_wmem_alloc, in sock_wifree() method:

Sock_wiree()

atomic_sub(skb->truesize, &sk->sk_wmem_alloc),

Tips

To find out socket used by a process:

Is -1 /proc/[pid]/fd|grep socket|cut -d: -f3|sed 's\[//;sN\]//'
The number returned is the inode number of the socket.
Information about these sockets can be obtained from

- netstat -ae

After starting a process which creates a socket, you can see
that the inode cache was incremented by one by:

more /proc/slabinfo | grep sock

sock inode cache 476 485 768 5 1:tunables 0 O
O:slabdata 97 97 O

The first number, 476, is the number of active objects.

END

* Thank you!

- ramirose@gmail.com

Linux Kernel Networking —
advanced topics (6)

Sockets In the kernel

Rami Rosen
ramirose@gmail.com
Haifux, August 2009
www. haifux.org

All rights reserved.

mailto:ramirose@gmail.com
http://www.haifux.org/

Linux Kernel Networking (6)-
advanced topics

Note:

This lecture is a sequel to the following 5 lectures
| gave In Haifux:

1) Linux Kernel Networking lecture

http://www.haifux.org/lectures/172/
slides:http://www.haifux.org/lectures/172/netLec.pdf

2) Advanced Linux Kernel Networking -
Neighboring Subsystem and IPSec lecture

http://www.haifux.org/lectures/180/
slides:http://www.haifux.org/lectures/180/netLec2.pdf

http://www.haifux.org/lectures/172/
http://www.haifux.org/lectures/172/netLec.pdf
http://www.haifux.org/lectures/180/
http://www.haifux.org/lectures/180/netLec2.pdf

Linux Kernel Networking (6)-
advanced topics

3) Advanced Linux Kernel Networking -
IPv6 in the Linux Kernel lecture

http://www.haifux.org/lectures/187/
Slides: http://www.haifux.org/lectures/187/netLec3.pdf

4) Wireless in Linux
http://www.haifux.org/lectures/206/

Slides: http://www.haifux.org/lectures/206/wirelessLec.pdf

5) Sockets in the Linux Kernel

http://www.haifux.org/lectures/217/
Slides: http://www.haifux.org/lectures/217/netLec5.pdf

http://www.haifux.org/lectures/187/
http://www.haifux.org/lectures/187/netLec3.pdf
http://www.haifux.org/lectures/206/
http://www.haifux.org/lectures/206/wirelessLec.pdf
http://www.haifux.org/lectures/217/
http://www.haifux.org/lectures/217/netLec5.pdf

Note

Note: This is the second part of the “Sockets In
the Linux Kernel” lecture which was given in
Haifux in 27.7.09. You may find some

background materia

for this lecture In Its slides:

http://www.haifux.org/

ectures/217/netLec5.pdf

http://www.haifux.org/lectures/217/netLec5.pdf

TOC

TOC.
RAW Sockets
UNIX Domain Sockets
Netlink sockets
SCTP sockets.
Appendices

Note: All code examples in this lecture refer to
the recent 2.6.30 version of the Linux kernel.

RAW Sockets

There are cases when there I1s no interface to create
sockets of a certain protocol (ICMP protocol, NETLINK
protocol) => use Raw sockets.

raw socket creation is done thus, for example:

sd = socket(AF _INET, SOCK_RAW, 0);
sd = socket(AF_INET, SOCK_RAW,IPPROTO_UDP);
sd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));

ETH P_IP tells to handle all IP packets.

When using AF_INET family, as in the first two cases, the
socket is added to kernel RAW sockets hash table (the hash
key is the protocol number). This is done by raw_hash_sk(),
(net/ipv4/raw.c), which is invoked by inet_create(), when
creating the socket.

When using AF_PACKET family, as in the third case, a socket
IS not added to the kernel RAW sockets hash table.

See Appendix F for an example of using packet raw socket.

Raw socket creation MUST be done as a super
user.

In case an ordinary user try to create a raw socket,
you will get:

“error: socket: Operation not permitted.” (EPERM).

You can set the CAP_NET_RAW capabillity to enable
non root users to create raw sockets:

setcap cap net raw=+ep rawserver

Usage of RAW socket: ping

You do not specify ports with RAW sockets; RAW
sockets do not work with ports.

When the kernel receives a raw packet, it
delivers it to all raw sockets.

Ping In fact iIs sending an ICMP packet.

The type of this ICMP packet is ICMP ECHO
REQUEST.

Send a ping
Implementation(simplified)

#define BUFSIZE 1500
char sendbuf[BUFSIZE],
struct icmp *icmp;

int sockfd;

struct sockaddr_in target;

Int datalen=56;

target.sin_family = AF_INET;
inet_aton("192.168.0.121",&target.sin_addr);
icmp = (struct icmp *)sendbuf;
icmp->icmp_type = ICMP_ECHO;
icmp->icmp_code = 0;

icmp->icmp_id = getpid();

memset(icmp->icmp_data, 0xa5, datalen);

icmp->icmp_cksum=0;
sockfd=socket(AF_INET, SOCK_RAW, IPPROTO_ICMP);

res = sendto(sockfd, sendbuf, len, 0O, (struct sockaddr*)&target, sizeof(struct
sockaddr_in));

- Missing here is sequence number, checksum computation.

- The default number of data bytes to be sent is 56; the ICMP
header is 8 bytes. So we get 64 bytes (or 84 bytes, if we include
the IP header of 20 bytes).

Recelve a ping-
Implementation(simplified)
___u8 *buf;
char addrbuf[128];
struct iovec iov;
struct iphdr *iphdr;
Int sockfd,;
struct icmphdr *icmphdr;
char recvbuf[BUFSIZE];
char controlbuf[BUFSIZE],

struct msghdr msg;
sockfd=socket(AF INET, SOCK_RAW, IPPROTO_ICMP);

lov.iov_base = recvbuf;
lov.iov_len = sizeof(recvbuf);
memset(&msg, 0, sizeof(msQ));
msg.msg_name = addrbuf;

msg.msg_namelen = sizeof(addrbuf);

msg.msg_iov = &Ilov;

msg.msg_iovilen = 1;

msg.msg_control = controlbuf;
msg.msg_controllen = sizeof(controlbuf);

n = recvmsg(sockfd, &msg, 0);

buf = msg.msg_iov->iov_base;

Iphdr = (struct iphdr*)buf;

icmphdr = (struct icmphdr*)(buf+(iphdr->ihl*4));

If (icmphdr->type == ICMP_ECHOREPLY)
printf("ICMP_ECHOREPLY\n");

if (icmphdr->type == ICMP_DEST_UNREACH)
printf("ICMP_DEST_UNREACH\n");

The only SOL_RAW option a Raw socket can get
IS ICMP_FILTER.

This can be done thus:

#define ICMP_FILTER 1

struct icmp_filter {
u32 data;

¥
filt.data = 1<<ICMP DEST UNREACH:

res = setsockopt(sockfd, SOL_RAW, ICMP_FILTER,
(char*)&filt, sizeof(filt));

Adding this code in the receive Ping application
above will prevent Destination Unreachable
ICMP messages from received Iin user space
by recvimsg.

There are quite a lot more ICMP options; by
default, we do NOT filter any ICMP messages.

Among the other options you can set by
setsockopt are:

ICMP_ECHO (echo request)
ICMP_ECHOREPLY (echo reply)

ICMP_TIME_EXCEEDED
And more (see Appendix D for a full list).

Traceroute also uses raw sockets.
Traceroute changes the TTL field in the ip header.

This is done by IP_TTL and control messages in
current Linux traceroute implementation (Dmitry
Butskoy).

In the original traceroute (by Van Jacobson) it was
done with the IP_HDRINCL socket option:

(setsockopt(sndsock, IPPROTO_IP, IP_HDRINCL,...)

The IP_HDRINCL tells the IP layer not to prepare an IP header
when sending a packet.

IP_HDRINCL is also applicable in IPVG6.

When receiving a packet, the IP header is always included in the
packet.

When sending a packet, by specifying the the IP_HDRINCL
option you tell the kernel that the IP header is already included
In the packet, so no need to prepare it in the kernel.

raw_send_hdrinc() in net/ipv4/raw.c

The IP_HDRINCL option is applied only to the SOCK_RAW
type of protocol.

See Lawrence Berkeley National Laboratory traceroute:

ftp://ftp.ee.Ibl.gov/traceroute.tar.gz

ftp://ftp.ee.lbl.gov/traceroute.tar.gz

If a raw socket was created with protocol type of
IPPROTO_RAW , this implies enabling IP_HDRINCL.:

Thus, this call from user space:
socket(AF_INET,SOCK_RAW,IPPROTO_RAW)
Invokes this code in the kernel:
If (SOCK_RAW == sock->type) {

Inet->num = protocol;

If IPPROTO_RAW == protocol)
Inet->hdrincl = 1;

(From inet_create(), net/ipv4//af_inet.c)

Spoofing attack: setting the IP address of
packets to be different than the real ones.

UDP spoofing Is easier since UDP is
connectionless.

Following Is an example of UDP spoofing with
raw sockets and IP_HDRINCL option:

We build an IP header.

We set the protocol field in this ip header to
IP_ PROTOUDP.

We build a UDP header.

Note : when behind a NAT, this probably will not work

unsigned short in_cksum(unsigned short *addr, int len);
int main(int argc, char **argv)

{

struct iphdr ip;

struct udphdr udp;

int sd;

const inton = 1,

struct sockaddr_in sin;

int res;

u_char *packet;

packet = (u_char *)malloc(60);

ip.ihl = Ox5;

ip.version = 0x4,;

ip.tos = 0x0;

ip.tot_len = 60;

ip.id = htons(12830);

ip.frag_off = 0x0;

ip.ttl = 64;

ip.protocol = IPPROTO_UDP;
ip.check = 0xO;

ip.saddr = inet_addr("192.168.0.199");
ip.daddr = inet_addr("76.125.43.103")

memcpy(packet, &ip, sizeof(ip));

udp.source = htons(45512);

udp.dest = htons(999);

udp.len = htons(10);

udp.check = 0;

memcpy(packet + 20, &udp, sizeof(udp));

memcpy(packet + 28,"ab",2);

if ((sd = socket(AF_INET, SOCK_RAW, 0)) <0){
perror(“raw socket");

exit(1);

}

if (setsockopt(sd, IPPROTO _IP, IP_HDRINCL, &on, sizeof(on)) < 0) {
perror("setsockopt”);
exit(1);
}
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = ip.daddr;
res=sendto(sd, packet, 60, O, (struct sockaddr *)&sin, sizeof(struct sockaddr));
iIf (res<0)
perror("sendto");
else

printf("ok %d bytes sent\n",res);

Note: what will happen If we specify an illegal
source address, like “255.255.255.255"?

The packet will be sent.

If we want to log such packets on the receiver side,
(to detect spoofing attempts), we must set the
log_martians kernel tunable thus:

echo "1" > /proc/sys/net/ipv4/conf/all/log_martians

Then we will see in the kernel syslog messages like
this:

martian source 82.80.80.193 from 255.255.255.255, on
dev ethO

Following will be the ethernet header:
Il header:

Raw sockets and sniffers

When you activate tshark (formerly tethereal) or
wireshark or tcpdump, you call the
pcap_open_live() method of the pcap library.
This method creates a raw socket thus:

socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL))
pcap_open_live() is implemented in libpcap-0.9.8/pcap-linux.c.
PF_ PACKET sockets work with the network interface card.

Note:

When you open tshark thus:

tshark -1 any
Then the socket is opened thus:

socket(PF_ PACKET, SOCK_DGRAM,
htons(ETH_P_ALL))

This Is called “cooked mode”
SLL. (Socket Link Layer).

With SOCK_DGRAM, the kernel is responsible for adding
ethernet header (when sending a packet) or removing
ethernet header (when receiving a packet).

With SOCK_RAW, the application is responsible for adding an
ethernet header when sending.

Also you will get this message:

“Capturing on Pseudo-device that captures on all interfaces”
tshark: Promiscuous mode not supported on the "any" device

Unix Domain Sockets

AF_UNIX /PF_UNIX /AF LOCAL/PF LOCAL.

A way for interprocess communication. (IPC)

the client and server are on the same host.

AF UNIX sockets can be either SOCK STREAM
or SOCK_DGRAM.

And, since kernel 2.6.4, also SOCK SEQPACKET.

Usage: in rsyslogd(AF_UNIX/SOCK DGRAM)
and udev daemons (AF_LOCAL/
SOCK DGRAM), hald, crond, and a lot more.

Unix domain sockets do not support the
transmission of out-of-band data.

MSG_OOB is not supported at all in Unix domain
sockets

This applies For all 3 types,
SOCK_STREAM,SOCK DGRAM and SOCK_SEQPACKET.

Usually uses files in the local filesystem.
Abstract namespaces.

Why not extend it to use between domains in
virtualization which have access to shared filesystem ?

With rsyslogd, the path Iis under /dev:

Is -al /dev/log

srw-rw-rw- 1 root root 0 01-07-09 13:17 /dev/log
Notice the 's' in the beginning => for socket.

Is -F /dev/log
/dev/log=

(with Is, -F is for appending indicator to entries)

Unix Domain Socket server
Example

Ints;
Int res;
struct sockaddr_un name;
memset(&name,0,sizeof (name));
name.sun_family = AF_LOCAL,;
strcpy(name.sun_path,"/work/test_unix");
s = socket(AF_UNIX, SOCK_STREAM,O0);
if (s<0)
perror("socket");
res = bind(s, (struct sockaddr*)&name, SUN_LEN(&name));

Calling bind() in the example above will create a
flle named /work/test unix

Is -al /work/test_unix

SIWXI-Xr-X
Notice the “s” for socket.

Notice that with DGRAM Unix domain sockets, calling sednto()
without calling bind() before, will not call autobind() as
opposed to what happens in udp under the same scenario.

In this case, the receiver cannot reply (because it does not
know to who).

Isof -U : shows Unix domain sockets

Also: netstat --unix —all

Tip: use netstat -ax for short.

[ACC] in the third column means that the socket is
unconnected and waiting for connection.
(SO_ACCECPTON).

And also:
cat /proc/net/protocols | grep UNIX
cat /proc/net/unix

struct sockaddr_un (/usr/include/linux/un.h)

The pathname for a Unix domain socket should
be an absolute pathname.

For abstract namespaces.
address.sun_path[0] =0
The last column of netstat --unix --all is the path.

In case of abstract namespace, it will begin with @:
netstat --unix --all | grep udevd

unix 2 [] DGRAM 602
@/org/kernel/udev/udevd

Control messages in Unix domain sockets:

SCM_RIGHTS - You can pass an open file descriptor
from one process to another using Unix domain
socket and control messages (ancillary data).

SCM_CREDENTIALS- for passing process
credentials (uid and gid).

You need to set the SO_PASSCRED socket option with
setsockopt() on the receiving side.

~ SCM stands for : Saocket Control Message ,and not

Software configuration management :-)

These credentials are passed via a cred struct In
a control message:

kernel: in include/linux/socket.h:

struct ucred {

__u32 pid; /* process ID of the sending process */
__u32 uid; [*user ID of the sending process */

_u32 gid; /* group ID of the sending process */
%

For user space apps, it is in /usr/include/bits/socket.h

Unix domain client example

const char* const socket_name = "/tmp/server";
int socket_fd;
int res;
struct sockaddr_un remote;
socket_fd = socket(PF_LOCAL, SOCK_STREAM, 0);
memset(&remote, 0, sizeof(remote));
remote.sun_family = AF_LOCAL,;
strcpy(remote.sun_path, socket_name);
res = connect(socket_fd, (struct sockaddr*)&remote, SUN_LEN(&remote));
if (res<0)

perror("connect");

res = sendto(socket fd,"aaa", 3, O, (struct sockaddr*)&remote, sizeof(remote));

If we will try to call send() in a stream-oriented
socket after the stream-oriented server was
closed, we will get EPIPE error:

send: Broken pipe

The kernel also sends the user space a SIGPIPE
signal In this case.

In case the flags parameter in send() is
MSG_NOSIGNAL, the kernel does NOT send a

SIG
In BS

PIPE signal.

D, you can avoid signals by setsockopt()

with SO _NOSIGPIPE (SOL_SOCKET option).

In IPV4, the only signal used is SIGURG for OOB
In tcp.

In case of datagram-oriented sockets, SIGPIPE
IS not sent; we just get connection refused
error.

If, In the above example, we tried to create a
dgram client instead of stream client, thus;

socket fd = socket(PF_LOCAL, SOCK DGRAM, 0);

We would get:

connect: Protocol wrong type for socket (EPROTOTYPE)
see: unix_find_other()

The socketpair() system call:

Creates a pair of connected sockets.

On Linux, the only supported domain for this call is AF_UNIX
(or synonymously, AF_LOCAL).

Netlink sockets

Netlink sockets: a message mechanism from
user-space to kernel and also between kernel
Ingredients.

Used widely in the kernel;, mostly in networking,
but also In other subsystems.

There are other mechanism for communication from
user space to kernel:

loctls (drivers)
/proc or /sys entries (VFS)

And there are of course signals from kernel to user
space (like SIGIO, and more).

Creating netlink sockets is done (in the kernel) by
netlink_kernel_create().

For example, in net/core/rtnetlink.c:

static int rtnetlink_net_init(struct net *net)

{

struct sock *sk;

sk = netlink_kernel_create(net, NETLINK_ROUTE,
RTNLGRP MAX, rtnetlink rcv, &rtnl_mutex,
THIS MODULE);

With generic netlink sockets, this is done using
the NETLINK GENERIC protocol thus:

netlink_kernel _create(&init_net, NETLINK_GENERIC, 0O,
genl_rcv, &genl_mutex, THIS_MODULE),

See net/netlink/genetlink.c

The second parameter, NETLINK_ROUTE, is the
protocol. (kernel 2.6.30).

There are currently 19 netlink protocols in the kernel:

NETLINK_ROUTE NETLINK_UNUSED NETLINK_USERSOCK
NETLINK_FIREWALL NETLINK_INET_DIAG NETLINK_NFLOG
NETLINK_XFRM NETLINK_SELINUX NETLINK_ISCSI
NETLINK_AUDIT NETLINK_FIB_LOOKUP NETLINK_CONNECTOR
NETLINK_NETFILTER NETLINK_IP6_FW NETLINK_DNRTMSG

NETLINK_KOBJECT_UEVENT NETLINK_GENERIC NETLINK_SCSITRANSPORT

NETLINK_ECRYPTFS

(see include/linux/netlink.h).

The fourth parameter, rtnetlink_rcv, is the handler
for netlink packets.

rtnetlink_rcv() gets a packet (sk_buff) as its parameter.

NETLINK_ROUTE messages are not confined to the
routing subsystem; they include also other types of
messages (for example, neighboring)

NETLINK_ROUTE messages can be divided into
families. Most of these families has three types of
messages. (New, Del and Get).

For example:

RTM NEWROUTE - create a new route.
Handled by inet_rtm_newroute().

RTM DELROUTE - delete a route.

Handled by inet_rtm_delroute().

RTM_GETROUTE - retrieve information about a
route.

Handled by inet_dump_fib().
All three methods are in net/ipv4/fib_frontend.c.

Another family of METLINK ROUTE is the NEIGH family:
RTM_NEWNEIGH

RTM_DELNEIGH
RTM_GETNEIGH

How do these messages reach these handlers?

Registration is done by calling rtnl_register()

In Ip_fib_init():

rtnl_register(PF_INET, R
iInet_rtm_newroute, NU

rtnl_register(PF_INET, R
Inet_rtm_delroute, NUL

"M_NEWROUTE,
_L);

'M_DELROUTE,
L);

rtnl_register(PF_INET, RTM_GETROUTE, NULL,

iInet_dump_fib);

IPROUTEZ2 package iIs based on rtnetlink.

(IPROUTEZ2 is “ip” with subcommands, for
example: ip route show to show the routing

tables)
IPROUTEZ2 uses the libnetlink library.
See libnetlink.h (in the IPROUTEZ2 library)
rtnl_open() to open a socket in user space.
rtnl_send() to send a message to the kernel.

rtnl_open() calls the socket() system call to
create an rtnetlink socket:
socket(AF_NETLINK, SOCK_RAW, protocol);

rtnl_listen() starts receiving messages by calling the recvmsg()
system call.

The AF_NETLINK protocol is implemented In
net/netlink/af _netlink.c.

AF_ROUTE is a synonym of AF_NETLINK (due to BSD)
#define AF_ROUTE AF_NETLINK (include/linux/socket.h)

The kernel holds an array called nl_table; it has up to
32 elements. (MAX_LINKS).

Each element in this table corresponds to a protocol
(in fact, the protocol Is the index)

Example

#include "libnetlink.h"

int accept_msg(const struct sockaddr_nl *who, struct nlmsghdr *n, void *arg) {
If (n->nImsg_type == RTM_NEWROUTE)
printf("got RTM_NEWROUTE message \n");

}

iInt main() {
Int res;
struct rtnl_handle rth;
unsigned int groups = ~RTMGRP_TC | RTNLGRP_IPV4 _ROUTE;
If (rtnl_open(&rth,groups) < 0) {

printf("rtnl_open() failed in %s %s\n", FUNCTION__, FILE);
return -1;

if (rtnl_listen(&rth,accept_msg, stdout)<O0) {
printf("failed in rtnl_listen()\n");

return -1;

}

Adding a route will be logged to stdout:
ip route add 10.0.0.10 via 10.10.10.11
will print:

got RTM_NEWROUTE message
- In this case, the rtnl_open() invokes

socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
- The example can be expanded also for RTM_DELROUTE, etc.

Generic Netlink

The Iw tools (wireless user space management)
use the Generic Netlink API.

This API is based on Netlink sockets.

You register handlers in nl80211 _init()

net/wireless/nl80211.c

For example, for wireless interfaces we have
these messages and handlers:

NL80211 CMD GET INTE

RFACE

Handled by nl80211 dump interface()

NL80211 CMD SET INTERFACE
Handled by nl80211 set interface()
NL80211 CMD NEW INTERFACE

Handled by nl80211 new interface()
NL80211 CMD DEL INTERFACE

Handled by nl80211 del interface()

In the wireless subsystem there are currently 35
messages, each with its own handler.

See appendix A.

You can use the NETLINK _FIREWALL protocol
for a netlink socket to catch packets in user
space with the help of an iptables kernel
module named ip_gqueue.ko.

iptables -A OUTPUT -p UDP --dport 9999 -
NFQUEUE --queue-num O

The user space application uses
libnetfilter _queue-0.0.17 API (which replaced
the libipq lib).

Netlink sockets usage: xorp, (routing daemons:
http://www.xorp.org/) , iproute2, iw.

http://www.xorp.org/

SCTP

General:

Combines features of TCP and UDP.
Reliable (like TCP).

RFC 4960 (obsoletes RFC 2960).
Target: VoIP, telecommunications.

People:

Randall Stewart (Cisco): co inventor, FreeBSD.
Peter Lel (Cisco)

Michael Tuxen (MacOS).

Linux Kernel SCTP Malintainers:

Vlad Yasevich (HP)
Sridhar Samudrala (IBM).

SCTP support in the Linux kernel tree is from
versions 2.5.36 and following.

Location in the kernel tree: net/sctp.

SCTP

There are two types of SCTP sockets:

One to one socket
socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)
Much like TCP connection.

One to many socket
socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP)

See for example, here:

http://heim.ifi.uio.no/michawel/teaching/dipls/stefan_joerer.pdf

-Much like UDP server with many clients.

http://heim.ifi.uio.no/michawe/teaching/dipls/stefan_joerer.pdf

You need to have lksctp-tools to use SCTP In
userspace applications.

http://Iksctp.sourceforge.net

In fedora,

lksctp-tools rpm.
lksctp-tools-devel rpm. (for /usr/include/netinet/sctp.h)

http://lksctp.sourceforge.net/

Future lectures

Netfilter kernel implementation:

NAT and connection tracking; dnat, snat.
MASQUERADING.

Filter and mangle tables.

Netfilter verdicts.

The new generation: nftables

Network namespaces (Containers / OpenVZ).
DCCP
Virtio

IPVS/LVS (Linux Virtual Server).
Bluetooth, RFCOMM.
Multigueues.

LRO (Large Receive Offload)
Multicasting.

TCP protocol.

Appendix A : wireless messages

NL80211_CMD_GET_WIPHY, NL80211_CMD_SET_WIPHY,

NL80211_CMD_GET_INTERFACE,NL80211_CMD_SET_INTERFACE,
NL80211_CMD_NEW_INTERFACE,NL80211_CMD_DEL_INTERFACE,

NL80211_CMD_GET_KEY,NL80211_CMD_SET_KEY,NL80211 CMD_NEW_KEY,NL80211 CMD_DEL_KEY,
NL80211_CMD_SET_BEACON, NL80211_CMD_NEW_BEACON, NL80211_CMD_DEL_BEACON,

NL80211_CMD_GET_STATION, NL80211_CMD_SET_STATION, NL80211_CMD_NEW_STATION,
NL80211_CMD_DEL_STATION,

NL80211_CMD_GET_MPATH, NL80211_CMD_SET_MPATH, NL80211_CMD_NEW_MPATH, NL80211_CMD_DEL_MPATH,
NL80211_CMD_SET_BSS, NL80211_CMD_GET_REG,

NL80211_CMD_SET_REG, NL80211_CMD_REQ_SET_REG,
NL80211_CMD_GET_MESH_PARAMS,NL80211_CMD_SET_MESH_PARAMS,

NL80211_CMD_TRIGGER_SCAN, NL80211_CMD_GET_SCAN,

NL80211_CMD_AUTHENTICATE,NL80211_CMD_ASSOCIATE, NL80211_CMD_DEAUTHENTICATE,
NL80211_CMD_DISASSOCIATE,

NL80211_CMD_JOIN_IBSS,NL80211_CMD_LEAVE_IBSS,

Appendix B : Socket options

Socket options by protocol:

IP protocol (SOL_IP) 19 socket options:
IP_TOS IP_TTL

IP_ HDRINCL IP_OPTIONS

IP_ ROUTER_ALERT IP_RECVOPTS
IP_RETOPTS IP_PKTINFO
IP_PKTOPTIONS IP_MTU_DISCOVER
IP_ RECVERR IP_ RECVTTL

IP. RECVTOS IP_ MTU
IP_FREEBIND IP_IPSEC_POLICY
IP_XFRM_POLICY IP_PASSSEC

IP_ TRANSPARENT

Note: For BSD compatibility there is IP_ RECVRETOPTS (which is identical to
IP_RETOPTS).

AF_UNIX:
SO _PASSCRED for AF_UNIX sockets.

Note:For historical reasons these socket options are specified with a
SOL_SOCKET type even though they are PF_UNIX specific.

UDP:

UDP_CORK (IPPROTO_UDP level).
RAW:

ICMP_FILTER
TCP:

TCP_CORK
TCP_DEFER_ACCEPT
TCP_INFO
TCP_KEEPCNT

TCP_KEEPIDLE
TCP_KEEPINTVL
TCP_LINGER2
TCP_MAXSEG
TCP_NODELAY
TCP_QUICKACK
TCP_SYNCNT
TCP_WINDOW_CLAMP
AF_PACKET

PACKET_ADD_MEMBERSHIP
PACKET_DROP_MEMBERSHIP

Socket options for socket level:
SO DEBUG
SO_REUSEADDR
SO TYPE

SO _ERROR

SO _DONTROUTE
SO BROADCAST
SO _SNDBUF

SO RCVBUF

SO _SNDBUFFORCE
SO _RCVBUFFORCE
SO_KEEPALIVE
SO_OOBINLINE

SO_NO_CHECK
SO_PRIORITY
SO_LINGER
SO_BSDCOMPAT

Appendix C: tcp client

#include <fcntl.h>
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <sys/sendfile.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

#include <arpa/inet.h>

int main()

{

tcp client - contd.

struct sockaddr_in sa;
int sd = socket(PF_INET, SOCK_STREAM, 0);
if (sd<0)
printf("error");
memset(&sa, 0, sizeof(struct sockaddr_in));
sa.sin_family = AF_INET;
sa.sin_port = htons(853);
inet_aton("192.168.0.121",&sa.sin_addr);
if (connect(sd, (struct sockaddr*)&sa, sizeof(sa))<0) {

perror("connect");
exit(0);
}

close(sd);

}

tcp client - contd.

If on the other side (192.168.0.121 in this example) there is no
TCP server listening on this port (853) you will get this error for
the socket() system call:

connect: Connection refused.
You can send data on this socket by adding, for example:

const char *message = "mymessage";
int length;
length = strlen(message)+1,;

res = write(sd, message, length);

write() I1s the same as send(), but with no flags.

Appendix D : ICMP options

These are ICMP options you can set with
setsockopt on RAW ICMP socket: (see
/usr/include/netinet/ip_icmp.h)

ICMP_ECHOREPLY
ICMP_DEST_UNREACH
ICMP_SOURCE_QUENCH
ICMP_REDIRECT
ICMP_ECHO
ICMP_TIME_EXCEEDED
ICMP_PARAMETERPROB
ICMP_TIMESTAMP

ICMP_TIMESTAMPREPLY
ICMP_INFO_REQUEST
ICMP_INFO_REPLY
ICMP_ADDRESS
ICMP_ADDRESSREPLY

APPENDIX E: flags for send/receive

MSG_OOB

MSG_PEEK

MSG_DONTROUTE

MSG_TRYHARD - Synonym for MSG_ DONTROUTE for DECnet
MSG_CTRUNC

MSG_PROBE - Do not send. Only probe path f.e. for MTU
MSG_TRUNC

MSG_DONTWAIT - Nonblocking io

MSG_EOR - End of record

MSG_WAITALL - Wait for a full request

MSG_FIN

MSG_SYN

MSG_CONFIRM - Confirm path validity

MSG_RST

MSG_ERRQUEUE - Fetch message from error queue
MSG _NOSIGNAL - Do not generate SIGPIPE

MSG MOREOx8000 - Sender will send more.

Example: set and get an option

This simple example demonstrates how to set and get an IP layer option:
#include <stdio.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <string.h>

int main()

{

int s;

int opt;

int res;

int one = 1,

int size = sizeof(opt);

s = socket(AF_INET, SOCK_DGRAM, 0);
if (s<0)
perror(socket");
res = setsockopt(s, SOL_IP, IP_RECVERR, &one, sizeof(one));
if (res==-1)
perror("setsockopt");
res = getsockopt(s, SOL_IP, IP_RECVERR,&opt,&size);
if (res==-1)
perror("getsockopt");
printf("opt = %d\n",opt);
close(s);

}

Example: record route option

This example shows how to send a record route

option.

#define NROUTES 9

int main()

{

ints;

int optlen=0;

struct sockaddr_in target;

Int res;

char rspace[3+4*NROUTES+1];
char buf[10];
target.sin_family = AF_INET;
target.sin_port=htons(999);
inet_aton("194.90.1.5",&target.sin_addr);
strcpy(buf,"message 1:");
s = socket(AF_INET, SOCK_DGRAM, 0);
if (s<0)

perror("socket");
memset(rspace, 0, sizeof(rspace));
rspace[0] = IPOPT_NOP;
rspace[1+IPOPT_OPTVAL] = IPOPT_RR;
rspace[1l+IPOPT_OLEN] = sizeof(rspace)-1;

rspace[1+IPOPT_OFFSET] = IPOPT_MINOFF;
optlen=40;

if (setsockopt(s, IPPROTO _IP, IP_OPTIONS, rspace,
sizeof(rspace))<0)

{

perror("record route\n");
exit(2);

Appendix F: using packet raw
socket

int main()

{

int s;

int n;

char buffer[2048];

unsigned char *iphdr;

unsigned char *ethhdr;

s = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_IP));
while (1)

{

printf("****xxx\n"),

n = recvfrom(s, buffer, 2048, 0, NULL, NULL);
printf("n bytes read\n")

ethhdr = buffer;

printf("source MAC address = %02x:%02x:%02x:%02x:%02x:%02x\n",
ethhdr[0],ethhdr[1],ethhdr[2],

ethhdr[3],ethhdr[4],ethhdr[5]);

Tips

To find out socket used by a process:

Is -I /proc/[pid]/fd|grep socket|cut -d: -f3|sed 's/\[//;s\]/I*
The number returned is the inode number of the socket.
Information about these sockets can be obtained from

netstat -ae

After starting a process which creates a socket, you can see that
the inode cache was incremented by one by:

more /proc/slabinfo | grep sock

sock inode cache 476 485 768 5 1:tunables O O
O:slabdata 97 97 O

The first number, 476, is the number of active objects.

END

Thank you!

ramirose@gmail.com

