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PRYFACL

This publication is a major revision of USGS Bulletin 1532, which is titled Map
Projections (Fsed by the UK. Geologiee! Swrvey. Although several porlions are
essentially unchanged except Tor eorrections and elarification, there is consider-
able revisivn in Lhe early geneval discussion, and the scope of the book, eriginally
limited to map projectivns used by the U5, Geslogieal Survey, now extends to
inciude several other popular or useful projections, These and dozens of other
projections are described with less detail in the forthcoming USGES publication An
Albm of Map Prujectivua.

As befove, this study of map projections is intended Lo be useful Lo both the
reader interesied in the philosophy or history of the projections and the reader
desiring the mathematics. Under each of the projections described, the nonmathe-
matical phases are presented first, without interription by formulas. They are
folluwed by Lhe formulas and tables, which the fvst type of reader may skip
entirely to pass to the nonmathematical discussion of the next projection. Even
with the mathematies, there are almost no derivations and very Bitle caleolus.
The emphasis is on deseribing the chavacteristics of the projection and how il s
used,

Thix professional paper, like Bulletin 1532, is also designed so that the user can
turs directly to the desired projection, without reading any other section, in
order to study the projection under eonsiderative, However, Lhe lisi ol symbols
may be needed in any case, and the random-aecenss feature will be enhanceed by a
general understanding of the concepts of projections and distortion. As a result of
this intent, there s some repetition which will be apparent when the book is read
vequentially.

For the mgre complicated projeetions, equationz are given in the order of
usage. Otherwise, major equations are given Orst, followed by sobordinate
equations. When an equation has been given previously, it is repeated with the
oviginal equation number, to avoid the need to leaf back and forth. Numerical
examples, however, are placed in appendix A. Tt was fell that placing these with
the formulas would enly add w the difficnlty of reading throngh the mathematical
seetions.

The equations are frequently taken from other credited or standard sources,
but a number of equations have been dervived or rearranged for this publication by
the auther. Further attention has been given o eomputer efficiency, for example
by encouraging the wse of nested power serfes in place of multiple-angle series,

[ acknowledged several reviewers of the original manuseript in Bulletin 1332,
These were Alden I*. Colvocoresses, William J. Jones, Clark H. Cramer, Marlys
K. Brownlee, Tau Rho Alpha, Raymoend M. Batson, Williarm H. Chapraan, Atef A
Elassal, Dunglas M. Kinney (ret.), George Y. G. Lee, Juek . Minta (ret.), and
John F. Waananen, all then of the USGS, Joel L. Morrison, then of the Uni-
versity of Wisconsin'Madison, and the late Allen.]. Pope of the National (keean
Survey. [ remain indebted to them, especially to Dr. Colvocoresses of the USGS,
whu j« the one person most responsible for giving me the opportunity to assemble
this work for publieation. In addition, Jackie T. Durham and Robert B. MeEwen
of the USGS have been very helpful with the current volume, and several
reviewers, especially Clifford d. Mugnier, a consulting cartoprapher, have pro-
vided valuable critiques which have infloenced my revisions. Other users in and
oul of the USGS have alse offered uvsefol comments, For the plotting of all
computer-prepared maps, Lhe personnel of the USGS Eastern Mapping Center
have been most cooperative.

John I*. Snyder
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SYMBOLS

It a symbol iz not listed here, it is used only briefly and identified near the fermulus in which it
2 given.

Ar — azimuth, as an angle measurcd cockwise from the north.

n = pyunaterial radivs or semimajor axis of the ellipsoid of reference.
b = pular radius or semiminee axis of the ellippaid of reference.

el = fF = utl - A

¢ = great cirele distance, uz an arc of a circle.
e = popentricity of the ellipsoid,

(1 — A%

ﬂallnn'mg of the ellipsn'iﬂ.

4 = refative scale facior along a meridian o
is height abowe surface of ellipsoid. }

.
I



SYMBOLS ix

b
It

rélative seale factor along a perallel of tatitude.

o= eOfke cONSLANT Gn Conic prodections, oF the rabin of the angle between meridians to the true
angle, called [in some other references.

B = radine of the sphere, either actual o that enrrespanding te seale of the map,

& = gsurfave arvw.

rectanpular eoirdinate: distance to the right of the verticad line (Y axis) passing through

the origin or center of o pomection (F nepative, )t is digtunce (o the lefl) In praclice, u

“Falze” & oor “false easting' is frequently added to all vabues of & to eliminate nepative

nmbers. (Wote: Many British texts nse X and ¥ axes interchanged, not rotated, from this

COMVENLIGN.

¥ = rectangular errdinate distance above the horizontal line (X axis) passing through the
otigin or center of a projection (if negative, it is distanes below). In practice, a “false” p or
“false northing” is frequently added to all values of v to eliminate negmtive numbers.

2 = angular distanee from North Pole of latitude &, or (890° = &3, ar colutitude.

#y = anpular distunee from North Pole of avitude &, or (907 — &3

2o = anmutur distance from North Pale of latitude ¢, or 57 — b)),

In = natural Ingarithra, or logarithm to base o, where e = 2 71E2E.

B = angle meagured epunterclockwise from the central meridian, rotating about the center of
the latitude cireles on 4 conic or pokar azimuthal prodection, or beginning due south, rotating
aboul the eenter of projection of an oblique ur equatorial agimuthad projection

8' = anglu of intersection helween meridiag and parallel,

i om looptude east of Greenwich for lonpitude west of Greenwich, vae o minus signd.

b < lomgitude east of Greenwich of the centrad mendign of the map, or of the origin of the
reetangulur coordinates (for west longitude, use a minoa zign). I8 &, is & pole, &y, is the
Tengitude of Lhe meridian extending down on the map from the Morth Pobe o up from the
Bnith Frle.

&° = transformed longtude measured east slung tranaformed eguator from the nurth erossing
af the BEarth™ F‘mmh-r when 1:rr5:ll1g_ le is Prfated on tho Earth)

p = radius of Tatitude :;!rcle on comic of pdar azimuthal peojectiom, of padius from center on
any szimuthal projection.

& = north gesdetic or peographic latitude GF Latitude is south, apply & minus =ign}.

4 = middle [atitnde, or latitude chozen a2 the otigin of rectangular soordinates for 4 projection,

&' - transformed latitude relative to the new poles und equator when the praticule is retated on
the plobe,

dy, by - standurd porailels of latibude for projections with twe standaed parafiols. Theze are true
to Benle and free of angulay distortion,

&y pwithout &z = single standard paralfel on eyhindncal or conic projections; atilude of central point
on gimuthal propections.

w -7 maximum anpular deformation st 2 given point on 3 projection,

h
I

1 Al ungfes are aneumed to by inoradisns, ur P Lhy drgree bl 4 © b ix ual .

2. Uinless Ihere i nnte g the: coptmare, amid iFthe cxpressicn far which the arctan is siaghl bre oy sumeratar aver g Jensmizwder, the
formular in whicl aretan ie regoirsl losgatly U visdin a lyngitude) aee pe arranged chat the Pomrean ATAR S fusieiam slopld e
wxctl Far harad calen'ztars amd eampotera witk the aretin fanetion bul ik ATARE, the fllewarg eeiudduibs pisel e addind 1 Lhe
imigaliune Tiefind with the formulas,

Frr urvlan 1A, Lhr aTetan is nommally givets be dnangde bebwern - 300 and + 500, or betwern - a2 and = =02 B Ais regitive, alid
LT ST izl arclan, where the @ ks Uhe sign of A or o A s 2epo. the = sebicreeily whesa b ooigl B 8 i 2o, Lhe
APCRR i = HIF ar = = takiey the sigm ol A, Condibana ot Tes el by e ATANE fbton, M0 PegaiTeg wdjostrenl Dt alawl
ANy TTAETWM, 2 e firllows:
413 IF A R B are bidh zemn, the arclas is iodeberminele, byl may rormally b piven A saehicrae velioe of 0 or of ., defue iz o L
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MAP PROJECTIONS—
A WORKING MANUAL

By JOHN P. SNYDIER

ARSTRALT

After decades of using only one map projection, the FPolyecnie, fur its mapping prograrm, the T35,
Creological Survey (LSGE) e uses several of the more cymmpn projections for ics pablished maps,
For larger seale maps, including topngraphie guadrangles aml the Stade Base Map Seriex, conformul
projueLiuns sueh a2 the Trangverwe Mercator and the Lambert Gonfurmal Conie are used, Equal-area
anll cguidistant prujections appear jo the Modorgl Atlas. Olher projections. such as the Miller
Cxlindrical amd the Van eler Crinten, are chosen oreasienally for convenivnge, sometipyes making gse
of exlsting hase maps prepated by othees, Some projections treat the Farth only ax a sphere, othors as
either eliipsoid or sphere.

The LISGE has also conceived and designed soveral new projectmns, including the Space Obligue
Mercatyr, the first map projection designed to permil, mapping of the Earth conlinbuasly from a
satellive with low distortion. The mapping of cxtraterrestrial bodics has resulled in the use of stand-
arl projections in completely new settings. Several ather projections which have not begn used by
the USGH are trequentdy of imterest o the cartopgraphic puehlic.

With inereased computerization. it is important oo realize that, rectangular coordinates for all theze
prajectiims may ho matbematically caleulated with formulas which would have seemed too compli-
eitedl i the past, but which now may be proprammed routinely, especially of aided by aumerical
exatples. A discussion of appearance, Wsage, and history s given tigether with both forward and
inverse cuatinns for each projectiom mvolved,

russed in thousands of papers and hoaks datmg at lpaut 1'1 GM the time of the (Jreck
astronomer Claudius Piolemy (about A.D. 1503, and projections are Known to
have heen in use some three centries earlier. Most af Le widely usad projeciions
date from the 16th to 19th centuries, but scores of variations have bean developed
during the 20th century. In recent years, there have been several new publica-
tinns of widely varying depth and quality devoted exclusively Lo the subject. In
1974, the USGS pubhlshed Mops for Americe, a book-length deseription of its
maps (Thompson, 1979). The USGS has also published bulleting deswribing from
mne to thyee projections (Birdseye, 1920, Newton, 1885),

In apite of all this literalure, there was no definitive single publication on map
projections used by lhe USGS, the agency respunsible for administering the
National Mapping Program, untii the first edition of Bulletin 1532 (Snyder, 1982a).
The USGS had relied on map projection treatises published by the formar Coast
and Geodetic Survey [now the Nalional (eean Serviee). These publications did
nit include sufficient detail for all the major projections now used hy the USGS
and others. A widely used and outstanding treatise of the Coast and Geodetic
Survey [Deetz and Adams, 1934), last revised in 1945, only touches upon the
Transverse Mercator, now a comtnonly used projection for preparing maps. Other
projections such as the Bipolar Oblique Conie Conformal, the Miller Cylindrieal,
and the Van der Grinten, were just being developed, or, if older, were seldom
used in 1945, Deetz and Adams predated the extensive use of the computer and
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pocket caleulator, and, instead, offered extensive tables for plotting projections
with specific parameters.

Angther classic treatize from the Coast and Geodetic Survey was written by
Themas (1952} and is exclusively devoted to the five major conformal projections.
It emphasizes derivations with a simnmary of formulas and of the history of these
projections, and is directed toward the skilled technical user. Cmitted are tables,
gratieules, or nurnerical examples.

[n USGS Bulletin 1532 the author undertook to deseribe each projeetion which
has been used by ihe USGS sufficiently to permit the skilled, mathematically
onented cartographer to use the vrojection in detail. The descriptions were also

arranged so as Lo cnable a lay person 1nterested in the subject tolearn as much as

desired ahout the principles of these projections without being overwhelmed by

mathematical detail. Deetz and Adams’ (1934) wark set an excellent example in
this coinbined approach.

While Bulletin 1532 was deliberately limited to map projections used by the
1I8GS, the interest in the hulletin has led to expansion in the form of this profes-
sional paper, which includes several other map projections frequently seen in
atlases and geography texts. Many tables of rectangular or polar coordinates
bave been ineluded for coneeptual purposes. For values between points, formulas
should he used, rather than interpolation. Other tables list definitive parameters
for use in formulas. A glossary as such is omitted, since such definitions tend to be
oversimplified by nature. The reader is referred to the index instead to find a
maore complele deseription of a given terin.

The USGE, zoon after its official inception in 1879, apparently chose the Poly-
conie projection for its mapping program. This projection is simple to constroet
and had been promated by the Survey of the Coast, as it was then called, sinee
Ferdinand Rudolph Hassler's leadership of the early 1500's. The first published
USGS topographie “guadrangles,” or maps hounded by two meridians and two
parallels, did not carry a projection name, but identification as “Polyconic
projection”™ was added to later editions. Tables of coordinales published by the
U'SGS appeared in 1904, and the Polyconic was the only prajeetion mentisned by
Beaman (1%28, p. 167).

Mappers in the Goast and Geodetie Survey, influenced in turn by military and
civilian mappers of Europe, vstablished the State Plane Coordinate System in the
193(Ps. This system involved the Lambert Conformal Conie projection for States
of larger east-west extension and the Transverse Mereator for States which were
longer from north to south, In the late 1950's, the UUSGE began changing quadran-
gles from Lhe Polyconic to the projection used in the State Plane Coordinate
System for the principal State on the map. The USGS also adopted the Lambert
for its sevies of State bage maps.

As the variety of maps issued by the 1F8GS increased, a broad range of projec-
tions became important: The Polar Stereographie for the map of Antarctica, the

Lambert Azimuthal Equal-Area for maps of the Pacific Ocean, and the Albers
Equal-Area Conic for the Neiiongl Affgs (ISGSE, 1970) maps of the Tlnited

btates Several oLther prajections have been nsed for other maps in the National

. A
Attus, for lectonic maps, and for grids in the panhandle of Alaska. The mapping

of extraterrestrial bodies, such as the Moon, Mars, and Mercury, invelves old
projections in a completely new setting. Perhaps the first projection to be origi-
nated within the USGS is the Space Oblique Mereator for continuous mapping
wsing imagery from artificial satellitez.

It is hoped that this expanded study will assist readers to understand hetter
not only the basis for maps issued by the USGS, but also the prineiples and
formulas for computerization, preparation of new maps, and transference of data
between maps prepared on different projections.



1. CHARACTERISTICS QF MAP FROJECTIONS
MAFP PROJECTIONS—GENERAL CONCEPTS
1. CHARACTERISTICS OF MAP PROJECTIONS

The general purpose of map projections and the basie problems encountered
have been discussed often and well in various bonks on cartography and map
projections. (Robinson, Sale, Morrison, and Muchreke, 1984; Steers, 1970; and
Greenhood, 1954, are among later editions of earlier standard references.) Every
map user and maker should have 4 basic understanding of projections, no matter
how muech computers scem to have automated the operations. The enncepts will
be eqneisely deseribed here, although there are some interpretations and formy-
las that appear to be unique.

For almost 500 vears, it has heen coneluzsively established that the Earth is
essentially a sphere, although a2 number of intellectuals nearly 2,000 years earlier
were convineed of this, Even to the scholars who considered the Earth flat, the
skies appeared hemispherical, however. [t was cstablished at an early date that
attempts to prepare a flat map of a surface curving in all directions leads to
distortion of one form or another.

A map projection is 4 systematic representation of all or part of the surface of a
round hody, especially the Earth, on a plane. This usually includes lines delineat-
ing meridians and parallels, as required by some delinitions of a map projection,
but it may not, depending en the purpose of the map. A projection is required in
any case. Since thiz cannot he done without distortion, the cartographer must
chopse the characteristic which is to be shown accurately at the expense of others,
or a compromise of several characteristies. If the map covers a continent sr the
Earth, distortion will be visually apparent. If the region is the size of a small
tawn, distortion may be barely measurable uging many projections, but it can still
be serious with other projections. There is literally an infinite number of map
projections that can be devised, and 2everai hundred have been published, most
of which are rarely used novelties. Most projections may be infinitely varied by
choosing different points on the Earth as the center or as a starting point.

[t cannot be said that there is one "best” projection for mapping. It is even
risky to claim that one has found the “best” projection for a given application,
unless the parameters chosen are artificially constricting. A carefully constiucterd
globe is not the best map for mest applications because its seale is by necessity too
small. A globe is awkward to use In general, and a straightedge cannol be
salizsfactorily used on gne for measurement of distance.

The details of projections discussed in this bosk are based on perfeet plotting
ante completely stable media. In practice, of course, this cannot be achieved. The
cartographer may have made small errors, especially in hand-drawn maps, but a
more serious problem results from the fact that maps are commonly plotted and
printed on paper, which is dimensionally unstable. Typical map paper can expand
over 1 pergent with & 60 percent increase in atmospheric humidity, and the
expansion coefficient varies considerably in different direetions on the same sheel.
This is much greater than the variation between eommon projections on large-
seale quadrangles, for example. The use of stable plastic bazes for maps is recom-
mended for precizsion work, but this ia not always feasible, and source maps may
be available only on paper, frequently folded as well. On large-scale maps, such as
topographic quadrangles, measurement on paper maps is facilitated with rectan-
gular grid overprints, which expand with the paper. Grids ave discussed later in
this book.

The characteristics normally econsidered in choosing a map projection are as
follows:
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b, Aree.—Many map projections are designed to be egual-area, so that a coin
of any size, for cxample, on one part of the map covers cxactly the same ares of
the actual Earth as the same coin on any other part of the map. Shapes, angles,
and seale must be distorted en most parts of such a map, but there are usually
sume parts of an equal-arca map which are designed to retain these characteris-
ties correctly, or very nearly 30, Less commaon terms used for oqual-ares projec-
tems are eyuivelent, homologrophie, or Remaelographic (from the Greek homalos
or fennes C'same’ Y and gro nbn& Coaerile™™Y: aufhalie (from the Greek antos {"same™)

and g wrile'™ ), oy (fro
and eilos Carea™), and e-qtamrcuf
o> k]nnn.u A amir f tha mngt common amed yrriet iyt 'r\w\';r1n+;t\|'lc~ are
2. Bhope —Many of the most common and most important projections ar

eoriftrmal ov orthomorpiec (from the Greek orthos or “straighl™ and morphd or

“ghape™), in that normally the relative loeal angles about every point on the map
are shown corroctly. (On a conformal map of the entire Earth there are usually
one or more “singular’” points at which loeal angles are still distorted.} Although a
large area must still be shown distorted in shape, its small features are shaped
egsentially correctly. Conlormality applics on a puint or infinitesirmal basis, whereas
an cgual-area map projection shows areas correctly on a finite, in fact mapwide
basis. Animportant result of conformality is that the local seale in every direction
araound any one point 5 constant. Because local angles are worredt, moridisns
intersect parallels at vight (80°) angles on a conformal projection, just as they duon
the Earth. Arveas are generally enlarged or reduced throughout the map, but they
are: correet along eertain lines, depending on the projeetion. Nearly all larre-scale
maps of the Geolegical Burvey amd other mapping agencles threughout the world
are naw prepared on a conformal projection. No map can be both equal-arca and
confurmal.

While some have used the term apfiyiactic for all projections which are neither

equal-area nor conformal {Lee, 1944}, other torms have commonly been used to
describe special characteristies:
Nu map projection shows scale correctly throughout the map, but
there ave usually one or more lines on the map along which the seale remains true.
Hy choosing the locations of these lines properly, the seale errors clsowhere may
be minimized, although some errors may still be large, depending on the size of
the area being mapped and the projection. Sume projections show true seale
between oie or two poifits and every other point on the map, or along every
meridian. They are called equidisfant projections.

4. Divection.—While conformal maps give the relative loeal directions cor-
rectly at any given point, there iz one frequently used group of wap projections,
called azimauthel (or zenithal), on which the divections or azimuths of all points vn
the map are shown correctly with respect to the center. One of these projections
is also equal-area, another is conformal, and another is equidistant. Theve are also

LOETELAL, i IhE LTl 15 £

projections on w thh directions from twoe pmnts arc curt vct, ur vl which ducc-
tions from all points 1o ome or two selected p
used.

5. Speciaf charpcleristios. —Several map projeelions provide speeial chameteris-
lics thal no other projection provides. Gn the Mereator projection, all rhumb
lines, or lines of eonstant direction, are shown as straight lines. On the Ghomonie
projection, all preat eirele paths—tha shortest routes between points on a sphere.
are shown as straight lines. On the Stereographic, all small eireles, as well as
great circles, are shown as circles on the wap. Some newer projectivhs are spe-
cially designed for satellite mapping. Tess vseful but mathematically intriguing
projections have been designed to fit the sphere conformally into a square, an
ellipse, a triangle, or sume other peometrie Ngure.

6. Method of construction.—In Lthe days before ready aceess to computers and
plotters, ease of construction was of greater importance. With the advent of
computers and even pocket caleulators, very complicated formulas eah be handled
alraust as routinely as simple projections in the past.
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While the above six characteristics should ordinarily be considered in choosing
a map projection, they are not so obvious in recognizing a projection. In fact, if
the region shown on a map is not much larger than the United Stales, for example,
even a trained eye cannot often distinguish whather the map is egual-area or
conformal. Tt is necessary to make measurements to deteet small differences in
spacing or lovation of meridians and parallels, or (o make other tests, The Lype of
construction of the map projection is more easily recopnized wilh experience, if
the projection falls into one of the comimnon categories.

There are three types of developable' surfaces onto which most of the map
prajections used by the USGSE are at least partially geometrically projected. They
are the eylinder, the cone, and the plane. Actually all three are vaviations ol the
ceme. A eylinder is a limiting formn of 4 cone with an inereasingly sharp point or
apex. Az the cone becomes flatter, its limit is a plane.

If a gylinder is wrapped around the globe represeniing the Earth (see fig. 1), =0
that its surface touches the Equator throughout its eircumference, the meridians
of longitude may be projected onto the cylinder as equidistant straight lines
perpendicular Lo the Equator, and the parallels of latitude marked as lines paral-
lel Lo the Equator, wround the circumierence of the eylinder and mathematically
spaced for certain characteristics. For some cases, the parallels may also be
projected geometrically from a eommon point onto the eylinder, but in the most
comimon cases they are not perspeetive. When the cylinder is cut along same
meridian and unrolled, 2 eylindrical projection with straight meridians and straight
p;_n'a.l_!g!s vesalts, The Meveator prnipm.inn iz the best-known ex:amp!gl and its

results. vator projection best-knoy Ty its
srallels must be mathematically spaced.

1f o prmva e wlaeod aver tho wlnho with ite naal Aar snoy slane tho nalar ovie nf

1f 2 cone is placed over the plobe, with its peak or apex along the polar axis of

the Earth and with the surface of the cone touching the globe along some particu-

lar parallel of latitude, & eonic (or conical) projection can be produced. This time
the meridians are projected onto the cone as equidistant straight lines radiuting
from the apex, and the pavallels are marked as lines around the eiveumference of
the eone in planes perpendicular to the Earth’s axis, spaced for the desived
characteristies. The parallels may not be projected geometrically for any useful
conie projections, When the cone is eyt along a meridian, unrolled, and laid flat,
the meridians remain straipht radiating lines, but the parallels ure now cirenlay
ares centered on Lhe apex. The angles between meridians are shown smaller than
the true angles.

A plane tangent to one of the Earth's poles is the basis for polar azimuthal
projeclions, In this case, the group of projections is named for the function, not
the plane, sinee all commoen tangent-plane projections of the sphere are azimuthal.
The meridiuns are projected as straight lines radisting from a point, but they are
spuced at their true angles instead of the smaller angles of the conic projections,
The parallels of latitude are complete cireles, centered on the pole. On some
important azimuthal projections, such as the Sterengraphic {for the sphere), the
parallels are geometrically projected from a common point of perspective; on
others, such as the Azimuthal Equidistant, they are nonperspective.

The concepts outlined above may be medified in two ways, which still provide
eylindrical, comie, or azimuthal projections {although the azimuthals retain this
property precisely only for the spheve).

1. The eylinder or cone may be secant to or cut the globe at two parallels instead
ef being tunpent to just one. This coneeptually provides two standard purallels;
but for most conie projections this construction is not geometrically correct,
The plane may likewise cut through the globe at any parallel instead of touch-
ing a pele, but this is only useful for the Stercographic and some other perspec-
Live projections.

'A developable surface §s ane that ean be transformed 1o 5 plam without diatortion,
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Fisure 1.—Projection of the Eurth onto the three major surfeces. In o few cases, projection is
geometnic, bot in most eases Lhe projection is mathemutical to achieve certain features,
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2. The axis of the cylinder or cone can huve a direction different from that of the
Earth's axis, white the plane may be tangent to a point other than a pole (fig.
1). This type of madifieation leads to important obligue, transverse, and equa-
torial projections, in which most meridians and paraliels are no longer straight
lines or ares of eireles. What were standard parallels in the novinal orientation
now becomne standard lines not following parallels of latitude.

Other projections resemble one or another of these eategories only in some
respects. There are numerous interesting pseudecylindrieal (or “false eylindrieal™)
projections. They are so called because latitude lines are straight and parallet,
and meridians are equally spaced, as on eylindriezal projections, but all meridians
except the central meridian are eurved instead of straight. The Sinnsoidal is o
frequently used example. Pseudoconic projections have concentric circular ares
for parallels, like conics, but meridians are curved; the Bonne is the only ¢common
example. Pseudoazimuthal projections are very rare; the polar aspect has coneen-
tric circalar ares for parallels, and curved meridians, The Polyconic projection is
projected onto cones tangent to each parallel of latitude, so the meridians are
curved, not straight. Still others are more remotely related to eylindrical, conie,
or azimuthal projections, if at zll.
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2. LONGITUDME AND LATITUDE

Ta identify the location of paints on the Earth, a gratienle or network of longi-
tude and latitude lines has been superimposed on the surfuce. They are commonly
referred to as meridians and parallels, respectively. The coneept of latitudes and
longitudes was originated esrly in recorded history by Greek and Egyptian

sciendists, especiully the Greek ustronomer Hlpparchus (2ml century, BL.C.), Clau-
thus Ptolemy further formalized the concept (Brown, 1948, p. 50, 52, 68),

PARALLELS Y LATTIGDE

Given the North and South Foles, which are approximately the ends of the axis
about which the Earth rotates, and the Equator, an imaginary line halfway hatween
the two poles, the parallels of latitude are formed by eirdles surrounding the
Barth and in planes pauraliel with that of the Equator. If circles ure drawn egually
spaced along the surface of the sphere, with ) spaces from the Equator to each
pole, each spice is called a degree of latitude. The cireles are numbsred from 07 ag
the Kouator to B0F North and South at the respective poles Each depree is
gubdivided wto 80 minutes and esch minute inta 450 -,ewnds of are.

For 2,000 years, measurement of latitude on the Earth involved one of two
basir astronomical methods. The instruments and aceuracy, but not the prineiple,
werg gradoally improved. By duy, the angular height of the Sun above the hor-
zom was measurcd. By night, the angular height of stars, and espectally the
current pole star, was nsed. With appropriate angular conversions and adjust-
ments for time of day and seuson, the latitude wus obtained. The measuring
instruments included devices known as the eross-staff, asirolube, back-stulf,
quadrant, sextant, and petant, ultimately equipped with telescopes. They were
supplemented with astrgnomical tables cailed almanaes, of increasing eomplica-
tion and accuracy. Finally, beginning in the 18th century, the use of tiangulation
in geodetic surveying meant that latitude on land could be determined with high
precision by using the distance from pther points of known latitude, Thus meas-
urement of latitude, unlike that of longitude, was an evolutionury development
almost throughout recorded history (Brown, 1849, p. 180207},

MERIDIANS OF LONGIULDE

Merulians of longitude are formed with o seres of imaginaey lines, all intersect-
ing at bath the Norlh and South Poles, and crossing each parallel of latitude at
right angles, but striliing the Equutor at various points, It the Equator is equally
divided into 380 parts, and a meridian passes through each mark, 380 degrees of
longitudde result. These deprees are dlso divided into minutes and seconds. While
the length of 4 depree of lutitude 15 always the sume on a sphere, the lengths of
degrees of longitude vary with the latitude (see fig, 2). At the Equator on the
sphere, they are the same length us the degree of latitude, but elsewhere they are
shorier.

There is only one location for the Equator and poles which serve us references
for counting degrees of latitude, but there 15 no natural origin from which Lo count
deprees of lengitude, sinee all meridians are identical in shape and size. [t thus
becomes necessary to choose arbitrarily one meridian as the starting poit, o
prime meridian. There have been many prime meridians in the course of history,

wwaved by national nv-lrln and Mternytional influsnee, For over 150 yveurs, Franee
dyern Dy nl natenal ntluenes over 1ol years, I'ral

officially used the mEI‘l{lld.n through Ferro, unisland of the Cunaries. Eighteenth-
centwry maps of the American colonles often show longitude from London or
Philadelphiz. During the 19th century, boundaries of new States were described
with longitudes west of & meridian through Washington, D.C., 77°03" 02.3" west
of the Gresnwich (England) Prime Meridian {Van Zandt, 1976, p. 3). The latter
was inereasingly referenced, especially on seacharts due to the proliferation of
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Finunk 2. —Meridians apd parallels on the sphere.

those of British avigin. 1n 1884, the Internztional Meridian Conference, meeting
in Washington, agreed to adopt the “meridian passing through the center of the
tranzit instroment at the Observatory of Greenwich as the initial meridian for
longitude,” rezolving that “from this meridian longitude zhall be counted in two
directions up to 180 deprees, east longitude being plus and west longitude minus®
(Brown, 1949, p. 283, 297).

The cholce of the prime merilian is arbitrary and may be stated in simple
terms. The accurate measwrement of the difference in longitude at sea between
two poinls, however, was unattainalle for centuries, even with a precision suffi-
cient for the times. When extensive transatlantie exploration from Eurape began
with the voyages of Christopher Columbus in 1492, the inability to measure
east-west distanee led to numerous shipwreeks with substantial Inss of lives angd
wealth., Seafaring natioms bepimning with Spain offered sizable rewards for the
invention of satisfactory methods for measuring longitude. It finally became evi-
dent that a portable, dependable clock was needed, so that the height of the Sun
or stars could be related to the time in order to determine lonpitude. The study of
the pendulam by Galileo, the invention of the pendulam elock by Christian Hoygens
in 1636, and Robert Hooke's studies of the use of springs in watehes in the 1660°z
provided the basic instrument, bot it was not until Jobn Harrison of England
responided to his eountry's substantial reward posted in 1714 that the problem
was solved, For five decades, Harrison devised suecessively more reliable ver-
stons of a marine chronometer, which were tested at sea and gpradually accepted
by the Board of Longitude in painstaking steps from 17685 Lo 1773, Final compensa-
tion required intervention by the King and Parliament (Brown, 1949, p. 208-240;
Ouill 19663
AL R s e

Thus a major obstacle to accorate mapping was overcome. On land, the meas-
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clock and the spread of peodetic triangulation in the 18th century made aceuracy a
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reality. Electrenic means of measuring distance and angles in the mid- to late-20th
cettutry have redefined Lhe meaning of aceuracy by orders of magnitude,

CONVENTIONS [N PLOTTVING

When constructing meridians on a map projection, the central meridian, usu-
ally a straight line, is frequently taken to be a starting point or §° longitude for
calculalion purposes. When the map is completed with labels, the meridians are
marked with respeet to the Greenwich Pritne Meridian. The formulas in this book
are aranged so that Greenwich longitude may be used direcily, All formulas
herein use the convention of positive east longitude and north katitude, and nega-
tive wesl longitude and south latitude. Some published tables and formulas else-
where use positive west longitide, so the reader Is urged to use cantion in compar-
ing values.

GRS

Because caleulations relating Jatitnde and longitude to positions of points on a
given map cun become quite involved, rectangular grids have been developed for
the use of surveyors. In this way, each point may be designated merely by ity
distance from two perpendienlar axes on the flat map. The ¥ axis normally coin-
cides wiih » chosen cential meridan, ¥ inereusing north, The X axis is perpendicu-
lar to the ¥ axis al a latitude of origin on the central meridian, with x increusing
aasgt. Frequently r and y coordinates are called “eastings™ and “northings,”
respectively, and to avord negalive coordinates may have “false eastings™ and
“false northings” added.

The grid lines usually do not coineide with any meridians and parallels except
for the centrzl meridian and the Equator. Of most interest in the United States
are two grid systems: The Universal Transverse Mercator {UTHM) Grid is described
ch p. 57, and the State Plane Coordinate System (SPCB) is deseribed on p. 51,
Preceding the UTM was the World Polyconic Grid {WPG), used until the late
1940 and deseribed on p. 127,

Grid systems are normally divided into zones so that distortion and variation of
seale within any one zone is held below & preset level. The type of bonndaries
between prid zones varies. Zones of the WPG and the UTM are bounded by
meridians of longitude, but for the SPCS State and county boundaries are used.
Some grid boundaries in other countries are defined by lines of constant grid
value using « local or an adjacent grid as the basis, This adjucent grid may in turn
be based on a different projection and a different reference ellipsoid. A common
boundary for non-U. 5, offshore grids is an ellipsoidal rhumb line, or line of eon-
stant directiom on the ellipsoid (see p. 46); the ellipsoidal geodesie, or shortest
route (see p. 199)is also used. The plotting of some of these boundaries can become
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1. FTHE DATUM AND THE EARTH AS AN ELLIPSOID

For many maps, including nearly all maps in cormereial atlases, it may be
assumed that the Earth is a sphere. Actually, it is more nearly an oblate cllipsoid
of revalution, also calied an oblate spheroid. This 15 an ellipse rotated about its
shorter axis. The flattening of the ellipse for the Earth is only about one part in
three hundred; but it is sufficient to become a necessary part of caleulations in
plotting acrurate maps at a seale of 1:100,000 ar larger, and is sipnificant even for
1:5,000,000-scale maps of the Urited States, affecting plotted shapes by up to 2/3
percent (see p. 273 On small-scale maps, inclnding single-sheet world maps, the
oblateness is neglignble. Fortnulas for both the sphere and ellipsoid will be dis-
cussed in this book wherever the projection i¢ used or is suitable in both forms.

The Earth is not an exact ellipsoid, and deviations from this shape are eontinu-
ally evaluated. The geoid is the name given to the shape that the Earth would
assume if it were all measured at mean sea level. This is an undulating surface
that varies not more than about a hundred meters above or below a well-fitting
ellipseid, # variation far less than the ellipsoid varies from the sphere, It is
mportant to remember that clevations and contour lines on the Earth are reported
relative to the geoid, nol the ellipsoid. Latitude, longitude, and all plane coordi-
nate systems, on the other hand, are determined wilh respect to the ellipsoid,

The choice of the reference ellipseid used for varicus regions of the Earth has
been influenced by the local geoid, but large-scale map projections are designed to
fit the veference ecllipanid, not the geoid. The selection of constants defining the
shape of the reference ellipsoid has been a major eoncern of geodesists sinee the
carly 18th century. Two geometrie constants are sufficient to defime the ellipsoid
itgelf. They are normally expressed either as {1) the setnimajor and semiminor
axes {or equatorial and polar radii, respectivelyl, {21 the semimajor axis and the
flatlening, or {3) the semimajor axis and the eccentricity. These pairs are directly
interchangeable. [n addition, recent satellite-measured reference ellipsoids are
defined by the zemimajor axis, geocentric gravitational comstant, and dynamical
form factor, which may be converted to Mattening wilh formulas from physics
{Lauf, 1983, p. 6.

In the early 18th century, Izaae Newton and others concluded that the Earlh
should be slightly flattened at the poles, but the French believed the Earth to be
cgg-shaped as the result of meridian measurements within Franee. To settle the
matter, the French Academy of Seiences, beginning in 1735, sent expeditions to
Peru and Lapland to measure meridians at widely separaled latitudes. Thiz estab-
lished the validity of Newton’s conelusions anid led to numerous mevidian measure-
ments in varions locations, especially during the 18th and 26th centuries: between
1799 and 1951 there were 26 determinations of dimensions of the Earth.

The identity of the ellipsold used by the United States before 1544 is uneertain,
although there is refercnce to & flattenimg of 1302, The Bessel cllipsoid of 1841
(see table 1) was used by the Coast Survey from 1844 until 1880, when the bureau
adopted the 1866 evaluation by the Hritish geodesist Alexander Ress Clarke
using measurements of meridian arcs in westorn Euvrope, Russia, India, South
Africa, and Peru (Shalowitz, 1864, p. 117-118; Clarke and Helmert, 1911,
p. 807 -808), This resulted in an adepted cquatorial radius of 6,378,206.4 mand a
polar radius of 6,356,5583.8 m, or an approximate Dattening of 17294, 9787,

The Clarke 1866 ellipsoid (the year should be included sinee Clarke is also
known for ellipsoids of 1858 and 18580) has been used for all of North America until
a change which is cwrrently underway, us described helow.

In 1809 John Fillmore Hayford reported caleulations for a reference ellipscid
from 11.8. Coast and Geodetic SBurvey measurements made entirvely within the
United States. This was adopted by the Intermationzl Union of Geodesy and
Geophysies (IUGG) in 1924, with a flattening of exactly 1/297 and a semimajor
axis of exactly 6,378,388 m, This is therefore called the Intermational or the

11
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TabLE 1.—Sume official edlipsoids in wae throughout the world

Equuteorial Folar Hadius Flartoning
Marti- Date Ranluus, m b meters r Use
meders
GRS S0P 1580 6 578, 137* , THE.S LEBE.ZAY Newly adopred

.5 1429856 NASA; Dept. of Defense,
ol eompanics

Australian .. 1985 G.378,160¢ B06,77T4.7  10288. 255 Australia

Borasovsky . ... 1840 G378245%  6.356,863.0  1298.3* Soviet Unjon

Internatt ... 1924

6,366,7
WGE 2. 172 437313 6,356.7
G

« . ik e i £ 'H a1 5

Havlord ........ 1939 6,378 388 6,356,811.8 1297 Rv;r::;r;}u of the

Clarke.________ 1880 £.37%249.1  (,35G,514.%  1/293.46*"  Most of Afviea; Franoe

Clarke ... 186G G378 206.4% 0,356,084.8% 129493 North America; Philip-
pines

Ay 1830 6,377,5063.4  6,356,256.9 1209932+  Great Britain

Bessel _________1841 G377.397.2 6.356,079.0  1208.15**  Central Europe: Chile;
Indanesia

Eversst! 1830 6,377,276.3 6,336.075.4  1B00.80**  India; Burina; Paki-
stan; Afghan.; Thai-
Land; ote.

Valueg ke ghewn Lo accuraey i saeess sagnificant fipures. Lo reduce eomputatiomal conflswon.
" Maliny, 1973, b 7 Thomas, 1970, po o Arme, 1872, po o, endmap: Colvacorysses, 1967, p, & Workl Geadetie,
1974,
* Geadetic Relvrenes Systern. Ellipsoid derived fram adepted model of Earth. WGS B4 has same dimensions
within accdrasy shuwn.
* Wbl Gedelie System. Ellipanil derived from adopterd modet of Earth.
* Alzo ufrd in Some Beginas with 1allous mexdified conetants.
* Tukwn s axact valuce. The e numsker fwaere pwo are ssterisked s demsed uaing the fellowang relutionships:
b - adl—f1, ¥ = 1-%%a, Whara only ume is aalerishel (for 1972 and 19600, corain phyacal eonstants ot
shown are taken a2 exaet, but fas shown iz Uie adoplad valoe
= Derived from e and b hich are sousded nlf s shown afler conversiona fram lengths in Teat.
t (tther than reyions lizled elzcwhere in culumn, or same sraller areass.

Hayford ellipsoid, and js used in many parts of the weorld, but it was not adoptled
for use in Novth America, In part because of all the work already accomplished
using the older datum and ellipsoid {Brown, 194%, p. 203: Haylord, 1809
There are over a dozen other principal ellipsoids, however, which are still used
by one or mare countries {table 1). The different dimensions de not only result
from varying aceuracy in the geodetic measurements (the measurements of loca-

ticns on the Earth) but the curvature of the Earth’s surface (genid) is not uniform

due to rreeularities in the sravity field
ue Lo repuiarities ih e gravity {ielo.

Until recently, ellipsoids were only filted 1o the Barth’s shape over a particular
enuntry or continent. The polar axis of the reference ellipsoid for sueh a region.
therefore, normally does not coincide withk the axis of the zetual Earth, although
it iz assumed to be parallel. The same applies to the two equatorial planes. The
discrepancy hetwesn centers is usually a few hundred meters at most. Only
satellite-determined coordinate systems, such as the WGS 72 and GRS 80 men-
tinned below, are considered peocentric. Ellipsoids for the latter systems repre-
sent the entire Earth more accurately than ellipsoids determined from ground
measurements, but they do nut generally give the “best fit" for a particular
region.

The reference ellipsoids used prior to those determined by satellite are related
to an “initial point” of reference on the surface to produce a datum, the name
given to a smaoth mathematical surface that closely fits the mean sea-level sur-
face thraughout the area of interest. The “initial point” is assigned a latitude,
longitude, elevation above the ellipsoid, and azimuth to suine poinl, Once a datum
is adopted, it provides the surface to which ground control measurements are
referred. The latitude and longitude of all the control points in a given area are
then computed relative to the adopied ellipsoid and the adopled “initial point."”
The projection equations of large-scale maps must use the same ellipsoid parame-
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ters as those used to define the local dalum; otherwise, the prajections will be
incansistent with the ground control.

The first official geodetic daturm in the United States was the New England Datum, adopted in
1879, 1t was hased on surveys (o the eastern and novtheastern stales and referenced (o the Clirke
Spheroid of 1866, with triangulation station Principio, in Maryland, a5 the origin. The first tranzeonti-
pental are of trangulstion was completed in L0 connecting independent surveys along the Pacifie
Coast. Lo the intervesing years, other surveys were extended to the Gulf of Mexico. The New
England Datwn was thuz extended io the zouth and west without mgjar readjustment of the sureeys
in the east, [n 1901, this expanded network was officially designated the TInited State: Standard

1rriamerulation station Meades Baneh in Hansas, was the oriein, In 1012 alterthe rendatie
TIAMTLALIIN 5UALIGN DEEA0ER RANdh, 1N RANRRS, Wik Lot Mg, #0000, BAET Il geotdlin

prgunizations of Canada and Mexico formally agreed to base their triangulstion retworks on the
U nited States network, the datum was renatmed the North American Datum.

By the rmid-14205, (he probletns of adjusting new surveys to fit into the existing network were
aeyte, Therefore, during the b-year perind 19271432 all available peimary data were adjuzted into a
swstemn naw knowT as the Korth American 1927 Datum, ™" The eoordinates of stalion Meales Ranch
were not changed but the revised coordinates of the netwark eomprived the North American 1927
Dutum (Kationa! Acaydemy of Bvignees, 1871, p. Th

Satellite data have provided geodesists with new measurements to define the
best Earth-fitting ellipeoid and for relating existing coordinate systems to the
Earth’s center of mass. U8, military efforts produced the World Geodetie Sys-
tem 1966 and 1972 (WGE 66 and WGE 72). The National Geedetie Survey is
planning to replace the North American 1927 Datum with a new datum, the
North American Datum 1983 (NAD 83), which is Earth-centered based on bath
satellite and terrestrial data. The UGG i 1980 adopted a new model of the Earth
called the Geodetic Reference System (GRS) 80, from whieh is derived an ellip-
soid which hag been adopted for the new North American datum. As a resvll, the
latitude and longitude of almoest every point in North America will change slightly,
as well as the rectangular coordinates of a given latitude and longitude on a map
projection. The difference can reach 300 m. UL5. mititary apencies are developing
a worldwide datum called WGS 84, also based on GRS 80, but with slight
differences. For Earth-centered datums, there is no single "origin” like Meades
Ranch on the surface. The center of the Earth is in & sense the origin.

For the mapping of other plancets and natural satellites, only Mars i treated as
an ellipsoid. Other bodies are taken as spheres (table 2), although some irregulay
satellites have been treated as triaxial ellipsoids and are “mapped” orthe-
graphically.

In most map projection formulas, some form of the eccentricity ¢ is nsed, rather
than the Qattening £, The relationship is as follows:

=¥ -forf=1-(1-¢)¥
Far the Clarke 1866, #2 is 0.00GTG8658. For the GRS 80, e is 0.0066943800,

AUNILIARY LATETUDES

By definition, the geopraphic or geodetie latitude, which is normally the lati-
tude referred to for a point on the Karth, is the angle which a line perpendicular
tu the surface of the ellipsoid at the gven point makes with the plane of the
Equator. It is slightly greater in mapnitude than the peacentrie latitude, except
at the Equator and poles, where it is equal, The geocentrie latitude is the angle
made by a line Lo the center of the ellipseid with the equatorial plane.

Formulas for the spherical form of a given map projeetion may be adapted f‘or
use with the ellipsoid by substitution of one of various “auxiliary latitndes” i
place of the geodetic latitude. Oscar 5. Adams (1921} developed series and othur
formulas for five substitute latitudes, geni:rally building upon concepts described
in the previeus century. In using them, the ellipsoidal Earth is, in effeet, first
transformed to a sphere under eertain restraints such ag eonformality or equal
areq, and the sphere is then projected onto & plane. If the proper auxihary

13
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Tance 2.—0;‘}'?&&1 ﬁ'yurem fur extrateyresirial mapping

Nbrum Lawvies, et w2, 1883 Davees. Private somman, BsS.) Bading of Meon chieen so shat 2] elvatinn are pad:lve, Radiay <
KL 16 Biend e Ioel of . i libar ptrnspherie pressurs, Maes hae ok pesitive and negatoee clecgtinma

Hquateriut
L rudiuy

[kilemeiora)
FE T R T 1.733.0
BTy U 1< 3 ||

R T T £ 4.+ WY |

U - ;1 I S

Gahleah silelkites of Jupiter

T -3 I

1,564

26831

L1 g Uy U U 2 11,
Satellites of Satarn

TS o oo ee e e e e e e R, 1458

Enceladus__.. . 263

Tethys... . 523

T oA

B oo e e 763

Titan ... 2 aT5

T o= R -+
Sateliites of Uranys

2 T 665

Cmbrie] _ k]

Titams._.. 800

Cheron __ — 815

MIraNdA e mmommoeweremenm e oo rm s 201

Satiellite of Neptune

B 2 " | |

* Alwe podies aes Luken 38 sphered exenpt fior Mard, o allipsnid with coccentricity ¢ of 0101828, Flattening ¢ —
1 -1 — @2 Dnlisced satellites are Laken as trinxial ellipsoids, or mapping (s nut expecied in che near lutore.
Miaax wad FEhceladus have sl heen gveh etlipsngdal parameters, bt woy e mapping.

latitudes are chosen, the sphere may have either true areas, true distances in
certain directions, or conformality, relative to the ellipsoid. Spherical map projec-
tion ferrmulas may then ba used for the ellipsoid soleiy with the substitution of the
appropriate auxiliary latitudes.

It should be made ¢lear that this substitution will generally not pive the projec-
tion in its preferred form. For example, using the conformal latitude (defined
below) in the spherical Transverse Mercator equations will give a true ellipsoidal,
conformal Transverse Mercator, but the central meridian cannot be true to seale,
More involved formulas are necessary, since uniform scale on the central merid-
ian is a standard requirement for this projection as commenly uzed in the ellipsai-
dal form. For the regular Mercator, on the other hand, simple substitution of the
eonformal latitude is sufficient to obtsin both eonformality and an Egquator of
correct scale for the eliipsoid.

Adams gave formulas for all these auxiliary latitudes in closed or exact. form, as
well a5 in series, except for the authalic (equal-area) latitude, which could also
have been given in closed form. Both forms are given below. For improved
computational efficiency using the series, see equations (3—34) through (3—39).
In finding the auxiliary latitude from the geodetic latitude, the closed form may
be more useful for computer programs. For the inverse cases, to find geodetie
from auxiliary latitudes, most closed forms reguire iteralion, so that the series
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form is probably preferable. The series form shows more readily the amount of

deviation {rom the geodetie latitude &. The formulas given later for the individual
cllipzoidal projections ineorporate these formulas as needed, so there is no need to
refer back to these for computation, but the various auxilizry latitudes are grouped
together here for comparison. Some of Adams’ symbols have been changed to
avoid confusion with other terms used in thizs book.

The conformal latitiude x, giving a sphere which is truly conformal in accord-
ance with Lthe ellipsoid (Adams, 1921 p. 18, 84),

x = 2arclan |tan (nid + &2 [(1 — e sin ¢ + e sin g2 | — w2 B-1)

r;“l-r—q:nrh\l {1—esing \* -l _

S Ta
= Zarclan Ul smcbj l\liesmd:} J ' '
— (%2 + Bew24 1 3532 + 281255760 + .. Usin 26
+ (5e%48 + T80 + 897711520 + . . Jsin 44
— (13480 + 461¢%18440 + . . Osin G + (128727161280
+ . .08 Bh - ... (2-2)
with x and & in radians. In seconds of are for the Clarke 1866 ellipsoid,
¥ = & = TO0.0427" sin 2 + 0.9900" gin 4 — C.0017" sin 6 -3

The inverse formula, for ¢ in terms of x, may be a rapid iteration of an exact
rearvangement of (3 —1), sucecessively placing the value of § ealeulated on the left
sitdle nta the right side of (3—4) for the next ecalealation, using x 28 the first
trial ¢ When ¢ changes by less than a desired convergence value, iteration is
stapped,

& = 2 arctan itan (w4 + w21 + e sin W = ¢ sin d)IE — w2 (3—4

The inverse formula may also be written as a series, without iteration (Adams,
1921, p. 85}

b= x - (52 + Beh2d + %12 + 1365380 + ... Ysin 2y
+ (Te*48 + 206240 + S116%11520 + . . | }sin 4y
+ (7120 + 81%1180 ~ . . . ) sin By
+ (427967161280 + . .. )sin 8y + ... (3-5)
or, tor the Clarke 1866 ellipsoid, in seconds,
@ = x + T00.0420° sin 2x 1 1.3850" sin dy - 0.0037" sinty  (3—6)

Adams referred to y as the isomelrie latilnde, but this name is now applied to
Wk, a separate very nonlinear function of &, which is directly proportional to the
spacing of parallels of latitude from the Equator on the ellipsoidal Mereator
projection. Another eommon symbaol for isometrie latitude is 7, It is also useful for
other conformal projections:

g = I jtanimd + &2} [{L—2 sin @)A1 + ¢ sin $]°° (2-7

Because of the rapid variation from ¢, 0 is not given here in series furm. By
comparing equations (3—13 and (3-7), it may be seen, however, that

U= Intan (w4 + x/2} (3-8

s0 that x may be determined from the series in (3—2) and converted to 1 with
(2-8), although there is no partieular advantage over using (3—7h

For the inverse of (3—7), to find & in Llerms of , the choice is between iteration
of a closedd equation (3= 10} and use of series (3~ 5) with a simple inverse of (3-8}

x = Zarclan e¥ - 2 (-9

where ¢ is the base of patural logarithms, 2. 71838,
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For the iteration, apply the principle of suecessive substitution used in (3143
to the following, with (2 aretan e —/2) as the first trial &:

& — 2arctan |e®{1 + e =sin )1 — e sin &} — w2 3—1m
Note that e and e are not the same.

The awthalic latitude [, on a sphere having the same surface arcs as the
ellipsoid, provides a sphere which is truly equal-area (authalic), relative 1o the
ellipsoid:

B = arcsin {gig,) $i-10
where
g = {1 — eZ)sin (1 -~ & sin® b) — (12 In[({1 e sin {1 + esin bl (—-12)
and g, is ¢ evaluated for a ¢ of 80°. The radius £, of Lthe sphere having the same
surface area as the ellipscid is caleulated as follows:
R, = afg,/2) £3-12)

where a is the semimajor axis of the ellipsoid, For the Clarke 186, f{;r is
£,370,497.2 m.

The equivalent seriez for 8 (Adams, 1921 n, H5Y
I'he equivalent zeres for o , BHR)

vt nlils , 2irdad

B=d& - {72 ~ 31eN1R0 4+ 395360 — | . L) sin2d ~ {(17eV60 + 61251260 + . .
sin dg — (383¢748860 + . L sin Gd + L L. (3—14)
where @ and & are in radians. For the Clarke 1866 ellipsoid, the formula in seconds
af ure is:
B = & — 4670129 sin 2¢ + 044947 sin 44 + L0005 sin Gd (8-15)
For & in terms of B, an iterative inverse of {3—12) may be used with the
inverse of (3—113:
- PR R P R
d_>=¢+“ ¢ sin” ) [ LA "':”f’!_ . i,ln(l_e_ﬂ)il(:i—lﬁj
2eosd Ll—e‘ 1 ~e“sin®d 2e \l+esin¢-,ﬂ

where
g =t sin B E-17)
4p is found from (3—12) for a & of ¥°, and the first trial & 13 aresin {§72), used
on the right side of (31— 16) for the calenlation of & an the left side, which is then
used on the right =ide until the change is leas than a preset limit. (Equation
{3—16; is derived from equation {3—12) using a standard Newinon-Raphson itera-
tion.}
To find ¢ from B with a series:

& = B + (693 ~ 41eV180 + 51Te%5040 + . . ) sin 2B

+ (236?‘;"{5{}0 + 261e%3TA + ... }sin 4B (3—18)

+ {T63e"M5360 + ... )sinép + ...
or, for the Clarke 1866 ellipsoid, in seconds,

¢ = B + 467.0127° sin 28 + O.B0807 <in 4B + 0001 sin G (318

The vectifying lafttude p (desighatod w by Adams)., giving a sphere with correct
distances along the meridians, requires a series in any case (0r a numerical inte-
gration which is not shown).

wo= w M2, (3—20)

where
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M = al(l - & - 3e°64 ~ 5e%256 — . . )b — (A5R + Be'i2
+ 45e"1024 + ... ) sin 24 + (15256 + 4571024 ~ .. . ) sin 44
— (35¢%3072 +~ . . s Bd 4+ ... | (3—21)

and M_ is M evaluated for a & of 90°, for which all sine terms drop out. 3 is
the distance along the meridian from the Equator to latitude &, For the Clarke

1866 ellipseid, the constants simplify to, in meters,
M = 111132.08%4¢" — 16216.04 sin 24 + 17.21 sin 44 — 0.02 sin 64 {3-22)
The first coeflicient in (3—21) has been multiplicd by w/180 to use & in degrees,

To use p properly, the radius By of the sphere must be 2M /v for correct scale.
For the Clarke 1866 ellipsoid, #,, is 6,367,399.7 m. A series combining (3—20)
and (3—21) is given by Adams {1921, p. 125}

o= b — (302 — 9,16 + .., ) sin 24— (1He,TI6 — 154732 + . 0
sin 4d — (350,548 — . . . 15N B — (31De UGIZ — . L)
sin &+ L L. (3—-23)
where
g, = [1 = (1 = N2 + {1 - )18 3-24)

and p and ¢ are given in radians. For the Clarke 1866 ellipsoid, in seconds,
p = & = BES.3E0R" sin 24 + (L33TD sin 4 + 00007 sin 6 (3—-23)

The inverse of egualions (3-23) or (3—25), for & in terms of p, given M
will be found useful for several map projections to aveid iteration, since a series
is required in any case {Adams, 1921, p. 128).

b= - 302 — 27 M32 + ... ) sin 2+ (212, %16 — 55e,YR2 + L L)
sindy + (15196 — ... ysin By + (10974512 — L L)
Sin Bu o~ .. {(3-26)

where ¢, I8 found Mrom equation (3-24) and p from (3-200, ut M is piven,
not ealeulated from (3 -21). For the Clarke 1866 ellipsoid, in seconds of are,

¢ = p + 520.3295" sin 2p + 0.7805" gin 4p + 0.0016" sin B (3-2T)

The lollowing closed and exact formulas, from which equations (2-20) through
(3—25) may be ultimately derived, are given as a matter of interest.

M=ol — WM (11 — & sinf 2] d (3-27a3

Equation (3—27a), the integral of (4—19) in a later chapter, may not be exactly
integrated. While Simpson’s rule may be used, it is not as satisfaclory here as
it is in some ather cases {equation (27-8z), ele.). However, (3—27a) may be
transformed to an elliptic intepral of the second kind, for which the arithmetic-
geometric-mean (A.G, ¥.) iteration can provide any desired accuracy within com-
puter programming limitations (Messenger, T.J., pers. commun., 1984; Abram-

........... L2l =P N L= LOINML:,, 2302, A

owitz and Stegun, 1964, p. 598 —-99):
M=a[fb0 - & sin®p)" dd — e sin & cos /(1 — oF sin® 0302]  (3—27h)
The remaining auxiliary latitudes listed by Adams (3921, p. #4) are more useful
for derivation than in substitutions for projections:
The geocentric lutitude By (designated 1 by Adams) referred to in the first
parapraph in this section is simply as follows:
&, = arctan [(1 - €53 tan 4] {3—28)
Ax a series,
dy = & — e sin 20 + (£,22) sin4d — (2.3 sinbg + . .. (3—207%
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TABLE 3. —Corrections fir auxiliory fafttudes on dhe Clarke 1866 elflipyoid

[Cnrrect o wre 2is e n, ruchee than actand valdes, Bor caample, Fke gpesdetis Tavinede ja 50N, vhe 2onformial udode is 50 — 112247 -
40 GE7HL 3T N Far saghirm acigdes, the correctjoie @ne the same, disregardmg e agn of the latiswle, That jy, the canfarmal
Iotilipia for o & of lal. 30 A s 49° 3800 5 o Adens, LEE21]

Geodetic Conformal Auvthulic Bectifying G nbrie Varsnetric
(k) [ —b (=4 [ —d) (=) m—d&)

L iR n' 000" 0" oo 0" HL.G" o
0L9 -1 212 -1 314 -2 20 -1 (HL.9
0.1 =2 0.0 =3 ind -4 003 -2 M.
Al & -4 B1.9 -4 231 — 5 313 -2 554
3.0 —a (.6 -5 $a82 — 7 314 -3 454
hT.2 —& SR.2 -6 4340 - 4 a7 -4 286
071 -6 44.% -7 354 =10 078 -5 4.8
0.5 -7 191 8 144 —10 58,9 -3 294
2.7 =7 40.1 —-& 375 —11 30.2 -5 45.0
40.0 =7 47.0 -8 453.3 =11 40,5 -2 0.2
291 -7 A4 -5 372 —11 28.4 -5 448
57.2 -7 186 -8 143 =1 574 —-h 289
05.4 —6 441 -7 $4.5 -1 05.6 =5 .0

2 533 —3 574 -6 41.8 — 4 34 -4 280
29.0 -4 9.7 -3 3.1 - 7 281 -3 44.8
492 -4 641 -4 222 — 5 49.2 -2 54.9
588 =2 38.4 -2 593 - 3 BBE —1 34.6
012 -1 20.9 -1 31.0 - 2 012 =1 007
.0 0 Ko 0 000 {1 000 O o

where ¢, and & are in radians and e; = €%(2 — &%), For the Clarke 1866 ellipsoid.
n seconds of arc,

d, =4 — T00.44” gin 24 + 1.19" sin 4 (3—30

The reduced or parametric latitnde m (designated 8 by Adams) of a point oh
the ellipsoid is the latitude on a sphere of rading a for which the parallel has the
sumne radius as the parallel of geodetic latitude & on the ellipsoid through the
given point:

....... w 1 sy ' S | Fr 211
T = dUCeLd (11 = & 377 Lail ] LLF Al P
Ac o anviaas
L hay 4 L TRy
T R O T Sy . LR M. A Fo T 1
| — W By BIT L v LE) VL) B 9 WEy Ay Tl o+ | v o> ¥ )

where ¢; is found from aquation (3—24), and v, and & are in radians. For the Clarke
1866 ellipsoid, using seconds of are,

n = ¢ — 350.22" sin 24 + 0.30" sin 44 (3—393)

The inverses of equations (3—28) and (3—31) for & in terms of geocentrie or
reduced latitudes are relatively easily derived and are noniterative. The inverses
ol series equations (3—29) (3-30), (21-32), and {3-33) are therefore omitted.
Table 3 lists the correction for these auxiliary latitudes for each 5 of geodetic
latitude.

COMPUTATION OF SERIES
Most of the trigonometric series approximations throughout this book (for

example, equations (3-2) and (3—-5)) are given In terms of mulliple angles. In Lhis
arrangement, the coefficients converge to zerc more rapidly, but handling by
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computer is normally somewhat slower than that occurring with nested trigono-
metric serics. The latler are squivalent to power polynomials and requive a mini-
muin number of compulations of trigonometric functions from series built inlo the
software of most computers.

The pertinent series in this book fall into one of three forms (3—34), (3—38) and

(3=23%), in which ¢ may be any variable, and fld) is the function:
If fid) = Asin24p + Bsindd + C sln B + D zin B (3-34)

then fid) = sin 2 (A" ~ cos 24 (B’ + cos 2 (0" + D' cos 240 (3-35)

whure
A=A
B =28 — 4D
o =4
n =8D
Ir  fd)=Asind + Bsin3d + C sinbd + DsinTd (3—-38)
then  Ad) = sin & (A" + sl (B + zind (0 + D' sin?dan 3-37
whera
A" =A + 3B + B0 + 10
B = —-48 — 300 — %D
= 16C + 112D
D = —64D
If Ay = A + Beoos 24 + C cos déd + Deos 6d + E cos B {(3-38)

then  figd) = A" + cos2d (A" + cos20 (0 + cos 20 (D + E cos 200 {(5-39)
where

A" =A-C+E

B =8 -3D
€ =20 — BE
¥ =40
k' =8H

These are exact equivalents of the =eries as shown, First the primed coeffi-
ciemts are camputed once for the full set of conversions from the original coeffi-
elents of (3—34), (3—36), or {338}, then sin 26 and cos 24 are computed onee for
gach point in (3—35), or sin ¢ and sin’d once for each point in (3—-37), or cos 2d
ence for each point in (3-39) Computation of fid) may then proceed from the
innermost nest putward with a speed up to 25—35 percent faster than that with
muyltiple-angle zeries.

For more efficient transformation of a great number of points from one set of
eoondinates to another, polynomial approximations for the enlire projection may
be considered. This is normally only practical for a limited region. For techniques
in determining the polynomial coefficients, the rearder is referred to Suyder (19853,
p. 5—6, 15— 24).
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4, SCALE VARIATION AND ANGULAR DISTORTION

Sinee no map projection maintaing correct scale throughout, it is important to
determine the extent to which it varies on a map. On a world map, gualitative
distortion is evident to an eve familiar with maps, after noting the extent (o which
landimysses are improperly sized or gut of shape, und the extent te which meridi-
ans and parallels do not intersect at vight angles, or are not spaced uniformly
along a gwiven meridian or given parallel. On maps of countries or even of eontinents,
distortion may not be evident to the eve, but it becomes apparent upon careful
measurement and analysis.

CISSOS INDICATRTX

Irr 1859 and 1881, Nicolas Auguiste Tissot published a classic analysis of the
distortion which geours onamap projection {Tissot, 1881; Adams, 1919, p. 153 - 163;
Malingr, 1973, p. 64—67). The interseclion of any two lines on the Earth is repre-
sented on the flat map with an intersection at the same or a different angle. At
almost every point on the Earth, there is a right angle intersection of two lines in
some direction (nol necessarily 2 meridian and a parallel} which are also shown al
right angles on the map. All the other intersections at that point on the Earvth will
not intersect at the same angle on the map, unless the map is confermal, at least
at. that point. The greatest deviation from the correct angle is called w, the
maximum angular deformation, For a conformal map, w is zero. (In some texts, 2w
is used rather than w.)

Tissot showed this relationship graphically with a special ellipse of distortion
called an indicatrix. An infinitely small cirels an the Earth projects as an infinitely
small, but perfect, ellipse on gny map projection. If the projection is conformal,
the ¢llipse is g cirele, an ellipse of zero eccentricity. Otherwise, the ellipse has a
major axis and minor axis which are directly related to the seale distortion and to
the maximum angular deformation.

In fipure 3, the left-hand drawing shows a circle representing the infinitely
small eircular element, erossed by a meridian d and parallel ¢ on the Earth. The
right-hand drawing shows this same element as it may appear on a typical map
projection. For general purposes, the map is assumed to be neither conformal nor
equal-arsa. The meridian and parallel may no longer intersect at right angles, but,

4) 81

Friure 3. —Tissdt’s Inlicatrlx. An infinitely small cirele on the Barth (A) appears as an ellipse
un a typical map (8}, On a conformal map, (A} is a cirele of the same or of o different size.



4. BCALE YARIATION AND ANGULAR DISTORTION

theve is a pair of axes which intersect at right angles on both Earth (AB and ©0)
and map (A'B’ und C'D’). There is also a pair of axes which intersect at right
angles on the Earth (EF and GH), but at an angle on the map (8°F" and G'H")
furthest from a right angle. The latter case has the maximum angular deformation
w. Theorientationoftheseaxesissuchthat p + " =907, or, forsmalidistortions, the
lines fall about halfway betweon A'E" and C'D’. The orientation is of much less
interest than the size of the deformation. If o and b, the major and minor semiaxes
of the indicatrix, are known, then

sin {w2) = 2 - blia + M -1

If lines A and & coincide with a and b, in either order, as in cylindrical and conie
projections, the ealeulation is relalively simple, using eguations (4-2) through
(4—6) given below.

SBeale distortion is most often caleulated as the ratio of the scale along the
meridian or along the parallel at a given point to the scale at a standard point or
along « standard line, which is made true to seale. These ratios are called “seale
factors.” That along the meridian 13 called k& and along the parallel, k. The term
“seale error” is frequently applied to (A—1) and (k—1). If the meridians and
parallcls intersect at right angles, coineiding with « and b in figure 3, the scule
fzetor in any other direction at such a paint will fall betweaen i and . Angle w may
be caleulated from equation (4-1), substituting & and & in place of 2 and 5. In
general, however, the computation of w 1s much more complicated, but is impor-
tant for knowing the extenl of the angular distortion throughout the map.

The formulas are given here to caleulate f, &, and w; but the formulas for & and
& are applied specifically to all projections for which they are deemed useful as the
projeciion formulas are given later. Formulas for w for specilie projections have
wenerally been omitted.

Another term cecasionally used m practical map projection anulysiz is “eon-
vergence” or ‘grid declination,” This is the angle between true novth and grid
north (vr direction of the ¥ axis). For regular exlindrical projections this is zero,
for regular conie and polar azimuthal projections it is a simple function of longitude,
and for other projections it may be determined from the projection formulas by
calculys from the slope of the meridian (dy/'dr) at 4 given latitude, It is used pri-
marily by surveyors for fieldwork with topographic maps. Convergence is not dis-
cussed further in this work.

DISTORUION FOR PROJECH [ONS OF THE SPHERE

The formulas for distortion are simplest when applicd Lo vegular ¢ylindrieal,
eonic {or conicul), and polar azimuthal projections of the sphere. On each of these
types of projections, scale is solely a funetion of the latitude.

Given the formulas for rectangular eoordinates « and y of any eylindrical projee-
tion as functions solely of longitude & and latitude ¢, respectively,

ko= dyfRdd) (4-2)
k = dw/(R cos ddh) 4-3)

Given the formulas for polar coordinates p and § of any conic projection as
functions solely of ¢ and A, respectively, where » is the cone constant or ratio of 6
to {h — Aph

=
1

= —dpiRdd) {4-4)
= upHR cos &) (4-5)

Fnd
|
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Transverse Mercator Projection

FIoNRE 4, —Distortion patterns on eommon eonformal map peojections, The Transverse Merveator and
the Sterenpraphic ave shown with reduction in seale along the sentral rmeridian or at the center of
projection, respectively, If there is no reduction, there is a single line of truy soale along the
central meridian on the Traneverse Muercator and only a point of true soale at the center of the
Sterengraphic. The jHustrations are congeptua] rether ehan precisy, simge such base map projec-

tion is an identical conie,
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Lambert Conformal Conic Projection

Fisine: 4. —Contnued,
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T o ———

/ Y e - o

U]Jquue S“Eereugraphic P}njectiun’

FiGusk 4. —Cantinued

Given the formulas for polar eoordinates p and 8 of any polar azimuthal projec-
tion as functions solely of ¢ and A, respactively, equations {4 —4) and {4—5) apply,
with n equal Lo 1.4:

o= —dpiRdé 4-4
k = p/tR cos ) 4—8)

Equations (4—4) and {4—8) may be adapted to any azimuthal projection cen-
tered on a point other than the pole. In this case k' is the scale factor in the
direction of a straight line radiating from the center, and & is the scale factorin a
direction perpendicular to the radiating line, all at an anguiar distance ¢ from the
center:

i dpilRdde) (4T
E' = p/lR sin ¢} (4—8)

An analogous relationship applies to scale factors on obliyue eylindrical and
conic projections,

For any of the pairs of equations from {4-2) through {4-%}, the maximum
angnlar deformation w at any given point is calealated simply, as stated above,

sin (w/2) = b — kIR + k) (4—9)

where 1h—#&l signifies the absolute value of (h—k), or the positive value without
regard to sign. For equations (4—7) and (4—8), A" and &’ are used in (4-9)
instead of £ and k. respectively. In figure 4, distortion patterns are shown for
three conformal projections of the [Inited States, chonsing arhitrary lines of true
scale.

For the general cage, inciuding all map projections of the sphere, rectangular
sogrdinates » and y are often both funetions of both ¢ and &, so they must be
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partially differentiated with respeet to both & and A, holding A and ¢, respectively,
constant. Then,

o= (1R [(3xidd¥ + (aglap)y=] (4=10)
b = [LER cos 4] [{dxidh® + (dyran)2]iz {4=11}
a' = th% + k% &« 2Rk sin 0°ne (4—12)
B = (h® + k% - 2hi sin gz (4-13)

where
sin 8" = [{ay/dd) (AXIFR) — (dxidd) {ayrah) B2k cos &) {4—14}

0’ is the angle at which a given meridian and parallel interseel, and 2’ and &' are
convenient terms. The maximum and minimam scale factors o and &, at a given

hnlﬂf may be epaleulated thus:
Ly 1 ha

....... P Lagh |

a={g + b¥W2 (4-12a}
b= {a’' - b'y2 td—13a)
Equation {4—1) simplifies as follows for the general case:
sin {w2) =0'/a’ 4—1a)
The areal scale factor s
= kit sin & 4--15)

For speeial cases:

{11 &« = ki if meridians and parallels intergect at right angles (8" = 90

{2)h = &k and w = O if the map is conformal;

{8y & = L’k on an equal-area map if merlilians and parallels intersect at right
angles.”

DISTORTION FOR PROTECTIONS OF TTIE ELLIPSUIY

The derivation of the above formulas for the sphere utilizes the basic formulas
for the length of & given spacing {uquall}f 17 or 1 radian) along a given meridian or a

cmamr Tl Mhn Bl dame Mrvearrlog pevs the lowth oF o vadine aFTosttadda 77 1
glk!‘_’ll p:‘lld.llﬂl 1 lU]IU\‘I‘IJl.l:_’, AV EdILiAs gl‘rL LI IEIIngl i A Tadlan o0 mtylie L f

arl of lungitude (L) fur the sphere:

Ly = R (4-16)
L, = Rcos ¢ 4-17}

where R is the radius of the sphere. For the length of 1° of latitude or longitude,
these values are mulliplied by w/180,

The radius of curvature on a sphere is the same in all directions, On the
ellipsuifl, the radiug of eqrvature varies at each point and in each direction along a
given mevidian, except at the poles. The radius of eurvature &' in the plane of the
meridian is caleulated as follows:

B = all-efl—e® sin? p) (4—18)

IMaling (19773, . 4D-Ri2 s helpful decivations of these equatinne in fess condensed formy, Thete are typo-
praphival erroes in aeverpl of the cquatione 7w Maling, bt Eese may e detected by Gibuwing the detivation clasely,
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Tasry d.—Lenagths, fn meters, of [°of latitude ghd longftude on two effipzoids of referonce

Latitude Clarke 1866 ellipsoid International {Hayford) ellipanid
(&) 1° Iat. 1° long. 17 latk. 17 long.
M . 116994 40 L111,700.0 0.0
By _______________ 1116407 947350 111,641.4 9,735.0
B mmeeee— 1116850 19,894 4 111,660.5 19,394 5
T e rmeeeam 11,6224 28903 3 111,624.0 28,9055
T e 1115654 45,1582 111,567.4 38,188 .5
66 _______ e 1ML 48T 471775 1114977 A4T17749
60 . ____ 11,4145 58022 111,417.1 55,8028
@ 111,324.8 63,9596.4 11,3279 63,9973
o e 111,229.3 71,895.] 111,233.1 T1,699.2
ah 111,130.% T8 8402 111,135.4 78,8505
oo 1110327 85,3496.1 11103738 ab,397.7
35 .- 110,937.6 91,2903 110,943.3 Y2922
0 110,848, U6, 488,42 110,854.8 Yh,490.4
2 114, TH8.0 10049519 10,7749 100.954.53
20 11064927 10:4,648.7 110,706.0 104,651.4
15 e = 1108425 107.551.9 110,850 2 LU7,654.8
W e L6011 1w, 640.7 1105041 1H3,643.7
o 110.575.7 1 10,5549 4 110,583.9 L 103,903.1

0 ___ _ 10,5472 11,3207 110,675.5 111,323.9

The length of a radian of latitude is defined as the cireumference of a cirele of this
radius, divided by 2w, or the rading itself. Thus,

Ly = a{l—e"p{1—e” sin® )™ 4-19

For the radius of curvature & of the ellipsoid ih a plane perpendicular to the
meridian and also perpendicular to a plane tangent to the surface,

N = ai{l—é sindg)® (4—20)

Radius & iz alzo the length of the perpendicular to the surface from the surface
to the polar axis. The length of & radian of longitude is found, as in equation
{4~1T), by multiplying N by cos &, or

Lo = o cos &/(1-2° sintgi 4-2)

The lengths of 17 of latitude and 1° of longitode for the Clarke 1366 and the Inter-
national ellipsoids are given in table 4. They are found from equations (4 —19) and
(4=21), multiplied by /180 to convert to lengths for 1°,
When theze fortnulas are applied to equations (4—2) through (4 —6), the values
of £ and k& for the ellipsoidal forms of the projections are found to be as follows:
For eylindrical projections;

b = dyi(R'dd)

= (1-e* sin“g)* dyail —e*)db] (4—22)
v k= dnKN cos ddX)
= {1—¢” sin® $)* dzin cos b X)) (A-23
For conic projections,
k= —dp/i'ddd

—(1-&* sin®$ P dpilafl - eidd] {4-24)
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k= npAN cos @)
= npfl—e? 5in® $)17Ma cos &) (4—25)

For polar azimmthal projections,

h = —(1-¢®sine* dpil a1~ e*)d o] (4-24)

ptl—¢? sin®)ie cos &) {4-26)

o

Equations (4—7) and (4—8) do not have ellipsoidal equivalents. Eqguation (4-9)
remains the same for equations (d4—22) through (4—26)

sin (w/2) = h—klih+ k) {4~8)

For the general profection of the ellipsoid, equations {4—10) and {4—-11} are
similarly modified: ~

b= {aeiadl + (Syad)®](1—e” sinZe 2 a(l — e 4-27)
ko= [(awian)® + (NP1~ ef sin®d)2Ha cos &) (4—~28)

Equations (4—12) through (4—15), {4—12a), (4—13a), and {4—13), listed for the
sphere, apply without change, except that R® becomes a*1—e®){(1—e%5in*4)® in
{d4—14).

Specific calculations are shown during the discussion of individual projections.

The importance of using the ellipseid instead of the sphere for designing a pro-
jection may be quantitatively evaluated by determining the ratio or product of
some of the elementary relationships. The ratio of the differential length of a
radian of Jatitude along a meridian on the sphere to that on the ellipsoid is found
by dividing the equation (4—16) by eguation {(4—18), or

Cp = R{1-&% sin® $P4afl—e%] (4—29)

A related ratie for the length of a radian of longitude along 2 parallel on the

sphere to that on the ellipsoid is found by dividing equation (4—-17) by equation
{4-21), m

C, = R(1-¢ sin” $)¥a (4—380)

From these, the ineal shape factor C; may be found as the ratio of {4—29) to
{4-303:

Cy = CiCy = (1-¢" sin® (1 —£%) t4-31)
and the area factor C, is their product:
Cy = CwCp = R%1-¢% sin® )¥1a%(1-¢¥)] (4-32)

If & and k are caleulated for the spherieal version of 2 map projection, the actual
seale facters on the apherieal version relative to the ellipsoid may be determined
by multiplying & by Cy; and & by €. For normal cylindrical and conic projections
and polar azimuthal projections, the conformality or shape factor may be taken as
hik (not the same as w) multiplied by C,, and the area scale factor kk may be
multiplied by €.

Except for ', which is independent of B/, £ must be given an arbitrary value
such as R:‘, (see equatmn (3—13%, Ru (see second sentence following equatmn

fwrean the maior and mmor semiaxes g
LWEEN LS M40l and INTNOY SENlaxes €
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TarLE b.—EMipseidal correction factors o apply to spherical projections based on Clarke 1966

ellinsoid

Lat, (N&S) .t c, c, c”
b L) (0.99548 0.99548 1.00000 0.99089
R B9s17 J99RT1 1.00046 59189
60 - O8R03 99633 1.00170 09437
45 . 1.00058 89718 100341 99775
3N _ 1.00313 99802 100511 1.00114
b 1.00459 99864 1.00636 1.00363

N 100568 99887 100681 1.00454
Multiply by** h k Ak hi

YO = LO0%ar 48,24 lat. and C, = 1.0for 355 lat, Values of C,,, C, and C, are hased on & radius of 6,370,597 m for

thi sphere wied in the gpherical map projeciion.
** o= acate Guetor along meridian,

k= seale faslor along parablel of latilude,

For normal cylindrical and conic projections and polur azimuthal projectienu:

ik = shape factor,

Ak = ared scale fartor.

For example, if, on a sphericat Albers Equal- Ares Conic map projection baued en sphers of radius 6,370,997 m,
A = LOONEZ wndde = 03368 atlat, 45° M., 1his map haa an ares scale fartor of 1LODII2 > 0.92868 » 00 89775 = (.99775,
refitive to the correct area scale for the Clarke 1964 ellipsoid. IMthe ellipavidal Albers were voed, this fector woold e

and b of the ellipsoid. Using Ry and the Clarke 1866 ellipsnid, tahle § shows the
magnitude of these corrections. Thus, a co nfor'mal prﬁjectmn baqed 0n the sphere
bac the correct shape ab the poles r..“. tha id Tt tla rluaad £ o
L& LIIE QU Iece S0l lJ #L Liie LTS LEIL bIlC EJIIIJ-’;"UJU, Uul.. I.J.IB -auapc li! (IUUUI- e Ui

i
1 percent {0.00681) in error near the Equator (that is, Tissot’s Indieatrix iz an
ellipse with minor axis abeut %, of 1 percent shorter than the major axis at the
Equator when the spherical form is compared to the ellipsoid).

A map extending over a large area will have a scale variation of several pereent,
which far oulweighs the sipnificance of the less-than-1-percent variation between
sphere and ellipsoid. A map of a small area, such as a large-scale detailed topo-
graphic map, or even & narrew strip mep, has a small-encugh intrinsic scale
variation to make the ellipsgidal correction & sipnificant factor in accutate mapping;
e.g., 8 7.5-min quadrangle normally has an intrinsic scale variation of 0.0002
percent or less.

CAUGHY-RIEMANN AND RELATED EQUATIONS

LRelatively simple equations provide necessary and sufficient conditions for any
map projection, spherical or ellipsoidal, to be conformal. These are called the
Cauchy-Riemann equations after two 19th-century mathematicians, The concept
had been devised, however, during the 18th century. These eguations may be
written as follows:

axion = aylai {4-33)
A = —dglar (4-34)

where i i the isometric latitude defined by equation (3—7) for the ellipseid, or
with ¢ = 0 in the same equation for the sphere. In the latter case, the above
equatiens simplify to

dxfens ¢ drh) = dyldd {4-—33)
defdd = ~dy(cos ¢ ard {4—36)

For the ellipsoid, equations {4-33} and (4-34) may be writlen
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axifeos & ak) = (1—¢ sin® &) oyl (1— &) ag] (4-37)
(1 -2 sindarT{l—e5ad] = —ayicos ¢ aX) (4-38%)

By substituting »’ in place of » and y' in place of ¢ in equations (4~33) and
{1—24), conditions are met for conformal transformation of one set of rectangilar
coordinates (a", ¥} to another (G, 3. That is,

axidx’ = ayoy’ {439}
gy’ = —dyidxt {4—40)

In this case, if (x', ¥') represents the transformation of the sphere or ellipsoid
onto a flat gurface, this transformation must also be conformal. The double trans-
formation is used in a later chapter for the Modified-Stereapraphic Conformal
projections,

Analogous velationships may be obtained for equal-area transformations. The
following eguation applies to the ellipzoid:

(B2/an) (Ay/add — (Axf8d) (ayah) = a? (1~¢f) cos il - sinfd)®  (4-41)
For the sphere, this simplifies to
(Geefon) (Apidd) — (Do) (Jyien) = Ricos & (4—42)

For spherical pseudocylindrica) equal-area projections, such as the sinusoidal, the
parallels are straipht lines paraliel tu the Equator, so that (8w/8x) = 0. For the
many projections in this category, equation (4—-42) simplifies further to

x = R* h vos dridyiadd) (4—43)

in which ¥ can be any function of 4 for a chosen spacing of the parallels.
An equal-area transformation from one set of rectangular coordinates to anather
must zatisly the following relationship:

(aufax’) (dyfdy’l — (Bafdy’) Loyhdx') = 8§ (4—44)

where S is the area ratio of the (2,3} map to the (", ¥') map.

Most of the above equations {4—423) through (4 —44) are difficult to use to derive
new projections, although Lthey may be used to determine whether existing projee-
tions ave conformal or equal-area. Fquation {4-—43), however, may be fairly read-
il¥ used to devize new projections which are psewdocylindrical and equal-area.
Equation (26—4), discussed later, is a generval equation satisfying (4—-39 and
(4—40), although it is not the only such equation. Theve iz no known general
equation satisfying equation (4—44) except in a very elementary way.
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5 TRANSFORMATION OF MAP GRATICULES

As discussed later, several map projections have been adapted to showing some
part of the Earth for which the lines of true scale have an orientation or loeation
dillferent from that intended by the inventor of the basic projection. This is
equivalent to moving or transforming ihe gralicule of meridians and parallels on
the Earth so that the “north pole” of the graticule assumes a position different
from that of the true North Pole of the Earth, The projection for the sphere may
be plotied using the origimal formulas or graphical constiuetion, bul applying
them to the new praticule orientation. The actual meridians and parallels may
then be plotted by noting their relationship on the sphere to the new graticule,
and landforms drawn with respect to the aclual geographical coordinates as usual.

In effect, this procedure was used in the past in an often entirely graphical
manner. It required considerable care to avoid eumulative ervors resulting from
the double plotting of graticules, With computers and programmable hand
caleuiators, il now ean be a relatively routine matter to caleuiate directly the
rectangular coordimates of the actual graticule in the translormed positions or,
with an aulomatic plotter, to obtain the transformed map directly from the
eomputer.

The transformation most notably has been applied to the azimuthal and cylindri-
cal projections, but in a few cases it has been used with conte, preudocylindrical,
and other projections. While it is fairly straightforward to apply a suitable trans-
formation to the sphere, transformation is much more difficult on the ellipsoid
because of the constantly changing eurvature. Transformation has been applied to
the ellipsoid, however, in important cases under certain lmiting eonditions.

If either true pole iz al the center of an azimuthal map projection, the projec-
tion is called the polar aspect. If a point on the Equator is made the center, the
projection is called the equatorinf or, less often, meridian or meridional aspect.
If some other poinl is central, the projeciion is the obfigue or, cccasignally,
korizon aspect.

Far cylindrical and tost other projections, such transformations are called
tramseprse or obligue, depending on the angle of rotalion. Intransverse projections,
the true poles of the Karth lie on the equator of the bazic projection, and the poles
of the projection lie on the Equator of the Earth. Therefore, one meridian of the
true Earth lies along the equator of the basic projection. The Transverse Merca-
tor projection is the bust-known example and is related (o the regular Mercator in

this manner. ¥or obiigue eylindrical projections, the true poles of the Rarth lie
somewhere between the poles and the cquator of the basic projection. Stated
another way, the equator of the basic projection is drawn along some great cirele
roule olher Lthan the Equator or a meridian of Lthe Earth for the obligue eylindrical
aspect. The Oblique Mercator is the most common example. Further subdivisions
of these agpects have been mace: for example, the trunsverse aspect may be first
transverse, second transverse, or transverse oblique, depending on the positions
of the true poles along the equator of the basie projection (Wray, 1974). This has
no significance in a transverse cylindrical projection, sinee the appearanee of the
map does not change, but for pseadocylindrical projections such as the Sinusocidal,
il makes a difference, if the additional pomenclalure is desired,

To determine formulas for the transformation of the sphere, two hasic laws of
spherical trigonometry are used. Keferring to the spherical trigngle in figure 5,
with three polnts having angles A, B, and € on the sphere, and threc great circle
arcs @, f, and ¢ connecting them, the Law of Sines declares that

sin Afsin g = sin B/sin b = sin Clsin ¢ {b=1}

while by the Law of Cosines,
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C (N.Pole)

Frouke 5.—&pherical triangle.

cos ¢ = 003 beos @ + Sin b sinaeos C {5-2)

If ¢ is placed at the North Pole, it beeomes the angle between two meridians

extending to A and £, If 4 is taken as the starting point on the sprhere, and B the

second point, ¢ is the preat circle distance between them, and angle A is the

azimuth Az east of north which point B bears to point A. When latitude &, and

longitude A, are used for point A, and ¢ and & are used for point B, egquation {5-2)
becomes the following for great cirele distanee:

cos e = sin gy &in ¢ F cos &y c0s P oend {A—hy) {a—3)
While (5-3) is the standard and simplest form of this equation, it is not aceu-
rate in practiesl computation for values of ¢ very close to zero. For such cases, the
equation may be remrranged zz follows (Sinnott, 1984):
sin (e/2) = Jsinf(d—$. 2] + cos &, cos & sind [( a2 (5-3a)
This equation is also exact, and is very accurate it praetice for values of ¢ from 0
to nezrly 180°,
Equation (5—1) becomes the followinyg for the azimuth:

sin Az = 8in (A=) cos dfsin ¢ {a~4)

ar, with some rearrangement,

L)

05 Az = leos &y 8in b — sin &) eos b cos (A —i, )]0 ¢ {5—da)
b b R =1 T 3 hisa L Wt .

o sliminatine -
ar, giaminaty

g .
tan Az = cos & sin {h=h,)eos g 5in = sin dy cos @ eos (A=h)]  (5-db)

Either of the three equations (5—4) through (5—4b) may be used for the azimuth,
depending on the form of equation preferred. Equation (5—4bY is usually preferred,
sinee it avolds Lhe inaccuracies of finding an aresin near %0° or an arecos hear °,
Quadrant adjustment as described under the list of symbaols should be employed.
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tndes and latitudes (A and ). Selid lines show the transformed longitudes and katitudes (' and
$'} from which rectangular coordinates {z and y) are determined according to map projection
used.

In order to find the latitude ¢ and longitude & at a given arc distance ¢ and
azimuth Azx east of north from (b ) the inversa of e quatignb 5—3 and {(5—dhy

a sl U Ll z O, Ay i

may be used:
¢ = aresin (sin ¢y cos ¢ + ens ¢y sin € cos Az) (b=a)

h =Xy + arctan [sin ¢ sln Az/{cos ¢y cos ¢ — sin ¢y sin ¢ cos A2)] 5—4)

Applying these relationships to transformations, withont showing zome inter-
mediate derivations, formulas (3—7) through (5—B8b) are obtained. To place the
North Pole of the sphere at a latitude o on a meridian B east of the central mericl-
jan (&' =0) of Lhe basie projection (see fig. 6), the transformed latitude ¢* and
transformed longitude A" on the basie projection which corresponid to latitude &
and longitude X of the spherieal Earth may he caleulated as follows, letting the
central meridian Ay, correspond with X' =B

sin ¢’ =sinasind — eosa cos b eos (A — Ag) (5—
sin (A" — Y= pog & 3in l‘l — iMoo & FR—&
sin (A Bi=cosd hipicos & (a—gl

or
coz (A — B) = [sin @ eos g eos (b — X)) + cos @ sin dlieos b’ (5-8a)
or

tan I — B) = coz $ sin (A — A, sin o cos doeos (h — Ay + cos o sin )
{6—&b)
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Equation {3 —8b) is generally preferable to (5—8) ar (5—8a) for the reasons stated
after equation (5—4b).

These are general formulas for the oblique transformation. (For azimuthal pro-
Jections, B may always be taken as zero. Other values of § mereiy have the effect
of rotating the X and ¥ axes without changing the projection. )

The inverse forms of these equations are similar in appearance. To find the
gevgraphic egordinates in terms of the transformed enordinates,

5in ¢ = sinesind” + cosacosd cos(h" — @) (B—4)
8N (A — Ag) = cog &' sin (A — Ploos & 3-1M
ar
cos (A — Ag) = [5in o cos o' cos (A" — B) — o8 o sin &' eos & (5--10a)
nr

tan (A — kgl = cos b’ sin (& — BMIsin o cos b’ cos (A" — B) — cos « sin & 1{65-10b)

with equation (5= 10b) usoally preferable to (5—10) and (5—10a) for the same
veasons as those given for (5—4b).

If &« = 0, the formulas simplify considerably for the transverse or eguatorial
aspeets. It is then more convenient to have central meridian &, coincide with the
equator of the basic projection rather than with its meridian B. This may be
aecomplished by replacing (A — Aq) with (X — &; — 909 and simplifying.

If B = 0, sothat the Lrie North Pole is placed at (X = 0, &' = 0}

Bin &' = —e¢os & sin (b — hyd (h—11)

cos &' = sin &1 — cos® & sin®ih — A (5—123
or

tan &' = — ¢o5 (A — A,)tan & {H—124)

If g = 90, placing the true North Pole at (A" = 90°, & = 0):

sin &' = — cos b Sin (h — Ay (5=13
coE A" =cns & cos (A — A1 — cas® sin®h - 0] (5-14)

or

tan A" = tan dfeos (A — gl (o—1da)

The inverse equations (5—9) through (5= 10b) may be similarly altered.

Ag stated earher, these formulas may be divectly incorporated into the formu-
lzs for the rectangular coprdinates x and i of the basie map projection for a direct
computer or caleulator cutput. If only one or two projections are involved in a
package, this may be more efficient. For such transformations of several projec-
tions in one software package, it is often easier to calculate the transverse or
abligne projection ¢cpordinates by Orst caleulating &' and A’ for each point to be
plotted (vsing 2 general subroutine) and then caleulating the rectangular coordi-
nates by inserting & and &' into the basic projection formulas. In still other cases,
a graphieal method hag been used.

While these formulas, or their equivalents, will be incorporated into the formu-
las given later for individual oblique and transverse projections, the voneept
shonld help intervelate the various aspects or types of centers of a given projec-
tion, The extension of these concepts to the ellipsoid is much more involved teeh.
nically and in same cases reguires approximation. General discussion of this is
omitied here.
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6. CLASSIFICATION AND SELECTION OF MAP PROJECTIONS

Because of the hundreds of map projections already published and infinite mum-
ber which are thecretically possible, considerable attention has bean given to
classificalion of projections so Lhat the user is not overwhelmed by the numbers
and the variety. Generally, the proposed systems classily projections on the basis
of property {equal-area, conformal, equidistant, azimuthal, and so furth), type
of construction (cylindrical, conical, azimuthal, and so forth), or both. Lee {1844)
proposed a combination:

Conical projections
Cylindric
Pzeudoeylindric
Conie
Pseudoconic
Polyeonic
Azimuthal

Perspective
Nonperspective

Noncomical prajections
Retrpazimuthal (not discugsed here)
Orthoapsidal (not discussed herve)
Miscellaneous

Each ol thege categories was further subdivided into conformal, authalie (equal-
area), and aphylactic (neither conformal nor authalic), but some subdivisions have
no examples. This elassifieation is partially used in this book, as the section head-
ings indicate, but the headings are influensed by the muwmber of projections
deseribed in each category: Pseudocylindrical projections are included with the
“miscellaneous” group, and “space map projections” are given a separate section.

Interest has been shown in some other lorms of classification which are more
suilable for exiensive treatises. In 1982, Waldo K. Tobler provided a simpie but
all-inclusive proposal {Tobler, 1962). Tobler's dassification involves eight eate-
gories, four for rectangular and four for polar coordinates. For the rectangular
coordinates, category A ineludes all projections in whick both » and v vary with
both latitude & and longitude A, category B includes all in which ¥ varies with
both ¢ and » while @ is only a fanction of A, C includes those projections in which
& varies with both & and & while y varies only with &, and 73 is for those in which
x is only a function ol A and ¥ only of 4. There are very few published projections
in eategory &, but C is usually called pseudocyiindrical, I? is cylindrical, and A
includes nearly all the vest which do not fit the polar coordinate categories.

Tobler's categorizs A to O for polar eoordinates are respectively the same as
those for rectanyular, except Lthat radius o is read for y and angle 8 is read for .
The regular conie and azimuthal projections fall into categary £}, and the pseudo-
conical (such as Bonne'sy into . Catepory A may have a few projections like A
(rectangular) for which polar coordinates are more éonvenient than rectangular.
There are no well-known projections in £ (polar),

Hans Maurer’s detailed map projection treatise of 1935 introruced a “Tinnasan”
classification with five families (*true-circular,” “straight-symmaetrical,” “eurved.
symmetrieal,” “less regular,” and “corbination grids,” to quote a translation)
subdivided into branches, subbranches, classes, groups, and orders (Maurer,
1935). As Maling says, Maurer's system “is only uzeflul to the advanced student
of the subject,” but Maurer aliempts for map projections what Linnaeus, the
Swedish botanist, aceomplished for plants and animals in the 18th century (Maling,
1973, p. 98). Other approaches have been taken by Goussinsky (1961) and Starostin
(1981).
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SUGHLESTED PROJECTIONS

Following is a simplified listing of suggested projections. The recommendation
can be divectly applied in many cases, but other parameters such as the central
meridian and parallel or the standard parallels must also be determined. These
additional parameters are often chosen by estimation, but they can be chosen by
more refined methods to reduce distortion (Snyder, 19854, p. 83—109), In other
cases @ more complicated prujection may be chosen becanse of special features
in the extent of the regivn being mapped; the GS50 projection (50-State map)
deseribed in this book 13 an example. Some commonly used projections are not
listed in this summary because it is felt that other projections are more suitable
for the applications listed, which are not all-inclusive. Some of the projections
listed here are not diseussed elsewhere in this book.

Region mapped
1. World (Earth should be treated as a sphere)
A. Conformal (pross area distortion)
(1) Constant seale along Equator
Mercator
(2) Constant scale along meridian
Transverse Mercator
(33 Constant scale slong ohlique great cirele
Oblique Mercator
{4y Entire Earth shown
Lagrange
August.
Eisenlohr
B. Egual-Area
(1} Standard without interruption
Hampmer
Mollweide
Eckert IV or VI
MeBryde or McBryde-Thomas variations
Boggs Eumerphic
Sinusoidal
misc. pseudoeylindricals
(2) Interrupted for land or ceean
any of above except Hammer
Goode Homolosine
{2) Oblique uspect to group eontinents
Briesemeister
Oblique Mollweide
(. Equidistant
(1) Centered on pole
Polar Azimuthal Equidistant
(2) Centered on a city
Oblique Azimuthal Equidistant
D. Btraight rhumb Lines
Mercator
E. Compromise distortion
Miller Cylindrical
Robinson
2. Hemisphere (Earth should be treated as a sphere)
A. Conformal
Stereographic (any aspect)

3
&
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B.

C.
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Equal-Area

Lambert Azimuthal Equal-Area (any aspect)
Equidistant

Arzimuthal Equidistant (any aspecl)

D. Global look

Orthographie (any aspect)

3. Continent, acean, or smaller region (Earth should be treated as a sphere for

larger continents and oceans and as an ellipseid for smaller regions, especially
at a larger scale)

A&, Predominant east-west extent

o

=

E.
F.

G.

(1) Along Eguator
Conformal: Mercator
Equal-Area: Cylindrical Equal-Ares
{Z) Away from Equator
Canfarmal: Lambert Conformal Conie
Equal-Area: Albers Equal-Area Conic
Predominant north-south extent
Conformal: Transverse Mercator
Equal-Area; Transverse Cylindrical Equal-Area

Prodominant ahlicus sytont (for ayamnle: Narth A morien
CEEROMMAnL §oGua exlent (jor exampiel NGrin AmMera,

Atlantic Ocean)

F P SRS PR 2] N U, T T
UTHUL LA VLI UE L Caill

Equal-Area: Oblique Cylindrical Equal-Area
Equal extent in ali directions (for example: Eurape, Airica, Asia, Ausiralia,
Antaretica, Pacifie Ocean, Indian Ocean, Aretic Ocean, Antarctic Ocean)
(1) Center at pole
Conformal: Polar Stereographic
Equal-Area: Polar Lambert Azimuthal Equal-Area
(2) Center along Equator
Conformal: Equatorizl Stereographic
Egual-Area: Equatorial Lambert
Azimuthal Equal-Area
{3) Center awsy from pole or Equator
Conformal: Obligue Stereggraphic
Equal-Avea; Obligne Lambert
Azimuthal Egual-Area
Straight rhumb lines (principally for oceans)
Mervator
Straight great-cirele rogtes
Gnomonie (for less thar hemizphere)
Correct seale along meridians
(1) Center at pole
Polar Azimuthal Equidistant
(2) Center along Equator
Plate Carrée (Equidistant Cylindrical)
(3) Center away from pole or Equator
Equidistant Conic






CYLINDRICAL MAF FHOJECTIONS
CYLINDRICAL MAF PROJEGTIONS

The map prajection best known by name is certainly the Mercator—one of the
cylindricals. Perhaps easiest to draw, if simple tables are on hand, the regular
eylindrical projections consist of meridians whieh are equidistant parallel straight
lines, erossed at right angles by straight parallel lines of latitude, generally not
cquidistant. Geometrically, cylindrical projections can be partially developed by
unrolling a cylinder which has been wrapped around a globe representing the
Earth, touching at the Equator, and on which meridians have been projected
from the center of the globe {fig. 1). The latitudes can also be perspectively pro-
Jjeeted onto the cylinder for sore projections (=uch as the Cylindrical Equal-Area
and the Gall), but not on the Mercator and several others. When the eylinder is
wrapped around the globe in a different direction, so that it is no longer tangent
along the Equator, an oblique or tranaverse prajection resvlts, and neither the
meridians nor the parallels will generally be straight lines.
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7. MERCATOR PROJECTION
SUMMARY

» Cylindrical.

» Conformal.

» Meridians are equally spaced straight lines.

s Parallels are unequally spaced straight lines, closest near the Equator, eutting
meridians at right angles

Seale is true along the Equator, or along two parallels equidistant from the

F.avuator
Hklu“kul -

« Loxodromes (rhumb lines) are straight lines.

Kol perspective.

Poles are at infinity; great distortion of area in polar regions.
s [zed for navigation.

» Presented by Mercator in 1589,

HISTORY

The well-known Mercator projection was perhaps the first projection to be
regularly identified when atlases of over a century ago gradually began to name
projections used, a practice now fairly commonplace. While the projection was
apparently used by Erhard Etzlaub (1462—1532) of Kuremberg on a small map
on the cover of some sundials constructed in 1511 and 1518, the prineiple remained
ohscure until Gerardus Mercator (1512—94) (fig. 7} independently developed it
and presented it in 1569 on a large world map of 21 sections totaling about 1.3 by
2 m (Keuning, 1955, p. 17—18).

Mercator, born at Rupelmonde in Flanders, was probably originally named
Gerhard Cremer (ov Kremer), but he always used the latinized form. To his
contemporaries and to later scholars, he is better known for his skills in map and
globe making, for being the first to use the term “atlas” to deseribe a collection

of maps in a volume, for his calligraphy, und for first naming North Americz as

sueh on a map in 1528, To the world at large, his name is identified chiefly with
his projection, which he spacifically developed to aid navigation. His 1369 map is
entitled “Nova et Aucta Orbis Terrae Deseriptio ad Usum Navigantium Ermendate
Accommodata {A new and enlarped description of the Earth with corrections for
use in navigation}.” He described in Latin the nature of the projection in a large
panel covering much of his portrayal of North America:

* % * In this mapping of the world we have [desired] to spread out the surface of the globe inta a

plane that the places shall everywhere by properly located, not only with respect ti their true direc-
tioh and distance, one from ancther, but alio in aceordanee with their due Ion;a'itudo and latitude; and

further, that the S‘ﬁapl. of the lands, as u|1_3- JPPERT Oni the LIUI.IE shiall bwe [rEsery al ws {ar as pub.-:mrr:
Fur this there was feeded a new arrangement and placing of mendians, so that they shall become
parallels, for the maps hitherto produced by geographers are, on accouht of the curving and the bend-
ing of the meridians, unsuitable for navigation = * ". Taking all this into consideration. we have some-
what inereased the degrees of latitude toward each pole, in proportion to the increase of the parallels
bewond the ratio they really have Lo the equater. (Fite and Freeman, 1926, p. 77 -758.)

Mercator probably determined the spacing graphically, since tables of secants
had not been inv ented. Edward Wright (ca. 1958 1615} of England later devel-
¢ped the mathematics of the projection amd in 1583 published tables of cemulative

secants, thereby indicating the spacing from the Equator (Keuning, 1955, p. 18),
FEATURES AN USAGE

The meridians of longitude of the Mercater projection are vertical parallel
equally spaced lines, cut at right angles by horizontal straight parallels which are
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i

N

Flauge 7.—Gerardus Mercator (1512-34). The inventor of the most famous map projection, which is
the priolype br conformal mapping,

increasingly spaced toward each pole so that contormality exists (fiz. &) The
spacing of purallels at a given latitude on the sphere is proportional to the secant
of the latitude.

The major navigational feature of the projection is found in the fagct that a
gailing route between two points i shown as a straight line, if the direction or
asimuth of the ship remains constant with respect to north. This Kind of route is
called a loxodrome or rhumb ling and is usuaily longer than the preat cirele path
(which iz the shortest possible route on the sphere). It is the same length a3 a
great cirele only if it follows the Equator or a meridian. The projection has been
stantdard sinece 1910 for nautical charts prepared by the former U.S. Coast and

Geodetie Survey (now National Ocean Serviee) (Shalowitz, 1964, p. 302,

P o= L i ET- NPT PR -

The great distortion of area on the Mercator pl*u_jl:.'('_'tiﬂ'ﬂ of the Earth leads to
mistaken concepts when it ig the chiefl basis of world maps seen by students in
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7. MERCATOR PRGJECTION

sthool. The classic comparison of areas is between Greenland and South America.
Greenlanil appears larger, although it is only one-eighth the size of South America.
Furthermore, the North and South Poles cannot be shown, since they are at
infinite distance from other parulels on the projection, giving a student un impres-
sion they are inuccessible (which of course they seemed to explorers lung after the
time of Mercator). The last 50 years have secn an inereased emphasis gn the use
of other projections for world maps in published atlases.

Nevertheless, the Mercatur projection is fundamentul in the developrent of
map projections, especially those which are conformal. It remains a standard
navigational tool. Ti is also especially suitable for conformnal maps of equatorial
regions, The USGS hus recently used it as an insct of the Hawailan [slands on the
1:500,000-scale base map of Hawall, for & Bathymetrie Map of the Northeast
Equatorial Pacific Ocean {although the projection is not stuted) and for a Tectonie
Map of the Indunesia region, the latter two both in 1978 and at a scale of
1:5,000,000.

The first deiailed map of am entire planet other than the Earth was issued in
1572 at a seale of 125,000,000 by the USGE Center of Astrogeology, Flagstafl,
Arizong, following imaging of Mars by Mariner 9. Maps of Mars at other scales
have followed. The mapping of the planet Mercury followed the lybys of Mariner
10 in 1974, Beginning in the late 1960°s, geology of the vizible side of the Meon
was mapped by the USGSE in quadrangle fashion at a scale of 1.1 000,000, The four
Galilear satellites of Jupiter and several satellites of Suturn were mappel follow-
ing the Voyager missions of 1979-81. For all these hodics, the Mercator projee-
tion has been used to map equatorial portions, but coverage extended in sume
early cases to luts. 63° N, and 8. (table 6).

The cloudy atmosphere of Venus, cireled by the Pioneer Venus Orbiter begin-
ning in late 1978, is delaying more precise mapping of that planet, but the Merca-
tor projection alone was used to show altitides bused on radar reflectivity gver
about 83 pervent of the surfuce.

FORMULAS FOR [HLE SPHERE

There is ho suitable geometrical construction of the Mercator projection, For
the aphere, the formulas for rectangular coordinates are as follows:

F =R (- A T-13
=R In tan (/4 + $/B) {T—2)

or
¥ = (R2)In i1 + sin ¢l — sin )] (7-2a)

where /¥ 15 the radius of the sphere at the scale of the map as drawn, and o and &
are given in radians. There are also several other forms in which equation {723
may be written, such as y = K arcsinh (tan ¢} = R arctanh (sin ¢} = B In (Lan
& + sec ). The X axis lics alung the Equator, & increasing casterly. The ¥ axis
liez along the central meridian kg, ¥ increasing northerly, IF(h — ) lies outside
the range = 180° 360° should be added or subtracted so it will fall inside the

rartera The siuan A omsd 3 b Aaoernoas
ol E, LiF At i Al a i (IRRITES,

el EF FA D Oy Py R
T=T A A —hp i el {T—1aj
y = In tun (457 + &58) (7T—2h)

Nuole that if ¢ is = w2 or = 90°, ¥ is infinite. For scale factors, application of
equations (4—2), (4—3) and (4-0 to (71} and (T-2) or (7—2u) pives results
eonsistent with the conformal feature of the Mercator projection:
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TaBLE B.—Muep projections used for extretervestrinl sapping

1Fpem Bataon, privacs comnuen., 16857

May formal Muyr femre
Body! Seale nen below ) Body* Seale txee belaw)
Maon 115, D00, () F Gatilem antellftes of Jupiter
1:2, 500,806 K
121,000,000 K Lo i’ 1:25, 000, 000 A-1
Mervury o150k, (M) A-1 Eurapa 1:15 {WH0, KD A-1
1:5,000 000 E-1 13, 00 LM F
Venus 125, (W, 0 A-1 12,000 HH) K
1:25 (WK, (W) B=-1) Ganymede I L-25, D00, 00 A-1
1:15, 004,00 C Catlisto 1:15,000, (MK E-1
135,000,060 G 153, 000 THH) E-2
Marz 105, 1K), OK) A2 1-2,00K1.00 J
115,000,000 H-2
135, (0, INKHD I Satelliten nf Saturn
12, D00, 000 H
L5010, 00 L timas } 1:2 000, THH) A1
Enceladus
Sulellite of Uranus Miranda
Ariel 1:10, 000, D60 A-1 Tethys 10140, 8100, 8 A=-1
126, MM, O K- DHone I’ 1:5,100, 100 A-1
Hhea 110,000, 000 A-l
Sateltiie of Neptune 125, (00, (K B-1
Triton [Boe Ganymede) lapwtus 10 19,000,000 A-1
TagLE §. —Map profections used for extraterrestral mapping - Cantinved
. . . Matching perlie! RRFrargT aze Hed. Paralleln
Map format® Lal. Fange Projectioh™ Seale Faceor me Lud, N&S Seale farlor at Lat. HES Lony. «© Tat. Lat.. [&t.
A-1 57°5-57T°N" MER 10000 [ 1.7833 i 60" 114
55* to pole P35 16354 9 17883 54 160 n
A-p 57— STN® MEH LK 1] 19022 6o 360 114®
557 to pole F3 1.5:89 L] 1.9%22 )] 360 6
B=1 5T&=57"N WER 10000 [ 17883 56 180 114
55° 1 pole P3 16254 L1 1. 7853 36 360 35
B-2! 57°8-5T°N MER 1.0000 i} L7 56 184 114
5510 pale 3] 1.6288 o0 1,7R14 56 250 a5
i ETE-LTN MEHR | RLL ] i} 1. 7TES3 6 120 &Y
5&° ta pole 23] 1.6354 % 1.7883 13 B 3
i A0%5 307N MER 1, 0000 i} 11582 3 45 EL]
30 B N&E Lce 1.125% 5P I.15AE 30 -1 3B oSBT, G917
1,161l [+
65° to pale Pa 1. 1087 ) 1.1611 &h JED an
E-1 225 — N7 MER 10000 o 1.0824 25 T2 a4’
21— GE N &S® LCC 1.0484 5P 141524 2.5 L) 5% 87, BE°
1.036 GT.48
BE* to prole P& 1.0029 23] 1.0946 Ll 360 26
E-2 2SN MER 13600 13 1.1 21.74 i2 44
2P -6 N ES LeC 1,060 SP 1. (452 2l 20 45 F, by
10454 B5. 1%
66° to pole F& L.{HKH} an 10484 65.19 360 25
SFE - 5N MER 1, {MHE 34.06 L1716 45 180 160
457 10 pole F3 1. (K00 90 11716 45 380 15
G EH*B—26°N MER 1. (00 16, 50 1.0612 25 40 25
25" - TE' N &S LCG JRLLE)] sp 1.0612 25 30 25 0T
(bl 50F lar.)
1.4179 Th 214
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TabLE 6. —Map projections used for eztraterrestrial reapping-—Continued
Matching parallel Quadrang.e size Std. Parmbleln
Map formp1? Lt range Profectic.d Seple Freler ot Lat, N&5 Sealr furtar ol Lzl N&S Tong. % Lat Lat, Lal
74" to pole P3 10000 B 1.017% K] 360 15
H* A0"S - MER 1. (e 7476 14243 30 2.5 15
A0"-BNER LG 1.0} =P 1.0243 a0 2.5 17.5 35.83%, 5817
(balow 47 .57 lal.)
1.0313 [Fo] )] 17.8
(above 47.5° laL)
63" th pale Pa 04830 .1 1.0313 L] 45 12,53
(helow 77.5° lat)
150 2.5
(above T7.5° lat.)
J Frio R e MER 1, OOy 13 1461 2134 36 22
21T-RETNES LCce 1, 0] 5P 10461 21.34 a0 2.5 e, AE8°
(helow 435" lat.}
1.0:d454 65,19 43 225
{above 43 5% lat )
65 Lo pole ] 1. (Wion St 10484 €518 30 iT.a
{below &2 57 fat.}
350 7.5
{ahove 52,57 lat.]
K 16"8- 16N MER 1.0000 11012 1.0211 18 40 Fa%
16— 4F N &S LCC 1. 6008 5P 10811 18 43 32 21.88°, 42.67°
45" BOPN&S LCC 1. 000 4P nana T2 a2 53,340, 1467
B to pole 2] 1Y ] nang 0 10
L w2 4§ -82 5N TMW 09960 CM none 5 3
thelow 47.5° lat.}
66T 5
{above 47.53" lat.y
82.5” to pole P3 10000 BT.4 none 40 3
(balow &7.5° lath
S60 2.5

Nates: ! Taken paosphere, except for Mars lellpsaid, recenteieity = 0.100529%
(rrthagraphic prejection uned far srreegalur satellives of Mars Phobu amd Deimesd, of Jupiter (Amatihea), and Saturn (Hyperionl.
Lambert Azimuihal Boual Ares prozection wed :n polor wed equatoriak ozpects Sar dil hemispheres of severat plamts and gatellites,
Nblque Stersaptaphic prejection used far bating and vthee eegions of Hare, Maon, et

A

* Ofivial furmas Geaunalans uak only the letter, Muml+rs have been wdded for tnnvenlence in thip table

3 Abbpeviationa: MER n Mercator, B e Palaer Siereopraphie, LU C o= Lambért Confanmat Conic, TM =Trotwverse Mercatar, SF = Standard Frraflels.
£ Seake fartors based nh Mars ellsoid,
" Vppus 350,000,000 originally 055 w TN Mercatar mith nn pular eootinuation.

riginally 65

A5 M., THF b quad range.

T Originally 2655 25N, 30 lab. qumd rangr-
£ Originally 20 - 700N &S, BT At qund range.

¥ For Moon 110,000, quads are 207 Tong. > 16 kt.

WoFned are B wag. * T8 s
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k=k — seed = Veos & (7-3)
w=10

Normally, for conformal projections, the use of A (the scale factor along o
meridian) s omitted, and & (the seale factor along a paraliel] is used for the seale
fuctor in any direction. The areal seale factor for eonformal projections is 4% or
sec” & for the Mercator in spherical form.

The inverse fovmadas for the sphere, Lo oblain ¢ and & from rectangular coordi-
nates, are us follows:

b =n/2 — 2 arctan (e~ &8 (74
or

& = arctan|sinh{/K)] (7T—4a}

h=al + L. [T—a)
Tl e oy — B3 1O oy oy o8 materes] lormweid havve el cvvessnbamaibsrr Theasen
AIEIE U — Lo 100Xl o o o ¢ LT BT TR 1ALl cdl IS Ol FLEREILD, LI ﬁLLcIJ.L-J.J.l,II-.Tu 4 11T 2T
and subsequent formulas are given only in radians, as stated earlicr, unless the
degree symbol is used. Numerical examples (See . 266) are given in deerees,

showing conversion.
FORMULAS FOR THE ELLIPS{N DY

For the ellipsaid, the eovresponding equations for the Mercator are only a little
meore involved (see p. 267 for numerical example):

£ o= alh—hy) (7-6)
[ ( l-¢sind Y-""'
¥ =aln | lan{w4 + §id) o (7=}
Vitesma /]
or

1+ sind I oesindy

¥ — (eiln ( _ ) ( —~—)
1 - sind 1 + esind (T—Ta)

where o is the equatorial radius of the ellipsoid, and ¢ is ils eccentricity. Compar-
ing equation (5—7), it is seen that y = ad. From equations (4 22) and (4-23), it
mauy be found that
b=k = {1—¢" sin” ¢ %cos ¢ (7-8

and of vourse w = 0. The areal scale factor is &%, The derivation of these equations
is shown in Thomas (1952, p. 1, Z, H5-90).

The X and Y axes are oriented as they are for the spherieal formulas, and
(a — &) should be similarly adjusted. Thomag also provides g series equivaient
lo equation (773, slightly modified here for consistency:

wi = Intan (aid + &2 = A fEt L ) sin b
+(eM12 + %16 + . ysin B — (@5B0 £ .. dsindd b ... {T-Th)

The inverse formutas for the ellipsoid reguire rapidly converging iteration, il
the elosed forms of the eguations for finding & are used:

& = mE—2 arctan [f(1—e zin $)A1 b e sin S} (7%

where

= (7= 10



7. MERCATOR PROJECTION

TaplE 7.—Mercator projectivn;  Rectanguiar coprdinates

Latitude . Sphere (Rm= 1} Clarke 1866 ellipsoid (2= 1)
(6) ¥ k 3 i
Infinite Infinite Infinite Infinite
3.13130 11.47371 3.12454 11.43511
243625 5.75877 2.42957 5.73984
2.02750 3.86370 2.02104 3.85148
1.73042 2.92380 1.72904 291505
1.50645 2.36620 1.50031 235961
121696 200000 1.21104 1.99492
1.15483 1.74345 1.143688 173048
1.01068 1.56372 1.0054% 1.55263
BR137 1.41421 87658 1.41182
6281 1305101 JT5RBAhG 1.30358
B52R4 1.22077 64895 1.21941
54931 1.15470 54592 1.15372
45088 1.10338 448031 1.10271
35635 1.06418 36406 1.08376
268484 1.03528 26309 1.035(4
17543 1.01543 JT4ES L.01532
08738 1.00382 08679 1.00379
RHUEL D 1.00000 0000 L.O000
z 0017453 (A= o} G.017453 (A -2

Mole: &, y = rettangular cogrdinates
& = geodetic latitude,
(h=h,) = geodetic longitude, measured easn from origin in degreey.
& = geale factor, relative to scale at Equator.
R = racdiud of sphere at scals of ap.
2t = eyuatorlal radivg of ellipagid al scale of map.
IT tatitnde is nogative {soath), reverne sign of y.

e is the base of natural logarithms, 2.71828 . . _,

and the first trial ¢ = w/2—2 arctan § (7—11)
Inserting the first trial & in the right side of equation {T-9), 4 on the left side is
caleulated, This becomes the new trial ¢, which iz used on the right side. The
process is repeated until the change in ¢ is less than a chosen convergence factor

depending on the accuracy desired. This & is then the final value. For A,

h = xia + kg (7—12)

L o o T T L S I RIS B T L
10 avUIl LIE ILerdLitil, LI surles o= o) IHdy DE Used WILID Li—1ar I

(7T—ax%

The scale factor is caleulated from equation (7—8), using the calculated ¢.
P

b=y + (2 - Betr2d + 12 + 139360 + .. sin 2y + (T8 ~ 2acfRd0 +
211911520 + .. 3 sin dy + (Te¥120 - B14%1120 + | . )y sin 6y +
(4270161280 + .. Jsin 8y + ... (3-5)

where
x = ™2—2 arctan { {T—13}
For improved compulational efficiency using the series, see p. 19,

Rectangular coordinates for cach 65° of latitude are given in table 7, (or both the
sphere and the Clarke 1866 ellipsoid, assuming K and o are both 1.0, [t should be
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noted that & for the sphere applies only 1o the sphere. The spherical projection is
aol, conformal with respeet to the ellipsoidal Earth, although the variation is
negligible for a map with an eqguatorial scale of’ 1:15,000,000 or smaller, It should
be noted that any central meridian can be chosen as dy for an existing Mereator
map, If forward or inverse formulas are to be uzed for conversions,

MEASUREMENT OF RITUMB LINES

Sinve a major feature of the Meraitor projection s the straight portrayal of
rhumb lines, formulas are given below to delermine Lheir true lengths and
azimuths, If & straight line on the map conneets two points with respective luti-
tudes and longitudes (dy, X ) and (b, Az, the respective rectangular coordinates
fry, 700 and (g, yo) are calculated using equalions (7 -1) and (7--2) for the sphere
or {(T—6) and (T—7) for the ellipsoid, inserting the respective subsoripts.

For {he true (ot maghetic) compuss hearing or azimuth Az clockwise from
north along the rhumb line,

Az = arcian [(e,—2 0 a—11 3] (7—14)
Transposing and using forward and inverse equations for the Mercutor, latitude
or longitude along the rhumb line may be tound for a given longitude or latitude,
vespectively, knowing Lhe initial point and the azimwh, For cxample,

Yo = fy + (X2 — xWtan Az {T—18)
in which {i). y,) are caleulated for (¢, A} from (T—6) and {7-7), xe i caleulated
Prom Ay from (T—6), and & is caleulated from y asing €7—9) and (7-10).

For the true distance s along the rhumb line from ¢, to dp,
5 = (M= M Veos Az (T=16)
where Wy and M, the dstances from the Eguator along the meridian, are fownd

for dw und &y, respectively, using equation (2=21) waid the same subscripts on M
and d

M o= ol (1-e%4 -8B 5206~ . . ) d— (38 + B2
+ 45671024 ~ .. ) sin 2¢ + (159256 + 4551024 + .. )
sin Ad ~ (35873072 + .. D sinbib ~ L] (3~21}

but 1f &, = by, equation {(7— 16 is imdeterminate and
s = alhy—h) cos bl —ePsinid) (7T—17
For the true digiunce 3 from initial latitude &y to lutitude &, equation (7—16)
may b used with W insiead of Me. To finid (b, k) corresponding to g given distanee
s from (¢, Ay) along the rhumb line, (7=16) may be inverted to give:
M — seos Az + M, (T—18)
M may be converted Lo & using (3-28),
d o= po+ Bey2-27e%E82 L O sin 20 - @ley16-55e, 742 + .. 0

sin dp b (151%06— . . Ly sin s + (10972 NE1Z2 - D sin 8u — L.
[4—28)
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where
gy = [1=f1—e2*]1 + (1—g"1] (3—24

and, in a rearrangement of (3—20) and (3—21),

w o= Mo (1-e2d-8e'64 -66%256— . ) (7-19
Then for longilude &, rearranging {(T—6), {7-T}, and (714},
[ { 1—e sin &\ e ]
A = A, + tan Az In [tan (n/d + ¢/2) (_—) (7—20)
1+easind

MERCATOR PROJIECTION WITH ANOTHER STANDARD FARALLEL

The above formulas are baged on making the Equator of the Earth true to seale
on Lhe map. Thus, the Equator may be called Lhe standard parallel, Tt js also
possible to have, instead, another parallel (actnally twao) as standand, with true
seale. For the Mercator, the map will look exactly the same; only the scale will he
different. If lalitude &, is made standard {ithe opposite latiiude —4, is also
standard}, the above forward formulas are adapted by multiplying the right side
of equations {7—1) through (7 -3) for the sphere, ineluding the slternate forms,
by cos ¢y, For the ellipsoid, the right sides of equations (7T—G), (7-7), (T—8), and
{7T-Ta) are multiplied by cos /(1 —¢” sin® 4,)12. For inverse equations, divide =
and y by the same values before use in eguations (7-4) and {7-5) or (7—10) and
{7=12). Buch a projection is most commonly used for a navigational map of part
of an scean, such as the North Adlantic QOcean, but the USGS has vused it for
equatorial quadrangles of some extraterrestrial bodies as described in table 6.
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8. TRANSVERSE MERCATOR PROJECTION

SUMMARY

« Cylindrical {transverse).

a Conformai.

« Central meridian, each meridian 90° from central meridian, and Eqgnator are
atraighl Hres,

« Qther meridians and paraliels are complex curves.

= Seale is true along central meridian, or along two straight lines equidistant
from and parallel to central meridian. (These lines are only approximately
straight for the ellipsoid.}

» Seale becomes infinite on sphere 9)° from central meridian.

+ Used extensively for quadrangle meaps at seales from 1:24,000 to 1:250,000,

= Presented by Lambert in 1772,

HISTORY

Since the regular Mercator projection has littie error close to the Eguator (the
scale 10° away is only 1.5 percent larger than the seale at the Equator), it has been
fournd very usefi! in the transverse lorm, with the equator of the projection
rotated 907 to eoincide with the desired central meridian. This is eguivalent to
wrapping the eylinder around a sphere or ellipsoid representling the Earth so that
it touches the central meridian throughout its length, instead of Mllowing the
Equator of the Earth. The central meridian can then be made true to scale, no
matter how far north and south the map extends, and regions near it are mapped
with low distortion. Like the repgujar Mercator, the map is conformai.

The Transverse Mereator projection in its spherical form was invented by the
prolific Alsatian mathematician and cartographer Johann Heinrich Lambert
(1728~77) (fig. 9. It was the third of seven new projections which he deseribed
in 1772 in his classic Bedrdge (Lambert, 1772). At the same time, he also de-
seriped what are now called the Cylindrieal Equal-Area, the Lambert Conformai
Coni¢, and the Lambert Azimuthal Equal-Area, each of which will be discussed
subsequently; others are omitted here. He deseribed the Transverse Mercator
as a conformal adaptation of the Sinuscidal projection, then commonly in use
{Lambert, 1772, p. 57-58). Lambert’s derivation was followed with a table of
coordirates and a map of the Americas drawn according to the projection.

Littia use has been made of the Transverse Mercator for single maps of
continental areas. While Lambert only indirectly dizcussed its ellipsoidal form,
mathematician Carl Friedrich Gauss (1777 1855) analyzed it further in 1822, and
L. Kriiger published studies in 1912 and 19192 providing formulas snitable for
calenlation relative to the ellipsoid. It is, therefore, sometimes called the Gauss
Conformal or the Gauss-Kriger prajection in Europe, but Transverse Mercator,
4 term first applied by the French map projection compiler Germain, is the name
normally nsed in the United States (Thomas, 1952, p. 81 -92; Germain, 18657, p.
47,

Until recently, the Transversze Mercator projection was not precisely apphed to
the eilipsoid for the entire Earth. Ellipsoidal formuias were limited to series for
relatively narrow bands. In 1845, E. H. Thompson (and in 1962, L. P. Les)
presented exact or closed formulas permitting calenlation of coordinates for the
full ellipsoid, although elliptic functions, and therefore lengthy series, numerical
integrations, and (ar) iterations, are involved (Lee, 197G, p. 92-101; Snyder,
1979a, p. 73; Dozier, 1980),

The formulas for the complete elliproid are interesting acatdemically, but they
are practical only within a band between 4° of longitude and some 10° to 157 of arc
distance on either side of the central meridian, hecause of the much more signifi-
cant scale errors fundamental to any projection covering a larger area,
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Friung 3.—Johaon Heinrieh Lambert (1723770 Tnventor of the Transverse Marcator, the Confur-
mal Comig, the Azimuthal Egual-Area, and other important projections, a= weil a5 vut=tandiog
developments io mathematics, astronomy, snd physics.

FEATURES

The meridians and paraliels of the Transverse Mercater (fig. 10) are no longey
the straight lines they are on the repular Morcator, exeept for the Earth's Eqguator,
the central meridian, and each meridian 90° away from the central meridian,
Other meridians and paraiiels are complex eurves.

The spherical fortn is comformal, as is the parent prajection, and scale error is
only a function of the distance from the central meridian, just as it is anly a
function of the distance from the Equater on the regular Mercator. The ellipsoidal
form is also exactly confortnal, bt its scale error is slightly affected by factors
vther than the distance alone from the central meridion (Lee, 1976, p. 88),
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FLURR 19, = The Transverse Mercator projection. While the reyular Mercator has constant scale along the Equator, the Transverse Mercator bas

conzstant zeale wlong any chosen ¢entral meridian. This projection is conformal and is often used to show regions with greater north-south

cxtent,
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The seale along the central meridian may be made true to seale, or deliberately
reduced to a slightly smaller eonstant seale so that the mean scule of the entire
man is more nearly correct. There are also forms of the ellipsoidal Transverse
Mercator on which the central meridian is not held at a constant seale, but these
forms are not used in practice {Lee, 1976, p. 100—101). If the central meridian is
mapped at a reduced seale, two straight lines parallel to it and equally spaced
from it, one on either side, become true to scgle on the sphere. These lines are not
perfectly straight on the ellipscidal form.

With the seale along the central meridian remaining constant, the Transverse
Mercator is an excellent, projection for lands extending predominantly north and
south.

USAGE

The Transverse Mereator projection (spherieal or elliproidal) was not deseribed
by Close and Clarke in their generally detailed articls in the 1911 Excyclopoedin
RByitannicn because it was “seldom used” (Close and Clarke, 1911, p. 663). Deetz
and Adams (1934) favorably referred to it several times, bat as a slightly used
projection.

The spherical form of the Transverse Mercator has been uzed by the USGS
only recently. In 1979, this projection was chosen for a base map of North Amer-
ica at a scale of 1:5,000,000 to replace the Bipolar Obligue Conic Conformal
projection previously used for tectonic and other geologic maps. The scale factor
along the central meridian, long. 100° W, is reduced to 0.926. The radius of the
Earth is taken at 6,371,204 m, with approximately the same surface area as the
International eliipsoid, placing the two straight lines of true design scale 2,343 km
on each side of the central meridian,

While its use in the spherical form is limited, the ellipsoidal form of the Trans-

verse Mercator is nrohahly used ynore than an
Verse Merfalor 18 protatuy WIre Lhan an

mapping.

In the United States, it is the projection used in the State Plane Coordinate
Bystem (SPCS) for States with predominant north-south extent. (The Lambart
Conformal Conic is used for the others, except for the panhandle of Alaska, which
is prepared on the Oblique Mereator. Alaska, Florids, and New York use both the
Trangverse Mereator gnd the Lambert Conformal Conie for different zones.)
Except for narrow States, such as Delaware, New Hampshire, and New Jersey,
all States using the Transverse Mercator are divided inta two to eight zones, each
with its own central meridian, along which the scale is slightly reduced to balance
the scale throughout the map, Bach zone is designed to maintain scale distortion
within 1 part in 10,000, Several States beginning in 1935 also passed legislation
establishing the SPCS as a permissible system for recording boundary deserip-
tiohs or point locations. Several zone changes have occurred for use with the new
1983 datum. They are listed in Appendix C.

In addition to latitude and longitude as the basic frame of reference, the corre-
spending rectanpular grid epprdinates in fest are used to designate locations
(Mitchell and Simmons, 1945). The parameters for each State are given in table 8,
All are based on the Clarke 1866 ellipsoid. It is important to note that, for the
metric conversion to feet using this coordinate system, t m equals exactly 39.37
in., not the current standard accepted by the National Bureau of Standards in
1959, in which 1 in. equals exactly 2.54 em. Surveyars continue to follow the
former conversion for eonsistency. The difference is only two parts in g million,
but it is enough to cause eonfusion, if it is not aceounted for.

Beginning with the late 1950's, the Transverse Mercator projection was used
by the USGS for nearly all new quadrangles (maps normally bounded by meridi-
ans and parallels) covering those States using the TM Plane Coordinates, but the

r other one pnrojection for readetic
oLher one projection geodellc

L]
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Tawm.k 8.— L8, State plane coordinste systems

T indicetes Transverse Mercator: L, Tamber Confarmat Conic; H, Hutine Obligue Mercatar. Mudsfied slightdy aed vgdated from
Michell aid Smmone. PR P 4547

Area Projeciton  Zones Area Projection  Zones
Alabama ________ T 2 Montang —cceman L 3
Alaska o . __ T 8 Nebraska ___._.._ L 2

L it Nevads oo T 3
H 1 New Hampshire _._ T 1
Arizong oo T 2 New Jersey .. T i
Arkansas . ______ L 2 New Mexico______ T 2
Califormig oo L 7 New ¥York .o T 3
Colorade ________ L 3 L 1
Connectiont .o L i North Carclina .- L 1
Delaware __. . _._ T 1 North Dakota ____ L ]
Florida _ _______ T 2 OhlQ oo L 2
L 1 Oklahoma ____.__ L 2
Georgla ____ ___ T 2 Oregon__________ L 2
Hawaii o _cocee T 5 Pennsylvania _____ L 2
Idake . T 3 FPuerto Rico &
117, %5 R — T 2 Virgin Islands __ 1L 2
indlana e E g Rhode Island .o T 1
P e BaM0f e e L 1
Kgnsas __________ L 2 South Carolina ___ L 2
Kentucky ______ L 2 South Dekota _._. L 2
Louisiana .___.___ L 3 Tennessee _____. L 1
Maine ome oo T 2 Texas - o ____ L 5
Maryland ________ L 1 Mah____________ L 1
Maszachusetts ___ . L 2 Vermont o ———_ T 1
Michjgan! Virginia ______.__ L 2
ochsolete _____ . _ T 3 Washlngu:,n ______ L 2
L — - L 3 West Virginia ___. L 2
Minnesota _._____ L 3 Wisconsin _._____ L 3
Mississippt __ . T 2 Wyoning . .__ T 4
MISSOUTY e r ]
Traneverse Mercator projection
Zone Central meridian Scale reduction? Origire® (Jatitude)
Alabama
Bast _____ _ BH°00 W, 1:25,000 30730 N.
West o _____ 87 30 1:15,000 30 00
Alaska
g 142 00 1; 10,000 o4 ()
: I 146 00 130,004 54 00
4 e 160 00 1:10,000 5d 00
| 154 10 110,000 54 OO0
S 158 00 1;10,004) o4 00
e 162 00 110,04} 54 00
. S 166 00 1:10,004) o4 00
9 170 00 1:10,000 54 00
Arizona
Fast oo . o 110 10 1:10,000 31 00
Central _____ 111 55 1:10,000 31 00
West ... __ 113 45 1:15,06 31 00
Delaware _ . __ 75 25 1:200,000 358 00
Floridat
Fast ... 81 00 17, 24 20

1:17,000
West .. . 82 o) 1:17,000 24 20



& TRANSVERSE MERCATOR PRECGJECTION

Taglk 8,—LL5. Staie plang coordinate systems—Continued

Transverse Mercator projection - Continued

_ Zone Central meridian Scale reduction? Origin® (latitude)
Georgia .

East _______ 82°10° W. 1:10,000 30°00' N.

West _______ 84 10 ;10,000 3¢ 00
Hawaii

1 o _ 136 30 1:30,060 18 58

Z 156 40 1:30,000 20 A

3 o ___ 158 00 1:100,¢00 Z1 }0

- 159 30 1:194,240 21 a0

5 160 19 ] 21 40
Idahe

East _______ 112 10 1:19.000 41 40

Central _____ 114 00 1:19,004 41 40

West .______ 115 45 1:15,000 41 40
Ilinois

East _______ BB 20 1:40,000 36 40

West oo 90 10 1:17,000 36 40
Indiana

East _______ a5 40 1:30,000 37 30

West _______ a7 05 1:30,000 37 30
Maine

Fast _______ &8 30 1:10,000 43 50

West _______ 70 10 1:30,000 42 50
Michigan (old)*

East _____. _ 83 40 1:17,500 41 20

Central _____ B3 45 1:1L,000 41 a0

West _______ 88 45 1:11,000 41 a0
Mississippi

Fast _______ 83 b 1:25,000 2% 40

West _______ af 20 1:17,000 a0 30
Missouri

East _._____ a9 30 1:15,000 35 50

Central _____ 9z 3 1:15,000 35 50

West _______ 94 30 1:17.000 26 10
MNevada

East o ___ 115 35 1:10.000 24 45

Central .. _.. 116 40 1:10,000 34 4B

West _______ 118 35 110,000 34 45
Kew Hampshire _ T1 40 1:30,000 42 30
New Jersey _.__ T4 40 1:40,000 38 50
New Mexico

Bast _______ 104 20 1:11,000 31 00

Central _____ 106 14 1:10,000 31 00

West _______ 107 50 1:12,000 31 00
MNew York®

East ______._ 74 20 1:30,000 40 09

Central _____ 76 35 1:16,000 40 00

West __ . ___ T8 35 1:16,000 40 00
Rhode Island ____ 71 30 1:160,0040 41 05
Vermont _______ T2 30 1:28,000 42 30
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TasLE 8, —{7. 5. State plane coordinate systems—Contimed

Traneverse Mercator projection —Continued

Zone Central meridian Scale reduction? Origin® (latitude)

Wyoming

East _______ 105°10 W. 1:17,000 40%400 N

East Central 107 20 1:17.000 40 40

West Central 108 45 1:17,000 40 40

West . 110 06 1:17,000 40 40

Lambett Conformal Conie projection
Origin®
Zone Standard parallels Long. Lat.

Alaska

w___ b1°50¢ N, BACR0 N, 176°00 Wi R1°HY N
Arkansas

North _._______ 34 56 36 14 92 (00 34 20

South .____ - 3318 34 46 9z 00 32 40
California

| 40 00 41 40 122 38 20

n o ___ 3820 29 B0 122 Q0 37 40

| 37 04 38 26 120 30 36 39

W e 38 D0 3Tt 15 119 09 35 20

Vo 34 02 35 28 118 0¢ 33 30

L 3z 47 33 53 116 15 32 10

VII __________ 13352 84 25 118 20 34 08%®
Colorado

North _________ 39 43 40 47 105 30 39 20

Central _______ - 88 27 29 45 105 30 37 50

South ________ 37T 14 38 % 106 30 36 40
Connecticut _______ 41 12 4] 82 72 45 44 50
Florida*

North _________ 20 35 30 45 84 30 29 of
Towa

Narth ______ ___ 4204 43 16 93 30 41 30

Sowth _________ 40 37 41 47 93 30 40 G
Kansas

North . _______ 28 43 29 47 8% 00 38 20

South ______ ___ 37 16 38 34 g8 20 36 40
Kentucky

North _______._ 37 58 38 58 84 15 37 30

South _________ 36 44 37 56 85 456 36 20
Lowisiana

MNorth _________ 3110 32 40 o2 30 30 40

South _________ 29 18 al 42 91 20 2R 40

Offshore oo 26 10 27 &0 91 20 25 40
Maryland _________ 14 18 39 27 77 00 37 50
Massachusetts

Mainland ______. 41 43 42 41 71 30 41 (n%i

Island _________ 41 17 41 Z9 70 30 41 Dgae
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8 TRANSVERSE MERCATOR PROJECTION

Lambert Conformal Conic projection- Continued

Origin®
Zone Standard parallela Lang. Lat.

Michigan (current)

North _________ 45°29 N 47708 N. 8770y W. 44°47 N,

Central __._____ 44 1] 45 42 #4 20 43 19

South _________ 42 06 43 40 84 20 41 30
Minnesota

North _________ 47 02 48 38 9% 06 46 30

Central ... __ 45 37 4T 03 94 15 4h 00

South _______ 43 47 45 1% 94 00 43 00
Montana

North .o _. 47 81 48 43 108 30 47 00

Central ameeeee. 46 27 47 53 109 30 45 50

South o _____ .. 44 82 46 24 10% 30 dd 00
Nebraska,

North __.______ 41 51 42 49 100 00 41 20

SR e maem 40 17 41 43 99 30 39 40
New Yorkt

Long Island .___ 40 40 41 02 T4 00 40 30
MNorth Carolina _____ 34 20 36 10 79 00 a3 45
North Dakota

North _________ 47 28 48 44 100 30 47 00

South oo 46 11 47 29 00 30 45 40
Uhia

Morth coo_am o 40 2 41 4 82 A0 39 40

Bouth .______._ 38 44 40 02 BZ 30 38 00
Oklahoma

North o ___ 35 34 3 46 98 00 35 00

South e 33 56 a5 14 9% 00 33 20
Orepon

North cceeeeeae 44 20 46 00 120 30 43 40

South _________ 42 20 44 00 120 30 41 40
Pennsylvania

North ______.. 40 33 41 57 77 45 40 10

South ________ 39 56 40 58 77 45 39 20
Puerto Rico and

Virgin Islands

) 12 02 18 28 66 26 17 50

2 (St Croixy __._ 18 02 18 26 66 26 17 5070 K
Samoa oo o___.  14°16'5, (single) 170 00 _—
South Carolina

Morth _________ 3346 N. 34 b8 81 00 00

Soath L. ... . 3220 33 40 81 G0 31 50
South Dakota

MNorth ...ou_ . 44 25 45 41 100 00 43 50

South e _.____ 42 60 44 24 104 26 42 20
Tennessee . ___._ 35 15 36 25 88 00 34 4007

55



MAF PROJECTIONS—A WORKING MANHAL

TabLE B — (7.5 State plane coordinate systems—Continued

Lambert Conforme! Copic projection —Continued
e
Zone Standard parallels Long. Origin Lot

Texas

North _________ 34°39 N. 36°11' N 101°30 W. 34°0¢ N.

Northeentral.__ 32 08 33 58 g7 30 31 40

Central .______ 30 07 31 53 100 20 29 40

South central ___ 28 23 30 17 95 00 27 50

South —_—_____ 26 10 27 50 98 30 25 40
Utsh

North oo 40 43 41 47 I11 a0 40 20

Centrel _____._. 3% {01 40 39 111 30 38 20

South __.______. 3713 3B 21 111 30 36 40
Virginia

North _________ 33 02 39 12 T8 30 37 40

South ________._ 36 46 37 bR 73 30 26 20
Washington

MNorth _________ 47 30 48 44 1320 5 47 08

Bouth o _ 45 50 47 20 120 30 45 20
West Virginia

Morth _________ 3900 15 79 30 32 3G

South ... 3729 38 5 21 40 37 0o
Wisconsin

Nowth o 45 34 45 46 80 00 4b 10

Central._____.. 44 15 45 30 30 00 43 A0

South _________ 42 44 44 04 a0 00 42 00

Hotine Oblique Mercator projection
Center of projection Azimuth of Scale?

Zone Long, Lat. central line reduction
Alaska?

1 133°4 W& a7 0 N. arctan { — %) 1:10,000
Great Lakes {(U.8. Lake Survey, not State plane coordinates)
1 (Egie, Ont.,

St Lawrence B.)7E 000 44 0d) 55 40 110,000

2 (Huron) 82 U 43 380 37 1:10,000
3 {Michigan) 87 00 4400 15 00 1:10,000
4 (Superior, Lake [88 50 47 12 285 41 1:10,000

of the Woods) | 00.268" 21.554" 42,598

Mok, — All these systems ave hased on the Clarke 1868 ellipsoit und wre based on the 1927 datum. Origin refers to rectangular
eoordinaten. For aystems based on 1983 datum, woe Apponidic £

' The major and mrnar wiee of thy ellipseid are taken at exasetly 1.0000ISE times thase of the Clarke 1866, for Michigan only. This
incorporates an average elevation throughout the State of about B0 R, with limited varatioen.

¥ Atong the central meridian.

3 Atongin, « = 500,000, & ~ 0f, except for Alaska zune 7,2 = 700,000 f; Alaska zane 8, 2 = GO0, 004 ©t; and New Jerany, © -
2,00, 00W) fi,

* pdditional zones listed in this tuble under other projectivnis).

P Atorigin, e = 2000000, g = 00, exeept{alr - 3,000, 0004, (bbe — 4, 155,692,658, ¥ = 4, 160 926, 74 01, (¢hr = BOD.000 R, (b - 600,000 ft.
(8l = 200,00 ft, (Fry = NGO A, (g) r = 300,000, thy o = cM0.000ft, ¥ = 0, but radios Lo Jat. of oripin ~ —B2,0NL000 7,

U Ateenter, Cabe - 5O 000 meters, ¥ = — 2,000, 000 m;(bix - —3 530,000m, y = - 3.430,000m; (c2z = 1,200,000 m, & — —2.500,000
my il = =1, 000000 m, g - - 4,300 000 my; (e)r = 9000000 m, y = 1,600,000 m (Berry and Bormanis, 190),

7 At central point.



8. TRANSVERSE MERCATOR PROIECTION

central meridian and scale factor are those of the SPCE zone. Thus, all quadran-
gles for a given zone may be mosaicked exactly. Beginning in 1977, many USGE
maps have been produced on the Universal Transverse Mercalor projection (See
below). Prior to the late 1950's, the Polyconic projection was used. The change in
projection was fasilitated hy the use of high-precision rectanguiar-coordinate plot-
ting machines. Some maps produced on the Transverse Mercator projection sys-
tem during this transition period are identified as buing prepared according tathe
Polyconic projection. Since most quadrangles cover only T4 minates (at a scale of
1:24,000) or 15 minutes (at 1:62,500) of latitude and longitiude, the difference
hetween the Polyconic and the Transverse Mereator for such a small area is much
more significant due to the change of central meridian than due to the change of
projection. The difference is still slight and is detailed later under the discussion
of the Pulyconie projectivn, The Transverse Mereator iz used in many other
vountries for official topographic mapping as well. The Ordnance Survey of Great
Britain began switching from a Transverse Equidistant Cylindrical (the Cassini-
Soldner) to the Transverse Mereator abont 1920,

The ugze of the Transverse Mercator Tor quadrangle maps has been recenlly
extenided by the USGS ta include Lhe planet Mars, Althoogh other projectiotis are
used at smaller scales, quadrangles at seales of 11,000,000 and 1:250,000, and
covering areas from 200 to 800 km on a side, were drawn to the ellipsgiclal
Transverse Mercator between lzts, 65°N. and 3, The scale factor along the cen-
tral meridian was made 1.0. For the current series, see table 6.

In sddition te its own series of larper-scule guadrangle maps, the Army Map
Bervice used the Transverse Mercator for two other major mapping operations;
(1) a series of 1:280,000-scale quadrangle maps covenng Lhe entire country, and
{2} as Lhe geometric basis for Lhe Universal Transverse Mercator (UTM) grid.

The entire arez of the Uniled States has been mapped since the 1940°s in
sectians 2° of lonpatude (between even-numbered meridians, but in 3° sectiohs in
Alaska) by 1° of latitude (between each full degree} at a scale of 1:250,000, with the
UTM grid superimposed and with some variations in map bountaries at coastlines.
These maps were drawn with reference to their own central meridians, not the
central meridians of the UTM 2ones {(see helow), although 1he (.%996 central scale
factor was employed. The central mervidian of about one-thind of the maps coin-
cides with the central meridian of the zone, hut it does not for about two-thirds,
the “wing” sheets, which therefure do not perfectly match the center sheets. The
USGE has assumed publication and revision of this series and is casting hew maps
using the eorrecl central meridians.

Transverse Mercator quadrangle maps fit continuously in a north-south divection,
provided they are prepared at the same scale, with the same central meridian,
and for the same ellipgaid. They do nol fit exactly from east to west, if they have
their own central meridians; although quadeangies and olher maps properly con-
structed at the same seale, asing the SPCS o UTM projection, fit in all directions
within the same zone.

LTHIVERSAL TRANSYERSE MERCATOR FROJECTION

The Universal Transverse Mercutor (UTM) projection and grid were adupted
by the U.S. Armny in 1847 for designating vectangular coordinates on larpe-scale
military maps of the enlire world. The UITM is the ellipsoidal Transverse Merca-
tor to which specific paramelery, such as central mevidians, have heen applied.
The Earth, betweet lats 84° N, and 80° 5., is divided into 60 zones each generally 67
wide in longitude. Bounding meridians are evenly divisible by 6%, and zoneg are
numbered from 1 to 60 proceeding east from the 180th mevidian from Greenwich
with minor exceptions. There are ietfer resignations from south to norih (see fig,
11). Thus, Washington, D.C., is in grid one 183, a designation covering a quad-

aT



MAF PROJECTIONS—A WORKING MANUAL

rangle from long. 72° to T8° W. and from lat. 32° to 40° N. Each of these quadrangles
is further subdivided into grid squares 100,000 meters on a side with double-letter
designztions, ncluding partial squares at the grid boundartes. From lat. 847 N.
and 80° S. to the respective poles, the Universal Polar Stereopraphic (11 PS) projec-
tion is used instead.

As with the SPCE, each geopraphic ivecation in the UTH projection is piven x
and 4 coordinates, but in meters, not feet, secording to the Transverse Mercator
projection, using the meridian halfway between the two bounding meridians zs
the centrgl meridian, and reducing its scale to 0.89996 of true scale {a 1:2,500
reduction). The reduction was chosen to minimize seale variation in a given zone;
the variation reaches 1 part in 1,000 from true seale at the Equator. The JSGE,
for civilian mapping, uses only the wone number and the » and ¥ ecordinates,
which are sufiigient to define a point, if the ellipsoid and the hemisphere {north or
south} are known; the 100,000-m square identification is not essential. The lines of
true scale are approximately parallel to and approximately 180 Km east and west
of the central meridian. Between them, the scale is too small; beyond them, it is
too freal. In the Northern Hemisphere, the Equator at the central meridian is
considered the origin, with an » covrdinate of 500,000 m and a g of 0. For the
Southern Hemisphere, the same point is the origin, bat, while » remains 500,000
m, ¥ is 16,000,000 m. [n each case, numbers increase toward the east and north,
Negative cootdinates are thus avoided (Army, 1973, p. 7, endmap). A page of
covrdinates for the UTM projectton is shown in table 0.

The ellipsoidal Earth is used theoughout the UTM projection system, but the
reference ellipsoid ehanges with the particular reglon of the Eurth. For all lund
under United States jurisdiction, the Clarke 1866 ellipsoid is used for the map
projection. For the UTM grid superimposed on the map of Hawsaii, however, the
International ellipsvid is used. The Geological Survey uses the UTM graticule and
grid for its 1:250,000- ane? larger-seaie maps of Alaska, and applies the UTM grid
lines or tick marks to its quadrangles and State base maps for the other States,
although they are generally drawn with different projections or parameters.

FORMULAS FOMWR THE 5PHERE

A partially geometric constrnction of the Transverse Mercator for the sphere
involves constructing a regular Mercator projection and wsing & transforming
map to convert meridians and parailels on one sphere Lo equivalent meridians and
parallels on a sphere rotated to plave the equator of one aiong the chosen centrul
meridian of the other, Such & transforming map may be the equatorial aspect of
the Stereographic or other azimuthal projection, drawn twice to the same scale on
transnarencies. The transparencies may then be sunerimhngasd at O0° anwelos and
trangparengies. The transparencies may then be superimposed at 90° anglas a2
the points compared.

In an age of computers, it is much move satisfactory to use mathematical
formulas. The rectangular coordinates for the Transverse Mercator applied to the

sphere (Thomas, 1952, p. €

x = YelRk, In f{1 + BX{(1 — B (B8-17
or
& = Rk, arctanh B (821
5 = Ry laretan ltan dieos (h — Aodl — dy) {8—3)
ko= kgl — HHLE (H—4}
whers
= cos ¢ sin (A — Ay) {(B—&)

{note; If & = = 1, = is infinite}
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TaBlE 9.—Universal Transverse Mercator grid coordinates
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and &, is the seale faetor along the central meridian ho. The origin of the eoordi-

nates is at {dy, Ao) The Y axizs les along the central mevidian h,, ¥ increasing

northerly, and the X axisis perpendiculuy, through dy at Ay, & inereasing easterly.
The tnperse forwnlas {or (b, A) in tevms of (r. ¥k

¢ = aresin jsin Dfeosh (RN (5--6)

A = kg + arctan [sinh (arRiglcos 1] (8—-7)
where

I = yl{Rkg) + &y, using radians (B-8)

Rectangular coordinates for the sphere are shown in table 10. Only one oetant
(quadrant of 2 hemizsphare) needs to be listed, since all other vetants are identical
exeept for sign change. See p. 268 for numerical examples,

FORMULAS FOR THE ELIITSOIN

For the ellipseidal form, the most practical form of the equations iz a set of
series approximations which converge rapidly to the correct centimeter or less at
fuli seale ina zone extending 3° to 47 of longitude from the central meridian. Beyond
this, the forward series as piven here is aceurate to aboul a centimeter at 7
longitude, but the inverse series does not have sufficient terms for this aconracy.,
The forward serics may be used with meter accwracy to 107 of longitude, (Many
additional terms for use to 24° of longitude may be found in Army (1862).) Coordi-
nate axes are the same as they are for the spherical formulas above. The for-

Tapry 10.--Transverss Mercator projection; Rectangular coordinates for the sphere

[Faulios of thee Farth e 1.9 unil. Longilade owasarsd from cenleal merdian. y courdnale i s parenibeses upder ¥ E'Dﬂ'rdlm‘iil:-.
[hrigen of reclangrilty soprdinalen @1 Fyuatar ganrl cotiral moridan, ¥ inoreames owel; ¥ ipemeised teeth, One aolant of globse is
puven; sther dclanls are aymmelieal]

Long. ° ° 20° 30° 40°
;;;~xxﬂh 0 10

4000 0.0000 0.0000 10008 0.0000

)
(1.57080)  (L.57080)  (1.57080) (L5TUR0)  (L.6TO80)
80 oo 00000 03016 05946 08704 11209
(1.39626)  (L.39886) (L4065%)  (1.41926)  (1.4365R)
T e 0DOOD 05946 11752 17271 22349
(1.22173)  {(1.22662) (1.24125) (1.26545)  (1.2988%)
| 60000 08704 17271 25541 53320
(1.04720)  (1.05380y  (1.07370) (1.10715)  (1.15428)
5O e 00000 13209 22349 33320 43943
( B7266) ( BBOI9) ¢ B031%) (.94239)  { .99831)
40 e 00000 113382 26826 40360 53923
¢{ BOB13) { .70568) ( .728G1)  { .76961)  ( .83088)
W0 oo 00000 15153 30535 46360 62800
( 52260) (53025} ( 53094) ( 58300}  { .64585)
2 00000 16465 33320 50987 69946
(34907)  ( 35401}  ( .36954)  ( .39786)  { .44356)
10 e 0000D 17271 85051 53923 74544
(17453)  ( Q7TITY O 1854D)  ( .20086)  ( .22624)
/Y ' 1 17548 35638 54981 76291

( 00000y 00000y 00000y ( .00000y  { .00000)
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mulas below are only slightly medified from those presented in standard refer-
ences (o provide mm accuracy at full seale (Army, 1972, p. 5—7T; Thomas, 1952,
p. 2—3). (See p. 260 for numerical examples.)

F= EN[A+ - T+ CAYNE + (5 18T + T2 + 720 — 38'9)47120) B0
¥= kolM - Mg + Ntan & [A%2 + (5 — T 4 9C + 4C9

A%24 + 61 - 58T + T2 + 6000 — 240efA%720] E— 109
k= k1401 +£04%2 4 (547 + 42C + 1307 — 28" AY24

+ (Bl — 48T + 18T904%790) (8-11)

where &k, = scale on central meridian (e.g., 0.9996 for the UTM projection)

e'? =¥l - g5 (R—12)
N =gl — & sin® ¢12 (4—20
T =tan’ed (8-13)
C =e¥cos’d {8—14)
A ={(k — Ay cos &, with & and X, in radians {8-15)
M =al(l - ¢®4 — 32Y64 — BeSEB6 — . . L) b — (3658 + 3eY32

+ 45e%1024 + .. .} sin 246 + (1he"/256 + 45e%1024

+...08in4d — (353072 + .. )sinbp r ... ] (3—-21)

with ¢ in radians. M is the true distance along the central meridian from the
Equator to d. Sec equation (3—22) for a simplification for the Clarke 1886 ellipsoid.

My = M caleulated for &y, the latitude erossing the central meridian &, at the
arigin of the &, y coordinates.

Mote: 1f ¢ = =+ w2, gl equations should be omitted except (3—213, from which
M and M, ave ealeulated. Then z = 0, = k(M - M), &k = &,

TABLE 10.—Transverse Mercator profection: Rectangular eoordfnates for the sphere—Continued

T~ Lone. 50° 60° 70° 80° B0°

' L 0.0000 0.0000 0.0000 0.0000 0.0000
{L.57080)  (L.57080) (1.57080) (1.57080)  (1.57080)
80 . 113382 15153 16465 17271 17543
(1.45794) (1.48286) (1.51066) (1.5401%)  (1.57080)
0 e 26826 30535 33320 35051 35638
(1.34007y  {1.39078)  (1.44695) (L.50T€B)  {1.57080)
60 __ 40360 AB360 50987 53923 54931
(1.21544)  (1.28376) (1.37584)  (147087)  {1.57080)
7 R 54923 62800 68946 74844 16291
(LO7616)  ({1.17355)  (1.29132)  (1.42811) (157080}
40 .. 67281 TORSY 50733 88310 1.01068
{ 91711}  (L03341)  (1.1837%)  (1.36673)  {1.57080)
B o JT98R9 97296 1.13817 1.26658 1.31696
{ 78182) ( .85707) (1.03598) (L.278B4)  (1.57080)
20 90733 113817  1.38932 162549 173542

( 51522} ( .62923) { .81648)  (1.12564)  (1.57080)
e 583100 1.26658  1.62548 208970  2.43625
( 26778y  (.33804) ( 47601)  ( .79305)  (L.57080)
| R 101088  1.31696 174542 2.43625
( 00000) { .0000D) ¢ .00000F  { .D0DOOY Inf.

61
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8. TRANSYVERSE MERCATOR PROJECTION

TARLE 11— Umiversal Transverse Mercator projection: Location of pofats with given scale factor

Lx coartinates in myiers gl vamipy latiiodes. Baged an inversaen of egquatien 18163, using Clarke 1886 sllipsgid. Yalwes are an ar
to night of contral mecidian {x- BHEOM M) For erordingtes l#ft of conlep) meridinn, sublrme catwes af « from 1000 00 m
Latitde i narth or ansth]

PR

QT e
mCale [ACTUD

Lat. 0.9996 09998  1.0000 10003  1.0004  1.0006
BO° ___________ 500,000 627,046 6BO943 721608 756,892 786,086
0 o 500,000 627.871 680.336 721478 755741 785027
80 " =ppog0 627755 680673 721978 755,510 795668
50 " 500000 627.613 680472 721022 755226 785452
40 . n0D000 627463  6H0260 720772 T54.925 785015
30 _.________ 500000 627.322 680,060 720528 754843 784,700
% 500000 637207 679898 120329 Th4Al4 784,443

i 500,000 627,122 679,792 720,19% 754264 TB4.276
o . 5000000 627,106 67755 720,154  TH4.212  TR4ZI1R

Equation {8—11} for & may also be written as a function of = and &:

ko= Roll + (1 + &' cos® dxe2R5N) (8-18)

These formulas are somewhat more precise than those used ta compute the State
Plane Coordinate lables, which were adapled 1o use desk caleulators of 30—40
vears ago. Table 11 shows the variation of & with x.

To obtain UTM or BPCS coordinates, the appropriate “falze easting”™ is added

PR BN LT I i iy PUPR [P P P

PP . IPWINE S U . DU, (Y T RO e Q_ oy o] s ANt
LU b oEl ldise NUPLNDINE  dudaed LU i divel CEICWIELIDI WS L3 all] La— LJ).

For the tnverse formulos (Army, 1973, p. 6, 7, 46; Thomas, 1952, p. 2-3):

b =&, — (N tan ‘b!fﬂl)lﬂzflz — {6 + 37, + IIE:'Cl - qclz - 93‘2)””24

+ {81 = 90T, + 20BC, +45T% — 952¢7 — 3¢, 408720) 18-17
A=Ay LD -1+ 27, + CYDYB + (5 — 20, + 28T,
— 30 + Be? + 24T, H05120)c0s ¢y {8— 18

where &, is the “footpaint Jatitude” or the latitude at the central meridian which
has the same y coordinate as that of the point {{, A
It mzy be found from eguation (3—26):

o= o+ (Be2 — 276,332 + ... ) sin 2+ (21e 2116

— B3¢, 430 4+ . sindp + (1506,%98 + . . )sinép + (10974512 — .. )

sin Hp + ., (8—26)
where

ey = [1=(1=I0 + (1-e%%) (3—24)

poo= Milall-e“d — 3¢"64 — 5e"256— . . . 1} (7-19)

M = JMQ + ?ﬂrkrn (8_20)

with M, calealated from eguation {(3—21) or (3—22) for the given dy.

For improved computational efficiency using series (3—21) and (3-26), see
p. 18, From ¢,, other terms below are calenlated for use in equations (8—17) and
{(3—18). (Il by = +nZ, {8-12), (8-21) through (8-25), (83—-17) and (8- 18} are
omitted, but ¢ = =%0°, taking the sign of y, while & is indeterminate, and may be
called k. Also, k = %)
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e = gl —e%) (8—12)
o= et eost 4, (8-21)
Ty =tan® &, (8—23)
Ny = afl—c® sin? g3 (8—23}
Boo= afl -e®l-fsin® g, 82 (8-24)
D = aAN e (8—25)

To convert from tabular rectangular coordinates to & and A, it is necessary to
subtract any “false easting” from & and “false northing” from y before inserting x
and y into the inverse formulas. Toe convert coordinates measured on an existing
map, the correct central meridian must be used for the ¥ axis on the Transverse
Mercator, but the X axis may cross it perpendicularly at any latitude chosen by
the user.

CRMODIFIED TRANSVERSE MIRCATOR” FROJFCTION

In 1972, the USGS davised a projection specifically for the revision of a 1854
map of Alaska which, Kke its predecessors, was based on the Polyeonic projection.
The projection was drawn to a scale of 12,000,000 and published at 12,500,000
fmap “E") and 1:1,584,000 (map “B"). Graphically prepared by adapting coordi-
nates for the Universal Transverse Mercatur projection, it is identified as the
“Maodified Transverse Mercator” projection. It resembies the Transverse Merca-
tor in 4 very limited manner and eannot be considered a cylindrical projection. It
approximates an Equidistant Conie projection for the ellipsoid in actual eon-
struction. Because of the prujection name, it is lsted here. The projection was
also used in 1974 for a base map of the Aleutian-Bering Sea Region published at
the 1:2,500,000 scale.

The bagis for the name is clear from an unpublished 1972 description of the
projection, in which it is also stressed that the “latitudinal lines are parallel” and
the “longitudinal lines are straight.” The eomputations

were talken from the AMS Tochnical Manual #21 (Universal Trapsvense Mercator) based on the Clarke
1866 Spherid, === The projection was started from a N—8 central cotstractipn Lne of the 1537 longi-
tade which 5 also the centerling of Eove 3 from the UTM tahlcs. Almig this line each even degree
fatitude was plotted from book values. At the plotted point for the 64° latitude, a perpendioalar to the
eonstraction hne (1537 was plotied. From the cenler construction line for each degree east and west
for 4° {the Timdts of boak value of Zone #£5) che carvature of latitwde was plocted. From this 697 Jatitude.

each 2 Jatitude north 1o 70° and sonth Lo 34° was constructed parallel tothe 647 latitnde line. Each degree
of Jongatude was plotted on the 387 und 63 latitude tine, Through covrezpoding degrees of lorydtude
aleng these Lwo lines of latitude a atraight line (line of Jongitude) was conztructed and projected to the
fitnits of the map. This gave 2 small projection & in width and approximately 18° in length, This
projection was repeated east and west until @ projection of some T2* in width was atbained.

For transferring data te and from the Alaska maps, it was necessary to deter-
mine projection formulas for computer programming. Since it appeared to be
unnecessarily complicated to derive formulas based on the ahove construoction, it
was decided to test empirical formulas with actual coordinates. After careful
measurements of coordinates for graticole intersections were made in 1979 on the
stable-base map, it was determined that the parallels very closely approximate
concentric circular ares, spaced in proportion £o their tnie distaneces on the ellipsoid,
while the meridians are hearly equidistant straight lines radiating firom the center
of the circular ares, Two parallels have a seale equal to that along the meridians,
The Equidistant Cunie projection for the ellipsoid with two standard parallels was
then applied to these coordinates as the closest approximation among projections
wilh available formulas. After various trial values for scale and standard paraliels
were tested, the empirical formulas below {equations (B—28) throngh (8—82))
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were obtained. These agres with measured values within 0,005 inch at mapping
scale for 44 out of 58 measurements made on the map and within 0.01 inch for 54 of
them.

FPORMULAS FOR THE "MODIFIED THRANSVERSE MERCATOR” PROIECTION

The “Modified Transverse Mercator” projection was found to be most clogely
equivalent to an Equidistant Conic projeetion for the Clarke 1866 ellipaoid, with
the scale ajong the meridiana reduced to 0.9992 of true scale and the standard
parailels at lat. 66.09° and 53.50° N. (also at 0.9952 acale factor). For the Alaaka
Map "E” at 1:2,500,000, using long. 150° W, a3 the central meridian and lat. 58° N,
as the iatitude of the origin on the central meridian, the general formuilas (Snyder,
18784, p. 378) reduce with the above parameters to the following, giving @ and y
in meters 2t the map scale. The ¥ axis lies along the central meridian, ¢ inereas-
ing northerly, and the X axis is perpendicular at the origin,  increasing easterly,

For the forward formulaa:

% = psin B (5—26)
¥ = L.561664A0 — peos B (5-27)

whete
# = 0.862511100°% + 1507 (E—28)
p= 41320402 — 0.04441T47¢° + (L00G4816 sin B (B—20

For the inverse formulas:

A = (10.8625111) arctan [x/(L5G1G640 — ¥}| — 150° (8— 30
¢° = (4.1320402 + 0.0064818 sin 24 — p¥0.04441727 (8-31)

where
p = [ + (L.5616640 — 3212 (8-32)

For Alacka Map “B” at a scale of 1:1,584,000, the same formulas may be used,
except that & and ¥ are (2,50001,584) times the values obtained from (5-26) and
(8—27). For the inverse formulas, the piven ¥ and ¥ must he divided by
(2,500/1,584) before insertion into (8—30) and (§—32).

The equation for ¢, (8—31), involves iteration by successive substitution. 1f an
initial $ of 60° is inserted into the right side, ¢ on Lthe left may be caleulated and
substituted into the right in place of the previous trial &. Recalculations continue
antil the change ih ¢ 15 less than a preset convergence. If A as caleulated is less
than —180°, it should be added to 360° and labeled East Longitade.

Formulas to adjnst » and y for the map inset of the Alentian Islunds ave omitted
here, but the coordinates above are rotated counterclockwise 29,79 and trans-
posed + 0.798982 m for » and +0.347600 m for y.
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9. OFLIQUE MERCATO®R PROJECTION
SLiMMARY

» Cylindrical (oblique).

» Conformal,

» Two meridians 180" apart are straight lines.

+ Other meridians and parallels are eomplex curves.

+ Seale on the spherical form is true along chosen central line, 2 great eirele at an
oblique angle, or along two straight H¥nes parallel to central line. The scale ont
the ellipsoidal form is similay, but varies slightly from this pattern.

» Scale becomes infinite %)° from the central line.

= Used for grids on maps of the Alasks panhandle, for mapping in Switzerland,
Madagasear, and Borneo and for atlas maps of areas with greater extent in
an oblique direction.

« Developed 1900-50 by Ensenmund, Laborde, Holine, and others.

THSTORY

There are several geographical regions such as the Aldska panhandle centered
along lines which are neither meridians nor parallels, but which may be taken ag
great circle routes passing through the region. I conformality is desired in such
cases, Lhe Oblique Mercator fs a projecltion which should be considered.

The historical origin of the Obligie Mercator projection does not appear to be
sharply defined, althouph it i3 a Isgieal gencralization of the repular and Trans-
verse Mercator projections. Apparently, Rosenmund (1902} made the earliest
published reference, when he devised an ellipsoidal fortn which is used for topo-
graphic mapping of Switzerland. The projection was not mentioned in the detailed
article on “Map Projections” in the 1911 Eneyclopaedia Brifanaica (Close and
Clarke, 1911} or in Hinks' brief text (1912). Laborde applied the Oblique Mercalor
to the ellipsoid for the topographic mapping of Madagascar in 1928 (Young, 1930;
Laborde, 1828). H. J. Andrews (1935, 1928} proposed the spherical forms for
maps of the United States and Eurasiz. Hinks presented seven worid maps on the
Obliqgue Mercator, with poles located in several different positions, and a conse-
quent variety in the regions shown more satisfactorily (Hirks, 1940, 1941}

A study of conformal projections of the ellipsoid by British geodesist Martin
Hotine (1898 —1968), published in 194547, is the basis of the U5 use of the
ollipsoidal Obligue Mercator, which Hotine cailed the *rectified skew orthomorphic”
{Hotine, 1947, p. 66—67). The Hotine approach has limitations, as discussed
below, but it provides elosed formulas which have been adapted for U 3. mapping
of suitable zones, One of its limitations s overcome by a recent series form of the
ellipsoidal Obligque Mercator (Snyder, 1979a, p. 74}, but other limitations result
instead. This later form regulted from development of formuias for the continuons
mapping of satellite images, using the Space Oblique Mereator projection (1o be
diseussed later).

While Hotine projected the ellipsoid corformally onto an "aposphere” of con-
stant total curvature and thenee 1o a plane, J. H, Cole {1543, p. 16307 projected
the eilipsoid onlo a “eonformal spheve,” waing conformal latitudes (deseribed earlier)
to make the sphere conformal with respect to the ellipsoid, then plotted the
spherical Oblique Mercator from this intermediate sphere. Rosenmund’s system
for Switzerland iz a more complex double projection through a conformal sphere
(Rosenmund, 1908; Bolliger, 19673, Laborde combined the conformal sphere with
a complex-algebra transformation of the Oblique Mercator (Reigmier, 1957,
P 1300,
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Fusure [2.--0Obligue Mercator projection with the center of projection ai fat, 45" K. on the central
meridian. A atraight line through the point and, in thia example. perpendicutar to the central
meridian i3 true to scale, The projecting is conformal and has been waed for regions lying along =
line vhlique'te meridians.

FEATURES

The Oblique Mercatar for the sphere is equivalent to a regular Mereator praojec-
tion which has been altered by wrapping a eylinder around the sphere so that it
tonches the surface along the great cirele path chosen for the central line, instead
of along the Earth’s Equator, A set of transformed meridians and parallels rela-
tive to the great circle may he plotted bearing the sume relationship to the
rectangular coordinates for the Oblique Mercator projection, as the geographic
meridians and parallels bear to the regutar Mercator, 1t is, therefare, passible to
convert the geopraphic meridians and parallels to the transformed values and
thei to use the repular Mercator egtiations, substituting the transfermed values
in place of the peopraphic values. This is the procedure for the sphere, atthough
combined [wtnulas are given below, but it becomes much more complicated for

the aﬂip:nfﬂ The advent of p'racprlf_.dn computers and programmable pocket

A
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caleulators make these caleulations feasible for sphere ar ellipsaid.

The resnlting Oblique Marcator map of the warld {fig. 12) thus resembles the
regular Mercator with the landmasses rotated s that the poles and Equater arve
no longer i1 their nsual positions. Instead, two points 90° away from the chosen
great eirele path through the center of the map are at infinite distance off the
map. Normally, the Obligue Mereator is used only to show the region near the
central line and for a relatively short portion of the central line. Under these
eonditions, it looks similar ta maps of the same area using ather projections,
except that careful scale measurements will show differences.
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TablLE 12.—Hotine Oblique Mercator profection parsmeters used for Landsar 1, 2, and 3 impgery

HOM leltmg CEntral Central Azimuth
zZone latitudes latitude [ongitude' of axis
1 48°N-81°N 67.0983°N B1.9700°W 24.7708181°

3 _ 23°N-48°N 36.0000°N 949.2700° W 14.3394883°

K, S 23°8-23°N 0.0003°N 108.5069°W 13.001443°
d__________ 23°B-48°3 36.0000°8 I17.7388°W 14,33048832°
S ____  48°5-B1°S8 67.0983°3 135.0438°W 24.7708181°
6 48°8-81°5 67.09837°5 85.1220°E -24.7708181°
o _  E3°B-48"8 36.0000°5 67.8170°E - 14.33948832°
. 23°5-23°N J0.0003°N 58.6851°E -13.001443°
9__________ 23°N-48°N 28.0000°N 49.3532°E — 14.33948832°
w__ 48°N-B1°N 67.0983°N 32.0482°E —24.7708181°

' For path 31, Far ather puth numbers p, the centrul langitude is deoreased fwiest is negativel by (3607281 = (p-
a1

Blote: These puremeters are vsed with equations given nhder Altermate I of ellipsoitlal Ohligue Mercator formolds,
with dy, the centra] latitude, k, the central longitede, aind og the azimuth of axis east of north, Scale Gotor &y st center
iz 1.0.

It should be remembered that the regular Mercator is in fact a limiting form of
the OMligue Mercator with the Equator as the central line, while the Transverse
Mercator 13 another limiting form of the Oblique with a meridian a3 the central
line. As with these limiting forms, the seale dlﬂl‘lg the central line of the Qhlique

[P iy [, [ N PR 1) MU TR S, S

‘!'{l:"l CALOT Tildy |;|: TE(1UCel 1 DA1AYNICE L.ul: m_i-lu: LILIUUEMUUL L.1||':- iHdp.
USAGE

The Chlique Mereator projeetion iz used in the spherical form for a few atlas

maps. For cxample, the National Geographie Society uses it for atlas and sheet
maps of Hawail, the West Indies, atd New Zealand. The spherical form is being
used by the USGS for maps of North and South Ameries and Australasia in a new
set of 1:10,000,000-scale maps of Hydrocarbon Provinees, For North America,
the central seale factor is 0.968, and the transformed pole is at lat. 10°N, long.
10°E. For South America, these numbers are 6,974, 10°N., znd 30°E., respeactively;
for Australasia, 0.978, 55°N, and 160°W. These parzmeters were chosen after a
least-squares analysis of over 100 poinls on cach continent to determine optimum
parameters for 1 eommon eanformal projection.

In the ellipsoidal form it was used, as mentioned above, hy Rosenmund for
Switzerland and Laborde for Madagasear. Hotine used it for Malaya and Bornec
and Cole for Italy. [t is used in the Hotine form by the USGS for grid marks on
zote 1 {the panhandle) of Alaska, uzing the State Plane Coordinate System as
adapted Lo this projection by Erwin Schmid of the former Coast and Geodetic
Survey. The Hoting form was also adopted by the 1.8, Lake Survey for mapping
of the five Great Lales, the 8t. Lawrence River, and the TI5.-Canada Border
Lakes west tn the 1 ;!]-n:t of the Woods prr’r\, and Bormanis, 1970), Four zones

are involved; see table B for parameters of the:-,e and the Alanka zones.

More recently, the Hotine form waz adapted by John B. Rowland (USGS) for
mapping Landsat 1, 2, and 3 satellite imagery in two sels of five discontihucus
zones from north to south (tabie 12). The central line of the latter is oniy 2 elose
dppruximdtian to the satellite gmundtrdck which does not follow 2 great circle
oule on u|c L.au l,u, JuaL.t:du, it u,,-uuw.'_s H pru_,u u; l._.U||bl,(|,|,],L.J,y l'.'h&ﬁj—_;"iﬁg curvature.
Until the mathematical implementation of the Space Obligee Mercator (S0M)
projection, the Hotine Oblique Mereator (HOM) was probably the most suitable
projection available for mapping Landsat lype data. In addilion to Landsat,
the HOM projection has heen used to cast Heat Capacity Mapping Mission (HCMM)
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imagery since 1978. NOAA (National Oceanic and Atmospheric Administration}
haz also cast, some weather satellite imagery on the HOM to make it compatible
with Landzat in the polar regions whick are beyond Landsat coverage {above lat.
827,

The parameters for a given map according to the Oblique Mercator projection
may he selected in various ways, If the projection is to be used for the map ofa
smaller region, two points located near the limits of the region may be selected to
He upon the central lite, and various constants may be caleulated from Lhe lati-
tude and longitude of each of the two points. A second approach is to chonse a
central point for the map and ap azimuth for the central line, which is made to
pass through the central point. A third approach, more applicable Lo the map ol a
large portion of the Earth's surface, treated as spherical, is to ehoose & location on
ihe original aphere of the pole for a transformed sphere with the central line as
ihe equatoy. Formulas are piven for each of these approaches, for sphere and
ellipsoid.

FORMULAS TOM THE SFHLRY

Starting with the forward equations, for rectangular coordinates in terms of
latitude and longiiude (see p, 272 for numericsd examples)

1. Given two poinls to lie upon the central line, with latitudes and longitudes
(), &) and {d2, 20} and longilude increasing easterly and relative 1o Green-
wich. The pole of the oblique trunsformation at (d,,x.) may be caleulated
as follows:

A, =arcian [(cos dy $in dy cos k; — 8in gy €08 dy c08 k)
(SN &by COS do 5IN Az — €08 by 5N e s AL {9-13
¢, = arctan [— o5 (A, — x,)tan gy (9-—-23

The Portran ATANZ funetion or its equivalent should be used with equation
(9—13, but not with (9--2). The other pole is located at (-4, 2, x 7). Using
the positive (nocthern} value of &, the following formulas give the rectangular
coordinutes for point (b 1), with &, the scale factor along the central line:

x = Rirparctan [tan ¢ eos §, + sin b, sin (h — A)0eos (h=ho) 9-8
¥ = (R Inl{1 + 41— AN (9—4y
ar
y = R, arclanh A (4—4a)
k= kg{l1-Afp2 (9—5)
where
A = 30 dy 3in b — 208y, 08 b SN (A — Ay) (9~ 8)

With these formulas, the origin of rectangular coordinates hies at

{bg =1}
Ay = A, w2 (§-6a)

and the X axis lies zlong the central line, x increasing easterly. The trans-
formed poles are y equals inflinity.
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2. Given a central point (., 4,) with longitude increasing easterly and relative to
Greenwich, and azimuth 3 east of north of the central line through (&b, A,
the pale of the oblique transformation at (d,, A,) may be caleulated as follows:

&, = aresin (cos ¢, sin ) (9—T)
A, =arctan {— cos B/ — &in &, sin B)] + A, (9=8)

These values of ¢, and A, may then be used in equations (9—3) through
{5—6) as before,

3. Foran extensive map, &, and A, may be arbitrarily chosen by eve to give the
pole for a central line passing through a desired portion of the globe, These
values may then be divectly used in equations (9—3) through (9-8) without
intermediate calculation.

For the iwverse formulas, equations (9—1) and (89— 2) or (9~ 7) and (9~ 8) must
first be used to establish the pole of the oblique transformation, if it is not known
already. Then,

$ = arcsin [sin &, tanh (/R + cos &, sin (c/Righeosh (giREy)] (9—-9)
A = hy + arctan !{zin &, gin (X/Rkg) — cos ¢, sinh (pRk eos (xiBkg)  (8—10)

FORMULAS FOR THE ELLIPSON

These are the formulas provided by Hotime, slightly altered to use a positive
eastern longitude (he used positive western longitude), to simplify caleulations of
hyperbolic funetions, and to use symbols consistent with those of this bulleiin.
The central line is a geodesic, or the shortest route on an ellipsoid, corresponding
to a great cirele route on the sphere.

It is cuslomary to provide rectangular coordinates for the Hotine in terms
either of {3, ¥} or (x, ¥). The (u, ) ecordinates ave similar in concept to the (x, ¥)
caleulated for Lhe foregoing spherical formutas, with « corresponding to x for the
spherical formulas, increasing easterly from the origin along the central line, but
v corresponds to —y for the spherical formulas, so that v increases southerly in a
direction perpendicular to the central line. For the Hotine, x and y are caleulated
from [, v} as “rectified” coordinates with the ¥ axis following the meridian
passing Lhrough the center point, and increasing northerly as usual, while the X
axis lies east and west through the same point. The X and ¥ axes thus lie in
directions like these of the Transverse Mercator, but the scale-factor celation-
ghips remain those of the Oblique Mereator.

The normal origin for (w, ) coordinztes in the Hetine Oblique Mereator is
approximately at the intersection of the eentral line with the Earth’s Equator.
Actually it occurs at the crossing of the ceniral line with the equator of the
“aposphere,” and is, thus, a rather academic location, The “apasphers” is a sur-
face with a vonstant “total” curvatuore bazed on the curvature along the meridian
and perpendicular thereto on the ellipsoid at the chosen central point for the
projection. The ellipsoid is conformally projected onto this aposphere, then to a
plane. As a result, the Hotine is perfectly conformal, but the scale along the
central line is true only at the chasen central puint along that line or along a
relatively flat elliptically shaped line approximately centered on that point, if the
scale of the central poinl is arbitrarily reduced to balance scale over the map. The
variation in seale along the central line is extremely small for a map extending
less than 45° in are, which inciudes most exizting usage of the Hotine. A longer
central line snggesis the use of a different set of formulas, available as a limiting
form of the Space Oblique Mereator projection. On Rosenmund’s (1803), Laborde’s
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(1928), and Cole’s (1943) versions of the ellipsoidal Oblique Mercator, the eentral
line is a great circle are on the intermediate conformal sphere, not a geodesic. As
on Hotine’s version, this central line is not quite true to scale except at one or two
chosen points.

The projection constants may be established for the Hotine in one of two ways,
as they were for the spherical form. Two desired points, widely separated on the
map, may be made to fall on the central line of the projection, or the central line
may be given a desired azimuih through a seleetad central point. Tuking these
approaches in order:

Alfernate A, with the central line passing through twe given points.

Given:

a and e for the reference eflipsoid.

ky = scale factor at the selected center of the map, lying on the central line.

&y = latitude of selected center of the map.

(dy. &y) = latitude and longitude (east of Greenwich is positive} of the first point
which is to lie on the eentral line.

(e, Ay} = latitude and longitude of the second point which is to lie on the

central line.

(&, A} = latitude and longitude of the point for which the coordinates are

desired.

There are limitations to the use of variables in these formulas: To avoid indeter-
minates and division by zero, &y or &) cannot be = g, ¢y cannot be zero or equal
to ¢z (although &z may be zerol, and s cannot be — /2. Neither $y, &g, nor bs
should be * w2 in any case, since this would cause the central line to pass through
the pole, for which the Transverse Mercator or pelar Stereographic would proba-
bly be a more suitable choice, A change of 10-7 radian in variables fram these
special values will permit ¢aleulation of an otherwise unsatisfactory condition.

It is also necessary to place both (&, A} and (b, ;) on the ascending portion, or
both on the descending portion, of the central line, relative to the Earth's Equator.
That is, the central line should not pass through 2 maximurn or minimum between
{kese two points,

If & is zero, the Hotine formulas pive coordinates for the spherical Oblique
Mereator.

Becauvze of the involved nature of the Hotine formulas, they are given here in
an order suitable for calewlation, and in a form eliminating the nse of hyperbolic
funetions as given by Hotine in favor of singde caiculations of exponential functions
to save computer time. The corresponding Hotine equations are given later for
comparison {see p. 274 for numerical examples).

B =[1+¢&% cos' qbo.f(l‘—ee)]l"z (9—11)
A =Bkl -na(1-ef sin® $y) {3—-12)
fp = tan (MA—dy2A01—a sin dpli(1+ e sin e (9—13)

1 — sin dy, 1 + esindy y 2=
ar - 1 + sin by 1~ g8indy (8~ 13a)
t; = same as (9-13), using &, in place of &y,

f; =same as (8-13), using ¢z in place of by,
D = B(1—&" 12 cos dbyll = & sin® by)te] 9—14)

¢y = 0, D may caleulate to slightly less than 1.0 and create a problem in the next
step. If DP=1, it should be made 1.

E =D = (D? — nijtyr, taling the sign of dy (9—15)
H =¥ (9—16)
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L =t~ 9-17
F =E/H (9—18)
G =(F — 1iF2 9—15)
J ={(E?— LHWE® + LE) (9—20)
F =L - Hi(L + By {9—21)
Ao ={h; + A)Z — arctan LS tan |B(x, — 2 V2VFR {5—22)
vo = aretan 'sin [B{A, — A)VG) (9—23)
a, =aresin (13 sin v (8~24)

To prevent problems when straddiing the 180th meridian with A, and h,, before
calenlating (9—22), i (A, — Ag) < — 180°, subtract 360° from As. I (A, — Api>180°, add
3607 to Ag. Also adjust hpand (A, — ky) to fall between = 180° by adding or subttracting
360°, The Fortran ATANZ funetion is not to be used for equations ($- 22) and (9-23),
The ahove equations (9—113 through (9-24) provide constants for a given
map and do not involve a specific point {¢,A). Angle o, i8 the azimuath of the cen-
tral line as it crosses latitude $o, measured east of north, For point (¢, k), calcu-
late the following:

ia

¢ = same as equation (9—18), but using 4 in place of ¢,

W¢ = =72, do not caleulale {. but go instead to (9—30).

Q = Efia (9-25)
5 ={Q - LQVe {9—26)
T =0 + Ligh2 {9-27
V' =sin [B(x — Ayl (5-28)
I ={~Vecos vy, ~ S sin yT (9—240)
v =AIn[(1-L71 + INYVER {9—-30)

Note: If If = =1, vis infinite; if & = w2, w={4/8) In tan {m/d T2}
# = A aretan (S cos vy, + V sin yWeos [Bla=h)|l'8 {9-31)
Note: Ifcos [B{A—A)t=0, u=ABA—,). If & = =7w/2, v = Ad/B,

Care should be taken that {A—h) has 360 added or subtracted, if the 180th
meridian falls between, since multtplication by B eliminates automatic correction
with the sin or cos funetion.

The seale factor;

k= A cos (Bu/AY1—e%sinZh)2a cos & cos [BA AT (§—32)

If “rectified” coordinates (@, ) are desired, with the origin at a distance
i, %o} from the origin of the (u,%) coordinates, relative to the (X, ) axes {see
fig. 133

¥ =VC0s o, + §Sito, + X [9-33)
¥ THonsa, ~ pSina oy (G—-34)

The formulas grven by Hotine and essentially repeéated in Thomas {1952, p. 7-5),
modified for positive east longitude, » and v Inereasing in the directions shown in
figure 13, and symbols consistent with the above, relate to the foregoing formulas
as follows:®

THatine uses positive west longitude, ¥ correspaniling to g here, and  corpespending te ~r here. Thomas ugey
positive west lengitude, ¥ corresponding to ae heve, and @ corresponding t¢ — v herw, Tn calvalations of Alaska Tons 1,
west lengilade i= positeve, but x and v agree with w2 and v, reapectively, here.
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Meridian of wvy origim

Y axis
4 4/

|
i
- 1 Earth Equater on aposphere
_{"_"_" T T T T |— —Earth Eguator on ellipsoid
wil” {r
i
x
— e L X axis
origin \
of {x,¥| )
x=0 Vaxis
Y=0

Frouke 8. —Caandinste system for the Hotine Obiique Mereater projection.

Equivalent to (9—11)

gt = edil—-eY
B =(1+¢F cos e

Equivalent to {912}
E'y = afl=e"W(1—¢* sin g,
Ny = aill—e? sin %z
A = Eko{R'wVQ}}E

Other formulas:

iy = Ny, eos g .
dr, = In [tan (i 42001 —¢ sin & (L + e sin ¢ Y}

Note: i, is equivalent to (~In £} using equation (9—13),
£ = * arccosh (Asry) — By,

Nole: € is equivalent to In B, where E is found from equitation (5—15% £, from
(9—34), is (Afrg)

tan [¥2B(x)—~Ay)] tanh {8, +dy) + C]

tam B+ A~ Bh] = tanh (V2B0y, )]

The tanh in the nomerator is J from equation (9-20), while the tanh in the de-
noiminator is P from {8-21). The entire equation is equivalent to (5—22),
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tan v, = sin [BlA; — kp)einh (B, + O
This equation is equivalent to (9—23), the sinh being equivalent to & from (3—19).
tanh (Bridky) = |cos vy sin [B{x = Ag)) ~ sin v, sink (BY + jcosh (B + ©)

This equaticn iz equivalent to (9-30}, with § the sinh function and T the cosh
function.

tan (Bufdky) = leos v, sinh (B, + €) + sin v, sin [B(h ~ Ap)ieos [B(h — Ayl

Thiz equation is equivaient to (9-31).

Alternate £i. The following equations provide constants for the Hotine Oblique
Mercator projection to fit a given central point and azimoih of the central line
through the central point. Given: o, e, &y, O, and {b, A} as for alternate A, but in-
stead of (¢, Ay} and {bg, Mg}, k. and o, are given,

where

(g, 2} = latitude and longitude (east of Greenwich is positive), respectively, of

the selected center of the map, fulking on the central line,
o, = angle of azimuth east of north, for the central line as it passes thropgh

the center of the map (g, X1

Limitations: ¢ cannot be zero or £ o2, and the rentral kine cannot be at 3
maximum or minimuom {atitude at ¢,. If e = 0, these formulas also give coordinates
for the zspherical Oblique Mercator. As with alternate A, these formulas are given
in the order of calculation and are modified to minitnize expenential computations.
Several of these equations are the same as some of the equations for alternate A

B =1 + ¢ cos® b1 — Sz t9—11)
A =aBk, (1 ~ e®n2) ~ e%in® &) t9-12)
ty = tan{wM - dy2W(1 ~ esindy)i] + esindig})=® {9—13}
D = B{1 — e®nafoos by (1 — ¢ sin® dpr?] (9 - 14}

If dy = 0, D may ealeulate to slightly less than 1.0 and create a problem in the next
step. If £2<1, it should be made L

F o= 0= ([F - 132 taking the sign of dy (9-35)
E =Pt (9-236}
G = - e (9—15)
¥y = aresin (sin o /) (9~3T1
Ay =h, — {arcsin (7 tan v}l B {9—38)

The values of « and » for center point (dy, M) may be c¢alculated directly at thiz
point:

Uy = F {A/B) aveian (D% — 1)%eos o ], iaking the sign of d,. {0—30)
Uige,ay = 0

These are the constants for a given map. Equations {§-27) through (9-32) for
alternate A may now be unsed m order, following caleulation of the above
constants,

The inverse equations for the Hotine Oblique Mercator projection on the ellipsoid
may be shown with few additional formulas. To determine ¢ and » from ¥ and y,
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or from i and v, the same parameters of the map must be given, except for ¢ and A,
2nd the constants of the map are found from the above equations {(8~11) through
{9-24} for alternate A or (9—11) through (9—38) for alternate B, Then, if =
and y are given in accordance with the definitjons for the forward equations, they
must first be converted to fx, o)

v = (z - zo)eos e, — (y - o sin g, (9—40)
# o= [y — #p) co8 a, + (x — Xy} sin o, (9—41)

If (s, #) 2re given, or caleulated as just above, the following steps are performed
in order:

@ = e-thum (942}

where ¢ =-2. 71828 . . . | the base of natural logarithms

§ =@ - Qw2 (9—43)
T = + QN2 (9—44)
V' = sin (Buld) (9—45)
I =(Veos v, + 8 sin 3 ¥T (9—46)

t =BG + Uw—Lrypae (5-47)

Butif i¥ = 2 1, ¢ = =90° taking the sign of I/, A may be called Ay, and
equations (7-9) and (9-43} below are omitted,

d = 2 — 2 arctan (1 — e sin $Y(1 + e sin Gz (T—9

Equation (7-9) is solved by iteration, using ¢ = (m/2 — 2 arctan #) as the first
trial ¢ on the right side, and using the suecessive calenlations of & on the laft side
23 successive vaiues of & on theright side, until the change in & is less than a chosen
convergence vaue.

A = kg — aretan [{8 cos yo ~ V' sin yoieas (Bt 1B {9—-48)
Since the arctan (found as the ATANE funetion) is divided by A8, it is necegsary Lo
add or subtract 360° properly, before the division.
To avoid the iteration, the series (3-5) may be used with {7—12) in place of
{79

b= x + (62 + HeY2d + 512 + 1365380+ .., Ysin 2y +

(7648 + 205240 + 811801520 + . . | dsindy + (77120 + 8151120+ | .

Sin By + (4279¢¥161280 + . .. ) sin 8y + . .. {3-5)
where

x = w2 — 2 aretan ¢ (7-13;

For improved computationsl efficiency using this series, see p. 19.

The equivalent inverse equations as given by Hotine are as follows, following
the caleulation of constants using the same formulas as those given in his forward
equalions:

tan [B(h — A} = [8in yg sin (BulA)} + cos vy, sinh {(Bwidieos (Buld)
tanh (B + C) = [eos vy, sin (Bw/A) ~ sin vy sinh (Bwfd)]icosh (BuiA)

K]
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H CYLENDRICAL EQUAL-AREA PROJECTION
SLAIMARY

+ Cylindyieal.

+ Equal-area.

» Meridians on normal aspect are equally spaced stralght lines.

» Parallels on normal aspeet are unequally spaced straight lines, elosest near the
poles, cutting meridians al vight angles.

« Oniransverse aspect, central meridian, each meridian $0° [rom central meridian,
and Equator are straight lines. Other meridians and parallels are complex
eurves,

» Om oblique aspeet, two meridians 180° apart are straight lines. Other meridians
and paraliels are complex curves.

« On normal aspect, seale is true along Equator, or along two paraliels equidis-

tant from the Equator.

On transverse aspect, scale fs trie along eentral meridian, or along two straight
lines equidistant from and parallel to eentral meridian. (These lines are only
approximately straight for the ellipsoid.)

On oblique aspeet, scale is true along chosen central line, an oblique great cirele,
or along two straight lines parallel to central fine. Beale on ellipsoidal form is
similar, but varies shightly from this pattern.

An erthographie projection of sphere onto cylinder.

Substantial shape and scale distortion near points 9° from central line,

Norma! and transverse aspects presented by Lambert in IT7E.

HISTORY AND LSAGE

The fourth of the seven projections proposed by Johann Heinrieh Lambert
{1772, p. T1—72) and occasionally given his name, is the Cylindrieal Equal-Area
(fig. 14). In the same work (p. T2—73), he described its transverse aspect (fig. 16),
which has hardly been used. Even the normal aspect has seldoim been used except
as 4 texthook example of the most easily constructed equal-area projection, but
several modifications of the normal aspect have been published.

These modifieations consist of compressing the projection from east to west and
expanding it in the same ratio from north to south, thereby moving the parallel of
ne distortion from the Equator to other latitudes. The earliest sneh modification
is fror Scotland: James Gall's Qrthopraphic Cylindrical, not the same as his pre-
ferred Sterecgraphic Cylindrical, both of which were originated in 1855, has
standard parallels of 45% N. and 8. (Gall, 1885). Walther Behrmann (1210) of Ger-
many chase 30°, based on certaln overall distortion criteria (fig. 15). Very similar
later projections were offered by Trystan FEdwards of England in 1853 and Arne
Peters of Germany in 1967; Lthey were presented as revolutionary and original
concepts, rather than as modifications of these prior projections with standard
parallels at about 37° and 45°-47°, respectively (Maling, 1966, 1974,

The obliqhe Cylindrical Equal-Area projection has heer proposed with particu-
lar parameters for maps of Eurasia and Africa {Thornthwaite, 1927) and of air
for fig. 17. The ellipsoidal form of the oblique and transverse aspects has appar-
ently been developed only recently (Snyvder, 1985b).

FEATLURES

Like other regular cylindricals, the graticule of the normal Cylindrical Equal-
Ares projection consists of straight equally spaced vertical meridians perpendieu-
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lar to straight unequally spaced horizontal parallels. To achieve equality of area,
the paraiiels are spaced from the Equator in proportion to the sine of the latitude.
This iz the simplest equal-area projection.

The normal Cylindrical Equal-Area for the sphere is a true parspective projec-
tien onto a eylinder tangent at the Equator: The mendians are projected from the
center of the sphere, and the parallels are projected with lines parallel to the
equalorial plane, or orthographically from infinity, Modifications such as
Behrmann'’s, described above, are perspective projections onto a secant cylinder.
For oblique and transverse aspects, the projection may be perspectively cast on
a ¢ylinder tanpent or secant at an oblique angle, or centered on a meridian.

There iz no distortion of area anywhere on the projections, and no distortion
aof scale and shape at the standard parallels of the normal aspeet, or at the standard
lines of the oblique ot transverse aspects. There 13 extrame shape and scale dis-
tortion 90° from the central line, or at the poles on the normal aspect, These are
the points which have infinite area and linear scale on the various aspects of the
Mercator projection. This distertion, even on the modifications described above,
is 50 great that there has been little use of any of the forms for world maps by
professional cartographers, and many of them have strongly criticized the inten-
sive promotion in the noncartographic community which has aceompanied the
presentation of one of the recent modifications.

The meridians and parallels of the transverse and ohlique aspects which are
straight or curved on the Mercator projection are straight or curved, respectively,
on the Cylindrical Equal-Area, except that the curves are differently shaped.

In spite of the shape distortion in some portions of a world map, the projection
is well suited for equal-area mapping of regions which ave predominantly north-
south in extent, or which have an obligue central line, or which lie near the Equa-
tor. This is true in the same sense that for mid-latitude regions which extend
predominantly east-west, the Albers Equal-Area Conic prejection is recomnmended
for equal-area mapping. Actually, the normal Cylindrical Equal-Avea is the limit-
ing form of the Albars when the Eguator or two parallels symtnetrieal about the
Equator are made standard. If such regions to be mapped are smaller than the
United States, the ellipspidal form should be considered.

FORMULAS FOR THE SPHERE
The geometric construction of the Cylindrical Equal-Area projection has been

described ahove, The forward formulas for the normal aspect are as follows, given
R, &y, ko b, and &, to find x and y (see p. 278 for numerical examples):

x =R (A—}g) cos dy (10-1}
¥ =R sin dfcos &, (10-2
k = cos d/eos ¢y {10—2a)
=1k {10—2b)

where &, is the standard parallel (N. or 3.}, or the Equator in Lambert's original
form. The X axis lies along the Equator, & increasing easterly. The ¥ axis lies
along the central meridian hp, ¥ increasing northerly, and the originis (¢ = 0°, Ap).
If (A ~ k) lies outside the range %1807, 360" should be added or subtracted so that
it will fall inside the range.

For the transverse aspect, given ky instead of ¢,

x = (Rihg) tos & sin (k) (10—3}
y =E holarctan (tan ¢ / cos (A — Agl] — &y (R-3)
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where h, I8 Lthe scale factor (normally 1.0) along the central meridian Ay The
origin of the coordinates s at {d&y, Ap). The ¥ axis lies along the centra! meridian
Ag, ¥ increasing northerly, and the X axis is perpendicular, through &, at Ay, r
increasing easterly.

For the obligue aspect, the alternatives used for the Oblique Mercator projec-
tion are used here, with modification only in the formulas for the ¢ coordinates:

1. Given two points to lie upon the eentral line, with latitudes and longitudes
(g, Agdand {de, Ag), and longitude inereasing easterly and relative to Green-
wich, the pole of the oblique transformation at (b, hy) may be caleulated as
follows:

Ay = arctan [{cos & sin bg cos by —sin &, cos de cos Ag)l
{5in &, cos s 510 Ax—0c08 by SiN ba 5in k)] (-1
By = arctan [— cos (A, —Agltan ] 9—2)

The Fortran ATAN2 function or its cquivalent should be used with equation
(9-1), bt not with (9—2). The other pole is located at {— by, Ay = 180°).
Using the positive (northern) value of ¢y, the following formulas provide the
rectangular coordinates for point (b, A), with fiy as the scale factor along the
central line:

x = Rhy arctan [tan $ cos o, + Sin by sin (A—rg}] /
cos (A=Al {10-4)
¥ = (Rig) [sin &y, sin & — eas by cos & sin (h—hyl) {1035y

With these formulas for the oblique aspeet, the origin of rectangular coor-
dinates lies at

o0 =0
Rg] = ’\p + 'TrJi2 {9—53}

and the X axis lies along the central Nine, x increasingly eusterly. The trans-
formed poles are straight lines at ¥ = F and are as lohg as the ¢central line.

2. Giver a central point {&,, A;) with loogitude increasing easterly and stated
relative to Greenwich, and azimuth vy east of north of the central line through
(g, *7), the pale of the oblique transformation at (¢, Ap) may be calculated
a5 follows:

d,, = arcsin {eos &, sin y) 9-73
Ap = arctan [—cos w(~sin b, sin )] + A, {9—8)

These values of & and Ap muy he used in equatipns (10—4) and (10-3) as

For the vrverse formudas, first for the normial aspect, given K, &g, ke, 7, and v,
to find & and &
¢ = arcsin [/} cos ¢,] (10-6)
A =R cos b + ky (10—73
For the transverse aspecl, given &, instead of &,
& = arcsin i[1—(hy x/RY)2 sin Dr (20~8)

A=Ay + arctan |(fy, 2RV~ (kg o/RYEP? cos D} (-
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where
D =i (Rhy) + &g, using radians (10—10}

For the ohlique aspect, equations (2 - 13 and (8- 2} ot {5—7) and {9—8) must. first.
be used to establish the pole of the oblique transformation, if it is not known
already. Then

& = avesin {(yh/R) sin by 4 [1-thg/ B2 cos &, sin

LA RA . (10-11)
A= ko + arctan ((1—(yhe/RY*¥" sin by, sin (2R i)
— {yho/R) cos d)i,]flll-(y-‘wR)E!‘-" cos [ fha)) (10~12)

Note that the above equations for the oblique aspect may be used for the trans-
verse aspect, letting 4, = 0%, except that the axes are rotated 90°.

FORMULAS FOR TILE ELLIPSOI

In the following formulas, the ellipsoid is transformed onto the anthalic
sphere, but the seale along the desired central line is made constant by variably
compressing the scale along this central line to wmatch that along the same
path on the ellipsoid. To retain correct area, the distances perpendicular to the
central line are increazed by the same ratio. For the oblique aspect, the central
line is not a geedesic, but is instead an obligue great circle on the authalic sphere.

For the forward formulas using the normal aspect, given a, €, §g, Ay, @, and &,
to find » and y (see p. 281 for numerical examples), the equations are given in the
order of computation:

ko = cos byl -6 sin® ) (10-13)
g = (1—¢ [sin &it1—¢® sin® &) — 11426

In [{1-g sin &)1 +e sin &)]) 3-12
x =6k (h—h ' (10-14)
¥ =o g2k (10-15)

For the transverse aspect, the subseguent formulas for the obligue aspect may
be used, but the following are simpler for the transverse alone. Given ¢, e, fy,
Ao, Gg, &, and A, to find x and y, first g is calculated from & using equation (3—12)
above. Then

B = arcsin (gigy) {(3—-11)

where P is the authalic latitude corresponding to &, and ¢y is found as ¢ from
equation (3-12) for a ¢ of B0°

B, = arctan [tan Bieos (A —iy)] {10~ 18)
e = qp 5N Be (10-17)
A L gin &, 1 1 - ¢sin ¢,
= — - i —_ o TR —
e = & + 2 008 by I:l—-.e2 1—£%sin®h, 2o " (I + esincbc}] (3-16)

Equation (3- 16) requires ileration by successive substitution, using aresin (g,/2)
as the first trial 4, on the right side, calculating ¢ on the left side, substituting
this new ¢, om the right side, ete., until the change in ¢, is negligible. This does
not converge if B, = = 90°, but then b, = B,

Bl
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z =rcos B cos b, sin (A\—hg¥hy o5 B, (1—¢® gin® G147 (10-18)
M, =ql(1-*d-8e%64~5e%256 — . . I,

— (3% « 3eM32 « 4551024 + .. L) sin 2,

+ (15e%256 + 45e%1024 + . . ) sin 4,

— (3553072 + .. .ysin By + .. ] (3-21)
¥ o= Ry (M~ M) {10-19)

where Ry is the scale factor along the centrul meridian Ay, and B, and ¢, are
aythaiic and gendetic “footpoint” latitudes, respeetively, with the same y value at
the central meridian as the point (¢, A). Constant M, is the value of M, caleulated
fram (3—21) with latitude of arigin &y in place of &,. To aveid itergtion, equations
(101~ 17) and (3— 16} may be replaced with the following series:
. = B + (€3 + 3164180 + 51TeMBOAD + .. ) sin 2B,

+ (239360 + 25143780 + .. L) sin 4B,

+ (761545360 + .. ) sin BB, + . .. (3-18)

For the oblique aspect, the location of the pole (dy, Ay) may be given, or it may
be computed as deseribed under the sectioh on formuwlas for the sphere abave.
Ponts &y, dy, by, and &, however, are replaced in equations (9—-1}, (82}, (9—7)
and (9—8) with 8;, Bz, By and B, respectively, and B, is finally converted to by,
using eguationg {10—17) and (3—18), or just (3—18), and subseripts p instead of c.

It the ellipsoid is either the Clarke 1866 ar the International, Fourier constants
may be taken from table 18, If it is a different eliipsoid, coefficients should be
caleulated as deseribed after these formulas, They may be converted to the specific
cocfficients for the pole in use as follows:

B =b 4+ eyc08 20, + 64008 4dy + ngcos by, + ... (10—20}
Ay =by + 0 pgcos 2dy + a'pggeosddy + a'ygeos by + ... (102D
where
n = 2and 4.

From ¢, B is determined using equations (3—12) and (32— 11) above, and, if B, was
not obtained earler, it is caleulated by substituting ¢y for ¢ in (2— 12} and abtain-
ing By fram (3—11). Then,

A' = aretan |[eos fip 8in f—sin By cos B cos (h—ap)l/

{cos B sin (h—a,)1} {10-22)
a o= Ghy BN + Ay sin 23 + A sindn’ + Agsim 6y + L. 0] (10-23)
F =8+ 24,c052x + 44, cos 48" + BA; aos6A' + | . . (10=-24}
¥ = (aqp2ifsin By sin § + cos By cos B cos (h—RpiVihoF) {10—25)

The axes are a3 stated for the corresponding aspect of the spherical form. For
e B Al s b o pcel o AR e FIY _AY o e 10D
NLIEE ELLICIEIEL LU|JlJ.Il,lL.qL|UL| UL agies | Ly L) oAl L4V [ X r-1-1 IJ. =

For the inverse formaulas for the sllipsoid, the normal aspect wiil be diseussed
first. Given a, @, dg, &g, =, and y, to find d and A (see p. 284 for numerical
cxamples), ky is determined from (10—13), angd

B = aresin [2yk/agy)] (10—28)

where ¢q Is found from (3--12), wsing #0° for ¢, then ¢ s found from B using
(10—17) and {3—18). or just (3~ 18}, without subseripts, these equations being
listed under the forward cquations abave,
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TABLE 13.—Fourfer cosffictents for obligue and transverie
Cylindrieal Fqual-drea prajection for the eliiproid

Genaval cosffeciermes;

Caefficient Clarke 1866 Ellipucid InteTnational Elipsaic
b 0.9981507128 03,9981565046
az —0.0008471537 =0, 0008418907
fy 0 HIG0G21283 0.0000020094
g =0, HIGOH DS ~ 0. GIGH00M53
L5 ~(LIHIH412090 —=0, 00614024733
P —0.600141 1258 —0.0001 461661
254 0. 0000000838 0.0000000827
a2 04000600005 0. 0000000005
by =0, DO CO004E5 =0, 0000060429
o'y ~0, 6000000573 =G 000000571
a4 ~0. 0000000144 —0, 0000000142
i1 4q 0. 0000003000 0000000000
CeaffTeienta fire apeclfic pofe lafitudes (Clarice 12868 elliprold):
[-1% B Az A,

0° 0.9983056818 —0.0002822502 —0.0000001158
15 0. 9984181201 - 0.000Z633856 =0, 0000001008
30 0. 9987260768 = ({0021 18145 =0, (NG5
45 09991435842 —0.0001412929 —0,000000K0230
& 0.999573219% - 0. 00TOGATS —0.000GHOATSE
75 0. 9998854334 —0.0000130486 =0, 00000005
a0 1.0 0.0 0.0
Cogffirienta fir aperific pale latitades ¢ Trtermalipnal ellipenid}:
by 5 A Ay

ne 099831 T2080 — (0002803311 ={0.00000011 142
15 0.998428RHE6 —LOG02615944 —0.00]00009395
3 0.998734 7648 ~+LO0021037T33 = (.0000000644
45 0.9991544051 = (LA0014G3310 —{0.0000006287
B (0.9995761449 ~ LOGOOTIEG60 ={.00000HKY 72
75 0. 9998862200 = 0.060F18B195 ={.0000060005
90 1.0 1.0 0.0

= |atitude of pole of oblique aspect (B* far Lranaverza, 90° for narmal’.

&
B‘Tﬁn, b, ¢le. = Founer cocfficients s 16t for wwe)
Moke: B ix uzed with A" in radisns. Ay ~ - O WDKK for % = 4" to 20F, bul is zero te 1en places at higher

values of by,

{larke 1868 ellipsoid: semimajor axie o = GSTHE0E.4 m; eccentricity nguared ¢ — 0.0DGTHASEE.
Ipternational ellipaoid: @ = AYTRIBE m; &% = [OOAT2RATD.

ho= Ay + wf(a kg

(10-27)

For the transverse aspect, given a, e, iy, Ao, @, and ¥, to find ¢ and A:

M, = My + yhy

(10-28)

where M is found from 4, using (3-21) and changing subscripts ¢ to 0.

pe = Mla(l—/d-3e"i64-5¢%256— . .)I
_ = 4 LEWLATIr Y o s LB A
€ = U=l EERLILT LT ET)T

e

Mo + (Be/2—27¢, 332 + |

L dEin 2, + (21e,216 536, 182+ . . )

sin dp, + (151e,%06— . . . ) sin Gp, + (1087e,4512— . . . )

sin 8, + ...

(T—1%
(3—24)
(3-26)
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Authaliclatitude B is determined for ¢, using equations (3— 12} and (3—11), adding
subscripts ¢ to both g and &.

B’ = —aresin [k, r cos B, {1—¢F sin® ¢,)"fa cos )] {1023
B = aresin {cos B sin Bp) (10-301
A = Xy — arctan (tan §"/cos B} (10-213

Latitude & is found from B asing (1(—17} and (3-18}, or just {(3—18), ail without
subseripts c.

For the oblique aspeet, given o, &, fg, dy. 4y, x, and g, to find & and k, Fourier
coeflicients are determined as described above for the forward oblique ellipsoidal
formulas, while the pole location (dy, A} may be determined if not provided, as
deseribed for the forward obligue spherical formulas, and Ty 15 found from (3—12)
using 90° for ¢. From z, &' is determined from an iterative inverse of {10-23)

o= |k —Ap sin B —Ay sin A —Ag sin6h'~ L L L B {10-38)

Using & first trial &' = eAah 8, X7 may be found by suecessive substitution of
trial values into the right side of this equation and selving for a new A’ until the

change in &' {s negligible,
Equation {1024} above is used to find F from »°. Then,

B' = arcsin {2Fhaying,)] (10~33)
B = arcsin {sin B, sin B° + cos By cos B’ sin A7 (10— 34)
A =k, +arctan[cos @7 cos h'i{eos By sin B —sin By eos B sind )] (10-35)

Ag before, ¢ is found from § using (20—17) and (3-16), or just (3—15), all without
suhseripts ¢.

For the determination of Fourier cogffictents, if they are not aiready provided,
equation (10~ 23} above is equivalent to the following equation which requires nu-
merical integration:

xia hy) = o F dn' {10—36}
wherea

F = [sin® By eos® ¢/1(1—c% sin® &) cos® @3]
+ (1-& sin® &) 9, cas® By, cos® N4 cos® )% {16-37)
In order to compute coefficients B and A, in {10-23},

B = (& fm e F oy (10-28)
Ay = [4(mn)] Jo™ F cos 2h" dA’ {10-89

where #is 2, 4, and 6, successively. To compute eoefficients whichk apply regard-
less of the value of &y, equations (10—38) and {10-3%) may be rewritten as
equations (10— 20y and (10—21}, where

& = (2} fy"2 B dey, {10—40)
Ty = (4t fy™'2 B cos ndy, didy, {10—41)
by = (m) [y A, doy, (10-42)

a;nm = (d/m) .I“:.1"_”N;:L An COS d)p d¢p (16_43)
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and # has the values 2 and 4, while ;e = 2, 4, and 6. To determine the cneffi-
cients from (10—40) through (10-43), double numerical mtegration s involved,
but this involves a relatively modest computer program: Choosing an interval of
9° (sufficient for 10-place accuracy) in both ¢, and &', and starting with both by
and A" at ¥, F' is caleulated from (1037} as deseribed below for each 9° of & from
07 to 490°, and the various values of # summed in accordance with Simpson’s rule as
applied to equations (10-38) and (10—39). Thus B, A,, A,, and A, are comnputed
for dy, — 0°. Bimilarly, the constants B and A, are computed for each 9° of &y toand
including 90° and the various values are summed by applying Simpson’s rule to
(1040} through (10—43), to obtain &, a,, et

To compute F from equation {10-37) for a given A, first £, is found from
&y, using (3—12) and (2~11), subseripting 4 and B with p. Then,

B. = arcasin (cos Bp sin A} (10—44d)
Now &, is found from B, using (10—17) and (3—16) or just (3—18). All variables

for (10~ 37) are now known, except that it is indeterminate if by, = 0° at the same
time that A = 90°. In that case, F = (g,/2)"%



86

MAFP PROJECTIONS—A WORKING MANUAL

1). MILLER CYLINDRICAL FROJECTION
HUMMARY

+ Neither equal-area nor conformal.

» Used only in spherical form,

« Cylindrieal.

« Mevidians and parallels are straight lines, intersecting at right angles.

+ Meridians are equidistant; parallels spaced fariher apart away from Equator,
» Poles shown as lines.

+ Compromise between Merecator and other cxlindrical projections.

+ Used for world maps.

+ Presented by Miller in 1942,

HISTORY AND FEATURES

The need for a world map which avoids some of the seale exaggeration of the
Mercutor projection has led to some commonly used cylindrical modifications, as
well a3 to other modifications which are not cylindrical. The earliest common
eylindrical example was developed by James Gall of Edinburgh about 1855 (Gall,
1385, p. 119-123). His meridians are equally spaced, but the parallels are spaced
at increasing intervals away from the Equator. The parailels of latitude are
actually projected onto g cylinder wrapped about the sphere, bat cutting it at Jats.
45° N, and 5., the point of perspective being a point on the Equator opposite the
meridian being projected. 1t 15 used in several British atlages, but seidom in the
United States. The Gall projection is neither conformal nor equal-grea, but has a
blend of various features. Unlike the Mereator, the Gall shows the poles as lines
running aeross the top and bottom of the map.

What might be called the American version of the Gall projection is the Miller
Cylindrical projection (fig. 18], presented in 1242 by Osborn Maitland Miller
(18871879} of the American Geopgraphical Society, New York (Miller, 1842}
Bern in Perth, Scotland, and educated in Seotland and England, Miller came to
the Society in 1922, There he developed several improved surveying and mapping
technigues. An expert in aerizl photography, he developed technigques for convert-
ing high-altitude photographs into maps. He led or joined several expeditions of
explorers and advised leaders of others. He retived in 1968, having been best
known to cartographers for several map projections, ineluding the Bipolar Oblique
Conie Conformal, the Oblated Stereographic, and especially his Cylindrical
projection.

Miller had been asked by 5. Whittemore Boggs, Geographer of the 1.5, Depart-
ment of State, to study further allernatives to the Mereator, the Gall, and other
eylindrical world maps. In his presentation, Miller listed four proposals, but the
ohe he preferred, and the one used, is a falrly simple mathematical modification of
the Mercator projection. Like the Gall, it shows visible straight lines for the
poles, Increasingly spaced parsllels away from the Equator, equidistant meyidians,
and is not equal-area, equidistant aiong meridians, nor eonformal. While the
standard parallels, or lines true to scale and free of distortion, on the Gall are at
lats. 46° M. and 3., on the Miller only the Eguator is standard, Unlike the Gall, the
Miller iz nol a perspective projection,

The Miller Cylindrical projection is used for world maps and in several atlases,
including the National Atlas of the [nited States (USGS, 1970, p. 330-331).

Az Miller (1942) stated,

the practical probiem conaiderad here is to find a system of sapacing the parallels of [atitude such that
an arceptable balance s rexched between shape and area distoction. By an "acouptable™ halance is
meant one which in the ureriiiedl eve does mot abvioisly depart from the familiar shapes of the fapd
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MAP PEOECTIONS—A WORKING MANUAL

areas as depicted by the Mereutor projection but which reduces areal distortion as far as possible
under these conditions * * *_ After some experimenting, the [Modified Mereator (b)) war judged to he
the most suitable for Mr, Boggs's purpose * * *

FORMULAS FOR THE SI'HERE

Miller'z spacings of parallels from the Equator are the same as if the Mercator
spacings were calenlated for 0.8 times the respective latitudes, with the result
divided by 0.8 As aresult, the spacing of parallels near the Equator is very close
1o the Mercator arrangement.

The lorward formulas, Lhen, are as follows(see p. 287 for numerical exampies):

x = R{A-Xg) (11-1)
y = Rin tan (w4 + 0.441/0.8 (11-2)

or
y = R[aresinh (tan 0.8¢)J0.8 (11— 2a)

or
¥ = (RA.B)YIn (1 + sin 0.8¢)/1—sin 0.80)) (11-2b)

The scale factor, using equations (4—2) and (4-3),

B = sec 0.8 (11-3)
k = secd (11—4)

The maximum angular defurmation w, from equation (4-9),
sin Yew = (cos (LBp—cos d)cos 0.8¢ + cos $) (11-5)

The X axis lies along the Equator, x increacing easterly. The ¥ axis lies along the
central meridian &y, ¥ increasing northerly. If (A—X,) lies outside the range of
+180°, 2380° should be added or subtracted so Lhat it will foll inside the range.

The inverse equations are easily derived frorm equations (11— 1) through (11—2ak

¢ = 2.5 aretan @3 R)_8q/8 (11-6)
or
¢ = arctan [sinh (0.8 R2))0.8 {11 —8a)
where ¢ is 2.71828 . . ., the base of natural logarithms.
A= Mg + xR {(11-7)

Rectangniar coordinates are given in table 14, There is no basis for an ellipsoidal
equivalent, since the prajection is used for maps of the entire Earth and not for
local areas at large scale.



11. MILLER CYLINDRICAL PRINECTION

TALE 14 —Milfer Cylindricsf prjection: Hectangular coordinates

i

[Readiuz of phere=1.19|

Wowe: &, ¥ = rectangular voerdinates,

4 = gewdetic latitude.

] 5]
80°% 230341 323607 Infinite 180.00°
B 2 304742 266947 1147871 T7.00
&0 ___ 1.83239 2.28117 5.T877 51.26
T e 1.64620 200000 388376 3706
T e 148131 1.78829 392380 £7.85
B9 e 1.33270 1.62427 2.36620 21.43
60 e 1.19683 1.40448 2.00000 16.64
D e 1.07113 1.39016 1.74345 12.85
50 05364 130541 1.55572 10.04
45 84284 1.23607 1.41421 T.71
a0 oL 73754 1.17918 1.30541 5.82
3D 43674 1.13297 1.22077 4.20
0 ____ .pA062 1.09464 1.15470 306
b 44547 1.06418 1.10328 2.07
20 35360 104030 1.06418 1.30
5 28373 1.072234 1.03628 T2
w0 _ - 17510 1.00983 1.01543 g2

B 08734 1.00244 1.00382 08
o Q0000 1.00000G 100000 0g
N 0.017453 (0" ~ X"

(V- ay"— geodetic Iongitede, reasured cast feom origin in degrees.
k= scile factor aloog meodiaon,
k = zealp fzctor slong parallel.
w = maxire angular deformation, degrees.

{drigin of enoedinates ag intersection of Equater with Ay, X axia increases east, T asda increases porth. Earc acuthern

[Mugatived d. reverss sign of ¥

Fait]



Cylindrieal.

Neither equal-area nor conformal.

Meridians and parallels are equidistant straight lines, intersecting at right
angles.

Foles shown as lines.

Used for world or regional maps,

Very simple construction.

Used only in spherical form.

Presented by Eratosthenes (B.C.) or Marinus (A.D. 100).

HISTORY AND FEATURES

While the Equidistant Cylindrieal projection has received limited use by the
U5GS and penerally has limited value, it is probably the simplest of all map
projections to construct and one of the oldest. The meridians and parallels are all
equidistant straight parallel lines, the two sets crossing at right angles.

The projection originated probably with Eratosthenes (27571957 B.C.), the
seientist and geographer noted for his fairly accurate measure of the size of the
Earth, Clandius Ptolemy eredited Marinus of Tyre with the invention about
A.D. 100 stating that, while Marinus had previously evaluated existing projections,
the latter had chosen “a manner of representing the distances which gives the
worst results of all.” Only the parallel of Rhodes (Jat. 36°N.) was made true to
acale on the world map, which meant that the meridians were spaced at about
four-fifths of the spacing of the parallels for the same degree interval (Keuning,
1855, p. 13).

Ptolemy approved the use of the projection for maps of smalley areas, however,
with spacing of meridians to provide corvect scale along the central parﬁllel All
the Greek manuscript maps for the Gengraphic, dating from the 13th century, use
the Ptolemy modification. [t was used for some maps until the 18th century, but is
now used primarily for a few maps on which distortion iz considered less impor-
tant than the ease of displaying special information. The projection is given a
variety of names such as Equidistant Cylindrical, Bectangular, La Carte
Paraliélogrammatique, [Ye Rechteckige Piattkarte, and Equirectanguiar (Steers,
1970, p. 135-136). It was called the projection of Marinus by Nordenskisld
(1889).

Ifthe Equator is made the standard parallel, true to scale and free of distortion,
the meridians are spaced at the same distances as the parallels, and the graticule
appears square. This form iz often called the Plate Carrée or the Simple Cylin-
drical projection.

The USGS uses the Equidistant Cylindrieal projection for index maps of the
conterminous United States, with insets of Alasks, Hawaii, and various islands
on the same prajection. One is entitled “Topographic Mapping Status and Progress
of Operations (7%%- and 15-minute series),” at an approximate seale of 1:5,000,000,
Another shows the status of intermediate-scale quadrangle mapping. Neither the
scale nor the projection iz marked, to avoid implyving that the maps are suitable
for normal geopraphie information. Meridian spacing is about four-fifths of the
spacing of parallels, by coincidence the same as that chosen by Marinus. The
Alagka inset is shownh at about half tha seale and with a change in spacing ratios.
Individual States are shown hy the USGS on other index maps using the same
projection and spacing ratio to indicate the status of aerial photography.



12, EQUIDISTANT CYLINDRICAL PROJECTION

The projection was chosen largaly for £ase in scomputerized plotting. While the
boundaries on the base map may be as diffienlt to plot on this projection as on
the others, the base map needs to be prepared only ones. Overlays of digital
information, which may then be printed in straight lines, may be ¢asily updated
without the use of cartographic and photographie skills. The 4:5 spacing ratio is
a convenience based on eomputer line and character spacing and is not an attempt
to achieve a particular standard paraliel, which happens to fall near lat. 37° X.

FORMULAS FOR THE SI'HERY

The formulas for rectanpulyr coordinates are almost as simple to use as the
geometric construction. Given R, kg, ¢4, X, and & for the forward solution, xzand y¥
are found thus:

r =R {h—ky) cos &y (12=-1)
¥ =Rd (12-2)
h =1 (12-3)
k= cos dyicos & {I2—4)

The X axis coincides with the Equator, with & incressing easterly, while the ¥
axis follows the central meridian &, ¥ increasing northerly. It is necessary to
adjust (A — Ag), il it i beyond the range = 1807, by adding or subtracting 360°. The
atandard parallel is &, (also —d). For the inverse formulas, given B, Xy, &1, &,
and y, to find & and h:

& =y/R (12-5)
A o=hy + 2R cos dy) (126}

Mumerical examples are omitted in the appendix, due to simplicity. It must be
remembered, as usual, that angles above are piven in radians.

51
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P3. CASSINI FPROJECTION

SUMMARY

= Cylindrieal.

s Neither equal-area nor conformal,

« Cenral meridian, each meridian 907 from central meridian, and Equator are
straight lines.

Other meridians and parallels are complex curves.

Seale is true along central meridian, and along lines perpendicular to central
meridian. Seale is ennstant but not true along lines parallel to central meridian
on spherical form, nearly so for ellipsoid.

« Used for topagraphic mapping formerly in England and currently in a few other

countries.

= Devyised by C. ¥. Cassini de Thury in 1745 for the survey of France.

IISTORY

Although the Cassini projection has been largely replaced by the Transverse
Mercator, it iz still in limited ose outside the United Slates and was one of the
raajor topographic mapping projections until the early 20th century. It was first
developed by César Frangois Cassini de Thury (1714— 1784}, grandson of Jean
Dominique Cassinl. The latter was an cutstanding Italian-born astronemer whe
changed his given names from Glovanni Demenico after being hired in 1669 for
astrotiomical research in Paris, and soon thereafter to begin the survey of France.
Cassini de Thury was the third of four generations involved in this project, the
first detailed survey of 2 nation. in 1745 he devised the projeclion which, with
some modifications, still bears the family name and was used for official topo-
graphic maps of France until its replacement by the Bonne projection in 1803.

Instead of showing meridians and parallels (except for the central meridian),
Cassini employed 2 syslem of squares with reetangular grid eocrdinates, the
meridian through Paris serving as one axis, The scale along this central meridian
was mare correct aceording to the surveyed distance, thus approximately correct-
ing (or the ellipsoid (Crafg, 1882, p. 80; Reignier, 1957, p. 98— 88). Mathematica)
analysis by J. G. von Soldner in the early 19th century led to more accurate
ellipsoidal formulas, and the name Cassini-Soldner Is olten used for the form used
in topographic mapping.

FLATLURES

The spherical form of the Cassini projection (fig. 19) bears the same relation to
the Equidistant Cylindrical or Plate Carrée projection that the spherical Trans-
verse Mercator bears to the regular Mercalor, Instead of having the strafurht
meridians amd parallels of the BEquidistant Cylindvical, the Cassini has complex
eurves for cach, except for the Equator, the central meridian, and each meridian
407 away from the central meridian, all of which are straight.

The¥e is no distortion along the central metidiab, if it is maintained at true
seale, which is the usual case. If it 18 given a reduced seale factor, the lines of
true scale are two straight lines on the map parallel to and equidistant from the
central meridian. There is no distertion glong them instead. This alternative is
rare encugh that it is ignored in the dizeession and formulas below.

By making a given point {such as Washington, D.C.) the pole on an cblique
Equidistant Cylindrical prajection, the bearing and distance from that point to
any other on the Earth can he read directly as two rectangular coordinates
(Botley, 1951). This provides the same information as the obliqgue Azimuthal
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Eguidistant projection centered on the same point. The obligue eylindrical has the
advantage of offering rectangular instead of polar coordinates, but the map is
much more dizlorted near the chosen point.

The scaie is correct along the central meridian and also along any straight line
perpendicnlar to the central meridian. It gradually increases in a direction parallel
to the central meridian, as the distance from that meridian inereases, but the
scile is constant along any straight line on the map which is parattel to the central
meridian. Therefore, the Cassini is more suitable for regions predominantly
north—sputh in extent, such as Great Britain, than for regions extending in other
directions. In this respect, it is also like the Transverse Mercator. The projection
is neither equal-zrea hor conformal, but it has & compromise of both features.

The ellipssidal form is computed from series which are essentially modifica-
tions of those for the ellipgeidal form of the Transverse Mercator and are suitgble
within only & few degrees to cither side of the central meridian. The scale eharac-
teristics described above for the spherical form apply to the ellipsoidal form, ex-
eept that the lines of constant scale paralleling the central meridian are not quite
straight.

LSAGE

There hag haean little nsaop nfthas

5
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hariral versinon af tha I"-:P,ﬁirp'l b-_}t the E!hp:
soidal Cassini-Boldner version was adopted by the Ordnance Survey for the official
survey of Great Britain during the second half of the 19th century (Steers, 1470,
p. 229). Many of these maps were prepared at a scale of 1:2,5600. The Cassini-
Soldner was also user for the detailed mapping of many German states during the
same period.

Beginning ahout 1920, the Ordnance Survey began to change to the Transverse
Mercator because of the difficulty of measuring scale and direction on the Cassini,
Neverthelegs, there are several maps still in print which are based on the ¢lder
projection in Great Britain, and the projection is used in a few other sountries
such as Cypros, Czechoslovakia, Tdenmark, the Federal Republie of Germany,
and Malaysia (Clifford J. Mugnicr, personal comm., 1985).

A systermn equivalent to an eblique Equidistant Cylindrical or oblique Cassim
projection was used in early coordinate transformations for ERTS (now Landsat)
satellite imagery, but it was changed in 1978 to the Hotine Oblique Mereator, and
in 1982 to the Space Obligue Mereator projection.

FORMULAS FOR THE SPHERE

For the forward formuolas, given &, dy, &y, &, and &, to find & and

¥ =K arcsin £ (131}

¥ =R larctan [tan d/tos (h—hg)] — dyf {I3-2)

Ro= 11— g5 {13—-3)
where

B =cos ¢ sin (h—ag) (B-5)

and A, is the central meridian. The origin of the coordinates is at {dg, Ay} The ¥
axis lies along the central meridian kg, ¥ increasing northerly, and the X axis is
perpendicnlar, through ¢, at Ay, & increasing easterly. Equation (13-2) is similar
to corresponding equation (8—3) for the spherical Transverse Mereator projection,
The scale factor is &° in a direction parallel to the central meridian, while itis 1 in
a direction perpendicular to this meridian.

Tlag do3movive fremanrdor e Tree f4 2% 1 tarme aF T et
47D LHWABTOT JUATERRLE S JWA U, AT LN LRI VY, g

¢ = aresin [sin D cos (o/R) (13-4)
A =X + arctan Ttan (x/B)cos D} {13—5)
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where
D :’y.lrz? L l:bu (13“6)

with ¢y and D in radians. See p. 288 for numerical examples.

FORMULAS FOR THE ELLI PSOLD

For the ellipsnidal form, a set of series approximations is given for use in a
zone extending 3° to 4° of longitude fram the eentral meridian. Coordinate axes are
the sume ags they are {for the spherical formulas above, The formulus below are
adapted from those provided by Clifford J. Mugnier {pers. commun., 197%; see also
Clark and Clendinning, 1944).

r =N{A-TA%E—(8-T +80)TA120) (13-
y =M~ M, + Ntan b [(A%2 + (5-T+6(0A24]  (13-8)
8 =1 xf cos® Az (1—€” sin® )21 — M) {(13-9)
where
N =afl-¢® sint g (4-20
T =tan® ¢ B=-13)
A ={h—hg) eoa o, with k and kg in radians (8-~15)
C =¢ cos® $H{1-¢9) {8~ 14)

M=o [[1-ed—3etiod—Be%206—. | ) o — (3e°B
+ 3e%32+ 45e%1024 +. . .} sin 24 + (15e%256
+ 45e%1024 +. . ) sin 4 — (3530724, . sinBd + ... 1 (32D

with & in radians. M is the true distance along the central meridian from the
Equator to 4.

My = M caleulated for &y, the latitude crossing the central meridian A, at the
origin of the x, y contdinates. The choice of ¢y does not affect the shape of the
projection.

& = the scale factor at an azimuth Az east of north for a given ¢ and
For the inverse formulas:

& =& — (¥, tan &R (D2 (1 +3T)) DY24) {13-10)
A o=hy + [D-T %3 + (1 + 370 T.D¥15)eos &, {13—11)

where ¢, is the “footpoint (atitude™ or the [atitude at the central mevidian which
has the sume y coordinate as that of the point (¢, A).
it may be found as follows:

by = g + {3e/2-2TeN32+ . . L) sin Bp, + (21006
— 5Bey ™32 4 .. )sindpy + (151e,06 + L. L) sin B,
+ (1097e, %512 = .. Jsin Buy + . .. {(R-26)
where
ep =11-{1—¢2]1 + (1 —¢*19) (3-24)
wy = M Aail—e%d—3eY04 - 565256 —. . Y {7T-19)
M =M, +y (13—12

with M, calcalated from equation (3—21) for the given dy. For improved compu-
tetional efftciency using series (3—26), see p. 19,

Y P, T o~ Ty

From ., other terms Delow are caleulated for use in equations (13-10) and
(13-11) {0f sy = = W, f = = 9P, taking the sign of v, while & is indeterminate,
and may be called kq.)

e o

T, = tan? ¢, (B—22)
Np = al{l~¢® sin® ¢ (823
f] = (1-e®)l—e” sin® ;)™ (B--24)

D =N, (13-13)
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CONIC MAF PROJECTIONS
CONIC MAP PROJECTIONS

Cylindrical projections are used primarily for complete world maps, or for maps
along narrow strips of a great circle are, soch as the Equator, 8 meridian, or an
oblique greal circle. To show a region for which the greatest extent is from sast to
wegt in the temperale wones, conic projections are usually preferable to ¢ylindri-
eal projections.

Normal conic projections are distinguished by the use of ares of concentric
circles for parailels of Jatitude and cqually spaced stralght radii of these circles for
meridians, The angles between the meridians on the map are smaller than the
actual differences in longitude. The circular ares may or may not be equally
spaced, depending on the projection. The Polyconic projection and obligue conic
projections have characteristies different from these.

The name “conie” originates from the fact that the more elementary conic
prajections may be derived by placing a cone on the top of & globe representing
the Earth, the apex or tip in line with the axis of the globe, and the sides of the
cone touching ar tangent to the globe along a specified “standard’ latitude which
is true to scale and without distortion (see fig, 1), Meridians are drawn oz the
cone from the apex to the points at which the corresponding meridians on the
globe cross the standard parallel. Other parallels are then drawn as ares centered
on the apex in a manner depending on the projection. If the cone is cut along one
meridian and vnrolled, a conic projection results. A secant cone results if the cone
cuts the globe at two specified paraliels. Meridians and parallels can be marked on
the secant cone somewhat az above, but this will not result in any of the commaon
cabic projections with two standard parallels. They are derived from various
desired scale relationships instead, and the spacing of the meridians as well as the
parallels is not the same as the projection onlo a secant cohe.

There are three impartant classes of conic projections: the equidistant {or simple},
the conformal, and the equal-arca. The Equidistant Conie, with parallels equidis-
tantly spaced, originated in a rudimentary form with Claudius Prolemy. It eventu-
ally developed into commonly used present-day fortms which have one or two
standard paraliels selected for the area being shown. It is neither conformal nor
aqual-area, but north-zouth zcale along all meridians is correct, and the projeclion
can be & satisfactory compromise for errors in shape, scale, and area, especially
when the map covers a small area. It iz primarily uzed in the spherical form,
although the ellipscidal form is available and useful. The USGS uses the Equidistant
Conic in an approximate form for a map of Alaska, identified as a “Modified
Transverse Mercator” projection, and also in the limiting equatorial form: the
Equidistant Cylindrical. Both are described earlier.

The Lambert Conformal Conie projection with two standard parailels is used
frequentiy for large- and small-seale maps. The parallels are more Closely spaced
near the center of the map. The Lambert has also been used shightly in the oblique
form, The Albers Fqual-Area Conie with two standard parallels is used for sec-
tional maps of the U.S, and for maps of the conterminons United States, The
Alhers parallels are spaced more closely near the north and south edges of the
map. There are some conie projections, such as perspective conies, which do not
fall into any of these three categories, but they are rarely used.

The usefizi conic prajections may be geometrically constructed only in a limited
sense, using polar coordinates which must be caleulated. After alecation is chosen,
usually off the final map, for the center of the circular aves which will represent,
parallels of latitude, meridians are constructed as stralght lines radiating from
this center and spaced from each other at an angle equal to the product, of the cone
constant timea the difference in longitude. For example, if a 10° graticuls is planned,
and the cone ¢onstant is 9,65, the meridian lines are spaced at 10° times 0.65 0r9.5°.
Each parallel of latitude may then be drawn as a crcular are with a radius
previously caleulated from farmulaz for the particular conie projection,
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14. ALBERS EQUAL-AREA CONIC PROJECTION

SUMMARY

s Conie.

» Egual-Area.

« Parallels are unequally spaced arcs of concentric circles, more cloaely spaced at
the north and south edges of the map.

» Meridians are equally spaced radii of the same cireles, eutting parallels at right
anples.

= There is no distortion in scale or shape slong two standard parallels, pormally,
or along just one.

a Poles are arcs of ¢ireles.

« Used for cqual-area maps of regions with predominant east-west expanse,
especially the conterminous United States.

s Presented by Albers in 1805

HISTORY

One of the most commonty used projectiona for maps of the conterminous
United States is the equai-area form of the conie projection, using twe standard
parallels. This projection was [irst presented by Heinrich Christian Albers
(1773-1833), a native of Liineburg, Germany, in a German periodical of 1805
{Albers, 1805; Bonacker and Anliker, 1930). The Albers projection was used for &
German map of Europe in 1817, but it was promoted for maps of the United
States in the early part of the 20th century by Oscar 8. Adatns of the Coast
and Geodetic Survey as “an egual-ares representation that is as good as any other
and in many respeets superior to al] others” (Adams, 1827, p. 1)

FEATUHRES AND USAGE

The Albers is the projection exclusively uaed by the USGS for sectional maps of
sll 50 States of the Uniled Statea m the Nufional Atlas of 1970, and for other
1.5, maps at scales of 1:2,500 000 and smaller, The latter maps include the base
maps of the United States issned in 1961, 1967, and 1872, the Tectonic Map of the
United States (1962), and the Geologic Map of the United States (1974), all at
1:2,500,300. The USGS has also prepared = U.8. base map at 1;3,163,000
{1 inch =50 miles),

Like other normal conies, the Albers Fqual-Area Conde projection (fig. 20) hua
concentric ares of cireles for parallels and equally spaced radii as meridians, The
parallels are not equally spaced, but they are farthest apart in the latitudes
between the standard parallels and closer together to the north and south, The
pole 15 not the center of the cireles, but i3 norimally an are itaell.

If the pole is taken a3 one of the two standard parallels, the Alhers formulas
reduce to a limiting form of the projection called Lambert’s Egual-Arca Conic
(not. discussed here, and not to be confused with hiz Confgrmal Conie, to be
discussed latey). If the pole is the only standard parallel, the Albers formulas
simplify to provide the polar azpect of the Lambert Azimuthal Equal-Ares
(discussed lster). In both of these limiting cases, the pole is 2 point, If the Equa-
ter is the one standard parallel, the projection becomes Lambert's Cylindrical
Equal-Area (discussed earlier), but the formulas must be modifled. None of these
extreme cases applies to the normal use of the Albers, with stundard parallels in
the temperate zones, such as vaage for the United States.

Heale along the parallelz iz too small between the standard parallels and too
large beyond them. The scale along the meridians is just the opposite, and in fact
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FiGUrE 20— Alhers Equal- Area Conie projection, with standard parallels 20° and 60° W. This illustra-
tion includes all of Korth America to show the change in spacing of the parallels, When ued for
maps of the 48 conterminous States standard parallels are 29.8° and 45.5° N,

the scale factor along meridians is the reciprocal of the scale factor along parallels,
to maintain equal grea. An important characteristic of all normal conic projections
is that scale is constant along any given parallel.

To map a given region, standard paraliels should be selected to minimize varia-
tions in scale. Not only are stahdard parallels eorrect in scale along the parallel;
they are correct in every direetion. Thus, there is no angular distortion, and
conformality exists along these standard parallels, evenon an equal-area projection.
They may be on opposite sides of, but not equidistant from, the Eqguator. Deetz
and Adams (1934, p. 79, 91) recommended in general that standard parallels be
placed ore-sixth of the displayed length of the central meridian from the northern
and southern limits of the map. Hinks (1912, p. 87) suggesied one-seventh instead
of one-sixth. Others have suggested selecting standard parallels of conies 50 that
the maximum seale error (1 minus the scale factor) in the region between them is
equal and opposite in sign to the evror at the upper and lower parallels, or 5o that
the scale factor at the middle parallel is the reciproeal of that at the limiting
parallels. Tainger jn 1916 and Kavrayskiy in 1934 chose standard parallels so that
least-square errors in linear scale were minimal for the actual land or country
being displayed on the map. This involved weighting each latitude in accordance
with the land it containg (Maling, 1960, p. 263—266).

The standard parallels chesen by Adams for Albers maps of the tonterminous
United States are lats. 20.5° and 45.5°N. These parallels provide “for a scale error
slightly less than 1 per cent in the center of the map, with 2 maximum of 14 per
cent aleng the northern and southern borders” (Deetz and Adams, 1934, p. 21
For maps of Alaska, the chosen standard parallels are lats, 55° and 65°N., and for
Hawaii, lats. 5% and 18°N. In the latter case, both parallels are south of the
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islands, but they were chosen to include maps of the more southerly Canal Zone
and especially the Philippine Islands. These paraliels apply to all maps prepared

By the USGS on the Albers nrojection nwrnh-:llu using Adams's n11|’\||c'|v|nr| inhlag
oy tne Listss on [ne Alners projection, 1y using Adam isneg Llabies

of coordinates for the Clarke 1866 ellipsoxd (Atiams, 1927).

Wilhout measuring the spacing of parallels alung 8 meridian, it is almost impos-
sible to distingulsh an unlabeled Albers map of the United States from ather conie
forms. IL is only when the projection is extended vonsiderably north and south,
well beyond the standard parallels, that the difference is apparent without sealing.

Since meridians intersect parallels al mght angles, it may at first seem that
there is no angular distortion. However, scale variations along the meridians
cause some angular distortion for any angle other than that between the meridian
ard parallel, except at the standard parsllels.

FOIRMLULAS FOR THE SFHERE

The Albers Equal-Area Conie prejection may be constructed with only one
standard parallel, but it is nearly always used with two. The forward formulas for
the sphere are as follows, to obtain rectangular or polar coordinates, given i, ¢,
da, By Ag, b, and A (see p, 291 for numerical examples):

& =psinég {14-1)
¥ =pppeosd (14—2)
where

p = RiC-2n sin dpafn {14—3)

~ nlh=hg) (14-4)

gq = RUC—2n sin &0um {14—3a}

0 =cos® &y + 2 sin {14-5)

it ={sin ¢ + sin N2 {146}

dy, Ag = the latitude and longitude, respectively, for the origin
of the rectanpular coordinates.
by, e = standard parallels.

The ¥ axis lies along the central meridian A, ¥ increasing northerly, The X axis
intersects perpendicularly at &y, & increasing easterly. If (A—3,) exceeds the
range *180° 360° should be added or subtracted to place it within the range.
Constants #, €', and py, apply to the entire map, and thus need to be calculated
only once. If only one standard parallel &, is desired {or if &, = &), n=5in &
By contrast, a geometrically secant cone reqiires a cone constant ® of sin [{d, +
b0 21, slightly but distinclly different from equation (14—6). If the projection is
designed primarily for the Northern Hemisphere, & and p are positive. For the
Southern Hemisphere, they are negative. The scale along the meridians, using
equation {4 -4),

b= cos &AC—~Bn sin &) {14—7

If equation {4—5) is used, & will be found tv be the reciprocal of &, satisfying
the requirement for an equal-area projection when meridians and parallels in-
tersect at right angles. The maximum anpular deformation may be caleulated
from equation (4—9). [t may be seen from equation (14 -7}, and indeed from eqgua-
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tiens {4 —4) and {4—5), that distortion is strietly a function of latitude, and not of
longitude. This is true of any regular conic projection.

For the inverse formulas for the sphere, given B, &, g, by, &y, =, 2nd »
#n, C and py are caleylated from equations (14—6), (145}, and (14— 3a), respec-
tively. Then,

¢ = aresin {[(C—(pw/RI*}(En)| (14-8)

Ao=Agt@in (14-9)
where

p =%+ (py—y¥]e (14~ 10)

8 = aretan |W{py—ull (I4-11})

Kate: to use the ATAN2 Fortran function, if n is negative, the signs of x, ¥,
and pp (given a negative sign by equation (14-32a)) must be reversed before in-
serting them in equation {14—11),

FORMULAS FOR THE ELLIFSOILMD

The formulas displayed by Adams and most other wrilers describing the ellip-
soidal form include series, but the equations may be expressed in closed forms
which are suitable for programming. and involve no momerieal integration or iter-
ation in the forward form. Nearly ail published maps of the United States based
on the Albers use the ellipsoidal form because of the use of tables for the original
base maps. {(Adams, 1927, p. 1-7T, Deetz and Adams, 19234, p. 93-99; Snyder,
19793, p. 71, Given a, €, ¢y, ¢ by, ko ¢, and & (see p. 292 for numerical
examples):

L = psin @ -1
¥ =Spa—plos @ (14-2)
where

p = all—nghiin (14—12)
8 =nlh—hy) (14 -4}
po = aill —ngyh¥n (14—122)
¢ =miing {14-13)
n = (" - g —a) (14-14)
m = cos di(l—e? sin®gye {14=15)
g ={1—e®Ysin &1~ sin’d) — [1/(26)]

In{{1—r sin dJ1 + e sin &)]| {3-12)

with the same subseripis 1, 2, or none applied to m and & in equation (14—15),
and 0, 1, 2, or none applied to g and & in equation {3-12), as required by equa-
tions {14—12), {14~18a}), {14-13), {14—14), and (14—-17). As with the spherical
case, p and n are negative, if the projection is centered in the Southern Hemni-
sphere. For the scale factor, modifying (4-—-25):

k = pifam (24—16;
=, (C—ﬂq}l-".’..'m (14_1"”
h =1k (14—18}

While many ellipscidal equations apply to the sphere if € is made zero, equation
{#—12) becomes indeterminate, Actually, if =0, g=2sin ¢. If &y, = dw, equalion
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(14— 14} iz indeterminate regardless of e, but n = sl 4. The axes and limjta-
tions on (A — Ay} are the same as those stated for the spherical formulas, Here toa,
eonstants #, 0, and py need to be determined just onee for the entire map.

For the fuverse formndas for the ellipsoid, given a. ¢, &y, dw, by, Ay, 7, and y:
., €0, and pg are caleulated from equations {14—14), (14-13), and (14— 12a);

respectively. Then,

(1-¢*sin® )2 | ¢ SIN 1 l--& 2in &
=h bt———— s~ — e be—1] —————— o—
b= 2 eos o 1-¢*  1-¢“sin*d 20 n l+exind (3-16)
A=Ay + {14-9
where

g = fCl—pH?:.z.-“ 2 (14— 19)

p =L - {pg— g (14— 10}

= arctan [wipya—wi) (14—11)

To use the Fortran ATANZ function, if # is negative, the signs of 2, y, and pg
must be reversed before insertion into equation (14—11) Equation {318} in-
volves iteration by first trying & = arcsin (g/2) on the right stide, caleulating ¢ on

: At oAb

A1 o —y _

T rw_ b ace_—aio . 4L oo o oak. ot L. ol . ____x't | E
the left side, sunstiteting this new ¢ on the rzght side, ete., until the change in
& iz negligible. 1

g = H=[{1-e¥2e] In (1 —ept] + )] (1 —20)

iteration does not converge, but ¢ = =9°, taking the sign of g.
Instead of the iteration, a series may bhe used fov the inverse ellipscidal
formulas:

& = B + U3 +31eV180+ 5172%5040 + L Y sin 26 + (23:V360
+ 251eETHO+ L L L) sin 4B + (7615453604 L. D sinbB+ ... {3-18)

where 3, the authalic latitude, adapting equations {3—11) and (3—-12), is found
thusa:

B = aresin {gA1-1¢1—eW2Ze] In [(L—eW (1 + e} {14-21)

but ¢ i= stihl found from equatton (14—19). Fquations (14-—9), (14-14), and
(14—11} also appiy unchanged. For improved computational efficiency using the
series, see p. 19,

Polar coprdinates for the Albers Equal-Ares Conic are given fur both the
sphericai ang eilipsotdal foims, using standard parailels of Jat, 25.5° and 45.53° N.
(table 15). A mraticule extended to the North Pole is shown in figure 20.

To eonvert coordinales measured on an existing map, the user may ¢hoose any
meriditan for Ay and therefore for the ¥ axis, und any latitude for 4. The X
axis then is placed perpendicutar to the ¥oaxis at dy,.
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TABLE 15.~—-Atbers Eqital-Ares Conic profection: Pofar coordinates

| Seandnrd parallels; 28.5° and 45.5 N|

Projection for sshﬁeﬂrg B{:ﬁf 5)6,310.997 m)  Projection for Clarke 1866 ellipsoid

(n= {a=6,378,206.4 m) {n=0.6029035)
Lat. p k k p h k
52° ___ 5,693,511 0.97207 1.02874 6,713,781 0.87217 1.02863
51 ____ 6,801,923 A77Te 1.02271 6,822,266 STT8E 1.02263
S0 ____ 6,910,941 98296 101733 6,931,335 98303 1.00727
49 __._ 7,020,505 SATE0 1.01255 7,040,529 IRTRE 1.01251
48 ___ 7,130,555 .99173 100834 7,150,989 9177 L3830
4T .. 7,241,038 88533 1.00464 7,261 460 99540 1.00462
46 ____ 7,351,901 9857 100143 7,372,204 99858 1.00143
455 . 7,407,459 1.00000 100000 7427824 100000 1.00000
45 .. _ T,463,084 1.00182 99868 7,483,429 1.00132 S9865
a4 ____ T.574,570 1.00385 09638 7,504 829 1.00364 90637
43 ____ 7,686,282 1.00668 G944 7,706,445 1.00556 99447
42 . 7,798,186 1.00713 59292  7.818.7233 1.00710 .99295
41 ____ T,910,244 1.00832 S6175 7,930,153 1.00828 89178
40 .. - 8,022,413 1.00915 S%093  8.042,154 160912 29097
29 ____ B 134 RGA 100045 09044 8 154 220 1.00962 580438
38 ____ 8,248,937 1.0093 B9027 3,266,313 1.00978 o031
37 ____ 8,359,220 1.00970 99040 8,378,379 1.00865 99044
36 . 8,471,472 1.00827 09082 8 400,304 1.00923 99086
35 ____ 8,583,660 1.00855 99152 8,602,328 1.00852 99165
34 - 8,895,753 1.00757 99249 8,714,149 1.00753 99252
33 ___ 8,807,723 1.00632 29372 8,825,828 L.00629 94375
32 ___ 8,919,539 1.00481 Bag5E1 B,937,337 1.00479 95523
31 . 9031175 1.00308 59694 5,048,649 1.00305 98695
3o ____ 9,142,802 1.00108 59892 4,159,737 100107 99553
296 . 9,198,229 1.00900 100000 9,215,185 1.00000) 1.00000
28 ____ 9,258,796 50887 100114 9,270,575 99887 1.00113
28 ____ 9,364,731 99643 100358 9321,141 59645 1.00357
27 . 9475383 99378 1.00626 9,451,411 59381 100623
26 ____ 9,685,731 99093 1.005%15 49,602 28] 99097 100911
25 ____ 9,695 74% 8787 101227 9,714,969 48793 1.01222
24 ____ 9805417 98463 1.01561 9,820,216 58470 101554
23 ____ 9814713 98119 1.01917 5,929,080 98128 1.01908
22 ____10,022.615 BTTET 1.02284 10,037 541 7768 102283

Moke: p = radive of Yatitude circke, meters,

&
k
R
n
T

= ycate fartor along mendiang.

= seale factor atong parallels.

= gusumed radius of sphere,

— agwumed seremajor asis of edipaoid,

= pane monetant, or ratio of angle between meridians un map to true angle.

03
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L5, LAMEERT CONFORMAL CONIC PROJECTION

SUMMARY

= Conje.

+ Conformal.

» Furallels are unequally spaced ares of concentric cireles, more closely spaced
near the center of the map.

= Meridians are equally spaced radii of the same cireles, therehy culting parallels
at right angles,

» Scale is true along two standard parallels, normally, or along just une.

= Pole in same hemisphere as standard parallels is a point; other pole is at infinity.

+ Used for maps of countries and regivns with predominant east-west expanse.

» Presented by Lambert in 1772,

HISTIORY
LRI

The Lambert Conformal Conic projection (fig. 21) was almost completely over-
looked hetween its introduction and its revival by the .S, Coast and Geodetic
Burvey (Deetz, 1918h}, although France had introduced an approximate version,
calling it “Lambert,” for battle maps of the First World War (Mugnier, 1983). It
was the first new projection which Johann Heinrich Lambert presenied in his
Beitrige (Lambert, 1772), the publication which contained his Transverse Merca-
tor described previously. In some atlases, particularly British, the Lambert Con-
formal Conic is called the *Conical Orthomorphic” projection,

Fiourr 21.—Lambert Conformal Conie projection. with standard paratiels 30° and 60° N, Nurth
America iz illnstrated here bo show the chamge in spacings of Lhe perallels. When used for maps of
the conterminous United States or individuzl! States, standard pacallcls zre 33° and 45° N,



15. LAMBERT CONFORMAL COWLC FROJECTION

Lambert developed the regular Conformal Conie as the oblique aspect of a

family containing the previousgly known polar Slereopraphic and regular Mercator
projections. As he stated,
Slereographic representations of the spherical surface, a2 well a5 Mercatoys iaatical charts, have the
peculiarity that wl angles maintain the sices that they have on the surface of the globe. This pields
the: rreatast similarity that any plane figure can have with one deawn op the surface of a sphere, The
quesling has not been asked whether this property accors only in the twe methods of representation
mentioned or whether these twn representations, so different in appearances, ran be made to approzch
aach ather through intermeadiate sunges. * ®* if there are stages inbrmediste to these Lo represen-
tations, they muost be soupht by allowing the angle of intersection of the merdians to be arbitrarily
Targer nr smaller Lhan itz value on the surface of the sphare. This is the way in which T shall now peo-
ceed (Lambert, 1772, p. 28, translation by Tobler),

Lambert then developed the mathematics fur both the spherical and eilipsoidai
forms for two standard parallels and included a small map of Europe as an exam-
ple (Lambert, 1772, p. 28-38, 87 —89).

FEATURES

Many of the ecomments coneerning the appearance of the Albers and the selec-
tion of its standard parallels apply 1o the Lambert, Conformal Conic when an area
the size of the conterminpus United States ov smaller is considered. As stated
before, the spacing of the parallels must be measured to distinguish ameng the
various come projections for such an area. If the projection is extended toward
either pole and the Eguator, as on a map of North Ameriea, Lhe differences be-
come more abvious, Although meridians are equaliy spaced vadii of the concentric
cirrular ares representing parallels of lalitude, the parallels become further apart
us the distance from the central parallels increases, Conformality fails at each
pole, ag In the case of the regular Mercator. The pole in the sams hemisphere as
the standard parallels is shown on the Lambert Confermal Conic as & point. The
other pole iz at infinity. Straight lines belween points approximate great circle
ares for maps of moderate coverage, but oniy the Gnomonie prajection rigarously
has this feature and then oniy for the sphere.

Two parallels may be made standard or true to scale, as well as conformal. It is
alzo possible to have just one standard paraiiel, Since there is no angular distor-
tion at any parallel {excent at the poles), it is possible to change the standard
parallels to just one, or to another pair, just by changing the scale applied to the
existing may and caleulating a pair of standard parallels fitting the new scale. This
18 not true of the Albers, on which only the original standard parailels ure {free
from angular distortion.

If the standard parallels are symmetrical about the Equator, the regulur Mep-
eator resuits (althongh formulas must be revised). If the only standard paralle) is
a pole, the polar Sleveographic results.

The scale 1 too small between the standard parallels and too large beyond
them. This applies ta the seale alony meridians, as well as along parallels, or in
any olher direclion, since they are equal at any given point, Thus, In the State
Plane Coordinate Systems (SPOS) for Btates using the Lambert, the choice of
stapdard parallels has the effect of reducing the scale of the central parallel by
an amount which eannot be expressed simply in exact form, while the seale for the
central meridian of a map using the Transverse Mercator is novmally reduced by
2 simple fraction. The scale is constant aleng any given parallel. While it equals
the nominal scale at the standard parallels, it actually changes most slowly ina
north-south direction at a parallel nearly haifway belween lhe iwo siandard
parallels,

At

It was only a él)uple of decades after the Coasi and Geodetic SBurvey began
publishing (ables for the Lambert Conformal Conie projection (Deetz, 1918a,
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dominantly east-west expanse. The prototype was the North Carolina Coordinate

Lysiem, established in 1933, Wiihin a year or so, similar systems were deviged
for many other States, while a Transverse Mercator system was prepared for the
remaining States. One or more zones is involved in the system for each State (see
table B) (Mitchell and Simmong, 1945, p. vi). In addition, the Lambert is used for
the Aleutian Islands of Alaska, Long Island in New York, and northwestern
Florida, akthough the Transverse Mereator (and Oblique Mercator in one case) is
used for the rest of each of these States,

The Lambert Conformal Conic is used for the 1:1,000,000-scale regional world
aprpnautical charts, the 1:500,00-scale sectional aergnautical charts, and
1:500,000-5cale State base maps {all 48 contiguous States® have the same standand
parallels of lat. 33° and 45° N, and thus match). Also cast on the Lambert are most
of the 1:24,000-z¢ale 7¥%-minute quadrangles prepared after 1957 which lie in zones
for which the Lambert is the base for the SPCS. In the latter case, the standard
parallels for the zone are used, rather than parameters desipned for the individual
quadrangles. Thus, all quadrangles for a given zone may be mosaicked exactly.
{The projection used previously was the Polyconic, and some recent quadrangles
are heing produced to the Universal Trangverse Mercator projection.)

The Lambert Conformal Conie has also been adopted as the official topographie
projection for some olher countries. IL appears in The National Atlas {IUSGS,
1870, p. 118) for a map of hurricane patterns in the North Atlantie, and the Lam-
bert is used by the USGS for a map of the United States showing all 50 States
in their true relative positions. The latter map is at scales of both 1:6,000, 000
and 1:10,000,000, with standard parallels 37* and 65° N.

In 1962, the projection for the International Map of the World at a scale of
1:1,000,000 was changed from a modified Polyconie to the Lambert Conformal
Conic between lats. 84° N, and 80° 5. The polar Stereographic projection is used in
the remaining areas. The sheets are generally 6° of longitude wide by 47 of latitude
high. The standard parallels are placed at one-sixth and five-sixths of the latitnde
qn:amno' for each zone of 47 latitude, and the reference sﬂlmcmrl i1z the International

[L-mLed Wations, 1963, p. 3-27). Thls specification has been subsequently used

wothe TTROC in anvalyminting csavaral mars far Fhe TMIWW comac
u_r 102 ol I cohsraci i OE YL INapes T LIPS LIFE¥F O 1Ta,

Perhaps the most recent new topographic use for the Lambert Conformal Conic
projection by the USGS is for middle latitudes of the 1:1,000,000-scale geologic
gories of the Moon and for some of the maps of Mercury, Mars, and Jupiter's

satellites (see table B).

FORMULAN FOR THE SPHERE

For the progjection ag normally used, with two standard parallels, the equations
for the sphere may be written as follows: Given R, &y, du, g, A, d, and A (see
p. 295 for numerical examplesk

r =psjn b (14-1)
¥ =pp ~ peos B {14-2)
where
p = KEtan® (wd + HiE) (15—-1)
B =nh=xo) (14-4)
po = RF/Aan" (a/d + do/2) (15—1Ia)

*Fur Hawaii, the standurd parallels are Lats. 207 40° and 247 207 N_; the corresnosding base map wis nol prepared
for Alasku,
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F' = cos & tan™ {m/d + 20 {15-2}

n = In {cos dby/eos da)nftan (m/d + do/2Wtan (M + 4,23 (153
by, ko = the latitude and longitude for the origin of the rectangular coordinates.
by, $o = standard parallels,

The ¥ axis lies along the central meridian Ay, ¥ inereasing northerly; the X axis
inlersects perpendicularly at &y, x increasing easterly. If (A—h,) exceeds the
range = 180° 3807 should be added or subtracted. Constants », F, and pg need ta
be determined only once for the entire map.

If only one standard paralle] ¢, is desired, equation (15—3) is indeterminate,
but nw=gin ¢,. The seale along meridians or parallels, vsing equations (4—4) or
(4—15),

E=h=pps b, tan®™ad 4+ b eos b tan™aid - B2 (15—4d
ELAE ERLLR el R e L bl e =
The maximum angular deformation w=0, since the projection is conformal. As
with the other regular conies, k is strietly a function of latitude. For a projection
centered in the Southern Hemisphere, » and p are negative.

For the invevse formufas for the sphere, given K, &y, b, &g, Ay, &, and g2 0, F,
and p, are caleulated from equations (15—3), (15-2), and (15— 1a), respectively.
Then,

¢ =2 arctan (RFipy"—m/2 (15-5)

A= 4+ Mg (14—-9
where

poo==l2® + (pg—#*1%, taking the sign of & (14— 100

g = arctan [ai(p,— )] (14—11}

The Fortran ATAN2 function does not apply to equation (15-5}, but when it is
used for equation (14-11), and » is negative, the signs of 2, ¥, and py (hegative
frorn equation {15—1a)) must be reversed before insertion into the equation. If
p=0, equation (15—5) involves division by zero, but & is = 907, taking the sipn of .

The standard paralleis normally used for maps of the conterminous United
Btates are lats. 33° and 45° N., which give approximately the least overall error
within those boundaries. The ellipsoidal form is used for such maps, based on the
Clarke 1866 eliipsoid {Adams, 1918)

The standard parallels of 33° and 45° were selected by the USGS hecause of the
existing tables by Adams (1918}, but Adams chose them to provide 4 maximum
scale ervor between latitudes 30.5% and 47.5° of one-half of 1 percant. A maximum
seale exvor of 2.0 percent oceurs in southernmost Florida (Deetz and Adams,
1934, p. 80). Other statdiard parallels would reduce the maximum seale ervor for
the United States, but at the expense of accuraey in the center of the map.

FORMULAS FOR THE FLLIPSOID

The ellipsoidal [ormulas are essential when applying the Lambert Conformal
Coni¢ to mapping at a scale of 1:100,000 or larger and important at seales of

1:5,000,000. Given a, ¢, &y, P2, Op, hy, &, and k [see p. 296 [ur numerical examples):

£ =psang (14=-13
¥ =gy poos @ (14-2)

107



108

MAP PROJECTIONS—A WORKING MANTAL

k= putlan) (14—16}
= pre (et (156}
where
po=ak (a-Tr
6 = nlh—hy (34—4}
= aFty" {(15—="Ta)
# = (I ey —in smdin £ —In £y (13 -8}
i = cos pAl—e" sin® ¢ {l4—15)
o= tan {nfd- 2N e sin ML+ 2 sin )] {15-9)
or
I —sin gyl + esingiyo[?
I\ 4 sin G AL — esing {15~ 9a)
Foo= i fnd %) (15—

with the same subscripts I, 2, or none applicd to we and & in equalion (14-13),
and 0, 1, 2, or none applied to § and & im equation (15 -9, as requirad by equations
(15- 6, (15—T), amct (15—8). As with ather conies, a negative 2 and p result for
prajections centered in the Southern Hemisphere. If ¢ = = WF, p s zero for the
same sign as » and infinite for the opposite sign, [T d; = &, for the Lambert with
a single standard paraltel, equation (16—8) is indelerminule, but » = 2in &, Origin
and orientation of axes for x and ¥ are Lthe same as Lthose for the spherical form.,
Constants n, F, and p, may be determined just ance for the entire map.

When the above equations for the ellipsoidal form are used, they give values
of » und p slightly different from those in the accepted tables of coordinates for 2
mrap of the United States, sceording to the Lambert Conformal Conic projection.
The diserepraney is 35— 50 m in the radns and 00000035 in ». The rectangutar
conrdinates are correspotdingly affected. The discrepaney s less significant, when
it is realized that the radius is measured to the pole, and that the distance from
the 50th parallel to the 2oth p.n allel on the map at full seale is only 12 m out of
280300 or 0.0004 I]Ei‘("ﬁ-uu For li'iut,l.lml.hu., conventence &0 Years ngo. the tables
were, 14 effect, cutewluted using instead of equation (15—,

E=tan (n/d- &y/2) (15— 9b)
where by s the gencentric latitude, or, as shown earlier,
thy — arctan [(1-e"Jan $) (R—28)

In conventional terminology. the ¢ of equation (15-9) is ustally writlen as
tan YeZ, where X is the colatitude of the conformal lutitude y (see equation
3~

For the existing tables, then, ;. the geocentrie lutitide, was used for con-
venience in pluce of x, the conformat latitude (Adams, 1918, p. 69, 343, A com-
parison of series equutions (3—3) and (3-303, or of the corresponding columns in
table 3, shews that the two auxiliary latitodes x and &y wre numerically very
nearly the same.

There may be much smaller diserepuncies found between coordinates as ealeu-
lated on modern computers and those listed in tables for the SPCS. This is due
to the slightly redueed (but sufficient) sceuracy of the desk ealeulutors of 30—40)
yvears ago and the adaptation of forinulas to be more easily utilized by them. To
obtuin BPCES coordinates, the appropriate “false easting” is added o x after cal-
culztion using (14—1).
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The inverse formacdas for ellipsoidal conrdingtes, given o, e, &, . &y, Jo. &,
unddl A n, F, and py are caleulated from equations (15—18), (15-109, {15—7Ta),
respectively. Then,

¢ = mi2=2 uretan M(1—¢ sin AT + e sin $I]=Y (7-9)
where
£ o= (plaF)y (15~ 11)
p = £le” +{py— 12, tuking the sign of (14— 103
A= B4Ry (14— 9)
& = arctan |2 (p— 1] (14--11)

As with the spherieal formulas, the Fortran ATANZ function does not apply to
equation (7—93, but for equution (14—11), if % is negative, the sipns ol %, ¥, und
py Must be reversed.

Equation (7T-9) involves rapidly converging iteration: Caleulate £ from (15~11).
Then, assuming an initial trial & equal to (w/2—2 arctun £) in the right side of
equation (T—3), caleulate & on the left side. Substitute the calculuted ¢ into the
right side, calenlate a new &, ete., until ¢ does v from the

preceding trial value of &.

et Alarees 23 eenad A nk
oL Change SWnincain

To avoid itevation, series {3—5) may be used with {7—13) in place of {(T—4;
by + (652 L Get24 - %12 4 185360 + .. ) sin 2y
+ (Te48 + 297240 4+ B11M11320 + .. L)
sin dy = (7120 + B1a%1120 + _ . ) sin By
+ (127967161280 + . . dsin8y + ... 3-5
where
y="2-2 arctan ¢ (7-13)

¥or improved enmputaticnal efficiency using the series, see p. 19,

If rectangular coordinates for mups bused on the Lables nsing geocentric luti-
tude are to be converted to latitude and longitude, the inverse formulas are the
sarme as those above, exeept that equation (15—9%) {3 used instead of (15-9) for
caleulations leading to v, F, and pg, and equation (7—9), or (3—5) and (7-13}, is
replaced with the following which does not involve iteration:

& =arctan [tan dbgi1-e)] {13—13)
whore

= we2—Z arctan £ {15~ 14}
and ? is caleulated from equation (15-11.

Polar soordinates for the Lambert Conformal Conie are given for both the
spherical and ellipsoidul forms, using standard purallels of 33° and 45° M. (table 16).
The data based on the geocentric latitude are given for comparison. A graticule
extended to the North Pole is shown in figure 21

To convert from tabular rectangular coordinates to & and A, it is necessary to
subtract any “false easting” from x and “fulse northing” from y before inserting
zand ¥ into the inverse formulas. To convert coordinutes measured on an existing
Lambert Conformal Conie map (or other regular conic projection), the user may
choose any meridian for A, and therefore for the ¥ axis, and any latilude for ¢,
The X axis then is placed perpendicular to the ¥ axis at .
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18. EQUIMSTANT CONIC PROJECTION

16. EQUIDISTANT CONILC PROJECTION
SUMMARY

s Conie,

» BEguidistant.

s Parullels, including poles, are arcs of concentrie circles, equally spaced for the
sphere, at true spacing for the ellipsoid.

» Meridians are equally spaced radii of the same circles, theveby cutting paraliels
at right angles.

» Seale is troe along all meridians and alonyg one or two standard parvaliels.

» Used for maps of small countries and regions and of larger areas with predomi-
nant. east-wast expanse.

+ Rudimentary form de» eloped by Claudins Piolemy about A.D. 150

HISTORY

The simplest kind of conic projection is the Eguidistant Conie, often called
Simple Conie, or just Conie projection. It is the projection most likely to be found
in atlases for maps of small countries, with its equally spaced stralght mendians
and equaty spaced civeular parallels, A rudimentary version was described by the
astronomer and geographer Claudius Ptolemy about A.D. 150. Probably born in
Greece about A. D, 90, he spent most of his life in or near Alexandria, Egypt, and
died aboul A, 168, His ereatest works were the Alinagesf, describing his
seientifle theovies, and the Geograghia, which dwelt on mapmaking. These were
revived in the 16th century as the most anthoritative existing standards.

In developing this projection, Plolemy did not discuss eones. and a cone would
ngt, properly fit his specifications, but he said (Geographia, Book 1, ch. 20):

When we cast a glance upon the middle of the northern quarter of the globe in which the greatest part
el the oikumene [or ecumene, or inhabited warld] lies. then the meridians give the impregsion of being
straight lines if we turn the globe thus that the meridians successively come out of thelr sideward
situsation right before the apectator, so that the eye contes in Lheir plane, The paralkels pive elearly the
impression of arcs of circles which tarn their convex side to the south (Keuning, 1455, p. 9.

Piolemy’s conle projection extends (rom latitudes approximating 63°N. to I6°5,
Although meridians north of the Egquator fan out as straight radii from the center
of the circular paralleis, they break at the Equator to connect with straight lines
to points along the southernmost paratlel which are the same distance apart as
corrasponding points at 16°N.

Johannes Ruysch {f—1533) modified this approach to continue meridians as
straight radii below the Equator in a world map of 1508, and Gerardus Mercator
made other modifications in the mid-16th century. The Equidistant Conic with
two standard parallels is eredited to Joseph Nicolas De I'Isle (1688 - 1768), of an
illustrious French mapmaking family. He used it for a map of Russia in 1743,
There were differences in his approach, however, which resulted in meridians

which are not radii of the cirenlar arcs representing the cireles,
Several Scot (Murdoch), Swiss (Fi‘l‘u'lr"l F‘nohw.h (FBverett), and Russian

el LRI LALRRUOILS, R Raa LRIl S, Ldlgeiaid pveEDaLL), anid o

(Vitkovskiy, Kavrayskiy, and olhers) mdthEmdLlCIdnb published papers between

1754 weAd T0T4 dansaribin AF calnptiear the i stamdrrd ravnlleds nn bhat
piadh danNd 1008 WeELET u.qu medns ot ncu;l_,!.,luﬁ the two stundara Faranes 35 that

distortion is minmmized using various eriteria. Each of them used the sime basje
conic projection with concentrie cirenlar parallels and straipht meridians for radii
(Snyder, 1978a). The name of one of them, V. V. Wavrayaliy (or Kavralsiey), has
been mistakenly applied in some .5, literature to the hasie projection, but his
contribution did not oceur until 1934,

111



112

MAP PRINECTIONS—A WORKING MANUAL

CLA vITLL
CLOLI LR

ian

The Equidistant Conie projection (fig. 22} is neither conformal (like the Lam-
bert Conformal Canicl nor equal-ares (like the Albers), but it serves as u compro-
mise between Lthem. The Lambert parallels are more widely spaced away from
the central parallel, and the Albers parallels heceme elgser togather. The paral-
lels on the Equidistant Conie remain equally spaced on the spherical version (as
they are on the sphere) and nearly so on the ellipsoidal version {with the same
spacing as the distances along the meridians on the ellipsoid).

As on othel normal conies, the meridians are equally spaced radii of the concen-
tric cireular ares which form the parallels. The meridians are spaved at equal
angles which are less than the true angles beiween the meridians; the ratio is
called the ¢cone constant, as it is on other conie projeetions. The poles are normally
also plotted as eircolar ares.

Either one or two paraltels may be made standard or true to scale. There is no
shape, area, or scale distortion along the standard purallels. While imeridians are
at correct scale everywhere, the seale alung the parallels between the standard
parallels (if there are twao) is too small, and the scale along parallels beyond the
standurd parallel(s) is oo great.

If the one standard parallel is the Equater, the Eguidistant Conic projection
becomes the Plate Cartée form of the Equudistant Cylindrieal, but the formulas

| VAP, P, | PN, JEU IR | P [ W iy I pu |

milist b enangeu. Ifthe two standard pul'iaﬂum arp symumnebrical about the Equator,
the Equirectangular results. If the standard purallel is the pole, the Azimuthal
Equidistant projection is ebtaihed.

FiuRe 22 —Equidistunt Conie projection, with stundard parallels 20° and 60" M. Allof North Amer-
fex iy ineluded to show that parallels remain equidistant, Compare fipgures 20 and 21.
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USAGE

The Equidistant Conic prajection is commonly used in the spherical form in
atlases for maps of small countries, lts only use by the USGSH has been in an
approximate ellinsoldal form for Alaska Maps “B” and “E," but the projection
nume applied is “Modified Transverse Mercator” {see p. 63}, due to the original
manner of construction. The formulas for the ellipsoidal version were apparently
first published in Snyder (1978a), although there may be severai de faclo usages
of the ellipzaoidal form sueh as the above, For example, the New Mexive Planming
Survey in effect devised such a projection in 1936 for the mapping of that State,
calling it a “Modified Conle Projection” {Thomaz E. Henderson, pers. comm.,
1485).

FORMULAS FOR THE SPHERE

For the Bguidistant Conic projection with two standard parahels, given B, 4,
ds, &n, Ao, B, and A, to find x and y (see p. 298 for numerical examples):

x =psinb {14-1}
¥ = pp-peosh (14—-2)
where
p = RA{G-¢) (161}
# o= fh—hy) (14—4}
o= JE0E- dhld reg—:23
Fu Lt L pEEOES
G = {cos & W+ dy (16=3}
1 = fene do—ons ol dhe —dye F16— 43
i3 VRS Gy T AU W ia T Ry LA Ty

de, Ay = the latitude and longitude for the origin of the rectangular coordinates.
by, ¢y = standard parallels.

The ¥ axis lles along the central meridian hy, ¥ inereasing northerly; the X axig
interzectls perpendicularly al &g, © inereasing easterly. If (a— k) exceeds the
range *180°, 360° should be added or subtracted. Constants », £, ahd py heed
to be ditermined only once for the entire majp.

If only one standard parallel ¢, is desired, eguation (16—4) is indeterminate,
but % = sin &,. The scale % along meridians is 1.0. Along parailels, using equation
(4—-5), the seale is

k= (G—dimlcos & (16—5)

The maximum angular deformation may be calealated from eyuation (4 —-9). As on
other regular conics, distortion is only a fonction of latitude.

For the inverse formulas for the sphere, given &, &y, ¢, &y, Ay o, and y, to find
¢ and & n, G, and py are caleslated from equations (16—-4), {16--3), and {16--2},
respectively. Then,

& =0 — pR (156-6)
A =g + Bl (14-9

where
= = (5?4 (py~317]", taking the sign afn 14— 10

o
# = arctan [x/{py—u)] {14113
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To use the ATANZ function, if » is negative, the signs of #, ¥, and p, (given a
negative sign by equalion (16-2)) must be reversed before inserting them in
equation (14-11).

FORMULAS FOR THE ELLIPSOID

For mapping of regions smaller Lthan the United States at seales greater than
1:5,000,000, using the Equidistant Conic projection, the ellipsoidal formulas should
be considered. Given a, ¢, dy, o dy, ko §, and A, to find 2 and ¢  {see p. 299
for nurnerical examples):

x =psinf {(4-1}
¥ = pp—p cos B (1423
k= priam) {14-16)
= (G- Mianim (16-7)

where
p =2 G—M (16— 5}
¥ =n (A~Ag) (14— 4)
po = G~M, {169
w = olngy—m )M — M (16 —10}
M = cos di(l—e sin® G (14-15)
2 =win + Mo {16—113)

M o= (1 -4 — 2" 64— 565256~ . g
— (3638 +36%32 + 45651024 +. . ) sin B
+ (15¢Y256 + 45651024 + . |, .} 8in 44
— (350724, . D sinb6h + ... (321

with the same subseripts 1, 2, or none applied to s and 4 in equation (14—13}, and
0, 1, 2, or none applied 1o M and & in equation (3—21). For improved eomputa-
tional efficiency using the series, see p. 18. As with other conics, a negative » and
p result for projections eentered in the Southern Hemisphere. If &, = d», for the
Eguidistant Conic with a zingle gtandard parallel, equation (1610} iz indetermi-
nate, but » = sin &, Origin and orientation of axes for 2 and y are the satne as
those for the spherical form. Constants #, &, and g, may be determined just once
for the entire map.

For the tnverse formucdas for the ellipsoid, given g, ¢, &y, s, &y, Ag, x, and g, to
find & and h: », G, and py are caleulated from equations (16109, (16—11), and
(16—9}, respectively. Then

b = p o+ (30,2-272, %824 .. ) sin 2p + (21e,VI16-55¢,Y32+ .. )

sindp + {161e, W08~ . . JsinBp + (1097, Y512~ . . OsinSp+ . .. (3-26)
where
ey = [1 — (1-e®21 + (1] (2-24)
p = Mila(l—e5d—3e%6d— 55256 - . . )] {(7T=19
M=aG-p (16-12)
p = % [a+{p,—#1%]'2, tuking the sign of » (14-10)
A=hg L B (14~
8 = aretan [x/{py—yl] (14-11)

To uze the ATANZ function, if » is negative, the signs of ¥, #, and py, must be
reversed before mserting therm in equation {14—{1). For improved computational
eificiency using the series (3—26), see p. 19.



16, EQUIDISTANT CONIC PROJECTION

Polar coordinates for the Equidistant Conie projection for a map of the United
States, assuming standard parallels of lat. 28.5° and 45.5°N., are listed in table 17
for both the spherical and ellipsoidal forms. A graticule extended to the North
Puole is shown in figure 22.

To comvert coordinates measured on an existing Equidisiant Conie map, the
user may choose any meridian for &, and therefore for the ¥ axis, and any latitude
for &y The X axis then is placed perpendieular to the ¥ axis at dy,

TABLE 1T7.—Equidistant Conic profection: Polur coomlinates

| Standurd prrgllele: 2930 435N

Projestion Tor sphere (R = 6,370,987 ] TPeajection for Clarke 1008 cllipsoil
(o= (L GOETRSY l = 0,378,204 i (= OGDRRESS)
Lat, o k o k
5Z* 6,636 493 102685 B, 606, 884 1.02656
51 6,747,633 L.O2120 6,768,123 102113
iH] 6,858 BRI 1.0iR2S 6,879,362 101622
49 6,970,075 101186 6,990, 581 131182
48 7,081,272 100782 7.1, 781 100750
47 7,192 467 1.00444 7,212,061 100442
46 7.303 662 1.0{H 38 T.324,122 100137
45.5 7,389 260 IRLLEL 7.379,635 1. 00000
45 1,414,857 0,99872 7,425,263 (199373
44 T, 526,062 80646 7.546, 384 Tk
43 7.687 247 99457 7,857 485 B4
42 T.748,442 80304 7,768 566 89307
41 7,854 637 90186 7,879,628 G159
Al 7,970,821 99101 7,990,671 9105
38 8,082,026 80048 8,101,694 052
38 8,193,221 L9026 5212687 BO03G
37 8 804,416 90030 8,823 682 9029
6 8,415,611 LH9073 #.434,618 MY
a5 B,526, 806 89140 #,545, 554 O9144
34 8,638,001 99235 8,656,523 50234
23 8,749,196 94358 8,767,433 89361
32 8, B64,290 89508 8,878,325 AE511
qn 4.971,585 G0885 £ 089,149 OGET
30 9,082,780 L9580 4, 100, 056 BBE8RY
205 9,135,378 1. 00CH 9,155,478 L0000
28 9,193,975 1.0011%8 9,210,356 o7
28 9,305,170 1.00373 9,321,720 10371
27 4 .416,360 1. (HK554 9,432, 527 100651
26 4.527 560 1.00260 9,543 318 1.t4{¥55
28 9,838,785 101251 9,654,053 1.01285
24 9,749,949 101648 9,764,854 1.01640
23 9 861,144 1.02030 9 875, 600 1. 02020
22 @ 972,339 102437 9,986,322 1. 02425
Hute: g =radioe of lulitade cirglea, metera.
A =sorale factar along metidiana = 10
& =geale factor aleng parallels.
£ =zaumed rafdivs of sphere.
4 =aaeumed semimajor axis of efiipacid.
e =¢olle conalant, oF ratio of angle between meridans o map to thue aogle.
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17, BIPDLAR OBLIQUE CONIC CONFORMAL PROMECTION

SURIMARY

« Two oblique conic projections, side-by-side, but with poles 104° apart.

» Conformal.

e Meridians and parallels are complex curves, intersecting at right angles,

» Seale is true along two standard transformed parallels on each conice projection,
neither of these lines following any geopraphical meridian or parailel.

» Very small deviation from conformalily, where the two conie projeclions join.

= Specially developed for a map of the Americas,

= Used only in spherical form.

» Presented by Milter and Briesemeister in 1941,

1TISTORY

A “tailor-made” projection i3 one desighed for 4 certain geographical area.
0. M. Miller used the term for some projections which he developed for the Amer-
can Geographical Sociely {AGS) or for their clients. The Bipolar Oblique Conie
Conformal projeetion, developed with Willlam A, Brieserneister, was presented
in 194! and designed specifically for 2 map of North and South America con-
structed in several sheets by the AGS at a =seale of 1:5,000,000 (Miller, 1941).

Tt g am sdantatinm af tha T oarmhbort O anformael Ooane oesdectian b minimize seala
&L LY il ﬂ“ﬂl-lbul—lul-l AR Al ASG RIS, e L PR DRSL LT AR BAL LA P LELELE LU Sl R LA Ty e,

error aver the two continents by gecommodating the fact that Merth America
tends to curve toward the east as one proceeds from north to south, while South
America tends to curve in the oppesite direction, Because of the relatively small
geale of the map, the Favth was treated az a sphere. To construct the map, 3 great
cirele are 104° long was selected to cul ihrough Central America from southwest to
northeast, heginning at Iat, 20° 8. and long. 114° W, and terminating at lat. 45° N,
and the resulting longitude of about 19°53°36" W,

The former point is used as the pole and as the center of transformed parallels
of latitude for an Oblique Conformal Conie projection with two standard parallels
{at polar distaneces of 31° and 73°) for all the land in the Americas southesst of the
1047 great eirele are. The latter point serves 4= the pole and center of parallels for
an identical projection for all land nerthwest of the same ave. The inner and outer
standard parallels of the northwest portion of the map, thus, are tangent Lo the
puter and inner standard paratlels, respeetively, of the southeast portion, touch-
ing at the dividing line (104°—31%=73%).

The seale of the map was then increased by about 3.5 percent, so that the lnear
seale error along the central parallels (at a polar distance of 52°, halfway between
317 and 74°) is equal und opposite in sign (—3.5 percent) to the seale error along the
two standard parallels (now + 2.5 percent) which are at the normal map limits,
Under these eonditions, transfomed parallels at polar distances of about 26.24°
antd 66587 are true to sez2le 2nd are zetually the standard transformed parallels.

The use of the Obligue Conformal Conig projection was not original with Miller
and Briesemeister. The concept involves the shifting of the graticule of meridians
and parallels for the regular Lambert Conformal Conie so that the pole of the
projection is no longer at the pole of the Earth. This is the same principle as the
transformation for the Oblique Mercator projection. The bipolar concept is unique,
however, and it has apparently not been used for any other maps.

The Geological Survey has usced the Norlh American portion of the map for the
Geclogic Map (1965), the Basemenl Map (1967}, the Geothermat Map, and the
Metallogenic Map, all retaining the original scale of 1:5,000,000. The Tectonic



17. BIPOLAR OBLIGQUE CONIC CONFORMAL PROWECTION

Map of North America (19689} iz generally based on the Bipelar Obligue Conie
Conformal, but there are modifieations near the edges. An oblique conie projec-
tion aboul a single transformed pole would sullice fnr either pne of the continents
alone, but the AGE man served as an available hase man at an appropriate scale,
In 1979, the USGHE decided Lo replace this projection with the Transverse Merca-
tor for 3 map of North America.

The projection i3 conformal, and each of the two conie projections has all the
characleristics of the Lambert Confurmal Conie projection, except (or the impor-
tant difference in location af the pole, and 2 very narrow band near the center.
While mericlians and parallels on the oblique projection intersect at right angles
because the map is conformal, the parallels are not ares of cireles, and Uthe meridi-
ans are not straight, except for the peripheral meridian from each transformed
pole Lo the nearesi normal pole,

The scale is vonstant along each circular are centered on the transformed pole
for the conie projection of the particular portion of the map. Thus, the two lines at
a scale factor of 1.033, that is, both pairs of the offivial standard transformed
parallels, are mapped as elreular ares forming the letter “8." The 104° great circle
arc separating the twa oblique eonie projections is o straight iine on the map, and
all other straipht lines radiating from the poles for the respective conie projec-
tions are transformed meridians and are therefore great cirele routes. These
straight lines are not normally shown on the finished map.

Al the juncture of the two conie prajections, along the 104° axis, there is actually

a slight mathematieg!l diseontinuity al svery point exeent for H-'m fuwrn nearta at
sight matnemalical isconlinully al every ponl £xXcepl for The bwa pomids at

which the transformed parallels of polar distance 31" and 73" meet. If the conic
projections are strictly followed, there 1s 2 maximum discrepancy of LB wmm at the
113, B00, 000 scale at the midpomt of this axis, halfway between the poles or between
the intersections of the axis with the 317 and 7:3° transformed parallels. In other
words, a meridian approaching the axis from (he soulh is shifted up to 1.6 mm
along the axis as it erosses. Along the axis, bat beyond the porlion between the
lines of true scale, the diserepancy increases markedly, until it is over 240 mim at,
the transformed poles, These lalter areas are beyond the needed range of the map
and are not shown, just as the polar areas of the regular Lambert Conformal
Conie are normally omitted. This would not happen if the Oblinue Equidistant.
Conie projeetinn were used.

The discontinuity was resolved by connecting the two arcs with a straight line
tangent to both, a convenience which leaves the small intermediate area slightly
noneonformal. This adjustment is included in the formualas below.

FORMULAS FOR [HE SPHERFE

The ariginal map was prepared by the American Gengraphical SBociety, in an
era when automatic plotters and easy computation of coordinales were not yet
present. Map coordinates were deterrmined by converting the geographical conrdi-
nates of a given pralicule intersection 1o the transformed latitude and longitude
based on the poles of the projeciion, then to polar coordinates according to the
cunformal projection, and finally to rectangular eonrdinates relative to the selected
origin.

The follnwing formulas combine these steps in a fortn which may be prograramed
for the compuater. First, various constants are caleulated from the above
parameters, applying to the enlire map. Since nnly one map is involved, the
numerical values are inserted in fortmulas, except where the numbers are tran-
scendental and are referred ta by symboals.

If the soulhwest pole is at point A, the northeast pole is at point H, and the
center point on the axis is C,

117



118

MAP PROJECTIONS—A WORKING MANUAL

hgy = ~110° + arceos|[cos 104° —sin(— 20°)5ind5°)

feos{ —20°) vos 45°); a7-u
= —19°59°28" long., the longitude of B (negative is west jong.}
® = {In sin 31°=In sin T2°W(In tan (31%2)—1n tan {73%2)] {17-2)
= (L6305, the cone constant for both conic projections
Fy= R sin 31%n tan?(31%2}] (173
=1.83376 R. where £ is the radius of the globe at the scale of the map.
For the 1:5,000,000 map, F wias taken as 6,371,221 m, the radius of a
sphere having a volume equal to that of the International ellipsoid.
ko= 21+ 0y tan® 268°HF sin 529) (17 —4)
= 1.03462, the seale factor by which the coordinates are multiplied Lo balance
the errors
F= kvt'rpu (17-8)

=1.89725 K, a convenient constant
Az, = arceas [[eos (—20% sin 45°—sin (—207) cos 45° cos
(hy + 120" ]i5in 104™ (IT—6)
= 46, T8202°, the axzimuth east of north of & from A
Az,, = arceos [eos 45° sin {~20°)~sin 45° cos (=206°) cos

(A, +120°]/sin 104% (17-T)
= 104.42834° the azimuth west of north of A from B
T =tun® (31%/21+ tan®(T32) {17—-8)
= 127247, a comvenient constant
p=WFT (17-9)
= [.BOT08 £, the radius of the center point of the axis from either pole
z,= 2 aretan (TR2) (17—10)

= H2.03888°, the polur distance of the center point from either pole

Nale that z, wonld be exactly 52°, if there were no discontinuity at the axis. The
vilues of §,, h,, and Az, are calewlated asif no adjustment were made at the axis
due to the discontinuity. Their use is completely arbitrary and only affects posi-
tions af the arbitrary X and ¥ axes, not the map itself. The adjestment is included
in formulas for a given point.

ain Tuin {-—‘70“\ [ Rt {—2

grm
[H al sl & U ST TUS

0°) sin z cos Az ) (17-11)
= 17°1628" N. lat., the latitude of the
southern-cone side of the axis
A.=arcsin (sin z sin Az, feos & - 1100 (17— 12}
= —T3°00"27" lang., the longitode of the center point, on the
southern-cone sicle of the axis
Az = urcsin [cos {(—20°) sin Az Jeos b ] (17-13)
=45 81997, the azimuth east of north of the axis ut the conter point, relalive
to meridian h_ on the southern-cone side of the axis

The remaining equations are civen in the order uzed, for caleulating rectanpgu-
lar coordinates for varions values of latitude 4 and iongitude X (measured east
from Greenwich, or with u minus sign for the western values used here), There
are some conditional transfers and adjustments which would apply only if a map
extending well beyond the repions of interest were ta be plotted; these are omit-
ted to avoid unnecessary complication. It must be eatablished first whether peint
(&, k) is north or south of the axiz, to determine which conic projection i involved.
With Lhese formulas, it s done by eomparing the azimuth of peint (4, &) with the
azimuth of the axis, all as viewed from B (see p, 301 for numerieal examples}):

z, = arceos [ain 45° 5in ¢+ cos 45° cos ¢ cos (A, — i)} (17— 14y
= rnloe Adigtanca AF (A 323 feam e B
AL LA DLAAAIL A LFL \\l‘, LAY T N ] ) l—'U"—' s



17. B1POLAR GBLIGQUE CONIC CONFORMAL PROJECTION

Az, =arctan jsin (- A¥leos 45° tan d—sin 45° cos (A, —A}P {1715}
= gzimuth of {d, X) west of north, viewed from B

If Az, is greater than Azp, (from equation {(17—7)), go to equation (17-28),
Otherwize proceed to equation (17— 16) for the projection from pole B.

pp=F fan"the, {1716}
k= p, (R sin z,) (17-17)
= geale factor at point (¢, A}, disregarding
small adjustment near axis X
o = arecas [[tan®Vez, + tan™a(104° —2 YT (17-18)
If e (Az,, —Az,) is less than o,
pp’ = o leos [a—n (Agg, —Az,)] (17-1%

If the above expression is equal to or greater than a,

fg =Py (7-2m

Then
x'=pg" sin (v (Azg, —Azg) (17-21)
¥ =py cos [n (Az,,—Az.)]-p, (17-22)

using eonstants from equations (17-2), {17-8), (17~7), and (17—9) for rectangu-
lar coordinates relative to the axis. To change to nonskewed rectanpular
coordinates, go to equations {17-32) and (17-33). The following formulas give
coordinates for the projeetion from pole A,

z, = arcecos [sin {—20°) sin & +cos {—20°) cos & cos (A + 110°)) (17-23)
= polar distance of (b, &) from pole 4
Az, = arctan [sin (x + 130°)0{cos (~20°) tan ¢~ sin (~20%

cos (A + L107)]| (17~24)

= azimuth of {4, A} east of north, viewed from A
py = Flan®iiz, (17—25
k= gl sin z, = scale factor at point (4, X) (1726,
« = arccos |[tan"lbz, +tan" A 104° —2 )1/} (17—27

If Iz {Az, p=Az,) is less than o,

p, =poos [e+n (Az, —Az )] (17—28)
If the above expression is equal to or greater than e,

IJ_;=|3A [1?_2'”
Then
x' =g, sin{n {4z, ,—Az,)] (17-30)
¥=-p, cos[n Az, —Az N+p, {17-30
r= =& cos Az, —y" sin Az, (17—32)
¥=—y cos Az, +x' sin Az, (17-33

where the center point at (¢, A} is approximately the origin of (x, ) coordinates,
the ¥ axis increasing due north and the X axis due east from the origin. {The
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meridian and paraliet actually crossing the origin are shifled by about 3' of are,
due to the adjustment at the axis, but their aetunal values do not affect the
caleulations here.)

For the mverse Jormudas for the Bipolar Oblique Comie Conformal, the con-
gtants for the map must first be caleulated {rom eguations (17-1)-(17-13).
(Given x and y eoordinates based on the above axes, they are then converted to the
skew coordinales:

= —w cos Az + ¢ sin Az, (17-34)
¥ = —x sin Az, —y cos Az, (1735}

If &’ is equal to or greater than zere, go to equation {17-36). I &* is negative,
Eo to equation (17--45).

pe’ = [+ (p g PP {17—-36)
Az, = arctan Le'fp, L 4] (17T-3T
Lat
Pp= Dy (17—38)
z, = 2 arctan (pyf) (17-39)
o = arceos [{tan®biz, + tanhe(104° =2, ) )/ (17 -4

If 1Az,'f is equal to or greater than a, go to equation (17—-42). I 1Az’1 is less
than a, caleuiate

p.=p, cos{o—Az,') {17-41)
amd use this value to recaleulate equations (17-38), (17~ 401, and {17—-41), repeat-
ing until g, found in (17-41) changes by less than a predetermined cobvergence.

Then,

Az = Az, —Az,n {17—42

Using Az, and the final value of 2z,

& = aresin (sin 45° cos 2, +cos 457 sin 2, o0 Az, . (17—43)
A = A,—arctan lsin Az leos 45%tan 2,- sin 458% cos Azl (1744}

The remaining equations are for the soathern cone only (negative x')n

py = 4 (p —y P {17—45)
Az =aretan [x¥ip.—y)] (17—48)
Let
pa= s (17-47)
z, = 2 aretan {p /Fyn {1748}
o = arecos '[tan® ez, + tan® i 104° ~z 3T f17-48)

if 14z, is equal to or greater than o, go Lo equation {17-31) If idz," iz less
than o, calculate

py=p, cos (o HAz,7) {1750



20w

oW A0% W
a4 -
\ ¢ ’
yF
A0°H \
ot I ., 40°N
44 \
Y
\ - ~ agey 402
20°H A b
+ = ~
L= "\
L \\ .
i \ rh
oy
o )
G W X
o N x
b
3 {
2005
y Y
i '
2075
\
]
40°5
|
i
I
40°5
i oy 0w
L B8oew W
100°W I _\i
fStondard  porallels®

Fricre 3. —Bipolar Oblique Conie Crnformal projection nsed for vanous geologie maps. The Ameri-
ean Gieographical Society, under 0. M, Miller, prepared the base map used by the USGS. (Pre-

parad by Tau Bho Adpha.)

and use this value to recalculate equations (Y7—48), (1749, and (17 =50}, repeat-
ing untll p, found in eguation {17-50) changes by less than a predetermined

convergence, Then,

Az, =Az Az M (17-51)

Using Az, and the fingl value of z,,

& = aresin [sin (—20%) cos 7, +cos 20° sin 2z, cos Az,] (17-62)
A = arctan {sin Az Jcos (—20°)tan 2,
—xsin (—20°) eos Az, ) -110° (17-b3

Equations (17=17) or {17-26} may be used for caleulating & after & and » are
determined,

A table of rectangular coordinates is given in table 18, based on a radius B of
1.0, while a graticule is shown in figure 23,

-
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11. BIPOLAR OELIGUE CONIC CONFORMAL PROJECTION
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MAF PROJECTIONS—A WORKING MANUAL

18. POLYCONIC PROJECTION

SUMMARY

a Neither conformal nor equal-areu.

= Parallels of latitude (except for Equator) are areg of circles, but are not
eoncentrie.

» Central meridian and Equater are straight lines; all other meridians are
complex curves.

» Scale is true along each pareliel and along the central meridian, but ne paraliel
is “standard.”

a Free of distortion only along the central meridian.

o Uszed almost exclusively in slightly modified form {or large-scale mapping in the
United States until the 1950's.

» Was apparently originated ahout 1820 by Hassler.

HISTORY

Shortly before 1820, Ferdinand Rudelph Hagsler (fig. 21) began to promote the
Polyeonic projeetion, which was to become a standard for much of the offieial
mapping of the United States (Deetz and Adams, 1934, p. 58— 60).

Born in Switzerland in 1770, Hassler arrived in the United States in 1805 and
was hired 2 years later as the first head of the Survey of the Coast. He was forced
to wait until 1811 for funds and equipment, meanwhile teaching to maintain
income. After funds were granted, he spent 4 years in Europe securing equipment.
Surveying began in 1816, but Congress, dissatisfied with the progress, took the
Survey from his control in 1818. The work only foundered. It was returned to
Hassler, now superintendent, in 1832, Hassler died in Philadelphia in 1843 as a
result of exposure after a fall, trying to save his instruments in & severe wind and
hailstorm, but he had firmly established what later became the U.8. Coast and
Geadetic Survey (Wraight and Roberts, 1957) and is now the National (cean
Service,

The Polyconte projection, usually catled the Armerican Polyeonic in Europe,
achieved its name because the curvature of the eircular are for each parallef on the
map is the same as it would be fullowing the unrolling of a cone which had been
wrapped around the globe tangent to the particular parallel of latitude, with the
parallel traced onto the cone. Thus, there are many (Mpoly-") cones involved,
rather than the single cone of each regular conic projection. As Hassler himself
described the principles, *[t]his distribution of the projection, in an assemblage of
sections of surfaces of suecessive cones, tangents to or cutting a regular sucees-
sion of parallels, and upon regularly changing central meridians, appeared to me
the only ¢ne applicable to the coast of the United States” (Hassler, 1325,
p. 407-408).

The term “polyconie” is also applied generically by some writers to other
projections on which paraliels are shown as circular ares. Most commonly, the
term applies to the specific projection described here.

FEATUREN

The Polyconic projection (fig. 25) is neither equal-area nor conformal. Alung the
central mertdian, however, it is both distortion free and true to scale. Each
parailel is true to scale, but the meridians are lengthened by various amounts to
cross each pardllel at the correct position along the parallel, so that no parallel is
standard in the sense of having conformality {or correct angles), except at the
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FiGUKE 24 —Ferdinand Rudolph Hassler [1770- 18433, first Snperintendent of the U.5. Coast Survey
ard presumed inventor of the Polyeonie prejection. AR a resull of hia promation of itz use, it
hecarme the projection exclugively veed for USGE topographic quadrangles for about T vears.

central meridian, Near the central meridian, which is the case with 7¥-minute
quadrangles, distortion is extremely small, The Polyconic prejection is universal
in that tables of rectangular coovdinates may be used for any Polyconic projection
of the same ellipssid by merely applying the proper scale and central meridian.
U.8. Coast and Geodetie Sarvey Special Poblication No. 5 (1900 replaced tables
published in 1884 and was often reprinted beeause of the universality of the
projection (the Clarke 1866 is the reference ellipsoid). Polyconic quadrangle maps
prepared Lo Lhe same seale and for the same central meridian and ellipsoid will fit
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FIlGURE 5. —North America oo a Polycunic projection grid, central meridian lung. 100° W, uzing a
10" interval. The parallels are ares of circles which wre not concentrie, but huve radii squal to the
radius of curvature of the parallel at the Earth's surface. The meridiany are complex curves formed
by cohnecting points marked off along the parallels at their true distanees, Lzed by the USGS
for topographic quadrangle maps.

exactly from north to south. Since they are drawn in practice with straight
meridians, they also it cast to west, but discrepancies will ageumndate if mosaick-
ing is attempted in both directions.

The parallels are all eireular ares, with the centers of the ares lying along an
extension of Lhe straight central meridian, but these arcs are not concentrie.
Instead, as noted earlier, the radius of each are is that of the cirele developer
from a cone tanpent to the sphere or ellipsoir at the latitude, For the sphere, each
patralle! has a radius proporticnal to the cotangent of the latitude, For the ellipsoid,
the radius is slightly different. The Equator is a straight line in either case. Along
the central meridian, the parallels are spuced at their ttue intervals, For the
sphere, they are therefore equidistant. Each parallel is marked off for meridians
equidistantly and true to scale. The points so macked are connected by the curved
meritlians.

IS5AGE

As geodetic and eoagial surveying began in earnest during the i8th century,
the Pelyeonie projection became a standard, especially for quadrangles. Most
coastal charts prodeced by Lthe Coast Survey and its suceessor during the 1%th
century were based on one or more variations of the Folyconie projection
(Shalowitz, 1964, p. 138—141). The name of the projection gppears on a later
reprint of ane of the (rst published USGE topographic guadrangles, which
appeared in 1886, In 1904, the USGS published tables of rectangular coordinates
exiracted from an 1884 Coast and Geodetic Survey report. They were calied
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“coordinates of curvature,” but were actually coordinates for the Polyconic
projection, although the latter term was not used (Ganmett, 1904, p. 37—48).

As a 1928 USGS bulietin of topographic instructions stated (Beaman, 1928,
B 162

The topugraphic engineer ne=ls a prujection which is simple in construetion, which cah be used to
represent small aress on any part of the globe, and which, for exch stoal) ares to which i is spplied,
preserves shapes, aveds, distances, and azimuths in their true relation e lhe surface of the earth, The
polyeunie projection meetz all these needs and was adopted for the standard topographic map of Lthe
Urnited States, in which the 17 quadrangle is the lavgest unit * * + andthe 13" quadrangle is the average
unit. * * * Misuse of this projection in atlempts to spread it vwer large areas—thal is, to constract a
single map of 3 large area—has develuped 2eriogz: errors and gross exsgreration of details. For
exampte, the palyeonie projection is nol at all suitable for a single-zheet map of the United States or of
4 large State, althyugh it has been so employed.

When coordinate plotters and published tables for the State Plane Coordinate
Bystem (SPCE) became available in the late 1950's, the USGS ceased using the
FPolyeonie for new maps, in favor of the Transverse Mercator or Lambert Confor-
mz] Conic projections used with the SPCS for the area involved. Some of the
quadrangles prepared on one or the other of these projeclions have continued to
carry the Polyconic designation, however.

The Folyconie projection was also used for 1the Progressive Military Grid for
military mapping of the United States. There were seven zanes, A—G, with
central meridians every 8 west from long. 72° W. (zone A), each zone having an

At PO I L L gy LR e = 1 M

origin at iat. 40°30° N. on the central meridian with epordinates »= 1,000,000
yards, y = 2,000,000 yards {Deetz and Adams, 1934, p. 87—00). Bome USGE quad-
rangles of the 1930°s and 1940's display tick marks aceording to this prid in yards,
and many guadrangles then prepared by the Army Map Service and soid by the
TISGS show a complete grid pattern, This grid was incorporated intaet into the
World Polyconie Grid (WPG) until both were superseded by the Universal Trans-
verse Mercator grid {Mugnier, 1983).

While quadrangies based on the Polyconic provide low-distortion mapping of
the local areas, the inability to mosaic these quadrangles in all directions without
gaps makes them less satisfactory for a larger region. Quadrangles based on the
SPCEmay be mosaicked over an entire zone, at the expense af increased distortion,

For an individual quadrangle 7% or 15 minutes of latitude or longitude on a
side, the distance of the quadrangle from the ceniral meridian of a Transverse
Mercator zone or from the standard paralleis of' a Lambert Conformal Conic zone
of the BFCS has much more effect than the type of projection upon the variation
in measurement of distances on quadrangles based on the varipus projections. If
the central meridians or standard parallels of the SPCS zones fall on the
quadrangle, a change of projection from Polyconic to Transverse Mercator or
Lambert Conformal Conie results in a difference of less than 0.001 mm in the
measurement of the 700- 800 mm diagonals of a Tvz-minute quadrangle. If the
quadrangle is near the edge of a zone, the discrepancy between measurements of
diaggnals on two maps of the same quadrangle, one using the Transverse Merea-
tor or Lambert Conformal Conie projection and the other using the Polyconie, can
reach about 0.05 mm. These differences are excesded by variations in expansion
and contraction of paper maps, s0 that these mathemstical discrepancies apply
only to comparisons of stable-base maps.

Actually, the central meridian of a 7v-minute Polyconic quadrangle may lie
along the edge of the map, since 15-minnte guadrangles were frequently cut and
enlarged to achieve the less extensive coverage. This has a negligible effect upon
the map geometry.

Refore the Lambert became the projection for the 1:500,000 State base map
series, a modified form of the Polveonic was usaed, but the details are unclear, The
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Polveonic was nsed for Lthe base maps of Alaska antil 1972, It has also been ysed
for maps of the United States; b, as siated ubove, the distoriion is excessive at
the east and west eoasls, and most current maps are drawn to eithey the Lamhbert
or Albers Conic projections. There are several olher modified Polyconic projeclions,
in use or devised, incinding the Rectangular Polyeontic and Bousfield's modifiea-
tion used for northern Canada (Haines, 1981). The best known is that used for the

Internatinnal Map of the Waorld, deseribed on p. 131,

GEOMETERIC CONSTRUCTION

Bevause of the simplicity of construction using aniversal Lables with which Lthe
central meridian and each purallel may be marked of al troe distances, the
Polyconic projection was favored long afler theoretically belter projectinong became
known in geodetic civeles.

The Polyconic projeetion must be consuructed with curved meridians and paral-
leis if it is nsed for single-shest maps of aréas with egsi-west exient of several
degrecs. Then, however, the inherent distortion is excessive, and a different
projection should be considered. For aceurate Lopographie work, Lhe coverage
must remain so small that Lhe meridians and parallels may ironically but satisfac-
Lorily be drawn as straight-line segments. Official USGE instructions of 1928
declared Lhat

* % actual practice on projections of small yoadeangies, the parallels are nod drawn az ares of
vireles, but their interseetions with the mevidians are plotted from tho computed - and ¥ values, and
the sections of the parallels between adjacent meridians aes drawn as straight lines. In polveenic
prvjections of guarirangles of B or stnaiier meridians may bedrawn as steaight nes, aod in large-seale
projuctiens of small quadrangles in Lo latitudes both meridians and paralbels may be clrawn as
straight lines, P cxample, the corvatyee of the parallels of a projeetion fa 15" quadrangle on a seale
o LASHN i datitades Grom (7t 307 i5 so small that it can net be plotted, and for g 73 quadrangle una
seale of 1:31,680 or ]arger the curvature ran nut he plotted @ any latitwde (Beaman, 1928, p. 187),

This insiruection is cssentially repeated in the 1964 edition (USGE, 1964, p. 12-13).
The formulas given below are based un ewrved movidians.

FORMULAS FOR TIHLE SPIERE

The principles stated above lead wo the following forward formulas for rectangu-

vl o Feae bl e wina ] i A tla Theluremaai

l'di' ecoordinales for the spherical form of the | MY CTHIC pIv) recLion, usl‘u‘lj'.,-' radians
see p. 303 for numerical examples):
Ifis 0,
&=l —hy) {7i—1)
¥ =Ry (18—-1)
i & 1= nat 0,
E = —hy) sind (18-2)
# =Hoeol dsinE (18-3)
¥ =Rlo—dy + cot d{l-cos £] 18—-4)

where &y is an arbilrary latitude (ftrequently the Equator) chosen for the origin of
the reclanpular coordinates al Ils intersection wilh A, Lhe central meridian. As
with other conics and the Transverse Mercator, the ¥ axis coincides with the
central meridian, y increasing neriherly, and the X axis interseets perpendicu-
larly at ¢w, x increasing easterly. 15 (v —A,) exceeds the range £ 180°, 360° musl be
udded or subiracted (o place it within the range. For the scule factor b along the
meridians (Adums, 1919, p 144 —147):
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b= (1=c0s® & cos EW&In® & cos D) (18—5)

where

D= aretan [(E —sin EMisec® d—cos £)] {I8—&)

If ¢ 15 0, this is indeterminate, but b ia thenr {1+ {A —A.2). In all cages, the scale
factor & along any parallel s 1.0.

The inverse formulas for the sphere are given here in the form of 2 Newton-
Ruphson approximation, which converges to any desired accoracy after several
iterations, except that if 1A — Ay >90°, 4 rarely used range, this iteration does not.

converge, and if y = — Ry, it is indetermingte. In the latter case, however,
¢ =0
A =xiB+hg (7—5}

Otherwise, if § # — Ry, caleulations ére made in this order;

A =y + wR (18-
B =x%RE+ A" {158

Lsing an initial value of ¢, =4, b, is found from equation (13-,

by 1= b, [AlD, tan &, + 1= b, = Veld, " + &) tan &, I
{{d, - A¥tan &,~11 (18—-9}

The new Lrial value of &, is successively substituted in place of &, until 4, , ,
differs from ¢, by less than 4 predetermined convergence limit. Then ¢ =g, | as
finaily determined.

A =[aresin (& tan &Vsin b+ A, (18~1m

If ¢ = 290, equation (18101 is indeterminate, but A may be given any value, such
a3z J\.D.

FORMULAS FOR THE ELLIFSOID

The forward formulas for the ellipsoidal form of the Polyeonie projection are
only a little more complicated than those for the sphere. These formulas are
theoretically exact. They are adapted from formulas given by the Coast and
Greodetic Survey (1946, p. 4) {see p. 304 for numerical examples):

if & is zero:

o = a{h—hig) (7T-86)

7 =-~M 18—-11)
If 4 is not zero:

E =(—Ay)sind {18~Z}

z =N cot b sin K (18-12)

# =M—-M,+N cot ¢ (1-—-coz £ (18— 13}

where

M=ol —e*/4—3e 64— 505256 ~. . |} b (3628 + BeY22 + 45eY 1024
+. .. ) sin 24+ (1544256 + 45e%1024 + | | ) =in 4¢ - (3563072
+...)8n6h+ .. .0 ' {3-21)
N=a/(l-e® sintd)? (4= 20)
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and My is found from equation (3-21) by using &y for & and My for A, with
¢y the latitude of the origin of rectangnlar coordinates at its intersection with
central meridian Ay. See the spherical formulas for the orientation of axes. The
value of (A —hg) must be adjusted by adding or subtracting 3607 if necessary to fall
within the range of x180° For scale factor k along the meridians (k=1.0 along
the parallels):

If ¢ is zero,
b= + Yotk — k(1 —e%) (18—14)
If & iz not zero (Adams, 1919, p. 144-145),
h=[1-£%+2(1-¢% 5in® &) sin® ¥ EAan® (1 —e") cos D) (18—15)
where
D = arctan (E—sin Fy[sed® ¢ ~cos E- ¢ sin® $i1—e® sin® $)]] (1%-18)
M =1-¢%4—3:"64 - 55256 — . . . —2 (38R 4+ 32732 + 45251024
+.. . Y cus 24 +4 (156Y256 + 45651024+ . | L) vos 4 -6
(365 3072+ . dcosBd4 ... . {15-17)

For improved computational efficieney using this series, gee p. 19,

As with the inverse spherical formulas, the tnverse ellipsoide! formulas are
given in a Newton-Raphson form, converging to any desired degree of accuracy
after several iterations. As before, if [h—hy>90°% this iteration does not converge,
but the projection should not be used in that range in any case. The formulas
may be caleulated in the following order, given a, e, &y, kg, @, and y. First
My is caleulated from eguation (3—21) above, as In the forward case, with g
for ¢ and M, for Af.

If = =, the iteration is not applicable, hut

= /a4 by (718}

If g+ ~M,, the caleulation is as followsa:

A = {(My+y)in (18— 18)
B =x¥a®+ A* {18—19)

Using an initial value of ¢, =A, the following caleulations are made:
C ={1—¢" sin® ¢,1"* tan ¢,, (15—20)

Then M, and M, are found from equations (3-21) and (18-17} above, using
b, for &, M, for M, and M, for M. Let M, =M, /a.

Py 1 = b, ~[ACH, + 11— M, - YolM %+ BIC U sin 24, (M5 + B-2AM )
4C + (A-M ) (CM, —2isin 24,)-M ') (18-21)

Each value of &, is sabstitated in place of &, and C, M, M7, and &, | are
recalculated from equations (18- 20), (3—21), (1B—17}, and (18—-21), respectively.
This process is repeated until 4, ; varies from ¢, by less than a predetermined
converpence value. Then & equals the final 4

I
B e

h = |aresin (aCfa)lsin & + Ay (15—-22)
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uging the C caleulated for the last $,, from equation (18200, If = =00°, & is in-
determinate, but may be given any value,

Table 19 lists rectangular coordinates for a band 2° on either side of the central
meridian for the ellipsoid extending from lat. 23° to 50° N. Figure 25 shows the
gratienie appiied to 2 map of North Ameriea.

MODIFIED POLYCONIC FOR THE TNTERNATIONAL MAF OF THE WORLD

A maodified Polyeonie prejection was devised by Lallemand of France and in
1908 adopted by the International Map Committee (IMC) in London as the basis
for the 1:1,000,000-scale Inlernational Map of the World (IMW) series. Uszed for
sheets 6° of longitude by 4° of latitude between lats. 60° N, and 60° 5., 127 of longi-
tude by 4° of latitude between lats. 60°and 76° N, or 8., and 24° by 4* hetweenlats, 76°
and 84° N. or 8., the projection differs from the ordinary Polyeonic in two principal
features: All meridians are straight, and there are two meridians (2° east and west
of the central meridian on sheets between lats. 60° N. & 5.) that are made true to
scale. Between [ats, 60° & 76° N. and £., the meridians 4° east and west are true o
seale, and between 76° & B4°, the true-scale meridians are 8° from the central
meridian (United Nations, 1363, p. 22-23; Lallemand, 1911, p. 553).

The top and bottom parailels of each sheet are nonegneentric eirenlar ares
constructed with radii of N cot &, where N = a1 ~¢® sin® &2, These radii are the
same as the radii on the regular Folyceonie for the ellipsoid, and the ares of these
two parallels are marked off true {0 scale for the straight meridians. The two
parallels, however, are spaced from each other aecording to the true seale along
the two standard meridians, not aceording to the seale along the central meridian,
which is slightly reduced. The approximately 440 mm true length of the central
meridian at the map scale i thereby reduced by 0.270 to 0.078 mumn, depending on
the latitude of the sheet, Other paraliels of lat. ¢ are circular ares with radii ¥ cot
¢, interseeting ihe meridians which are true to scale ai ihe correct poinis. The
parallels strike other meridians at geometrically fixed locations which slightly
deviate from the true scale on metidians a5 well as paraliels.

With this modified Polyconic, as with USGS quadrangles based on Lhe rectified
Polyconie, adjacent sheets exactly fit together not only north to sonth, but cast to
west. There is still 2 gap when mozaicking in all directions, in that there is a gap
between each diagonal sheet and either one or the other adjacent sheet.

In 1962, a U.N. conference on the IMW adopted the Lambert Conformal Conic
and Polar Sterecpraphic projeclions to replace the modified Polyconie {United
Nations, 1968, p. 9—10). The US(S has prepared a number of sheets for the JMW
series over the years according to the projection officially in vse at the time.

FORMULAS FOR THE IMw MODIFIED POLY CONTC

Sinee the projection was designed solely for this series, the formulas below are
based an the ellipseld. They were derived in 1952 (Snyder, 1982b). The foligwing
symbols are used in these formulas:

o = remimajor axia on the given reference ellipsoid

C = distance on the map of latitude & from latitode &,, measured along the
central meridian of longitude A,

{7z = distance onthe map of latitude &y from latitude &,, measured along the
central meridian of longitude h,

€ = pecenirieity of the given reference ellipsoid

M = distance on the eilipsoid along any meridian from the Equator to 4

My = ditko for &,
M, =ditto for ¢,

21
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TakLE 19.~Polveonic Profection: Rectangulsr coordinates for the Clarke 1866 ellipsoid

v roordinatey in phimathenss under x coprdinales. feadie indieaten b

Long. " 1° 70 30
Lat. ¢

L 1 71,696 143,374 215,037

(5,540,628) (5,541,107) {5,642,545) (6,544,941)

OGO} T.O00O6E 1060252 1.0005688

49 1] 73,172 146,331 219,465

(5,429,408) (5,420,8900 (5,431,336} (5,433,745)

1.000000 1.000068 1.000268 1000592

4B oo y 74,628 149,239 223,827

(5,318,209} (5,318,693) {5.320,144) (5,322,564)

1.000003 1000068 1000274 1.000818

4T e 0 76,056 162,100 208,119

(5,207,028} (6,207,514) (6,208,970} 15,211,387

1008000 LO0GGTE LOOD2R, 1060840

46 0 77464 164,915 o 232,342

(5,005,258} {6,085,354) (5,007 814 (5,100,244}

L0000 1000074 1.8 095 10006864

45 s 0 78,847 157,682 236,483

(4,984,727) (4,985,214} (4,986,673) {4,%89,108)

1. 00000 1.000076 LGDOSOS 1.000658

4 e 0 80,207 160,401 240,572

4,873,606} {4,874,092) (4,875,351) {4,877.982)

1000000 1.000078 1.OGOSIE 10040718

30 G B1,541 163,071 244,578

{4,782,505) (4,762,990 {4,764,448) (4,766,372

1000000 1.000082 10088y 1.000788

42 i 82,851 165,691 248,508

{4,651,423) (4,651,907 (4,653,358) (4,600,771

1.006000 100008, 1000358 1.000760

41 o i) 84,136 168,280 262,363

{4.540,361) {4,640,843) (4,542,288} {2,544 696)

1.000000 100008 1.D008LE 1.OGOTES

[ 11 0 85,304 170,778 256,140

(4,425,319) (4,429,793) (4,431,235) (4,433,830

1. M) 1000680 1.000859 1.060868

32 0 26,627 173,243 259,839

(4,318,295) {4,318,772) (4,520,159) (4,322,677)

1.000000 1000052 I1.0008569 1.000851

. J 0 B7,B33 175,656 263,458

{4,207,292) {4,207,764) (4,209,180) (4,211,539)

1,000000 1.060085 1000580 1.000855

3 (] 89,012 178,015 266,997

(4,096 ,308) (4,086,775) {4,098,173) (4,100,516)

L.O0GO0G0) L.000Ge8 1.EKKIS30 1.000878

W 0 80,164 180,319 270,456

(3,985,342) (3,935,800} {3,987,198) {3,989,504)

LOO0O0E EGO0I00 1009450 1.000801



TABLE 18.—Polyconic Projection: Rectanguiar coprdinates fur the Clarke 1866 ellipsoid— Continued

18, FOLYCONIC PROJECTION

Long. »

LA
st

30

2% -

24

2y el

00

(3,874,395)
1.00000¢

0
(3,763,467)
1. GO

0
(3,662,557
]

........

(3,319,533)
LODo0GR

0
(3.209,093)
1000600

0
(3,098,270
1.000050

f

{2,987 463)
1.000005

0
{2.876,672)
1.060006

0
(2,765,896)
1.000000

g
{2,655,136)
1.000000

a
(7.542,390)
1.000006

1° a¢ 3°
91,289 182,568 273,830
(3,874,852 (3,876,223} (3,878,507
1.00010F 1000511 1.000924
92,385 184,762 277,121
{3,763,918) (3,765,270) (3,767,524)
1060105 1.000421 1.000946
93,454 186,399 280,328
(3,653,001) {3.654,333) (3,666,554
1.000108 1.000451 1,000969
94,494 188,980 283 449
{3,542,102) {3,543,413) (3,545,507
2.0600 10 1000440 1000891
95,505 191,002 286,484
(3,431,220 (3,432,507} {3,434,653)
1.000118 1.000450 1.001012
96,487 192,967 289,432
(3,320,354) {3,321,617) (3,328,722)
1.000115 1.600459 1001088
97,440 194,872 292,291
(3.209,506) (3,210,742) (3.212,803)
I.0GAr2T 1000468 1001054
98,363 196,719 295,062
(3,098,673) (3,099,882) (3,101,367
1.000119 1000477 1.001074
59,256 198,505 297,742
(2.987.856) (2.989,036) {2,991,002)
1.000122 1.000486 1.00109;
100,119 200,231 300,332
(2,877,055) (2,878,204) (2,880,119}
[ 006185 1.0005%5 1.001118
160,951 2011,896 302,831
(2,766.269) {2.767,386) (2,769,247
1.000126 1.000568 1.00118¢
101,753 203,500 305,237
(2,655,487) {2,656,580) (2,668,386)
1.000128 1.00051! 1.001150
102,523 205,042 307,561
(2,544,739) {2,545,788) {2,547,536)
1.00018G .00051% 100168

Nate: r, 3 « vectangulur coordinates, meters: arlpgin at =0, A =0 ¥ axis intreasing north,
h = moale fagtar along mertdian.
k .+ agale factor along parallel = 1.4,

& = langitude east of central merdian. For longilurde west of zentral meridian reverse sign of .
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o = radius of circular are for latitude ¢ as shown on map

Ry =ditio for ¢,

Ry, =ditto for ¢,

{z, y) = rectangular coordinates, with the origin at the intersection of ¢, with
Ao, the y axis coinciding with the mericlian of longitude Ay, v increasing
northerly, and the x axis perpendicular, ¢ incressing easterly

N = longitude of any meridian (east longitude is positive)

Ao = longrituede of central meridian

h =longitade of true-to-seale meridian east of the eentral meridian, 2°
more than Ay for most quadrangles

& = any geodetic {or geographic) latitude on the guadrangle map

dy = gepdetie latitude of the northernmost parallel of a given quadrangle
map {horth latitude s positive)

¢, = geodetic latitude. of the southernmost parallel of the quadrangle map

Care must be taken to use radians wherever ahgles are uszed without trigonomet-
rie finetipns.
The following constants apply to the entire map, given &, €, ¢, g, Ay, and

T, =£R,sinF, (18—23)
i =4 (1-cos £) {1824
T2 = Rz [1"{505 f‘z} {18—25)

where 7 = ] and 2, and

R, =& tot d(l—e? sin® ¢,)2 (18— 26)
'Fn. = E‘Aj - :\nj sin ¢'n tig—.d‘?)

with subscripts as requived above, but if ¢, = 0, R, s infinite and equalions
{18—-23) and (13—24) are indeterminate, but 3, = 0, Ty = 0, and

Iy = (hp—hy) {18—23a)

Also for the entire map,

Y2 = [(Mg—m'i}z - [12_11]21"2 T {18—23_)
Co =y — T; {13—-29
P = (M, - M) (My=M,) {18303
Q = (3‘_{2—1(1.3-"(.4’1'2—31{1) (18_31)
£ o= (Maxy— Mz M- M) {18-32)
Qr = (12—1‘1)\3(1‘11'2—11:’1) (18_'33)
where
M, =al{l-¢®4—3e e —5e%256— . ) by

— (3e™B- 3632 + 45651024 + . . | }sin2d,
+ (1564256 +45e%1024 + . . . ) sin ddy,
~ (3h85MBTEL .. Jsinfd, ¢ ... ] {(3-21)
with subscripts as reguired above.
The fellowing values ave caletlated for each point, given & and i; to fnd x and y:

rg =P QM (18—34)
¥ = + QM (18-35)
C =g - B = (RE-2,%° {18—36)



18, POLYCONIC PROJECTHON

where the = takesthe same sipnas 4. If ¢ = 0, equation (1836} is indeterminate,
but ¢ = 0. M and K are found from (3—21) and (18- 26}, respectively, omitting
subseripts #. Then

wy = Rz sin [((A—Ag) sin dy] (18-3T)

¥p =Cu + Byl = 003 {(h=2p) 5in $g]| (18-38)

¥e =Ry ein [{h—A) 5in dy] {18-39

¥, =811 - cosiii—hy} sin &y (18— 40)
but if 4 = 0,

xp =@ (h—hg) (18—-37a)

w =Co (18—3Ra)
orif & =0,

e =alh—hg) (18—39a)

¥, =0 (18 -4035)
Then

D ={mp-xfyp—w:) (18=-41)

R =x,+ DC+R~y.) {12—-42)

x =|B = D{R®(1+D5H-B 1+ DB {18-4%)

y =C + R > (Ri-ghyw (18 -44)

where the = in {18—43) and (18— 44) takes the sign opposite that of ¢. I & = 0, B
and & are mfinite, but

£ o=k (15—45)
y =C (18 —46)

Far the inverse formulas for the LMW Modified Polyconie, given q, &, ¢, &y,
ki, Agy xand g, to find & and A:
Step 1; Constants are caleulated: &y, &, ¥, My, My, 92, Cy, P, §. F', and Q'
from above equations (18—23) throngh (18-33) and (3-21).
Step 2: A first trial (4, &), called {dy,, Ay,) are calculated:

dy, =y (18—47)
Ay, =lxfaeos o)) + Ay (18 —-48)

Step 3: The first test values of (i, i}, called (xy,, 31,), are calenlated from (dy,. Ay ),
using the latter as (b, A) in equations (18—34) through (18—48).

Step 4: Test values (xy, ¥} are used with the given (2, y) to adjust {d,, 1), to

provide second trial values of (e, A

di, = dy,— ) gkl —wad] + & (18—-49)
M, = llag—Agdmlioy | + hp (18-50)

Step 5: Btep 3 is repeated, but using (dy,, M) a8 (D, 3} Lo obtain (zy, ¥ }. Step4d is
then repeated, replacing subseripts (f1, £2) with (42, £3), respectively. Steps 3
and 4 are repeated, changing subscripts, until the final (zg,, yy) vary from
{z, ¥}, respectively, by an acceptable total absolute error, such as ! meter

(00T mm al nan eenlel
(0L mim at nap seale)
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TanLe 20.—Wadified Polyconic projection for LMW,
Rectanguinr coordinales for the Inlerwetione! alfipuaid

Latisude Langitude differerie (b — Ay
¥ =1 ER ol =3
Rectangular coordinates (£, y) meters
40 Q.0 Bo95.9 170781, 1 2561448
AL4REA.1 444308, 8 4437458 4481405
39 0.0 BE5E8.8 1731871 200724.5
FU2BL2.0 52173 A24T43.2 337119.6
3R LX) BT7E1.4 17658627 HERI0E.Y
221RT4 .6 2223459 BEATH. G 226116.49
E1d 0.0 BAUT3.9 TNV 2EGREE. 5
1I0827.4 1113544 112795.5 1151406
b1 0.0 at6s. 1 1802227 2704603
0.0 4625 1850.0 4162.2
Scale lactors (k, &)
A40° {(LGU9Ed1 0430730 1. 000000 1000445
1.000000 1. 00O9000 1. 000000 1. O0EHH
39 (1, 999831 0990723 1. 0000 1000462
(999541 0.999541 D.499540 009540
s {1, HOOEE] 0099715 1000000 1000474
{1 84934 0.9991385 0.965393 O, boag2
a7 0. 889614 0090707 1. 000030 1. 0485
(19499549 0.999549 0.9995489 (.099543
i {1 859599 0. 999659 1. D00 I.000&I1
1006000 1. D0 1. 0000 1.000000
Roctanpular coordinates (=i, y) mekers
r ES » 4 =67
65" 0.0 a6s2.3 1671779 2005480
J4HE6R.T 4472222 4612818 458041.7
67 a0 8T1RR.5 1742470 2012065
B4 B E N TR 336074.0 B4696T_ 8
66 0.4 G0743.7 1813495.1 271862.0
222B983.0 224344.1 228680.49 2U5H04.0
L) LIR] Q2498.3 1885602.3 2HLE1T.5
111434.6 297 1174024 124E30.3
6l 0.0 G7R52.4 195605.5 203172.1
0.0 13:35.1 A138.0 13807.1
Scale faclors [k, &)

G&* 0, 099657 0.959743 1.000000 1.000428
1. (G0 1000000 1. CKIHHN JRLLE T
67 [ERT =T v (1.309720 1. (N0 L OMEE6
(1 3993143 0. 599532 9099531 1. 509528
B (. 8556 (1. 8095497 WL TG L.0005064
(. 9933054 th, 95308 0. 404391 0, SHHIRRT
65 .999564 [ 9O96TS L. INMEMHI0 1000545
0. 899057 0, 995556 0. 9689505 0, 899562
G DLOS8530 0999647 1. ONDORHM 1 58T
1. 0GO00 1. 00 L. OO0 L0060

Note: A, is Jongitude of *he cuntral meridian of quattrangte, Fast being positive.
& i% Tangdti de.
A is seabe factar wlong mospidian.
& i scabe factor along parallel,
Oiriyrine of rectarpmlar coprdinates oorurs 2t minimusa latittde and cemiral cmecidian, g mereasing northerly, =
increasing easterly smd teking the sigh of t —a,)
Tahle applies Lo any guadrangle with tha utne lutitude range.



18, POLYCONIC PROMECTION

{h) Mo A 40°

I T

@, i __i36°

-78° -77° 76" —75° 74" -73° 72

(W.) Long,

Frovre 26.—Typical AW quadrangle graticule—modified Poiyeonie projection drawn to scale. Para-
Itels are nonconecnirie clreubar ares: meridians are stradght, Tines of trae scale are shown heavy,
Standart] projeetion for the Internativnal Map of the World Series (101,000, 00 -scalc until 1962,

Table 20 provides samples of rectangular coordinates caleulated for each degree
of typleal mid-latitude and far-northern quadrangles. In addition, scale factors &
{along the meridian) and k (along the parallel’ are shown for the same graticules,
The seale factors were calenlated by comparing reetangular coordinates 0.01° of
latitude apart at constant longitude with the true distances, for A, and a similar
change in longitnde at eomstant latitude, for k, rather than analytically. The linear
scale error is seen to change less than about 0.06 percent throughout the
quadrangle; Lhe seale factor along any given paraliel is almost constant, while a
piven meridian varies up to (L0153 percent in scale. The table is based on the
International ellipsoid or spheraid, althoupgh the sheletal tables showing rectangular
coordinates of parallels 4, and d; and published in earlier technical papers are
based on an ellipsold with a semimajor axis of 6378.24 km and semitainor axis of
6356.56 km. Figure 24 illustrates a typical praticule,
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19. BONNE PROJECTION
SUMMARY

+ Psendsconical.
o Central meridian is a mrali:ht line. Oth i
o Parallels are concentric cireular ares, but the po!e are points.
» Scale is true along the central meridian and along all parallels,
» Ni distortion along the central meridian and along the standard parallel.
= Used for atlas maps nf continents and for topograpiis mapping of some countries,
» Sthpscldal projection is equatorial imiting form of Bonne projection.
s Used considerably by Bonne in mid-18th eentury, but developed by athers

during the early 16th ventury.

HiNTORY

The name of Rigobert Bonne {1727-1795), a French peogrupher, is almost
unjversally applied to an egqual-area projection which has been used for both
large- and small-scale mapping during the past 450 years. During the late 19th
and early 20th centuries, the most vonspicucus use of the Bonne projection was
ior maps of continents in atlases,

The Dalian Bernardus Sylvanos’ world map of 15311 closely approaches the
Bonne projection, since its meridians are almost equally spaced along the equidiz-
tanl and concentrie eirenlar paraliels. De 'Tsle and Coronelli used the Bonne
principle for maps of about 1700, Bonne used the projection most notably for a
1752 maritime allas of the coust of France (Reignier, 1957, p. 164). Continental
maps of Enrope and Asia appeared on this projeetion by 1763, and the ellipsoidal
version replaced the Cassini projection for French topographie mapping begin-
ning in 15803,

For maps of continents, the Bonne was preceded by it polar litniking form, a
cordiform (heart-sheped) world map devised by Johannes Stabius and given wider
notice by Johannes Werner about 1514. The Werner projection, as it is uspally
called, was used in the late 16th century for maps of Asia and Africa by Mercator
anil Abraham Ortelies, but the “Bomme™ projection has less distortion because its
projeclion center is at the center of the region being mapped instead of at the
pule. Eventually the Werner projection was made obsolete by the Bonne.

FRATURES AND UNAGE

Like the Equidistant Conie with one standard paraliel, the Bonne prajection
(fig. 27) has concentric circular ares for parallels of latitede. They are equally
spaced on the spherical form and spaced in proportion to the true distance along a
meridian on the ellipsoidal form. The chosen standard parallel is given its true
curvature on the map by making the radius of its circular are equal to the distanee:
batween the parallel and the apex of a eone tangent at the parallel.

Unlike the parallels on the Equidistant Conic and other regular conic projections,
but like those on the Pu!_gr romc. cach purallo] is marked off for meridians at the
Lrae bpaumf,‘S on gither the \puCi"“‘&J or LuiﬁSGlua: VEr :aluub w:'gumqu at the
straight central meridian. The individual meridians are then shown as complex
curves connecting these points. This results in an equal-area projection with true
scale along the central mertdian and along cach paraliel, whether spherical or
ellipsoidal. The central meridian and the standard paralle) are free of local angular
and shape distortion as well. The shape distortion merenses away from either
line, and meridians do not intersect parallels at right angles elsewhere, as they do
on regular conic projections.




19. BONKE PROJECTION 139

Flivuk 27, —FBunne projection with central paralbel at 1ab, 40° N, Culled 2 pseudoconic projection, this
iz eyual-area and baz no distortion slovg cendral sicridian or centrul parellel. Popalar in atlases
for maps of centinents until mid-20th century.

The combination of curved meridians and concentrie clreular ares for parallels
has led to the classification of “pseudoconic” for the Bonne projection and for the
podar limiting ease, the Werner projection, oh which the North Pole is the aquiva-
lent of the standurd puraliel, The limiting case with the Equator as the stundard
parallel iz the Sinusoidal, a “pseudocylindrical” projection ta be discussed later;
the formuias must be changed in this casze sinece the parallels of latitude are
steaiphi. Modiftcations to the Bonpe projection, in some cases resulting in non-
equal-area projections, were presented by Nedl of Germany in 1890 and by Solov'ev
of the Soviet Union in the 1940's (Malimg, 1960, p. 2095-296).

Many atlases of the 18th and early 20th centuries utilized the Bonne projection
to show North Ameriea, Europe, Asia, and Australia, while the Sinusoidal (as the
equatortal Bonne) was ased for Bouth Americs and Africa. The Lambert Azi-
ruthal Equal-Area projection is now generally used by Rand McNally & Co. and
Hamrond Tne, for maps of continents, while the National Geographic Soclety
prefers itz own Chambertin Trimetric projection for this prrpose.

Large-seale use of the Bonne projection for topoeraphic mapping, originally
introdueed by France, is current chiefly in portions of France, ireland, Moroeeq,
and some countries in the castern Mediterranean areu (Clifford J. Mugnicr, writ-
len commun., 1985).

FORMULAY FOR THE SWILIERE
The principles stuted above lead to the following forward formulas for rectangu-

lar eoordinates of the spherical form of the Bonne projection, given B, &y, Ay, &,
and A, and using radians it eguation (19-13,
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p =R ol d, +d,— ) {18-1)
E =R (A—hy) (cos dip {19~
r =psin K& (19—
 =Reotdy — pros £ {184

whera &, is the chosen standard parallel. The ¥ axis eoineides with Ay, the central
meridian, ¥ increasing north, and the X axis is perpendiculur at (b, Ay, ¢ Increas-
ing east. If {h—hy) exceeds the range = 180°, 360° must be added or subtracted to
place it within range. If & = 90°, the Werner projection results, but if & is also 907,
equation (19-2} is indeterminate, and r and & are both zero.,

The inverse formulas for the sphere, given B, &, Ay, &, and g, to find (d, »);

p = =[rf (K cot ¢, — xFP3, taking the sign of &, {19-3)
¢ =cot b, + by~ piR {19-6)
A o=hy + plarclan [eAJ? cot &y — 1A cos &) {(19-T71

using the & determined from (19-8), If p = = 90° (19-7} is indeterminate, but A
may be given any value. sich a3 k. When using the Fortran ATAND function
for equation (15—7), and &, is neeative, the sipns of & and (R eot &, —y) must
be reversed before insertion into the equatton.

FORMULAS FOR TiE ELLIPSOID

For the forward formulas, given o, ¢, ;. ko, b, and k, to find r and y, Lhe
following are caleulated in order:

m = cos oAl —ef sin? pp (1415}
M =af(l —e¥a—8464—5eM256— . 3 b
— (3R + 3eM2 ~ d5e™102d + . L ) sin 2
+{15e%256 + 45471024+ . . . ) sin dep

—(35¢530T2 +. . . ) sin Bh+. . ] {3-21)
p o= amyisin gy oM A (19-8)
E sﬂ-?”{h_?‘-ﬁ}’r{) (19"9}
¥ =psin & (18—-10)
¥ =amy/sin by —pcos E (316-11

where ¢, is the chosen central parallel, and m, and 3, zre found from (14—15)
and (3—21), respectively, by using J instead of ¢. Axes are ihe same as those
for the spherical form. If both & and ¢, are at the same pole, equation (19-9)
is indeterminate, but 2 and y are both zero.

Yor the inverse formudas for the ellipscid, glven a, €, dy, kg, £ and ¥, to find
d and &, first #; and M, are calenlated as in the forward case from equations
{14-15} and (321} above. The following are then calculated in order:

p = 1[.r2+{wm1!sin d},—fylg]“‘, taking the sign of &, {19-12)
M =amysin g + M {19--133
W = Ma(l - e%d—3etbd - 5eSr256—. . . )] {T—19)
g, = (1= (A=eSP201 +{1-*P| (2-24)

b = poF(8e2-27e, V82 + . . ) sin 2+ (216,516
=55e, W32+ .. ) sin 4 #1581, 96— | |} sin Bp
+{1097e,*512—. . .} sin Hp . .. (3~ 26)

From (14—15), m is caleulzted for &, then

A= g + plarelanlaarnyisin &y — )i amw) (19—14)

When using the Fortran ATANZ funetion for equalion (19—14), and & is negative,
the signs of £ and {aw /8in ¢; — y) must be reversed before insertion into the
aflation. [fd = =90° (19— 14} i3 indeterminate, but d may be givenany value, such
as Ay



AZIMUTHAL AND RELATED MAP PROJECTIONS
AZIMUTHAIL AND RELATED MAP PROJECTIONS

A third very important proup of map pmjectinns some of which have been

known for 2 000 veare soneicte af fiva maine azimuthel (o 2anithaly neoizetineg
AAEL T ALFL g LPUALF Jc'ﬂl.ﬂ LFILOIgLy UL LIY O Jllﬂ‘,ul CHLLLL A WAl L LFL SNl biaLr PI.UJCLLIUII-:

and various less-common forms. While eylindrical and conie projections are velated
te cylinders and cones wrapped around the globe representing the Earth, the
azimuthal projections are formed onio a plane which is usually tangent to the
globe at either pole, the Equator, or any intermediate point. These variations are
called the polar* equatorla] (or merndxan or mendmnal} and obhquc (or horlzon}

are not. Although per’spectwe cylindrical and conie projections ave much leas used

than those which are not perspestive, the perspestive azimuthals are frequently

used and have valuable properties. Complications arise when the ellipsoid is
involverd, hut it is used only in special applications that are discussed below.

4z stated sarlier, azimuthal projections are characterized hy the fuct that the
direction, or azimuth, from the center of the projection to every other point on the
map is shown correctly. In addition, on the spherical forms, all great circles
passing through the centey of the projection are shown as straight lines. Therefore,
the shortest route from this center to any other point is shown as u straight line.

This fact made some of these projections especially popular for maps as flight and

radlp transmission became commonplace,

The five prinetpal azimuthals are as follows:

1. Orthographic. A true perspective, in which the Earth is projected from an
infinite distance onto a plane. The map looks like a globe, thus stressing the
rounedness of the Farth.

2, Btereographic. A true perspective in the spherical form, with the point of
perspeclive on the surface of the sphere at 2 point exactly opposite the point
of tangency for the plane, or opposite the center of the projection, even if the
plane is secant. Thiz projection is conformal for sphere or ellipsoid, but the
ellipsoidal form is not truly perspective.

3. Gnomonic. A true perspective, with the Earth projected from the center onto
the tangent plane. All grea.t circles, not mercly those passing through the
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4. Lambert Azimuthal Equal-Area. Not a true perspective. Areas are ¢or-
rect, and the overzall seale variation is less than that found on the major
perspective azimuthals,

5. Azimuthal Equidistant, Not a true perspective. Distances from the center
of the projection to any other poiot are shown correctly. Owverall scale varia-
tion is moderate compared to the perspective azimuthals,

A sixth azitnuthal projection of mereasing interest in the space ape is the general
Vertical Perspective (reserabling the Orthopraphic), projecting the Earth from
any point in space, such as a satellite, onto a tangent or secant planl. [t is used
primarily in derivations and pictorial representations.

As a group, lhe azimulhals have unigue esthetic qualities while remaining
functional. There is a unily and roundness of the Earth on each (exeept perhaps
the Gnomonic} which ig not as apparent on eylindrical and conie projections.

The simplest forms of the azimuthal projections are the polar aspects, in which
all meridians are shown as straight lines radiating at their true angles from the
center, while parullels of latitude are cireles, vonecentric about the pole. The
difference is in the spacing of the parallels. Table 21 lists for the five principal
azimuthaly the radius of every 10° of latitude on a sphere of radius 1.0 unit,
centered on the North Pole. Seale factors and maximum angular deformation are
also shown, The distortion is the same for the oblique and equatorial aspacts at
the game anpuiar distance from the center of the projection, execept that b and &
are along and perpendicular to, respectively, radii from the LE]’ItEl', not necegsar-
ily along meridians or parallels.
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TasLk 2l.—Comparison of major azimuthal projections: Rudivs, scale fictors, maximum angufar
divtartion for projection of sphere with radivs 1.0, North Polar gspect

Lat. Orihographic
Radius h & w

90 e __ 000000 1.0000¢
80 e meme. 17385 98481
L 24202 53969
1] N 5 1 1.1, .BB603
B0 e B4279 .T6604
W _ o _— 76604 £4279
3 e ——————— 86603 50000
20 e 93969 34202

1

-1 1-L=1=]
ra
&n
HR
o=

[E Py S S S )

w_ e~ HB481 17365 89,51
RO UPRRRU W 111,111 1 00000 180.0

e — - - —
g - - - .

=3

~ A e [Deyond limits of map) . —
=50 __ _ __ —
-8 e o - . _
- -— - __ .
-80 ___ _— ——- - — — - _—
- - -— __ —
Lat. Stereagiaphic

Radius k*

a0 000000 1.00000
80 e ———— 17498 1.00765
70 - N .35263 1.03109
60 53530 1.07180
B0 e 72794 1.13247
A0 e ———————————— 98262 1.21744
A e m— 115470 1.33333
2 e ——————————— 1.40042 1.4%025
W - 1.6T820 1.70409
O e e ——————— 2.00000 200000
A e e ——————— 2.38351 2.42028
-20 . ] 2. B5A830 %.05951
=0 e e 3.46410 4. (HHHKD
. | 4.28901 5.595891
B | 5.49495% 8.54863
-60___________ e N 746410 14.9282
— P e mmmmmmmmammme mme—mme 11,3426 331624
-8 22.8801 131.648

-] =]

Thers are two pringipal drawbacks to the azimuthals, First, they are more
difficult to construct than the ¢ylindricals and the conics, eXcept for the polar
aspeets. This drawback was more applicable, however, in the days beflore comput.-
ers and plotlers, but it s still more difficult to prepare & map having complex
curves between plotted coordinates thun it is to draw the entire graticule with
circles and straight lines. Nevertheless, an increased use of azimuthal projections
in atlazes and for other published mapz may be expected.

Beeondly, most azimathal maps do not have standard parallels or standard
weridians. Each map has only ong standard point: the center (except for the
Stereographic, which may have a standard circle). Thus, the aximulhals are suit-
able fer minimizing distortien in a somewhat cireular region stich as Antarctics,
but not for an area with predominant length in one direction.
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TavLE 21 —Comparison of maJar azimuthal ,mwemons Kadius, verle r‘se'ters, maximum angular

Aetartinm Fun oasdond s o oo boo oo LY Ny . A SR g F i ——"
GISCOFLION JiH PIUEIeCiiva T Sfhiere with radiis 1.8, North Polar a.b;..reu—\fullu“uml

Lat. Gaomonie
Redius A k "
Y Y | I (1,111 104000 1600400 X
B0 e __ 17833 1.0:3109 1.01543 BT
- 1 .. 1 113247 1.06418 3.563
L+ DTT35 1.33333 1.15470 B.234
L1 R - 44 1.7040% 1.30541 15.23
A0 119175 2.420328 1.55572 25.12
b 1.73205 400000 2.00000 38.94
2 __ 274748 8.54863 2.92380 58.72
. __ B&TIZ2R 343.1634 5.75877 23a.51
O e oo an e -
Lat . Lambert Azimuthal Equal-Area
Al Radius h k w
0.006000 L.00000 100060 0.000°
7431 Ba61e 1.00332 A37
34730 JAE481 1.01543 1.754
S1764 36593 1.03528 3.972
BR404 03969 1.06418 7.123
B4524 80631 1.10338 11.25
1,00000 26603 1.15470 16,42
1.14715 .B1915 1.22007 2271
1.28558 Ta604 1.30641 30.1%
1.41421 Lol 41421 38.04
1.53209 54279 1.55572 49.07
1.63830 573508 1.74346 60.65
173205 50000 200000 7374
1.81262 42262 2.36620 88.56
1.87939 4202 292380 104.5
1.93185 25882 3.86370 1220
1.96962 17365  5.75877  140.6
1.9923% 0876 11.4737 160.1

2.00000 L0000 da 180.0
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Tasrk 21-—Comparison of major azimuthal profections; Radivs, seale factors, maximen angular
distortion 1or profection of sphere with radius 1.8, North Pofar aspect

Lat Azimuthal Equidiatant
as- Radius A k w
0.00004 1.0 1.00000 0.000°
17453 10 100810 251
34907 10 102060 1.168
52360 1.0 1.04720 2.642
59812 1.0 1.08610 4.721
87266 1.0 1.13918 74861
1.04720 1.0 1.20920 10.87
1.22173 1.0 1.30014 15.00
1.39626 1.0 1.41780 19.90
1.57080 1.0 1.57080 2566
1.74633 1.0 1.77225 32.35
1.01986 10 204307 40.09
2.09440 Lo Z2.41840 49.03
2.26853 1.0 2.95188 59.36
2.44346 L0 2.80135 71.39
2.61799 1.0 5.23599 B5.57
2.79253 1.0 £.16480 0z 8
2.96706 1.0 17.0866 125.8
3.14159 i.0 o 180.0

fAoding = mding of ofrcle shoning giver fotitude
w = fuxirm angalar dafornktion.
b acale fartor @long meridian of longituds,
k a segle {actor elong paralle] of tatitude.

* For Stereographic, # = R andw = 0
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20, ORTHOGRAPHIC PROJECTION

SUMMARY

Azimuthal.

All meridians and parallels are elhipses, civeles, or straight lines.

= Neither conformal nor equal-ares.

Closely rezsembles a globe in appearance, since it is a perspective projection
from infinite distance.

« Only one hemisphere can be shown at a timme.

Much distoriion near the edge of the hemisphere shown,

« No distortion at the center only,

+ Directions from the center are true,

+ Radial scale factor decreases as distance incrézses from the center.

= Seale in the direction of the lines of latitude is true in the polar aspect.

» Used chiefly for pictorial views.

= Used only in the spherical form.

= Known by Epyptians and Greeks 2,000 years ago.

HISTORY

To the layman, the best known perspective azimuthal projection is the
Orthographic, although it is the least usefol for measarements. While its distor-
tion in shape and area is quite severe near the edges, and only one hemisphere
may be shown on a single map, the eye is mueh more willing to forgive this
distortion than to forgive that of the Mercator projection because the Orthe-
graphic projection makes the map look very much like a globe appears, especially
in the nblique aspect.

The Egyptians were probably aware of the Orthographic projection, and
Hipparchus of Greeee (2nd century B.C.) used the equalorial aspect for astronomi-
cal caleulations. {ts early name was “analemma,” a name also used by Ptolemy,
but it was replaced by “orthegraphic” in 1613 by Frangois d"Aiguilln of Antwerp.
While it was glso used by Indians and Arabs for astronomical purposes, it is not
known to have been used for worid maps oider than i6th-century works by
Albrechl Diirer (1471—1528), the (German artist and eartographer, who prepared
polar and equatorial versions (Keuning, 1935, p. 6).

FEATURES

The point of perspective for the Orthographic projection is at an infinite distance,
so that the meridians and parallels are projected onte the tangent plane with
projection lines, Al meridians and parallels are zshown as ellipses, cireles, or
straight lines.

As on 21l polar azimuthal projections, the meridians of the polar Orthographic
projection appear as straight lines radiating from the pole at their true angles,
whiie the paraliels of latitude are complete cireles centered about the pole. On the
Orthographic, the parallels are spaced most widely near the pole, and the spacing
decreases to zero at the Equator, which is the cirele marking the edge of the map
(figs. 28, 29A). A= a result, the land shapes near the pole are prominent, while
lands near the Eguator are compressed so that they can hardiy be recognized. [n
spite of the fact that the scale along the meridians varies from the correct value at
the pole to zero at the Equator, the scale along every parallel s true.

The equatorial aspect of the Orthographic projection has as its center some
point on the Barth's Equator, Here, all the parallels of tatitude including the
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Fiuunf 28 —Geometric projeciion of the parallals of the polar Orthographic projection,

Equator are seen edge-on; thus, they appear as straight parallel lines {fig, 298},
The meridians, which are shaped like circles on Lhe sphere, are projected ento the
map at various inclinations to the lines of perspective. The centval meridian, seen
odge-on, is a straight line. The meridian %07 from the eentral meridian is shown as
a circie marking the limit of the equatorial aspect. This circle is eguidistantly
marked with parallels of latitude. Other meridians are ellipses of eccentricities
ranging from zera {the bounding circle) to 1.0 {the central meridian}.

The oblique Orthographic projection, with its center sumewhere between the
Equator and a pole, gives the classic globelike appearance; and in fact an oblique
view, with it center near but not on the Equator or pole, is often preferred to Lhe
equalerial or polar aspect for pictorial purposes, On the oblique Orthographice, the
vnly straight line is the central meridian, if it is actually portrayed, All parallels of
latitude are ellipses with the same eccentricity (fig. 29C). Some of these ellipses
are shown eompletely and some only partially, while some cannet be shown at all.
ATl pther meridians are also ellipses of varying eccentricities. o meridizn appears
a5 a vircle an the obligue aspeet.

The intersection of any given meridian and parallel is shown on an COrtho-
graphie projection at the same distance from the eentral meridian, regardless of
whether the aspect is oblique, pelar, or equatorial, provided the same central
meridian and the same scale are maintained, Scale and distortion, as on all azi-
ruthal projections, change only with the distance [rom the center. The center of
projection has no distertion, but the outer regions are compressed, even though
the scale is true along all civcles drawn about the center. (These circles are not
“stapdard” lines because the scale is true only in the direction followed hy the
line.)

UsAllE

The Orthographic projection seldom appears in atlases, except as a globe in
relief without meridians and parallels. When it does appear, it
view. Richard Edes Harrison has used the Orthegraphic for several maps in an
atlas of the 194(F's partialty based on this projection. Frank Debertham (1958) used
photographed relief globes extensively in The (Flobaf Atlas, and Rand MeNally
has done likewise in their world atlases since 1960, The USGS has used it oceaslon-
ally as a frontispicee or end map (USGE, 1970; Thompson, 1978), but it also
provided a base for definitive maps of voyages of discovery across the North
Atlantic (USGS, 1970, p. 133).

It became especially popular dyring the Second World War when there was
stress on the global nature of the conflict. With some space flights of the 1960's,

nravides g strikine
proviges a4 SLriKing
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—

FluugE 29.—Orthographic projection. (A} Pelar aspect. {#) Exquatorial aspeet, approximately the view of the Moeon,
Mars, and other outer planets as scen from the Earth. (C) Oblique aspect, centered at lal. 40° N, giving the classic

gliobelike view.
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Fiieie 30 —CGeometric gonstruetion of polar, equatorial, and oblique Orthographic projectinns.

the first photorraphs of the Earth from space renewed consciousness of the
Orthographic coneept.

GEOMETRIC CONSTRUCTION

rtharranhic nrmiectinn may be graphically construeted
ngpraphe projection may be graphically consirucien
s technigque s
1o A o ey =
e
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marked at true angles. Perpendiculars are dropped from the intersectioms of the

rnlowe namand writh roamAdinna
gl d3pely, Wiln Memndns

cuater elrele with the meridians nnto the horizontal meridiagn EE. This determines
the radii of the parallels of lutitude, which may then be drawn about the cenler.
For the equatorial aspeet, cirele € is drawn with the same radius as A, cirele B
is drawn like half of circle 4, and Lthe nuter eirele of C is equidistantly marked tn
locale intersectinns of parallels with that cirele. Parallels of latitude are drawn as
straight lines. with the Equator midway. Parallels are shown tilted merely for
use with ablique prajection eirele £2. Points at intersections of parallels with ather
meridians of B are then projected onto the corresponding parallels of latitude on
C. and the new points conneeted {or the meridians of C. By {illing graticule ¢ at
an angle 4 equal 1o the central latitude of the desired oblique aspect, the corre-
sponding points of circles A and C may be projected vertieally and horizentally,
respectively, onto cirele & to provide intersections for meridians and parallels.

FORMINLASL FOR THE SPHERE

To understand the mathematical eoncept of the Orthngraphie projection, it is
helpful to think in terms of polar conrdinates p and &

p =Hsine (20-1)
B =m-Azr=180-Az (20-2)



where ¢ is the angular distance of the given point from the center of projection.

Az js the azimuth east of north, and 9 is the pelar coordinate east of south. The
distance from the center of a point on an Orthographic map projection is thus
proportional tos the sine of the apgular distance from the center on the sphere.
Applying equations (5~3), (5—4}, and {(5—4a) for great circle distance ¢ and azi-
muth Az in terms of laiitude and longitude, and equations for rectangular coordi-
itates in terms of polar coordinates, the equations for rectangular coordinates for
the pblique Orthographic projection reduce Lo the following, miven &, ¢, A, &,
and & (see p. 311 for numerical examples):

& =R cos 4 sin (A—hy) (20—
¥ = Blcosd, sinp—sind, cosdeos(h—ny)]  (20—-4)
i =cos o

= 8in ¢ sin ¢+ cos §y cos 4 cos (A—rg) (20—5)
k"=1.10

where ¢, and i, are the latitude and longitude, respeclively, of the center puint
and origin of the projection, & is the scale factor aloing a line radiating from the
center, and &' 1s the scale facior in a direction perpendicular Lo a line radiating
frorm the cenler. The ¥ axis coincides with the central meridian Ay, 4 increasmg
nurtherly. All the paraltels are ellipses of eccentricity cos 4. The limit of the map
is a circle of radivs K.

For the north polar Orthographic, letting &, = 80°, x is still found from (20—3),
but

¥ = —f cos d ons (A=K {20-9)

o= am & {20—T
In polar coordinates,

p =Rcosd (2083

& =h=h, {20-19)

For the south polar Orthographic, with &, = ~20° x does not change, but

¥ =R cosdocos (h—Xy) (20— 1
A= —5ind (20—-11

For polar coprdinates, p is found from (20— 8), but
B=m—Athg (20— 12)

For the equatorial Orthographic, letting &, =0, x atill does not change from
(20—-3), but

- =R sin ¢ (20—-13)

{n aulomatically computing a general set of coordinates for a complete Ortho-
graphic map, the distance ¢ irom the center shonld be calculated for each intersec-
Lion of latitude and longitude 1o determine whether it exceeds 90° and therefore
whether the point iz beyond the range of Lhe map. More directly, using equation
(5--3),

cof &= Bin 4 5i0 ¢+ cos &, cos d cos (A—Ay) o—3)

#f cos ¢ is 2610 or positive, the point is to be plotted. If cos ¢ is negative, the point
18 not Lo be plotted.

—t
A~}
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For the tnverse formulas for the spheve, to find ¢ and A, given R, &y, Ay,
and

& =arcsin [eos ¢ sin b, + (¥ 5in ¢ cos &,/pd) (20—-14)

Ifp = 0, equations (20— 14) through (20— 17) are indetermingte, but & = ¢, and k =
hy. If by is ot =907,

A=A+ aretan (x in ¢p 005 &y cos ¢—y 5in $; 5ib )] (20-15)
If ¢y is 90°,
h =k, +aretan [z -] (20—186)
If ¢ is —90°,
A=Ag+ arctan (xy) (20-17)

Nole that, while Lhe ratlo [a/(—g)) in (20—16) is numericaliy the same as (24,
the necessary quadrant adjustment is different when using the Fortran ATANE
funetion or its equivalent.

In equations (20—14) and (20— 15),

p o= (x4 (20-18)
¢ = aresin (p/fR) (20—-19

Simplification for mverse equations for the polar and equatorial aspects is obtained
by giving &, values of 90 and 0°, respectively, They are not given in detall here.

Tables 22 and 23 iist reclanguiar coordinates for the equalorial and oblique
aspects, respectively, for a 10° graticule with a sphere of radius B = 1.0. For the
vblique example & = 40°.
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TARLE 22 —0rthographic projection: Bectanpular coordinates for equatorial 2spect

Long. 0® 10° 20° an® 40°
Lat. ¥ z
9 1.0000 0.5000 0.0400 G.0000 0.00G0 0.0000
86 ____ 9848 000 0302 0594 0868 116
M| ____ 9397 0060 G594 1170 AT10 2198
80 ____ .66t GOGD 0368 AT10 2560 A214
By L T66{ G000 11146 2198 3214 A132
40 L. G428 0000 1330 2620 3830 4924
1 .DG00 000 1504 2962 4330 0687
20 - 3420 D090 1632 3214 4898 5040
16 ___ 17328 0000 AT1E 3368 4924 £330
LR R 0000 AT736 3420 5060 5428
Long. 50° " 60° 70° 80° 30°
Lat. z
90 ___ 0,600 G.0000 0.0000 0.0300 0.0600
G ____ 1330 1504 1632 1710 1736
L 2620 2962 3214 2368 G420
60 ____ A830 4330 4698 4924 S000
S0 ____ A924 5567 6040 6330 6428
40 ____ 5868 6634 7158 TE4d .Te60
30 . 6624 506 4138 2524 2660
0. 1198 8138 A820 9254 9397
) 31— 71844 8529 85254 9693 08438
9 - 7660 866G 9397 D848 1.8609

Radius of sphere = L0
Origin: {z, y) — Qe Jat., long.) — O ¥ axia jneveages nerb. Other quadeant of hemisphere wee aymmetrical.
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TABLE 23.—Orthagraphie profection: Rectangwsr coordinates for obligue aspect centered at Jal,
N

MTe arcle borrding the hemizphets map has the seme coonlineies g BRe s =W irele an the vmlery] Orthagraphic peajeedion
The radius af the yphere= Ly susrdingte in parestheses ender x ceordinage)

Long. 0° 10° 29° 30° 40°
Lat.

90° . 0.0000 0.0000 0.0000 0.0000 0.0000
( 7660) { 76601 ({ .7660) { 7860) { .7660)
80 G000 0302 0594 0868 1116
( 6428) ( £445) { .6495) { 6571 { .6689)
T . 0000 0594 1170 1710 2198
( 5000) { 5033) { 5133) { .5205) { .551d)
B0 oo 0000 0868 1710 2500 3214
(32200 ( 3469)  ( .3614) ( 2851 ( A7
B0 mmmmmmmemm Q000 1118 2148 2214 4132
{ 1736) ¢ .[799) { .I19BB) ( 2290} { .2703)
0 D000 1330 2620 3830 1924
{ 0000) ( 0075) { .0297) ( 0660} { .1152)
80 . 0000 1504 2062 4330 B567
(-1736)  {-.1852)  {-.1401) (-.0991} (—.0434)
20 e __._ 0000 1632 3214 4698 8040
(-.3420) (- .3328) (-.3056) (-.2611)  {-.2007)
W 0000 U710 3368 4924 6330
(-.5000y (- 4904y (-.4618) (-.d4158} {-.3519)
0 e DODO 1736 3420 5000 5428
(-.6428) (- 6230) (-.6040) (- .5567)  (-.4924)
10 e 0000 1710 3368 4924 6330
(- 7660}  (-.7564) (-.7279)  (-.6B12}  {- 6179
w20 e 0000 1632 3214 4698 5040
(-.8680) (- .B568)  (-.8208) (- .7BS1}  (-.72d
-3 1504 2962 4330 5567
(-.9397) (- 82312} (-.9061} (-.8651}  (-.8095)
Y i 1330 2620 3830 4924
(-9848) (- 9773  (-.9551} (- 8188}  (-.8696)
Y 7' 1 . - — -
{-1.0000) - _ - _

Qrigin: [z, y) - 0at (Il long. } = (40°, G)_ ¥ wxis increases notth, Coordinates shawn for centrai meridian (d = 01 And
mwridinny caat of peneral meridian. Foar meridizns weat faegutive], reverse sipms of meridians and of =

% 100° 110° 120° 130° 140°
Lat.

90° o ——— 0.0000 0.0000 0.0040 0.0000 0.0000
{ 7660y ( .76BOY  ( .T660) ( .7660)  { .7660)
g0 _____ 1710 1632 1004 1330 116
{ 7738} { 1926} { .B102) [ .8262) { .8399)
N e e 3368 3214 2952 2820 2198
{ .7580) ( 7950 i 8268 ¢ KRI1ZY ( .BBED
8 A%24 4698 4330 .3830 3214
{7198y ( TTAn o Bzd4ly  ( BT0O)  { .9096)
B0 el 6330 E40 506T 4924 4132
( .6586) { VZ81} { .7934) [ .B524) { .9033)
a0 7544 LT108 6hH34 5B68 o
( .5779) ( 6608y { .7386) ( .8089) -
30 el 2520 B138 - __ -
{ 4797) { .B734} _— — -
b L 9254 — _— . .
{ 3660 - - - -
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Tavlk &3.—Orthagrraphie projection: Rectungulsr coordinates for oblfgue sspect centered at lat,
407 M~ ~Continged

ﬂ T e 60° 70° 80° 90°
Lat.

90 _ 0.0000 0.0000 0.0000 0.0000 0.0000
{7660y ( 7660)  ( .Te60)  ( .7660}  ( .7860)
B0 e 1330 1504 -1632 4710 1736
( BS2TY ( 6986} ( 7162} [ 13Oy ( 7544)
W e 2620 2962 A214 .3368 3420
( BT8G5} ( 6099} ( 6447) ({ 68IT) ( .7198)
60 o _ 830 4330 4598 4924 5000
{ 4568) ( 5027 { 5535) { 8078 { .6634)
50 o e 4924 5567 5040 6330 6428
(32127  { 38020 ¢ 4455} ( 5151) { .5868)
0 5868 6634 .T198 1544 TR0
( 1759) ( .2462) { 3240) [ 4069) { 4924)
80 ___._____  G8ad 7500 138 8529 8660
¢ 03520 ( .1047)  { .1928) ( 2864) { .3830)
20 e 7198 B138 8830 5254 9397
(-.1263)  (-.0400) ( .0354) ( 1571} ( .2620)
10 e 7544 8529 9254 8698 9848
(-.2739)  (-.1835) (-.0835 ( 6231 ( .1330)
D e TBEO 8660 2397 5848 1.0000
(-4137)  (-.3214) (- .2198) (-.1118} { 0000
10 . 7544 8529 0254 8693 -
{-.5399) {- 4495} (- .3495) (- 2429 -
20 e 7108 8138 8830 - -
(- 6503y  {-.5640) (- .4686) - -
30 ... 6634 7500 — - =

(- .7408)  {-.6B14) - - =

~ay e - - - —_ -

Long. 1507 160° 170° 180°

Lat.

80" T p00bo 0.0000 0.0000 0.0000
(76603 (.T660) ¢ 7660)  ( .7A60)

8 B8R 0094 202 G
( 8511)  ( .®893)  ( 8643) [ .B68M)

MW oo 1710 1170 0594 060D
{ 8102}  ( 9264) ( .93B4)  ( .9397)

B0 oo 2500 1710 0868 0000
{ 9417) ¢ 9854y [ .9799) [ .D848)

o0 . 3214 2198 1118 LELLI]
( 9446)  ( 9751)  ( .8937)  (L.0000)

A — - - —
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21. STEREQGRAPHIC PROJECTION

SUMMARY

+» Azimuthal.

« Conformal.

+ The central meridian and a particular parallel (f zhewn) are straipht lines.

= All meridians on the polar aspect and the Equator on the equatorial aspect ave
straight mes,

» All other meridians and parallels are shown as ares of cireles.

» A perspective projection for the sphere.

+» Directions from the center of the projection are true (except on ellipsoidal
obligue and equatorial aspects).

» Scale increases away (rom the center of the projection.

+ Point opposite the center of the prejection cannot be plotted.

» Used for polar maps and miscellaneous speeial maps.

s Apparenlly invented by Hipparchus (Bnd century B.C.)L

HISTORY

The Stereographic projection was probably known in its polar form to the
Egvptians, while Hipparchus was apparcatly the Grst Greek to use it. He iz
generally considered its mvenlor. Ptolemy referred to it as "Planisphaerum,” a
narne wsed into the 16th century. The name “Steveographic” was assigned to it by
Frangois & Aigoillem in 1613, The polar Stereographic was exclusively used for
star maps until perhaps 1507, when the carliest-known use for a map of the world
was made by Walther Ludd (Gaultier Lud) of 8t, Dig, Lorraine.

The oblique aspect was usad by Theon of Alexandriz in the fourth century for
maps of the sky, but it was not propored for geographical maps until Stabiys and
Werner discussed it together with their cordiform theart-shaped) projections in
the carly 16th eentury, The earlisst-known world maps were included in a 1583
atlas by Jacques de Vaulx {e. 1555-97). The two hemispheres were centered o
Paris and its opposite point, respectively,

The equatorial Starcographic originated with the Arabs, and was used by the
Arab astronomer Ibn-el-Zarkali (102987} of Toledo for an astrolabe. It became a
basis for world maps in the garly 16th century, with the earliest-known examples
by Jean Roze {ur Rotz), a Norman, in 1542, After Rumold {the son of Gerardus)
Mercator's use of the equatorial Stereographic for the world maps of the atlas of
1595, it became very popular among cartographers {(Keunmg, 1855, p. 7-9;
MNordenskiild, 1888, p. 90, 92934,

FEATURES

Like the Orthopraphic, the Sterecgraphic projection is a true perspective W its
spherical form, Itis the only known true perspective projection of any Kind that is
alsa cenformal. [ts point of projection is on the surface of the sphere at a point just
opposite the point of tangeney of the plane or the center point of the projection
(fig. 313, Thus, if the North Pole is the center of the map, the projection js from
the South Poie. ARl of one hemisphere can be comfortably shown, but it s impossi-
bie to shaw both hemispheres in their entirety from one center. The point on the
sphere opposite the center of the map projects at an infinite distance in the plane
of the map.
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Frutre 31 —Geometric projection of the peler Stereugraphic yrajection.

The polar aspect somewhat resembles othor polar azimuthals, with straight
radialing meridians and coneentrie circles for parallels (fig. 324). The parallels
are spaced at increasingly wide distances, the farther the latitude is from the pole
(the Orthographie has the opposile features).

In the equatorial and obligoe aspects, the distinetive appearanes of the Stereo-
praphic becomes more evident: Ali meridians and parallels, except far two, are
shown as eircles, and the meridians intersect the parallels at right angles (figs.
328, . The ventral meridian is shown straight, as is the parsllel of the same
numerical value, but apposite in sign to the central parallel. For example, if lat.
40° M. is the centre] parailel, then lat, 407 &, iz shown as a straight line, For the
equatorial aspect with lat. 0° &s the central parallel, the Equpator, which is of
course also {ts own negative ecounterpart. is shown straight. (For the polar aspect,
this has no meaning since the oppesite pole cannot be shown. ) Cirdes for paraliels
are centered along the central meridian; circles for meridians are centered along

the straight paralls,l The meridian 80° from the central meridian on the equatorial

asneet is shown as a oirele bounding the hamisphere, Thiz cirele is centered on the
aFpee anawn InGIng Lhe hamisp weenteren on the

projection center and is equidistantly ma.rked for paraliels of latitude.

As an azimuthal projection, directions {from the center are shown correctly in
the spherical form. In the ellipsoidad form, only the polur agpect is bruly azimuthal,
hut it is not perspective, in order to retain conformality. The oblique and equate-
rial agpecta of the ellipssidal Stereographic, in order to be conformal, are neither
avimuthal nor perspective. As with other arimuathal projectiona, there iz no distor.
tign at the center, which may be made the “standard point” true to scale in all
directions. Becavse of the conformality of the projection, a Stereographic map
may be given, instead of a “standard paint,” a “standard cirele” (or “standard
parallel” in the polar aspect) with an appropriate radius from the eenter, balane-
ing the scale error throughout the map. (On the elipsoidal oblique or equatorial
aspects, the lines of constant scale are not perfeet civeles.} This cannot be done
with non-conformal agiathal projections. The Stereographic may also be modi-
fied to produce ovel and irregular lines of true scale (see p. 203).

USAGE
The oblique aspect of the Stereographic projection has been recently used in

the spherical form by the [F8GS for civeular maps of portions of the Moon, Mars,
and Mercury, generally centered on 4 basin, The USGS is currently using the

[}

=
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arcaz of Earth, Moon, and the plancts, since it i3 confrmal. (489 Figatenal aspect; often wsed in the 16th

FIGURR $2 —Stereographie brojectivt, (A) Polar aspect: the most common seicntific projeetion for prlar
and 17tk conturies for maps of hemisphere

() Onlique aspect; centered on lat, 407 N The Steren

.

graphic iz the only geemetric projection of the sphere which 15 conformel,
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spherical oblique aspect 1o prepare 1:10,000,000-scale maps of Hydracarbon Prov-
inees for three cuntinents after a least-squares analysis of over 100 points on each
continent to determine optimum parameters for a common conformal projection.
For Burope, the central scale factor is 0,976 at a central peint of lat. 55°M. and
long. 20°K. For Africa, these parameters are 0.941, 5° ., and 20* . For Asia, they
are 0.849, 45° N, and 105" E. | respectively.

The USGS has st often used the Sterevgraphic in the polar aspect and
ellipsvidal furm for maps of Antarctica. For 1:500,(HK sketeh maps, the standard
parailel is 71° 5. ; for its 1:250,000-3cale series between H° and the South Pole, the
standard parallel is 80°14° 5. The Universal Transverse Mercator (UTH} erid
employs the UPS (IJniversal Polar Stereographic) projection from the North Pole
tolat, 84° N., and from the South Pole to lat. 80° 5. For the UPS, the seale at each
pole is reduved to 0.994, resulting in a standard parallel of 81°06°52,3" N. or 5.
The UFS central meridian (48 defined for A, on p. % ) is the Greenwich meridian,
with false eastmgs and northings of 2,000,000 m at each pole.

in 1962, a United Nations conference changed the polar portion of the Interna-
tional Map of the World (at a scale of 1:1,000,000) from a modified Polyeonic to the
polar Stereographic, This has consequently affected IMW sheets drawn by the
LSGH. North of lat. 84° N, or seuth of lat. 807 5., it is used “with scale matching
that of the Modified Polyconic Projection or the Lambert Conformal Conie Projec-
tion at Latitudes B4° N, and 80° 5.” {(United Nativns, 1963, p. 10). The reference
ellipsoid for ali these polar Stereographic projections is the International of 1924,

The Astrogeoiogy Center of the Geological Survey at Flagstaff, Arkz., has been
using the polar Stereographic {or the mapping of polar areas of every planet and
satellite for which there is sufficient information in this reglon (see table G).

...........
American Geographical Society map of the Arctic at a scale of 1:5,000,000. Drawn
to the Stereographic projection, the map i3 based on a sphere having a radius
which gives it the same volume as the International ellipsoid, and lat. 71° M. is
made the standard parallel.

FORMULAS FOR THE SPLIERF

Mathematically, a point at a given anpular distance (rom the chosen center
point on the sphere is plotted on the Sterevgraphic projection at a distanee from
the center proportional to the trigonometric tangent of half that angular distance,
and at its true azimuth, or, if the central scale factor is 1

p=2K tan ¥ ¢ {Z21-1)
f=m-Az=180"-Az (20-2)
k=sec Wor : {21 -1a}

where ¢ is the angular distance from the center, Az is the azimulh east of north
{see equations (5-3) through (5~ 4k}, and 0 is the polar coordinate east of south.
Combining with standard equations, the formulas for rectangular coordinates of
the oblique Stereographic projection are found to be as follows, given R, &, &,,
Ay &, and k (see p. 312 for numerical examples):

& = Kk cos & sin (h—&p 21-2)

Y = Bl {eos &y sin d—5in &) cos ¢ cos (A —A,)] t21-3;
wherg

L= 2 1w the win & bane & nne oo (3 — 30000 o1 Ay

o S L o L oML T ALAD Q] LU RS A weaad T Ry

and id . ) are the latitude and lung‘itu

9. A AT LIS AallLUOC Al

de of the center, which is alke |
Since this is a confurmal projection, & is the scale faclor in all direclions, based on

£ cgmileln, willch i g

1@ Origin,

157



158

MAP PROJECTIONS—A WORKING MANUAL

TakLf 84— Stereographic projection: Rectangular coordinates for equatorial aspect (sphere)

[One hemisphene; p enontinate in panenibeaes prder x crardinatef

. a° 19 20° a0* 497
Lat. ™
90" 0.000)0 0.00:000 G.00000 4,000 0LROGT0
(2.00000}  {2.00000) {2.00000) (2.00000)  (2.0000}
B 000 05150 0212 15095 9703
(L67820)  (L68198) (1.69331) (1.71214)  (1.72837)
{1 NS | | 111 .0BBRG AT706 26386 24341
(1.40042} [1.40686)  (1.4Z227) (1.44992)  (1.48521)
60 o RLLi[EY) 11633 23269 34892 46477
(L.154700 ({1.16058) (1.17839)  (1.20868)  (1.26237)
52 | R | 14114} 13670 27412 41292 .85371
{ 23262y  { 93B1DYy  { OBBIG} { 98421} (1.02853%
0 - B0 16164 20468 46052 52062
( 72794) | I3271) ( 74749) ( 77285)  ( 81016)
B0 o 00000 16233 32661 49437 564931
[ .535%0% (63970 ( .55133) ( .57143} { .6011l7)
0 RLLINH 16950 34136 51508 .T0241
( 35265) ( 3552T) ( 26327) ( 37713) ( .39773)
w0000 17263 24987 53150 12164
{ .17498) { 17621} { .18037) { 18744y | 19796)
| N ||| 1111, 17498 .35265 52590 12734
( 00000y {00000y  { O0WKD}  ( L0Q00D)  ( .000G00)

a central scale factor of ky, normally 1.6, but which may be reduced. The ¥ axis

coineides with the central meridian hy, ¥ increasing northerly and x, easterly.
If &=~y and & = he= 180°% the point cannst be plotted. Geometrically, it is the

point from which projection takes place.
For the north polar Steresgraphic, with ¢, =907, these simplify to

x =20 ky tan (A —2) sin (A —Ap)
= —2R kg tan (w4 -2 cos (M-
k= 2ky/(1 +5in &)

p= 2K k, tan {m/d—d/2)
B=A—hy

For the south polar Stercographic with &, = ~90°,

x =28 &y tan (ar/d + $72) sin (h—hy)
¥ = B ko tan (mi4+ b2) cos (A= Ay

k = 2o/ 1~sin ¢)

[ = 2R ku tan (/4 +'¢FJ'2)

B=m—h+hn
v T v ARG

For the equatorial aspect, letting &y =0, v is found from (21-Z2), but

y=REksind

k=2 kil +cos b cos (A~Ng)]

(21-5)
(21-6)
(21-7)
(21-8)
(20~9)

(21-9)
(@1-10)
@1-11)
(21-12)
(20-12)

{21-13)
(21-14)

For the inverse formulas for the sphere, given B, kg, &y, Ay, %, and 3

$=aresin [cos ¢ sin &, + (¥ sin ¢ cos & /pl]

(20--14)
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TaRLE 24, —Steresgraphic projection: Rectangular eoordinates fur equatorfal aspect (sphere}—Caon
tinted
Long. 50° 80° 70° 80° 90°
Lat.
Wt 000000 0.00000 0.00000 000000 0.00000
(2.00000) (2000000  (2.00000)  (2.00000) (200000
B0 - 23033 27674 S0B06 33201 34730
(L37184)  (1.81227)  (1.B5920) (1.91196)  (1.36362)
(I |3 Y 50588 27647 63588 58404
{1.54067)  (1.50493)  {L.6B256)  (1.77402) {1.3739)
L RN - - ) 59222 20246 90613 100000
(1.31078)  (i.38564)  (L.47911) (1.59368)  {1.73205)
B0 e HO6R8 B4255 99033 1.13892 1.28558
{1.068415} (1.15844) (1.25587y  (1.3782B)  {1.53209)
@w -TR641 85537 1.14080 1.33167 1.58209
( 86141 ( 92954)  {1.01868)  ({1.13464) {1.2BGO8)
0 e BR2IG 1.04675 1.25567 148275 1.73205
{ 842400 ( BOTRRY  ( TTI4S)  ( .86928)  {1.00000)
20 o BIT55 1.10732 1.33650 1.69119 1.87939
{ 42645} ( 46538) [ .5176Ty ( .5B808) ( .6B404)
w o 823% 1.14285 1.38450 1.65643 1.95562
( 21267 ( .23271)  ( .2B9T9)  ( .296BB) { 34TID)

O e 93262 1.15470 1.40042 LBTE0 2.00000
{ O0DOOY  { .0OCOD) (0000 { 00000)  { .0DO0D)

..........................

E N
RALES 5

2]
Qrigin. i, 1 =0 al (lL., Tong. b= . ¥ zxie increases north, Other quadrants of hemisphere are symmetrical.

of emhava= 10
ephapa=1.0.

if p=0, equations (20— 14] through (20—17) are indeterminate, but & =d, and
A= iy
If ¢, is not =907

A=k, +arctan [x sin of(p cos &) cos e—y sin ¢y sin ¢} (2015}
If by is NP
h=n,+arctan [/ —y)] (20-16)
If by is —90%
h=h,d arctan (a'y) (20-17)

In equations (20— 143 and (20—-15),

p= (2t +ythe (20—18)
¢ =2 apctan [pA2Rk,)) (Bl1—-13)

The similarity of formulas for Orthopraphic, Stereopraphic, and other azimuth-
als may be noted. The equations for &' {k for the Stereographie, &= 1.0 for the
Orthegraphic) and the inverse ¢ are the only diflferences in forward or inverse
formulas for the sphere. The fortnulas are repeated for convenience, unless shown
only a few lines earlier.

Table 24 lists rectangular ceordinates for the equatorial aspeet for a 10° grati-
cule with a sphere of radius £ =1.0.

Following are equations for the eenters and radii of the o

< [+
meritlians and parallels of the oblique Steresgraphic in the spherical fortn:
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Cirveles for meridians:

Centers: w== -8R kyffeos ¢y tan (h—ag)] (21—16G)
Y= —ER &y, tan &, {21173
Radii: p =28 kyleos &y sin (- 2,0 (21~18)
Cireles for parallels of latitude:
Centers. a=10
g =8R Kk, cos diAsin by +sin §) (21149}
Radii: p = 2R kg cos d/(sin &, +sin ¢ (21—-20)

Reduction to the polar and squatorial aspects may be made by letting &, = 2% or
0°, respectively.

To use a "standard eircle” for the spherteal Stereographic projection, such that
the scale error is a minimum (based on least squares) over the apparent area of
the map, the cirele has an angular distance ¢ feom the center, where

¢ = 2 arecos (102 {21-213
E = tan® (3/2¥(~1n cos® (2] } [21-223

and §§ is the great cirele distance of the eircular limit of the regon being mapped
stereographically. The calenlation is only slightly different if minimum error is
based on the true area of the map:

k= —In eos® (B/2)sin? (R/2) (21-28)
In either case, ¢ of the standard cirele is approximately ﬁfﬁ
FORMULAS FOR THE ELUISOID

As npted above, the ellipsoidal forms of the Stercopraphic projection are
nonperspective, in vrder to preserve conformality. The oblique and equatorial
aspects are also slightly nonazimuthal for the same reason. The formulas result
from replacing geodetic latitude & in the spherical equations with conformal lati-
Lde x {see equation (213, followed by a small adjustment to the scale at the
center of projection (Thomag, 1952, p. 14-13, 128-13%). The general forward
formulas for the oblique aspect are as follows; given a, e, ky, &y, &y, B, and A {see
P 318 for numerical examples):

£ =A cog x sin (A Ay} (21— 243
= A [cos y; sin x—sin x) cos y o5 (A—Ay] (2125}
k= A cos y/Aem) (2125}

where

A= 2o kpmdieos x, [148in g siny

+¢05 x; €05 x 05 (A—Aglh (21-27)
x = 2 arctan ian (mid + &2H{1~ ¢ sin W1+ e sin $1]FY
—m/2 13-

l+sindyf1l—esin g\ '™
= 2 arctan - w2 1.
or [(1 —sin ¢)(1 + e &in ¢):| (3= Ta)

nt = cos O/ ~e? sin® {14-15)
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and y, and o, are x and m, respectively, ealeulated using &, the central latitude,
in place of &, while &, is the scale factor at the center {normally 1.0). The crigin of
@ and y enordinates oecurs at the center {4y, &), the ¥ axis coineiding with the
central meridian A, and y increasing northerly and z, easterly. The scale factor is
actually k, alonw a near-circle passing through the origin, except for polar and
equatorial aspects, where it occurs only at the central point. The radius of this
near-circle is almost (4% at midlatitudes, and its centeris along the central meridian,
approaching the Equator fram ¢ The scale factor at the center of the cirele is
within 0.00001 leas than k.

In the equatorial aspect, with the substitution of ¢y = 0 (therefore x, = 0}, xis
still found from (21— 24) and & From (21— 26), but

y=Asiny (21-28)
A=2aky[1 + cos x cos (A—hp)] (21— 28)

For the north polar aspect, substitution of ¢, = 90° (thereforey; = 90%Yinto equa-
Lions (21-27) and {14-15) leads to an indeterminate A. Tv avaeid this problem,
the polar equations may take the form

& =pain (A—Ay (21-30)
Y=~ peos (h-Ayl (21-31)
k = pila m) (d1=32)
where
p =& aky (1 +eht-r (1-p-alz (21-33)
P = tan (w4 = d2)[(1- esind)i{]l + esingd) -z {156—u}
(1~sin¢ l+esind y« |2
or - 1+ sin d ) ( 1—e sin & ) {15~9a)

Fquation (21 —33) applies only if true seale or known scale factor &, is to oceur at
the pole. For true scale along the circle representing latitude &,

p o= am, i1, (21-34)
Then the scale at the pole is

kp = (L2 my, (L5 o) ees (T—g)t-ae2fig 1) (21-35}
In equations (21-34} and (21-35), m, and f. are found from egquations (1415}
and (15—}, respectively, substituting &, in place of ¢,

For the south polar aspect, the eguations for the north polar aspect may be
uzed, but the signs of @, ¥, &y, &, &, and A, must be reversed to be used in the
eguations.

For the inverse formulos for the ellipsoid, the obligue and equatorial aspecls
{where ¢, i not =90°) may be solved as (ollows, given a, e, iy, &y, ko, =, and y:

& = 2 aretan ltan (w4 + 2L + & sin &3] -8 sin bl
~ w2 (34}
A= Ap+arctan [x sin ¢ flp ¢os ¥, cos ¢~y sin ¥, sin cgl] {(#1-3%)

where

¥ = arcsin leos o, sin x, + (¥ sin ¢ cos x/p)] (21-37)

161
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but. if p=10, x=x, and A=k,

p = (=% + gt 20-18)
¢, = 2 arctan |p cos ¥, /(2 e k; m2,)] {21-3%)

and »ty is found from equation (14— 15) above, using &, in place of ¢. Equation
(3—4) involves iteration, using y as the first trial & in the right-hand side, solving
for a new trial & on the left side, substituting into the right side, ete., untij ¢
changes by less than & preset convergence (such as 10-¢ radians}. Confortnal lati-
tude x; is found from (3-1), using &, fur &. The feetor ¢, is not the true angular
distance, as it i8 in the spherical case, but it is a cohvenient expression similar in
nature to ¢, used to find ¢ and A,
Tu avoid the iteration of (3—4), this series may be used instead;

b o= x + (€2 + Be*24 4 12 + 136360 + L) sin 2
+ (Te'i48 & 294940 + B11eM11520 + . . . 3
sin dy + (7180 + 8150120 =~ . L)
sin By + (4279¢%161280 + .. I sin By + . .. (3-5)

For improved computationg] efficiency using this series, see p. 19.
The inverse equations for the north pelar eliipsoidal Stereographic are as fol-
lows; given a, e, b, kg (if &, = 907, Ay, x, and ¥;

&= w2 -2 arctan H(1~2 sin &1 + e sin $Ije2 7-9
A=k, + arctan [z{—)) (20— 16)

Equation (7-9) for ¢ also involves iteration. For the first trial, {(7/2—2 arctan )
is substituted for & in the right side, and the procedure for solving equation (3—4)
just ghove is followed:

If &, (the latitude of true scale) is 90°,

t = pl(L+ekt=n (1 —gp-211248a ky) (21—

If ¢ is not H0°,
t = pigla my (21—40)

In either caze,
p o= (224 gPne (20—1%)

and 1. and . are found from equations (15-9) and (14— 13), res
with the forward equations, using ¢, in place of ¢ Seale factor
eouation (BT —2681 nr (91 =2 abyive Tore 1he A Tiond B avrnuatioe
equation (21-26) or (21-332) above, for the & found from equation (3

or (7-~9), depending on the aspect.
To aveid iteration, series (3—5) above may be used in place of {T-9), where

x = w2—2arctan t (7-18)

Inverse equations for the sunth polar aspect are the sane as these for the north
polar aspect, but the signs of @, ¥, Ay, b, @&, 2nd A must be reversed.

Polar coordinates for the ellipsoidal form of the polar Stereographic are given in
table 25, using the International ellipscid and 4 centra] seale Tactor of 1.0,

Tu convert eoordinates measured on an existing Stereopraphic map {or other
azimothal map projection), the user may choose any meridian for A on the polar
aspect, but enly the original meridian and parallel may be used for A, and ¢,, re-
spectively, on other uspects,
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TABLE 25.— EMipsoidal polar Stereographic projection: Polar coardinates

lintemnaiionsl ¢llipacid; eeniral male foclor © 104

Latitude Radius, metars k, arcale factor
0.0 1000000
111,702.7 1000076
223,421.7 1000305
336,173.4 1.0H0686
446,974.1 1001219
258,840.1 1001906
G70,788.1 1.002746
T82,234.8 1.003741
8940054 1.004839
1,007,287.9 1.006193
1,119,728.7 1.0076583
79 1,232/334.4 1.009270
T8 e 1,345,122.0 1.011046
i 1.468,108.4 1.012979
™ 1571 3104 1.018072
T e m———————— 1.684,746.8 1.017328
L 1,798,433.4 1.019746
it T 1,912 3688.4 1.022329
T e ———————————— 2,026,629.5 1.025077
i 2,141,174.8 1.027993
L 2,256,042.3 1.031G78
69 _______ . _ I 2,371,250.5 1.034335
68 __ — e 2,486, 818.0 1.037765
B e e — e ——————————— 2,602,763.6 1.041370
66 __ 2, 719,106.4 1.045154
B e e 2,885,365.3 1.049117
ed_.__ — 2,953,061.4 1.053264
B 3.070),713.2 1057595
B e ——— 3,188,841.4 1.062115
el e 3,307 466.7 1.066326
B 3,426 609.9 1071732




164

MAP PROJECTIONS—A WORKING MANUAL

22 GNOMONIC PROJECTHIN

SUMMARY

« Azimuthal and perspective,

» All meridians and the Fquator are straight lines.

o All parallels except the Equator and poles are ellipses, pavabolas, or
hyperbolas.

« Neither confmmal nor equal-ares.

All grest circles are shown as straight lines,

s Less than one hemisphere may be shown around a given center,

No distortion at the center only.

Distortion and seale rapidly increase away from the center.

Directions ftom the center are Lrue,

s Used only in the spherieal form.

= Known by Greeks 2,{ii{} years ago.

HISTOEY

The Gnomenic is the perspective projection of the globe from the center onto a
plane tangent to the surface. [t was used by Thales (6367 —5467B.C.) of Miletus
for star maps. Called “horologium” (sundial or clock) in early times, it was given
the name “gnomonic” in the 1%th century. It has also been culled the Gnomic and
the Central projeetion. The name Gnomonie is devived from the fact that the
meridians radiate from the pole (or are spaced, on the equatorial aspect) Just as
the corresponding hour markings on a sundial for the same central latitude. The
gnormon of the sundial is the elevated straightedge pointed toward the pole and
casting ity shadow on the various hour markings as the sun moves across the sky.

FEATLKES AND VSALE

The outstanding (and only useful) feature of the Gnomonic projection results
from the fact thal each great-cirele arc, the shortest distance between any twn
points on the surface of a sphere, lies in a plane passing through the center of
the globe. Therefore, all greuat-cirele ares project as straight lines on this projec-
tion. The scale is badly distorted aiong such a plotted preat circle, but the rounte
iy precisze for the sphere,

Because the projection is from the center of the globe (fig, 33), it is impossible
to show even a full hemisphere with the Gnomunic, Thus, i either pole is the
point of tangency and center {the polar aspect), the Equator cannol be shown.
Exeept at the center, the distortion of shape, srea, and scale on the Gnomonic
projection is so preat that it has seldom been used for atlas maps. Historigal
exceplions are several sets of star mape from the late 18th century and terrestrial
maps of 1803, These maps were plotted with the sphere projected onto the six
faces of u tangent cube. The globe has also been projected from the mid-16th to

H. Pola Plana of propetian

Eguatar

Frevke 33 —Geometrie projection of the parallels of the polar Gromotic projection.



Z, GNOMONIC PROJECTLION

the mid-20th centuries, using the (Gnomonic projection as well as others, ontn the
faces of other polyvhedra, Generally, the projection is used for piotting great-
circle palhs, although the USGS has not used the projection for published maps,

The meridians of the polar Gnomonie projection appear straight, as on other
polar azimuthal projections, and parallets of latitude are cireles eentered about the
pole {fig. 344} The parallels are closest near the pole, and their spacings increase
away from the pole much more rapidly than they do on the polar Stereographie,
The radil are proportional to the trignnometric tangent of the arce distance from
the pole.

On the equatorial aspect, meridians are straight parallel lines perpendieniar to
the Equater, which is also straight {fig. 348). The meridians are closest near the
central meridian, and the spacing is rapidly inereased away from it, the distance
from center in proportion to the tangent of the difference in longitude. The
parallels other than the Equator are all hyperholic ares, symmetrical about the
Eguator.

Since meridians are great-circle paths, they are aiso plotied straight on the
ohligue aspect of the Gnomonie, but they intersect at the pole (fig. 34C). They
are not spaced at equal angies. The Equator is a steaight line perpendictlar Lo the
central meridian. If the central latitude is north of the Eguator, it colatitude (90°
minus the latitude) iz shown as 2 parabelie are, more northern lalitudes ave
eliipses, and more southern latitudes are hyperbolas. If the central Iatitude is
south of the Equator, opposite zigns apply.

Various graphical constructions have been published, but they are not de-
seribed here beesuse of the ease of plotiing or ealvukating coordinates by vom-
pater, and because they do not add significantly to the understanding of Lhis
projection.

FORMULAS FOR THE SPHEKE

A point at & ghven anpolar distanes from the chosen center point on the spherse
is plotted on the Gnomonic projection at a distance firom the center proportional
to the trigonometric tangent of that angular distance, and at its true azimuth, or

p =Rtane (22—1}
B o—w—dz = 18P~ Az {80-2)
ko= leos® ¢ {22~}
k' = llcos ¢ {22-3)

where o s the angular distance of the given point from the center of projection.
Az i3 the azimuth east of north, and 8 is the polar coordinate east of south. The
term L' is the scale factor in a direction perpendicalar to Lthe radius from the cen-
ter of the map, not along the parallel except on the polar aspect. The seale factor
R" is messured in the divection of the radius. Combining with standard equalions,
the formulas for rectangular coordinates of the oblique Gnomenic projection are
as follows, given R, &, Ay, &, and A, to find z and ¥ (see p. 319 for numerical
exarmles):

x = k' cos & sin (A —Aq) (22-4)
¥ = BE [cosdysin d—sing, cosdoos(A—i,)] (220}

where &' is (ound from (22— 3) above,
cos ¢ = sin 4, sin & + €os by 008 ¢ cos (A} 5-3)

and (&, Ayd are latitude and longitude of the projection center and origin, The ¥
axis coineides with the central meridian Ay, ¥ increasing northerly. The meridians
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Fropre 3, —Gnomonie projection, range S0° from center. [4) Polar aspect. (8) Kquatorial aspeet. (7
Ohligue aspeet, centored at byt 46° N All great-cirele paths are straight lines on these maps.



are straight lnes, but the parallels are eonic seetions for which the eccentricity =
(05 dyfzin ¢, (If the eccentricity is zero, for &, = = 80°, Lthey are circles. If the
eccentricity is less than 1, they are ellipses; if equal ta 1, a parabola; if preater
than 1, a hyperbalic arc.)
For the north polar Gnomeonic, ictting &, = %i°,
x = £ eot & sin (h—hy) (22—98)
y = —H cot g cos (A=)} (22T}
In polar coordinates,
p =Kueotd (228}
For the south polar Gnomonic, with &, = —80°,
£ = —I cot & sin (h—hg) (22 —10%
y = ocot g ooos (h—hagy) (22-113
In polar coordinates,
p = =R cot ¢ (22~12)
B =m— X+ Ay (22-13)
Far the equatorial Gnomonie, letting ¢, = 0,
a =R tan (A —kg) (22 —14)
¥ =R tan $leos h—hg) {22—15})

In automatically computing a general set of coordinates for a Gnomonic map,
equation (5-3) above should be used to reject points equal to or greater than
HY from the center. That is, if cos e is zero or nerative, the point is Lo be rejected.
If cos ¢ is positive, it may or may not be plotted depending on the desired limits
of the map.

For the inverse formulas for the spherve, to find & and &, given K, &y, hy, &, and @

& = arrsin [eos £ sin + {usin ¢ oos b o] {20141
@ Allen e ok Rt Vi S RS [ TS
f
T o= mriratinme N1 1A% thooruas o (P 1T awn bmedaramenivmota it A4 — 4 e
il p=0, equations {ZU— L4) througn (JU- 19 are lnuetarminaie, bul =4, ana
- =
A=ng If by ig not £ 906°,

A = hg + arctan [x sin ofip cos ¢, cos £ — y 8in &, sin o)) (20—15)
If &, is 90°,

ho= N+ oarctan (23] (20-16)
If ¢ 18 — 507,
h = Ap + arctan (x7 (20--17)
In equations (20-14) and (20-15),
poo={xf o+ o (20-18)
¢ =arctan (pR) (22— 186)

Table 26 lists rectangular coordinates for the equatorial aspect fora 10° gratienle
with a sphere of radius R=1.0.

et

=
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TanLy 25 —Fuomonic projection: Rectanglar covrdinctes fir equalorial aspect
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Origint 4ry) = 0 al it tong) = 0. F axis inereasea nurth. Other guadrants of hemisphere are aymmetrical. 20th
e ridiay or poie ¢anngt be shown.



3. GENFERAL FPERSPECTIVE PROJECTION

SUMMARY

« Often used to show the Earth or pther planets and satellites as seen from space.

» Orthopraphie, Stereggraphic, and Gnomonis projections are speaial forms of
the Vertiesl Perspective.

Yerticul Parspactive projections are azimuthal; Tilted Perspectives are not.

Centtai meridian and a particular parallel (if shown) are straight lines.

Other meridians and parailels are usually ares of circles or ellipses, bot 2ome
may be parabolag or hyperbolas.

Neither conformal (unless Slereographic) nor equai-area.

If the point of perspective is above the sphere or ellipsoid, less Lthan one hemi-
sphere may be shown, unless the view is from infinity (Orthegraphic). [f
below center of globe or beyond the far surface, more than one hemisphere
may be shown.

+ No distortion at the center if 4 Vertical Perspective is projected onto a tangent

plane. Considerable distortion near the projection limit.

+ Diractions from the center are true on the Vertical Perspective for the sphere

and for the polar ellipsoidal form.

+ Known by Greeks and Egyptians 2,000 years ago in limiting forms.

HISTORY AN 1I5AGE

Whenever the Earth is photographed from space, the camera records the view
a5 a perspeclive projection. If the camera precisely faces the center of the Earth,

the projection is Vertical Perspective. Otherwige, a Tilted Perepective projection
is vbtained. Perspective views have alzo served other puirposes.

With the complicution of piotling eoordinates for general perspective projec-
tions, there was little known intarest in them unti! the 18th century, excent for
the wall-known special cases of the Orthographic, Stereographic, and Gnomonie
projections, which are pergpective from infinity, the gpposite surface, and the
center of the sphere, respectively.

In J701, the French mathematician Philippe De la Hire (1840 - 1718) found that,
if the point of perspective is placed 1.71 times the radius of the globe from the
venter in a direction opposite that of the plane of projection, the Equator on the
polar Vertical Perspective projection has exactly twice the radins of the 45th
parallel. The other parallels are not quite proporticnally spaced, but this repre-
sented a use of geotnetric projection to achicve low distortion. SBeveral other
scientists, such as Anloine Parent in 1702 and varipus mathematicians of the late
19th century, extended this appreach to obtain low-distortion projections which
meel other criteria.

Of special interest was British geodesist A T Clarke's use of least squares to
obtain in 1862 the Vertical Perspective projection with minimum error for the
portion of the Earth bounded by g given spherical eircle. He determined purama-
ters for severa! continenta] areas, and he also presanted the “Twilight” projection,
with a bounding eirele 108 from the center and centered to show mach of the lund
mass of the Earth in one map. All these low- and minimum-error perspective
projections were based on “far-side” points of perspective, and they were pro-
jected onto a secant plane to reduce gverall error (Close and Clarke, 1911, p.
635—666; Snyder, 1385a).

Space exploration beginning in 1957 led to a renewed interest in the perspective
projection, although Richard Edes Harrison had used several perspective views
in a World War 11 atlas of 1944, Now the concern was for the pictorial view from
gpace, not for minimal distortion. Albert L. Nowickt of the U.8. Army Map Serv-
ice presented the AMS Lunar Projection, which is & far-side Vertical Perspee-

St
=]
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FIGURE 40 —Geommiric projection of the parabiels of the polar Perspective projections, YVertical and
Thited, Distapee of point of perspective from centor of Farth may be vagpied, as may the angle of
filt. For "far-side” projection, “puint of perspective” would be shown below Equatar and wsually
belww Seuth Pole an this drawing.

itive based on a perspective center ghout 1.54 {imes the radius from the center,
to show somewhat more than one hemisphere of the Moon. This recognized the
fact that more than half the Moon is seen from the Earth over a pertod of time.
Nowicki called this a “modified Stereographic” projection (Nowicki, 1962), This
name has been applied elsewhere to *“far-side” Vertical Perspectives, none of
which are conformal; it is applied later in this book to complex-algebra modifica-
tions of the Stereographic which are conformal but not perspective,

The Tilted Perspactive projection is more complicated to compute, but since it
has been the projection used in effect for most space photographs, such as those
from the manned Gemini and Apolio space missions, it hag been analyzed in recent
literature.

Weather maps ssued by the U8, National Wealher Serviee have regajarly
been based on a Vertical Perspective projection as seen from geosynchronous
satellites near the Equatoriai plane and 42,000 km from the Earth's center, The
USGS has not used the Perspective projection to date for published maps.

FEATLUERES

The gencral Ferspective projection (excepting the three commoen forms} should
be considered primarily as a basis for a view of the Earth from space. The various
historical studies described above and leading (o low-eyror azimuthal projections

) P B, R P . P

have little practical value, since nonperspective azimuthal projections, like the
Azimuthal Equidistant, may be used instead.

Tt is therefore of little interest to compute distortion at various locations on the
map. There iz no distortion at the center of projection with the Vertical Perspec-
tive onto a tangent plane (Bgs. 35 and 36), but there is shape, area, and seale
distortion almost everywhere else on perspective maps (except that the Stereo-
graphic {s conformal). The rapidity with which distortion increases varies with the
location of the point of perspective and with the tilt of the planc to the line con-
necting this point with the center of the Barth (figs. 35 and 37). For the Yertical
Perspective, this plane is perpendicular to this line,
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s surface. (R

arth
Earth's surface. (73 Obligue

pect, from 2,000 km above the E

quatorisl aspect, from geosynchronons satellite, 35800 km above the

Flunke 36 —Vertical Perspeetive projection. (41 Pokar as
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azpecl, centered at lat. 40° N, from 2,000 km above the Eqrths surfams.
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Fisrre 37.—Tilted Perspective projection. Eastern sealmard viewwed from a peint about 160 km
above Newbureh, N. Y. Parameters wiing symbals in text: iy, = $1730° N lat, &, = T4 00" W,
lamgr., w = 58°% v = 210% P = 1.025, 17 graticule.

While the equations listed below are generally suitable for “far-side™ Perspec-
live projections {from below the surface), using negative distances to the points
of perspective, the features ure deseribed for “near-side” Perspectives. For many
perspective maps, one parzlie] of latitude is shown ag 2 straight line {on the equa-
torial Orthographic agpeet, all are straight). Its logation s cormputed from formu-
las given below. The central meridian it also stratght, a3 are all meridians on
vertical polar aspects. Parallels of latitude on vertical polar aspeets are concen-
trie cireles. Nearly all other meridians and parallels are elliptical arcs, except that
certain angies of tilt may cause some meridians and parallels te be shown ag pa-

rabolas or hyperboiss.



2. GENERAL PRREFECTIVE PROJECTION

The horizon or fimit of the map is cutlined by one of the conic sections, depend-
ing on the angle of tilt and the location of the point of peyspective. For the sphere,
if there is no tilt, the outline is a circle. 1t is an elipse, parabola, or hyperbola if
the cosine of the tilt angle is greater than, equal to, or less than, respectively, the
radius of the sphere divided by the distance from its center to the point of
perspective.

For pictorial and small-scale usage, the spherical equations are adequate. For
special large-scale applications, such as Landsal returned-beam-vidicon (RBV)
and Space Shuttle Large-Format-Camera images and photographs, the ellipsoidal
equations are necesgary. The formulas are given below for several possible
alternatives.

FORMLLAS FOR THE SPHERF

VYEwrical. FResPRrTive PROESTION

A point at a given angular distanee ¢ from the center, and at an azimuth Az east
of north is plotted in acecordance with the following polar coordinates (8 is moeas-
ured east of south):

p =R{F-1)sin c{F—cos ) (23-1)
0 =xn— dz = 180" — A=z (20—
R ={P-1) (P cos ¢~ DA F -cos ¢ (23—
B ={P-1XI"—cos ¢) {22—-3

P is the distance of the point of perspective from the center of the Earth, divided
by the radius # of the Earth as a sphere. It is positive in the direction of the cen-
ter of the projection (for the “view from space™) and negative in the apposite direc-
tion {for a lar-side perspective such as those by Clarke and Nowicki (above), or
the Stereogrraphie, for which P = --1). In terms of the height H of the noint of
perspective above the surface, P = 7R + 1, or H = R{F—1). The term k" is the
seale factor in & directiom perpendicular to the radius from the center of the map,
not along Lhe parailel, except in the polar aspecl. The seale faclor k' is measured
m the direction of the radius.

Combining with standard equations, the formulas for rectangular coordinates
of the obligue Vertical Perspective projection are as follows, given K, P. ty, Ay &,
and i, to find x and ¥ (see p. 320 for numerical examples):

w = Rk cosdosin {h—h,) 224
¥ =Rk Teos b sin & — sin &) cos b cos (A—n,)] (22~

where &' is found from (253—3) abave,

cos ¢ = 5in gy i d + cos by cos & ocos (h—Ag) (5—3

and (v, Ay) are latitude and Jongitude of the projection center and origin. The ¥
axis coineides with the central meridian X,  increasing northerly. The map limit
15 a cirele of radius RI(E -1 + 13 "=, Meridians and paraliels are genevally ellipti-
cal arcs, but the central meridian and the latitude whose sine equals £ sin & are
straight lines. For automatie plotting, equation {5=3} should be ysed to reject
poinls fur which cos ¢ is less than 1P, These are beyond the range of the map,
regardless of whether P is positive or negative.

Because of the number of other equations below, the simplified equations lor
polar and equatoral aspects are not given here. They may be obtained by enter-
mg the appropriste values of &, in equaticns (22—4), {(22-5), and (53— 3). Table 27
shows rectangular coordingtes for a hemisphere as seen from a gessynchronous
satellite,
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TABLE 27 —Vertteal Perspective projection . Reclangular coordinates
Jor equaforial aspect from geosynclnnons satellite
Iy cnordutite in pArenthese under ¥ coardinatel

Tshye. i 10" =) 0t 40 e ik T I
Lat,
a0 {1, 0000 10,0263 0.0517 — — — — — —_

{ .RL86) { .8582) [ 8572} — — — _ _ _
T0 00 0331 14 0.1520 0.1943 0.2301 0.2551 — —

{ .8412) { .5405) { .BRE3) { 8351 ( .B306) { .8251) { B8 — -—
6 LT 0738 L1563 (3271 2896 3418 3820 0, 40834 -—

{.T953) {.7943) [ .T914} { . TABT) { .TRO4} (.772T) {764 { _T547) —
50 0000 1048 L2054 2979 37489 458 A98T 5304 —

{ .T208) {7191} { .T156) ¢TI0 { -T0Z6H) [ 6036} { .6833) { .B727) —
40 LOGOR 1275 L2406 a6ld 4587 L3382 L5078 BiAGY —

{ 61T [ .6159) { .G123) { .606H) ( .59ES) ¢ L5895} L5702 { .A6R2) —
an 0000 145 (2EGT 4146 5252 A145 AR13 32 —

¢ ARA4) { .4R72) (4840} £ 478T) £ ATITS {4634 {4543 £ .4444) —
20 0G0 (1610 3145 4548 5753 AT725 LTAR6 7879 08055

( .3384) ( .3375) { .3350) £ A51D) { 3250 £ _A195) t.3125) { .3052) { .297T)
i LOG00 1701 3324 AT9E 6055 LT0R2 7822 B277 Ba52

(.1733 {.1727 { 1714} { 1692 { 16643 {1640} ¢ 1593 { _1558) ( .1513)
0 GO0 732 EEhL g 1T L7203 7953 B3I JEBSRE

{ 000 [ ELITIIU)] (. OHy {00003 { .00M: { 0B00) [ 0000 { .OQ{JU) { 0B00

Radius of sphere = 10. Radiug of hounding cirele = 0.H328 Point of perupeclive s P = 662 radii from ¢enfar (36, 800 km ghove Earth's surface), See fig, 368
Chriggam: [z, y} — danglat, bong ) = 0. F axis increases nopreh. Gther quadrenta of hemisphine sre symmetrical. Tushea indiogte invigible graticale interaections, Pyles

and Sth meridiena are glag invigihle.



23. iFNFERAL PRERSPECTIVE PROJECTION

For the inverse formadas for the Vertical Perspective projection of the sphere,
piven B, P, 4, hy, =, and 4, to find ¢ and A

$ = aresin |cos € sin &, + (¥ 5t ¢ cos dypll {20—14»

If p=0, equations (20— 14} through (2017 are indeterminate, but =&, and

A= .L.(;. :
A o= X, + arclan {x 8in cfip cos &; C0S £— Y SiD 4y S0 )] {20—15)

It cyuations (20~ 14) and (20-15),

po= (et +,,y2)i.'? (20— 18;
¢ = aresio [|P—(1—p%F + DARYNEP - 102Y
{RIF—1)p +pi{ R - 10| (23—4)

In (234, if P is negative and p is greater than (P —-1VP, ¢ must be subtrcted
from 1807 tu place iL in the proper quadrant.

TILTED PELSPECTIVE PRIRCTION

The following equations are used b conjunction with the equations above for
the Vertieal Perspective. While they may be combined, it is easier to tollow and
more practical to propram separately these equaations to follow (for forward) or
precede (for inverse) those above. For the forward equations, given B, F, &y, ka,
w, ¥, &, and k, (x,} is first caleulated from equations (5~ 3), (23--3), {(22-4), and
(28 -5} in nrder, then

x ={reusy ~ ysiny) cos wd (24— 5}

#e = eosy + xsin yHA (23-6)
where

A =iy cosy + x sin y) sin wH| + coz w (23-7)

i =R{P-1 (238

v 15 the azimuth east of nerth of the ¥ axis, the mest upward-tilted axis of the
plane of projection relative to the 1angent plane, and w is the upward angle of tilt,
of the angle between the Y, axis and the tangent plane. The X, axis lies at the
intersection of the tangent and tilted planes. The rectangular coordinates (xy, )

o ithe tifed nlane urrth Fhe avioae af b 3o tand the ¥oavie arjiented at seimnth
AT REE LR LALL R l.!lﬂ.}-'\.', AL LER J.blll L LALAY . AP il LIAG 8 I’GALG AFE IS EILTE (AL LR bl

+ ruther than due north (see fig. 38).

Hestaled in terms of a camera in space, the camera is paced at a distance RP
from the center of ithe Earth, perpendicularly over point {¢,, Ayl The camers is
horizontally turned tao face y elockwise from north, and then tilted {90%— w) down-
ward from horizental, "horizontal” meaning parallel to a plane tangent Lo the
sphere at {¢,, ko). The photopraph is then taken, placing points (4, k} in positiens
(%, i), based on a scale reduction in &, The straight meridian and parallel of the
Vertical Perspective are also straight on the Tilted form.

if' the tilted plane is perpendicular to the line eonnecting the point of perspec-
tive and the horjzon, w = aresin {1/FP), Pomis for which cos ¢ {eguation (3—30 is
less than {3/0*) ave bevond the map limils, as on the Vertieal Perspeclive, but the
map limit is now a conie seetion of eccentricity equal to sin w/(1— 1/F2P2, This lmit,
may be plotted by inserting the (x99 comdinates of the cirele representing the
Yertical Perspeotive raap Jmmit into equalions (23=-3) theough (23-7) fur final
plotting coordinates (&, ¢, after stating the original equations for the cirele in
parameiric form,

175



176

MAP PEOJECTIONS—A WORKING MANUAL

7 # % axis

k Yertical plane
pian

\X and )\'r

axes

Tilted plane

Fiavge 8. —Coordinate system for Tilted Perspective projection, The nocth {N} arrow lies in the
vertical plane for the cguatorizl or oblique aspect. See figure 25 for projuction of points onto
these planes,

o= R{I-UAD 5 sin 6 (23—-9)
y =RIP-DAP+1)I""cos 8 (23103

in which 6 is given successive values from 0° to 360°.

For the inverse equations for the Tilted Pevspective projection of the sphere,
given £, £, &), hy, w, ¥, 2 and y,, first /f is calewlated from (23--8), and (r, ) are
caloulaied from these equations:

M = He(H -y sin w) (23-11
& = Hyy cos ol —y, sin w) (23-12)
x =M eosy + @siny (23-1I%)
¥ =@ cosy— Mginvy (23—14)

Then these values of () are inserted in equations (20— 14) through (20— 18) and
{28--4) for Ihversing the Vertical Perspective, to obtain (d, X).

It is alsp possible to use projective constants £, - K, for the sphere as well as
the ellipsoid in equations below, but this iz not often done for the sphere, If de-
sired, the formulas below may be uged for the sphere if the eccentricity is made
zero,

FORMULAS FOR THE ELLIPSOID

VERTHIAL PRAEFFCTIVE PROTECTION

Because of the increased number of equations, they are given in the order of
use. Given a, ¢, P, &, Mg Ay, ¢, h, and A, to find x and y {Fo¥ numerical
examples see p. 323 )
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N = al{1—¢® sin® ¢y'? {4 -2
Ny =all-¢* sin? ¢, )" (8—23
=[{N+ k)a] cos b {23-15)

= |IN{1-£%) + h];a,| sin & (23-16)

= ¢ — arcsin [N,;e’ sin &y cos &,8Pa) 23-1n
.‘f Py eos dofeos $y ~ Ny — Ay 23-18)
= HAP cos (b —d,) — S sin &; — € cos &y cos (A=Al (2318

x =KC sin {A—Ny) (23 -19a)
¥ = KL sin (¢1—¢y) + Scos &y - Csin &, cos (A—xpl (23 -20

where £ = the distance of the point of perspective from the center of the Earth,
divided by o, the semimajor axis.

H = the height of the point of perspective in a direction perpendicnlar to the
surface of the ellipsatd at nadir point. (d,, A} but measored from the height iy of
the nadir above the ellipsoid, not above sea fevel.

&, = the geocentrie fatitude of the point of perspective, measured as the angle
between the direct line {rom the center to this point, and the equatorial piane, not
as the peocentric latitude carresponding to .

= the height of (b, M) above the ellipsoid. The use of k makes these formulas
tore general, but for most plotting of grattenies it would be zero,

If I is given rather than 7, the latter may be computed as follows:

= {eos ¢ fcos d)s,) H+ N, +Rpio (23—21)

Since &y is caleulated from P in eguatiom (23— 17}, iteralion is invoived, with &,
a5 the first trial value of &, The commenis foliowing the forward forranias for the
sphere apply appraximately here. The straight parallel is the latitude ¢ whose
sine equals FPa sin d:s,f[N{l—ezj+hj, if kit a constant, such 25 zero. This iz an
iterative ealeulation with successive substitution of ¢, starting with &, as a trial,
The central meridian Ay is also stragght.

For the J")‘J‘.l'gf'@.r? formating frn- the Vartinal F.oru)wgglyg

soid, given a, €, P $1, Ao, hﬂ. h, =, and g, to f'md b, A
Equations (24— 17) and {23- 18) are used to compute d} and H for (23—21) 10
compute £ if [f is given), then

wirigatinmn of the oflltir.
Mechon of e enlip

S

B =P eos (§)-dy) (23—-22)
b= qu {¢1 ¢=} (23-23)
L =1-¢° cos ¢'1 (2324
G =1-¢® sin® &y (23 -25)
J = 2 sin &, cos ¢, (23-26)
w = — 2BLH - 2DGy + BJy + DHJ (23-27)
# =LH? & Gy — Hiy + {1-¢%? {23 -28)

If k iz zero, & = 1in the next cquation (23-29), 1f & is not zero, use a first trial
E =1

Then,
L ms by} — E (- {2 ~20)
K o=1—u + (3 4w}”]a'2|! {2330
X =al{B~-HIK') cos &y — (/K" - D) sin ¢ (23-31)
VY = oxiK' (23—-32)
S = (WK —D)oos ¢ + (B—HK') sin ¢, (23 -3
ho=ky + arclan (¥/AD (23-34)

If k iz not zero, & may be initially estimated at aresin § to calculate a trial ¢ from
eguation {23—35) and then E from (23-36). Equations {23-29) through (23 -386)

¥l
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are ierated using the latest values of &, £, and A (based on the height above the
ellipsoid at the trial 4, &) until ¢ changes by a negligible amount.

¢ = arcsin 's*ml 1 —e® win® ¢)'ﬂ + hia (2335}
E =[11-e?sin® &2 + hial® — ¢ sin® ¢ 1401 —¢° sin® ) — A%a®—-a%e) (23-36)

If % is zern, no iteration or previous cstimate for ¢ is necessary, and ¢ may be
found us follows:

¢ = arctan 18/(1—¢?) (1—¢"— S5l (28~37)
TITED FERRPECTIVE PROMECTION WSty “CAMERA™ PARAMETERS

Given a, €, I', &, Ay Ay w, ¥, &, h, and A, to find 2, and y,, first (z, y) are
calculated from (23— 15) through (23—20), then (a;, 4,) from (23—35) throngh (23— 7},
but (23— 8) is not used. Definitions following each of Lhese sets of formulas apply,
bui the limits (horizons) of the map do not precisely follow the spherical formulas
gwen The ellipsoidal form is unnecessarily cumphca.ted ta extend to the map
II"II[.':! Ill dﬂ_y CasE.

Forthe corresponding inverse formuday, given a, o, P, &y, Ay, g, w, v, F, i, and
. to find & and x, fivst (z, ¥) are ealeulated using (23— 11) throuygh (23—-14), then
{d, &) are caleulated from (23—-17), (23—-18), and (23— 22) Lhrough {23-27).

TinTRp PERSPFECTIVE FEOMECTON LI=1NG PRIECTIVE EQLATmNs

When a photograph or other plane image is obtained from space, prgjective
equations with 11 constants may be used to find the rectanpular coordinates of
any pomt of known latitude, longitude, and height above the ellipsoid, in the plane
of the image, instead of divectly using the orientation of the camera or sensor. The

4 dimenyional rectanonlar canrdinates of a noint on or off the Eavth's surface can

dimensional vectang sordinates of a point on ff the Eay face
be found from Lhe fUIIon ing equations, taking the semimajor axis « of the Earth
as 1.0;

X =Cecos X {2338}
¥ =( sin (23-33
Z=5 (23—~ 40}

where € and § are found from equations (23— 151 and (23— 16) respectively, the X
and ¥ axis lie in the Earth’s equatortal plane, with the X axis Intersecting the
prime meridian (3 = 0), and the Z axis coincides with the Ewarth's polar axis. The
valuesof X, ¥, and Z increase from the ovigin as the center ofthe Earth toward x =
0, » = 90°, and the North Pole, respectively, but they are dimensionless in the
ahove egualions.

The projective equations are as follows,

¥y =K Y EY + KpZ ¢ KON X YKV + KZ+ 1) (23--41)
¥, = (KX + KoV + Ko+ K MK + KoY + KoZ + 1) (23-42)

where (x,', ) are coordinales in the tiked plane, bul relative to any pair of
pelpendjculm axes and any (}r;g'm, rather than those of (@, ¥,) as deseribed
following (22~ 8). Constanis in the denominaters are dimensionless, bul theose in
the numerators are in the same units as {=,, ¥,').

The 11 constants K, may be determined either from psints on the “space

phalograph™ or from the parameters of the “camera " Although least squares and
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other corrections are used in determining these constants in analytical photogram-
metry for highest precision, the approach given here is confimed to the use of
measurements which are assumed io the precise. The reader is referred to other
texts for the least-squares approach,

To determine K, — Ky, from six widely spaced identifled points on the image,
cquations (23—41) and (23-42) may be transpesed as fellows:

XK, + YK, » 2Ky + Ky — o/ XK~/ YEs-1/ 0Ky
+ DKg ~ 0Ky + 0Kyp + 0Ky = @ (23-48)

0K, + 0K, + 0Ky + 0Ky — w/XKo=u' YKo 3t 2Kn
-+ Kg + YKq + ZK“g T Ku = yg' (23—d4)

Using a separate pair of these two equations for each of the six points, and omitting
one of the twelve equations, the eguations are suitable for solution as eleven
simultaneons equations with eleven unknowns (K, —K,,), using standard pro-
grams. A less satisfactory but usable procedure involving only seven simuitaneous
equations is detailed in Snyder {1981c, p. 158).

To determine K, - K, from parameters of the projection, first £ is found from
(2318}, then
kr = Plsin(d,—dy) cos y sinw + cos (b —dy) cos w] (23 —4b)
F = (sin ¢, sin Ay cos ¥ — cos hy sin yWLS (23—46}
v = (ain &y 5in ky s8I0y + C05 Ay cOS y) cos w/lS (2347
M = {gin &, €05 Ay 5iny — 5in Ap €08 ) co8 w/lF (23 —48)
N = [(sin & 005 Ay COS ¥ + sin A, sin ¥/ U (23-4%)
W = (—sin v ¢85 w coz 8 — cos vy sin OYLS (2350}
T = {—gin vy cos w sin B + cos vy cos BVLT (23—-51)
K, = —N sinw — cos ¢ €08 Ay 08 w/lf (23-52)
Ky = —F ginw — cos gy sin Ay 008 Wil (23~ 53)
Ks = (cos &, cos ¥ sin © — 8in ¢ cos wyU (23—54)
K, = H{Mcos8 + Nsing) + Kgry {23 —5bh)
K, = H{Veos 8 + / sin 8 + Kemy (23—56)
K; = HWeosd, + Kty (23-57)
K = HWP sin (g, =g + 2g (23—-58)
Ky = H (M sin 9—N ¢os 90 + Koy (23—-59)
Ky = H {(Vsin 8—F cos &) + Kgyo (2360
K = HTcos &, +~ Ky, {23-61)
Ky = HTP sin (g1~ dy) + w0 (23—62)

where, to review the meanings of previously defined symbols,

(dy, ) = latitude and longitude of the projection center and origin

b, = geocentric latitude of the point of perspective, found from equa-

tien (28—17)

azimuth east of north of the ¥, axis, or the most upward-tilted

axiz of the plane of projection

(5 = upward angle of tilt

P —= distance from the center of the Earth to the point of perspective,
divided by a, the semimajor axis.

¥

New symhols are as follows:

f = clockwizse angle through which the (X, Y} axes are rotated for
the arbitrary axes (X,", ¥,') used for the constants K,—K,,. This
may be made zero to retain the (X, ¥y axes,

179
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(%, Yo} = offsets of the (X, ¥} axes to establish a different origin for the
(X", ¥¢) axes. They may also be set at zero to reluin the (X,
¥} axes.
The two sets of axes are related as follows:

¢

Ly
He

Xy eus 8 — i sin B 4+ 2 {23—-624)
MO B r X sin B+ ¥y (23—862h)

For inverse computations using projective comstants, given K,-K,,, &, and

I PR M-S | ISR TR R PR SN SR
FF o L3 AINEL o ATHE A, LHE TUNLWILLE A0 CALICUIELEN 1T Or{ier.

Ay =x'K;-K, {23-63}
A =K -K, {23~ 064}
Ay = o' KKy {2365}
A, =K,z (23 - 66)
A5 = wKi-Ks (24~6T)
As =y Ki—Hy {23 - 68)
A; = wHK:-Hy (23— 69}
AS = Ku_yt' {23 -7
Ay = A Ag—A,As {23-71)
Ay = Adr—Azd; {23-72)
A = Apdg—Ady i (23—73)
Ay = Aydi—AgAg (25— 74)
Ay = Apd—AA, (23-75)
Ay = A +ALY-N 1+ A7 {23-78)
Ay = Agd + Apdyy {23-77)
A = Aaz_EAliz"'Al:tz {2378

where £ is found from (2336} if 2 13 nol zero, or £ = 1 [ & 18 zero. Then

S o= (ApAL) = (A a0 —Ayd )" (23— 79}
and & is found from (2335 if £ is not Zero, or (23-37) if & 15 zero, taking one
sign in (23-79) for the latitde desired, and the opposite sign for the latitude
hidden from view at the same coordinates. The same sign applies throughotut the
map, once it is deterntined for a point for which the iatitude is obviously vight or
wrong.

A = arctan [(Ay—4,650{A 8 -4 300 {23 — 80

In this case the ATANZ function is not used, but 180° must be added to or sub-
tracted from a if the denominator has the same sign as A,

If k is not zero, £ ig initially assumed to be 1. After trial values of ¢ and A are
determined above, an & suitable for that point may be used with the new & in
catculating £ then A, S, ¢ and A are recalcviated. Iteration continues untit the
change in the caleulated ¢ is negligible.

If % is zero, since K =1 and (23— 37) is explicit in ¢, no iteration is required.

Finully, to compute “comere” poramefers from given constants K| — K,
(Bender, ca. 1970, p. 26— 2T}, given a, ¢%, and an assumed A, first the following
three simultaneous eqlrations are soived for Xg, Yy, and 2, the space coordinates
of the point of perspective divided by 2 (see description of axes following (23— 40)):

K;."(:ﬁ + KzYﬁ + .‘{;’;.Z“ = —.k.'é
RyXo+ KoYy + K2 = —Kq (2381
KXo + £0F, + K22, = -1
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Then the coordinates {@y, #,+ of Lthe prineipal peinl of the “space photopraph”™
are found as the point where a perpendicular dropped from the point of perspec-
tive strikes the plane of the map:

(KGR + Ko fls + K HHKS + K& + K7 (23-R2)

¥
b
(KoK + KoKy + KoKy oWEHS + K+ K9 (23-83)

H¥p

"

The parumeters reviewed afler equation (23 —862) are then found as follows (except
that &y is an intermediate latitude described afler (23 -203)

Agp = arctan (¥/Xy) (23 —84)

i = (Xna T Yﬂz + ngz}h (23"’85)

by, = aresin {2 (23 - 56

&y = by + avesin |e¥ sin §y cos b/ PI—e sin® G )] (2387}

which is solved for ¢, with ¢, as the first approximation for 4,, and iteraling with
sueeessive substilution,

H = alF eos &, feos &~ 141 —o* sin® §, )" —hyial (23388}

using for A, Lhe height at (&,, k). The forward equations {23--15), (23—186), and
(23 -38) through {23- 40} are ngw used to caleulate X, ¥, and Z for (4, ha, fink
Substitutmy Lhese values and K, — K, into (23—41) and {23-42), x, is found ax
%', and y, as y,°. Then

aresin {(xa—a,)* + (yp— el TWH| (2389
arctan [(#,—xp} (7, ~3a)] (23-90)

[E1]

Q

Then, (&', #') are caleulated for (b, + 0.027, &) from (23-41) and (23-42) and
the necessary preceding equations, in order to cbtain the direetion of the ¥, axis,
and from this vahue of (', #') are ealeulated

z =A{x/—xp)eos B+ (Y —pdsin 0 (23—91}
W= L —yp) cos 0 —~ (2 —xy) sin 0 (23--92)
v = — arctan [z cos wil (23~-93)

181



182

MAF PROJECTIONS—A WORKING MANUAL

24, LAMBERT AZIMUTHAL EQUAL-AREA PROJECTHIN
STAMARY

Azimuthal.

+ Egual-Area.

« Al meridians in the polar aspect, the central mevidian in other aspects, and the
Equator in the equatorial aspect are qtraight lines,

« The outer meridian of a hemisphere in the equatorial aspect {
and the parallels in the polar aspect (sphere or elhp:-uld) e circles.

« Al other meridians and parallels are complex curves.

» Not a perspective projection,

+ Seale decreases radially as the distance increases from the center, the only
point without distortion.

e Scale increases in the direction perperudicular to radii a2 the distance increases
from the center.

» Directions from the center are true for the sphere and the polar ellipsoidal
farms.

» Point opposite the center is shown as a cirele surrounding the map (for Lhe
sphere).

+» Used for maps of continewts and hernispheres.

Presented by Lambert in 1772

IS TORY

The last major projection presented by Johann Heinrich Lambert in his 1772
Beitréige was his azimuthal equal-area prejection (Lambert, 1772, p. 75-78). His
name Is usually applied te the projection in modern references, but it is ce-
casion.ﬂiv calied merely the Azimythal (or Zenithal) Equal-Area projection. Not

only i5 it equal-area, with, of course, the azimuthal property showing true direc-

tions from the center of the projection, but its scale at a given distance from Lhe
center varies less from the scale at the center than the scale of any of the other
major azimuthals (see table 21}

Lambert diseusserd the polar and equatorial aspects of the Azimuthal Equal-
Area projection, but the oblique aspect is just us popular now, The polar aspect
was apparently independently derived by Lorgna in Italy in Y¥39, and the
latter was ralled the originator in a publication a century later (USC&GS, 1882,
p- 2900, G, A. Ginzburg propesed two modifications of the peneral Lambert Azi-
muthal projection in 1949 Lo reduce the angular distortion at the expense of creat-
ing a slight distortion in area (Maling, 1960, p. 206). A common modification was
devised by Ernst Hammer in 1892 and is called the Hammer or Hammer-Aitoff
projection. It consists of halving the vertical voordinates of the equatorial aspect
of one hemisphere and doubling the values of the meridians from center. It re-
tains equality of area, but it is no lenger agimuthal.

FEATLIRES

The Lambert Azitmuthal Equal-Area projection is not a perspective projection,
[t may be called a “synthetic” azimuthal in that it was derived for the specific pur-
pose of maintaining egual area. The ellipsoidal form maintains equal area, but it 1=
nat guite azimuthal exeent in the polar aspect, so the name for the general ellip-
soidal form i 2 slight misnomer, although it looks like the spherical azimuthal
form and has most of its other characteristics.

The polar aspect (fig. 394), like that of the Orthographic and Sterecgraphic,
has circles for parallals of latitude, all centered about the North or South Pale,
and straight equally spaced radii of these circles for meridians. The difference is,
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Luat{iTa A5pet;

frequentiy used in atlases [or maps of the Eastern and Western hemispheres, (O] Obligue aspect,

centered on lat, 40° 3.

aspeet showing one hemisphere, the
Equats
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FwuRe 39— Lambert Azimuthal Equal-Area projection, {A)] Polar
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once again, in the spacitg of the paraliels. For the Lambert, the spacingr between
the parallels gradually decreases with increasing distance from the poie. The

l"ﬂ!ﬁ.l"lf!'l' = ﬁn].ﬂ nnf ifii.llhiﬂ LT ﬂtfhﬂl" fhf" ﬁH ]'I-l"i(ﬂ ﬂﬂh [LLN ) N Qi'nrnnm'n I"II'TI!"' mAU :"'ll’:h ohnum

LI IE LY LR R s LTER) D Sl

onh the I.ambert 33 8 large circle surr nundmg Lhe map, almaost half ayrain as far as
the Equator from the center. Normally, the prajection is not shown beyond one
hemisphere (or beyond the Equater in the polar aspect).

The equatorial agpect (fig. 33E) has, like the other azimuthals, a straight Equa-
tor and straight central meridian, with a cirele representing the $0th meritdian
Sterengraphie, the remaining meridians am! parallels are ancommeon complex
curves. The chief visual distingmishing characteristic is that the spacing of {he
meridians near the 90th meridian and Wf the parallels near the poles is about 0.7
of the spacing at the center of the projection, or moderately less to the eye.
The parallels of latitude look comsiderably like eircular ares, except near the 90th
meritlians, where they exhibit a noticeabie turn toward the nearest pole,

The ablique aspect {fig. 39C) of the Lambert Azimuthal Equal-Area resembles
the Orthographic Lo some extent, until 1t is seen that crowding is far less pro-
nounced as the distance from the center increases. Aside from the straight central
meridiar, all meridians and parallels are complex curves, nnt ellipzes.

In both the equatorial and oblique aspects, the peint opposite the center may be
shown as a eircle surrownding the map, corresponding to the opposite pole in the
polar aspect. Except for the advantage of showing the entire Earth in an equal-
area projection from one point, the distortion is 2o great beyond the inner hemi-
sphere that for world maps the Earth should be shown ag two separate hemispheri-
¢al maps, the secomd map centered on Lthe point opposite the center of the first
map.

LSAGE
The spherieal form in all three aspects of the Lambert Azimuthal Equal-Area
projection has appeared in recent commercial atlases for Eastern aml Western
Hemispheres {replacing the long-used Ginbular projection) and for maps of oceans

ald mast of the continents and nn]-‘.r mglnﬂ-.

ailil I el SOHILANUTIE o

The polar aspect appears in the Neationa! Atlos (URGS, 1570, p. 148-149) for
maps delineating north and south polar esapeditions, at 2 seale of 138,000,000,
It is used at a seale of 120,000,000 for the Aretic Reglon as an inset on the 1878
ISGS Map of Prospeclive Hyidrocarbon Provinees of the World.

The USGS has prepared six base maps of the Pacifie Ocean on the sphorieal
form of the Lambert Azimuihial Equal-Area. Four seetions, at 1:10,000,0, have
ecnters at 33" N., 150° E.; 35" N, 135° W.; 35 5., 135° E.; and 40° 8., 100 W. The
Pacific- Antaretic region, at a scale of 18,300,000, is centered at 20° ST and 185° W.,
while a Tacific Basin map at 1:17,100,000 {5 centered at the Fguator and 160° W,
{The last two maps were originally erronecusly labeied with seales that are too
amall.) The base maps have been used for individual gespraphie, genlogic, tec-
tonie, minerals, and energy maps, The UBGS has alsa cooperated with the Na-
tional Geographic Soctety in revising maps of the entire Moon drawn to the spheri-
cal form of the equatorial Lambert Azimulhal Equal-Area.

GEOME VRIC CONSTRUCTIMNN

The polar aspect {for the sphere) may be drawn with 4 simple geometrie con-
struction: In figure 40, if angle AOR is the latitude ¢ and P is the pole at the
center, P4 is the radius of that latitude on the polar map. The oblique and cqea-
torial aspects have no dircet geometrie construction. They may be prepared
indlirectly by using other azimuthal projections (Harvison, 1943), but it is now
simpter to plot automatically or manual]y from rectangular conrdinates which are
generated by a relatively simple computer program. The formulas are given
below,
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Fizuer 40 —Geometrie aimaceuetion of polar Lumbert Aximuthal Equal-Area projection,

FORMUL AN FOR THE SPHERE

On the Lambert Azimuthal Equal-Avea projection for the sphere, a point at a
given angular distance from the center of projection is plotted at a distance from
the eenler proportional to the sine of half that angular distance, and at its true
azimuth, or

p=2 K sin (o) 24-1)
B=m--Az= 180" — Az 120—2)
i = eus (ef8) (24—1a)
k' = sec () (2411

where ¢ is the angular distance from the center, Az is the azimuth east of north
{see equations (5—3) through (5—4%)), and 8 is the polar coordinate east of south.
The term k' is the scale factor in a direction perpendicular Lo the radius from the
center of the map, not along the parallel, xeopt in the polar aspect. The seale
factor &' in the direction of the radius equals 14°, After eombining with standard
squations, the formulas for reetangular coordinates for the obliqgue Lambert Azi-
muthal Equal-Area projection may he written as follows, given B, &y, &y, &,
and A:

=Rk cos & sim (A=A (22-4}
¥ = K k' [cos &y sin d — sin gy o8 & eos (A—Ay)] {22-5)
where

& = |21 + sin b, sin b + 008 by cos b sos (k- Kyl {24—2)

185
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atdd (b, Ag are latitude and lengitude of the prejection center and origin, The ¥
axis eolneides with the central meridian Ag, ¥ mereazing northerly. For the point
opposite the center, at latitude — &y and tongitude hy = 180°% these formulas give
indeterminates, Thiz peint, if the map 15 to cover the entive sphetre, is plotted
as a civele of radivs 2R.

For the north polar Tambert Azimuthal Equal-Area, with ¢, =90 since b is k
for the polar aspect, thase formulas simplify to the following (sce p. 332 for nu-
merteal examples):

o =282 sin (o't =2 sin (h—A,) (24=3)
g = — 2R sin (/4 - diZ} cos (A —hy) (24-4)
k= sop {mid—dqw2) (24-5)
h=1% = cos (md—&/2) (24 —4}

or, nsihg polar coordinates,

p =28 gin (m/d—drZ) (24-T)
For the south polar aspect, with &, = —920°,
x=2R cos (-2 sin (A—Ap) (24 -8}
¥ = 2R cos (w4 — 2y cos {h—hg) (24-9)
k= 1ain (w/d— 2} ¢24 10}
fi = sin {orid— /20 (24113
o
p = 2R cos (wM—di2) (2412
B=7 - x + A, (20123

For the equatorial aspoct, letting 4, = 0, » s found from (22—4), but
¥ = Rk sin 4 i24—13)
and
ko= %1+ cos docos (h — )] (24— 14)
The maximum angular deformation w for any of these aspects, derived rom

myuations (4—T) through (4—9), and from the fact that & = 1%’ for equal-area
maps:

2l fed®Y = fEE—TWil + A (24~ 1ad
[§IFLES L M } (ed— 10}
o #hio Jaeapasss deasar waleu g $ane din T Sy ey o+ ® ar "
LU O VRIEFSE JOTFRECTS JOVF (e SIFETE, EIVON i, g, Ay, T, dla y

& = aresinleos csin &, ~ (¥ 8in ¢ cos dyip)] (20-14)

If p = 0, cquations (20— 14) through (20-17) arc indeterminate, but & = ¢, and
A=y

If by 18 not =H0%

A = hy + arctan [ sin ¢f{p cos dy cos ¢ — p sin b sin il (20— 15)



24, LAMBERT AZIMUTHAL EQUAL-AREA PROJECTION
If &, is 90°:

A = hg T aretan [xi—y)] (20-16)
If 4y 18 —90%;
A = ky + arctan {2y (20—17)
In eguations (20— 14) und (20-15),

p= (% 4y (20-18)
e = 2 aresin [pA2R)] {24 — 16)

[t may again be noted that several of the above forward and inverse squations
apply to the other azimuthals,

Tahle 28 ists rectangular eoordinales for the equatorial aspect for a 10° praticule
with a sphere of radius & = 1.0.

FORMULAS FOR THE ELLIFSOID

As noted above, the cllipsoidal oblique aspect of the Lambert, Aximuthal Equal-
Ares projection 15 slightly nonazimuthal in order to preserve equality of area. To
date, the USGS has not vsed the ellipsoidal form in any aspeet. The formulas
are analogous to Lhe spherical eguations, buat invalve replacing the geodetie lati-
tude G with authalic latitude @ {see equation (3-113). In order 1o achieve correct
seale in all direetions at the center of projection, that is, to make the center a
“standard point,” a slight adjustment using I is also necessary. The general for-
ward furmulas for the obligue aspect are as follows, given a, g, &y, hyg, O, and A
(see p. 333 for numerical examples):

=B Dcos @ sin ih—hy) {24172
y = (BiD)[cos By sin B — sin By cos P eos (h—ho)] (24-18)
where

R =R, [201 + sinpysin B + cosf, cos Beos(h - hql] {24-19)
=0 wy/(f, cos By) {24—20)
Rg=n (g, (3-1%
B = arcsin (¢/q,) (2-113

g ={1—6%) jsin &/(1—e® sin® ¢) — [14Z €] In
[(1—¢ sin &3] + e sin g (3—12)
m. = cos dAl—e® sin® gt (14-15)

and By is found from (3—11), using ¢, for g, while ¢, and ¢, are found from (3—12)
using ¢ and 90°, vespectively, for ds, and 1y is found from (14— 156), calenlated for
d. The origin occurs at {dy, Ayl the ¥ axis coineiding with the central meridian
Ay, 20d y increasing northerly. For the equatorial aspect, the equations simplify
as follows:

¥ = acos Bosin (v kg1 1 cos B cos (h—ag)T (24—-21)
g = (R %) sin B |21 + cos B cos (A—rg)][2 (2422

For the polar aspeets, I is indet erminate using equations above, but the follow-
ing eguations may be used instead. For the north polar aspect, &, = 90°,
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TapLe 25 —Lambert Azimutha! EqualAree projection. Bectungular coordimates for equatoriat
aspect (sphere)

[tne hemizphers. ¥ eanrdinate in parentheaes under x canrdingie?

Long. 0° 107 2p° 30° 40°
Lat.

80° eame—.._ 000000 0.00000  0.00000 000000  0.00000
(1.41421)  (141421) (141421) (141421}  (1.41421)

80 00000 03941 071788 11448 14830
(1.28658)  (1.2870%)  (1.29135)  (1.29851)  (1.30842)

1V S | )1 1 F 07264 .14391 21242 27676
(1.14715)  (1.14938)  (1.15607) (116725}  (1.18296)

60 _______________  .00D00C .10051 .19948 29535 38649
(1.00000)  (1.00254)  (1.01021)  (LO2811)  (L.04143)

50 e 00000 .12852 24549 136430 A7831
(.84524) ( .B4778) ( .85539) ( .86830) ( .88680)

80 00000 .14203 28254 41999 55281
( .68404) ( .BRB31Y  ( .6981T) ( .70483) ([ .72164)

30 e .DOGOO 15624 31103 46291 B1040
{ 51764) ( .51947) ( .52504) ( .53452) ( .54828)

20 o 00000 .16631 33123 49837 85138
{ 34730) ( .34858) ( .35248) ¢ .35%i5)  ( .36883)

W oo .00000 17231 .34329 51158 67588
( .17431)  ( .17497) ( .17698) ( .1B041) { .18540)

0 e 00000 17431 34730 51764 £3404

{ .00000) (00000  { 00000)  ( .00000) ([ .00000)

Radius of aphere =141
Organ: Gr, pi=10 st ilet., long. )=, ¥ axis increases north, Other quadrants of hemisphere are aymmetrival,

r=p &in (h—ky) (21-350)

¥ = —p oS (h—hy,) [21-31}

k= pfla we) {21 —32)
where

p = alg,—ghe {24 —24)

and g, and ¢ are found from (3—12) as before and m from (14— 15) above. Since
the meridians and paralieis interseet at right angles, and this is an equal-area
projection, £ = 1k,

For the south polar aspect, (b, = — 907, equations {21 - 20} and (21 —22) remain
Lhe same, but

¥ = peos (A—A) (24 =243
and
W= tgpt+gp (24-25)
For the inverse formulay for the ellipsoid, the oblique and enuatorial aspeets
(where &, is not £90°) may be solved as follows, given a, e, &y, Ay, = a2nd 1.

- W om w i W =
_ (1—e sin” &)° 7 sin ¢ 1 1—esin ¢
= —_ — —_— —_— R T 1
b= 2 cos b ’_l-e2 T-efsing | 2¢ In (1 +e sin ¢ (4-16)

h = g + aretan [ sin e./(f2 p cos By cos ¢, — Dy sin B, sine,)]  (24-26)

where

g = gy [cos ¢ sin By + {Dhy sin ¢, cos PBop)] {24-27)
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TABLE 28 —Lambert Azimuthal Kqual-Arez projection: Hoctangulsr conrdinstes for equatorial
Aspect {sphere) —Continued

w 50° 60° 70° 80° 90°
Lat.

90° ______________ 0.00000  0.00000 000000  0.00000  0.00000
(141421}  (1.41421)  (1.41421) (142421}  (1.4142D1)
BO .. ________._  .17843 20400 22420 23828 24558
(1.32036)  (1.335%4)  (1.35313) (1.37219)  (1.38273)
T e 33548 38709 43006 46280 48369
(120323}  (1.22806)  (1.25741) (1.29114)  (1.32893)
60 oo 4T122 54772 61403 66797 70711
(1.06544)  (1.09545) (1.1317%) (L17481) (1.22474)
50 oo 58579 68485 77342 24909 96904
(.91132) {.94244) ( .98088®) (1.02752)  (1.08335)
$0 oo 57933 79778 80620 1.00231 1.08335
(.74411)  ( 77298) { BOU1S) { 85401)  ( .90904)
80 e 75197 88804 1.01087 1.12454 1.22474
( .56674) ( .59069) { .62168) ( .63927)  ( .7071L}
20 o eee_ 80380 94928 1.08635 1.21347 1.32893
( 38191) ( .39895) ( .42078) ( .14848) ( .483569)
) 2 3488 58731 1.13192 126745 1.89273
(19217) {20102} ( .21240)  ( .22694)  ( .24558)
0 84524 1.00000 1.14715  1.28558  1.41421

{00000y 000000 .00000) ( 00000)  ( LOO000)

but il p = 4, ther § = g sin By, and A=k,
p= 1D + (DyFhe

24-28
2, = 2 aresin (p/2 By 8

24~
24-2

e
ey

and B, B, gy, and 8, are found from equations (24-20), (3—12), (2-12), (3-11),
and (14—15}, a5 in the forward equations above. The factor ¢, is not the true
angular distance, as ¢ is in the spherical case, but it is a eonvenient number
similar in nature to ¢, used to find & and A. Equation (2—16) requires iteration by
suceessive substilution, using arcsin {¢/2) as the first trial & on the righi side,
caleulating 4 on the left side, substituting this new ¢ on the right side, ete., until
the change it 4 iz negligible, If, in equation (24-27),

g o= =111 —e¥W2 &) In [(1- &)L+ )] {14—20)
the ileration does not converge, but ¢ = %07, taking Lhe sign of q.

Ta avord the iteration, eguations (3—18), (34-27), and (14 -20) may be re-
placed with the series

&= B+ (293 + 31Y180 + 517YB040 + . . .) sin 2P
+ [23¢Y360 + 251e%3TRO + .. ) sin 4B + (TG1M45360 + ., )
sin A + ... {3-18)
where [, the authalic latitude, is found thus:
B = aresin (cos ¢, sin @By + (Dy sin ¢, cos By/p)] (24 -3

Equations (24 -26), (24-28), and (24-29) still apply. In (24-30), if p = 0, B =
Ei. For improved compatational effiviency using this series, see p. 19,
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Tabilk 20.—Elipseidal pofer Lambert Arimuthal Equal-Area projection flncermationad elipsaid)

Latitude Radius, meters h i
1 0.0 1.000000 1.000000
B 111,698.4 899962 1.000038
B e m——— 2233877 099848 1.003152
- 335,058.5 999657 1.000343
B o e 446,701 8 93939 1000610
B e 55R,308.3 BID048 1.000953
T 669 B68.8 98630 1.001372
83 ___ 7813742 908135 1.0018569
- 892 815.4 997564 1.002442
= 1,004,183.1 996318 1.003052
o 1,115,468.3 895195 1.003820
(3 1,226,661.9 J995397T 1.004625
1 P 1,337, 7647 994522 1.008508
T e m———————— 1448 737.6 993573 1.006449
i S, 1,559,601.7 992547 1007509
T e ———————— 1,670,337.9 991440 1.008628
a4 1,780,937.2 990270 1.009826
T 1,891,390.6 89018 1.011104
v 2,001,688.2 487691 1.012462
U 2,111,824.0 JSBA2RI 1.013802
"W 2,821,786.2 GE4R12 1.015422

L= srale factor wlong reeidine,
A =acale factor alang parsflel

The inverse formulas for the polar aspects involve relatively simple transforma-
tions of above eguations (21300, (21-131), and (24 -23), except that & is found
from the jterative squation {3—16), listed just above, in which ¢ iz caleulated as
follows;

¥ = *lyp —(pia)) (24-31)
taking the sigm of §q. The series (3—18) may be used instead for &, where
B = % arcsin {1 -p%a"11- ({1 —&“W(2 &) In ({1—e}] + eD|)! (24—32)

taking the sign of 4, In any case,

p = G rytyn (20—18)
while
h = hy + arctan [z4 —g)] (20-16)
for the north polar case, and
A = kg + arctan (xfy) {20-17)

for the soulh polar case.

Table 29 lists polar ecordinates for the ellipsoidal polar aspect of the Lambert
Azimuthal Equal-Area, using Lhe Internstional ellipsoid.

To eonvert coordinates measured on an existing Lambert Azimothal Eqoal-
Area map {or other azimuthal map projection), the user may choose any reridian
for Ay o0 the polar aspect, but only the original meridfan and parailel may be used
for A, and &, respectively, an other aspects,
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25, AZIMUTHAL FQUIDISTANT PROJFCTION
SUAMMARY

« Azimuthal.
» Distanees measured from the echter are {rue.
« Distances not measured along radil from the eenter are not correct.
s The center of projeetion is the only point without distortion.
» Directions from the center are true (except on some obligque and eguatorial
ellipsnidal forms).
« Neither equal-area nor conformal,
» All meridians on the polar aspeet, the central meridian on other aspects, and
the Equator on the equatorial agpect are straight lines,
+ Parallels ou the polar projection are eireles spaced at true intervals (equidistant
fur the sphere). )
» The puter meridian of 4 hemisphere on the eguatorial aspect (fur the sphere) is
a circle.
Al other meridians and paraliels are complex curves.
Nl a perspeclive projeclicn
Foint npposite the center is shown as a eirele (for the spherel surrounding
the map.
Uzed in the polar aspect for world maps and maps of polar hemispheres.
Uzed in the obligue aspect for atlas maps of eontinents and world maps for avia-
tiom and radio use.
Known for many ecenturies in the polar aspect.

FHSTORY

Whiie the Orthographie is probably the most familiar azimathal projection, the
Azimuthal Equidistant, especially in its polar form, has found its way inlo many
atlazses wilh the coming of Lhe air age for maps of the Northern and Southern
Hemispheres or for world maps. The zsimplicity of the polar aspect for the sphere,
with egually spased meridians and equidistant, concentrie eireles for parsilels of
latitude, has made it easier to understand than most other projections. The pri-
mary feature, showing distances and directions correclly from one point on the
Earth's surfuce, is also easily accepted. [n addition, 1ts linear scaie distortion 1
modlerate snd falls between that of equal-area and conformal projections.

Like the Orthographic, Stereographic, and Gnomonie projections, the Azimuthal
Equidistant was apparently used centuries before the 15th-century surge in sclen-
tifie mapmaking. It is believed that Egyptians used the polar aspect for star
charts, but the oldest existing celestial map on the projection wus prepared in
1426 by Conrad of Dyffenbach. 1t was also used in principle for small areas by
mariners from earliest limes in order to chart coasts, using distances and direc-
tinms obtained at sea.

The first clear examples of the use of the Azimuthal Equidistant for polar maps
of the Earth are those included by Gerardus Mercator as insets on his 1569 world
map, which introdueed his famoeus eylindrieal projection. As Northern and South-
em Hemispheres, the projection appeared in & manuseript of about 1310 by the
Swiss Henrieus Loritus, usually called Glareanus (1488-1583), and by several
athers in the next few decades (Keuning, 1855, p. 4—5). Guiilaume Postel is given
eredit in France for its origin, although he did not uwse it until 1581. Antonio
Capnoll even gave the projection his name as originator in 1799 {Deetz and
Adams, 1934, p. 163; Steers, 1970, p. 234). Philippe Hatt developed ellipsoidal
versions of the oblique aspect which are used by the Freneh and the Greeks for
eoastal or topopraphic mapping.
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Two profections with similar names are called the Two-Point Azimuthal and the
Two-Point Equidistant projections. Beth were developed about 1920 independ-
ently by Maurer {1919) of Germany and Close (1921) of England. The first pro-
Jjection {rarely used) is geometrieally a tilting of the Gnomonic prgjeetion to pro-
vide true uzimuths from either of two chosen points instead of from just ene. Like
the Gnomonie; it shows ail gyeat civcie ares as straight Hines and is limited to one
hemisphere. The Two-Point Equidistant has received moderate use and interest,
and shows troe distances, bul not true¢ azimuths, from either of bwo chosen points
to any other point on the map, which may be extended to show the entire world
(Cloge, 1934).

The Chamberlin Trimetric projection is an approximate “three-point equidis-
tant” projection, constructed so that distances from three chogen points to any
other puint on the map are approximately correct. The Latter distances cannotl be
exactly trog, but the projection is g compromise which the National Geographic
Socicly uses as a standard projection for maps of most continents. This projection
was geometrically constructed by the Society, of which Wellman Chamberlin
f1908—76) was chief cartographer for many years.

An ellipsoidal adaptation of Lthe Two- Pomt Equidistant was made by Jay K
Donald of Amertean Telephone and Telegraph Company in 1956 to develop a grid
still used by the Bell Telephone sysiem for establishing the distance component of
long distance rates. Still another appreach is Bomford's modifeation of the Azi-
muthal Equidistant, in which the vsual cireles of constant scale factor perpen-
dicular to the radius from the cenler are made ovals to give a hetter average seale
factor on a map with a rectangular border (Lewis and Campbell, 1851, p. 7,
12—-15).

FEATURES

The Azimuthal Equidistani projection, like the Lambert Azimuthal Equal-
Area, is not a perspective projection, but in the spherical furm, and in some of the
ellipsoidal forms, it has the azimuthal characleristic that all directions or azimuths
are eprrect when measured from the center of ihe projection. As its special
feature, all distances are at true scale when measurced between this center and
any other point on the map.

The polar aspect (fig. 414}, like other polar azimuthals, has eireles for parallels
of latitude, all eentered about the North or South Pole, and equally spaced vadii of
these circles for meridians, The parallels are, however, spaced equidistantly on
the spherical form {or accovding to actual pavallel spacings on the ellipsvid). A
world map can extend to the oppozite pole, but distortion becomes infinite. Even
thouph the map is finite, the peint for the opposite pole is shown as a civdde twice
the radius of the mapped Equator, thus giving an infinite scale factor along that
circle. Likewise, the countries of the outer hemisphere are visibly increasingly
diztorted as the distance from the center increases, while the inner hemisphere
hag lttle enouyh distovtion te appear rather satisfactory to the eye, althoogh the
east-west scale alung the Equator is almost 60 percent greater than the scale at
the center.

As on other azimuthals, there is no distortion at the center of the projection
and. as on azimuthals other than the Stereopraphie, the seale capmot be reduced
at the center to provide a standard circle of no distortion elsewhere, It is possible
to use an average scale over Lhe map involved to minimize variations in scale error
in any direction, but this defeats the main purpose of the projection, that of provid-
ing true distance from the center. Therefore, the scale at the projection center
should be used for any Azimuthal Equidistant map.,

The equatorial aspeet (fig. 4157 is least used of the three Azimuthal Equidis-
tant aspects, primarily because there are no cities along the Equator from whick
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Ficure 41, —Azimuthal Equidistant projection. {A) Polar aspect extending to the South Pole; coramobly
uzed in stlases for polar maps, (8 Equatotial aspect. (0 Oblique aspect centered onlat. 40° ¥ Distance
from the eeater ig true Lo scale.
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distances in ali directions have been of much interest to map users. Its potential
use as 4 map of the Eastern or Western Hemisphere was usually supplanted first
by the equatorial Btereographic projection, later by the Globular projection (both
graticules drawn entively with ares of eircles and straight lines), and now by the
equatorial Lambert Azimuthal Equal-Area.

For the equatorial Azimuthal Equidistunt projection of the sphere, the only
straight lines are the central meridian and the Equator, The outer cirele for one
hemisphere (Lhe meridian 90 east and west of the central meridian) i3 equidis-
Lantly marked off for the parallels, as it is on oLher azimuthals, The other merid-
fans and parallels are eomplex enrves constructed to maintain the correct dis-
tunces and azimuths from the center. The paralleis eross the central meridian at
thelr true equidistant spacings, and the meridiuns cross the Equator eguidis-
tantly. The mup ean be extended, like the polur sspect, to include 4 moch-distorted
second hemisphere on the same center.

The oblique Azimuthal Equidistant projection (fig. 41C) rather resembles the
oblique Lambert Azimuthal Equal-Area when confined to the inner hemisphere
centered on any chosen point between Equator and pole. Except for the straight
central meridian, the graticule consists of complex curves, positioned to maintain
true distance and azimuth from the center. When the outer hemisphere is inelucded,
the difference between the Equidistunt and the Lambert becomes more pro-
nounced, and while distortion is as extreme as in other aspeets, the distanees and
directions of the features from the center now ootweigh the distortion for many
applications.

LSAGE

The polar aspect of the Azimuthal Equidistant has regularly appeared in com-
mercial atlases 1ssued during the past century as the most cormon projection for
maps of the north and seuth polar areas. It is used for polar insets on Van der
Grinten-projection world maps published by the National Geographic Sociely and
used as base maps (including the insets) by USGE. The polar Azimuthal Equidis-
tant projection is also nermally used when a hemisphere or complete sphere
centergd on the North or South Pole is to be shown. The obligue aspect has been
uset for maps of the world centered on important cities or sites and occasionaiiy
for maps of continents. Nearly all these maps use the spherical form of the
projection,

The USGS has used the Azimuthal Equidistant projection in both spherical and
ellipsoidal form, Anoblique spherical version of the Earth centered at lut. 40° N,
lomg, 100* W, appears in the Netional Atlos (USGE, 1970, p. 329, At a scale of
1 175,000,000, it does not show meridians and paraliels, but shows circles at
1,(00-mile intervals from the center. The eliipsoidal obligue aspect is nsed for the
plane coordinate projection system in approximate form for Guam and in neariy
rHgoraus form for islands in Micromesia

GEOMETRIC CONSTRUCTION

The polar Azimuthal Equidistant = ameng the easiest projections to construet
peometrically, since the pavallels of latitude are equally spaced in the spherical
case und the meridians are drawn at their true angles. There are no direct geomet-
ric constructions for the obligue snd equatorial aspeets, Like the Lambert Azi-
muthal Equal-Area, they may be prepared indirectly by using otheyr azimuthal
projections (Harrison, 1943), but autematic compuoter plotting or manual plotting
of calculated rectangular coordinates is the most suitable means now available,
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FOIRMULAS FOR THE SPHERE

Om the Azimuthal Equidistant projection for the sphere, a given point is plotted
al a distance from the center of the map proportional to the distanee on the sphere
and at its true azimuth, or

p=Fk«¢ (2
{

]
=7-—-Az =180 - Az (2 )

-1
._2;

=

where ¢ is the angular distance from the center, Az is the azimuth east of north
{see equations (5—3) through (5—4b)), and 8 is the polar enordinate east of south.
For &' and £', see equation (25—2) and the statement below. Combining various
equations, the rectangular coordinates for the oblique Azimuthal Equidistant
projection are found as follows, given B, &, &y, &, 2nd & (5ee p. 337 for numerical
examples):

=Rk cos & sin (h—hp) (22-4)
¥ =R &' |cos ¢y sin d - 8in &y cos & oos [k -a)] (225
where
k' = efsin ¢ (25-2)
o5 =8in dy sin ¢ 1+ cos by o5 b cos T —Ag) th—3)

and {dy, ko) are latitude and longitude of the center of projection and origin. The
¥ axis coincides with the central meridian hy, and ¥ increases northerly. Licos ¢ =
1, equation (25—2)isindeterminate, but k' = 1, and &= y=0. Ifcosc = —1, thepoint
opposite the center (--b,, &g %= 180%) iz indicated; it is plotted as a vircle of radius
. The lerm k' is the scale factor in 4 direction perpendicular to the radivs from
the center of the map, not along the parallel, except in the polar aspect. The
scale factor R’ in the direetion of the radius is 1.0.
For the north polar aspect, with &, = 50,

w = R{w2—h) sin (h—xp) 25-3)
¥ = — R w2 cos (A—ky) (25—4)
L = (mi2—dleos b {25—5)
h =110

p = B{nil—d} - {25—-8)
§ =h— ko 20-m

For the soulh polar aspect, with ¢, = —90°,

& = R{mZ+d)sin (h—Xy) 2a—T
¥ =R (m/2 bt cos (h—hy) (25—8H)
k= (2 4 plicos : 25-9
=10

p =R{nZ+d) (25 =10}
G =a — At Ay (20-12)

For the equatorial aspect, with¢, = 0, & is lound from (22—4) and &k’ from (25-2),
bt

¥=REsingd (25-11)
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TaRLE 30 -Aziputhal Egquidistant projection: Rectanpuler courdinates for equatorial aspeot
{5phere)

[Ore hemiggpliere, B 1, ¥ eoerdaaben in parentheses umder 5 coorlinates ]

Long. 0° 10° 20° 30° 40°
m

80 e 0.00000 0.00004 0.00000 1.00000) 0.00000
(1.57080) (1.57080) (I.570B0}  (1.570B0)  (1.57080)
8 _ L0000 4281 L8469 JA2468 16188
(1.38628) (1.30829)  (1.40434) (1.41435) (L.42823)
T e 0RO 07741 16362 22740 29744
(L22173y {L.22481) (1.23407) (1.24956) (L.27137)
B e - 0000 10534 20955 31145 40976
(1.04720)  {1.05068) (1.06119} (1.07891) {L.10415)
80 0000 12766 .25441 47931 L0127
L7268y (B0 ( .BB64ATY ( 9M0B) ([ .92938)
a0 SRR Ad40il 28959 43276 YR
{ .69313) (70119 { .7T1046) ( .72826 { .74518)
30 e 00000 122 R1607 47314 B2AY6
{ .52360) { .52606) ( .53855} ( .Gd4684) { .56493)
20 o L0000 16736 33454 60137 BE
(34907 { 35079 { .35601) [ 36497y ( .37803)
0 e L0000 17275 34546 61807 59054
( 17463} ( .17641) ( .17B10Q) ( 182700  { .18943)
| 41T} 17453 34907 2360 69813
{ 00000y  { .00000)  { .000D0) { .00000Y  { .00000)
anid
cas ¢ = cns b oeos (A—hg) (25— 12

The maximum angular deformatinh w for any of these aspects, Using equations
{1=7) through (4 -0, slnec ' = LO:

(A =Lk’ + 13 (Zh—-1.3)
[&—sin ¢)f(c + sin ¢) (2514}

sin Yew

For the inverse formuias for the sphere, given B, &), A, 2, and 3
¢ = aresin [co3 ¢ 8ln ¢y + {y 8in o cos & ipl] {20—14)
Ifp = 0, cquations (20— 14) through (20— 17) are indetorminate, but ¢ = ¢, and
’\ = ho.
If &) is not =90
A = Ay 4+ arctan [ sin of(p cos &y cos c—¥ Sin &y sin e)] (20~153
[f &, is 907
A= Ay 4 oarctan [w/0 -y {80—-16)
[f &, is —90%
A = Ay + arclan oyl B0—-17

In cquations (20—14) and (20— 18),

p o= (&2F r ¥ (20— 18}
c = p/R (25~ 15)
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TABLE 20, ~Azimurhs! Eguidistant projection: Hectangular coordinates for eguaterisl aspeet
{sphere) —Continged

Long. 50 an° 70° 80° 90°
Lat.
ot 000000 0.00000  0.00000  0.00000  0.00000
(1.57080)  (L.57080)  (L57080)  (L.57080)  (L.57080}
80 o _____._ 19529 22369 24706 26358 27277
(1.44581)  (L.46686) (149104} (L.51792) (154693}
T e 86234 420 47039 50997 53724
(1.29957)  (1.33423) (137533} (142273} (1.47607)
T _ 50301 58948 66711 73343 78540
(113738)  (L17898) (1.22983) (1.28993)  {1.36035}
B0 e 51904 73106 53535 02935 1.00968
( 96308) (100602 (105942) (L12464)  (1.20330)
40 71195 ‘84583 '$7392 100400 120330
{ 7T7984) ( .81953) ( .86967) ( .03221)  (1.00969
30 . TB296 ‘93436 108215 122487  1.36036
{ 58010) (62201} ( .66488) ( .71809)  { .78540)
20 82301 99719 1.16965  1.31964  1.47607
{ 39578y ( .41910) { 44816) [ .48772) ( .53724)
10 oo 86278 103472 120820 137704 154693
(19858 { 21067y ( 22634} ( .24666)  ( .27277)
O e 87286 104720 122173  1.39626 157080
( ( 60000) (00000} { .GDOGO)

L0000}

{ .0O0G0)

Hudws of sphere - 18

Orgin; (. yhe 0at gat, b =0 Y axis increases rerth. Gther quadmanta of hemisphers are aymnetrical.

Except for (25-15), the above inverse formulas are the same as thase for Lthe

other azimuthals, and (26— 2} is the anly change from previous azimuthals among
the general {nblique) formulas (22 -4) through (3-3) far the forward caleulations
as lsted above,

Table 30 shows reetangular enordinates for the equatorial aspect for a U° prati-
cule with a sphere of radius & = 1.0

FORMLLAS FOR THE FLLIFSOL

The frrmulas for the polar aspect of the ellipsaidal Azimuthal Eguidistant pro-
jeection are relatively simple and are theoretically accurate {ov a map of the entire
world, However, sueh & use s unnecessary because the errors of the sphere
versus the ellipsoid become insignificant when compared to the basic errors of
projection. The polar form is truly azimuthal 2z well as equidistant., Given a, e, &y,

Koo by and &, for the north palar aspect, ¢y = %0 (see p. 338 {for numerical examples):

T = psin{h-hi,) 21303
¥ o= = Cis (A—h,) 21-31)
kb — pfie o) 121-32
whejye
po= My—M (25— 16)
M = al(1—e/4—3ema —55256 — . | L 1b— (368 + 32932
bod5e/1024 + L L sin 24 1 (15eME56 + 45450024 + L )
sin 4 & — (358072 + .. . sinéEd + ... 321

with M, the value of M Tor a ¢ of 90°,
and #t = cos dpil—¢ sin? )2 (14 -15)
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TaulE 31, —Elpsordal Azfruthal Eguidistant projection (Interuativnal elipsoid—Polar Aspect

Latitude Radiuys, meters k k
oo 0.0 1.0 1000000
BY e 11],69%.8 1.0 1.00005]
8 _ 223,399.0 1.0 1090203
87 335,096.8 1.0 IIE By
8B e e 446,792 5 1.0 10513
8 . 558,485.4 1.0 1.0¢1270
2 670,175.0 1.0 1.001830
= 781,860 4 1.0 1002492
B2 e 893,041.0 Lo L.003256
Bl i,005216.2 1.0 1.004124
80 e ____ 1.116,885.2 1.0 1.005095
- 1,228,547.5 Lo 1.006169
1 SV, 1,340 202.4 1.0 1.007348
T 1,451,849.2 1.0 1.008031
L 1,563,487.4 1.0 1010019
1 1,675,115.3 1.0 1011513
- 1,786,735.3 1.0 1.015113
1 1,898,343 8 1.0 1.014821
T e 2,000,941.3 L0} 1.0 16636
K R 2,121,62%.1 1.0 1.018560
e . 2,233,100.9 1.0 1.020594

h=zcale factor along meridipn.
k= woule fuctor wleng paralled,

For improved computational effieiency using this series, see p. 18
For the south polay aspect, the equations for the north polar aspeet apply,
except that equations (21—31) and (25— 16) become

B o=poos (h—hy} {24 —23}
p=M,+ M (25-17)

The origin Falls at the pole in cither case, and the ¥ axis follows the central
meridian A, For the north polar aspeet, ks shown below the pole, and y inereases
wlony kg tovward the pole. For the south polar aspect, i, iz shown above the pole,
and i inereases alomg hg away from the pole,

Table 31 lists polar eoordinates for the ellipsoidal aspect of the Azimuthal
Equidistant, using the International ellipsoid.

For the oblique and equaterial aspects of the ellipsoidal Azimuthal Equidistant,
both nearly rigorous and approsimate setz of formulas have been dertved. For
mapping of Guam, the National Geodetic Survey and the USGS use an approxima-
tion to the ellipacidal obligue Azimuthal Kquidistant called the *Guam projection.”
[t is desceribed by Claire (1868, p. 52-52) as follows (changing his symbals to
mateh those in this publication):

The plabe coordingles of the geodetic stations an Guam were abtaitwd by Grst compiting the
geadetic distunees [ol and azivneths [Az] of ol poirts from the oripin by inverse computations. The
vpordingtes were then comnputed by the equations: [ = esin A2 and p = ceos Azl Thiz really rives o
trite azituthal equidistant projectinn. The eginations given heee are simpler, howewer, than those for
a peordetic inverse computation, and the resulting eoordinates computed vsing them will not be
signilicantly different from those eomputed rigidly by inverse compatatiom. This is the reason it is
cullid sor approgiongte admuthal equidistant projection,

The formulas for the Guam projection are cquivalent to the following:

¥ — i {h- Ay) cos GA1—¢® sin® g2 {25—18)
¥ =M - M + & tan & (1-¢° sin® $P2Za) (23— 19)
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where M and M, are found from equation (3—21) for ¢ and &,. Actually, the
original formulazs arve given in terms of seconds of rectifying latitude and gecdetie
latitude and longitude, hut they may be written as above. The x coordinate is thus
taken as the distance along the parallel, and y is the distance along the central
meridian Ay with adjustment for curvatute of the parallel. The origin occurs at (¢,
Ao), the ¥ axis coincides with the central meridian, and ¥ increases northerly.

For Guam, ¢, = 13"28°20.87887 N. lat_ and h, = 144°44°556.50254" E., long., with
50,000 m added to both « and ¥ to eliminate negative numbers. The Clarke 1866
ellipsoid is used. The above formulas provide coordinates within 5 mm at full scaie
of those using ellipsoidal Polyconic formulas (p. 129) for the region of Guam.

A more complicated and more accurate approach to the obligue ellipsoidal
Azimuthal Equidistant projection is used for plane coordinates of various individ-
ual islands of Micronesia. [n this form, the true distance and azimuth of any point
on the island or in-nearby waters are measured from the origin chosen for the
island dnd along the normal section or plane containing the perpendicular to the
surface of the ellipsoid at the origin. This iz not exactly the same as the shortest
or geodesic distance between the points, but the difference is nepligible (Bomford,
1971, p. 125). This distance and azimuth are plotted en the map. The projection js,

therefore, eguidistant and azirmuathal with resnect to the center and apnears to
wergigre, eguiqisiant ang azimulnal wilh res et to conigl appears o

satisfy all the requirements for an ellipseidal Azimuthal Equidistant projection,
although 1t is deseribed as a “modified” form. The origin is assipgned large-enouph
values of x and y to prevent negative readings.

The formulas for caleulation of this distance and ammuath have been published in
various forms, depending on the maximum distance involved. The projection
systerm for Micronesia makes use of “Clarke's hest formula™ and Robbins' inverse
of this, These are considered suitable for lines up to 800 km in length. The
formulas below, rearrangred slightly from Robbing’ formulas as given in Bomford
(1971, p. 136—137), are extendad to produce rectangular coordinates. No itera-
tioh is vequired. They are listed in the order of use, given & central point at lat. &,
leng. h,, coordinates x, and ¢, of the central point, the ¥ axis along the central
meridian k,, ¥ increasing northerly, ellipsoidal parameters @ and ¢, and & and i,

Ta find & and y:

N, = afl—g? sin® &2 (4—20a}
N = af(l-&% sin® 12 {4--20)
& = arctan [(1~e®) tan & + €N sin &,/ cos o)) (25—20)
Az = arctan [sin (x—2)/[cos &) tan & — sin dy cos (A—hg)]| (25—21)

The ATAN2 Fo

not a hnlm:-hla

tran function should be used with equation (25—21), but it i
t e to (25—
If sin 4z = 0,

ortra
(Z5—2m.

§ = = arcsin (eos ¢ sin r — s 4y COS Y} (25-32)

taking the sign of cos Az

If sin 4z £ 0,
s = arcsih [sin (A —i,) cos Yisin 4] (P5—23a)
In either case,
G = ¢ sin g H{1—e%® (25—23)
H = ¢cos ¢y 008 Azil—efyn {25 —24)
¢ = Ny s|l—S&I - HYG + (598G H 1 - 2HY

+ (12D HE4 - TH - 3521 - THY)] — (s"r48)GH! (25—25)
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26, AZIMUTHAL EQ

ceos Az + Ay (25-28)
¥ = ccosdz + 1y (25-27)

o
1l

where ¢ is the peodesie distunee, und Az iz azimuth east of north.
Tuble 32 shows the parameters for the various islands mapped with this

projection.
Inverse formmulus for the nolar eifipsoidal vspect, given @, &, &y, Ay, %, and 3

b — o+ (32 - 27432 + .. rsin2p + (21 %16 - 556,432 + ... )sin

dp + (151,596 — | . . dsinGp + {1097 ¢, %512 — . . sinBp + - .. (3—26)
where
g =11 - 1=V + (1-e*'7) (2—24}
o= MAa (-4 - 3e¥64 - 55256~ . . . )] {7—19}
M = My — p for the north polar case, (25—-28)
and
M =p — M, for the south polar case. (25-- 203

For improved computational efficiency using series (3—-26) see p. 19. Equation
(821}, listed with the forward equations, is used to find M), for ¢ = 90°. Far either
case,

p o= (¥ ¢ o ' (20—18}

For longitude, for the north polar case,
A = Ap + arctan la/{—yH (20— 16}

For the south polar case,

h = ko + arctan (xfz) 20—173
Inverse formulas for the Guam projection (Claire, 1968, p. 53} invalve an itera-
timn of two equations, which may be rearranged and vewritten in the following
form consislent with the above formulas. Given a, ¢, &y, Ag. x. and ¥, M, is
caleulated for &, from (3—21), given with forward equations. (If false northings

and eastings are included in x and y, they must be subtracted first.)
Then, first assuming & = &,

M=, v+ y— 2% tan & (1-¢° 5in? GPe2 @) (25—30

Using this M, w is calewlaled from (7—19) and inserted inlo the right side of
(3—26} to solve for a new & on the left side. This is inserted into (26— 30), a new M
is found, and it is resubsLituted into (7—19), w into {3 —26}, ete., until ¢ on the left
side of {3—26) changes by less than a chosen convergence figure, for & final 4.
Then

A = hg + x(1—¢* sin® N0 cos 4 (25-31)

The inverse Guam formulas arbitrarily stop at three iterations, which are suffi-
eient for the small area.

3
—
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For the Micronesia version of the eliipsoidal Azimuthal Bquidistant projection,
the inverse formulas given below are “"Clarke’s best formula,” as given in Bomford
{1971, p. 1838} and do not ionvolve iteration. They have also been rearvanyed to
begin with rectangular coordinates, but they are also suitabie for finding latitude
and lengitude aceurately for a point at any given distance ¢ {up to about 804 krn)
and gzimuth Az (east of north) from the eenter, if equations (25—232) and (25— 33
are deleted. In order of use, given «, ¢, central point at lat. &, long. hy, rectangu-
lar coordinates of center x,, ¥,, &8nd x and y for another point, to {ind & and A:

e = [r—xy® + (y = poP (25-32)
Az = arctan [{x—xoW{y— )] {25-33)
N, = g/{l=c* sin® ¢, )17 (4 —20u}
A = — ¢ o5 by cos® Al {25—-34)
B = 3c (1-A) sin &, cos ¢, cos Az/(1-€") (25~35)
0 = N, {25 —86)
E =D-A0+AFS - Bl +34)024 (25—37)
F = 1—- AE%2 — BE%S (25— 3%)
W = arcsin (sin &, cos £ + cos &, sin & cos Az (25—8m
A= kg 4+ aresin (sin Az sin Eicos &) (25—40)
& = arctan [(1—¢*F sin &y /sin W) tan &/(1-¢%) (25—41)

The ATANZ function of Fortran, or equivalent, should be used in equation (25— 33},
but not (25—41L.

Ta eonvert coprdinatas megsared on an axistine Azimuthal Equidistant mapn [fa)

VT LMl o dn axiEling AddnLLa (P LELLR LR HLE Bt

other azimuthal map projection}, the user may chaase any meridian for i, on the
polar aspect, but only the original meridian and parailel may be used for Ay and &,
respectively, on other aspects.



25. MODIFIED-STERECQGRAPHIC CONFORMAL PROJECTIONS
26, MOMFIED-STEREQOGRAFHIC CONFORMAL PROJECTIONS
SUMMARY

= Modified azimuthai,

+ Conformal.

« All meridians and parallels are normally complex curves, although some may
be straight under some conditions,

» Scale is true along rregular lines, but mup is usually designed to minimize seale
variation throughout 2 selected region.

» Map is normally not symmetrical about any axis or point.

+ Used for mups of continents in the Eustern Hemizphere, for the Pacifle Ocean,
and for maps of Alaska and the 30 United States.

» Specific forms devised by Miller, Lee, and Snyder, 195084,

HISTORY AMND TISAGT

Two short mathematical formulas, taken as a pair, absolutely define the confor-
mal transformation of one surface onto another surfuce, These formulas (see
p. 27} are called the Cauchy-Riemann equations, after two 19th-century math-
ematiciuns who added rigorous analysis to principles developed in the middle of the
18th century by physicist D'Alembert. Much later, Driencourt and Laborde (1932,
vol. 14, p. 242} presented a fairly simple senes (equation (26—4} below without
the R), involving complex algebra (with imaginary numbers}, thut fully satisfies
the Cauchy-Riemann equations and permits the formation of an endless number
of new conformal map projections when certuin constants are changed.

The advantage of this series is thal lines of constant zeale may be made to
Follow one of & variety of patterns, instead of following the great or small cireles of
the cormmon conformal projections. The disadvantage is that the length of the
serjes gnd the computations become increasingly lengthy as the irregularity of
the lines of constant seule increuses, hut this problern has deereused with the
development of computers.

Lahorde (1928; Reipmier, 1957, p. 130) applied this trunsformation to the map-
ping of Madagascar, starting with the Oblique Mercator projection and applying
the complex equation up to the third-order or cuble terms. Miller (1953) used the
same order of complex equation, but began with an oblique Blereographic
projection, His resulting map of Europe and Africa has oval lines of constant scale
(fig. 42); this projection is called the Miller Oblated (or Prolated) Sterecgraphie.
He sybsequently (Miller, 1985} prepared similar projections for Asia and
Austraiusia, each precisely conformal, but he linked them with nonconformai
Hfill-in" projections to provide a continuous map {in several sheets} of the land
masses of the Eastern Hemisphere,

Lee (1974} designed a map of the Pacifie Ocean, also using an oblinque Stereo-
graphie with a third-order complex polynemial. The third-order polynomials used
by Luborde, Miller, and Lee muke relatively moderate computational demands,
beesuse several of the ecefficients are zero, and the complex algebra can be
readily simplified to equulions without itnupginary numbers. Hecently Reilly (1973)
and the writer (Snyder, 18584a, 1985a) have used wuch higher-order complex
equitions, but modern computers can readily handle them. Reiily used sixth-
order cocflicients with the regular Mercator for the new official New Zealand
Map Grid, while the writer, heginning with oblique Stereographic projections,
used sixth-order coefficients for a map of Alaska and tenth-arder for a map of the
50 United States (figs. 43, 44). For these sixth- and tenth-order equations, only
one coefficient is zero, but the other coefficients were computed using least squares,
The projection for Alaska was used in 1986 by Alvaro F. Espinosa of the USGS to
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FiGuke 42.—Miller Oblated Stercopraphic projection of Eorope and Africa, showing oval lings of
constant seale. Center of projection lge. 18° N, long. 20° F.

depict earthquake information for that State. The “Modified Transverse Mercator”
projection iz still being used by the USGS for most maps of Alaska.

In addition, the writer (Snyder, 1984b} used oblique Stereographies as bases
with third- te (itth-order equations, most coefficients remaining zero, to surround
maps with lines of eonstant scale which are nearly regular polygoms or rectangles
(fig. 45). This minimizes error within a map as conventionally published.

FEATURES

The common feature linking the endless possibilities of map projections dis-
cussed in this chapter is the fact that they are perfectly conformal regardless of
the order of the cormplex-algebra transformation, and regardless of the initizl
projection, provided it is also conformai.

Chebyshev (1856} stated that a region may be best shown conformally if the
sun of the squares of the scale errors (scale factors minus 1) over the region is a
minimum. He further declared that this results il the regjon is bounded by a line
of constant scale. This was proven later. Thus the Stereographic is suitable for
regions approximately circular in shape, but regions bounded by ovals, regular
polygeons, or rectangles may be mapped with nearly minimum ertor by suitably
altering the Sterecgraphic with the complex-algebra transformation.

It the region is irregular, sueh as Alaska, the region of interest may be divided
into small elements, and the coefficients may be caleulated using least squures to
minimize the seale variation for the region shown, The resulting coefficients for
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FIGURE 43, -{:5-50 projection, with lines of conatant scale factor superimpised. ALl 50 States, including islandz and
passaged betwien Alaeka, Hawail, apd the conterminous 48 States are shown with scale factors ranging only from
1.02 to 0,08,

[ Rl

TTeee T

FicusE 44, —Modified-Stereographic Conformal projection of Alasks, with lines of constant seale superimpoecd. Seale
factors for Alaska range from 0,997 to 1.O03, one-{fourth the range for a corvespending conic projection.
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R LHE

FItURE 45.—Maodified-Stereagraphic Conformal projectiot of 48 United States, bounded by o near-
rectangle of cobstant scale. Three lines of constunt scale are superimposerd. Region bounded by
near-rectangle hws minimom error.

the seleeted projections are given below, but the formmlas for least-squares sum-
mztion are not included here because they are lengthy and are only needed to
devise new projections. For them the reader may refer to Snyder (1984a, 1984b,
19854},

The reduction of scale variation by using Lthis complex-algebra transformation
makes the ellipsoidal form even more important. This form is also simpler in these
razes than for the Transverse Mereator and some onther prajections, because the
lines af true secale normally do not follow a selecled meridiun, parallel, or other
easfly identifiable line in any ease. Therefore, use of the conformal latitude in
place of the geographie latitude is sufficient for the ellipsnidal form. This merely
slightly shifts the lines of constant scale from one set of arbitrary locations to
another. The coefficients have somewhat different values, however.

The meridians and parallels of the Maodified-Stereographic projectinns are gen-
erally curved, and there is usually no symmetry about any point or line. There are
limitations to these transformations. Mest of them can only be used within a
timited range, depending on the number and values of coeificients. As the dis-
tance from the projection center increaszes, the meridians, parallels, and shore-
lines begin to exhibit loops, overlapping, and other undesirable curves. A world
map using the G550 (50-State) projection is ulmost illegible, with meridians und
parailels intertwined like wild vines.

Within the intended range of the map, the Modified-Stereographic projections
can reduce the range of scale varfation considerably when compared with stand-
ard conformal projections. The tenth-order complex-algebra modification used
for the 50-Btate projection has a scale range of only =2 percent {nr 4 percent
overall) for all 50 States placed in their relative geographical positions, including
all islands, adjacent waters, wuter channels connecting Alaska, Hawail, and the
other 48 Stutes, and nearby Canada and Mexico (g, 43). A Lambert Conformal
Conic projection previously used with standard parallels 37% and 85* N to show the
50 States has a scule range of + 12 to —3 pereent {nr 15 percent overall). The
sixth-order modification for the Alaska map, called the Modified-Stereographic
Conformal projection, has a range of =0.3 percent {or 0,6 percent overall) for
Alaska itself, while 3 Lambert Canformal Conic with standard parallels 55° and 65°
N. ranges from +2.0 to —0.4 percent, or 2.4 percent overall,



The bounding of regions by ovals, near-regular polygons, or near-rectangles of
constant scale results in improvement of seale variation by amounts depending on
the size and shape of the boundary. The improvement in mean seale errot is about
15 1o 20 percent using a near-square instead of the cirele of the base Stereo-
graphic projection. Using a Moedified-Stersographic bounded by a near-reclangle
instead of an oblique Mercator projection provides a mean improvement of up to
30 percent in same cases, but enly 5 to 10 percent. in cases involving a long narrow
region. For fig. 46, the range of scale is £1.1 percent (or 2.2 percent overall)
within the 48 States, while the Lambert Conformal Conic normally used has a
range of +2.4 to —0.8 percent (or 3.0 percent overali).

The improvement for the region in guestion is made at the expense of scale
preservation outside the repion. The regular conic projections maintain the same
seale range around the entire warld between the same latitude Bmits, even though
most of that region is not shown on the reglonal maps described above.

Thﬂ MUL!IEB(‘I‘\%LEICU};I&}JLHL LUlIfUlJ.IIﬂl PIUJEL,LIU]IQ WIIILII Jlu\'t: ﬂ, aLdaly Jd|l]_,l._. ()]
more than 5 percent, such a5 regions bounded by rectangles 80° by 407 in spherical
degrees, may satigfactorily be computed for the sphere instead of the ellipscid, As
staled above, development of coeffivients is not shown here, For the caleulation of
final rectangular coordinates, given R, &y, Ay, A, through 4,,, B, through B,
&, and A, and to find & and y (see p. 344 for numerical examples):

k' =201 + 5in ¢, sin ¢ + cos b, cos & cos (A —AgH (26—1)

x' =k cos ¢ sin (A=K (26—

' =i’ [coz ¢, s5in ¢ — sin b, cos & cos (k= Re)] (26-23)

r+ip=R ; (4; + B (2 + iy)/ (26—4)

koo o= | S (AaB) (ki | (26-5)
Jnt

where k' is the seale factor on the base Stereopraphic map, (o', ) are rectangu-
lar coordinates for 2 globe of radius 1 on the base map, (&, ¥} are rectangular
coordinates on the final map, & is the seale factor on the final map, (b, h,) are the
central latitude and longitude of the projection, (¢, A) are the latitude and longi-
tude of the point to be plotted, K 15 the radius of the c.phere (A;, B;} are the
coefficients for j=1 o j=mi, the order of the equation, and i% is -1 Equatmns
(28~1} through (26—3) are simiar to the forward equations listed under the
regular Stersographic projection, but there are slight differences. The formulas
for this projection as published in Snyder (1884a, 1985a) introduce & (and o for the
ellipsoid} at the wrong points, altheugh answers are eorrect.

For the practical computation of equalions (264} and {26—43), Knuth's {1969)
algorithm is recommended instead of them, Let

ro= 2 = @ g = Digr = Ay & iBria; = gy

bl = fm-1: %1 = MG I-'7'£1. = (=1} g —1s thy = b -1 + riay;

by = g — 8'd; 0 = ri_‘ ooy n'. = ['m—i‘mm s — g'gi (2R~

7 ST a L] FAREL ] bl e | il
Aftor 1ic oiven the valne of etwenozcive iIntacere fram 2 tn 3 foe a: and b.and 92 4
L0 iz gve & yvalne of sUCCezslve ntarebs ir < Lo W Tor a; ana & and 2 o

=t

1
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T o+ !,y' =R I{GF' +‘iy|) Ry + bm]‘ [:25_7)
Fg+iF, = (@' +iy ey + dyg (26—}
= (P PP R (269

For the Muodified-Stereographic Conformal prajections with ovals, near-regular
polygons, or near-réctangles as bounding lines of constant scale, since there are
only two or three non-zero coefficients, plus a possible retation, equations (26— 4)
and (26—5} may be simplified to avold a need for the use of { or Knuth's algorithm.
The above formulas are rnore general, however, once they are programmed. For
the simplified forms, the reader is referred to Miller (1953} and Snyder (19840). If
% 13 pot beiny caleulated in the above formulas, the four equations of (286 —6) which
include ¢ or d, as well as (26— 8) and (26 - %), may be omitted. For constants, see
tahle 33.

For inverse eqications, given B, &y, &g, 4, through A, By through B,,,, », and
y, to find ¢ and i, first a Newton-Raphson iteration may be used as follows to find

(=, w'h
Aix 4iy'y = ~ fFle + iy WF+iFy) (2610
where
Fla +ig7 = 2 (A +i8Mx +iy ) ~ o+ iypk (2611
F, o+ iF. = 5 FAA: = iR (g {26~12)
Fy + iF, L J AR (T iy) {28

and the first trial value of #* is (/K3 and of ¥ is {x/R). The Knuth algorithm is
equally suitable here, using all of the equations in (26-6), assigning j values
which are described following those equations, and replacing equations (26-11)
and (26-18) with {26~13) and (268}, respectively.

flx' +iyy = (' +iya,, + b, — (z+ipiR f265—14)
After the trial vahtes of (x', ") are adjusted with (26--10) until the change in

euch is negligible {3—4 iterations are normally enough), the fimal (e, ) is con-
verted ta (4, A) withoot iteration as follows:

p =[x 'El"’ {36—143
r =2 arctan (p/2) (26—15)
b =uarcsin {eos ¢ sin &y + (¥ sin ¢ cos d:lfp)] (26—16)
A= Ag + aretan e sin cfp cos dy e0s e— ' sindg sin ) (26-17)

If p=10, equations (26— 16} and (2617} are indeterminate, but ¢ =& and A = kg,

FORMULAS FOR TIE FLLIPSOMY

For higher precision maps taking greater advantage of the reduced scale varia-
tion available with Modifted-Sterengraphic Conformal projections, the ellipsoidal
formulas should be used. Given g, e, ¢, Ay, Ay through A, B, through Bm, d;-
and A, to find r and ¥ ﬁpe:ﬁia; numerteal examples are not g"ii.'Ci’i but !:.’Ldluplt:b of

the aellipsoidal Sterecgraphic, p, 313, and of the spherical Modified-Stereographic
p. 344, are sufficiently similar):
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TaBLE 33 —Modified-Bicreographic Corfumanl projections: Corfficients for specific forms

Frking the Bnrth s a spheve:
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Tanry 33 —Meadified-Sterepgmphic Conformgl pridections; Coafficiants fiv specific forms—Continyed

Taking the Earth as an ellipzoid:

G330 projectivn for the 50 States:

g = §47T8,206.4 m al full seale (Clarke 1386 ellipsoid)
¢t = 006676866

m = 1

&y = 457N, lat.

Ay = 120°W long.

Ay = G.UR2T497 B =0

Az = UL2LG66S B, = 0005804
Ay = —-0.1031415 B, = -0.0G571664
Ay = ~0.0323337 H, = —0.0322847
A = 00502303 By = {.1211583
Ay = G.0251805 H. = 00893678
A = —G.0012315 B. = —0,141612]
Ay = 60072202 Ay = —0.13170491
Ay = —0.018JES Hy = 0.0759677
Ap o ~0.0210072 By = 0.0R34037

Modifled-Steresgraphie Conformal projection for Alaska:

a = 6,378,206.4 m at full seale (Clarke 1866 ellipsoid)

¢ = (LDUBETERGE

m =6

& = BN lat.

An = 152°W long.

Ay = 0.9945303 2 =0

Ay = DO0G2053 B, = ~0.0027404

Ay = 00072721 By = (0448181

Ay = - 00151089 B, = —0L1938526

Ar = 0.0642675 H: = —0.1381226

Aq — 03582802 By = —0.28R45RA
x — 2 arctan dan (w4 + $2)(1—e sin ¢} + e sin ]2 — =2 -1
# = cos bt l—e® sin® ) (14—-15)
5 =21 + sin y, 5iny + €05 y; cos x cos (A—X,)] (26— 18)
k' — & cus ylm 2619
' =5 cos x sln (A~ kgl (26— 20)
¥ = [eos x, 8in x — SN ¥y ¢08 X €08 (A—Agdi {26—£1)

where x; s foind as x (the conformal latitude) from equation (23— 1) by substitut-
ing & for ¢. The (', 4" thus found are converted to (r, ) with unchanged
equations (26—-4) and (265~5), or (26— 8) through (25-9) as listed under spherical
formulas with gecompanying explanations, except lthat £ i (26—4) or (26—~7) is
replaced with 2, the semimajor axis of the ellipsoid of eceentricity e, and the
constants used must be those for the cllipsoidal projection.

For inverse equations, given o, ¢, &, hy, 4, through A, B, throogh B, =, and
¥, to find & and », the Newton-Raphson lleration of spherical equati:ms (2R~ 10}
through (26— F3) is used unchanged to find (o7, »') except that K is replaced with
&, and ellipsoidal constants must be used. After convergence, Lhe final (7, ¥} s
converted to (4, A) without teration. Equations (26~ 14), (26-15), and (3—1) are
used to caleulate p, ¢, and x; as before.

Then,
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¥ = arcsin [cos e sin y, + (% sin ¢ cos x/p)] (26 —2%)
¢ =2 arctan ftan (v + /21 + ¢ sin $I1—e sin $))e2 — =2 (3~-4)
A = Ay + arctan (&' sin of(p cos ¥, cos ¢ — ¥ sin x, sin ¢}] (26--23)

If p=10, equations (26—22) and (26—22) are indeterminate, but x =g and & =X,
Equation (3—4), which should not nse the ATAN?Z function ar equivalent, involves
iteration by successive substitution, using ¥ as the first trial & on the right side of
the equation, caleulating & on the left, using the new value of & on the right side,
and so forth, until the change in & is negligible, Tables 34 and 35 list representa-
tive rectanpular coordinates for the ellipsoidal forms of the 50-State and Alaska
projections, to be used in the ahove formulas.
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TABLE 34.-=G550 projection for 50 States: Rectangwlar coordinates for Clarke 1366 ellipscid

i g emndinate in peenthews below z soakdinate; k (xcade facler! i italies. Equatarial radies of o lipscid

a = | it esenineity 4 hagd en Clarke JARA vllpsaid. Omipsn 40N, i, 19", lang., T oasis nlﬂrth frvm azigin |
Longitudde
Laritwle 163" 1R1" - 165° - 150° - 133" — 130"
Vi —1.29450 -0, 2695 -0.22462 — 016628 —0QYass —0.02677
(0.68122) {0.62254) (057777} {0.54832) 0.53514) (0.53917)
(L BERLIT LA 5 o ) L RsaEl 0 B8R0 104354 1. 1rg2a
60 —0.56708 —0.47652 —0,37432 —0, 25045 —0 12450 —0.00285
(0. B55TY) 10.449310 (0. 36467 ) {0 30445} [0, 268964 (0. 280811
1. 11056 10332 0.00Fz0 0. REG8, f.086430 101988
45 —1.78438 —L6oHTO —{1.51358 —0.35313 ~ ). 150610 UALCHLEH
{0.40816) {0.25882) (0, 14804} {DGTES) [0.01707) (0,000}
770089 1007 0.9755% 096761 ors6t 0.048841
20 0.99437 — (L8290 -0.61556 — 0446893 -0 23176 0.0 2
). 18093) {0.05909) (=10.065%5) (=0 16831 (—0.23687) (—{.26080)
[EREE I . B4 & 0,981 16 097RES 101528 JRIE ]
15 — 1. 26654 —0.9937% —LTTE55 — 05614 —11.30345 000686
{37724 {—0.17525) (—0,29355) [—0.4H45) (—0.BITLE) (—0.59997)
3.402883 I ZRTS% 102543 Q8750 1. 17865 1 24078
Langituds
~ Laritule — E05" — — 75" — 6 - 457 -
75° 005015 012669 .20188 027474 0.34144
{0.56135) {0, B2 (0.65601 ) (), TEH6E) [0, 8834w
1 2187 14348y 1. 55464 raThay P LEELN
a0 0. 131485 0. 26642 0, 30428 0.52563 0E6111
{0.27T13) {0L21778) (0.37903) _45182) 1.50581)
1.05401 1gris 1.iERid 1.11592 P L
48 18215 0.35975 {.52792 0.G3065 (). FRTGE
{0.01667) {0.06457) (1. 11091} ). 24658) 0.42634)
0,055 LEFSY 0. 03506 1.02518 I L4TRT
30 D.EARTR 0.44633 U.86344 083778 104409
[—10.23806) {—10.17878} {—10.08678) {0.53834) (N.00223)
100489 0.0%5%2 100584 O.ATENG RTETRS
15 0, 28360 0.53662 0. 76638 1. L2630} 0.56142
[ —8.-{8621} {=0.43117) (=0.3171% (5.21682] 1. 25008)
1 AEL0 1,185 3.85 2535 PR-EN I6. 00865
Takle 36 —Modificd -Sieveagraphic Conformal profection for Alaska: Rectonguinr coordingles for Clarke 1866 ellipasid
| & eon=dingbe w parentheses boen poooeediepte; & (cale fReieryin itsliae Faueteris) vdive of ellipsad, 9 = | upit, eccentecily o Gaeed o Ciarke L3 ollipeaid  Drigie: 647 Lat, - L5E Lang. .
T aais 20rth fnm erigin |
Langitud:
[t jlnde 171 L& =170° 181” - 18 —dn” — 13
™ - EAELL —-{.12311 —{), DH0OS1 —{1.03641 0.008%2 005402 0.089772
{0,24589) 0.22161) (0, 24445} {0.18488) {0.19248) (0.19788} (0.21074}
R 101147 1.00608 1. 00406 1 0020% 1.100458 I onaes
0 —0,21520 =0, 16271 =0 10647 =L (HTH2 a.Qlrsz 0.07140 01228
(0. 17360} 0. 14228) {0, 12028) (0. I0TTH (0.10454) (0. 11178) (0, 12BET)
103059 101437 PR LLE 10062 [Nk 100204 a2y
Bh —0.26675 =0, 20084 -0.18124 -0.05838 0.01475 0.08313 0.15975
{0, 09941 (0.08222) {U,03605) (0.02112) {0.01767 (0L0207R) (0.04538)
1.0042¢ TS 1.00273 0. 99805 0.99768 1.00108 100082
B0 —{1,315M —0. 23765 0.1556%1 -, 06868 —.01744 0,10427 018845
{0, 258 (—0.01818) (—0.04308) (—0.06536) [=0.069%16) (—0.050U13) {—0.037T2)
1.02872 1008045 9691 089752 IR LA 100020 1.00527
0& —{.36252 —1.27315 —0.17873 — 0 ORY 0.01999 Q12022 0.21725
(—(.08185) [ —0.09835) (—W 182100 (—0.15121) (—D.15683) [—0. 14811 (=1, 120435)
1.00025 i.00768 00021 100127 L.00548 1.004E7 199748
al —i}. 40740 —-i.30816 —i.20222 —0.09163 002232 2. 13669 . 24500
(—U.12654) [~ 0. 1782R) (—0.21616) {=0.23388) {—(L24518) i —0.23284) (=0, 20230
. REREM .oy 1002845 1. 00953 Pl 1.02337 0. 83448




HAPACE MAFP PR EUCTIONS

SPACE MAP PROJECTIONS

One of the most recent developments in map prajections has been that invalving
a time factor, relating a mapping satellite revolving in an orbit about a rotating
Earth. With the advent of autemated continuous mapping in the near future, the
statie projections proviously available are not sufficient to provide the accuraey
merited by the imagery, without frequent readjustment of projection parameters
and discontinuity at each adjustment. Projections appropriate for such satellite
mapping are much more comolicated mathematically, buat, once dorived, can be
handled by cornputer,

Beveral such space map projections have been concelved, and all but one have
been mathematically developed. The Space Obligque Mercator projection, suitable
for mapping imagery from Landsat and other vertically scanning satellites, is
deseribed below, snd 15 followed by a diseussion of Satellite-Tracking projoctions.
The Space Obligue Conformal Conie is a still more complex projection, currently
only in congeption, but for which mathematical development will be requived if
satellite side-looking imagery has been developed to an extent sufficlent to en-

comvoers 1t 11ko
courage 1ls WS,
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27, SPACE OBLIQUE MERCATOR PROJECTION

SLIMMARY

= Modified evlindrical projection with map surfuce defined by satellite orbit.

= Designed especially for continuous mapping of =atellite imagery.

= Bagically conformal, especially in vegion of satellite scanning,

» Groundtrack of satellite, a eurved line on the globe, is shown as a eurved line
on the map and is continuguzly true to seale as orbiting continues,

« Al meridians and parallels are curved lings, except meridian at each polar
approach.

» Recommended only for a relatively narreyw band along the gproundirack.

» Developed 197379 by Colvocoresses, Savder, and Junkinz,

HisTORY

The launchinge ¢f an Earth-sensing satellite by the National Aeronauties and
Space Administration in 18972 lad te a new era of mapping on 2 continumes basis
from space. This zatellice, first called ERTS-1 and renamed Landsat 1in 1973,
wag followed by two others, all of which circled the Earth in a nearly circular
orbit inclined about 99° to the Equator and scanning a swath about 185 km (offi-
cially 100 nautical miles} wide from an altitude of about 919 km. The fourth and
fifth Landsat satellites involved cireular orbils inclined aboul 987 and seanning
from an altitude of about 705 km.

Continuous mapping of this band requived a new map projection. Although
conformal mapping was desired, the normal choiee, the Obligue Meteator projec-
tion, iz unaatisfactory for two reasons. First, the Earth is rotating at the same
time the sateiiite is moving in an orbit which lies In a piane aimost at a right angle
to the plane of the Eqguator, with the double-motion effect producing a curved
groundtrack, rather than one formed by the intersection of the Envth’s surface
with & plane passing throuph Lhe center of the Earth. Seeond, the only available
Obligue Mercator projections for the ellipsoid are for limited coverage near the
chosen central point.

What wis neededd was a map projection on which the groundtrack remuined
true-to-scgie throughout its course. This course did not, in the easc of Landsat
1, 2, or 3, return to the same point for 251 revolutions, (For Landsat 4 and 5, the
cycle is 233 revolutions ) Tt was also felt niecessary that eonformality be closely
maintained within the range of the swath mapped by the satellite.

Alden P. Colvocoresses of the Geological Survey was the first to reaize not
only that such a projection was needed, but also that it was mathematically feasi-
ble. He defined it geometrically {Colvocoresses, 187d) and immediately began to
appeal for the development of formulas, The following formulas resulted from the
writer's response to Colvocoresses” appeul made at a geodetic conference at The
Ohio State University in 1976, While the formulas were devived (1077-79) for
Landsat, they are applieable to any =atellite orbiting the Earth in a circular o
elliptical erbit and at any inclination. Less eomplete formulas were alsg developed
in 1977 by John L. Junkinz, then of the University of Virginia. The follewing
formulas are limited to nearly eircular orbits. A complete derivation for orbits
of any ellipticity is given by Snyder (1881b) and another summary by Snyder
(1978b}.

FEATURES AND USAGE

The Space Ohligue Mercator (SOM) projection visizally differs from the Oblique
Mercator projection in ihat the central line (the groundirack of the orbiting
satellite) is slightly curved, vather than straight. For Landsat, this groundtrack
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appears a8 a nearly sinvsoidal curve erossing the X axis at an angle of ahout 8%
The scanlines, perpendicilar to the orbit in space, are slightly skewed with
respect to the perpendicular to the groundtrack when plotted on the sphere or
ellipsoid. Due to Earth rolation, the scanlines on the Earth (or map) intersect the
groundtrack at about 86” near the Equateor, but at 90° when the groundtrack makes
its closest approach to either pole. With the curved groundtrack, the scanlines
generally are skewed with respect to the X and ¥ axes, inclined about 4° to
the ¥ axis at the Equatar, and not at all at the polar approaches.,

The orbit for Landsat 1, 2, and 3 intersected the plane of the Equalor at an
inclination of about 99°, measured as the angle between the direction of satellite
revolution and the direction of Earth rotation. Thus the groundirack reached
limits of about lat. 81° N. and 8. (180° minus 99°). The 185-km swalh scanned by
Landsat, aboutl (.83° on either sitfle of the groundtrack, led to complete caverape
of the Earth from about lat. £2° N. to 52° 5. in the eourse of the 251 revolations,
With a nominal altitude of abaut 919 km, the Lime of one revolution was 103,287
minutes, and the orbit was designed Lo complete the 251 revolulions I exactly
18 days. Landsat 4 and 5, launched in 1852 and 1984, respectively, seanned the
same width, but with an orbit of different radius and inelination, as stated above.

As on the normal Oblique Mereater, gl tneridians and parallels are curved lings,
except for the meridian erossed by the groundtrack at each polar approach. While
the straight meridians are 15807 apart on the normal Oblique Mercator, they are
about 167" apart on the SOM for Landsat 1, 2, and 3, since the Earth advanced
about 287 in longitude for each revelution of the satellite,

As developed, the B0M is not perfectly conformal for either the sphere or ellip-
s0id, altheuyh the error is nepligible within the scanning range for either. Alony
the groundtrack, seale in the direetion of the groundtrack is correct for sphere or
ellipsoid, while conformalily is correct for the sphere and within 0.0005 pereent
of correct for the ellipsoid. At 1° away from the groundtrack, the Tissot Indicatrix
{the ellipse of distortion) is flattened a maximum of .00 percent for the sphere
and a maximum of 0.006 percent for the ellipsmd {this would be zero if conformal).
The seale 1° away from the groundtrack averages 0.015 percent greater than that
at Lhe groundtrack, a value which 15 lundamental to projectioh. As a result of the
slight nonconfermality, the scale 1° away from the groundirack on the ellipsoid
then varies from 8.012 to 0,018 percent more than the seale along the groundtrack.

A prototype version of the SOM was used by NASA with a peometric analogy
proposed by Colvocoresses (18974) while he wag seaking the more rigorous mathe-
matical development. This consisted hasieally of moving an obligualy tangent
evlinder back and forth on the sphere so that a circle around it which would nor-
mally be tangent shifted ta follow the groundirack. This is suitzable near the Equa-
tor but leads to errors of about 0.1 percent near the poles, even for the sphere. In
1977, John B. Rowland of the USGE applied the Hotine Oblique Mercator {(de-
scribed previously) te Landsat 1, 2, and 3# orbits in five stationary zones, with
smaller but sigmificant errors (up to twice the seale variation of the SOM) resnlt-
ing from the fact that the groundtrack cannot follow the straight central line of
the HOM. In addition, there asre discontinuities at the zone changes. This was
done to fill the void resulting from the lack of SOM formulas,

For Landsat 4 and 5, Lhe final S3OM eqguations replaced the HOM for mapping.
Figrures 46 and 47 show the 30M esxtended to two orbits with a 30° graticule and
for ane-fourth of an orbit with a 10 graticule, respectively. The progressive ad-
vance of meridians thay be seen in figure 46, Both views are for Landsat 4 and

5 constants.

FORMULAS FOR THE SFHLRE

Both iteration and numerical integration are involved in the formulas as pre-
sented for sphere or ellipsoid. The iteration is quite rapid (three to five iterations

Zi5
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required for ten-place acewracy), and the numerical intepration is greatly simpli-
fied by the use of rapidly converging Fourier series. The coefficients for the
Foutier series may be calculated once for a given satellite arbit. [Some formulas
below are slightly simplified from those first published (Snvder, 1978p).]

For the forward equations, for the sphere and circular orbil, to ftnd (2, y) fora
given (g, A}, ii is necessary to be given &, i, Py, Py, Ao, b, und &, where

£ = rudius of the globe at the scale of the map.

{ = angle of inelination between Lhe plane of the Earth's Equator and the
pline of the satellite orbit, measured counterclockwise from the Equa-
tor to the arbital plane at the ascending node (9%.092° for Landsat 1, &,
3: OR.20° for Landsat 4, 5.

P, = time veguired Tor revolution of the satellite (103267 min for Landsat
1, 8, 3; 98884 min. for Landsat 4, 5).

Py = length of Earth's rotation with respect to the precessed ascending node.
For Landsal, the satellile orbit is Sun-synchronous; that is, it is always
the same with respect to the Sun, equating &, to Lhe solar day (1,440
min). The ascending node is the poinl on the satellile orbit at which
the satellilte ergsses Lhe Earth’s equatorial plane in a northerly
direction.

hy = geadetic longitude of the ascending node at time /=0,

(. k) = geodetic latitede and longitude of point Lo be plotted on map.

! =tlime elapsed since the salellite crossed the ascending nade for the orbit
considered to be the initial one. Thisz may be the current orbil or any
earlier nne, as long as the proper h, is used.

First, various constants applying Lo the entire map for all the satellite’'s orbits
should be calculated a single time (see p. 347 for numerical examples}:

B =2/ m) fpr* [(H-S51 + SH)edn (27-1;
A, =madfemd (5 - SEL + §51) cos na dh (27-2)

for =2 and 4 only.
C,o= 140K+ L) ]fym? [841 + §9'%) cos an" di “27-m

for =1 and 3 anly.

For caleulating 4,, &, and €, numerical integration esing Simpson’s rule is
recommended, with @ intervals in A* (sufficient for ten-pluce accuracy). The lerms
shown are sofficient. for seven-place accuracy, ampie for the sphere. For f{ and §
in equations (27— 1} through (27 -3k

H o=1-(F ) cos i (27—
5 = (P st feos ' [27—"51

Ta find & and ¥, with the X axis passing through each ascending and descending
nade (wherever the proundirack vrosses the Equator), & increasing in the divee-
tion of salellite molion, and the ¥ axis passing through the ascending node for
time f=U:

wiR =HA + Agsin Bh o+ Apsindd” + L.

=841 + 5] In tan (A4 + 402 (27-8)
=0 sinh' + Cpsln 3 ~ L.
+ |11 + E5% Ip lan (mid 4+ i) (27-7

where B, A, and O, are constants caleviated above, § is calenlated from (27 -5)
for each point, and
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K =arclan {eos o tan Ay 4+ sin € tan dicos i) (27 -8
Ay =xh—hp + (PPN 27—
S = aresin (eos [ sin & -~ sin € ens & osin &) {(Z7-10%
Ay = 12887 — (3607251)p (Landsat 1, 2, 3 only (27-11}
= 124.20° - (360°/233)p (Landsat 4, 5 only) {97 —1%a)
= path number of Landeat orbit fur which the ascending node oecurs at
time f =1i. This ascending node is prior to the siart of the path, 30 that
the path extends fram Y orbit past this node to ¥, orbit past it.

&' = "transformed longitude," the angular distance along the groundivack,
measured from the initial ascending node (f=10), and directly propor-
tional to f for a eircular orbit, or &' =360° £P,.

&y = a “satellite-apparent” longitude, the longitude relative to A, seen by the
satelhite if the Earth weve atationary.

&' = “transformed latitnde,” the angular distance from the groundtrack,

positive to the left of the satellite as it procecds along the orbit.

Finding &' (rom equations (27-8) and (279} involves epation performed in
the following manuner: After zselecting ¢ and A, the &' of the nearest polar ap-
proach, k', is uzed as the first trial A" on the right side of (27~9): A, is caleulated
and substituted into (278} to find a new &' A quadrant adjustment (see helow)
s applied to &', singe the computer normally caleulates arctan as an angle be-
tween — 907 and 907, andl this A is used as the next trial &7 in (27— 9), ete,, until }°
changes by less than a choser. convergenee factor. The value of &' may be deter-
mined as follows, for any numbesr of revolutivns:

by =8 XN +221) 27-12)
where N is the number of orbits completed at the last sscending node before the
satellite passes the nearest pole, and the * takes milws in the Korthern Hemi-
sphere and plus in the Southernt {either fur the Equator). Thus, if only the first
path number past the ascending node is involved, A, is 80° for the first quadrant
{North Pole te Equatoer), 270° for the second and third quadrants (Equator to
South Pole to Equatur), and 430° for the fourth quadrant { Eguator tn North Pole).
For quadrant adjustment to A" caleulated from (27—8), the Fortran ATANZ or
its equivalent should net e used. Instead, »* should be inereased by Ay’ minus
the following factor: B0° times sin i’ thnes * 1 (taking the sign of cus A, where
hip=h—hy + {PEHP,)}-.P'). If eos Ay 18 zero, the final A7 is Ay Thus, theadder to the
arctan is 0° for the quadrant between the aseending node and the starvt of the path,
and 180*%, 1807, 360%, 2nd 360°, respectively, forthe four quadrantsolthe first path,

The closed furms of equations (27—6) and {(27-T) are a5 follows:

o Y
n

iR = [(H-8w(1 v S5 da —[81 r 35

In tan (wd + &'/2) [(2T—6Ga)
R =(H + 1 [PISAL + 55dh + (141 + 523
In tan (mfd + 772 (27="Ta)

Since these involve numeriesl integration for each point, the series forms, limit-
ing mumerical inlegration to once per satellite, are distinetly preferable. These
nnnnnnnnnnnnnnnnnnnnnnnnnnnn

from 0 to 2=, without the multipliet 4, but the syminetry of the circular orbit per-
mits the simplification as shown for the nonzers coefficlents.

For invevse formulas for the sphere, glven B, 4, Py, Py, A, 2, and y, with & and
» vequired: Constants B, A, €, and A, must be caleulated firom (27-1) through
(27—3) and (27— 11} just as they were [or the forward equations. Then,

Zl9
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h =arctan [cos 1 sin A" —sin i tan & Veos M= (D0P)00 ~ A, (27—13)
i =aresin (e0s 7 sin b + sin i cos & 5in A% (27-14)

-where the ATANZ funetion of Fortran is useful for (27 — 13}, except 1hat it may he

necessary to wdd or subtracl 36507 to place k between long. 180° B, { + and 180° W,
(=1, and

o= [riR o+ SpR-Apsin ZA—A sind A -5(C) sin k' v £ sin g A
(27-15)
intaniwd + &2 = (1 4 SR -C, sin A —Cr sin 3470 (27— 16

Equation (27 =15} s tterated by trying almost any &' {prefevably #8121 in the
right side, solving for A" on the left and using the new A’ for the next trial, elc.,
unti] there is nue significant change hetween suceessive (rial values. Eguation
(27=16) uses the final A" caleulated from (27-15).
The closed form of cquation (27—-15) given below invoives repeated numerical
integration as well as iteration, making its use almost prohibitive:
o
w4 Syt = § [-stel + sl
+ SOH + 1) for [8AL + S5 (27— 15a}

The foliowing elosed forin of (27— 18) requires the vse of the iast integral ealeu-

L

lated from (27 - 15ak
Intan(md + &2 = (1 + S —(H + DM ISAL + S52dh (27— 18a)

The original published formz of these equativns inciude several uther Fourler co-
efficient caleulations which sliphily save computer time when continuous mapping
is involved. The resulting eguations are more complicated, so they are omitted
here for simplieity. The above equations are as accurate and only slightly less
efficient.

The values of coefficients for Landsat 1, 2, and 3 (PP, = 18251 = 949092 are
listed here as examples:

A, = —0.0015820

A, = 00000007

Mo = 1.00TR6GA4142 for A7 In radians
= [L.0O1TaBA8EED for &' in degrees

€ = 0.1421597

C:q = —(.0000245

It i5 ulzo of interest Lo determine values of &, A, or A" zslong the proundtrack,
given any one of the three tas well as 5, F*(, 1, and A ). Given &,

A" =arcsin (sin dy'sin 1) 27 -1M
A —arctan [{eos § sin A eos M- (F P06 + &y (2718

If & i given for 8 descending pavt of the orbit (duyviirht on Landsat), subiract
A7 from the &' of the nearest descending node (180°, 540°, . . ). I7 the orbit is
ascending, add A7 to the &' of the nearest ascending node (07, 360°, . . ) For a
given path, only 1580° and 360° respectively, are involved.

Given X,

A" = aretan (Lan hpfoos @) (2r—19%
A = h=hky v [F2/PN (27—9)

ac1rr

= o imrpaetam F T o oo & Y e s
L = dlCslIl D= sl A ) L& --ZU)
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TARLE 38 —Scale faciors for the spherical Space Obfigue Mercstor projection using Landsat 1, £,
anr 3 ronstants

, o= 1° ¢|=_'1D

X % % - ", Y % o _
0° _.__ 1000154 1000151  0.0006 1000152 1.000164 1000151  (.0006 1.000152
B 1000158 1000151 0006 1.000151 10001564 1000161 0006 1.000152
10 _____ 1000163 1000IGI 0006 1000151 1000156 1000161 0006 1.000153
% 1000162 1000151 0006 1000150 1000155 1000151 D006 1.0KNS3
20 _____ 1000162 1.000151 0006 1.000160 1000156 1.00015] 0008 1000154
26 . 1000152 1000151 0006 1000160 10001566 10D0IS1 008 1000154
30 . 1000162 1000151 0005 1.000149 1.000156 1000151 0005 1.000154
35 . 1000162 1000160 0005 1000149 1000156 1000151 0005 1.000154
40 ___ 1000152 1.00a150 0008 100010 1000156 1000151 0006 1.000164
4b _ 1000152 1.000150 0004 100160 1000166 1000151 0005 1.000154
50 1000152 1000160 0004 1000150 1000156 1.000161 0004 1.000154
55 ___ 1000152 1000166 0004 1.000150 1000155 1000151 0004+ 1.000154
86 ©___ 1000153 1000161 0003 100015 1.000IGE 1000161 0007 1000154
65 _ .__ 1000163 1.000151 008 1000151 L.00D1AS  1.004151 0003 1.000153
70 1000153 1000151 0002 1000152 1000154 1.000151 0002 1000153
76 0 1000153 1000151 0002 1000152 1000154 1000151 0002 1.000153
80 .- 1000163 1000151 0001 1000152 1000153 1000152 0001 1.000153
85 .. 1000153 1000152 0001 LOGNISZ 1000153 1.000152 0001 1.000152
90 7770 1000152 1000161 0001 1000152 1.0COLS2 1000152 0000 1.000152

Moles: &= zngular pesition along groundirack, Mom ascendimg nole.

$° = angular distaiwe gway from groyndirack, positive in direction away Trom Morth Fale.
k- acqle factgr wiong merdian of longtuda.
k= weube factor along paradle] of latitude.
w = maximum angular deformation.

my. = weale factor wlang line of constunt &°,

. = acabe fartar along line of ennatant 4°.

v e ", ar LOBIISE at " =1°
IF ={F, &, k, and m,. = 1.0, while w=10,

Given &', aquations (27— 18) and (27—20) may be used for & and &, respectively.
Equations (27 -6) and (27—T7), with ' =0, convert these values to x and ». Equa-
Lions (27— 19) and (27=% require joint ileration, using the same procedure 15 Lhat
for the pair of equations (27—8) and (27 —9) given earlier. The d calculated from
eqquation (27-18) should have the sume quadrant adjustment as that deseribed

TR Ly L U F LY
LA o Lupf.

The formiilas for scale factors /r and & and maximum angolar deformation ware
a0 lengthy that they are not given here. They are available in Snyder {(1981h).
Table 38 lists these values #s calenlated for the spherical S0OM using Landsat,
eonglants, Although caleulaied for Landsal 1. 2, and 3, they are almost identical
for 4 and 5.

FORMUT.AS FOR THE ELLIPSCID AND CIRCULAR ORBIT

Since Lhe B0M is intended to be used only for the mapping of relatively narrow
strips, it iz highly recommended Lhat the ellipsoidal form be used to tuke advan-
tage of the high accuraey of scale available, especially as the imagery is further
developed and used for more precise measurement. In addition to the normal
modifications to the above sphervieal formulus for ellipsoidal equivalents, an addi-
tional element is introdueed by the fact that Landsat is desighed to sean vertically,
rather thun in 4 geccentric direction. Therefore, “pzeudotransformed™ latitude "
and longitude A" have been introduced. They relate Lo u geocentric groundtrack
for an orbit in a plane through the center of the Earth, The regular Lransformed
coordinates ¢’ and A" ure reluted Lo the actual vertiesl groundirack. The two
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groundtracks are only a maximum of 0. 005 apart, although a lengthwise displace-
ment of 0.028° for a given position may occur.

If the eceentricity of the ellipsoid is mude zerp, the (ormulzs reduce to the
spherieal formulas above. These formulas vary shightly, but not significantly,
from those published in Snyder (1978b, 1381b}. 1n praclice, the coovdinates for
each picture element (pixel) should not be caleulated because of ecomputer time
required. Linear interpolation between aceasional calculated pointz can be devel-
oped with adequate accuracy.

For the forward formulas, givena, e, i, Pa, Iy, Ag, g, &, and A, find 2 and y. As
with the spherieal formulas, the X axis passes through each ascending ynd dezcend-
ing node, ¥ increasing in the direction of sutellite motton, and the Y axis intersects
perpendicularly at the ascending node for the time £=10. Defining terms,

a, & = semimaior axis and eccentricity of ellipsoid, respectively (as for other
ellipscidal projections).
Ry = radius of the eircular orbit of the satellite.
i, Py, Py, kg, A are a8 defined for the spherical SOM formulus. For constants
applying to the enlire map (see p. 354 for numerical examples):

B = (2imf A HS KBNS + §Ep e (27~21}
Ay = G o S-S50 5 55 cos nheda” (27-22)
O, = [ ) e S H + HHSE + 55912 cos mh'dA” (27-23)
J o= - (a7—24)
W o= - eos® P31 — 2] (27—25)
Q= & sin® ] ~eD (27-26}
T = & sin? #2— W1 -9 (2727}
o = T b sin wA R (27-28)
Wy, = (RN =N sin nh'dh (27-20)

where 4" and A" are determined tn theze lust two eguations [or the proundtrack
as funetions of &', from equations (27—43), (27-34), {27-35), and (27-36).
Te caleulate A, B, and €, the following [unctions, varying with A%, are used:

5 S (PP ysindcos &7|(1 + T sin® &1 + W sin® A"
{1 + @ sin® A7) (27-30)

T iy . H T
) 1+ Qsin®A Y+ Wsin®™A b yeos i (27-31)
1+ W osin® ar (1 + Q sin® A

These constants may be determined from numerical intepration, using Simp-
son's rule with ¥ intervals. For cireular orbits, 4., if %18 odd, C, if 2 is even,
dn if 2 15 even, and wi, if 2 i3 odd are all zere. The above nteyration Lo =/2
i suitable, due to symmetry, only for non-zero coefflcients. Intepration to 2
would be necessary to show that other coeffictents are zero.

To find i and ¥ from & and A:

ol = BN+ Assin8h" + A sinda” + .. — [SiJ* + BB
In tan (w'd + ¢™2) (27-32)
wa = sin k' + Cgsin 3 4+ L.+ A+ 5
In tan (nMd + $2) (27-33)
where
A" = arctan fcos i tank; + (1—&) 8in 7 tan @ioos A (27--34)

£
u

.:'L_hu 13 (Pz.'rpl:] A (2?_353



27, SPACE QBLIQUE MERCATOR PROJECTION

& = aresin |[[(1—#%) cos © sin ¢—=sin 7 cos & sin A}
(1—¢” sin” )+ (2736}
Ay = 12B.87 — (360°201)p (Landsat 1, 2, 3 only) (27-371
= 129.30° — (360°/233)p (Landsat 4, 5 only) (2738

Equations (27—34) and (27-25} are iterated together as were (27-8) and
(27- 9% Equation (2730} 15 used to find 5 for the given »” in equations (27-32)
anl {27 - 33). For improved computational efficiency using these and subsequent
geries, see p. 19,

The closed forms of equations (27—-32} and (27-53) are given below, but the
repeated numerical inlegration necessitates replacement by Lhe series forms.

win = [WTOHI-SB0F = 5oy ] dn — (842 + 55

In tan {«a/d = $"2) (27— 324a)
o = JIS(H + 0060 + §392] dy + W+ 599
In tan {m/d +4"i2) {(27—33a)

While the above equations are sufficient for plotting a graticule acrording Lo the
BOM projection, it is also desirable to velate these points to the true vertical
groundtrack. To find ¢” and A7 in terms of ¢ and &', the shiflt between these two
sets of coordinates is so simall il is equivalent to an adjustment, reguiring only
small Fourier coelficients, and very lengthy caleulations if they are not used. The
use of Fourier series is therefore highly reecommended, although the one-time cal-
culation of coefficients is more difficult than the foregoing calculation of 4, B,
and €7,

&' = d g sin M +Hasin3n + L L. (27 -39
A" = N+ 282N+ wigsindh + ., (2740

For a circular orbit, &' is 2a#/P;, where t is the time from the initial ascending
node.

The equations for funclions of the satellite groundirack, both forward and in-
verse, are given here, sitice some are used in caleulating §, and m, as well. In
any case a, ¢, i, Py, Py, Ay, and B, must be given. For &' and &, if 4 is given:

&—arcsin ‘ae” sin ¢ cos IR, (1- & sin® ]| (27—-41)
aresin (sin d,/sin 1) (27— 423

\E
h_J

where &, is the geocentric latitude of the point geocentrieally under the satellite,
nol the geocentric latitude corresponding to the vertical groundtrack latitude 4.

h =arctan [{eos i sin A Heos A ]=(FP P00 + Ry (27 —43)
Il & of a point along the groundtrack is wiven, to find &' and ¢,

&' = arctan {tan A,/cos 1) (27-18)
Ny = A—Ag+ [EP) A (27-35)

These two equations are iterated as a group, but the first trial &' and the quadrant
adjustments should follow the procedures listed {or eguation (27—8)

¢ = aresin {50 1 sin k') +aresin {2e sin & cos &
R, (1- & sin® $3'2]) (27— a4)

Lteration ig involverd in (2744} beginning with a trial & of aresin (gin 4 s5in A7)

223
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If &" of a point aleng the groundtrack iz given, & is found from (27 -44), and
(27 - 43} provides A. Only (27— 44} requires iteration for these calenlations.

Frverse formulas for the ellipsoidal form of the SOM projection, with circular
orbit, follow: Given e, ¢, &, Pa, £y, ko, £, ¥, and », to find & and A, the peneral
Fourler and other constants are first determined as described at the heginning of
the forward equations. Then

A= k= PP R+ (27~ 45)
where
&y = arctan {Vicos A"} (27 -46)
¥ ={[1-sin® ¢"%1— &%) cos § sin A—sin 1 sin ¢° [(1+Q sin® &
(1—sin® &")— £ sin® & 21 —sinf & (14 10] (27 —47)
U = cos” iftl—eD (27483

while &" and ¢ are found from (27—51) and (27 —52) helow,

d=gretan {lan A" cos X, —cos ¢ sin A, 1[{1— &) sin {| (27 —49)
if 1=1), equation {27—49) is indeterminaie, but

& —aresin ‘sin (11— £ & 5in? "] (2T -5

No iteration {s involved in equations (27 —45) through (27 -50), and the ATANZ
funciion of Fortran should be used with (27—46), but not (27 -49), adding or sub-
tracting 3607 to or friom A if necessary in (27— 45) to place it between longs. 180° E.
angd W,

Iteration is required ic find A" from r and 4

A= |xia o (Si e} - Ay sin 2 A— Ay sin 4 0
—(SANEC, sin A+ Oy 5in 8 AR (27—-5a1)

using equation {27-30) and varipus constants. [teration involves substitution of a
trial A" =xig K in the right gide, finding a new A" on the left side, ete.
For &", the A" just calenlated is used in the following eruation:

In tan (w4 + &2} = (1 + 52402 (i —C; ain A"=Cy sin 3 4" (27 =52

The closed forms of equations (27—51) and (27-52) involve both iteration and
repeated numerieal integration and are impractical:

il + (SED(yted = [FTCHT = 58I + 5802

F ST [ TECH + N~ BB da t27-51a)
In tan (i + &2 =1 + (SR ha— i [SGH + W
%+ 552 |ga (BT—52a)

For & and A" in terms of ¢ and A", the zame Fourier series developed for
equations (27— 39) and (27-40) may be used with reversal of signs, since the eor-
rection is so small. That is,

& =& =4, sin =, sin 3A"— , . . (27-52)
o= 0= 2in 2 A=, min 4 A— L. (27-54)

Equations (27—-53) and (27—-54) are, of course, not the exact inverses of (27-59}
and (27—-40), although the correct coefficienis may be derived by an analogous
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numerical integration in terms of &%, rather than A’. The inverse values of ¢” and
A from (27— 53) and (27— 54) are within 00000037 and 0.000009°, vespectively, of
the true inverses of {27-39) and (27— 40) for the Landsat orbits.

The following values of Fourier coefficients for the ellipsoidal SOM are listed
for lL.andsat orbits, using the Clarke 1866 ellipsoid {a = 6,378,20i.4 m and ¢ =

O.00RTEE6RY and a cireular orbit:
Landsat 1,2, 3  Landsat 4, &

A= 1003798138 1004500314 for A" in radians
0.01755448 0.017532886  for A" in degrees
Ay = =0.0010875201 -~ 00008425101
A,y = —0.00000129258 —0.000001 2674

Ag = —(L0000000021 —0.0400000021
Cy= [L143440985%9 0.137B02R730
= 0.0000285091 0. 00002934 8%
€ = — 00000000011 0.0000000004
= 7,294,600 7,081,000 meters
1= 99.0%2° 98,207
PuiPy = 181251 167233

5= 000865567 0.00619893 for ¢* and &' in degrees
Ju= (00081784 0.00061698 "

{s = = 000000263 = 000000308 "
e = — 0.02384005 -0.01901574 for 8" and A" in degrees
wmy; = 000010606 000011587 N
Tig = 000000019 0. 00000024 i

Additional Fourier constants have been developed in the published literature
for other funetions of eircular orbits. They add to the complication of the equations,
but not te the accuracy, and only slighily to continuous mapping efficiency. A
further simplification fraom published formulas is the elimination of a function £,
which nearly eancels oul in the range involved in imaging.

Ay in the spherical form of 30M, the {ormulas for seale factors £ and & and
maximum angplar deformation w are too lepglhy Lo include here, although they
are given by Snyder (1981h). Table 37 presents these values for Landsat con-
stants for the scanming range required. Values for Landsat 4 and 5 are nearly
identical with those shown for 1, 2, and 3.

FORMULAS FOR THE ELLIPSOID AND NOMNCIRCULAR ORBIL

The following formulas accommadate a slight ellipticity in the satellite orbit.
They provide a true-to-scale groundtrack for an orbit of any eccentricity, if the
orbital motion follows Kepler's laws for two-bodied systems, bul Lhe areas scanned
by the satellite as shown on the map are distorted beyond the accuraey desired if
the eceentricity of the orbit excerds about 0.05, well above the maximm repoted
eccentricity of Landsat orbits (gbout 0.002). For greater cccemlicitiEa, more
complex formulas (Snyder, 14810) are recommended, If the orbital eccentricity is
matle zery, these formulas readily reduee Lo those for a eireular orbit.

For the forward formulas, given e, ¢, ¢, Pa, Py A, 2, &, 4, b, and A, find & and
¥. Again, the X axis passe:s through each ascending and descending node, a
increasing in the direction of sutellile motion, and the ¥ axis intersects perpendic-
ularly at the ascending node for the time t = 0. Defining terms,

', ¢ = semimajor axis and ceeentricity of satellite orbit, respectively.
= longitude of the perigee relative to the ascending node.
a and e are as defined for the ellipsoidalfeireular formulas, and {, Pa. Py, A 4,

225
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TaBLE 37.—Seale factors for the elffipsoidsl Space Obligue Mercator projection using Landsse 1, 2
and 1 constames

bl " R k w® 5in M2 w

6 . 1° 1.000154 1.000151 0.0006 0.00Q005
0 1000000 1.0G000¢ L0000 L00G00

-1 1.000154 1.0 51 0006 0005

Y 1 1.000162 1.000153 0022 O0on1s
0 1800060 1066000 0001 000030

-1 1.00G147 1.000151 0011 Q00010

2 ___ 1 1.000167 1.000150 0033 L0029
[} 1000600 106000 NULH 00001

-1 1.00Gi42 1000150 .0025 00021

45 1 1.000172 1.000250 0036 000031
1) 493999 1.GOOGO0 0001 000001

~1 1.000138 1.000250 0031 000027

60 1 1.000174 1.000150 0031 00027
0 999999 1.G0Go00 (002 000001

-1 1.000136 1.000150 .nozs Q00025

e 1 1.000174 1.000152 0319 O16
¢ 999999 1000300 0001 Q000

-1 1003135 1.G0150 0319 000016

90 __ 1 1.00G170 1.000156 0008 000007
0 999399 1000000 0000 B00000

-1 LO0G133 1.000151 L0160 Q00009

Mutes: A" -engulsr position aleny geeeentoe gheunitrack, foom asecnding node.
¢ ranpular distenes sway from gexcentrie proundirack, pnaitive in dircejion away fram Nerth Paole.
h - seala Toetor along meridian of lengowle,
k - aczle furtor ulong parallel af Lelitude,
W~ MKW angar deformation.

50 Wt maximum variation of seale @eters from true envafermal valuea.

and A are as defined for the spherical 30M formulas. For conslants applving to
the entire map {a numnerical example is not given for the non-circular orbit):

3

= | 12w f 2ol F — 82 + e

fie = VA2t nLSCH + IS5+ 52y fdh®
= | L{ara) [f e | CGHLF - SEW0IE ~ 85014] eos ik A"
= [V (HF— 853072 ~ §202] sin wAh“dh”
= PIAm) [ o LSO 5068 + S50 cos madh”
= Pt gtnl SOH + SVESS + §°12) sin #A"dh"

Ay
A"y,
C
&
J
W
Q

7

rr

ted
5
Tu
j'F!
iy
m'y

= “ FEE):I

=H1-¢* cos” i 1-e®)®|- 1
=¢¥ sin® (1)

= ¢ sin® i 12— %1 — 5P

= 1,482+ B,

= Boitl )+ Rne

= {1rmfs " sin wh'odd’

= {limif,* " cos wxdh’

= {1/ i = A} sin whdIh
= (i)t~ A"} cos na'dr’

(27 —55)
{27 -56)
{27 =57)
{27 -5%)
{27-59)
(2760
(27 -24)
(27 - 25)
(27~26)
(27-27)
(#7-61)
(27-62)
(27 - 63)
(2764}
(27 —65)
(27— 66)

where &" and A" are delerminer| in these last four equalions for the groundtrack
as functions of &, from equations (37— 68a), (27-87), (27 --86), (27 —85), (27— 88),
and (27-234), (27— 74) through (2776}, amd (27-36).

To caleulate A, A, H,, 7, and &7y, the (olowing functions, varying with &,

are tsed:

8 ={PyP)L sin {cos \(1 ~ Tsin® AM(L + W sin® x™)
{1+ @ sin® A7)

(27—67)
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1F @sint A Dl 1 4 Wosint av
i _[ g sin N] L la — (PP L o 1'] (&7 6Ta)

o+ Wsin® A 1 + & sin® a°
L = (l—e eos B¥H1—e e (27-68)
E' =2 arctan ‘tan [(A—y)V2] [(1—e )14 ¢ ) (27-68)

These constants may be determined from numerical integration, using Simp-
son's rule with 9° intervals. Unlike the case for cireular orbils, integration must
occur through the 3607 or 2m eycle, as indicated. Many more terms are needed than
for cirenlar orbits.

To find & and ¥ from & and A,

e =a'H, + y'Ss) {27-70)
woe =y'H -2’5, 27-T1

where

A 2 ni—I:A*‘ sin n " —”ilA’ﬂ cos nh" + ..i.AJ” — [SAS2 = Sy

Intan (wd = $%2) (27 72
yo= B+ §1C,, sin A" ~ “}?1C’,; 08 k" + ”};.C'ﬂ + (IR + 59e)
In tan (m/d = &2 (BT -7%
A= avetan [eos 7 tan hy + (1 - &%) sin 4 tan dleos Al {47 —44)
o=k xg t (PAF LY (27 -74)
I =E' - ¢ snk 2775
E' =2 arctan ‘lan [(h"—¥2] [(1-a" W1 + e} (B7—Té)
¢" = aresin {[“_ez) vos { sin 4 - sin ¥ cos b sin M)
{1-¢® sin® g (27 -36)

Funetion E' i3 called the “eceentric anomaly™ along the orbit, znd L is the
“mean anomaly” or mean longitude of the satellite measured from perigee and
directly proportional to time,

Equations (27-34), (27— 74} through (27-76), and {27 =230} are solved by special
iteration as deseribed for equations (27—8) and (27-9) in the spherieal formulas,
exeept that W* replages &°, and each trial X" is placed in (27-76), from which
E" Is calculated, then L Irom (E7-T5%, A from (2774}, and another trial AY
from (27—343. This evele is repeated until & changes by less than the selected
cotivergence, The last value of &, found is then used in (27 -38) to find ",

Eguation (27 -/7) is used to find § for the piven A in cquationgs (27—T72) and
(27-73).

The closed forms of equations (27— T2} and (27—T3) are (27-32a) and (27-33a),
reapectively, in which the repested numerie
ment by the series forms.

As in the case of the circular orbit, it i al=o desirable to relate these points
to the true wvertival groundlrack. To find 4° and A" in terms of 4 and A7,
the following series are employed:

1oz = o P I I T
1) llll.'::EI'H.LJ.UIJ. fiegessitates

& = '_..}.;1j" sin 1K' + iljw’ cos k' — ¥ 7 (27-7N
am w-l
ACOo=R o+ i 1, §lnnk' 4—§ ', COE R —i ', (2718
-] n=] n=]

For A in terms of time ¢ from Lhe initial ascending node,

A=+ + Zarctan ‘Itan (B2 ({1 + e W1 =gt (27-79)
E' =e¢ sinE <+ Ly + Zutil, {2780}
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L, =E's— ¢ sin £, (27-81)
E'y = -Zarctan itan (v/21] [(1- "} e I2 197 — 82}

Fquation (27 — 80 requives itevation, eonverging rapidly by substituting an initiai
trial £ = L, + 2w8/F, inthe right side, finding a new £ on the left, subslituting
it on the right, ete., untl] sufficient coltvergence occurs.

The equations for functions of the satellite groundtrack, both forward and in-
verse, are piven here, since some are used in caleulating j, and m, as well. In
any case o, €, i, Py, £y, Ay, @', €', and vy must be given, For &' and &, if &
= given:

AT =aresin (sin gy fsin ) (2783
by =& — arcsin |oe’ sin & cos QR - sin® pp2) (27~ 843
Ry =" (1—-¢' cos ) (27 -85
Er =2 arctan ltan [(W -1 L= WL + o)1) {27069,

where &y s the geocentric latitude of the point geocentrically under Lhe satellite,
not the peocentrie latilude corresponding to the vertical groundirack latitude &,
and £, 1 the radiys vector ta the satellite from the center of the Earth,

Thexe e:;ualions are solved as a group by ileration, insertingatrial A = ar':ain
{&in d.v"-\ﬁ‘l z; itt {3?—{}93} "QU}TIHE 12?=8;} \4.1 _?H,l and {(27= 81.))) fur a new A’ '
cte. Each trial A" must be adjusted for quadrant. Uf the satellite is traveling
rorth, add 3607 (imes the number of orbits completed at the nearest ascending
node (U, 1, 2, ete b IF traveling south, subtract &” from 3607 times the number of

orbits (.-umplel,ed at the nearest destending node {12, 32, 52, ete). For a

A= arctan[{cos fsink ' Weos k' = (PuP L < ) + by, (27 -8By
. =E" — ¢ sin K (27—8T)

using the A’ and £ finally found just above.
If » of a point along the groundtrack is given, to find A" and ¢,

A’ —arelan (tan Ayeos 1) (2713
’)‘E = R_.:\ﬂ + {PHIP[J(L +’Y) {27_7‘-’1)

and L 1s found from (27 =87} and (27— 69a) above. The fuur equaliyns are iterated
&S 4 greup, as apove, but the Grst irial &7 and the quadrant adjustments should
foliow the procedures listed for eguation (27—8).

d = aresin (sin § sin A} + arvesin lee® sin ¢ cos &
a1 —¢" sin® 42 (27—-88)

where Rc, is determined from (27 -85} and (27—09a), using the &' determined just
above. [teration is involved in (27—88), beginining with a trial ¢ of aresin (sin 7
sil &),

If A" of a point alotg the groundtrack is given, &g found from (27 -88), (27— 85),
and (27— 69a), while & i= found from (27— 86), (27-87), and (27—6%). Only (27-88)
requires iteralion for these caleulalions.

Tnverse furmudas fir the eflipsoidat form of ihe SOM projection, with an orbit
of 0.05 eccentricity o less, fullow: Given a, e, i, Py, Py, Ay, &', €', v, &, and 3z,
to find & and A, the general Fourier and other constants are firsi determined as
deseribed at Lhe begivming of the forward equations for toneircular ovbits. Then

A= onp = (PAP L+ + Xy (27— 59)
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wlers
A — arctan (Vieos K7 (27— 46)
V =:[l-sin® &"41—€")] cos i sin A" — sin © sin ¢ [(1 4 Q sin® A*)
(1—sin® ¢ — 7 sin® fta"]tfﬁ*}f[l—s.'m2 & (1 + £7)] (27 —-47)
=& cox® i{1—-e%) (27 —48)

while L iz found from (27-87), £ from (27—-76), and A" and ¢” from (27—-90]
and (27=91) helow.

& = arcian [(tan A" cos Ay — cos § sin A{1— 65 sin (]| (27 -49

If 4 = 0, cquation (27-49) is indeterminate, but
& = arcsin {sin ¢/ [(1-¢f + & sin? g (27 -50)
No iteration is involved in Lhe above equations, and the ATANZ funclion of
Fortran shouid be used with (27-46), but not (27-49), adding or subtracting
3607 to or from & if necessary in (87—89) Lo place it between longs, 180°E . and W,
Ttevation is requived Lo find &7 from o and g
o= e+ Sy - B4, + S0 sinn A+ (A0, + SN0
oS A" —nglm*,r & (SO E, + (SINH (27 —90)
using equations (27 -67), {27—92), (27 - 93}, and various constants. [teration in-
volvies substitution of a (rial 3" — =B, in Lthe vight side, finding a new 1" on

Lhe lefl side, ete.
For &', the A" just caleulated 1s wsed in Lhe following equation:

In tan (e + 72) = (1452 %a(y —B, \" — % O, sinow AY + Eﬁi

Gy ooos e N — %L Clyl {27-41)
where

x' o= (alo) Hy — (wio)s, (2T —-92)

¥ o= Opa)Hy b (wlads, {2T-93)

The closed forms of equations (27 —90) and {27 — 917 involve hoth iteration and
repested numerical inlegration and wre impractical;

@+ (Shy = o LUFS —S90SF + 58 jedn
+ (SN [SCH + WSE + 55 dn (27— 00a)

Intan (md + &2} = |1 1 (S Ply - FIS(H +J¥
{2+ SEpneladhe| {27-91a)

For " and X" in Lerms of &" and X7, the same Fourier series developed for
equalions (27—7T) and (2T-78) may be vsed with reversal of signs, sinee the
cortection is so simall. That is,

b i e i in o R PP
' =" - J, sinn A 2o AT + 5, {Z7-54)

No=n % me, B W — X My, CO8H AT+ omy, {27-85)
XN ==l Pl

As wilh the circular orbit, equations (27 —84) and (27 —95) are not Lthe exact in-

varses of (27—F7) and (27— 78}, allhough the correct coeffivients may be derived

by an anulogous numerical integration in terms of &, rather than i’
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28. SATELLITE-TRACKING PROJECTIONS

SUMMARY

« All prounderacks for salellites grhiting Lthe Earth with ihe sume orbital parmn-
etorg are shown as straight lines on the map.

= Cylindrical or conical form availahle.

» Neither conformal nor equal-area.

= Al meridians arve equally spaced straight lines, parallel on eylindrical form and
ennverging tn a eommon paint on conical form.

« All parallels are stralght and parallel on eylindrical form and are concentric
circular ares on conical form, Parallels are unequally spaced,

= Conformality avewrs along two chosen parallels. Scale is correct along one of
these parallels on the conieal form and along botkh an the cylindrical form.

= Developed 1977 by Snyder.

HISTORY, FEATURES, AND USAGLE

The Landsat mapping system which inspired the development of the Spuce
Oblique Mercatar (S0M) projection alsoe inspired the development of a simpler
type of projection with a different purpose. While the S0OM is used for low-
distortion mapping of the strips scanned by the satelliie, the Satellite-Tracking
projections are designed solely to show the groondtracks for these or olher salel-
lites as straight lines, thus facilitating their plotting on a map. As a result, the
other features of such maps are minimal, although they may be designed to reduce
gverall distorlion in purticular regions.

The writer developed the formulas in 1977 aller essentially completing the
mathematical development of Lhe formulas for the 80M. The formulas for the
Salcllite-Tracking projections, with derivations, were published later (Snyder,
19814). Arnold (18984} further analyzed the distortion. These formulas are ¢nnfined
to circular orbits and the spherical Earth. Because of the small-scale maps result-
ing, the ellipsaidal forms are hardly justified.

Charts of m"nnnr‘h acks have to date continoed to nmnlrn.- the Lambert Con-

formal Conlc projection, on which the g‘luundtra(,lv.“ e Shghtlv curved, The

+ that 9 Mhineca rman

s ea af The nao e vy
L) -PU LIECAL o 1-LiQ)le 0T JJ.I.“F

"‘Jitei‘ J-" hut u?’r(u!: \Jf (‘-IJ.J [ET=L - LU S L |
of about 1982 claims this feature.

The projections were developed in two basic forms, the cylindrieal and the
conie, with variations of features within the latter catepory. The cylindrical form
(fig. 48) has straight parallel squidistant meridians and straipht parallels of lati-
tude which ure perpendicular to the meridians. The parallels of latitude are in-
ereasingly spaced away from the Fguator, and for Landsat orbits the spacing
changes more rapidly than it does on the Mercalor projection. The Equator or
twao parallels of latitude equidistant from the FEquator may be made standard,
without shape or scale distortion, as on several other eylindeical projections.

The groundiracks for the varinous orbits are plotted an the cylindrical form as
dlizganal equidistant straight lines. The descending arbital groundtraeks (north to
south) are parallel to each ather, and the aseending groundtracks (south to north)
are parullel to each other but wilth a divection in mirrer image to that of the
deseending lines, The aseending aned descending groundtracks meet at the north-
ern and southern lracking limits, lats, £0.8* N. and 5. for Landsat 1, 2, and 3. The
map projection does not extend claser to the poles, although the mapmaker can
arbitrarily extend the map using any convenient projection. The extension does
not affect the purpose of Lhe projection.

The groundiracks are not shown al constant scale, just as the straight great-
circle puths on the Gnomonic and straight rhumb lines on the Mercator projeetion

toRCE e Tha anveonlats bearbe nrane ta e o cannanes AF o 0y

are naot at conslant scale. The COMpIELe Udalss apprcdr Lo 02 4 sedjueinle G0 LIg-24f
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lines, aithough for Landsat normally only the descending (daylight} groandtracks
should be shown Lo reduce confusion, since interest is normally confined to them,

While the eylindrical form of the Satellite-Tracking projections is of more inter-
cst if much of the world is to be shown, the conic form applies to most conti-
nents and countries, just as do the usual cylindrical and conic projections, On each

conie Satelil e-Tracking nrosec hnn the meridians are egually snaved straipht lines
L= l.lﬂl. wld 6!)] U.J!:\.—I- e FLTAIRLED ol !.r\.nLl‘ﬂIIJ’ lJr.'l-l!.'\.r‘-l- I\Jh-l-‘-l-l. L=y

converging at a ¢ommon point, aud the parallels are unegually spaced r_m,ular
XTI Py Qi PR, IR S S S LRSIl I R b PO R T V. N 1 T T o Y RTINS 3 -t T
Al LUGIILEI B Ul LI Sdllle }}UIIIL. LIITLY 4L lilEE l,",' :,,.tb Ul llth.Ul Livgn }JGLLLI LEE-}

available with the conie form:

1. For the normal map (fig. 49} of a continent or country, there can be confor-
mality or no shape distortion along two chosen parallels, bul cotrect scale at
only one of them. The groundtracks break at the closest tracking limit, but
the map cannot be extended to the other tracking imit m many cases, since
it extends infimtely before reaching that latitude.

2. If one of the parallels with conformality is made a tracking limit, the ground-
tracks do not break at this tracking limit, since there can be no distortion
thcac {ru.',' 50}

3. If both parallels with eomformality are made the same, the projection has just
one standard parallel. If this parallel iz made the tracking limit, the conie
projection becomes the closest approximation to an azimuthal projection
(fig. 513, For Landsat orbits, the cone constant of such a limiting projection
is about (.96, so the developed cone is about 4 percent less than a full circle,
and the projection somewhat resembles a polar Gnomonie projection. With
orbits of lower inclination, the approach Lo azimuthal becomes less.

For each of the conics, the straight groundtracks are equidistant, they have
constant inclinations to each meridian being crossed at a given latitude on a given
map, and they are not at conslant seale. They are alzo all tangenl to a circle slightly
sy n T mm Flaman Fho Inddterda adwala Fre bl b alerioes 1 IR A T TR | [EET e
SdneT Laldln Liie lﬂbl'l..'\.l.ub CIFCWE 105 LIE i ﬂ.Ll\lIIE ll]llll.. I ast 1 P, alnl LdIIBLIIL
to the tracking limit itse!f in cases 2 and 3. As in the vaze of the t.:,rhndru.al form,
uny extension of the man from the tracking limit to a1 pole is cosmetic and arbi-
trary, since the groundtracks do not pass through this region,

FOMRMULAS FOR THY STHERE

Forward formulos (see p, 360 for numerical examples):
For the Cylindrical Soteliite-Trucking projection, K, 4, P, Py, kg, &1, b, and
A must be given, where

E —radius of the plobe at the scale of the map.

i =angle of inclination between the plane of the BEarth’s Eguater and the
plane of the satellite orbit, measured counterclockwise from the Kgua-
tor to the orbital plane at the ascending node (99.092° for Landsat 1, 2,
3; 98.20" for Landsat 4, 5).

F. =time required for revolution of the gatellite (103,267 min for Landsat 1,
2, 3; 98,884 min. for Landsat 4, 5).

1 =length of Earth’s rotation with respect to the precessed ascending node.
Fur Landsat, the satellite orbit is Sun-synchronous; that is, it is always
the same wilh respect to the Sun, equating P, (o the solar day (1,440
min). The ascending node is the point on the satellite orbit at which the
satellite erosses the Earlh’s eguatorial plane in a northerly direction.

Ao —eentral meridian.

&, —=standard parallel (N, and 5.3,

(b, AY=geodetiv latitede and longitude of point to be plotted on map.
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Fioune 48 —Cylindrieal Satellite-Tracking projection (standard parallets 30° N, and &.}. Landsat 1,
2, % orbits, Groundtracks (paths 15, 30, 45, ete.) sre shown az spraight diagonal lines, They con-
Limge broken al tracking limits (not shown),

Fy'=[tPu0) cus®d, — eos [)(cos®d, = cos® D1 (28-1)
Foo=[(0,) cos b —cos 1{costd—cos® 312 (28~Ta}
A =—aresin {sin ¢'sin /) (28-3)
ke =arctan (tan A" ¢os o) (283
L =) = (PP {28—4)
x =f0A ) cos by (28—5)
¥ =i L cos g Fy (ZR—8)
&k =cus §foos ¢ (28—T}
ko =k FES (28—-8)

Geometrvicaliy. F' is the tangent of the angie on the globe between the ground-
track and the meridian at latilude ¢, and F" is the tangent of this angle beth on
the globe and on the map at latitude ¢,. Scale factors b and & apply along the men-
dian and parallel, respectively. If the latitude is closer to either pole than the
corresponding tracking limit, equation (28—2) eannat be solved, and the point
cannot be mapped using these formulas. The X axic lies along the Equator, x
inereasing easterly, and the ¥ axis lies along the central meridian, ¥ increasing
northerty, If (A~ Aot lies outside the range = 180°, 360° should be added or sub-
tracted so it will fall inside the range.

Fur the Conic Satelfite-T'racking projertion with two parallels having confor-
mality, B, i. Ps, 1, Ao, &y, by, g, &, and & must be given, where the symbols
are defined above, except that &g is the other parailel of conformality, but with-
out true scale, and &, is the latitude crossing the central meridian at the desired
origin of rectangular coordinates. For eonstants which apply to the entive map,

F, =arctan (PuDP)) cos® b, — cus 1)cos® b, — cos® iV (289}
Ay =—arcsin (sin ¢, /sin i) (B8 —2a})
App —arctan {tan A, cog i) (2R —3Aa)
Ly =hp = (Pl Jhy” (28 —4a)
n o =(Fe—FLs-L) (28— 10)
sy =8, - mL (28-11)
fo =& cos gy sin Fulaosin (ndy + 8] (28-12}
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FlGURE 49.—Canic Satellite- Tracking projeetion (conformalivy at Jats. 45 and 707 N, ), Labdsat 1,2, 3
orbits. Groundiracks {paths 15, 30, 45, etc,) arve shown as diugunal straight lines, They continue
broken (nat showa) at tracking limit, the sraallest ineomplete cirele, The complete circle is the
circle of vangency.
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in which subseript » in equations (28— 8 and (38—2a) through (28—4a) 1s made U,
I, ar 2 as requircd for (28— 10) through (28~12), and subseript » is omitied for
caleulating F and [ for formulas below,

For plotting cach point {d, A}

g =R cos b sin Fiiln osin (nl + 53] (28 —-13)
B =1 (A=A} (14— 4)
v =p&in @ (14 -1}
¥ o=pn — prosg {1d--2}

It » iy positive and L iz equal to ar 1ess than (—sy/n), or if # is negative and L is
vqual to or greater than (—sy's), the point cannat or should not be pletted. The
limiting Matitude ¢ for L={—syn} may be fowrnd using (28—20) through (28-22)
belaw.

I addition. p,, the radius of the eirele to which groundtracks are tangent on
the map. and scale factors & and &, defined above, are found as follows:

pe =8 co3 by (810 Fike 28-14)
o =pn/lR cos d) (28—15)
b =k tap Fdian (nf. ~ 5.0 (28--16)

Radius p; may be inserted into equations (14=1}) and (14—2) in place of p for
roctangulay coordinates. The Y axis lies along the contial mevidian A, ¥ incroeus-
‘mg northerly, and the X axis intersects perpendicularly at ¢y, x increasing caster-

4‘5’ Cesn}etrl{-ap}r # i ig the inelination of the g‘g‘nnr‘ll_l‘fwl ack Lo Lhe meridian at lati-

tude by, and # is the cone constant.
. g o bl
X}

For the canic pjqu_Luuu withone standar

ig indeterminate. The following may be usod

o= sin &y, [(PuFOE eos® 1—eos® ) — cos AP ) cos™ &y —cos 9]
(PP OUPLSP Y cos® by = 2eos ] — I {2817}

For the conic projection with one standard parallel &, which is cqual le the upper
tracking limit, equation (28— 17} may be considerably simplified to the following:

w o= sin V[(PyP) eosi — 11 (28— 18
Other squations for the conile form remain the same.
Inerse Formulas (see p. 362 for numerical cxamples):
For the cytindricnd form, the same constants must be given as those listed for

the torward formulas (&, €. Pe, Py hp, and ) amd £ must be calenlated from
equation (28-11% Fora given (x, y). to find (¢, A

o=y FVAR cos dy) (B5—19)
Aoo=L o+ (ByP) a7 t28—20)
A =aretan (Lan A poos 9 {2821
¢ = — aresin {sin A’ sin ) [2R--22)
A o=hg + R 003 dy) (28 =23

Equations (28 - 20} and (28-- 21) must be iterated as 2 pair, wing (—907) as the first
trial X in equation (28~ 20), solving for Ay, inserting it into (28-21), finding a new
A" without using the cquivalent of the Fortran ATAXNZ function, and using It in
(28— 20}, until A" changes by a negligible amount. This final A7 is used in (28— 22)

tn fined &
Lo i 4.
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A generally faster solution of (28-200 and (28 =21 involves the use of a Newton-
Raphszon iteration in place of those Lwo equations, althourh equations are longer:

Ml

A tan [L + (/P A leos (28-24)
Ak = — (W —arctan AW[1 — (A%+ Licos? §) (Py/P)) cos (A% + 1)1 (25-25)

The first trial 4" is again (—90%) in equation {28—24) and (28-25). The adjustment
AX' is added to each suecessive trial until reasonable convergence vecurs,

Far any of the conie forms, the initial comstants 12, £, Pa, Py, &g, by, and &, alone
ar both ¢, and &, must be given. In addition, all constants in equations (26—
throngh {28~ 12), (28-2a) throngh (28—4a), and (28— 17) or (28—18) if necessary
roust be caleulated. For a given (v, ), to find (g, A),

p = =15 & (p,—y¥PE taking the sign of n (14-1
8 = aretan [x/{p,—yll (14—-11)
L = [arcsin {K cos o, sin Fyfpr—8l'n (25-26)

From E, A" and then ¢ are foundd using equations (28 —20) throurh (2B8—-28), or
{28 —24), (2R—25), and (28—22), with iteration as described above. Then

A= oy - B (14—®

Sample coordinates for several of the Satellite-Tracking projeetions are shown in
tables 38 through 40.
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29, ¥YAN DER GRINTEN PROJECTION

SLUMBARY

»

Neither egqual-area nor conformal. Not pseudocylindrical.

SBhows entire globe enclosed in a eivcle,

Central meridian and Equator are straight lines.

All other meridians and parallels are ares of circles.

« A curved modification of the Mercator projection, with great distortion in the
polar areas.

Fquator is true to scale.

o Used for world maps,

w Lisod only in the spherical form,

s Presented by van der Grinten tn 1404,

INSTORY, FEATURES, AND LISAGE

T a 14904 issue of a Gertan geographical jourial, Alphons 1. van der Grinten
{1852 -7 of Chicago presented four projections showing the entire Earth, Aside
from having a straight Equator and eentral mevidian, three of the projections
consist of ares of cireles Jor meridians e parallels; the other projection has
stratght-line parallels. The projections mre neither conformal nor equal-arey {van
der Grinten, 18904; 1905). They were patented in the United States by van der
Grinten in 1904,

The best-known Van der Grinten projection, his tivst (g, 82}, shows the warld
in a circle and was invented in 1895, It is desipned for use in the spherical form
only. There are no special features to preserve in an ellipsoidal form. It has been
used by the Nalional Geographic Sooiety fov their stundard world muap since 1943,
printed at various seales and with the central meridian cither through America or
along the Greenwich meridian; this use has prompled others to employ the projee-

tiom. The 115, Department of Apriculture adopted Lhe projection as the base map

v e 104N e aeedl Fhie 1ad f0 feacnnnr ben e comoraedhs boer
heoLETD AL Oy Il L LA AT L lJ.'C\.{u'l:llL LAY AL EEUHLEFJJ-J LS =

1173 The USGS has used one of the National Geopraphic
&l

1.
[P E
i -

Frar speraniemia ol
i CCURATIL g

books {(Wonyr, 1985, 4

thaji: as a base for a set of maps of World Subsea Mincral Resources,
1970, one at & scale of 1:80,000,000 and three at 1:39,283,200 (4 scale used by the
National Geographic), and for three smaller maps In the Nabional Atlns (UISGE,
1970, p. 160-151, 252-335). All the USGS maps have a centval meridian of long.
B5* W, passing through the United States.

Van der Grinten emphasized that this projection blends the Mercutor appear-
anee with the curves of the Mollweide, an equal-area projection deseribed later.
He included a simple graphical construction and limited formulas showing the
mathematical coordinates along the central meridian, the Foguator, and the ouler
{180th) meridian, The meridians are equally spaced along the Eruator, but the
spacing betvween the parallels nereases with latitude, so that the 75th parallels
are shown about halfway between the Fyuutor and the respective poles, Beeause
of the polar exaggerations, most published maps using the Van der Grinten
projoction do not extend farther into the polar regions than the northern shores of
Greenland and the outer vim of Antarctica.

The Nationa! Geographic Society prepared the base map graphically. General
mathematical forinulas have been published in recent years and are ouly useful
with computers, singe they are fairly complex for such a simply drawn projection
(O Keefre and Greenberg, 1977, Snyder, 19760},

=]
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29, VAN DER GEINTEN PROJECTION

D

AN

Yasey

L

N
iy
RN

Fioere 33 —Geometrie eomstruetion of the Van der Grinten projection.

GEOMETRHZ CONSTRUCTION

The meridians are circular arcs equally spaced on the Equator and joined st the
prles, For paralliels, veferring to fipure 53, semicicele COB s drawn centered at
A Diagonal (D is drawn. Point £ is marked so that the ratio of £4 to A0 s the
same as the ratio of the latitude to 90°. Line FE is drawn parallel to €8, and FR
and 8 are connecled. At H, lhe intersection of B and AL, JHL is drawn
parallel to CE. A circular are, representing Lhe parallel of latitude, is then drawn
through JKI,.

FORMULAS FOR THE SPHERE

The general formulas published are in twe forms. Both sets give identical
results, but the 1979 formulas are somewhat shorter and are given here with
some rearrangement s addition of pew inverse cquations. For the forward
caleulations, given &, Ay, &, and & (giving true scale along the Equator), to find »
and i (see p. 363 for nwnerical examples):

w o= i AU PE 4 [ANG- PEE (PR ANGP-PRHPE + A% (29—1)
taking the sign of (A =X ). Note that (h- &) must fall between + 130° and — 120% if
necesgary, 3607 must be added or subiracted. The X axis lies along the Fyuator,
r increasing easterly, while the ¥ axis eoincides with Lhe central meridian i,

g - tmEPG-ALAT+ DIP+ AN - P+ AY {23-2

______

taking the sign of &,

where
A = vl = )=t — Al (29-3)
7 —eos 048in 64 cns 9—1) (Z4—4)
I =Gi2sine-1) (29-7)
8 = arcsinl 2w (2v—a)
G =A"+C (29 - 6a)

But if d =0 or =90°, or A =k, these equations are indeterminate. In that ease, if

&=0,
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&= (A —Xs) {29-7)
anil
y=U
ar if A=hy, ard = =90°
r=A)
il
= *uff tan (8/2) (29—R)

taking the sign of d. [t may be noted that absolute vulues (symbol 1) are used in
several cuses. The arigin is at the center (b =0, A =iy}

Farthe inverse equations, piven £, hy, o, and k, to ind & and & Because of the
complications invalved, the eqgUatinns are given in the order of use. This is elosely
based upon a recent, noniterative algorithm by Rubincam {1981):

X = xftaR) (29—9)
Y =yiaR) (29—10)
e, = —IF{1=X2+ ¥4 (29-11)
Cr =&y —BYE- X 12612
¢, = — P4 14 84 (X% YR {29133
& = Ve, (20" eicuie)at 29-14)
i, = (Ui_lfzzfgf-\:;)"l‘.'a {2(}— 15)
= & —a a2 i29—-16)
8y = {1/ arcens (Rdio i) 2017
b = 2a[=m,; eos (B, + m3—eufBe] {29-13)
taking the sign of y.
A= omXT Yol #1120 VR - (X% 4 VEEPLRY kg (26-19)

but if X =0, equation (29—-19Y) is indeterminale. Then
A=Ay (29— 20)

The formulas for seale factors are quite lengthy and are not included here.
Rectunpular coordinates are given in table 41 for a map of the world with unit
rading of the outer cirele, or £ = L', The longitude I3 measared from the central

meridian. Only one quadrant of the map is given, but the map is symmetrical

about both X and ¥ oaxes.



30. BINUSQIDAL PRQIECTION

34. SINUSOIDAL PROJECTION

SUMMARY

Fseudoeylindrical projection.

« Equal-area.

o Central meridian is a straight line; all ather meridians are shown as equally

zpaced sinusoidal curves.

e Purallels are equally spaced straight lines, parallel to esch other. Poles are
pOILnts.

Seale is true along central meridian and all parallels,

Used for world maps with single central meridian or in intevrupled form with
several central meridians,

Used {or maps of South America and Africa.

s Used since the mid-16th century.

HISTORY

There is an almost endless number of possible projections with horvizontal straipht
lines fov parallels of latitude and curved lines for meridians. They are sometimes
called pseudocylindrical hecause of their partial similarity to evlindrical projections.
Seores of such projections have been presented, purporting various special
advantages, although several arve strikingly similar to other members of the group
tSnyder, 1977). While there were rudimentary projections with straight parallels
used as early as the 2nd century B.C. by Hipparchus, the first such projection
sUill uged {or scientific tnapping of Lhe sphere is the Sinusoidal.

This projection {fig. 54}, used for world maps as well a5 maps of eontinents and
other regions, especially those bordering the Equator, has been given many
names afler various presumed originators, bul it is most frequently called by the
name used here. Among the first to show the Sinuscidal projection was Jean
Cossin of Dieppe, who used it for a world map of 1570, In addition, it was used hy
Jodoeus Hondius for maps of Bouth America and Africa in some of his editions of
Mercator's atlases of 1606 —1609. This is probably the basis for one of the names
ol the projection: The Mereator Equal-Area. Nicolas Sanson (1600-67) of France
used it in about 1650 for maps of continents, while John Flamstecd (168456—1719) of
England later used it for star maps. Thus, the name "Sanson-Flamsteed” has
oiten heen appiled to the Sinusoidal projection, even thouph they were not the
originators (Keuning, 1955, p. 24; Deetz and Adams, 1934, p. 161},

America and Africa are still shown on this projection in reeent Rund MeNally
atlases,

FEATURLES AND DSAGE

The simplicily of construction, either graphically or mathematically, combined
with the useful feutures obtained, muke the Sinusoidal projection not only popular
to use, but 4 popular object of study for interruptions, transformations, and
combination with other projections.

On the normal Sinuseidal projection, the parallels of latitude are equally spaced
straight parallel lines, and the central meridian is 2 straight line ¢rossing the
parallels perpendienlarly. The Equator is marked off from the eentral meridian
equidistantly [or meridiang at the same scale as the latitude markings on the
contrul meridian, s0 the Equator for a complete world map is twice as long us the
centrul meridian. The other parallels of latitude are alse mavked off for meridians
m proportion to the true distances from the central meridian. The meridians
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TapLe 41.—Var der Gristen projection: Rectpmgular coardingtes

v emardingty in paremthosey mder g eenrdonatel

Long. 0° 10° 20° 30° 40°
Lat ™.

a0t ... .. 0.00000 0.00000 0.00000 0.00000 0.0000¢
(1.00000) {1.00090) {1.00000) {1.00900) (1.00000)

go. ..., 00000 .03491 06982 10473 13963
( 60981} { .81020) { £1196) { .61490) { .61902)

W 00000 04285 08581 12878 17184
[ .47759)  ( .47806) ([ 47048)  ( .4B184)  ( .48517)

60......... 00000 04746 09496 14262 13020
{ .38197)  (.38281)  (.28336)  ( .38511)  ( .38756)

1711 L0000 05045 10094 15149 20215
{.30334)  (.30358)  ( .30430)  ( .30551)  ( .20721)

40, ... L0000 05251 .10504 15764 .E1021
{ 23444) { .28459) { -23505) { -23582) { .23690)

0. ........ 00000 05392 10787 16185 21588
{ .17167) { .17166) { .17192) { .17235) { .17295)

20,000, 00000 05485 10972 16460 21951
{ .11252) (- 11256) { .11267) { .11288) { .11313)

......... .0nooo 05538 11077 16616 22156
{ .06573) { 055T74) { .055TT) { .05581) { .05588)

0......... .00000 05566 11111 . 16667 22222
{ .00000) { .00000) { .000D0) { .00000) { .00000)

Long'. a o L L] »

R\\ 100 110 120 130 140

;. L 0.00000 0.00000 0.0000Q G.00000 000000
{1.00000) {1.00000) £1.00000) {1.00000) (1.00000)

BD......... 234699 38063 41394 44668 ATRB2
{ 68317 { .68174) { .60548) { .71035) { .72631)

0. 43163 47493 51810 56114 .G0385
{ .52588) { .53621) ( .54756) { .55992) { .57328)

BO... ... .. 47303 52754 57608 .62463 67313
( A1762)  ( .42525)  ( A3866)  ( 44282)  ( .45275)

BO... ... Loluuy 56059 B12Z8 G404 T158H
{ .82792) (33317}  ( .33894)  ( .34524)  ( .35207)

..., 52871 58218 63575 .Ba535 JTA310
{ .25001) ( .25333)  (.25697)  (.26094)  ( .26523)

0., 54168 59626 L6001 0562 16033
( .18026)  (.18209)  ( .18411)  ( .18631)  ( .18869)

20......... .5497% 50499 56022 .T1548 7077
{ .11635) { I1716) { .11804) ( .11%01) { .12005)

10......... 65419 80967 .66516 .T2066 STT617
{ .05668) { .05688) { 06710} [ .05734) { 05780}

1 I .555B5 £1111 66667 .T2222 Riiret:]
{ .000D0) { .00000) { .00600) ( .00000) { .00000)




30, SINUEOQIDAL PEHNECTION

Tanek 41— Var der (FHnten profection: Rectangtiher coordinates-—Contitued

Long, a o o a C]
[:'?-____‘ 50 60 kil 20 &
0%, ....... 0.00000 0.00000 0.00000 Q.00000 G.00000

{1.06000)  (L.0000G)  (1.00000)  ({LOCOOO)  (1.00000)
gO......... 12450 20932 24402 (27853 31293
( .52435) { .63088) { .B3B63} T ( .65778)
TO......... 21498 25821 30162 S4488 58827
{ 48946} (45473 (50O}  ( .50828)  { .5165T)
BO......... 23800 28594 33403 38225 43059
( 39073)  ( .39462)  ( 29925)  { ,40462)  { .41074)
50......... 25293 30385 35492 40614 45750
( .30940) ¢ 31208) (31527 ( .31897)  ( .32319)
1 26308 21596 26857 42210 47635
{ 23829) { 24000} { .24202) { .24436) { 24703
30......... 26908 324156 27841 43275 48718
( 17373)  (.17468)  ( 17681y  ( .1TTIL)  ( .17860)
20. 27445 32944 38446 13953 19464
{.11347) { .11359} (.11439) { .11497) { .11582)
10......... 27697 33259 38782 44327 45872
{ 05597) { .05607) ( 045620) { 05634} { 05650}
0.0, 27718 33333 JBBEY 44444 50000
(.00000)  (.00000)  ( .00000)  ( .00000}  { .DOO0O)

Long. - L] a o

;\_\ 150 160 170 180
99° . 000000 00000 0.00000 0.00030
{1.00G00) (1.00000) (1.00000) (1.00000)
80.......... BHl028 54101 57093 BO000
( 74331} ( 16130} [ .78021) { .80000)
TO ... 64831 £8843 13013 7139
( .58762) { 60293) ( £1919) ( 63636)
60 .......... 12156 Je9ss 81804 26603
[ 46344) { 47483} { 4BTOT) { .60000)
B0 ... .. .TB768 21951 27132 S2508
{ .356942) ( .36729) ( .3756%9) ([ .38462)
0 ... T9686 .B5066 90448 956831
{ 26988} { .27482) { 28010} ¢ .28571)
30 . B1518 B7003 92490 7980
{ 19125) [ .19398) ( .19690) ( .20000)
2 ..., 82609 BB143 O3678 99216
{ 12117 (12237 { .12366) ( .12500)
10 .. 83168 BETZ1 4274 59827
{ .D5788) { .0B81T) [ .0B249) ( .06RE2)
0. ... B3333 BRE8D Sddd4 100000
{ .00000) { .00000) ( .00000) ( .00000)

Eadius of map = 1.0, Radius of spherg = 1ie
Origin: ¢z, 1) O at kg, longd = 0. ¥ axis increases worth, One quadrsnt given, Other quadeanta ol werh| map are

symmatrical.

245



. ” " o
FRLADD HESTR SM DS pTias ) s 4 peas Uorpae ILEE L T s Ly LT 4R A S s RN
X LT} 3! =1
g - 1 o2 LIV T
5 OYs U ‘uorizaloed pappurdiopnasd sapin I S P Tl 1B r A v} o

___.. Ir.l/a

Y <

Y \P.«
a , Ay
m __,, ..\” \ /

) VoS

m y ——t |___.m_.|- J___J_\[\_ﬂ.. [
2 _ Do TN
S eI T { \w Il = R
=/ ; L el | | _ .ﬁ RN __ .\ .. |1
1 P s AT | y Jizitem
200 | . .
= ___. = ' i
S Y
S
= * i
-8 N
“ M,
=

246



3 SINUSQIDAL PROJECTION

connect these markings from pole to pole. Since the spacings on the parsllels are
proportional to the cosine of the latitude, and since parallels are equally spaced,
the meridians form curves which may be called cosine, sine,or sinusoidal curves;
hence, the name,

o distortion along the Equator and central

L1l
gunced B s the ot JAin aurnnaralls
GURCEd NSdl Lug SULel mier auaaua, S5pedidny

Areas are shown correctly. There is
o

w13 kut distortion becomeas
I.I C—J.J.Lllﬂ-l‘l’ uulw u]"l-Ul LlUlI LV D

in the polar revions.

Because of this distortion, J. Faul Goode {1862—-1932) of the University of
Chicapo developed an interrupted form of the Sinusecidal in 1916 with several
mevridians chosen as central meridians without distortion and a limited expanse
east and west for each section, The central meridians may be different for North-
ern and Southern Hemispheres and may be selected Lo minimize distortion of
continents or of oceans instead. Ultimately, Goode eombined the portion of the
interrupted Sinusoidal projection between about lats, 40° N, and 8. with the
portions of the Mollweide or Hormolographic projection {described later) not in
this zone, to produce the Homolosine projection used in Rand MeNally's Goode's
Atlas (Goode, 1925},

In 1929, the Sinusoidal was shown interrapted in three symmietrical segments
in the Nordisk Virids Aflas, Btockholm, serving as the base for the Sinusoidal
as shown in Deetz and Adams (1934, p. 161} It is this interrupted [orm which
szerved in turn as the base for a three-sheet set by the USGS in 1978 at g scale of
1:20,000,000, entitled Map of Prospective Hydrocarbon Provinces of the World.
With interruptions gecurring at longs. 160° W., 20° W., and 60° E., and the three
eentral meridians equidistant from these limits, the sheets show (1) North and
South America; (2) BEurope, West Asia, and Africa; and (3) Enst Asia, Australia,
and the Pacific; respectively. The maps extend pole to pole, but no data are shown

for Antaretica. An inset of the Avetic remion at the same sezle 13 dvawn to the
WA TRLeRA Y LA, L ASE LpETLp LR RS PLFLE ERR pl ST oGl L B L LR Vi)

polar Lambert Azimuthal Equal-Area projection. A similar map is being pre-
pared by the USGE showing sedimentary basing of the world,

The Sinusaidal projection 1s normally used in the spherical form, adequate for
the usual small-seale usage, but the ellipsoidal form has heen used for topapruphic
mapping in Ecuador (C. J. Mugnier, pers. comm., 1985}

FORMLULAS FOR TIE STHERE

The formulas for the Sinusoidal projection are perhaps the simplest of those for
any projection deseribed in this bulletin, except for the Eguidistant Cylindrieal.
For the forward case, given K. Ay ¢, and &, to find & and g {see p. 362 for
numerical examples)

&r = R(}l_hn) 08 b {30— 1.)

¥=Rd (30-2)
= [1+{h—AF sin® 1w (30-13)

k=10

8 = arcsin {1/k) {30--4)

w = 2 arctanibeh— hp) sin $l (30—

where &' is the angle of intersection of a viven meridian and parallel (see equation
(4—14Y, and £, k. and w are other distortion factors s previously used. The X
axis coineides with the Equator, with » increasing easterly, while the ¥ axis
follows the central meridian ay, ¥ increasing northerly. It Is necessary to adjust
[h—Xy), if it falls outside the range =180° by adding or subtracting 360°. For the
interrupted form, values of @ are calculated for each section with respect to its
own central meridian hg.
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In equations (30—1) through (30-3), radians must be eged, or & and X in
degrees must be multiplied by m/180°,
For the tuperae formulus, given R, Ay, o, and w, to find & and a:

A= Ao~ AR cos &) 30—

hut if ¢p = 2 w2, equation (30- 71 is indelerminagte, ahd d may be givenh an arbitrary
value such as A,

FORMLULAS FOR THIE E1LLITSOY D

The eilipsoidal form may be made by spacing parallels along the central
meridian{s) true to scale for the wllipsoid and meridians along each parallel also
true to scale. The projection rernains equal-ares, while the parallels are not yeite
equally spaced, and the meridians are no longer perfect sinusoids, Specifically,
given i, &, A, b, and A, to find ¥ and ¥ (see p. 366 for numerical examples):

X (= 0g) cos pf(1—2% sin? e {30-8)
y=M (30-9)
where
M=f{l -¢d—3a'md—5eY256— . . D o
—(3e%8 + 3e¥22 + 45eM1024 ~ . D sin2 8
+ (154256 - 45251024+ ., Jsind &
~ (3553072~ . dsind b L] (3-21)

Axes are the same as those for the spherical form above.
Fop the inverse formulas, given «, e, My, &, and 3, to find & and x:

b=+ {3e 227332~ L. ) sin 2p+ (2le, 16
—55e Y82+ . ..) sin 4 = (151,396 — . . ) sin Bp.
+{1087,%5312— . . Jsin Bt ... (3-26)
whers
ey =[1 (1-e}" {1~ (1—e#)3) (3-24)
po= Milafl-efid— e 84— 5e™256— . . )] (719}
ahd
M=y (30— 10}
Then
A=+ (1—ef sin® &)1 cos &) (3U-113

but if & — = w/2, equation (30— 11} is indeterminate, and & may be given an arbitrary
value such as A,



31. MOLLWEIDE PROJECTION

31. MOLLWEIDE FROJECTION
SUMMARY

= Paendocylindrical.

=~ Equal-area.

» Central meridian is a straighl line; 30th meridians are circular ares; all olher
meridians are equally spaced elliptical arcs.

« Parallels are unequally spaced straight lines; parallel to each other. Poles are

points.

Scale is true along latitudes 40°44" N. and 3.

= Used for world maps with single central meridian or in interrupted form with
several central meridians.

» Inspiration for several other projections.

s Presented by Mollweide in 1805,

HISTORY AND USAGE

The second cldest pseudocylindricai projection which is still in use {after the
Sinusoidal) was presented by Carl B, Mollweide (1774—1825) of Halle, {zermany,
in 1805 tMollweide, 1805). It is an equal-area projection of the Earth within an
ellipse. It has had a profound effect on world map projections in the 20th century,
especially as an inspiration for other important projections. It lay dormant until J.
Babinet reintroduced it in 1857 under the name “homalographic.” It has been
called Babinet's Equal-Surface or the Elliptical projection, but it is most often
called the Mollweide, Homalographic, or Homolographie.

J. Paul Goode, after interrupting the Sinosoitlal projection, made similar inter-
ruptions of the Mollweide in 1916 to minimize distortion of continents or oceans.
Ultimately he combined them to produce the Homolosine projection.

Other projections directly inspired by the Mollweide have been the Van der
Grinten, desoribed earlier, and the Boggs Eumerphic, in which the ¥ coordinates
of the Sinusoidal and Mollweide are arithmetically averaged, and the = coordi-
nates are derived to maintain equality of area (Boggs, 1929). J. Fairgrieve in 1928
(3teers, 1970, p. 172) was the first of several to use the oblique aspect, and John
Bartholomew applied the name “Atlantis” to a transverse Mollweide centered on
the Atlantic Ocean and vsed as the frontispiece in The Times Afllas of 1958.
Allen K. Philbrick (1953) combined the Sinusoidal and Mollweide in 2 manner
different from the Goode Hemclosine, using both normal and oblique aspects.
Less direct inspiration by the Mollweide haz led to several other projections,
especiaily pseudocylindrical, some of which have lines for poies.

Some other projections showing the workl in an ellipse, especially the Hammer
and the Briesemeister, sriginale from the Lambert Azimuothal Equal-Area
Projeclion, not the Mollwelde. Ancther projeclion occasionally seen is identical
with the Mollweide, except that the parallels are equally spaced, and therefore
the projection is not equal-area. It was first used i a rudimentary form in the
16th century.

FEATURES

Unlike the Sinuseidal projection, which has been satisfactorily used for conti-
nental maps, the Mollweide projection (fig. 55) is normally used as a world map,
and occasionally for a very large region such as the Pacifle Ocean. This is because
enly two points on the Mollweide are completely frec of distortion unless the
projection is interrupted. These are the points at latitudes 40°44°12° N, and 5. on
the central meridian(s),
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2L MOLILWEIDE PROJECTLON

The world is shown in an ellipse with the Eguator, its major axis, twice as long
a3 the ventral meridian, ils minor axis. The meridians 907 east and west of the
central meridian form a complete circle. All other meridjans are elliptical ares
which, with their opposite numbers on the other side of the central meridian,
form complete ellipses which meel at the two poles. The central mieridian is the
Jmajor axis of meridian ellipses less than 907 from it, and a portion of the Equator is
the minor axis, Meridians greater than 30° have the reverse arvangement for their
axes, Meridians are equally spaeed along the Eguator and along all ather parallels,
The 80th meridians form a civele.

The parallels of latitude are straight parallel lines, but they are not
spaced. Their spacing may be determined from the facts that the projeciion is
equal-area and that the 90th meridians are eireular. As a result, the regions along
the Equator are stretehed 23 pereent in 2 north-south diveclion relative Lo east-
west dimenaions. This stretching decreases along the contral moridian to zers at
the 40744’ Jatitudes, and becomes eompression nearer the poles. The distortion
near the puter meridians is ennsiderable at high latitudes, but Yess than that on
the Sinusoidal. The distortion along the Equator led Bromley (1965) to propose
flattening the projection in & north-south direction and expanding east-west, to
provide an Eguatar free of distortiom, but the Equator chereby becomes 2.47
times as long as the ceniral meridian.

Beeause the Mollweide projection is normally used at a small scale, there ig
little justifieation for an ellipsoidal form.

annally
Ly

FORMULAS FOR THE SPHERE,

The forward formulas for the Mallweide require iteration, bul Lthey are other-
wise relatively simple. Given 2, h, &, and &, Lo find & and y (see p. 367 lor
numertcal examples):

x = (AY%%) 2 (A —hg) c0s @ {31-1}
y=2" R sing {31-2)

where
28 + sin 208 =1r sin &b {31-2

The X axis comcides with the Equator, & increasing easterly, and the ¥ axis
coincides with the eentral meridian, y inereasing northerly, Angle 8 s not a polar
coordinate here; it is a parametric angle, geometrically Lhe angie as seen from the
center of the map between the Equator and the position of latitude ¢ on the §0th
meridian arcle.

Equation {31 —3) may be solved with rapid convergence fbut slow at Lthe poles)
using a Newton-Raphson iteration consisting of the following instead of (31—3):

Ab = —(8’ +sin 6'— 1 sin &)1+ cos §7) {31--4)

With & as the first (rial §°, A8 is calculated from (31-4), this value is added Lo
the preceding irial 8 Lo oblain the next trial #', and the calculation is repeated
with {31—4) until A8" is less than a predetermined convergence value. Then, vsing
the final 6, & is caleulated as follows:

G—=04E (31- 5}
Note that all these formulas are in terms of radians.

For the inverse formulas, given B, Ay, x, and v, to find & and 4, no iteration is
required:
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8 = aresin [y/(2'7 B)]
& = aresin [(20 +~ sin 20w
A= Ap+ T8 R cos B)

(21-6)
(21=-7)
(31—8)

1f & is = 80°, equation (31-8) is indelerminate, but X may be made A, Table 42
lists the rectangular coordinates of the 90th meridian for a sphere of radius
{1/2"%), to make the maximum values egual to 1.0. The & coordinates for other
meridians are proportivnal, and ¥ coordinates are constant for a given latitude.

TABLE 42, —Mullweide projections: Roclangnler soordvaades for the 2otk meridion

Latitude T Y
a® {1 D00 1.00000
B 20684 0. 97337
&} 532583 .84534
¥ 42318 90606
T LTOE L6151
[ LDE1LL H1382
60 64712 L7634
5h L1087 TORM
50 LToHEI4 65116
45 30591 592404
40 8473 3607
35 (RR3E2 46820
a0 i) B 40347
25 B4088 33850
20 J86¥2y 27201
15 RiVEA 20472
10 95060 13631

1] 80765 08851
0 1O (000

Radiuy of yphere: 3" =0,707 unit. For other meridians, use same y, hut change  proportionately. Ceatrl meridian
is sero. For meridians west of central meridian. change sign of o For soothern Ltitudes, change sign of »,



32, ECKERT TV AND V1 PRGJECTIONS
32. ECKFERT I¥ AND VI PROJECTIONS

SUMMARY

Pseudocyhndrical.

Equal-zrea.

Central meridian is a straight line; 180th meridians of Fekert IV are semi-
circles; all other meridians are cqually spaced elliptical ares on Eckert [V and
sinusoidal curves on Eckert VI,

Parallels are unequally spaced siraighi lines, parallel to each other, Poles are
straight lines half as long as the Equator.

= Seale is true along latitudes 40°30° N. and 5. on Eckert 1V and 49°16' on Eckert

VI
s Used for world maps.
o Presented by Eckert in 1906,

HISTORY AND 1ISAGE

In 1806 Max Eckert (1868— 1938} of Kiel, Germany, presented a set of six new
pruje(,tions in which all the poles are lines half as long as the Egquator, and in
which all pardue}s of latitude are st:“a‘jgm lines paraiiw to each other, The central
meridian on each is also half the length of the Equator (Eckert, 1906). Numbers 4
and 6 are ol mast significance and are discussed here in detail.

Of the six projections, nos. 2, 4, and 6 arc egual-area, and nos, 1, 3, and 5 are
not equal-area but have equally spaced parallels. For nos. 1 and 2, the meridians
are straight lines broken at the Equator, and those projeclions are therefore little
more than novelties with gralicules composed entively of straight lines, but with
unnecessary distortion especially at the Equator. The meridians on nos. 3 and 4
are elliptical arcs, while on 5and 6 they are sinusoldal curves, with the exception
of the straight central meridians, and (on 3 and 4) sermicircular outer meridians,

Nu. 3, with eguidistant parallels and eliiptical arce has vecasionally been identi-
fied a5 the same as the Ortelius projection, named for the famous cartographer
Abraham Orelius who used a somewhat similar projection in 1570 for his world
map. The border, the central meridian, and Lhe parallels of the two projections
arc shown almost identically, and the meridians ovn each are equally spaced along
the Equator. The shapes of mosl meridians, however, are different. On the
Ortelius, they are circular ares, semicireles for meridians at or more than 90° from
the central meridian, and cireular ares Intersecting the central meridian at the
pules within 307 of the central meridian.

The most commonly used of Fiekert's six projections have heen his nos, 4 and 8,
which are more often designated with Roman numerals IV and VI, respectively.
In the United States, Bckert IV (ﬂg‘ 563 has bieen used in several atlasges Lo show
climate and other themes. 1t has also been used as an inset un other maps, such as
wall maps of the world by the National Geographic Society. [t ranked third as an
gqual-area workld map projection used in U.8. textbooks between 1940 and 1960,
after the GGgotle Homolosine and Sinusoidal (Wong, 1965, p. 101). The Eckert V1
(fig. 57) ts much less used in the Uniled Stales, although it has oecasionally
appeared in textbooks and atlases. It has been more popular in the Soviet Union,
having been used for several world distribution maps in the 1937 Affax Mirg
(World Atlas), An almoest identical equal-avea projection was presented by
Karlheing Wagmer in 1932 and independently by V. V. Kavrayskiy in 1986; theirs
does not require the iteration in computativns which is required by Eckert V1
(Maling, 1980, p. 297; Snyder, 1977, p. 62).

There have been numerous other pseudneylindrical projections with lines for
paoles, and Eckert's were not (he first, but they are the most popular. Some have
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been obtained by averaging a cylindrical projection with the Sinusoidal or
Mollweide projection, and others are derived by stipulating that the pales be lines
of some ather length in proportion to the length of the Equator. Instead of the full
sinusoid or full semiellipse, a portion of these curves ar of some other mathemati-
cal curve has been used far the meridians (Snyder, 1977

FLATLRES

The Eekert IV projection is bounded by two semicircles representing the 180th
meridians and two straight lines connecting the ends of the semiciveles. These
straight [ines represent the two poles, which are half the length of the Equator.
Meridians are equally spaced semiellipses ranginge in eccentricity fram zery for
the nuter cireular meridians to 1 for the stratpht central meridians. The parallels
arc straight tmes parallel to the Fqguator and spaced to provide correet area

-, mrl Al tha
within the border. They are therefure unequally spaced and closer logether near

the poles. There iz a north south stretchmg of shape at the Kquator amounting to
48 pereent relative to east-west dimensions, This stretehing deereases along the
central meridian o zero at latitudes 40°30° N and S. and becomes flattening
beyond these parallels. The seale is eorrect only along these two parallels, and the
only points free of distortion are at the interseetion of these two points with the
central meridian. Nearer the poles, the peopraphical features of the map are
flattcned in a north-south direction.

The Eekert VI projection of the world is bounded by two sinusoidal curves
which have the same shape as the Blth meridians of the Sinusoidal projection,
Like the border of the Tockert IV, those curved meridians are eonneeted with two
straight linex eomnecting the ends of the curves, These straight lines, half the
length of the Kguator, are the poles, The other meridians are equally spaced
sinusoidds, exeept [or the straight eentral meridian, and the other parallels are
siraight and parallel to each other. To preserve area, the parallels must be
vhequally spaced, farther apart at the Ilquator than at the polez. As a result,
there is a 29 percent north-south stretch at the Kauator, relative to east-west
dimenstons, Other general comments concerning distortion of the Ickert [V apply
to Bckert VI, but the latitudes of true seale are 49°16° N. and 5.

These projections are for world maps, not regional maps, and there s no need
for the ellipsoidal forms.

FORMULAS FOR THE SPHERE
The forward formulas for both Fekert 1V and Fekert V1 require itcration.

Given £, g, &, und A, to find & and ¥ (see p. 368 for numerical examples):
Evkert [V

= 24atd + WIETR (h—Agi(l + cos 8) (32— 1)
=0.4222382 B (h—a {1 +cos ) E2-1m
¥ = 2l=d+m R osin b {32 2
= 1,3265004 K sin (3223}
where
H+sinfeosB | Zsind = (2173 sin g (32-3

The X axis cnincides with the Fguator, ¥ increasing easterly, and the ¥ uxis
coincides with the central meridian, i increasing novtherly. Angle 8 is a paramet-
rie angle, nat a palar coorvdinate, Fquation {32—3} may be solved with rapid
convergence (but slow at the poles} using a Newton-Raphson iteration consisting
of Lhe following instead of (32-3):



32, ECKERT IV AND VI PROJECTIONS

A0 — =T L g GBrma 0 L ot @ e (M L e I e AT
[EEN) —_ L T WBALL AP LA W T L LR Ll T I ) ;\.‘J-JL\UJI'
[# cos B (1 +cos 8]] (32—4)

With {0i2) as the first trisl 8, Af is caleulated from (3% —4), this value is added to
the preceding 8 to obtain the next trial A, and the caleulation is repeated with
(32—4) unta] A 15 less than a predetermined convergence value. Mote that all
these formulas are in terms of radians.

Eckert VI
2 =8 (h—Xxg) (14 cos O)(24 7y (32-45)
¥ = ZROAZ+a) (52 -6)
where
8 + sind = (14+n/2) sin & (32-7

Axes are as deseribed above for Eckert I'V: # is parametlrie, but nol the same as
8 for Eckert IV. Equation (32-7) may be replaced with the following Newton-
Raphson iteralion, treated in the same manner a8 equation (32 —4) for Eckert 1V,
but with & as the first teial &

49 = — (8 + sn @ — {1+ n/2) sin &A1 + cos B) (3-8

For the interge formulas, given &, k, &, and ¥, to find 4 and &, no iteration is
required (2ee p. 368 for numerieal examples):

Eckert IV:
B = arcsin [y {4 +-mV 22400 (32--9)
= arcsin {z/(1. 5265004 R )] {42—93)
¢ =arcsin [(B + sin 8cosd + 2 s 8172 + ) {32-1
A =hy + [mld + my] S 2R(1 + cos 6)] (32—11}
=ky + a0 4L223R2R (1 +cos 8)) (B2--11a)
Eckert VI
=2+ Yy 2R) (d2-12)
& = arcsiin [{8 + sin $3{1 + w/2)] {(32-13)
o=k + E+ay2e/ R +cos 8] [(32-14)

Table 43 lists the rectangular enardinates of the 900h meridian for a sphere of
radius [{4 + w)2(2nlZ)] for Eckert IV and rvadius [(2 + w82 for Eckert VI, to
make maximum values equal to 1.0, The » ¢oardinates for other meridians are
proportional, and ¥ coordinates are constant for a given latitude.
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TapLe 43, — FEokert 17 and VI projections: feetanugufar
ragred (e es for Y0t reeridinn

Evkert 13V Lekert VI
Latitrle i ¥ I W

807 11, 50000 1. 0000 {30000 MLV
85 35613 0, 49364 LBO4NT 099380
5 LGOE20 7630 51816 7560
Fis BBGHG 4T A4 198 UG4S
T JTpLal Q152K T3 00794
65 CTH291 HT406 GOTHRR R 164
el JSTRINT 2601 SGATGT LB0913
33 K162 77455 LGOI LTalsD
] 22 TIT62 LT84 GRS
45 BTT0D G606 LTG5 G26HEY
A0 LS02e] S9217 BINLT 56040
3z J9236T 52452 .B5724 49032
30 403G L1443 LHUZRR 42434
24 06208 az02 LBE43Y 3 ER
20 75T 30779 RGN 28457
15 JRG6R5 23210 47207 21379
LA Hui Ahadd RUSHE 1 14289

7 Rl ATTE -DOGHG 7140

] 1. 000k 00000 1.00000 00000

Radin of sphere: (4 + m! ?-‘[Zn"z] = 0733 unit o Eelert 1.

1= ) 5o = LTATT anie for Fekert VI
For ather meridians, use same g, T chahge o prepoertionaiely. Contral meridian & gsero, For gordians wost af
wentra] rmerilian, change sigh of 7. For southoern Jatiuides, change signo of y,
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APPENDIXES

APPENDIX A
NLUMERICAL EXAMPLES

The numerical examples which fullow should aid in the use of the many formu-
lag in this strdy of map prajections. Single examples are mven for equations for
forward and inverse funetions of the projections, both sphereal and ellipeoldal,
when both are given. They are given in the owder the projections are given, The
order of equations vsed is based on the order of culeulation, even though the
eguations may be originadly listed in a somewhat different order. In some cases,
Lhe Last digit may vary from cheek caleulations, due to rounding off, oy the lack of
it.

AUXILIARY LATITUDES (SEE P, 15-18%

For all examples yiider this beading, the Clarke 1886 ellipsoi is used: ¢ is not
needed heve, ¢ = 0. 00RTREBE, or ¢ = 0,.0B22719, Auxiliary latitudes will be calenlated
for gemlaetic latitude & = 40°:

Coiforieal frditude, vaing cosed egqualion {3-1);

y = 2 arctan jlan {45° ~ 4072 [{1— 00822719 sin 40701 + 00822710
sin 400" rxezzﬂ'.-'al_g.g
= 2 arctan |2, 1445060 |0, 8995450 [~ 018w, — O
= 2 arctan (2. 1301882 - 90"
= 2x 64, 904295 17 — 90"
= 30 BOE5H22° = 39°44°30.9

Lising series equation ($=2), obtaining y (st in radlans, awd omitting terms
with & for simplicity:

¥ = 407 % w1807 — (0. 000 THEBE/2 £ 5 0. 006 TBHEE%24 + 3 0. 00BTERG6"
S2hxain (2340 + (53 0.0087CR6G%4R 1 T 0. 0UGTEARRYRIY « sin
{4 40°) — (13 ¥ 000K TEREEARD) sin (K x407)
= 0,698 1317 —(0,0033838) = 0. 9E4B0TE + (0. 0000043 ) = 0,.3420201
—{.000D000) x{ — (. AGE0ESRD)
= 0.6947910 radian
= 0,604 7010 1H0° M = 20 ROM4LE212Y

For inverse caleulations, using closed equation {3—4) with iteration and pgiven
x = 39, 4085922°  find &

anonla

= 2 arctan {2,135 1882 {1.1112023]%
— 120.984%2366° = 90°
= 30,009236867
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Second teial;

& =2 arctan [2.1351882 [(1 -+ 0.0822719 sin 39.9992366°(1 ~ 0. 0BZ22T1D
uin 49999236673 = — Hir
= 2 aretan (2, 1445068 — 4507
= 39.9909970°

The third trial gives & = 40.0000000%, also given by the faurth trial
Using series equation (3—50:

& = A0, BOSSHZES  a/180° + (0 O06TRRE6/2 + 5 = (. D0BTERE6%24

+ 0L 00GTOEEEE2) sin (239 BOKRYZ2%) 4 £7 2 L OOETHEROG4E + 29
s 0L NOGTERO6E/240) sin (4339 80R5822°) + (7> (L. OOBTARGA™120)
sin (6= 39, 508509225

— 0.6947910 + (1. 00339397 > 0. 9836256 + (.O0NDNETY * (1.3545461
+ {0, 000N} > (— 0, 85553000

= [LGASTATT radian

= 0.B981317 x 180%r = 40.0000000°

Ixometric fatifude, using equation (3-7):

— . - " - &
I = I itan (45° =40%2) [(1-0.0822719 sin 40°)(1 = 0.082271%
s 409)]n.mﬂ7m H|
= lan ¥ 1= Lo
=1 <. loDinoaf
= (7515518

Using equation (1—8) with the valwe of ¥ resulting from the above examples:

o= In can {45° - 9. 80858923%2)
= In tan G4.45042862°
= (L.75850048

For mverse calculations, using cquation (3—8) with | = (L. 7580548
¥ = 2 arctan ol - gie

= Z urctan (2. 1351882 —-450°
= 398085022

From this value of x. ¢ may be fonnd from (2—4) or (-5} as shown above.
[sing fterative equation (3—10), with = 0. 7585545, to find

Firsi trial:
b =2 arctan el FEEE_QY®
= 39.B085022%, as just above,

Second trial:

& = 2 arctan _:er,_q.m!qd [(1-+10,0822719 sin 39.R085922%)(1 -0, 0822719
sin 29.20R5052%) ) 2 - gy°
= 2 arctan (2. 1851882 x 1. 0043464) —0°
= 39, 9992465°

Third triul;
d = F wretan o R |(1.4-0.0822719 sin 30.9992365°)(1 —0.0822719

I Tt 1]

<in 39, 9962365%) [0S g0
= 399999970
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Fourth {rial, substituting 3999999707 in place of 3% 99423065
=40, 0000000°, also priven by filth trial,

Authafic latitude, wsing equations (3—i1) and (3—12%

g = (1-0.00876866) sin 40°/1 ~0.00878866 sin® 40°7-
1172 0,08227 193] In (01 —0.0822T19 sin 407001 + 0LO822T19 sin
40e]|
= 0LY932313 (064459028 —6.07T4117 ln 0.8995456)
= 1.2792602
g, = (1 —0.00GTESRR) lsin 0% L—0.006TRS66 sin? 90— [1/ _
) (220022271717 Ty [(1—0,0822710 sin 90°01 = 00822719 zin 9()“)]]
= 19954814
# — arcsin (1.2792602/1.9954814)
= grogin (0,6410785
= 30 5722878 = 29558 20,2

Determining A from series equation (3—14) involves the same pattern as the
example for eyquation (3-5) given above.

For inverse caleulations, using eguation (3—17) with iterative eguation (31— 1),
eiven 3 =30.87228758° and 7= 1.9954814 as determnined above:

g = 19954814 sin 39.8722878°
= 12702602

First trial:

¢ = aresin (1, 2792602:2)
= 20 TE24.35°

Becand trial:

& = 30, 76424357 + (180%m) (1000676866 sin® 39, THd2435° (2 cos
39 T642435%] [1.2792602:(1 -0, 006 TEE66) —sin 39 T542435°
f1—(.00GTEE6G sin” 38.7642485%
+[1420,08227193) o 1010, 0822719 sin 39.7642435°)

(1 ~0.0822719 sin 39, 76424367 ||
= 39, 9996147

Third trial, substituting 39.9996014° in place of 29 Thd2435°,

& = 300900957

Fourth trial gives 1the same result,
Finding ¢ from $ by series equation (34— 18) involves the same pattern as the
example for equation (3—0) given above,
Rectifiing latitude, using egquations (1=20) anc
M = al(1-0.00876806:4— 3% 0,006 76866764 — 5 % 0, 006TES66%256) X 40°
R/ 180° — (3 < 0. QDB THRGEE + 320, DDATHREE ST + 45 = (L GTERBE™
10243 gin (2x40°) + {15 % 0. 006TEREE%256 + 45 %0006 TE86E™1024)
sin (4= 40°)— (35 < 0. O0BTEERRY 3072 sin (6% 407
— ol N.U9EE0AT = 0.6981417 - 000254926 sin 207+ 00000027 sin 160¢
—0.00000N0 sin 240°]
= N.6941458a
M, = 15681349, using 90° in place of 40° in the above example.
o = 00P»0 694445801 H6E134%
= 30.8568451° - 39°51°22.8"

265
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Caleulation of i from series (3—23), and the inverse ¢ from (3— 26}, 12 similar to
the example for equation (3—2) except that ¢, is used rather than . From egua-
Linn (3—24),

ey = [1=-{1-0.00876866)=)1 + {1 -0 06 TEREEY- |
= 0.001697916

Geoceniric futithde, using equation (3—28),

&,

5

=gretan | (1-0.00676860) tan 40°]
= 3U_BORG032" =397 30.0"

Reduced latitude, using equation (3-313,

n = arctan [(1-0.00576R66) van 40°]
= 39.9042229° = 3554 15.2"

Series examples for 4, and n follow the pattern of (3—2) and (3--23).
DIETORTION FOR FEOJECTIONS OF THE ELTIFSQID (SEY F. 24-25)

Radius of curvature and length of degrees, using the Clarke 1866 ellipsoid at
lat. 40° N.:
From equation (4—18),

R = 63782064 (1=0, 006TEREGH(1 — 0, 006 THBGEE sin® 40
= §,361,703.0 m

From eguation (4—19), using the figure just caleutated,

L, =6361703.0 x w/1R0° = 111,032.7 m, the length of 1¥ of latitude at lut. 40° N,

&

From equation (4—20%,

N = B3TR206.4/1 — 0. 006 TERGE sin® 407y
= §,387,143.9 m

From equation {4=21),

JL‘jL = [GATE206.4 cos 40%¢1 —0.00GTERGH sinf 40™1%] /180°
= #5,395.1 m, the length of 17 of longitude at lat, 40° N,

MERUATOR PRIJECTHON (SPHERE) - FORWARTY EQUATTONS (SEE P 4], 44)

Given: Radius of sphere:. B = 1.0 unit
Central meridian: k= 180° W. long.
Point: ¢ =35" N, lat.
A =T5"W. long.

¥ind: =, 4, k

Using equations {7 -1, (T—2), and (72},

& = wx 1 Ox[{—757)—(— 18071807 = | H3LB957 units
¥ = 1.0xIn tan (46°+35%2)=1.0xIn tan (82 57

= In 1.9209821 = 0.G528366 unit
h =k =sec 35°= Vieos 35%= 1J0.B191520 = 1. 2207746
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MERCATOR PROJFCTION ($PHERE)I- INVERSE EQUATIONS (SEF F. 44)

inversing forward example:

Given: K, &, for forward example
;= 18325857 units
¥ = 0.0228384 unit

Find: ¢, &
Using eguations (7T-4) and (7-5},

§ = Y= 2 pretan (g0
= 90° 2 arctan (0.5205670) = 50" —Ex2T.5°= 135"
= 35" N. lat., since the sign is “+"
A = (1.8325957/1.0) % 180% = + (— 180%)
= 105°—180% = —75* = 75" W._ long., since the sign is ="

The seale factor may then be determined as in equation (7—3) using the newly
caleulated b.

MERCATOR PRO[ECTION (ELLIPSOIDH - FORWARD FQUATLONS (SEE 1. 443

Given: Clarke 1866 ellipgoid: ¢ = 637T8206.4 m
o = (.0DRTARAG
or ¢ ={0.0822T19
Central meridian: kg = 180° W, long.
Point: ¢ =356 M. lat,
h =75 W. long.

Find: o, o, &
Using equations (7—8), (7—7), and {7T—8),

@ = 63TR200.4 x [{(—75%)—(—180°)] X w/1B0° = 11688673.T m

i3 S RS 0L DR2ET 1
y =06378208.4 n [tan 45" + 35.,,2)(1—0.08&3719511130 ) ]
1 - 0.0822718 20 357
= 63782064 In |1.920982] % 0.9961223]
= 6378206.4 In 19135331 = 4,139,145.6 m
k = (1--0.00676866 sin® 35°)4cos 35°
- 12194146

MERCATOR PROTECTIION (FLLIPSOIDY - INVERSF EQUATIOING (SFF P 34-451
Inversing lwrward example:
Given: &, ¢, iy for forward example
a = 116886737 m
¥ = 41391466 m
Find: ¢, &

Using equation (7—107,

t = p ALPIG BTS00 0_5225935
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From equation (7—11), the first trial & — $0° — 2 arctan 0.5225035 = 34.8174484°,
Using Lhis value on the right side of equation (7—8),

= 907 —2 aretan (0.5225935[(1 - 0.0822719 sin 34.81744H4°y
{1+ 0.0822714 sin 34.8174454%) pwaziez!
= 34.0991687°

Replacing 34.8174484° with 34.9991687° for the second trial, recalculation using
{T—9 gives ¢ = 34.9999969°, The third trial gpives ¢ = 3500000067, which does not
change (Lo seven piaces) with recaleniation. If it were not for rounding-oft errovs
i the values of & and », ¢ would be 33" N. tat.

For N, using equation {7121,

» = (11688673 7/637T8206.4) = 180% + (— 180"
= - 75.0000001° = 750000001 W, lung.

Using equations (7—13) and (3—5) instead, to find o,

x = 90" =2 arctan 0.5225035
= 00° =55, 18255167
= 34 8174484°

using as caleulated above from (T-10). Using {3—3), x 15 nserted as in the
example given above for inverse auxiliary latitnde x:

b = 35 00000067
TRANSVERSE MERCA TOR {(SPHERE}-FORWARD EQU A TIONS (SEF P 58]

Given:  Radiug of spherer KB = 1.0 unit
Origint &g =0
hy, =T5" W, long.
Central seaie factor: &y, = 1.0
Point: & =40°30" N. lat.
a o =T370 W long.

Find: @, %, k
Using equations (8=33, {(8—1}, (8—3), and (8 -4} In order

B = o 40.5° sin [{ - T3.5°}—{— 73"

= cos 40,57 sin 1.53° = 0.0159051

e AddUR L

o=t x L0 % 100 [{1+0.0198051)41 —0.0189051)]
= L0198077 unit

# = 1.0 x 1.0 laretan ftan 40.5%cos 1.5°]=0j
= 40, 50069R30° =/180° = 0. 7070276 unit

ko= LO0AT-0.0199051%02 = 10001982

TRANSVERSE MERCATOR (ST'HERE) - INVERSE EQUATIONS (SEE P 60

[nversing forward example:
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x = 0.018907T upit
y = 0. TOTO276 unit

Find: &, &
Using equation (8-—&),
D = D.T0T0276/(1.0% 1.0y + 0 = 07070276 radian
For the hyperhalic functions of {x/Rk,), the relationships
sinh z ={er—e—-3W2
and
cosh ¢ = (eX +e-2)2

are recalled if the function 12 not directly available on a piven computer or caleu-
lator. In this case,

sinh {x/fek,) = sinh (0.019907741.0x 1.0%]
= [@PUL0TT _ o LOLHITY
= 0.018909)

cogh {xfRkE,) = (eMH0T 4 o= hm=mTy,g
—= 1.0001982

From equation (8-8), with I in radians, not degrees,

$ = arcsin (sin 0. 7070276/ 1. 0001982 = aresin (0.64953767/1.0001882)

40.4999995° N, lat.

From equation (8—7),

LS

=75 4 arctan [0.01990%0 cos 0. TOTO2ETE]
=75 + arctan 00261859 = —7° 1 1.4999901 = - TA.5000039°
T3, 00000359° W, long.

e e L R TTA TV

+hy b F)
¥ WL T Driglnel Vaildes.

IT mure decimals were supplied with Lthe x and ¥ calowlated from the forward
b -~

sanutinng fhe dooed 3 havs wanld novean e svastly e
equalions, the & and A nere WilLg Ggree m EXALL

TRANSVERSE MERCATOR (FLLULIPSO DN - FORWART EQUATI NS (SEL P, 60-61. 63)

Given: Clarke 1886 ellipsoid: o = B378206.4 m
e® = 0.N0RTEREGE
Origin (UTM Zone 18 &, =0
hy, =T5°W. long.
Central scale factor: &, = 0.9995

Point ¢ =407 30" N, lat.
A =T 30 W long.

Find: =, o, k&

Using equations (8— 12} throvgh (8—15) in order,
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2 = 0.006TERG6/(1 -0, 008T6868) = 0.0068148

N = BATRA06.4/(1—0. 00576866 sin? 40,5712 = G3R7330.56 m
T = tan® 40.5° = (. 7204538

C = 00088148 cos® 40,57 = 0.0039404

A = (cos 40.5% x H=T73.3% — (—7567)] 7/180° = 0.0199074

Insteadl of equation (3—21), we may use (3—22) for the Clarke 1866:

M =111132.0804 = (40.5% — 16216.94 sin (2x40.5%) + 17.21 sin {4 <40.5%)
— 0,02 sin (6x40.57)
= 4,484 H37.6T m
My = 111132 0894 x 0° = 16216.94 sin (2X0°) + 17.21 gin (4 X0 — 0,02 sin {62 0%)
=000 m

Equations (8—9} and (8—10) may now be used:

x =0.9990 x B38TIR0.5 x |0.0199074 + (I—0. 7204538 +0.0035104)
% 0.0199074%6 + (5— 18x0.7294538 + (. T2O45487 + 72x 0. H03§404
— 58 x {.0068148) x 0.0199074%120]
= 137,106.5 m
¥ =0.9996 % 4484837, 7—0 + B3I87330.5:2 08540807 X [0. 0199074512
+ {5—0.7284588 + 9x0.0039404 + 4 X 0.008504°) = (LO19M074724
+ {61 —BR¥ 0. TE04538 4+ 0. TEO4538% + 500 % 0.0038404— 320
x 00068148 % 0.0199074%7201
=4,484,124.4 m

These values agree exactly with the GTM tabular values, except that 500,000.0
m must be added to & for “false eastings.” To caleulate k, using equation (81173,

ko= 0.9996 = [1+(1 +0.0038404) x0.0199074%/2 + (5—4 0. 7204538 + 42
X 0.0030404 + 18 x 0.0089404% — 28 » 1.ODBB148) x 0.0199074%/24
+~ [(B1— 148 % D.T2O4638 ~ 16 % 0.7294528%) x 0.0199074%720]
= (. PH0THEG

Using equation (8— 18) instead,
ko= 0.9990 x |1 + (1 + 0.0068148 cos® 0.5 x 127106.5%

1+ o
{2%0.9996% X 6387330.5%)
= (.D9979859

frmiy

TRANSVERSE MERCATOR (ELLIFSOID}- INVERSE EQUATIONS (SEE P 53-64 )
Inversing forward example:

Givern: Clarke 1866 ellipsoid: a =H#378206.4 m
& = 0.00675866
Qrigin {UTM Zone 18): &, =0
Ay =75 W. long.
Centrgl seale factor: &k, = 0.9996
Point: » = 127106.5 m
¥ = 44341244 m

Find: ¢, A

Caleulating M, from equation (3—22),
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My = 111132089 0°-16216.9 sin (2x0% + 17.2 sin (4= 0% — 0.02 sin
(6 0ry
=10

From equatigns (8—12), (8—20), (3-24), and (7— 19 in vrder,

= D.ODETEREEN 1 — 0.006TER66) = 0.0068148
M = 0+4454124.4/0,9996 = 44B85918.8 m
¢, = f1-{1-0.006TEERE2 1 T + {1 — 0. (0ETERE6)12|
1.001697916
4485918 S[6ITRR06. 4 X {1 - 0.006TER66/4—3 = 0. DORTRRGH7/64
— 50, DB TEEEE4256) |
= [.7045135 radian

” 1

From equation {3—26), using w in radians, omitting the last lerm,

d = 0.7045135 + (3 0.00169TI16/2 — 27 = 0.001687916%32) <in
(2x0.7045135) + {21 x 0. 00169791651 6 — 65 x0.601 697916‘.-’32]
sin {40 7045135 + { 151 X 0. 00184TA1E*96) sin (8x 0, T0451:35)

= B.5070283 radian
= 0.TOTO2ER = 180%
= 40, B0G7I6R"

Now equations (8—217 through (8--25) may be used:

C. — 0.0088148 cos® 40.5007362° = (.0035353
T = ian® 40.5097362° = 0.7200560
Ny = BITH206. 44 1 — 0. 00676566 sin® 2050973621+
= (B3HTI34.2 m
) = G3IT8208.4 (1 — 0008768661 - 0.006TE866 sin® 40,50097362
= 5,362,271.4 m
£ = 127106 586387334, 2 0. 9956) — C.0193077

Returning to equation (8-17),

L AT EMOITOONN O 4 e 0 D AT AC 0t A% e [0 DY Q00T
O = UL B IO0ST T DAS 009 L A VO8I T AW D0OLL T L3 A avadraui i 14
—(5 + 3L 7239560+ 100, 003‘!3‘33-—43:0 39393%-9
X, D068 148) % 0.0190077Y24 + (61 = HT = (. TESH680 + 208

it
% 0,0039393 -+ 45 % 0. 7T2O0560° — 252 0.0068148—3

% 0002939371 % 0_019B0FT5T20T= 180%m
= 40.5000000° = 40°30" K. lat.

From equation (8—18},

A= =75 + |[0.0199077 = (1 + 2% 0.T200560 -+ (.0029343) * 0619907756
+ (525 (. D0IVIAI + 25 X 0. T200560— 3 x 0.0039395% + 8
% (). 0068148 + 24 = 0, 729956807 x 0 0199077/ 120 ) cos

40.5087362°| » 180%7
= ~75° + 1.5000000° = -T3.5° = 73°30° W. long.
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OBLIQUE MERCATOR (SPFHERE) - FORWARD LQUATIONS (SEE P 6D-T0)

Given: Radius of sphere: R = L0 unit
Central scale factor: k&, =10
Central line through: & =45° N. lat.,
de = 0° lat.
ky =0° longr.
hy = 90° W long,
Paint: ¢ =20° 5. lat.
A = 120° E. long.

Find: &, ¥, &
Lising equation (%-1),
Ay = wretan j[cos 45° sin 0° cos 0 — sin 45° cos 0° cos (— 907

[sin 457 eos 0° sin (—90°) — cos 457 sin 07 sin (F)
aretan {[0-01—0.70T1068 - 01} = 0

Sinee Lhe denominator is negalive, add or subtract 1807 (the numerstor has neither
sign, ot it doesn't mutter). Thus,

Ap = 07 + 180" = 1807

From equation (9—2},

by, = aretan |—cos (180" —0"¥tan 457
= arctan [ + 0. TOTH068] = 45°

The cther pole is then al & = —45° & = 0° From equation (9—b6a),
Ay = 180° + 90°F = 2707, equivalent to 270" ~360° ar —90°.

From equation (9-8),
A = sin 45% =in (—30°) — e0s 45 cos (—307) sin {1207 — (- 807
= (L70T1068 (- 0.5)—0.707 1088 = 0, 8660254 x (—(L.5)
= —{.0473872

From equation (3—3),

z = —1.0%1.0 arctan [tan (—30% cos 45%c0s (120° + 907) — sin 457 tan (1207 + 90%}]
= (.7214592

Since cos (120° + S0°) is negative, subtract o, or x = —2.4201835 units
From equation (9-4),

g ={123» 1L.0xL0 In [{1--0.04TAGTEY 1 + 0,04 TA672)]
= —0, (474026 unit

From equation {9- 5},
ko= L1-(—004TH6T2 e = 10011237
If the purameters are given in terms of a central point (for equutions {3-7)

and {4—5)), we shall assume certain artificial parameters (calculated with different
formulas) which pive the same pole us above:
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Given: Radius of sphere: & = 1.0t unit
Central scale factor: £y, = 1.0
Azimuth of central line: B = 4880629907 east of north
Center: &, =20 N. lat.
A, = B8.6557TTI*W. long.

Using equations (9—T) and (5—4),

bp = arcsin (cos 20° sin 48, B0GZ2990%;
45.0°N. lat.
p = arclan [—cos 48.8062990%( - sin 20° sin 48.8062990°))
—BB.65aTTT1Y
= {F

LY

Since the denominator of the argument of arctan is negative, add —180° to Aps
using “—" since the nomerator is ¥-":

Ay = 180°W. long.
ORBRLIQUE MERCATOR (SPHERE - INVERSE EQUATIONS (SEE P70}
Inversing forward example:

Giver: Radius of spherer & = 1.0 unit
Central scale fueter: &y = 1.0
Central line through: &, =45 N. lat.
b, =0°lat.
&y =0° long.
hp = 0P W, Inng.
Point: & = —2.4201335 units
¥ = —0.0474026 unit

Find: ¢, A
First, &y, and &, are determined, exactly as for the forward example, so that A,

again is —80° and &, = 45° Determining hyperbolic functivns, if not readily
available,

wilky

o~ P TR
€

sinh (y."R k:])

=0074T026/1.0x1.0) = —0.0474026

PR =0 L Fata ]
U 2ol TUE

(0. 5537034 ~ 1/0. 8537034 /2

—0. 0474205

cosh (/Rke) = (0.9637034 + 1/0.9537034)/2
= 1.0011237

tanh (y/Rky) = (0.9537034 — 1/0.9537034)/00.9537034 + 1/0.9537031)
= —{.6473671

From equatian {9—3),

b Aresin Isin 45 > {--0.(dT3671) + cos 45° sin

[(—2.4201333K1. 0 101} 180°%w /1. 001 1237

arcesin (— 0. 5000000)
= =300 = 30°3. lat.
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From equation (3-10),

A = —890° + aretan [[sin 45° sin [—2.4201335 x 180%(r = 1.0=1.0)]
— 08 407 x (—0.0474203) )icos| —2.4201330% 1RO

(wx 1.0 1.0Ml

—a0® 4+ 30.0000041°

— 59.9909059°

but the main denominator is — 0. 7508428, which is negative, while the numerator
iz also negative. Therefore, add (—180°) to A, so A = —&9. 9998459 — 18" =
~239.9999950° = 240 W. long. = 120" E. long.

OBLIQUY. MERCATOR (HOTINE ELLIPSOID-FORWARD EQUATIONS
(SEE P T1-T41

For alternate A:

Givenr  Clarke 1866 ellipsoid: ¢ — G378206.4 m

& = 0.00676866
ar ¢ = 00822719
Central zeale factor: &, = 0.989G
Center: ¢y = 40° X, lat.
Central line through: &, = 47°30° N. lat.
Ly = 122° 18 W. long. (Seattle, Wash.)
bz = 25°427 M. lat.
A = BOA12" W long. (Miami, Fia.)

False coordinates: x, 4,000,000.0 m
He = S00,000.0 m
Foint: ¢ = 40744 N. lat.
T4°00° W long. (New York City)

-
L]

Find: x, g, &

Following equations (9~ 11) through (9—24) in order:

B o= [1 + 00676866 cox® 40741 —0LODGRTGRGEI]
= L.0011727
A = G378206.4% 1.00117270.9996 % (1 -0, D0GTEREG) %
(1—0. 00RTBRAG 3in® 407)
— (,479,333.2 m
tp ™ tan (45°~ 40°%2)[(1—0.0822719 sin 40°)

{1+ 0.0822719 zin 407)]eoesma
= (4583428
ty = tan {45°=47.5%2N (100822719 sin 47.5°W
{1+ 0.0828719 sin 47,57 0swmaz
= (.3908206
by = tan {(45°-26.T°/2¥|(1-0.0822719 sin 25.7"¥
(1 + G.082BT18 sin 25,79 twata
= (. 6303639
D = 10011727 = {1-0.00676866) 2 cos 40° =
(1— 000676868 sin? 40°)17)
= 1.3043327
E = [1.3043327 + (1.3043327°— 1)]>0.40834 28! w003
10021857

using the “+" sign, since &y is north or pozitive.

1]
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0.39082661-M1727 = 1),30903963

0.6303639-0n7 = (15300229

L.U0OZ1857/0. 3993963 = 2.0670986

(2.5670086— 17256709862 = 1.0887769

(1,0021857% — 0, 00229 > (. 390306311002 1857 + 0.6300229
= 0.3903063) = 0.6065716

(0, 6300229 — 0, 3903963)/(0. 6300220 + 0.3003963)

(.2348315

va[(—122.37) + (—80.2%)) — arctan |0.6065714 tan [1.0011727
® (—122.3°+ 80.2°)2 /0. 2348315%1.0011727

— 101.25° — arctan {—0.9053887)1.0011727

— Ot 4349628°

arctan {sin [10011727x(— 122.3° + 56, 4344628%) /1. 08R 7769}

—39.9858820°

aresin [1.30433E7 sin (-30.9858825%)]

-, 9466070°

These are constants for the map. For the given ¢ and &, following equations
(9—25) through (9—34) in order:

L

e LT

Ih

o nn

H

tan (45°—40.8°2)/{1- 00822719 sin 40.8°)/(1 +0.0822719 sin
40_80”0.0522713'2

0.459867T1

1.0021857/0. 45986711007 = 3 1812805

(21812805 + 1/2.1812805%2 = 13198634

sin [1.0011727 < {—74° + 56.4310628)]

—0.3021309

10.3021309 cos (—39,98588287) + 0.8614171 sin (—329,9855520°))
1.3198634

~(.2440041

6379233.2 In [(1 +0.24400411(1 —0.244004 1) (2 1. 0011727}

1,586,767.3 m

([6379353.2 arctan {[0.8614171 cos (—39.98588297)
+ {—0.3021209) sin (-39.0858820%) [fcos [LOOTLT2T % (- T4°
+ 564249628511 001 1T2T]1x 7/180°

4,655,443.7 m

Note: Since cos [1.0OILT2T x (—T74°% + 56 43496287 ] = 0.9532664, which is positive,
ng correction is needed to the arctan in the equation for w, The (7/180°) s inserted,
if arctan is caleulated in degrees.

k

€379323.2 cos [1.0011727% 4655443.7 x 180% (% 6378332.2)]
x (1-0.006T6866 sin® 40.8°)%{6378206.4 cos 40.8° cos
| LODLLTRT % (— 74° + 56.43496287))

1.0307354

1586767.3 cos (- 56.9466070%) + 4655443.7 sin (—56.9466070°)
+ 4000000

963,436.1 m

4655442.7 cos (—B56.9466070°) — 15867673 sin (- 56.9466070°)
+ 500000

4,369,142.8 m

275
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For allernate B {forward):

Given:  Clarke 1866 ellipsoid: a = 6378206.4 m
ef = D.00676366
or e —= 00822714
Central seale faclor: &, = 1.0
Center: &, = 36° N. lal.

A, = TTTB1035%° W. long.
Azimulh of central line: o, = I4.3394882° east of north
Point: & = 38%E33.166 N, la,
= 38.809Z128°
A = TER2714.8847 W, long.
= —T6.BT07453"

Find: », v (example uses center of Zone 2, Path 16, Landsat mapping, with Holine
Obhique Mercator).

Using equations (911} through (9--39) in order,

B = [1+0.00676866 vos™ 3671 —0.006TGRER) %
10014586
G3TRO206.4 » 10014586 = 1.0 = {1-0 00BTEEG612/({ —0.00676566
sn® 36°) = §,880,777.0 m
fy  — tan (45°—3652W[(1-0.0822719 sin 3671 + 00822714 =in
3!:}0} FI].LL‘.Q‘H? 2
= 0.5115582
= LO014588 x (10006763661 % {vos 36°
® {1—0.00ET6866 sin® 36%172)
1251194
Foo= 12351104 = (1,2351194% — 1% = 19600471

A

[
[l
|

uging the “+" sign since ¢, is north or positive.

=

= L96004T1x0.51 155821004560 = 3 (16954

G = [(LI600471— /1. 98004T1¥2 = 0.7240275

vy = arcsin [(sin 14.8394883)/1.2351194]
= 11.5678996°

Ao = —TTTGI055R° — [aresin (07249276 tan 11.5673996])/1.0014586
= —86.2814800°

g e n = + (B3S0TTT.0/1.0014586) arctan [(1.2351194%~ 131

o5 1433048887 | X w/180°

= 4,052,868.9 m

1

Nole: The w/180° is inserted, if aretan is caleulated in degrecs, These are con-
stants for the map. The caleulations of «, », &, and g for (¢, A) follow the same
steps as the numerical example for equations (9—25) through (9-384) for alternate
A, For g = 38.80892128" and A = —T6.8T07953°, it is found that

# = 4,414,439, 0 m
v = —2356.3 m
ORFQUE MERCATOR (HOTINE ELLIPSOID - TNVERSE EQLUATIONS
(SEET. T4-75)

The above example for aliernate A will be inverted, first using equations (8--11)
through (9—24}, then using equations (940} through (8-48). Since no new equa-
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tigns are inveolved for inverse alternate &, an example of Lhe latter will be omitted.
As stated with the inverse equations, the constants for the map are chosen as in
the forward examples.

Inveraing forward example for alternate A:

Given: Clarke 1866 ellipsoid: & =6,378,206.4 m
= 0. U0BTH366
or ¢ ={0.0822719
Central scale factor: &k, = 0.99068
Center: &g =40" N, lat.
Cenler line Lhrough: ¢y, =47 30" N lat.
Ay = 1227 18" W. long.
dy — 25% 42° N, laL.
he = B0* 12° W, long.
False coordinates: x, — 4,000,000.0 m
Yo = HOO,000.0 m
Foint: » =9%62.436.1m
¥ =4,368,142.8 m

Find: &, &

Using equations (9—11) throtgh (9—24) in arder, again gives the following
constants:

= 1 it o
= L.UuLligi

A =6379.3232 m

e e,

b
|
[
=
[
=
o
=

Ay = —BB.4340625°
= —30.ORGRR2Y
o, = —56.9466070°

=2
B
|

Following eguations (9—40) through (9—48) in order.

v = (963436.1—4000000.0) cos (—56.W4BE0TOY) — (4369142.8
—500000.0) sin (- 56.9466070%)
= 1,586,767.3 m
1 = (4369142.8—500000.0) cos (—56,9466070°) + ($63436.1
—4000000.0) sin (—56. $BH070°)
= 4,656,443.7 m

Q7 = g (LORLITETATETET ST 1)
= @ LT
= 0.7795587
5 = .TT955HT - 1A0.TTO508T)2 = —0.2516002
T = (0.7795587 + L. TTA56872 — 1.0311879
V' = sin [(1.0011727x 4855448, T/6379333. 2) = 180%n]

sin 41.8617535% = (.6671306

' = [0.6673304 cos (—30.9858820°) — 02516092 sin { —39. 985638204 )
10311679

= (.6526562

= |L.D021857/[(1 + . B5265623( 1 =0, B52G562)] 41 o 157

= 0.4595671

£
I

The firsl trial & for equation (7—4) is

= —2 arpian
& an= i in
4 b o arflan Uy sodd

BURATL) = 406077004

EALRLETE I b i)
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Calculating a new trial b

d = 90® — 2 arctan {0.4508671 % [(1—0. 0822719 sin 40.6077096°)
{1+ GLUBZET19 sin 40.607TOQ67)]00RN82.
40, 1992509

Substituting 40.7992300° in place of 40.60T7096" and recaleulating, ¢ =
40. 78999717, Using this & for the third trial, ¢ = 40.8000000°. The next trial gives
the same valye of 4. Thus,

418" = 40r48' N, lat.
=58, 4348628° — arctan ,J:[—{],E 16092 cos {—39.9858829%)
"ul

5
— 0 AETIVER a0 ORERUBAT Y A [T 1711707
H L0 o P bl ot
&

¢
A

SUTRF Lo R T O S 000 ACUE e ist

X 4655443.7/6379383.2) > 180%]|/1.0011727
— T4.0000000° = T4°%00° W. long.

Using series equation (3—5) with {7—13), to avoid iteration of (7--9), and begin-
ning with eguation (7—13),
x = 907 —2 arctan 0.4598671
= 40.6077096°
ged in an cxampl

Sinee equation (

(ALE)

qual A-B1is
tion will nut be shown here.

4
< h

CYLINDRICAL EQUAL-AREA (SPHERE) -FORWARD EQUATIONS
{S¥E P77, B0 1

NMormal aspect:

Civern: Radivs of sphere: R = 1.0 unit
Central meridian: ;= 76° W. long.
Standard parallel: 4, =30° N, & 8. lat.

Point: & =135° K. lat.
A=80" E. long.

Find: x, »

Using equations (10— 1) and {10-2},
r=wx 1.0 x [BU—({-T75")] x (eos B0°)/LE0" = 2.342K8242 units
g = 1.0 x sin 35%cos 30° = 06623090 unit

Transverse aspect:

Given: Kadius of spherer £ = 1.0 unit
Origin a=20% 8, lat.
Ay =Ta" W, long.
{entral scale factor: A, = (LO8
Point. b= 25" N. Lat.
A =90° W, long.

Find: », ¥
Using equations (10—3) and (858},
&= (L0098} x cos 25° sin {{—90°)—{—75%)]

=(1.0/.98) X eos 257 sin (—15%)
= —0.2393569 unit



APPENDIX A: NUMERICAL EXAMPLES

# =10 % 0.98 % |arctan [tan 25%cos (—15%)] — {—20%] = w/180°
=0.98 x 45.T692621° x 1807 =10, 7828478 unit
Obligue aspecet:
Given: Radius of sphere: R = 1.0 unit
Central seale factor:  fy, — 0.98
Central line through: 4, =30° N. lat.
by = 60° N. lat.
Ay =75 W. long.
he=50° W, lang.
Point: ¢ - 30° 8. lat.

Using eguation (8—1),

?‘p = aretan {[eos 30° sin 60° eos {—T75")—sin 30° cos RO° ens [ — 5071
[sin 30° cos B0 sin {=50")—cos 30° sin 607 sin (=75
= arctan {[0.1941143—-0.1GUGQ‘GB‘]![—0.1915111—{—0.724441411)“'
= arctan {(.03.34174:0.5320233)
= 3.5880120°=3.5880125° E. long.

Since the denominator is positive, 18(° is not added to the result.
From equation {9—6a),

Xy = 2.5880129° + 90° = 83, 5880129°
From equation (9—2),

d}?:, = aretan ' —cos [3.5880129°—(— 75 |/tan 30“]
= —18.9169858° = 18 9169868 5, lat,

The other pole is then at 189169858 N, lat. and 176.4119871" W. long. From
equations {10—4) and {10—3). caleulating the arctan in radians:

# =1.0%0.98 arctan [[tan (—30% cos {— 1B.9168H58%)
+ sin {— 18.9168858% sin {—100°—53. 38801 28%)/
cos {—100°— 93, 5580120
= 0,98 arctan [—0.GZ2I2384—0.9720102))
= 0.98x(0.56%837 + 7}, adding n since denominator is negative.
= 2. 6AG8ALG units
g = (1.0 98) [sin {— 189160838 sin (307 —
ros (= 189169858 cos (—320 sin {—100°—93.5880129%)|
= -0 0205947 umt

To locate & pole given a central point using equations (9—71 and (9—8}, refer to
the numerical example given unde? the forward spherical equations for the Oblique
Mercator projection (p. 000

CYLINDRICAL EQUAL-AREA (SFINERE)- INVERSE EQUATLIONS
(SEED. 803

Inversing forward examples:
Normol aspeet:
Given K, kg, &, for forward example
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a = 2,.3428242 units
y = 0.662.3090 unit.

Find: &, &
Using equuations {10—6} and {10—7},

4 = arcsin [(0.6623000/1.00x cos 30°]

= 34, 999998E" =45 N. lat, if there were no round-off crrors.
b = [2.3428242/1. Q% cos 30°) 1= 180% T + (— 757

= B E. long., ignoring round-off ereors.

Transverse aspect:
Givern: X, dig, Ay, My for forward example

x = —(L23U3568 unit
= 0.T82H474 unit

Find &,

Using eguation (10— 10}, (108}, and {10—9 in order,

D =0, TEZRBATRAL, 000, 98) + (— 207) /1507

= [.4497584
& = aresin [1-(0.88( — 0, 2303589, LOYF 2

xsin {(.44%7554 radians)j

=253 N. lat., ignering round-off errors.

A= =75 +arcian [958 —0,2383569)/1.0|
[[1-(0.98 % —0. 239356911, 07 "2 cos (0.4497584 radians)|

—90°=u0" W. long.

fibligue aspect.
Giver: R, #y, and central line through same points as forward examnple,

x = 3.6364645 units
y = —00E09H7T unit

Find ¢, A

First, iy ared A are determined exactly as for the forward example, so that g
again is $3,. 08%012%9°, and ri:i.,h-: — 14.916849898", Using equations (10—11) and (10-12},

b =l Lol |

—0.03084947 = 0.98/1.0
—0.0302748
of(Rb) — 4 6308646/(1.0x0.95)
= 3. 7110863
& = aresin |—0.0303748 xsin (- 18.9169858%)
- [1—{—0.0303748)% |1
* eps [— 1M 9169858
* sin (3.7110863 radiansy
— aresin (—0.8)= —30°=30° 5, lat.
A= U3 BHS Y% 4+ avelan [[1~(—0 0303748 1%
* in (— 18,91 G3H54HT
X ogin (3.7110863 racdians)
— {— 00308 748) % cos (— 189169868 )
[M1—(—=0.03037T48) 1= ® cos (3. 711058563 radians)!_'
= 260° or —100%= 100° W. long.

ywhy'fe
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CYLINDRICAL BQUAL-AREA (LLLIPSOIDY -FORWARD EQUATIONS

At T G1_ans
(wFE ¥ oBl-be}

Normal aspect.
Given:  Clarke 1B66 ellipsoid: a=62378,206.4 m
2% = (0, D0RTEHEE
or e = 00822719
Standard purallel: ¢_=05" N. & 3. lat,
Central mevidian: &, = 75" W. long.
Point: ¢ =107
A =178 W, long.

Using equations (10-13), (3- 123, (10- 14}, and (18— 13) in order,

ky = cos 51— 0.00676866 x sin? 5°]'2
= (0.49R2203
¢ ={1—0,00676866) x |sin 5%/(1—0.006TEE66 % sin® 57)
—[142 % 0.0822719)] = In [{1-0.0822719xsin 5°¥
(1~ 0.0822719xsin 59|
= 0.1721376
T = 6,378,206.4 x 0.9962202 X [—78°—(—T5))] X n/1B0°
= 32 699.8 m
¥ = 8,278,206.4 x 0. 1TAITEAE =0, 9962203)
= 554, 248,56 m

Trausverse aspect:
Given:  Clarke 1866 ellipsoid:  a=6,378,206.4 m
¢ = 0.00676866
or @ = 00822717
Central meridian: kg, — 75" W, long,
Latitnde of origin: &, = 30° N, Jat.
Scale factor at hy: Ky = 0.99
Point: ¢ = 40" N. 1at.
A =53 W, long,

Find: x, ¥
Using equations {3--12) and {3-11),

g = (1—0.0UB768R6) = |sin 40%(1-0.00676866 X sin® 40°)
—(1H2x0.0822719)) = In [{1-0.0822719sin 5°)
(1+0.0822718xsin 57

= B . 13
= 1.2792602
Tonamerrd dom e TWW 4 wnlcnin oo AT Jan dhe cnmna s [ R aral
LIBLTLULIE S LT RUARLE WL AU LT LIS Sallie g LILAL,

0p = 1.9854814
B = arcsin (1.2792602/1. 5954814}
= 39.RT22RTE"

. Using equations (10—186) and (10-17),

B, = arctan itan 39.8TA28TE Y cos [—83° -(—T5%]

= 401482125
i, = 1.9954B14 x sin 40, 1482125°
= 1. 2866207
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For the first Lria) &, in equation (3—18),

¢, = arcsin (1.2BG6207/2)
= 40.0391089°

Substituting into equation (3—16),

b, = 40.0391080° + [{1-0.006TBB66 sin® 40.0391089°F/
(2 cos 40.0391089%1] x {1.28662074 1 --0.0DGTHIEA)
= sin 40.0391089%( 1 = 0. 008 TEEL6 sin® 40. 03910897
+ (12 0.08227193] In [(1—0.082271%
sin 40.0391689°)4(1 4 0.0822719 sin 40.0391085%]] % 180°Ar
= 40,2757321°

Substituting 40.2757321° in place of 40.0391089° in the same equation, the new trial
&, is Ffound Lo be 40.2761582°. The nex{ iteration results in no change to seven
decimal places. Thus,

&, = 40, 2761382°
Using equation (10— 18},
.4 % ooz 39.ETZ2RTRY » cos

x =6,378.206.4 &

4i.
® gin [—837—{— ¥5*)/10.99 < cos 40, 148212
x (1—0.005T6856 > sin® 4027613827112

e PR AL -
= —(87,825.8 m

;.613_ Hao

=

Using cquation (2-21),

M, = 6,378,206.4 x [(1-0.00676866/4— 3x0.006TLB662/64
—5 x (.00BTERBEY256) x 40.2761382° x aw/18F
— (3 0.006TG866/8 +3 x0.00676856232
+ 45 x 0.00BTE8R6%1024) X sin (2% 40.27613829)
+ (15%0.00676866425 + 4520, 0067686671024)
% sin (4% 402761382 ~ (36X 0.00676366"
3072) % sin (640, 2761382%)]

= 4,459,580.0 m

SBubstituting ¢, =30 in the same equation in place of 40.2761352°,
M,=3319,933.2 m

Using eguation (10—143,

¥ = 0.99 % (4,459,950.0—3,319,932.3)
= 1,128.646.2 m

Obligue aspect.
Given:  Clarke 1866 ellipsoid: = 6,378,206.4 m
2% = 0. 006TEHGE
or e = (L 0822719
Central scale factar: © Ay =1.0
Central line through: &, = 30° N. lat,
ds = 40° N, lat.
Ay = 75° W, long.
#“.2‘ = 800 W. !ﬂng.
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Puint: & =42° N. lat,
A =T W. long.

Find: &, o

To find the position of the pole, equations (3—12) and (3 —11) are used as in the
examples for the normal and transverse aspects just above, {0 determine B, {from
by and Be from ¢ The results are

B, = 29.8877623"
Ba = 30.8720878°

Inserting these values in place of &y and e 10 equations (9—1) and {92}, listed
under spherical formmlas for the prajection,
Ay = aritan [(cos 28.8877623° sin 30.8722878°-
sin 29.8877623° cos 35.87228TH cos [ -B07)W
(sin 29.8877623° cos 39.8722878° sin (-R0")
— cos 2988776237 sin 30 BT2EKTE® sin (—T75°)]
= urctan (048940304, 16025132)
= 7TL.B683268° not adding 1307 sinee denommator is positive.

By = arctan [—cos {71 86UB2GE"— (- TH%Ntan 28 BRTTE25%]
= 35.6374608°

Using equations (10—-17) and (3--16), with subseript p instead of ¢, q:p is found by
iteration as in the example for ¢, under the transverse aspeel. Finally,

b, = 55.6589956°

Using equations (10 -20) and (10- 21}, and Lable 13 for the Clarke 1866 ellipscid,
the specific Fourier coefficients ave caleulated:

B =0.9501507126 ~ (—0.0008471557) cos (2 > b GHERGHE™)
+ (00000021283} cos (4 = 55.6583065°)
+ (—0.0000000054) cos (G < 5R, BLAREH07)
= LO584571

A= —0.0001412090 + (—0.0001411258) cos (2 X 556683956
~ {0.0000000839) cos (4 % 55.6583958%)
+ (0.0000000005) cos (6 % 55 6583959)
= —0.0000900
A, = —0,.0000000435 + (—0.000000057%) cos (2 ¥ 5565880597

+ (-0.0000000144) cos (4 x 5565838557
< {1} cos (6x55.6583955%)
- 0. 0000000

Equations (3—12) and (3-11) are again used to determine 3 from &, giving

(=41 8716105
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From equation {10-22),

A" = aretan cos 53 53746087 sin 41.8710109°
— gin R5.A3T74608° cos 4L.BTI0LUD® cos {—T7°
— 718643268 'con 41.8T1010% sin (--T7° ~ 71. 86982657}
= arctan | 0. 90323584 —0.3848770)]
= —HE. 91631177 + 1807 = 113.08458582°

adding 1807 because the denominator is negative.

Using equations {10--23) Lhrough (10—-25), using 4y a8 computed above for the
transverse aspect,

¥ = 6,978,208.4 % 1.0x[0. 9904571 x 112 (8468537 % m/180°
+ (—0.00009000 =% sin (2x 113 084468437
4 {(—0.0000000) = win (4x 1130846853
= 12,582 246.4 m
F =0999257] + 2 = (—0.0000000) % eos (2x115.0846858%)
+ 4 % (—0.00000007 % cos (4x 1130846853
= {,40435817
Yy = (6,378,806, 4% 1, 995481442} = [sin 5553746087
*® gip 41_87T10109° + ecos 55.5374608° = cos 41.8710109°
¥ s (= 77— T1. 8693268141 0= 0. 899581 7)
= 1,207, 243.0 m

CYLINDRICAL EQUAL-AREA (ELLIPSOIDN - INY ERSE EOIUATIONS
{SEE P. B2-84

Inversing forward examples:
Nowmnal agpect:
Given: a, ¢, &, and iy a5 in forwand ellipsoid examples

= =332,0508 m
y¥ =504 24R.58 m

Find: &, A

After iy and gy, are determined from (10— 13) and {2—I12) ax in the forward normal
and transverse examples,

fey = D.9962203

G = 19954814

then, from (10— 26),

B = aresin [2: 554,248 5 < 0996220316, 378, 206 4 ¢ 1. BY54814) |
= 4. 47TH164"

Usiigt equations (10~ 17 and {3~ 16), with subscript ¢ omitted, ¢ is found from 8
by iteration as in the exampie for &, under the forward transverse ellipsoid exam-
ple. Finally,

£
%
b
-
-
—
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From {10—27),

A= —T57 + [—332, 808 846, 3TE,206.4 x 0. 99G2204)) = 180w

=78 = 78 W, long.

Tranzverse ospect:
Given: a, &, ks, g, My as in forward ellipsoid example:

= ~687,825.8 m
¥ = 1,128,646.2 m

Find: &, &

After M, is caleulated from {3—21), using &, = 30°in place of &, as in the forward

ellipsoid example,
Moy = 3,3019,9333 m
From (10— 28},

M, =3,319,933.3 + 1,128 (46.2/0.99
= 4,45%,980.0 m

From (7—1M, {3~24) and (3~ 28,

K, = 4,409,080.0/(6,378,206.4 = (1-0.00676566/4
—3 x 0.O0RTERARGAL — B = B.OMGTGRGGHT256)
=0.7004398 radians = 40.1322426°
e, =|1-01-0.00676866) 211 + (1--0.0087TERAB)*]
= (.0GLR5TS
d, = |0L.TO04398 + (320.001637972 — 27 = 0. 0016979%732)
sin (240, 1322426%) + {21« 0.0016979516
—55 ® 0.0016979M32) sin {4 % 40.1322426%)
+ (151 x0.0016979°96) sin (65 x 40.13224267)
+ (1097 x0.0016979%512) sin (Bx40.1322426%)] » 180°n
= 40.2761378°

Using (3-~12) and (3-11), with g, calculaied as in the forward example,

If

(1-0.006TERGE) = [sin 40 2761371
- D.O0BTHRRE = sin? 4027613787 — 1142
x 0,0822719)] In [(1- 00822719 = sin 40.2761478°)
(1+0.0822719 = sin 40.2761378°)]:
1. 2866207
arcsin (1. 2866207/1.9054814)
401482102

G

Be

From equations (10—29 through (10-231),

p* = — aresin [0.89 x (—687,825.8) % cos (40.1482122%)
® {1- 000876266 » sin® 4027613787y
(6,378,206.4 » cos 40,275137%°)|

= 6.1315602°
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B = arcsin (eos 6. 13156927 sin 40, 14521227
= 308722875

A = -T5-arctan (tan 6. 1315692% cos 40, 14821227
= —T5°—H"= ~H3*=H3* W. long.

Lsing (10— 17) and {3—16), with subseript ¢ omitted, & is found from B by iteration
as in the example for &, under the forward transverse eltipsoid example. Finally,

$ = 40° N. lat.
Oblgue aspect:
Given: o, ¢2, kg, caleulated pole location (tp Ap), caleulated Fourier coefficients

B, Ay, and A, as in the ferward oblique eliipsoid example, and Hy as caleulated
Tor the forward normal ellipsoid example,

x =12,582,246.4 m
¥ = 1,207,233.0 m

Find o, &

First g = 1.9954814, as found from (312} in the forward transverse example,

To solve for &' from (10—223, the first trial &' {s found as described:

A = (12 5ES S4B (6 3TE,206.4 % 1.0 < 0.9904571) [ % 180w
1130884082

]

Using equation {10-323,

AWoo= [12,582,246.40(6 8TH, 206.4 < 100> 180%
—(— U 0000900 = gin {2 113 08R4082%)
~(— 0005000 = sin (dx 113.0884082%))/
0.9884571
= 113.08468878"°
Substituting 113.0846875° [n place of 113.6884082° in this equation, A" is ealeulated

to be 113.0846885°. The next iteration yields no change to seven decimal places, go
that

AT = 11308468537

Equation (10-24) is used to calenlate F just as it was in the forward obligue
example, so F is again

F o= 09995817
From equativns (10—33) through (10—-35},

f' = aresin (2%0.9985817x 1.0 1,207,233.Q/
(6,378,208.4 > 1.9954814}]
= 1093083763

B =avesin (sin 55.3374608° sin 10, 83083763
+ eos 55.53T4608° cos 10.93083763°
sin 113.08468873°)

=41.871010%
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A o= TIEGOIEEH® + aretan [cos 10.93083763°
cos 113, 0846883 cos 55.5374608°
sin 10.94083763° — sin 55.5374608"
cos 10, 930B3763° sin 11308468857
= T1.B693268° + arctan [-0.3849775/~0.6374127)]
= T1.B693268° + 31.13068732° + 180°, adding 180°
because of the negative denominator. Thus,

A —2B3% or —77%, or TT" W. long.

Using (10—17) and (3—16), ¢ is found from @ as previously, dropping subseript ¢
and with iteratiom, to produce

¢ = 42° N, lat,

The computation of Fourier coefficients is not shown heve, since 1t is lengthy and
is not needed unless a diffarent ellipsoid is desired. An example of computation of
Fourier coefficients is given under the Space Obligue Mercalor projection.

MILLER CYLINDRICAL (SPHERE- FORWARD EQUATIONS (SEE P 38)

Given: Radiug of sphere: B = 1.0 unit
Central meridian: &y =0" long.
Painl: ¢ = 350° N. lat,
Ao=T75"W. long.

Findx, y, &, &
Using equations (11-1) through {11-3) in order,

L= 1.0x[~-75°~ ("= =/ 180"
= —1.3089969 unils

¥ = 10x[Intan(45® + 0.4%50)10.8
= (In tan B340 8
= 0.9636371 unit

or

4 = L.0xlarczinh [tan (0.8x50]H0.8

= arcainh 0.8390986/0.8

= 08536371 unit
B = sec(LBx50% = l/cos40® = 13064073
k =sec 50 = licos BI° = 1,065723%

gin Y = fpas 40°— ez BT pag 40° + one S0°Y
[=L) EREEEL Bl TR AR A LA T AL
= 0.08T4887
w = 100ZE2062°

MILLER CYLINDRICAL (SPHERE) - INVERSE EQUATIONS (SEE F. B8 )
Inversing forward example:

Given: £, x, for forward example

= = 13089969 units
gy = 0.0336371 upit

Find: oy, &
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Using equations (11 -6 and (11-7),

& = E£.5 arctan ews=0aREN0 — (Gu/iF) X 180
= 2.5 arctan evmidow— ], 96344954 2 18(0F/
= 2.3 arctan {2.1443064) — 1, 96344804 =< 180% 7
= 2.5 x 6a.0000006° — 112 5000000°
= H0.00O001S° — a0 N lat,

ar

$ = arctan [sinh (0.8<0, 8536371/ L0 0LE
= {arctan O .8380947TW( 5
= 50.00000157 =50 N, Iat.

A =0F — (1.308%009/1.0h x 180%
=P ~ 74.99994978° = 75° W, long.

CASSINI (SPHERER-FORWARD ECHIATIONS (SFE P 04
Given: Radius of spherer B o= 1.0 unit

Origring by = 20° 5. lat.
hg = 75 W. long.
Point: 4 = 25" N. lat.
A =80° W long.

Find: o, g, #

Using equations (8—5), and (13-1) through (13-3) in order,

B =ros 25" sin | —90° —{—73")]

—{. 2345687

1.0 % aresin (—0.2345697) = w/180°

—.Z36TTHY unit

¥ = 1.0 % .arctan |tan 25%¢os [--90°—(- 75°)11- [ —20°)- % m/180°
= 1.0 ® 45 76926217 » «/180° = . T988243 ymit

Ro= 11 —{—0.2346607 )
= 1.0287015

x

CARSIN] (SPHERE)- INVERSE EQUATIONS (SEE . 94-95 4
Inversing forward example:

Given: B, d, kg for forward example

Find: &, &
Using equations (138}, (13-4}, and {13-5) in order,

o {B.7988243/1. 0) < 180 ¢ + [ — 207

£5,76892610°

o
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aresin 'sin 25, 7692610° cos ({-~0.2867759/1.0) = 180%w]
arcsin 04226182

25° N. lat.

—75° + arctan|tan[{ - 0.23677549/1.0) % 180°/7 [feos 26. 76926107

-75° + arctan (-0.2679492)

Pt Ll 3+

=75 +(— 16" = —90° = 90* W, long.

-
Il

[

-

LASSING (ELLIPSOIN-FORWARD EQUATIONS (SEE P 950

Given: Clarke 1866 ellipsoid: ¢ = 6,378,206.4 m
&£ = 0.00676366
Origin: dy = 40° N, lat.
hg = 75° W, long.
Puint: ¢ =43 N, lat.
A =T3"W. lung.

Find: &, ¥, & at 4z = 30* east of north

Using cquations (4—-20), (B—13), (8—15), (8—14), and (3- 21} in order,

N £,378,206.441 — 0.006768667 = sin? 43°)17

G,388,270.3 m

tan® 45° = 03695844

1—738% = (—-TO°)] = {nf180"x cos 43°

(0.02552006

0.0067AKEE x eos® 43°/(1—0.0067BEREG)

0.003645081

6,378,206.4 » [(1-0.0UBTE8G6/4 — 2=, 00676366%/84
-5 x{0.0067TAR66™/25R) » 427 % =1/180°— (3 x 0, QDG TER6H!
8 + 3000070866532 + 45x 0 O0RTEE66%1024)
gin {2437 + (15 0. 006 TERB6Z/256 + 45
* 0.00676868%/1024) sin (4% 43°)— (3520 006768667
3072} sin (6437

4,762,504.8 m

{1 L T [

L= |

5
|

Substituting 40° for 43° in equation (3-21),

Using equations {13-7) through (13-4 in order
= 6,388,270.3 x [0.02552406—0.8695844 » .02552006%
6-(3-0.8895844 + Bx 0003645081 )% 0 8695844
# 0.02552406%120]
= 163,071.1m
= A,762,504.8 — 4,428 3189 + 6388 2703 > tan 43°
% [0.02652006%2 + (5—0.B805844 + B x 0. 003645081}
® 0.02552906°/24)
= 335,127.6 m
5 =1 + 163,071.1% cos® 80° x (1-0.00B7G866 » sin® 437

12 x 6,378,206.4% x (1-0.006T6866)]
1.0002452

289
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HMAP PRJECTIONE—A WORKING MANUAL

CASSIND {ELLIPSOID}-INVERSE EQUATIONS (SEEF, 95 }
Inversing forward example:

Given: a, ¢, &y, ko as in forward example
£ = 1G3,071.1 m
¥ = 335,187.6 m

Find: &, &

Caleulating M, from equation (8—21} as in the ferward example for ¢y, = 40°
M, = 4,429,318.9 m

Using equations (13=12), (T—1%9), and (3—24) in order,

M, =4,429,318.9 + 335.127.6
=4,764,446.5 m
wy = 4,764, 446.5/6,378,206.4 » {1-0.0067T6866/4
— 3 x 0L.OD676866°/64 — 5 = 0.NGTEREE"256)]
= 0.7482562 vudians = 42.8719240°
gy ={1-(1-0.00676866):2}{1 + (1 - 0. 00GT6868)12]
= 0.001697916

ey

B=22) (R--28), (B~24), and (13~13) in order,

Using eauations (3263,
T 1 . L ]

&y = 42.8719240° + [(3x0.001697916/2—27 x 0.001697916%
32) sin (2% 42, BT10240% =~ (21x0.001897516%18
— 55 > 0.001697%16%/32) sin (4 <42 87192407
+ (151 % 0.001697916%96) sin (5= 42.8710240%)
+ (1007 x 000165791 6%512) sin (B x42.8719246°)] = 180°%n
= 43.0174782°
T, =tan®43.0174782°
= 0.BTN6487
N, =6,375%200.4/(1~0. 00676868 sin? 43 017476212
= 6.388.276.9 m
£, =6378,206.4 % (1000676866141 —0. DUETER66
® st 43017478272
= 6.365,088.8 m
D = 163,071.1/6,388,276.9
= (L0255266

Using equations (13—10) and (13—11} in order,
& = 43.01TATRE® — (6, 38K, 276. 9= tan 43.G1 747825
,365,088.8) x [0.0255266%/2 = (1 +3x4.8M648T)
% (.0255266%24] = 180°T

43 N. lat.

= —T5" + [[0.0255266-—{187!]6487%&02552663!3 )
+ (1 +3x0.8706487) x 08706487 x 0.0255266%15]
cos 43.01T4782% ¥ 180°w

—-73" = T W. long.

=
|
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ALBERS CONICAL EQUAL-ARTA (SPHERE) - FORWARD EQUATIONS (SEE P 1007

Given: Radius of sphere:. R = 1.0 unit
Standard paralleiss &, =29° 30" N. lat.
de = 46° 30" N. lat.
Origin: &y = 23% N. lat.
hy =968° W long.
Point: ¢ =353" N. lat.
A =T5" W. long.

Find: p, 8, =, w, &, £, w
From equations {14—4&), (14—5), (14—3), (14—3a), and (14—4) in order,

n = (sin 29.5° + sin 45.5°)2
= 0.6028370

C =cos® 20.5° + 2 = 0.6028370 sin PO.5°
= 13512213

p = 1.0 x (L.3512213 - 2% 0.B02RITO sin 25°112/0. 6028370
= 1.3473026 units

po = 1.0 ¢ (1.3512213 -2 < 0.B02BIT0 sin 23°112/0. 6028370
= 1.5562263 units

g = 0.6028370 % [(—75"1—{—96)]
= 12.8595771°

From equations (14—1), (14—2), and (14—7T} in order,

‘.:.O

T 473026 sin 12.6595771°

JHVE IO
by LA -an | LlIlli,

LS

1.5562263 — 1,2473026 cos 12660577 L°
0. 2416774 unit
05
1.

f !Il

]
h

35°1(1.3512213 - 2= 0 HORBITO sin 35
Q085547

Il

and
k= 110085547 = 0.9%156178
From equation (4—9),

sin Yaw = 11,0085547—0.99151751/(2.0085547 +0.9915175)
w = 0.8781180°

ALBERS CONICAL EQUAL-AREA (SPHEREI-INVERSE EQUATIONS (SEF F. 101}
Inversing forward example:
Giver: R, &y, tg, dus Ap Tor forward example

= (L.2952720 unit
¥ = 0.2416774 unit

Find: p, 6, 1, &

19
&



MAP PROJECTIONS—A WORKING MANUAL

Ag in the forward example, from equations (14--8), (24-5), and (14—3a) in order,

i = (sin29.5% 4 gin45.5°2
= 0. GO2R3T0
C =cos® 20.5° + 2 x 0.6028470 sin 24.5°
= 1.8519213
Po = L0 % {1.3512213—2%0.6028370
sin 2320, 6024270
= 1.53R2263 unils

From equations (14—106), (14—11), (14— 8, and (14—9) in order,

e = [0.29527207 + (1.5502263—0.2416774)8]12
= 13473026 uniis
arctan (0. 2952720:(1, 5562863 — 0. 2416774} ]
12.6505760°, Since the denominalor is positive,
there is no adjustment Lo B,
& = aresin 113512213 (1. 3473026 < 6. 602837071 % )
{2 = 6.6028370)}
arcsin 0.5T5TG4
= 35.0000007° = 35° N. lat.
12659576654, 6028370 + { —95°)
20, 9999992 —4i°
= 7500000087 = T5° W, long.

)

9

=
I

ALBERS CONICAL EQUAL AREA (ELLIPSCGID-FORWARD EQUATIONS (SEE P, 101

Given: Clarke 1866 ellipseid: o = 6378208.4 m
et = 0. UNBTHEEE
or e =0.0822719
Standard parallels: &, =25° 30" N. lat.
ba =45 30" N, lat.
Origin: &, =23 N_ lat.
hp = 95° W long.
Foint: & =35" N. lat,
L =75 W. long.

Find: p, &, o, o, £ w0
From eguation (14—131,
Wy = eps 20.5°(1 —0.006TGR6G sin® 29,55
= 0.RT10708

g == cos 45.5%(1-0.00876568 sin® 45,502
=10.7021191

Frotn eguation {3-12),
g = (1-0.00R7HREB) lsin 29_5%(1 —(LOUBTHEAE sin® 29.5%)
—[142 2008227193 In [{1—-0Q.0822719 sin 28.5°)

(1+0.0822719 sin 29.5%))
= .9792529

Using the same formula for o (with &, instead of &)

4o = 1.4201080
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Using the same formuia for g, (With ¢y instead of &),
g, = D.TT6TOR0
From equations (14— 14), (14—13), and (14— 12a) in order,

w = (08710708 —0, 7021191314 L. 4201080 -0.9792580)

= (LB029035

C = 0.8710708 + (.6029035 x 0.0702529
= 1,34915M

po = GATE206.4 % (13491594 — 0.6029035 %0, TTETOS0) 40 6029085
9,929 079.6 m

These are the constants for the map. For ¢ = 35° N. lat. and X = 75" W. long.:
Using equation (2—12), bat with 4 in place of by,

g = 1.1410831
From equations (14—12), (I14—4), {14—1), and (14 -2} in order,

p = BATEZ06.4 X (1,3491594 - 0.6029035 = 1, 14 1083111210, 8020085
= B,602,328.2 m
= (L602ZINEG = [ -7 —(—96%] = 12.66809735°
= BO02328.2 win 12.6609735° = 1,283,472.7 m
¥ = NY26079.6 — HG0ZI2E 2 cos 12 6609735°
= 1,030,925.0 m

= oD

From eguations (14— 15), (14=- 16}, (14—18), and {4—9 in order,

m = cos 35%(1—0.006TCH66 sin® 35°

= D.B200ER6
k= 8602328 8 x 0, B029035/(63TE206. 4 0. 8200856)
= .91 5546

f = 1/0.99150d6 = 1.0085173
sin Yo = 11.0085173—0.99153461/(1.0085173 + 0.4915546)
w = 09718678

ALBERS CONICAL EQUAL-AREA (KLLIPSCGIN - [NVERSE EQUATIONS
(SEE P, 102 )

Inversing forward sxample:

Given: Clarke 1866 ellipsoid: « = 6373208.4 m
e = (L.ODBTEEE6
or ¢ =0.0822719
Standard parallels: &, =29° 3’ N. lar.
d, =45 30° N, lat.
Origin: 4, =23° N lat,
Ay =06 W long.
Point: r =1 EBS AT T m
¥ = 1,5%5,925.0 m

1
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MAF FROGJECTIONS:—A WOREING MANUAL
Find: p, 8, &, A

The same constants #, , p, are caleulated with the same equations as those
fnmuard svamnle. For tha nartionlar ooint s
ll'.fl Yy L blb R4Jedl (T2 ¥]

2. 005N e

vzard fre the v
UAEln LU LIn 1w el DAd

L R R AT
Iy

= [18RB472.7% + (9929079, i— 1535925, 0¥ e
¥,602,328.3 m

'c:-
i

From equation {14-11},

8 =arctan [1885472 W (9929079 6— 1535325.0)1
= arctan 0.2246441
= 12,6609733° The denominator is positive; therefore 8 is not
adjusted. From equation (14-19),
g = [1.3491584— (B60232R, 3 x (). GO2G0EBITHZ06.4)°1/0. 6029035
= 1.1410831

Using for the first trial ¢ the arcsin of (1. 141083172}, or 34. THTIGHD®, caleulate a
new ¢ trom enuation (3— 16},

34.7879953% + [(1—{L 00676866 sin® 34, TRTIGHAM2(D ros
4. THTEOR2) = {I.MIUHSUH-U.(}UGTE%G} — sin J4.TETUOS3%/
(1—0.00675868 sin® 34.7879983% + [142 » 0.0822719)] In
[(1—0.0822719 sin 34. 747998391 + (LOBZZ7I9 sin
A mamanotsl o Tanoss

SEASITIET] D A Lo T

$4.8097335°

1]

D

Note that 180%w is included Lo convert to deprees. Replacing 34.7879983° by
34.9997335° for the second trial, the calculation using equation (14— 19} now pro-
vides a third & of 32.0000015°. A recaleniation with this value results in ho change
to seven decimal places. (This doces not give exactly 35° doe to rounding-off errors
in @ and y.) Thus,

¢ = A0.0000015° N. lat.
For the longitude use equation (14-9),

o= (—967) + 12660973350 6029035
= —Ta.0000003° or 75. 0000003 W. long,

Forscale factors, we revert to the forward example, since ¢ and A are now known,
Series eguation (3—18} may be used to avold the iteration above. Beginning
with equalion (14—21),

B = arcsin 1. 141083141 — (1 —0. 00876566112 % 0.08227193] In
[(1=0.0822719)41 + 0.0822719)]1]]
= 3.H781793°

An example is not shewn for equation (3-1%), since it Is similar to the example
for (3—4a).
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I AMBERT CONFORMAL CONIC ISPTHEREI-FORWARD ECHLIATIONS
{SEE 1. 1068-107 )

Given: Radius of sphere: R =1.0 anit
Standard parallels: &, =33 N. lat.
e =45° N, lat.
Origin. ¢, =24 N, lat.
hy=96" W, long.
Point: & =35° N. lat.
h=T5"W. long.

Find: p, 8, x, u, &
From equations (15-33, (15-2), and {15—1a} in order,

n = Inicos 348%cos 45°Mn [tan{45” + 457%2)tan (45° + 339
= {.6304777

F =[cos 33° tan™®MT (45° + 3A% 06304777
= 1.9550002 units

po = 1.0 x 1.O550002/an™ 87T (45% 4+ 2453}
= 1.5071429 units

The above constants apply to the map generally. For the specific ¢ and &, using
equations (15— 1), (14—4), (14 -1}, and {142} in order,

p o= L0 x LS55000Z/an™ ST (45° + 33%2)
= 1.2903636 units

8 = 06304777 x [{—T5")—{—967}]
= 13.24003167

© = 1.2053636 sin 13.2400316°
= (. 20965785 unit

y = 156071429 — 1.2953636 cos 13.2400316°
=1{,2462112 unit

From equation (15—4),

k= e0s 387 Lan? SHTT (457 + 33%0Y[cos B3° tantBeIT
(45° + 35%2))
= D.3970040

or from eqUation (4—5},

k =0.8304777 x 1.2962636/(1.0 cus 35
= 0.8970040

LAMBERT CONFORMAL CONIC (SPHERF)-ITNVERSE EQUATIONS
(SEL P 107 »
Inversing forward exampla:
Given:. £, &, bz, $y, »y Tor forward example

x = 0,2966785 unit.
¥ = 0.2462112 unit
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MAF PROJECTIONS—A WORKING MANUAL

Find: p. 8, &, 2
After calculating », F, and py a5 in the forward exampile, obiaining the same
values, equation (1410} is wsed:

p = [0.2066785% + (1.5071420- (.2462112)%
= 1.2053636 units

From equation (14 —11},

H = arctan [02866785/(1 5071429 —0.2462112)]
= 13.2400329", Sinee the denominator is positive, 8 i not
adjusted.

From equation (14-9),

A= LE2400220%0LG3MTTT & (- 867
= —T4.8984981° = 74.9999951° W. long.

From equation {15-5},

¢ =2 arctan (L0 x 185500021 285363G)7 #4177 —gp°
= 34.9998574° N lat.

LAMBLE T CONFORMAL CONW ELLIPSOHIN - FORWARD EOQUATIONS
(SEF F.107-108 )

Giver: Clarke 1866 ellipsoid: o = 6,378,206.4 m

= (LIUBTBHEE
or e =0.0822719
Standard parallels: &, = 33° N, lat.
hy = 46" N, lat.
Origin:  dq — 23" N, lat.

Ay = 06" W long.
Point: & =35 N, Iat.

. P =0 1] | ) [P—
A =g vy, ONE.

Find: p, 8, 2. 9, &
From enuation (14-15),

b, = cos B3~ 0. 006 TEEGE sind 3304
= {LB395138

wiy = cos 45°% 11— (L ONGTERE6 sin® 45912
= (1 TORAGA

Frum equation {15-9),
£ = tan (45%- 33%EWI{1 - 0.0BEETIO sin 33701 + (. 0822719 sin 337 ertionz
= 115449623
tz = 0.4162031, using above with 45 in place of §3°.
£y = (L.6E363MY. using above with 23" in place of 33",

From cquations {15—8), (15— 109, and (15— 7a) in order,
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F = 0.8395136A0. 6304965 % 054495230 80w
= 1.4523837

py = 63T8206.4 % 1.9523837 ¢ 0,66363500 605
= 9,615,955.2 m

The above are constantz far Lhe map. For the specific ¢, X, using equation
(15-9),

t = (.5225535, using above calculation wilh 337 in place of 33°.
From equations (15—7T), {14—4), (14-1), and (14—2) in order,

p = BITE206.4 x 19023837 x 0.5825935" muks
=R2711,173.8 m
= 0.6304965 % | =757 (=067} = 13.2404256°
= B2T1173.% %in 13, 2442567
= 1,804,410.8 m
4 = 8615955.2--8271173.9 cos 13.2404856°

= 1,664,649.6 m

5 o

From equations {14—15) and (14— 163,

= cas 35%(1-0.008T6G866 sin® 35%)%
= 0.R2I0650G

E o= 82T1173.9 x 0.6304965/(6378206.4 = 0.82006506)
= 0.49T01TL

LAMBERT CONFORMAL CONIC ELLIFROIN—INVERSFE EQ1 AT IONS
(SFE F. 108

inversing forward example:

Given: Clarke 1566 ellipsoid:  a = 6,378,206.4 m
¢f = {.00676R66
or & =1.0822719
Standard parallels: 4, = 32* N lal.
P = 46° N. lut.
Origin: &y, = 23° N. laL.

Ap = 987 W, long.
Point: @ =184, 41089 m
¥ = 1,564,649.5 m

The map conslants #, F, and pg ave calealated us in the forward example, obtain-

ingr the same values. Then, from equation (14—10),

g = 18%9410.9° + (9615955.2 — 1564649.5)°)
=R&271,173.8 m

From equalion (14- 11,

= aretan (1804410, 209615955, 2 — 1564640.5)]
= 13.2404257° The denominalor is positive; therefore 0 is nou adjusted,

From equation {15~11),

|B2T1173. BAB37A206.4 » 1.852383 7)) 0w

i =
= (L.522393%3

207
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MAP PROJECTIONS—A WORKING MANUAL
To use equatjon (7—8), an jnitial trial & is found as follows:

¢ =80° — 2 arctan 0.5225035
= 34.8174484"

Inserting this into the right side of equation (7-9),

b =90 — 2 arctan [0.5225935 = [(1-0.0822719 sin 31.8174484°)
(1 + QLORZETID sin 34.8174454%0 ee2rin2
= 34.9081687°

Replacing 34.8174484° with 34, 9981687 for the second trial, a ¢ of 34.999594968° i
obtaitted. Recalculation with the new & results in ¢ = 35.0000006°, which does not
chahge to seven decimals with a foerth trfal. {This is not exactly 35°, due to
rounding-off errors.} Therefore,

¢ = 35.0000008" N. lat.
From equation (14-9),

A = 13.2404257°70. 6304965 + (96
= —75.0000013° = 75.0000013° W, Jong.

Examples using equations (3—5) and (7—13) are omittad here. since compara-
bie examples for these equations have been given above.

EQUIMSTANT CONIC (SPHERE}- FORWARD EQUATIOGNS (5EL P 113)

Given: Radius of sphere: £ = 1.0 unit
Standard parallels: &, =28°30° N. lat.
by = 45° 30° N. lat.
Origin: &y = 23° N. iat.

[ .. T O ) 1 TR
Ap = TO00 W, MO0E.

Foint: & =35° N. lat.
Ao=T5"W. long

Find: p, 6, =, ¥ k

From equations {16—4), (16=3), (16-2}, (16—1}, and {14-4) in order,

®n = (Cos 28.5°—cos 43.5°V[(45.5°-28.5%) » w/180°)
= {.G067TR63
& = (cos 2857406067863 + 29.5° x n/180°
= 1.9402438
pr = L0 x (1.8482438 — 23° x 71807
= 15478121 units
p = L x (19492438 -35" = «/180°)
= 13383786 units
& = (Lo0GTEDE » [—75%~{—96%]

12,7424921"

Using equations (14=1), (14=2), and (16—5) in order,

x = L33BITE6 sin 12,7424921°
= 0.2952067 unit
¥ = L54TRI81 — 1 3383786 cos 12.7424921°

0.2424021 unit,

Il
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(1.949243% - 35° x w1807 x (.6067R53/cos 35°
= 0.99140

R—
i

FOUIDIS TANT CONIC (SPHERF) -INVERSE BEQUATIONS (SEF P 118)
Inversing forward example:
Given: B, &y, du, by, &y for forward example

x = 10,2852057 unit
¥ =0.2424021 unit

Find: p, 0, $. X
Clalenlating 1, (7, and o, a5 in the forward example
ha oEim TRy T w BRI Ry RS e 1L Ak,

xn =0 GNETRRD
n 0. 608TERR
fz = 1.04324358
o~ — 1 EATOIGY Lack o
Py = 1.0% 001061 Wnils

Using equations (14—10) and {14—-117 in order,

p

8

It

It

+ [0.2652057% + {1.54T8181-0.2424021)%)'%
1.3383786 units, positive because # is positive
arctan [0.295205741.5478181 —0.24240213)

= ]2.7424935°, not adding 18)° singe denominator is positive
Using eqguations (16—6) and (14-9) in order,

d = [1.9492438 — 1.3383786/1.0] x 180%w
= 353" N. lat,

-96° 4+ 12 7424033%0. 6067853

~T75% = T5" W. long.

.

]

FUHMSTANT CONICHELLIPSOIDN -FORWARD EQUATIONS (SEE 1P 114)

Given: Clarke 1866 ellipsoid: o =6,378,206.4 m
¢ = (.006TGRES
by = 297 30" N. lat.

ds = 45% 50" N, lat.

wtandard parallels:

Origin: ¢y, = 23° N. lat.
hg = 96" W, long.
Print: &= 35° N. lat.
h=T2"W. long.
Find: p. 0, x., 9, £
Tiwriers merrd o Fl1d —T5% el 12 1%
&L R RE TS vt T oy Al 15T L,
Py ST R] FeR R TA T cLoTay LR L Ty R ) )
Fro = CO3 G L — U UG IOS00 510 S0 J57F
= 0 2200858

M =6878,206.4 » [{1-0.00676866/4 —3 x 0.005TGREH~/H4
— 5 % 0.00676866Y/256) X 35° x wIR0® — (3x0.00676866/
§ + 3 x 0.006T6366932 + 45 x 0, 00876866%1024)
sin (2x35%) + (15x0.006768662/256 + 45 x 0.00676366%
10245 sin (4% 357 — (35 0.006768686%/5072)
sin {6ix 35°1]
= 28743952 m
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MAF PROJECTIONS—A WORKING MANUAL
Using the same equations, but with &, = 29.5% in place of 35°,

m, = LETIOT0R
M, =8264,511.2 m

Similarly, with ¢, = 45.5° in place of 35°,

2 ={. 702119
M, = 5 .040,285.0 m

and with ¢, = 23° in plage of 357,
My =2,544,389. % m

Using equalions (16-10), (16-11), (16-8), (16—8), and (14—-4) in arder,

1w o= B,378,206.4 x (08710708 0. TO211913/(5,040,295.0~13,264,511.2)
= [0.G06H355

7 = 0L.BTIOT08:. 6068355 + 3,264,511.2/6,378 2064

= 1.9472543

po = 6,378,206.4 % 1,9472543 — 2,544,889 8
= 9,875,509.9 m

o= 6,378,206.4 X 1.9472545 — 5.674,595.2
= #,545,594.4 m

§ = 0.6068355 = |-75"—{—96%)]
= 12 7435458°

Constants &, 7. and py apply to the entire mayp.
Using equations (14-1}, (14-2), and (16-T) in order,
& =8545,504.4 % sin 12.7435458"

1,5885,0561.9 m
9,875,504 % — B 545 584.4 ¥ cos 12.T435458°

=1,540,507.6 m
k= (19472543~ 3 B74,395.2/6,878,206.4)

= (606835500, 3200656
= 159144

!l

u

EQUINISTANT CONIC {ELLIPSOIDY—TNVERSE EQUATIONS (SEE ¥ 114 )

Inversing forward example:
Given: a, ¢°, ¢, $a, Iy Ay for forward example

x=1,885051.9m
¥ = 1,540,507.8 m

Caleulating », &, and py ag in the forward example,
# = (LABELES

= L.9472543
po = 9,575,580.9 m
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Using equations (14—103, (34— 11, (16 ~12), (T=19), (3-24), and (3 —26) in order,

= - [1,885,051.9% + (9,875,589.9-1 540 507 6)%'~
2,5645,604.4 m
6 = arctan 1,885,051 9/(9,875,699.9-1,540,507.6)|
= 12.7435461°, not adding 180° since denominator is positive,
M =6,378,206.4 x 1.9472543 — B,545,594.4
= 3,874,305.4 m
k= 3.874,305.4/16,378,206.4 » {1-0.00676366/4
- 8 % 0.00676866764 — 5 x 0.00676865%/256) |
= 06084737 radians = 34.8629767°
g; = [1={1-0.006T6E661* 1 + (1~ 0.00676866)']
= 0.001887916
3486297677 + |(3x0.001697916/2- 27 % 0.001697916%
32) sin {2%34.8620767%) + (21x0.001697916%/16
— 55 x (LO01697916%/32) sin {4 = 348620767}
+ (151 x0.001897916%/96) sin (6234 8624767
+ (1007 0.0016979164/512) sin (8 x:14.86297677)
x 180%w
35° N. lat.

=
i

o
1]

Using equation (1493,

A= —96° +

BIPOLAR QBLIQUE CONTC CONFORMAL (STHERE) - FORWARD EQUATIONS
(SEE.T. 118-120)

This example will illustrate equations {17~ 14} through (17 —23), assuming prior
caleulation of the constants from equations (17—-1) through (17-13).

Givan: Radius of aphers: R = 8,370,997 m
Point: ¢ = 40" N. lat.
A=90"W, long.

Find: o, u, &
From equations (17—14) and (17- 156},
z;, = arecos [sin 457 sin 407 + cos 457 cos 40° cos [(~19750°367)
—{ -5}
= 50, 228757
Azy = aretan {sin (—19°59°367 + DM cos 45° tan 40° — sin 487 cos
{—18°09°36" + 9071
— 9. 48856°

Bince 6O 48856° i3 less than 104.42834° proceed to equation (17-16).
From equations (17—16) through (17--22),

py = 180720 x 8370097 tan ™% (14«50, 22875
= 7,496,100 m
fe = 7,496,100 » 0.63056/6370097 sin 50.22375%)
= 0.96527

am
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o = areeos|[tan? 9% (Lo 50, 32875 + tan™S0% 151 04°
—50.22875))/1. 2724 T
= 1.88279"
widz,, —Az,) = 063056 « (104.42834° — 68.48856%) = 22.03163°

This is greater than «, so p,' = p,.

' = 7,496,100 sin [0.63036 (104.42834° ~69. 48855%))
=2,811,900 m
¥ = 7,496,100 cos [0.53056 (104.42834°— 69.48855%)]
-1.20708 x 5,370,997
= —T41, 670 m

From equations (17—32) and (17-33},

]

[

I
= pa
W 00

[y

=1
-
M

j oo

=3

®g
o
= =]
=
5

o

1
L

£

BIFOLAR OBLIGUE CONIC CONPORMAL {(SPFHERE)— INVERSE EQUATIONS
{SEE B 120121 )

inversing the forward example:

Given: Radius of sphere: B = 6,370,987 in
Point: == —1427 800 m
¥ = 2,033,500 m

Find: &, A
From equations (17—34} and (17-35),

' = —({—1,427 800} cos 45.81997° + 2 533,500 sin 45.81987°
=2 811,900 m

g’ = —(—1,427 8K} sin 45.41997° — 2,533,500 cos 45.81997°
= —741,670 m

Hinee @' is positive, go to equations (17—~38) through (17—44) in order:

p = [2,811,900°F + (1.20709xG,370,997 — 741,670)]2

= 7,496,100 m
Az", = arctan [2,811,900/(1 20708 x 6,370,987 — 741,670)]
= 22031507 (The denominater is positive, so there is no
quadrant correction.}

p; = 7,496,100 m

2 = 2 arctun [7,496, 10041, 80725  §, 370, 987 1000
= 5l), 28873°

o = arecos |[tan® =8 (14 x Ri), 29873°)

+ tante L1040~ 50.228737 1 1.27247-

Sinee Az', is greater than e, go to equation (17-42).

Az = 1. 42834% ~ 22 031507063056
= 59, 48876°
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¢ = aresin {sin 45° cos 5022873 + ¢ng 45° sin 5. 22R73° cos
69, 48876")
= 3999987 or 40° M. lat., if rounding off had nat
accumulated errors.
A = (= 19°59'36" )~ arctan |sin 69.48876%cns 45%an 50.22871°
— min 45° cos 69.48875°)
= —R9.99%87° or %0° W. long., if rounding off had not,
accumulated errors.

POLYCONIC (SPHERF)—FORWARD FQUATHOINS (SEE P, 128-129 )

Given: Radius of spherer B = 1.0 unit
Origin: &y =30° M. lat.
Ag = 96° W long.
Paint: & =40° N, lat.

A=T5" W, long
z.

Find: o, w, h
From equations {18—2) thrnugh (18—-43,

£ =(=T5" + 98° sin 40°
= 13.4885:208°

x =10 cot 40F sin 13 4985208°
= 0.2781798 unit

y= 10 x [40° x w/180° ~ 30° x w/180" + cot 40° (1—cos 15.49R53987%))
= 1,2074541 unit

From equations {18-8) and {18-5),

D = arctan (13.4885395° x /180" — sin 13.4085394 sec® 40° —
cos 12. 49853957
= 017018327
b= (1-cos® 40° cos 13.4985398%)sin® 40° ens 0. 170183127
= 1.0392385

POLYCONIC (SPHERE)- INVERSE EQUATIONS (SEE F. 129)

Inversing the forward example:

Given: Radius of sphere: R = 1.0 unit
Origin: ¢y =30° N lat,
kg = 95° W long.
Point: ¢ = 0.2TRITHR unit
y = 0.2074541 unit

Find: ¢, A&
Binee y £ —1.0 » 30° x 7/180°, uge equations (15—7) and {18—8):

A =30 = w/lIRD® + 0.2074541/1.0
= [.7110529

B =027817T98%1L.0° + 0.7310529°
= (.6118223

Assuming an initlal ¢, = A = 0.7310529 radians, it is simplest to work with
equation (18—} in radians.

303
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b, ., = 0.7310529 - [0,7310529 x (0.7310528 Lan 0.7310529 + 1)
—(.T310529— 1(0.7310520% + 06118223 tun 0.7310529)/
F(0.731052% — 0.7310529)tan 0.7310529—1]

= .6GY63533 radian

Using 0.6263323 in place of 0.7310529 (except that the boldface relains the value
of A a new o, of 0.G981266 radian is obtained. Again substituling this value,
0,6981317 radian is obtained. The fourth iteration results in the same answer to
seven decimal places. Therefure,

&

= QEURIZIT » 180%y = 400000047 or 40° N lat,
From eguation (18—103,

& = [aresin (0. 2781798 tan 40%1 03[/ 40° + (~9G°)
= - 75.0000014° = 75" W. long.

MOLYCONIC (ELLIPSOI DD FORWARD EQUATIONS (SEE P I2%-1301

Given:  Clarke 1865 ellipsoid: = 6,378,206.4 m
& = (LDOGTGREG
Origin: ¢y = 307 N. lat.
Ao =967 W, long,
Point: & =40° N. lat.
=75° W. long.

Find: &, y, &
From equation (3—21),

M = 06,378,206, * [(1-0.00676866/4 — 3 x 0.0067T68662064
—5x0.M6TGREE3256) ¥ 40° * a180° — (3 %0, 00GTER6G/S
+ 3000676866292 + 45 » (LO0GTERGE™1024)
Sit (2407 + (15 (LO0GTES6G256 + 45 ¥ (LG06TGRG8%1024)
gin {4 =407 — (35 = 0. 006TEEE6%3072) sin (6x40°)]
=4,420,3189 m

M, = 3,319,933.3m
From equation (4—21),

N = 6,378,206.471 -0, 006TES6G sin? 40°)2
=§,378,142.9 m

From equations (18-2}, (18-12), and (18—13),

B =(=75° + 967 sin 40°
= 1.3.4985308°
¥ = 6,387,143, % cot 40° sin 13.4985358"°
=1,776,774.5 m,
¥ = 4,429, 3189 — 3 319.942.8 + 6,387,143.9 cot 40°
(1—ecus 13.4D85398%)
= 1,319,667.8 m
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To calcuiate scale factor A, from equations (18- 16) and (18- 13),

D = zretan (13.4985398° = =/180° - sin 13.4985398°)/(sec? 40°
— ¢os 13.4985308° — 0.00676866 «in® 40°/ 1 —0.00676866
sin® 40"}
= {.1708380522°
h =[1-0.00876866 +~ 2(1-0.00676866 sin® 40°) sin®
Va(13.4985398° tan” 40°)/(1 —0.006TAHEE) cos 0. 1T08IR0522°

T T ]

= 1.03583554
POLYCONIC (ELLIPSOITH - INVERSE EQUATIONS (S3EY. P. 130-131
Inversing the forward example:

(ziven:  Clarke 1864 cilipsoid: a = 6,375,206.4 m
e = L.00GTRREE
Origin. by = 30° N, lat.
Ay =96° W, long.
Paint: x=1,776,774.2 m
% =1319,667.5 m

Fiwd: s, &
First calcuiating M, from equatiom (3—21), as in the forward example,
M, = 3,319,933.3 m
Bimce y £ M, from equalions (18- 18) and (18-19),
A =(3,219,93%.3 + 1,519,667.8)/6.378,206.4
= (.7274131
B =1,776,774.5%6,378,206.47 + 0.7274131%
= (.606T305

Assuming an initial vaine of &, = 0.7274131 radian, the following caleulations are
made In radians from equations (18—20), (3—21), (18- 17}, and (18-21);

£ =(1-0.006765%66 sin® 0.72741313** tan 0,7274131
= 0.8R293G5
M, -4,6156,626.1 m

hEl = 1 o (P WMSTEREE A o Ry (ETERGEICA B {) N TEen et s
1 4y _ 4 WG LI L RARE PR AN N RN IRt AR U U TR Ly
= 2 2% (Ix0.00676866/8 + 3 x 0.00676866%32 + 45
Oy rerur e e ey e d e PR L R TRV Y.
[Zigdidl) 4 A \ld

* DBTERGG71024) cos (220,72
» 0. 0DRTREEREAE 4+ 45 X
» 0.7374131) - § = (35%0.
® (0,72741313
= 0.9977068
M, =4,615,826.1/6,378,206.4 — 0.7236558
¢,., = 07274131 — [0.7274131 = (0.8889365 = 0.7236458 - 1)
— O.T33R358 — Y00, 72366587 + 0.B06730%) x (. BRBOIGS]
10.006TBHAR sin (2% 0.7274131) = (0.7236555%7 + 0.6067300
— 2 = 07274131 % 0. TE36558)04 = 0. 8589365}
+ (0.7274131 — 0.T2365658) x (0.4B39365 = 0.9977068
— Zfsin (Zx0,72741310 ~ 0.9977068]
= (,6967240 radian
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Substitution of 0.696T280 in place of 0.7274131 in equations {18-20), (3—21),
(18—17), and (18—21), except for boldface values, which are 4, not ¢, a new
b, of 0.6981286 is obtained. Using this in place of the previons value results in a
thixd ¢, ; of 0.6981317, which is unchanged by recaleulation to seven decimals.
Thus,

$ = DASS1RIT x 180°%w = 40.6000005° = 40° N lat.
From equation (18—22), using the finally calculated O of 0.8379855,

x = Tavesin (1,776,774.5 x 0.8379255/6, 978 206 4))sin 40° + (—96%)
= —75% = T4 W. long.

MODIFIED FOLYCONIC (IMWI-FORWARD EQUATIONS (SEE P, 131, 134-135}

{iiven: International ellipseid:  «a = 6,378,388.0 m

& = 0.00BT2267
Northernmest lat. of quad: ¢ = 40° N. lat.
Southernmost lat. of quad: &, = 36° N, lat.

Central meridian: A, = 70° W, long.

Meridian true to scaler &, = 73" W. long.
Paoint: &= 39" N. lat.

A=T8"W. long.

Far constants applying to entire map, using equations (18—28) and (18-27) for
m =1,

B, =6,378,388.0 x cot 365(1—0.0087T2267 X sin? 8oy
= §,789,311.0 m

F\,=1-78—(—75%] sin 36°
~ 1.1755765°

Using ¢, = 40° for » = 2 in the same equations,

Ry =T612,045.9 m
F, = 1.2935752°

Using equations (18— 23} through (18—25) for 2 = 1 and 2,

#,= 8,789,311.40 x sin 1.1755705°
=180,322.7 m

#p = T,612,145.9 = sin 1.2855752°
= 170,781.1 m

y, = R,789,311.0 » {1—¢os 1.1755705°)
=1,349.957 m

T, = 7,612,045.9 % (1—cos 12855752
= 1,014,033 m

Using equation (2—-21) for » = 1,

M, = 8,378 388 x [{1-0.006722671 — 3 x 0.006T2287%4
— 5 % 0.0UGTERETHAG6) X 36° » wf180° — (3 x 000RT2267/
& + 3 = 0.00BT228T¥32 + 456 x 0.008722673/1024)
sin (2267 + (15x0.0067226T3256 + 45
% (LOUBTZE6TY1024) sin (4 %367 — (35xU.008T2ERT™
3072) sin (6 36%))
= 3,985, 6l6.6 m
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Using equations (18—28) through (18—33) i order,

¥ =1(4,429,605.0~3,985,606.6)¢ — (170,781.1 — 180,822, 7)1
+ 1,849.957
= 445,745.8 m
C, = 445,745 8 — 1,916.033
= 443,828.8 m
P o= (4,420,605.0 X 1,849.957 — 3,985,606.6 x 443, 745.8)
(4,429,605.0 — 3,985,606.6)

= —3,982,836.2 m
& =(445,745.8 — 1,849.957)1{4,429,605.0 — 3,585,606.5)
= 0.9907841

£ =(4,429,605.0 % 180,322.7 — 3,983,6806.6 = 170,781.1%
{4,429,6805.0 — 3,985,0606,6)

= 265,974.0 m
& =(170,781.1 — 180,322.7)/{4,429,605.0 — 3,985,606.6)

= ~0.02149016
The above constants apply to the entire quadrangle. The following values are for
the specilic point. Using equations (3—21) and (18-26) without subscripts, (or
& = 39,

M =4,318,576.8 m
R =7871599m

Using equations (15-34) through (18- 40} in order,

r, =265,974.0 + (—0,021490168} % 4,318,576.8

=173,167.1 m

PR A

do = —3,982,836.2 + 099397691 x 4,318 576.8
=884,743.2 m

C =8334,748.2 = 7,887,169.9 + (7,887,159.%° - 173,167.1%017
=832,842.0m

xy =7,612,045.9 sin [{—T6°—(—75°)) sin 40°]
= —§5,295.9 m

¥y =442,820.8 + 7,612,0459 x 1-cos [(—T78°—(—T5™) sin 40°])
= 444,308 .8 m

¥, = 8789,811.0 sin [(—76°—(—75")) sin 36°]
= —90,166.1 m

Y. =8,789,311.0 x [1- cos [(—T76"—(~75")) sin 36°):
=462 5 m

Using equations {18—41) through {18—44),

£ =[—85,395.9—(~90,166.1))444,308 8—462.5]
= 0,01074735

B =-90,186.1 ~ 0.01074735 x (332 842.0 + 7,887,159.49—462 5)
=-=1,827.%m

z ==1,827.9-0.01074735 x |7,887, 158.9¢ ¥ (1 + 0.010747352) -

(— 1,827 921 + 0.01074785%)

= —86,5688.8 m

y =332,842.0 ~ 7,887,158.9 ~ [7,887 158.9% - (-86,588.8)2 s
=333,417.2 m
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MODIFIER FPOLYCONIC (1MW) - INVERSE EQUATIONS (SEE P 135
Inversing lorward example:

Given: g. ¢, ©g, dn, Ao, Ay Tor forward example
r = —Hb, 58K 8 in
y =333317.3m

These constants are calenlated exactly asin the forward case, and have the same
values (or this example; xy, @y, 4y, M, My, g2, Co, P, @ P, @, The first trial
& and A, or gy, and .y, are fognd rom equations (18—47) and (18— 48):

by = 4UF°
Ay = [ 86 DHERIG,ITH,380.0 « cos 407 = 18P/ + [~T75%)
= ="T6.01535456°

Calenlating &, y for these trial values of &, &, exactly as in the forward case,
results in the following test values:

e 476.8 m
¥n —86,707.4 m
W — 444,223.6 m

The new trial & and h are foww| from equations (18—49) and (15—50%

dye = [(40°-386% x (333,317.3 - 476, 801444, 323.6 - 476.8)] + 36°
= 3. 9005087
App = [[—76.01538586°—(— 75711 x {—BE, L8R BY(—HE,T07.4)] + (—Td™

= =T 033684"

Caleulating x, g from t} _se trial values, and then recaleulating &, A:

¥ = 475.5m

T = —BYTISBm
er = 3A2.286.1 m

by = 38.9998792°

Mg = —75.99909952°

The next iteration produces the following:

¥ = 462.5m

Xpy = —~HB6, 8.5 1n
ez = 333,303.9
ey = 359080997
hpg = —T70.9930534°

Then
¥, = 462.5m
Xy = —HG,688.Tm
#rg = 388175 m

dyp = 38.0999996°
5 = —T6.0000001°

>
&
|
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And finaily, since there is no significant. change,

iy, = d6Z.5 m

Iy, = —BR6,088.8 m
W, = 333.317.3 m
g £8.9699995°
LTS = 7600000017

Thug, ¢ = 35%° N. lat. and » = T6° W, long.

ROMNSE GSPHEHL - FORWARD EQUATIONS (SEE Fo139-140)

Given:  Radius of sphare: £ = 1. unit
Btandard parallel: ¢, = 40° N. lat.
Central menidian: x, = 75° W. long.

Point: ¢ = 30° N. lat.
A = HE"W. leng,

Find: x, u
Uzing equations (19-13 throogh (19-4) in order,

p = 1.0 % [eot 407 + {(40°—=31F) = 7/ 180F]
1.3662865 units

E =10 % [-85° — (—75")] cos 20°1.3662865
= —6.33853a4"
= 1.3B62AGD sin (—G.33853447)

= —0. 1508418 unit
¥ = l.0ecot 40° — 1368265 cos (—B6.3385344%)
= —{} 1661807 unit
BONNE (SPHERE)- [NVERSE EQUATIONS (SEF. P.140)
Inversing forward example:

Given: fi. ¢, Ay [or forward example

=), 1508418 unit
-0, 168107 unit

x
¥

n

Find: 4, A
Using equations (19— 5) through (19-7) in order,

[(—0.1508415% + (1.0 eot 40°—{ - 0. 1661807)1°]"

i) =
= 136628065 units

$ = {cot 40°) = 185 + 407 =-(1.36062%066/1.0 = 180%nw
= 30" N. lat.

A= =75 + 1.366286b x [m'ctan [ =0, 1508418410 cot 407

— (=0,1661807) (1.0 cos 30°)

—T5° + LJIBG2REEH X [arctan |—0. 1508418/, 3079343
cps 3

—85" = 865" W long. , not adding 180° to the arctan because
the denominator is positive.

Il

1l
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BONNE (ELLIPSOID)-- FORWARD EQUATIONS (SEL P.140)

Given: Clurke 1866 ellipsoid: ¢ = 6,278,206.4 m
¢ = 0.00676565
Standard parallel: ¢, 40° N. lat.
Central meridian; A, 75° W. long.
Point: ¢ = 30° N. lat,
A = B5"W. long.

1l

Find: », ¥
Using equations {14-15} and (3—21),

cos 30°4{1—0.00676886 ain® 30°)%
0.86687591

M = BA78,206.4 x [{1—0.00676866/4 —1 %0, 006TERGE/64
—Ex0.00876866%/256) x 30° x /1R0° — (2= 0.006TARAER
+ 3 % Q.00676866%/32 + 45 » (.0067AN66Y1024)
sin (2x30°%) + (15x0.00676866%256 + 45 x 0008768665
10243 sin (4309 — (35x0.00676866%3072) sin (6<30%)]

= 3,319,933.3 m

H

Using the sume equations, but with ¢, = 40° in place of 30°,

m, = 0.7671179
My, =4,4293159m

Using equations (19— 8) through (19—11) in order,

P = 6,378,206.4 x 0.7671179sin 40° + 4,429,318.9 ~ 3319933.3
= 8,721,287.6 m
E = 6,378,206.4 x 0.8657591 x [-83° — (—75°))/8,721,287.6
= —6,3389360°
= §721,287.6 sin (—6.3389360°)
= —982,915.1 m
¥y = 6,378,206.4 x 0,767117%/sin 40°—8,721.287.5 cos (—6.3389360°)
= —1,058,065.0 m

BOKNE (ELLIFSQID) - INVERSE EQUATIONS (SEE P, 140)
Inversing forward example:

Given: @, €, by, Ay for forwurd example

I

a
i

—9562,0815.1 m
—1,056,065.0 m

i}

Find: &, A

Using equations (14— 15) and (2—21), m, and M, are calculated as in the forward
exumple:

my = 0,7671179
M, =4,429,3189 m

Using equations (19-12), (19—13), (7—18), (3-24}, and (3—268) in order,
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po= [(—962,015.17 + (6,378,208.4 % 0. 767117%sin 40° — (- 1,056,065.004 )
= B,721,287.6 m

M = 8,378.206.4 x .7T67117%sin 40° + 4,420,318.5-8,721 B87.6
= 3,315,943.5 m

o o= |8,319,933.3/(5,378,206.4 x (1-0.00676366/4 .
- 3 » 000676866564 — 5 = 0.006TASE6%256)) = 180°/%
29.8737595°

I 0 (e ToRRE
LA 7T AT R TURAURE

0.001697916
20.8737585° + [(3 x 0.001697916/2-27 » 0.001697916%32)

gin (2 x 29.8737595% + (21 x (0.001697916%16

— 55 x 0.001687916%32) sin (4 x 2987375057

+ {151 x 0.001697916%/96) sin (6 x 29.8737595%)

+ (1067 = 0.00189TH16Y512) sin (8 % 20.8737595%)] X 180%/a
= 30° M. lat.

LT R [
TR R .

¢

Using equation (14-15),

m = cos 30%01—0,006768G6 x sin® 307
= {.8667531

Using equation {19-—14),

A o= —75° + BT21287.6 x laretan [-962015.1/
(6,378,206.4 > 0.767117%sin 40° — (—1,056.055-0}}]]#
6,378,206.4 x 0.B66THIL)

= —85° = 8°W. long.

ORTNOGRAPHIC (SPHERE) - FORWARD EQUATTIONS (SEE P 148-143}

Given: Radius of sphere: R =1.0 unit
Center: &, =40% N. lat.
hg = 100° W, long
Point: ¢ =30° N. lat,
A= 110" W, long.

Find: %, %

In general calculations, to determine whether this point is beyand viewing, using
equation (5—3},

eos £ = ain 40° 5in 30° + cos 40° eos 30° cos (— 1107 + 1007
= (1.9747250

Sinee this is positive, the point is within view.
Using equations (20-3) and (20-4),

o= 1.0 ¢as 30° sin (=110° + 100%)
= —0.1503837
y = 1.0 leos 407 5in 30° — gin 40° ees 30° eos {—110° + 100%)]

. _Ancini
= —L1Duligl1]

Examples of other forward equations are omitted, sinee the formulas for the
oblique aspect apply generally,

in
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ORTHOGRAFPEHC (SPHERER - [NVERSE FQUATIONS (SEE P, 150)
Inversing forward example:

Giver: Radius of sphere; £ = 1.0 unit
Center; &, =40° N. lat.
Ao = 100° W long,
Point: o= —0. 1503837 unit
¥ = —(L1851511 unit

Find: &, &
Using equations (20— 18) and (20— 1),

p=[(—0.1503837° — (—0.1651811)
= (L.2233906

¢ = aresin (0.2233808/1.0)
= 12.9082572°

Using equations (20— 14) and (20~ 13],

& = avesin [eos 12, 9082572% sin 40° + (—0.
12.90825372° pos 4070, 22338063 ]

30.0000007°, or 30° N, lat. if rounding off did not oceur.

=100¢ + arelan [—0. 1503837 sin L2, 9082572°4(0. 2233908
gos 407 cos 12.9082572% + 0.165191] =in 40° =in
12.90823727)]

—100° + arctan [ —0.0335948:0. 1903225)

—100° + (—9.99599647

—109.9995964%, or 110° W. long. if rounding off did not
oecur

a1911 gin

=
]

nou

Sinee the denominuytor of the argument of aretan iz positive, no adjustment for
guatirant i$ necessury.

STFRFGUGRAPHIC (SPHERE) -FORWARD EQUATIONS (SEE P 157-158)

Given: Radius of sphere: £ = 1.0 unit
Center: ¢, =40° N lat,
hg =100 W, long.
Central scale factor: Ay = 1.0
Point: 4= 30° N. lat.

=75 W, lom
A= Ao Wy, 10NY.

Find: », . &
Using equations (21-4), (21 -2}, and (21 -3) in order,

£ =2x 101 + sin407=sin 30° + eos 40° cos 30° cos (—T3° + 1007Y]
= 1,0402304

=10 x 1.0402304 eos 30° sin (—T75° 4+ 100°)
= {}1.3B807224 unit

o = L0 =% 10402304 [ cos 407 sin 30° — sin 407 ¢os 20° coa{ — 757 + 1007]]
= =0, 1263802 unit

Exampler of other forward eguations are omitted, sinee the above equations are
general.



APPENDIX A: NUMERICAL EXAMPLES 313

STERFOGRAFPHIC (SPHEREH- INVERSE EQUATLONS (SEE P 158-158)

Inversing forward example:

Given Radius of sphere: R =10 unit
Center: ;= 40" N, lat
= T L Loamen
= 1VAT YV . M.

by
gy
Central seale factor: k= 1.
Poini: :

Find: &, A
Using equations (20— 18) and (21--15), .

p = [003807224% + (--0.1263802% 1% = (0.4011502 units
=2 arctan [0.4011502/{2=1.0=1.1]
= 22 BEAD2G]°

Uszing equations (20—14) and (20-15),

= arcsin |cos 22.6R32261° sin 40° = {—0.1263502)
sin 22.6832261° cos 40%0.4011502)
= arcsin 05000000 = 30° = 30° N, lat.
A= =100" + arctan [0.3807224 sin 22.6832261°10.4011502
cos 407 eox 22 0H322617 + (.1263802 =in 40° sin 22.6832261™)]
= —100% ~ arctan (0.1468202/0 3148570)
= = 1007 + 25 0000013°
= T4 0899987 = 75" W. lung.

except for effect of rounding-off input data. Since the denominator of the argu-
ment of arelan is positive, Ro quadrant adjustment is necessary. If it were negative,
180° should be added.

STERECIGRAPHIC (FLLIFSOID) - FORWAKD EQUATIONS (S3EF P. 180-1613

Cibligne agpect:

Given:  Clarke 1866 ellipsoid: @ = 6,378,206.d m
¢ = 0.006TERE6
oy ¢ = 00822719
Center: &, =40° N_ lat.
kg = 100° W, long.
Central seale fuctor. &, = 0.9995
Point: & =20" N. lat.
A =50 W, long.

Find: =, y, &
From equation {3-1),

y1 = 2 arctan ftan (45° +4072) [{1-0.0822719 sin 40"
{1 = 00822719 sin 40) L] - gie
=2 arctan 2. 1351872 - B0
= 39, ROB3922°
¥ =2 arctan jtan (45 £ 20°2) [{1-0.082271% ain 30°Y
{1+ 0.0822719 sin 3)°) Peaeiml] — gi®
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=2 apctan 1.7261%56 — 90°
= 29831830

From equation (14— 15},

iy = eox 40%(1-0.00676866 sin® 40°)12
= 0. 7671179

= eoa 30%(1~0.00676866 sin® 307)12
= (L BE6TE91

From equation (£1-27),

A =2 = B378506.4 X 0.0900 x 0.767117%eos 29.8085022°
[1xsin 308085822 cin 20.8318330° + ons 30.8085922°
cos 29,3318338° cos (—90° + 100%]

= 6,430,107 7 m
From equations {21—24), {21 -25), and (21 -26),

x = 6,450,107.7 cos 298318339 sin {-50° + 100%)

=971, 6.8 m
¥ = 6,450,107.7 [eos 39.8085822"° =in 20.R31833%°

— sin 39.8085922° cos 2083183397 coz (—80° + 1007)]
—1,083,0450.3 m
6,450,107.7 cos 26.83158349°(6,378,206.4 = 0.8667591]
=1.0121248

[

Palar aspect with known kq:

Given: International ellipsoid: a=8,373,388.0 m
€ = (L0DBTER6T
or €= 0.0818919
Center: South Pole &) = 90° 8. lat.
Ao = 100°F W. long. (meridian
along pos. ¥ axiz)
Central scale factor: ko =10.994
Foint: & =75 8. lat.
A =180" E. long.

Find: =, », &
Sinece thiz is the south polar aspect, for caleulations change signs of &, ¥, &, X,

and kg (g, iz not used): ay = 0P E. long., 4 = 757 K. Jat., A = 150° W. long. Using
equations (1a—8 and (21343,

¢ =tan(4s" — 75%2)[(1—0.0819919 sin 751 - 0,0819919 sin 75y
=0.1325120
p =2 x 6,378,388.0 X 0.994 X 0.1325120(1 - 00818919y~ bovimeen
X (1-0.081981 91—z

Using equations (21-30) and (21-21), changing signs of @ and y for the south
polar aspect,

o= —1,674,688.5 sin (—150° - 100
= =]1,573,645.4 m
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Y=+ 1,674,638.5 cos (— 150° — 1007)
= —578,760.1 m

From equation (14-15},

w = cos T5OM1~0.006T2267 sin® T57)1%
= {}, 2506346

From equation (2132},

k = 1,674,038.516,378,388 = 0.25356348)
=1.0112245

Polar aspeet with known &, not af the pole:

Given:  Intermalional ellipsoid: o = 6,378 388.0 m
e = 0.00672267
or e =0.081991%
Standard paralicl:  , = 71° 8. lat.
ag == 100 W. long. (meridian
along pos. ¥ axis)
Point: 4 =175 5. lat.
k= 15IF E. long.

Find: &, y, &

Since 4, iz southern, for calculations change sipns of &, ¥, &, &, &, and kg b, =
T1° N. lat., ¢ = 75 N. 1at., h = 180° W. long., k; = 100° E. long. Using equation
[15~8}, ¢ for 75" has been caleulated in the preceding example, or

§ = (L1325120
For {,, substitute 71" in place of 75% in (15—4), and

f, = 0.1684118

From equations (14— 15) and (81 -54),

m, = cos TIZA1— 0.00672267 sin® T1%)02
= 0.32685508
p = 6,378,388.0 % (.3265509 » 0.1325120/0.1884118
= 1,638,869.6 m

Equations (2130, (21 -31}, and (21—32) are used as in the preceding south polar
example, changing signs of » and g.

x = —1,638,869.6 sin {— L50° — 1007}
=-1,5400328m

¥ =+ 1,638,868.6 cos (— 160F — 100
= —560,526.4 m

b= 1,638,860.6/6,378,388.0 » 0.25062346)
= 0.9896255

where m is calculated in the preeceding example,

3156
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STEREQURAPHIC [ELLTPSOIDI- INVERSE EQUATIONS {SEE P 161-16%)
Obligue axpect (nversing forward example)

Given:  Clarke 1866 ellipsoid:  a =6,378,206.4 m
* = 0.006 76466
or e =00822719
Central: ¢, =40* N lat,
Ay = 1000 W, long.
Central scale factor: b, = 0.99499
Point: x=971,650.8 m
¥ =—1,063,049.3 m

Find: &, A

ara om o AT ) (I TANAR cind 40002
lrl! = LAF3 cELF LA RFOLPLALR LW DL L AT
= 0.THTI1TY

From equation (3—-1), as in the forward sblique example,
¥, = AMRORSG22°
From equations (20— 18) and (2133,

p = [971,880.8% + (—1,083,049.3%2
= 1,440,187.6 m
. =2 arctan [1,440,187.6 cos 39.8085922°(2 x 5,378, 206.4
x 10,9999 x 0.7871179) |
= 12.8018251°

From equation (21— 37},

¥ = aresin [cos 12.0018251° sin 39 80859227
+ {—1,063,049.3 sin 12.9018251" cos 39.R085922°/1,440, 187.6)|
= 29, 8315357°

Using x as the first trial ¢ in egquation (3—4},

& = 2 arctan ltan (45° + 29.8318337%2) % [{1 -~ 0.0822719
Bin 20831833791/ (1 — 00822719 sin 29, 83183572,
_gﬂ*’
= 29.9991438°

TTcive thie naw el valie in 1he cama amution for & nat for v,
vsing thig dile LIe Bame equiimg @, nat 1ar v,
A B ket e (ADO G0 Qui@aneTeia o 1 4 N (RPTa0
g = 2 apcian (lan (&9 + So Dicedai fa) Kol LR ARy

. A
sin 28 9991448041 — 0.0822719 sin 29.99014387) [Fos7ng
— iy
= 25.9999953°

Repeating with 20.9998053° in place of 20.9991438" Lhe next trial & is

b= 209099997
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The next trial caleulation produces the same ¢ to seven decimals. Thercfore.
this is 4.
Using equation (21--38),

h = =100% + arctan [971,830.8 sin 12.M18261°
(1,440,187 6 cos 39.3085822° cos 12.901825)2°
+ 1,063,049.3 sin 39.80855%22° =in 12.90158251%)1

—100° + arctan (216,946.9/1,230,366.8)

—100° + 1000000007

—80.0000000° = 90° W. long.

]

ol

Sinee the dencminator of the arctan avgument is positive, no quadrant adiuast-
ment is necessary. If il were negative, it would be necessary to add or subtract
180°, whichever would place the final A between + 180° and - 1H0".

Instead of the terative cquation (3—4), series equation (3-3) may be userd
{omitting terms with * here for simplicity):

d = 29.8318337° x w180° + {0.008TG36H/2 + A x 0.00GTHSGE*24
+ 0.00678866%112) sin (2 x 29.8318337) + (T » 0,006T6866%/48
+ 29 x 0.0D6TBR66%240) sin (4 » 298318337 + (T
x N.NOBTEIEE¥/1200 sin (6 % 29 83187
= 5235988 rarian
= 20.9599007°

FPolar aspect with known &, linversing forward exampie):

I

Given: International ellipsoid: o = 6,375 388.0 m
&" 0. 0046722687
or ¢ = 0.0819919
Center: South Pole ¢, = 80° 8. lat.

kg = 100° W. leng. tmeridian along pos. ¥ axis)
Central scale factor: &, = 0.894
Point: x = —1,573,645.4 m
¥y = —5H7Z,760.1 m

Find: &, A

Since this iz the south polar aspect, change signs as stated in text. For cal
culation, use &, = 90°, A, = 100°E. long,, » = 1,573,645.4 m, y = BT2,760.1 m.

Froam aonatinee (20— 18Y and (21 =383
I UL DLl 30507 S 0l Ll il

p {1.f .
= 1, B74,638.5m
t 1,674,638.5 x [(1 + 0.081891g) « 0w
(1—0.0R19G1 S -0arenn]ig (2 o 6 478, 388.0  (0,994)
= 01325120

To iterate with equation (7~9), use as the first trial ¢,

¢ = 90° — 2 arctan 0.1325120
= 74,9031975°

Bubstitnting in (T-8),

¢ = 90° — 2 arcian [0.1325120 = [(1-0.0819919 sin T4. 9031975/
(1 + 0.0819919 sin 74.9031975")]c oz}
= T74.9980546°

37
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Using this second trial ¢ in the same equation instead of 74.9031975°,

d = T4.9909956°

The third trial gives the same value to seven places, so, since the sign of & must
be reversed for the south polar aspect,

d = — T4.999998G°, = 75° 5. lat., disregarding effects of rounding off.
1f the series equation {3—5) is used instead of (7—9), y is first found from (7—13)

90" — 2 aretan 0. 1325120
= 74.8031975°

X

Substituting this into (3—35), after converting ¥ to radians for the ficst torm, ¢ is
found in radians and is converted to degrees, then given a reversal of sign for the
south polar aspect, glving the same result as the iteration.

From equation (20—16),

A +100° + arecan(l,h7d, 645.440 —572,760. 1))
1007 + (—69.9995995%)

= 30. 00000057

i

It

However, since the denominator of the argument of arctan is negative, 180° must
be added to A (added, not subtracted, since the numerator is positive), Hhen
the sign of A must be changed for the south polar aspect:

Y —(30.0000005% 4+ 180°)

— 210 Q00000

It

To place this between + 180° and —180°, add 360°, so
A=+ 149.99499995° or 150F E. long., disregarding effects of rounding off.
Polar aspect with known &, not at the pole (inversing forward example):
Given: international ellipseid: a = 6,37TR,388.0m
g = [LODBTZZ67

ar e = (L0819914%
Standard parallel: ¢, = T1° 5. lat,

hy = 100 W. long. (meridian along pos. ¥ axis)
Foint: & = —1,540,U33.6 m
¥ = —a60,526.4 m

Find: &, »

Since this is south polar, change signs as stated in text; For calenlation, ¢, =
717 N, lal., aq = LKF E, long., & - 1,540,083.8, ¥ = 560,526.4. From equations
(15—9) and (14—15), as calenlated in the corresponding forward example,

te

L}

tun (45° — 7142W[(1-0.0819919 sin 71°V
{1 + (.0R19919 sin 71°)]wwnss
0.1684118

fl
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= eos T1%(1~0. 00672267 sin? 71912
.3265508

1
i
I

From eguations {20—18) and (21 -40),

p = (1,540,033.6° + 560,526.4%%
= 1,638,869.5 m

= 1,638,860 5 0.1684118/(6,278,3588,0 « ,32655(00}
= 0. 1325120

T T winl 4 in
(AL 1 1

=]
L]
-

ono Y

[v J— E
JEo— oL arcian Uods

= T4.903197"

o
1l

Sobstitoting in {7-9),

& = 90° — Zarctan [0.1325120 [(1 — 0.0815019 sin 74. 903157y
(1 + 0.0819919 sin 74.503197°)jpmuemz]
= 74.5999546°

Replacing 74.503197" with 74.9%935867, the next trial ¢ is
& = TH.0000026°
The next iteration results in the same & to seven places, so changing signs,
¢ = —75.0000026% = 75" 8. lat., disregarding effects ol rounding off.
The use of series eguation (3-53 with (7—13) to avoid iteration follows the same

procedire as the preceding example. For k. equation (20— 1681 is used, ealeulating
with reversed signs:
+ 100° + aretanl 1,540,083.6/(— 560,526.4)]

100° + {65, 59980977
30.0000003°

A

i

fr

Sinee the denominator in the argument for arctan is pegative, add 180%

A = 210.0000003°

Finally, reverse the sign to account for the south polar aspeet:
A=+ 149959959977 = 1530° E. long., dizsregarding rounding off in the input,
GNOMONIC (SPHERE) - FORWARYD EQUATIONS (SEE ¥, 1685, 1673

Given: Radius of sphere: £ = L0 unit

Center: §;, —= 40° N, lat.
kg = 100° W, long.

Point: & = 30° N. lal.
A= 110° W, long.

319
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Find: &, ¥
Ising pauatipn (5—2)
sing equation (3
s ¢ = sin 40° 5in 30° + cos 40° cos 307 cos |- 1107 (- 1004]

= 0.9747290

Since cos ¢ is posilive (not zero or negative), the point is In view and may be
plotted, Using equations (22— 3) through (22-5) in arder,

kT o= LAL9TY7E80
= 10250262

ro= 1.0 x 10259262 cos 30° sin [—1107 - {—100°]]
= —{0. 1042526 unit

¥ = 1.0 x 10259262 » ‘eos 40° sin 30° — sin 407

cos B0° cos [—110° — (~-1007))
—0.1694739 unit

Examples of other forward equations are omitted, since the above equations are
general,

CNOMONIC(SPHERE) - INVERSE EQUATIONS (SEE P.167)
Inversing forward example:

Given: R, by, hp for forward example

- —0. 1542828 unit
¥ = —0.1684739 unit

Finul: oy, k
Using equations (20—18) and (22—18},

p o= [0 -0 15428260 4 {—0. 1604 TR0V 2
0.2361422 unit
¢ = gretan ((.2200182310.00

= 12 90825953°

Using equations (20— 14) and (20-15),
& = aresin [cos 12.90825053° sin 40° «+ {—0.16894739

H . o '
sin 12.90825585" cos 40°0.220182:4))

= 30° N. lat.
A= —100° + aretan [—0.1542826 sin 12.9042293%
(0.2291823 cos 407 cos 12, 9082654 ~ (~0.160473%
sin 407 sin 12_9082593%]
= —100° + arctan (—0.08446520/0.1954624)
= = 1107 = 110° W_ long.. not adding 180° to the arctun, beeause the denomi-
nator is positive.

VERTIUCAL PERSPECTIVE (SFHERE=FORWARD EQUATIONS {SEE P, 1737

Given: Radivs of sphere: & = 6,371 km
Height of perspective point: K =500 kan
Center of projection: ¢y = 38" N. lat.
kg = T W, long.
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Puint: & =41 N, lat.
A =T4" W, long.

Find: =, ¢
First H is converted to P as described after eguation (23143

F =D5006.371 4 )
= 1. 0784806

Using equation (5—8),

cos ¢ = 5in 39° sin 417+ cos 397 cos 41° cos [T —(~TT77)]
= 0. 99858702

Since cos ¢ 1s greater than 1P, the point is within range and may be plotted. Using
equations (23~33, (22—4), and (22-56) in order,

& = {1LOT84R06— DA 10784806 0. 29858 702)

= (,958221420

T = 6,471 « 098231426 cos 41° sin |—T4"—{—T7"1]
= 247.19404 Im

¥ =6,371 x (L.98231426 ¥ | leos 397 sin 41°—xin 39 cos 41° cos( —T47=( = 77“}]]
=222.435% km

VERTICAL PERSPECTIVE (SPHERE)-INVERSE EQUATIONS (3EE P. 175}

Inversing forward example:

Given: B, H, &, &, for forward example
& = 24719408 km
y = 22P.48586 km

Find: &, A

The conversion of # to P is made as in the forward example, so that
F = 1.078480%

Using egquations (20—~18), (22--4), (20— 143, and (20—15) in order,

poo= 24710409 + 292 48506212
= 3357318 km
¢ = aresin 1[1.0784806 — (1342 573182 % (1.0784806 + 1)
(B3T1% % {1.UTBABOG — 1D 26,571 x (LOTRABOB-- 1)/
332.5T318 + F32.5731816,371 x (L.OTAR4E06— 10|
= 3.0463860°
& = arcsin [cos 204618607 sin 39° + (222 48596 sin 3.0451860°
cos 39ER2.5T3181]
41° M. lat.
A =TT = aretan {247 19409 sin L. 0461B60°/( 34257318
cons 39° cos BUMGIE60" — 222 48596 sin 397 sin 2.04E1860F)]
= =77 + avctan (13.1361245/2560.652154)
= —74° = TW. lung., not adding 180°to the arctan because the denominator i
positive.

|
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TILTED FERSPECTIVE (SPHERE-FOEWARD EQUATIONS (SEE F. 175-176 }
Using forward example for Vertical Perspective {sphere}, bul upplying till:

Given Radius of sphere: K =6,371 km
Height of perspeetive puint: A = 500 km
Center of projection: &, = 38° N. lat.
M =TT W, long.
Tilt of plane: w =30°
111111 ,

. &0
}' erhy w
Point: & =41° N, lat.
L L
B (K]

Find: &, wq

Fiest, oy s calculated exactly as in the forward Vertical Perspective (sphere)
example, so thaf,

o = 247.18408 km
¥ = 222.435% km

Using equations (23-T), (23-5), and (23-6) in arder,

A =222 48596 cos 50° + 247.19409 sin 50°) sin 20%500° + cos 30°
= 1.1983953

&y = (247.159408 cos 50° — 222.48588 sin 50%) cos 30°/1.19839R3

-~ §#.3400123 km

wr = (B22.48596 cos 50° + 247.19409 sin 50°)/1.19835983
= 277.24765 kin

1]

TILTED PERSPECTIVE (SPHERE)- INVERSE EQUATIONS (SEE P, 178)

Inversing forward exampie:

Given: R, H, &, Ay, w, v lor forward example
& = —B.3400123 km
W =277.34739 km

Find: &, &
Using equations (28—11 through (23— 14) in order,

o

T I 7 T Ty
M =000 K (8 340012350027
—11,5408351

232.372874

~11.5408351 cos 307 + 332.372874 gin 30°
= 24718409 I

y = 332.372874 cos 50° — (—11.5408251) sin 50°
= 222.48506 km

]
I

These values of » and ¥ are used to caleulate ¢ and A exactly as for the Yertical
Ferspective {sphere) inverse equations, so

$ =41 N. lat.
A =T4"W. long.
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YERTICAL PERSPECTIVE (ELLIPSCID)- FORWARD EQUATIONS (BEE P. 176-177 )

Given: Clarke 1266 ellipsoid: a =6,378,206.4 m
et = 0L.00RTHERE
Height of perspective point: A = 500,000 wm

Center of projection:

h, =39° N. lat.

Ay =TT W long.
Helght of center above ellipsoid: Ay =200 m

Point;

Find: x,¥

Sinee H s given, P is computed from equations (8—231, (83-21) and (23-17),
using & as the first trial &y

N, = 8,378,206, 41 -0 00678866 sin® 39°p2
=§,386,772.6 m
P ={cos 39%cos 30°) (500,000 + 6,386 772.6 + 2001/6,378 205 4
= 1.0797664
by =30 — arcein |6,886,772.6 x 0.006T8566 sin 397 cos 397
(1.0797664 x 6,378,206.4)]
= 38 82410608

Substituting 38.8241050° in place of the second 39° only in the equsation for P, the
second iterations produce

P = 1,0770928
b, = 38.8236686°

The next iterations produce

P =1.0TM&ET2
&, =J8.823667H°

harwoe in the ne t
i Lhe nex

i noohnmer ratinr therefore theece valy
Tnere | ng nange glnn, Lherelore, these va

ito Ho
HE LURE af

xt final i
equations (4—20), (23~ 15), (25—~16), {28-19), (23-1%4), and (Z3-21) in crder,

N = 8,378,206.4/(1 ~0.008 75566 sin 4177
= 5,387,5i7.6 m
£ =1{(,387,517.6 + 1000/6,378,206.4] eos 41°
= 0. 7HhE22
§ =1|6.8387.517.6 X(1—0.00676866) + 1001/,378,206.4| sin 41°
= (}65E5704
K = 3500,0001.0TTORT2 cos (2497—38.8236675™
— ). 6525799 sin 39° — 0.7558232 cos 39° cos (— T4°—{(—T7)]
= 6,264,070.9 m
# = 6,264,070.9 x 0.7558232 sin | —74°—~(~77")]
= 247,756.2 m
¥ = 9,264,070.9 x [1.0770BTZ sin (30°—38.8236675%)
+ U.6525799 cos 39° — 0.TebEIAZ sin 39° cos (—T4"—{— TN
=922 15341 m
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YERTICAL PERSPECTIVE (ELLIPSQIDI-INVERSE EQUATIONS {3EE P. 177-178)

Inversing forward example:

Given: a, ¢, H, &y, hy, fy for forward example

&
! 5

T, 78

Dy vy Bl
Zd, 1O

.2
-

[l
[ E
et

I
y

Find: ¢,

Eguations (23 =21} and (23— 17) are used to compute I and ¢y, just as in the forwand
equations, s that

Po= 107872
g — S8.B236675°

Then, using equations (23—22) through (23-28) in arder,

B

es

i

]

or
1]

e
&

t

Kr

A

¥

3

b1l

o
rougn

= 1.07T0872 cos (39°— 38.8236675%)

= 1,07T0R21

= 1.0770872 sin {39°-38.8236675°)

= 0.00331452

—~1— D.OUETEREH cos” 39°

= {),9959120

= 1- 0.O06TES66 sin® 39°

= (.09731453

=% 3 0.006TGEGH sin 39Y eoe 39°

= (0.00GE20TS

= - 2 x LOTT0821 x {.9939120 = 500,000 — 2 x 0.00331482
* 0.9973193 % 222,134.1 + LUT0821 » 000662075
* 2221341 + 000331482 x 500,000 x 0.0066G2075

= —1,072,553.2 m

= (.9959120 » A0V 006° + 0.0YT3193 x 222,134.1°
— BOO.OB = 000662075 = 222,134.1 + (1-0.00676366)
* 247,786.2°

= 3584366 * 10" m®

the mitial trial, since & may not be zery, & = 1. Using equalions (23—20)
L #0300 __0dL 1o e Lo
I LS 7= s L A ucy,

= LOTTIRTZE x (1-0. 00676868 cos” 38 82366757}
— 1.0 X {1-0.000676866)

=0.1621193

=|- (-1,072,558.2) + |(—1,072,553.2)% — 4 x 0.1621193
X B.A84366 = 20M]el2x0,1621198)

= §,262,797.2 m

= 5,378,206 4 = [{1.0770821 —500,000:6,262,797.2) cos 39°
— (222 134.1/G,262, T97. 2= 0.0033 L482) sin 397]

=4,8214,079.9 m

= G,378,206.4 x 247,780.2/6,262,797.2

= 252.352.3 m

= (222,134.1/6,262,795.7— 0.00331482) cns 39°
+ (LAOTT0821—500,000/6,262, T95.7) sin 39°

= (6525753
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» =— 77 4 aretan (252,252.3/1,814,079.9)
-73.9903222°

I

For a lrst (vial &, tse avesin 8, or 40.7360514°. For this trial & and A, selecl A.
It will be taken 23 i00 m, for the sake of this example, in order to repeat the
forward example. Using equations (23-38) and (23-36),

& = aresin {0.65257531'[[1"0.00676866}:’(1 ~ (006768665

= 41.0004168°
E = [1/11-~0.00676866 sin® 41000418802 + 100/5,378,206.4}%
- 0.0067H866 sin® 41.0004168° x [1/(1 —0.00076366 sin® 41. 00041685
~ 100%/(8, 378, 206.43— 6,378,206.4% < 0, 006 T68661]
= L0034

Using this value of £ in equation (23 -29), and the above value of & (41.0004168%)
in the right side of equation (23--35}, each equation (23 -29) through (23-36) is
rvecomputed, with the following results:

L = 0.1520882
K =5,264,074.8m
X =4,8414,188.6m
¥ =252,300.9 m
8 = 0.6525799

N = —74.0006011°
¢ = 40.9950978"
E =1.0000314

The next iteration produces

A = —T4.0000011°
4 = 40.9990901°

The next produces no change in h or & bt seven decimal places, Thus,

A =74 W. long.
& =41° N, lat.

TILTED PERSFECTIVE (ELLIFEOIIN-“CAMERA” PARAMETERS FROM PREOJECTIVE
CONSTANTS (SEE P, 118

Using forward example for Vertical Perspeclive (ellipsoid), but applying tilt:
Given: a, €, H, By, ha, ko for forward Vertical Perspective (ellipsoid) example

Tilt of plane:  w© —=30°
Azimuth of upward tilt: v = b0° east of north
Point: b =41° N, Iat.

o= W, long,
= 100 wm

o
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Find: x;, ¥

First, x and y are calculated exactly as for the forward Vertical Perspective
{cllipsoid) example, plving

xr = 277862 m
¥ = 2221341 m

Uslng equaiions {23-7), (23—5), and (23-6} in order,

A = (222,134, 1 cos 50° -~ 247,786.2 sin 50°) sin 30%500,000 + cos 30°
= 1. 1988257

wy = (247,786.2 eos 50°—£22124.1 sin 50%) cos 3071, 1986257
= —T.B68.604 m

yp = (222,184, 1 cos 507 + 247 7862 sin 50°)/1. 1986237
=27T7.481.7T m

TILTED PERSIMECTIVE (ELLIPSOIL W FH "CAMERA™
PARAMETERS) - INVERSE EQUATIONS (SEE P |78 )

Inversing forward example:
Given: &, %, H, &y, Ap, . w, v for forward example

® = —7.868.603m
w = 277,484.7 m

Lsing equations (23—11) through (23— 14) in order,

M = 500,000 = (—97.8A8.693)(300,000 ~277,484.7 sin 30%)
= =10,890.604 m
@ = 00,000 = 277 484.7 cos 36°4500,000-277,484.7 2in 307
= 232,600.29 m
r = — 10,890,694 cos 507 + 332,800 29 sin 50°
=247, 786.2 m
¥ = 332 600.29 cos HO* — {—10,890.694) sin 507
=222134.1m
Then ¢ and » are caleutated from x and ¥ exactly as for the inverse Vertical
Perspective (eilipsoid) example, giving

A o=T74" W long.
¢ =417 N, lat.

TILTED PERSPECTIVE (ELLIPRCOU WITH PROJECTIVE
EQUATIONS) - FORWARD (SEE P 178- 180 )

An example is not given to solve equations (23—43) and (28 —44), solving 11 simul-
taneous equations, sinee it 18 tedious but alse fairly standard in approsch. The ex-
amples below determime constants A, — XK, for the exampie used above, and then
apply them to find rectangular coordinates,

Given: parameters for forward Tiited Perspective {ellipsoid} example, repeated
here:
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Clarke 1366 ellipsoid: a =6378.206.4 m
& = 0.0067TGE66
Height of perspective point:  H = 500,000 m
Center of projection:  §; =389 N. lat.
Ay =TT W. long.
Height of center above ellipsoid: A, =200 m
Tilt of plane: o =307
Azimuth of ypward tilt: v = 50* east of narth

To produce the same reclangular eoordinates, the (X, ¥)) axes are assumed Lo
coineide with the (X", ¥, axes; thus,

=10
30-_—0
¥y = 0

First P and & are calculated by iteration from H, ete., exactly as they are in
the forward Vertical Perapective (ellipsoid) example above, resulting in

P =1.0770872
by = IR BI366T3°
Tlsing equations {(23—45) through (23—-62) in order,

I = 1.0770872 x [sin (39°—38.8236675°) cos 50° sin 20°
+ eos (30°—88.8286675°) cos 20°)

= {0, 0338458
F = [5in 39° sin (—T77%) cos BO° — cos (—T7) sin 90710, 9338458
= —{), G0GG034
Vo= |sgin 39° sin (=77 sin 50° + cos (—T7) cos 50°] cos 305409338458
= —-{1,3015228
M =[sin 39° cos (- 777 sin 50°-sin (—T7°) cos 50°] cos 30°/0.9338458
= {.6813973
N = [sin 39° coz (—77°) cos 507 + gin (—777) sin 30°1/.9338458
= —0_7015436
W ={—sin 50° cos 30° cos 0° ~ cos BO® sin 0*]/0.9338458
= —{.7104106
T =[-sin 50° cos 30% 5in 0° + cos 5O° cos 0°0/0,9338458
= (0.6883231
K, = —(—0).7018436) sin 30" — cos 39° cos (—TT%) cos 30709338458
= (. 1887983
Ky, = —(—0.8066034) sin 30° ~ cos 39° sin (—77°) cos 30%0.9338458
= 1.0055359
Ko = (cos 39° cos B0° sin 30° ~ sin 39° cos 307)/0.9338458
= —0.3161523

K, = 500,000 » [0.6813973 cos 0° + {—0.T018436) gin 0°]
+ 0.1887883 = 0
= 34(,6598.6 m
Ko =500,000 x [=0.3015228 cos 0° + (—0.6066034) sin (F]
+ 10055352 x §
= —160,761.5 m
K, = 500,000 x {—0.7i04108) cos 39° + (—0.3161523) = 0
=—276,M6.4 m

327
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K, =500,000 x (—0.7104106) * 1 077072 sin (39° — 38.8236675% + 0
=-1177dm

Ky =300,000 x 1065134878 sin ° — (—0.7018436} cos 0°] + 0. 1887683 x 0
=350921 B m

Ky = 500,000 > {—0.3015228 gin 0° — {—0.6086034) cos 07 + L.0U55358 x )

= 303,301.7 m

Koy = 500,000 = 06883231 cos 497 + (—0.3161523) x 0
= 257 463.7 m

K, = 500,000 % 0.6883231 » LOTT0BTZ sin 0307 —38.8236675%) +
=1140.8 m

To test these constants X, — K, ,, equations (23—15), (22— 16, and (23~38} through
{23=42) may be used, remembering that °; = x, and ¥*, = w, in this example.

Using the same point previously used,

¢ = 41°* N, [at.
A =W long.
A = 100 m

Find: xy,

Caleulating ¢ and § exactly as in the forward Vertleal Perspective {(allipscidal}
example,

¢ = 0.7558232
§ = 0L.6325799

Using (23 —38) through (283—40),
X = 0.7558232 cos (— 74}

= 0,2083331
¥ = [.73bRE32 sth (—T4%)

= —0.7265439
£ = 0.6525795
letne amratione (%3 —413 and M2 —A427 firet raleglaline the donominetor
VEINE aqUHIONS (Lo =17 df v AL, SL Caibluguinly one G0N HakH

den. = (L1BBTSES x (.2083331 + 1.0055359 » {—0.7265439)
+ (—0.3161523) x 0.6325799 + 1

= (1024523
= 30,6086 x (.2083331 + {—150,T61.5) = (0. 7265430}
+ (—276,046.4) » 06325799 - (- 1,IT7.4)IA0 1024523
—7.868.7 m

[

1350,921.8 x 0.2083331 + (303,301.7) ¥ {—0.7265439)
+ 267,463.7 x (L6325799 + 1,140.8)/0. 1024523
— 2774848 m

it

These values agree with the results in the forward Tilted Perspective (ellipsoid)
example.

TILTEDR PERSPECTIVE {ELLIPSOID WITH
FPROJECTIVE EQUATIONS - INVERSE (SEE P. 180

Inversing forward example:
Given: K| —K, as determined just above



Find: &,

UIsing equations {23—63) throngh (23-77) in order, since xy = = and 3, = ¥,

A

APPENDIX A: NUMERICAL EXAMPLES

T o= =T7,8368.7 m
"y 277484 8 m

It

by choiee in the example for calenlating K,

A,
Ap
Ag
Ay
Ay
Ay
Ag
Ay
Ay

A]U

A]!;

Assuming £ = 1 fur the first trial, using equations (23-78), (23—-79), (23 -20), and

{22157,
Ay

S

The first trial ¢ is aresin § = 40.736035%°. It is asavmed that A = 100 for this

It

W

1l

- THGR.T X (. 18337983 —-340,608.6
~342,184.2 m

—7,868.7 ¥ 1.0UB5359 — { ~150,761.5)
142,849.2 m

—T.868.7 % (- 0.3161528) ~ (—276,046.4)
278,534.1 m

-1.177.4 — (—7.868.7)

Fog LB RF QueEy
U, UL g L

2774848 = 0.IBETSE3 - 350,921.8

= 248533 1m

277,4584.8 % 100565 -303.201.7

— —242808 m

2774848 = (- 0.3161523) — 267,463.7

= -355,181.2 m

1,140.8 — 277 484.8

= -276,344.0 m

—342,184.2 ¥ (—276,344.00 — 6,681.3 x (--298,583.1)
0555812 x 10" m?
~ 342, 1842 x (~355,191.2) - 278,5634.1 x {—288 532.1)

= 2.048425 x 10! m?

i

onon

142,848.2 x {~248,533.1) — ( —342,184.2) x {-—24,280.8)

~5.095372 = 10" 1y®

142,8345.2 x (—355,191.2) - 278,534.1 x (~24,280.8)

— 4. 397575 % 10! m*

142,849.2 x (—276,944.0) — 8,641.2 x (~24,280.8)

—=3.93L305 x 10" m?

(048925 x 0PN 4+ (—5.095372 x 10'%%(1 —0.00676368)
+ [—~4.397575 x 10"

- 4.644686 x 10 m?

0635812 x 10" = 2 048625 x 10'! + {—4.8097575) = 1010
x {—3.431305) x 10"
2140354 x 10% m?

with a trial “ 2" sign for the “+7 in equation (2374},

P a1 -

(0.650812 x 10*%)F ~ 1.0 % {—5.085372 x 0% + (-3.931305 x 10}

8.272705 = 10°! m
[2.149354 x 1054 644686 > 10%))
+ 121489354 x 10%44.844886 x 102
—~ B.2T2T05 x 10°M(4.844686 » 10%9)=
0.6525751
arctan [(9.655812 = 10" — 2.046925 x 10" = (.6525751¥
[—4.3975756 x 10" x 0.6525751 — (—3.9315305 x 10"
arctan | ~3.7019109 = W0'°(1.06155T1 = 10')]

= —T3.9992678°

example based on ¢ and k.

29
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aresin [0.6325751/(1 —0.00676866)/ 1 —0.006 76866
x sin® 40.7360359°)'% + 100/6378206.4;
41.0004013°

<«
1l

It

Sinee ¢ and A place the approximate paint at a reasonable location, the trial “ -+
sign is satisfactory.
A second trigl £ is now ecaleulated from equation (23-36);

E = [1(1-0L0067T6866 % sin® 41.0004018°'7 + 100/6,378,206.4]
- 000678866 % sin? 11.0004015° [1/(1~0.006T6866 < sin” 41.0004013%)
— 100P /6,378, 206.4% — 6,378, 206.4° x 0006 T6866)]
= L.0000314

This is substituted in place of 1.0 for £ in equation (23—78) and A, 5, X, and &
are recaleslated unti! ¢ changes by a negligible amount. Finally, disregarding
round-off errors in the above example,

¢ = 41° N. lat.
A =74 W long.

TILTED PERSPECTIYE (ELLIPSOID) -"CAMERA"
PARAMETERS FROM PROJECTIVE CONSTANTS
{(SEE P. 130-181%

Using constants caleulated in forward example for Tilted Perspective (ellipsoid
with projective equations):

Given: Clarke 1866 ellpszoid: a = 6,378,206.4 m
£ =0,00876866

Height of center abave ellipsoid: A, = 200 m
Constants &y — K, previously calculated

Find: H, &, Ay, v, ¥, 8, 24, 20
The three simultaneons equations (23-—81) are set up as follows:

240,608.6 X, + (—150,761.5) ¥y + (—276,046.4) Z, = —(—1,177.4)
350,921.8 X, + 508,301.7 Y, + 267,468.7 Z, = —1,140.8
0.1887983 X, + 1.0055358 ¥, + {(~0.3161523) %, = ~1

Solving these three equations for the three unknowns,

X, = 0. 1847645
Y, = —0.8176291
Z, = 0.6752538

Using equations (83—82) through (23-86),

rp = [340,698.6 2 0. 1887983 + ( - 150,761.5) X 10055359
+ (—276,046.4) x (—0.53161523)1/0. 1887983°
+ 1.00553592 + (—0.2161523)%]
= —0.08561618 m
yp = [0.1887983 % 350,921.8 + 1.006535% > 303,801.7
+ (—0.316152%8) = 267,463, 710, 1857985*
+ 10055359 + (-0.3151523)%]
= 250,000.04 m
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kg = arctan (—0.8176281:0. 1887645)

= =77 = 77 W. long., net adding 180° since the denominator is positive.

Fo=[0 184768456 + (- 0.B178201) +{, 675253577
= LO7T0873
b, = arcsin (0.67D2538/1.0770873)

= JH.B23ETTT°
Using equation (23—87), with &, as the first approximation for &,,
diy = ARABZAGTTT + aresin ;0. 00878866 sin 38.8228777°

cos 38,824677741 OTT0RTS % (1-0.006T6866 sin® 38 8236777°P°,
= 3K.9907744°

Substituting this value for &; in the same eguation, and leaving the first use of

&, inkact, sinee it is part of the equation, the second iteration gives,

&y = 39.0000099°
The next iteration gives
&, = 39.0000102°
and the next gives no change to seven decimals. Therefore, disregarding

off errars,

dy = 39° N. lat.
Using equation (23— 88},
17 = 6,278,206.4 > [1.0770873 cos 38.8236777eus 38°

— 141 =0.006T6866 <in* 29712 — 200/6,378 206.4]
= 500,000.0 m

Using equations (23—15), (23-16), (23-38) through (23403, (23-41), and

(23—42), coordinates &, and 3, are found for 4, and Ay

C = |1t —0.00876866 sin? 597)'% + 20006, 378,208.4) cos 39°
= 0, 7782141
§ = [(1~-0.00BTREAGIA] — 0. 00ETERE6 sin® 292
+ 200/6,378,206.4] sin 39°
= (16259200
X =0,7782141 gos (=717
= 0.1750801
Vo= 0.7782141 sin (-7

[340,688.6 x 0.1750601 + (-150,761.5) x {—0.75582685)
+ (—276,0468.4) x (0.6259200) + (1,177 N[0 1R8THE3
* (1750601 + 1.0055359 < (—0.768B2685) + (-0.3161583)
s (0LH259200) + 1]
= .04 m, actually zero if round-off had nol cecurred.
y = —0.03 m gimilarly from (23-42) as »,', actually zero

Ty
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Using equations {28—84) and (23 -90),

w = aresin [(0.04—(—0.08961613)F + (250,000.04 —(—0,08)1]'%
300, 000!
= 200909447, actually 30° without round-off.
8 =arctan ({004 — (-0 0686 1613))¢250,000,04 —¢ —0.0333]
= 000002567, actually 0° witheu! reund-off.

Calculating €, 37, ") for (b + 0.02%, &y) just as coordinates (x,, yy) were caleuiated
ubove,

= 1,698.034 m
1,645,247 m

mc )
e

N

Using equations (23—91) through (23-093),

xp = [—1,698.034—0.04] co5 0° + [1,645, 847~ (= 0.03)] sin 0°

= —1,69R5.07 m

#y = 11,645,247 =~ 0.03)] cos 0°~[ = 1,698,034 —0.04) sin 0°
=1,645.28 m

v = — arctan | — 1 698.07/41,6453. 24 cos 3071

49.99997° actually 50° withou!l round-off.

LAMBERT AZIMUTHAL FOUALLAREA (SPHERE) - FORWARD FQUATIONS
{SEE P, 18367

Given: Radius of sphere: I = %0} units
Center: ¢, = 40° N. lat,
Ao = 100° W. long,.
Point: & = 20F 5. lut.

e T

b= 100F K. long.

Find: w, g
Using equation {24-2),

k= {21 + sin 40°sin (—20°) + cos 40° cos (—20°) cos (100° + LTI ¥

= 4.3812175
Using equations (22—4) and (22-5),
r =3.0x4. 3212175 cas {—E0% gin (100° + 1007
= —4.2339303 units

¥ = 3.0x4.3912175 [eos 40° sin {— 20 — sin 407 cos (=~ 207) cos (1007 + 100°]
= 40257775 uniLs

Examples for the polar and eguatoriul reductions, equations {24—3) through
(24 -14), are omitted, sinee the above general equations give the sume results,

LAMBERT AZIMUTHAL FQUAL-AREA (SPHERE)-- INVERSE FQUATIONS
[SEE . 186-187)

(iven: Radius of sphere: & = 3.0 units
Center: ¢, = 40" N Iat.
Ay = 100° W, long,
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Point: 2 = —4.2339303 units
¥ = 4.025777h units

Find: ¢, &
Using equations (20~ 18) and (24— 163,

p = 1(—4.2339803) + 4.02577752]
= 5. 8423497 units

¢ =2 aresin [5.8423497/(2 2 3.00]
= 153.6733917

From eqguation (20—14),

¢ = arcsin [cos 153.67T33917° sin 40° + 4.0257775

sin 153 6733917 cos 40%5.8423497]

= —19.9999997° = 20° 8. lat., disvegarding rounding-off effects.

From eguation (20— 15),

A= 100" + arctan [—4.2338303 =In 153.6733017/
(58423457 vos 40° cos 163.6733917
—4,0257775 gin 40 sin 158673391771

— 1007 + arctan [— LBTTEUH14 —5.16589246)]
=100° + 20.0000005°

= ~79.9999%95*

Il

Since the denominator of the argument of arctan i3 negative, add 180°;

= 100.0000005° = 100° E, long., disregarding rounding-off effects.

1n polar spherical cases, the calculation of A from equations (20— 16) or {20-17) is
simpler than the above, but ihe quadrant adjustment follows the same rules.

LAMBERT AZIMUTLAL EQUAL-AREA (ELLIPSCLD] =FORWARD EQUATIONS
(SEE P. 187-18H)

Obligue aspect:

Given:  Clarke 1866 ellipsoid: o = 6,378,206.4 m
& = 0.00076866
or ={.0822715
Center: &, =40° N lat.
Ay = 100° W long.
Point: & = 307 N, lat.
A =110 W, long.

Find: &, ¥
Using eguation {3-12),

—N AnaTewtay laiw aneir
VRAPLILF IO [ 2]LL N

2%0.0822719)] In [(]
{1 +0.0822719 sin 30™)
= 09943535

r—
¥y =4
{

Inserting ¢y = 40° in place of 30° in the same equation,

gy = 1.2792602
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[ngerting ¥° in place of 30°,
gp = 1.9834814
Using equation (2-11),

B = aresin (0.9943535/1.9054814)
= 28.8877622°

B, = aresin (1.2793602/1.9954814)
= 39.8722878°

Uzing equation (3133,

R, =06.378,206.4 x (1.99546142)'"
= 6,370,972 m

Using equation (14— 15),

eos 40°7(1 — 0.CO6TRREE sin® 4072
0. 7671470

iy

n

Using equations (24-19) and (24 -20),

B = 6,370,9’97,2Xi2-"[1 +xin 3087228787 sin 29 8477622
+ cos 30 AT2OHTAY aos 20 RATTE2E cos (—110° + 100°)])12
=f,411,606.1 m
D = 6,378,206 4x0 TATL17TA6 370,997.2 cos 39.8722578%)
= 1.0006853

Using equations (24— 17) and (24—18),

x =6,411,606,1 x 1.000G633 cos 29.88TT622" sin (— 110° + 160°%)
= —965,932.1 m
¥ = (6,411,606,1/1.0006653) cos 39.8722878° sin 29.8877622°
— sin 39, 87228787 cos 29.8877622° cos ( —110° + 100%)]
= —1,056,814.9 m

Polar gspect:
Given: Internationalellipsoid: ¢ = §,378,388.0 m
et = 0.00672267
or ¢ = (L.08I9919
Center: North Pole &4, = 90° N, lat.
ko = 100° W, long. (meridian along
neg. ¥ axis)
Point: ¢ = 80° N lat.
A =5"E. long,

Find: &, &, &, &

¥rom equation (3—12),

g = {1-0.00872267} 'sin 80°(1 - (LODBT226T sin® BO®)
=[WZx0.0819919)] In [(1~0.0818919 sin 80°)

{1+ 0.0819019 sin 80%)}
= 1.0649283
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Using the same equation with 90° in place of 807,

dp = 1.9955122

o=

- o sy

»a BUPA 1 —0.008T2267 sin® BOHi
1742171

Lising equations (24-233, (21-30), (21—-231), and (21-32),

B,378,38R.0 » (1.9955122 - 1.98459283)+2
1,115,468.3 m
1,115,488.3 sin {6°+ 100°)
1,077,450.7 m
—1,115,468.3 cog {(5° + 1007}
=288 74.3 m
i o= 1,115,468.3/(5,378,388 0= 0, 1742171)
= 1.0{38193
ho= 1710038198 = (.4061052

LI

P =
e

r

£l

LAMBERT ALIMUTHAL EQUAL-AREA (ELLIFSOLL) - INVERSE EQUA TIONS
(SEE P. 188-1580)

Gbligue aspect (nversing forward example).

Given:  Clarke 1566 ellipsoid: o = 6,378,206.4 m
2° = 0.00BTESEE6
or ¢ =0L0R22719
Center: &; = 40° N. lat.
Ay = 100° W, long.
Point: « = -965,932.1 m
¥ = —1,050,814.9 m

It

Find: ¢, A

Since these are the same map parameters as those used in the forward example,
caleulations of map constants not affected by & and X are not repeated here,

gp = 1.9954814
B, — 80.8722878°
R, =6,370,997.2 m

FRRFLT N L

Lsing equations (24— 28), (24-29), and (24-27),

p ='[—965,932.1/1.0006653F + [1.0006653 = (—1,056,814.9) P[1=
- 1,431,827.1 m
6, —2 avesin (1,431,827, /(2 % 6,370,997.2})
= 12.9030908°
g =1.9954814 [cos 12.9030008° sin 39.8722878°
+ 1. 0006663 > ¢ —1,086,814.9) sin 12 9039908°
cos 30.8722878°/1,481,827.1)
= 0.9943535
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For the first trial & in equation (3~ I§),

¢ = aresin (0.994853572)
= 0. 81380147

Substituting into equation (3—16),

& = 20.8132914° + [(1--0.006T6866 in® 20 8133014%%
(2 cos 20.8133014°)] = ]0.9943535/1 —0.00676366)
— sin 99.8132914%(1 — 0. OMGTAREE sin® 20.41323014)
+ [142 % 0.08227193 In [(1-0.0822719
sin 29.8133914%/41 + 0.0822719 sin 29.8133814%] = 180°%
= 20.9998293°

Substituting 29 0008263° in place of 20, 81323914" m the same equation, the new ria)
¢ 15 found to be

¢ = 30,0000002°

Thea next iteration results in no change to seven decimal places; therefore,
¢ = 30° N. lat.

Using equation (24-26G),

A o= —100% + arctan |—965,932.1 sin 12.9020908%] 1. 0006653
x 1.431,827.1 cos 39.8722875° cos 12.9030908°
- 1.000G633% (—1,056,514.9) sin 38.8T22878°
sin 12.9030908° ]!
= — 1" + arctan (—215,710.0/1,223,352.4)
= 100" — 4, 8955999
—109.9999998° = 110° W. long.

Kl

Since the denominator of the argument for arctun is positive, no quadrant ad-
fustment is necessary.

Polar qspect (inversing forward examplel:

Given: International ellipsoid: u=6378,388.0 m
¢® = 0.00672265
aor e = 00819910
Center: North Pole ¢y = 207 N, Jat,
Ay = 100° W long. {meridian
along neg. ¥ axis)
Poink: ¥ LTI 4589 T m

1 o— 20D TOA B
# = &b, ivto i

Find: ¢, &

First P is found to be 19955122 from equation (3—12), as in the corresponding
forward example for the polar aspect. From equations (20—18) and (24313,

p={1,077.459,7% + 288 T04.55p=
=1,115,468.4 m

g = + [1.9955122 — (1,115,468.4/6,378, 388.01%)
= 1.96492K3
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S
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¢ = arvcsin (1.9649283:2)
= 79.2542275°

When this is ugsed in equation (3-186) as in the oblique inverse example, the next
trial ¢ is found to be

¢ = 7997445047
Using this value instead, the next trial is
b = 79.8949713°

and the next,
¢ = S0000056°

The next value is the same, =0
& = 80° N. lat.

From eguation (20—16),

P
|

= —100° + arctan |1,077,459. 7/ —288,704.9)]
= —174.9900078°

Since the denominator of the argument for arctan is negative, add 180°, or
A = 5.0000022° = 5° E. long.

AZIMUTHAL FQUIDISTANT (SPHERE) -FORWARD EQUATIONS
(SEE P. 195-196)

(Given: Radius of sphere: R = 3.0 units
Center: by = 407 N, lat.
Ap = 1007 W. Jong.
Point: & =20° S, lat.
= 1F K. long,

Find: 2, y
Using egquations (5—3} and (25— 2},

cos ¢ = sin 40° sin (— 207 + cos 40° cos (— 207 cos (100° + 10079
—0. 3962506
o = 183 6733925
k' = (153.67T33925" » «/180%Vsin 153.6733025"
= 60477621

Using equations (22 —4) and (22-35),

o =50 % 60477621 eos (—207 ain (100° + 1007)
= =5.8311398 units
g =30 x .4TT621 Leos 40° sin (- 20%) = sin 4" cos (=207
cos (00° + LO0AY)
= 5.5444644 units
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Since the above eguations are general, examples of other forward formulas are
not given.

AZIMUTHAL EQUIMSTANT (SFHERE}- INVERSE EQUATIONS (SEE P. 198-197 )
Inversing forward example:

Given: Ruadius of sphere: K = 3.0 units
Center: &) —40° N. lat.
Ao = 100° W, [ung.
Point: x= —5.8311355 units
¥ = 55444634 units

Find: ¢, A
Using equations {20—18) and (2515},

p=[{—5.8311398" + 5.5444634%)2
= 8 (04A83200 unils
¢ = H.IMBI2003.0
= 26821067 radians
= 2.6821067 x 180%w = 153.6733925°

Using equation (20— 14},

¢ — aresin {cos 153.67339257 sin 407 + 5,5444634 sin
153.6G733925° ros 4078, 0463200}
= —19.9999990° :
= &)® 8. lat., disregarding effects of rounding off.

Using equation (20—15),

h o= —100° + aretan [(—5.8311398) sin 153.6733925° 8. 0463200
cos 40° cos 153.6733925° ~ 5.5444634 sin 407
sin 153.6733525°1]

—10(F + =arctan [{—2 5860374)0{—T.105079%43}

=100° — aretan 03639702

=80, Q000001 °

but since the denominator of the argument of arctan is nepative, add or subtract
180°, whichever places the final result betwean + 1807 and —180%

A = —80.0000001° + 180°
= 98. 9399099°
= 1007 E. long., disregarding effects of rounding off.

AZIMUTTIAL EQUIDISTANT (ELLIPSOID) - FGRWARD EQUATIONS
{SEE . 1972013

Folar aspect:

Given: International ellipsoid: a = 6,378,3858.0 m
£® = 0, 00672267
Center: North Pole &, = 90° N. lat.
Ay = 1007 W long. {meridian
along neg. ¥ axis}
Point: & = 80° N. lat.
& =5 E. long.
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Find: ¢, y, &
Using equation (3213,

M = 6,378,388,0 X [(1-0.00672267:4 — 3 x 0.00872287%/84 — 5
x 0.006722675/256) x 80° x w180° — (3 X 0.00672267/3
+ 3 = 0.006T2267542 + 45 » DLO06T226T3/1024) sin (2 = 507
+ (15 % 0006722672256 + 45 x 0 00BT226731024) sin (4 % 80%)
— (35 % 0.0067226793072) sin (6 x 80%)]
= 8,885,403.1 m

Using the same equation (3—21), but with 90° in place of 80°,

Mp = 10,002,288.3 m

Using equation (14—15),

m = cos B0°/(1— 000872267 sin® 80°%)1%
=0.1742171

Using equations (25— 18), (21-30), {21-531), and (21-32),

p = 10,002,288.3 — B 88%,403.1
=1,116,885.2 m

z = 1,116,885.2 sin (3° + 100°)
= 1,078,928.3 m

¥ = —1,116,885.2 cos (5° — 100°)
=289,071.2 m

k = 1,116 885,2/(5 478 388.0 % 0,1742171)
= 10050945

Dalique aspect (Guamr projection):

Given:  Clarke 1866 ellipsoid: & = 6.378,206.4 m
e? = 0. D0ATEREA
Center: ¢, = 13°28°20.87837" N lat,
ko = 144°44'55.50254" E. long.
False origin: a5 = 80,000 m
o = 50,000 m
Point: & = 13°20°20.53846" N. lat.
A == 144°38°07.19265" E. long.

Find: z, ¥

Using equation (25—18), after converting angles to degrees and decimals: (¢,
134724668537, A, = 144.T48750706°, & = 13.339038461°, A = 144.535331292%,

]

x = [6,378,206.4 x (144.635331202° — 144.74R750706°)
cos 13.339038461°/(1 —0. 00676866 sin® 13.339038461°12]
% miBY®
= ~12,287.52 m

&ince 50,000 m is added to the origin for the Guam projection,

x = —12,287.52 + 50,000.0
= 37,712.48 1
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From equation (3—21),

M =6,378,206.4 % [{1-0.00676866/4 — 3 x 0.006TRE66%64 — §
x G.OOBTEHEAY/25G) x 13.330038461° x w/180° — (3
x 0.006TEE668 + 3 x 000676366582 + 45 x 0.0087T6866Y
1024) sin {2 % 15.339088461" + {1b = QLOUGTEEE6™/256
+ 45 % 00BTE866%/1024) sin (4 * 13.330038461°)
— (35 % 0.00BTESEE%3072) sin (6 x 13.3300384619)|
= 1,475,127.86 m

Substituting &) = 134724663537 in place of 13.339038461° in the same equation,
M, = 1,489,888, 76 m

Ising equation (25--19}, and using the & without false origin,

1475, 127.96 — 1,489,888.76 + (—12,287.52)% tan 13.330038461°
= {1—(LO0BTEEES sin® 13.3300384€619)1342 x 6,378,208, 4)
~14,758.00 m

¥

Adding 50,000 meters for the false origin,
g = 35,242.00 m

Obligue aspect (Micronesia form):

Given; Clarke 1866 ellipsoid: @ = 6,378,206.4 m
¢ = 1), BTEBGE
Center: Saipan [sland:  $, = 15°11°05,.6830" N, lat.
ho = 145°44°20. 974 E. long.
False origin: 2, = 25,657.52 m
3o =H7,199.99 m
Point: Station Petosukara ¢ = 15°14°47. 4930 N. lat.
» = 1454734, 508" E. long.

Find: &, ¢
First convert angles to deprees and decimals:

&1 = 15.18491194°
Ay = 145.T416589°
& = 15.24652583°
A = 145.79303(00°

From equations (4—20a), (4—30), {2520}, and (25—21} in order,

N, = 8,378,206 441 —0.00676866 « sin” 15.18481194%p
—= §,379,687.9 m
N = B,378,208,4(1—0,00876K66 > sin? 15,24652663°)F
= 5,379,699.7 m
§r = aretan [(1-0 G0ETER66) Lan 15 246852583°
+ D.ODBTAHER * B3TOEST.9 sin 15.18491184%
(6,379,899.7 x cos 15.24652583%)|
= 15.2461374°
Az = aretzn ‘sin (14579308 — 145,741 65ES)/
[eos 15.18491194° = tan 15.2461374°
— sin 15,18491194° % cos (145,79303° — 145, 74165897
= 35, 0881345°
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Since sin Az + 0, from equation (25—22a),

$ = arcsin |sin (145.79303% — 145.7416589°) * cos 15.2461374%
sin AR.48813457
= 0001374913 radians, singe 8 is used only in radians.

From equations (25—23} through (25--27) in order,

6 = (LOQGTERA6Y sin 15.184491194%(1 — 0.006TGRG6;
= (.02162219
H = 000670866 cox 15, 184911947 cos AR OBE1345%
(1-0,00676368)1%

FTeh Ro il N F]
WL R

479,687.9 x 0.001374913 x [1-0. 001374913 x0.061925192
*x (1-0.0818251958 + (0.001874913%8) » (.02142818
% (L0B1U2519 » (1-2x%0.0R142519%) + (0.001374014%120)
w [(L0B192519% » (4-T7=0.06182510%) - 3 = (.02162919°
% (1= T 0061925183 — (0. 0013740187148 = 0.0216221Y
x 0.06192519)|
=8,771.52 m
r =8971.62 X sin 35.9881345% + 28 657.52
= 34,176.20 m
y =8TT1.H2 ¥ cus 38.98315345° 4 §7,199.99
=T74,017.88 m

—_i
— I
£ =6,

AZIMUTHAL EQLIDISTANT (ELLIPSOID)- INVERSE EQUATIONS
(SKF P 201-202})

Polar uspect (inversing forward examplelk

Given: Inlernational ellipsoid: o« =6,278,388.0 m
? = (LO0GT2267
Center: North Pole: ¢y = 90° N. lat.
Ap = 100° W, long. {meridian along
neg. ¥ axis)
Point: x =1,078,828.3 m
¥ = 2B9.071.2m

Find: &, &

Usitg equation (2-21), as in the corresponding forward example,
M, = 10,002,288.3 m

1sing equations {20—18), (25 -28), and (7T-13),

1,078, 888.9% + 280,071,251
= 'l 116,885.2 m

M =10,002,285.3 — 1,118,#85.2
= #,885,408.1 m
L = 5,885,403 1[6,378,388.0 x (1-0.00672267/4—3x0.0067226 7464
— 5 =0.00872267256)|
= 1.2953965 radians
= 1.2953965 x 180°/m = 79.9503324°

Jsing equations (8--24) and (324,

g, = [1-(1-0.0067226T12 1/ 1 + (1 —0.0067226 77|
= 0.0016863
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¢ = 1.3953065 radians + (3x0.(NE362/2-27 % 0.0016863%32)
sin (2x 79, 0503324%) + (21x0,00164963%16—55
= 0.00188A3/22) sin (2% 79.9503224%) + (151
* 0.OCLERAZH9E) sin (6X 798503324
=1,3982634 radians
= L.23962634 x 1K0P/m = 79.9999990°
= 80" N. lat., rounding off.

Using equation (20— 16),

x =-100° + arctan [1,078,328.3/(—289,071.2]]
= — 100°—74.99905956° + 180°
= 5.0000014°

=57 E. long., roundihg off.
The 1507 is added because the denominator in the arpument for arctan is negative,
Obligue uspect (Gouam projection, inversing forward example):

Given: Clarke 1866 ellipsoid: « = 6,378,208.4 m
£ = 0,00675366
Center: &, = 12.472466353" N. Iat.

hy = 144.748750706° E. long.

False origin: ay = 50,000 m
o = 50,000 m

Point: & =37.T1248m

¥ =35,242.00 m

Find: <, &
First sabtract 40,000 m from » and » to relate them to actual projection origin:
x = —12287.52 m, y = —14,758.00 m. Caleulation of & from equation (3-21)
is exactly the same as in the forward example, or
M, = 1,489,888 76 m
From equation (25-30), the first trial M is found from an assumed & = &
M = 1,489, 888,76 + (—14,758.00) — (—12,287.52)° tan 13.472466353°
*(1—0. 00BTEEGS sin® 13.472466853°)202 % 6,375,208.4)
=1,475,127.92 m
Using equation (7-19) and the above trial W,

po= 1,475,127 92/[8,378,206.4 (1 —0.00876866/4 ~ 3 X 0.006TEREEY

Bd —5 < 0. G0 TE868"/256)]
=0.2316688 radian

Using equation (3—24),

ey = [1—{1-0.00676866)21/[1 + (1—-0.006 TESEE) 2]
= 0.0016979

Using equation (3—28) in radians, although it could be converted to degrees,
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& = 0.2316688 + (3 x 0.0016979/2 — 27 « 0_0016979"{32}
sin (2x0.2316688) + (21x0.0016975%/16 55
® 0.0016979%32) sin (4x0.2316688) + (151
* 0.0016979%96) sin (Bx (.231668)
= 0,2328101 radian
= (.2322101 x 180%w = 13.3390381°

If this new tyial value of & is used in plage of ¢, in equation (25—30), a new valye
of M is found:

M = 1,475,127.95 m

This in turn, used in (7-19), gives
p = 0.2316688 radian

and from (3-26),
¢ = 13.3300384°

The third trial, through the above equations and starting with this value of &,
produces no change to seven decitmal placesz. Thus, this iz the final value of .
Converting to degrees, minutes, and seconds,

4 = 13°20'20.538" N. lat.
Using equation (25—31) for longitude,

A = 144, T4BTHOT06° + ((—12,287.52) x (1-0.00676566
sin® 13.33908847)12/(6,378,206.4 cos 13.3300384)] x 180°/w
= 144.6353313°

— 1AALDOT 100
— L33 ad V. Lo

Obligue aspect (Micronesia form, inversing forward exampiel:

Given:  Clarke 1866 ellipsoid: 2 = 6,378.206.4d m
e = 0.00676866
Center: Saipan Island &, = 10, 18491194° N. lat.
A = 145.7416550° E. long.
False origin: 2, = 28,667.52 m
#a = BT,199.99 m
Peint: © =34,176.20 m
¥ =T4,017.88 m

Find: &,

From equations (25-32) through (25—41) in order,

¢ = [(34,175.20 - 28.657.52)° 4 (74,017.88—67,199.99)]*
= 877151 m

Az = gretan [(34,176.20—28,657 52)/(74,017.88—67,19%.99)]
= 3B.9AR1202°

N, = 8,378,206 4/(1-0.006T8366 sin® 15. 18491194512

6,379,687.9 m

343
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A = -0.00876866 cos® 16.15491194° cos® 38, 0881292%/
{1—0.00876860G)
= —0,003834730
B = Bx0.006T6866(1 + 0.003584730) sin 15.18491194° cos
15.18491184° = cos 38.9881292°(1—0.006T6E66)
0. 004032465
B,771.5L/4,379,6687.9
0001374913
E o — 0.001374913 + 0.003834730 = (1-0.003834730) » 0.001374913%8
- 0.004032465 » (1-3x0.003834730) x 0.001374913%24
= (.001374913. This is in radians for use in equation (25 -38).

e
mon

For use as degrees in equations (25—39) and (2a—40),

E = 0001374013 x 180%r = 0.07877660°
F =1 + 0.008834730 x 0.001374913%2 - 0.0040324K5
* 0.001374913%%6
1.000000004
aresin (sin 15.18491194° cos 0.0TET7A68° + cns 15.18491194°
®K sin 0.0T8T7669° cos 38.9881292°)
= 15.2461374°
A = 145.7416589° + aresin (sin 38.0881202° sin 0.07877669°%
cos 15.2461374%
145.7416589° + 0.0518711°
145.7930300°
145° 47734.908" E. {ong.
aretan [(1—0.00676866 x 1.000000004 sin 15.18491194%sin
15.2461374%) x tan 15.2461374°(1 - 0.00676866)]
15.2465258°
15°14°47.493" N, lat.

=
)

&
I

MODIFIED-STEREQGRAPHIC CONFORMAL (SPHERE) - FORWARD EQUATIONS
(SEE P, 207-208)

Using Modifled-Siereographic Conformal projection of Alaska (spherieal form) as

example:
Given: Radius of sphere: & = 1.0 unit
Order of equation: m =6
Center: ¢, = 64° N. lat.
o = 152° W, long.
Constants A, -4, See Table 33, using constants for sphere.
E,—By: See Table 33, using constants for sphere.
Point: ¢ =60° N. iat.
r = 150° W long.
Find: o, 4, &

Using equations (26— 1) through (26— 3) in order,

k' =2/1 + sin 64° sin 60° + cos B4° cos 60° cos [—150°—(-152°)]}
= 10012864

@' = 10012864 cos 607 sin [—150°—(—-1587]
= 0.01747320

#' = 10012864 cos B4°8in 60° — sin 64° cos 60° cos [— I50° ~ (-~ 142°)]-
= —0.06957209
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Using equaticns in [28-6), with =2, in order,

T = 2x0.017T47220

= 0.03494449

2" = 0.001747220F + (- 0. 0695 T2047®
= 0.00514555

o =0

a1, = Aﬁ + igﬁ

= 0.366097G + { —0.2037382)1
by = Ag+iBy

= 0.06368TL + ( —0. 1408027 )
0 = B (A + iBy)

= 2.19B35856 + {—1.7624292)
d; = Ex(A5+ fB;:,)

= 0.3184355 +( —0.7040135)¢
s = by + 7y

= 0.0636871 +(—0,1408027) + 0.034944239 = [0, 3660976 + ( —0,2937382)]

= 0.07648016 + (015106720}
bz = Ad + iSd_SJﬂg

=N MY RSTO0 A GoaaRd
WP L kA DO T e Ludliooe b

g
=0.01726207 +(=10.195311485
{2 = d'[ + Ty

= O 31&1335+{ 0. 7[]40135)5 + 0 03454435 [2. 1965856 +{—-1.7624262){]

d, = 4)((;1 +1B,,} 8'cy
= 4 %[~ 0.0153783 + (~ 0. 1968253)i]— 0.00514555 % [2. 1965856 + {— 1. T624292))
= —{.07T281585 + (—0. 778232531

Incrementing j ta 3, 4, and 5 for the four variables aj, by, ¢y and d; in the same set
of equations,

g = by+rag = —0.01458052 + (~0,20050281)
by = Ay +iBi—s'az = 000706707 + 0.00558982 §

¢y = da+7ce = —0.05900604 — (~0.80498597 )i

dy = 3X(Ag + 1B -5, = 0.02034831 + 0.01837694i

a4 = by+ray = 0.00655725 + (—0.00141977)i

by = Ap+iBy—s'm, = 0.00532637 + (-0, 00308534

¢, =dy + rey, = 001828638 + {—0.00975281%

dy =2%(Ap+iBy)—s'c, = 001080622 + {—0.00409260)
(g = by+ iy = 000855551 — (—0,003124051

by = A, +iB,—s'a, = 0.99721856 + 0.000007314

s =dy+rey = 0.01144523 — (—0.00443371%

ds = 1x(A, +iB)—%'c, = 0.98715821 + 0.00005018i

Inerementing j to 6 for a; and b; enly,

g = By +vag = 0.99741260 + (—0.00010224)%
be = go—5'a, = —0.00002859 + 0.000016134

Using equations (26— 7) through (26— 9} in order, and with the relationship it = — 1

........ 2 5 v = AR DelaliDnaii e L)

_|_|‘.-.l'| DI AR
VLA VLLA |+

&+iy = 1x0.01747220 + (— 0,069
{—

i
Li
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= (.01742699 + 0.00000711i*~0.06939387i — 0.00002859 + 0. 00G01613:
=(0.01739129-0.068377751

r ={.01739129 qnit

¥ = —0.08937775 unit

Fy+iF) = [0.01747220 + (—0.069572007][0.01 144523
+{—n004433713] + 0.89715821 + 0000050187

= (L99704972 +{— 0. 000823551

k= [0.99704972% + (—0.000523551%]72 % 1.0012864
= (.9983227

MO FIED-STEREDGRAPHIU CONFURMAL (SFHEKE) -
INVERSE FQUATIOINS (SEE P 218)

Inversing forward example:
Given: B, m, by, kg, 4,— A, and B,— 5 for forward example

a = 0.01739129 unit
¥ = —0.06%37775 unit

Find: &, A

Using the Knuth algorithm equations (26—6) with (26 —10), (26—13), and (26--),
but not in that erder, the first trial ' = 0.0173912%/1, and trial ¥ = —0.08937775/1.
Except for the values of »' and ¥", equations (26-6) are used in the same manner
as they were in the forward example, resulting in

oy = 0.99741182 + (—0.00010209} ¢
b = — 000002841 + (.00001606
ey = 0.01144135 + (—0.00445277) 1
d; = 0.99715864 + 0.00004934 {

Using equations (26—13), (26~8), and (26— 10 in order,

St + iy y=[0.01739129 + (—0.06937775) 21 [0.99741192
+ {—0.000102089) /] + (0000028417 + G0O002606 «
— [0.01739129 + (—0.06937775) i/
= —r 0000805 = 0.00019384 ¢
Fop = iF, =[0.01739129 + (—0.08937775) ) [0.01144135
+ (—0.00443277) 5] + 0997158684 + 0.00004934 |
= 0.9UT04869 + (—0.LODB2I8E)
Afa + gy'y=— [-0000805] + C.00019354 ({0.99704868 + (—0,00082188) {]
= =0 00008091 + 000010485 ¢

IR et e ) LLI LA L N )

fa+ bilife i) = (ae +odiie® +d) + ((be—adWic® + )] 4
Adding A (2" +iy') to (&' +iy7),

a' = 0.01T39120 — (.00008091
001747220

' = —00BY3TTTS + 000019435
—(LOEFSTEIO
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Repeating the above steps with the new values of (x', ¥'), the new
& (" + ') = 0.00000000 + O.00000300 |

Thus there is no change to eight decimals, 50 equations (26— 14) through (26—17)
may be used in order,

p = [0.017T47220° + (—0.08957210)E]2
= 007173252
¢ =2 arctan (0.07173252/2)
= 4. 1082095%
$ = aresin [cos 4.1082085° sin 64° + (—(LOBDST2Z10
sin 4.1082095% cos G4%0.0TITIES2)]
60° N lal.
k= —152" + arctan [(L0174T220 sin 4. 10820957/
(LOTLITIZNE cos G4™ cos 4. 10BZ035™
— (—0.08957210) sin 64° sin 4.1082095%))
—150° = 130° W. lemg., not adding 180° to the arctan because the denominator
is positive.

il

SPACE OBRLIQUE MERCATOR {SPHEREI-FORWARD EQUATIONS
(SEE . 218-219)

Givern: Radius of sphere: R =6,370,997.0m
Landsat 1, 2, 3 orbit: 1= 45 (0827
PP, = 1581251
Path =15
Paoint.: th = 40° W, lat.
A= T3 W long.

Find: x, y {or point taken during daylight northern (first) quadrant of orbit.

Assuming that this is only one of several puints to be located, the Fourier
constantz should first be calculated. Simpson’s rule may be written as follows,
using X' a3 the main variable:

If
= A oy
a close approximation of Lhe integral iz

FOo= AR - AP+ AN + 2 (0, + 2AMY & 4F OV, + 3ARD
A, AR L AV - AR + S IA]

where § (&'} ir caleulated for A equal te a, and fur &' at each equal interval
ax' until A =& The values (&) are alternatel,, multiplied by 4 and 2 as the
formula indieates, except for the two etid values, and all the resulting values are
added and multiplied by one-third of the interval. The interval A" must be
chiosen =0 there is an even number of intervals.

Applying this rule to equation (27 -1) with the supgested 9° interval in &', the
function f (8" =(H - SE1 — §%'2 §s caleulated fov a &7 of 02, §°, 18°, 27°, 36°,
81°, and 907, with ten 9° intervals. The caleulatinn for 3" =9 is as follows, uqmg
eguations (27—4) and (27—5):

247
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A =1 — (18251} cos 95.082°

=1.01133%
5 = (18251) sin 99,092° cos §°
= (.0699403
FO1=(1.0113321 — 0.0699403%)41 + 0,0690403% 2
=1 0039879

To calculate B, the following table may be figuratively prepared, although a
corputer or ¢calkeulator program would normally be used instead (H is a conatant);

N 5 fian Multiplicr LSumtpatioh
0.0708121 1.0038042 xl= 10038042
OE9E403 103887y wd = 4.01585168
Q673483 10045212 XZ= 2.0090423
E3054] 163622 g = 4.0214087
ABTEREZ 1.01064001 WE = 2.0128000
050717 1. ITH627 Hd = 40302507
16223 1.0087262 x2= 20174528
0321480 100977 rd= 4.0351074
LOZ]HREE 1.0106114 ri= 20212227
OTIOFTE 10111474 = 40445895
00 1.0113321 #1= 1.0113321

Total = G0 2269624

Tu convert to B, again referring te equation (27— 1} and remaining in degrees for
the final multipliers, since they cancel,

B = (21807 = (873 = 20.2269¢24

B =1.0075654 x /180
= 0.017585324

Caleulations of A4, and C,, are similar, except that the calculations of the fune
tion involve an additional trigonomeltric term at each step. For example, to caleu-
late €y for A"=9", using equation (27—-3) and the S found above From equation
{27-5),

A =(8101 + 8§947) cos 30
= [0.089840341 + 0.06094039%] sos (3 x §9)
= 0.06216542

The sums for A, corresponding to 30.2269624 for B are as follows:

for Ay —01.0584594
for Ay 0.000041208

To convert to the desired constants,

As = 41807 2Yi % (9°03) x { —0.0554594)
—0.00188198
(44 1807 x 43 > (97433 x {1). 00004 1208)
= 0, 0000006858

Ay
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The sums far €

To canvert,

£, = [4x(L.0113321 + 1)/(180°x 1)) x (9°/3) % (1.0601909)

= {).1421597
[4> (10113321 + 11807 3] ¢ (8%3) = (— . 0006626541)
—~0. 0000296182

<y

These constants, rounded Lo seven decimal places except for B, will be used
below:

Using equation (27-11),

An = 12B.87° - (360%251) = 16
= 107.367

Ta solve equations (27-8) and (27 -9) by iteration, determine i’ from equation
(27- 12} and the discussion {ollowing the equation, with & =

}"P =907 w (d=0+2-1)
= of°

Then

MP = =73 — 107.36" + (18/251) % 90
= —173.9058167°

Cos J\.fﬁ = —{, 0943487

Using &', as the first trial value of &' in equation (27—9), using extra decimal
places for dlustration:

=737 — 107.36° + {18251y x WF
—173.8058167°, as before.

Ky

Using equation (278},

A’ = arctan [cos 99,0927 tan (— 173.9058167°) + sin 59 002°
tan 40%cos (—173.9058167°)])
= —40.26910525°

For quadrant correction, from the discussion following equation (27— 12), using

moadome o F aam L srm meloaeled o d wmlbnaam
i 31ET 01 COR .r\;P d4% CHITUIEHUED S00VE,
AT o= —4D.36510525° + 807 — G0F ain 5° % {—1)
—40.36910525° + 1807
= 139.6308947°

This is the next trial A", Using equation (27-9),

Ay —73% — 107.36% + (18/7251) = 139.6308047"

—170.3466291°
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Substituting this value of 4, in place of ~173.9058167° in equation (27 -8},
A= —40.9362858°
The same guadrant adjustment applies:

hll

—40.9362808° + 180°
139.0637142°

Substiluting this in equation (27-9),
A = —1T0.3873034°
and fromn equation (27—8),

x' = 139.0707998"

From the 4th iteration,

N = —~170.3867952°

AT = 139.0707113°
From the bth iteration,

hy = —170.3868016°

Moo= 13507071247
From the 6th ileration,

hy = -170.3868015°

A= 138.0707124°

Since A” has not changed to seven decimal places, the last iteration is taken as the
final value. Using equation (27 —103, with the final value of A,

' = aresinfcos9Y.092° sin 40° = sin 99.042° cos 40° sin
{=—170,3868015°)]
= 14179606

From eguation {27-3),

8§ =(15/2513n99.002° cos 139.070T124°
= —{3.0534999

From equations (27-8) and (27-7T),

x =6,370,897x10.017585454 % 156.0707124° + { —0.0018820)
sin (2x139.0707124%) + 0.0000007 sin (4= 139, 0707124%)
—[—0.0534999/(1 + {— 0.05349%0)% 1] In tan
(45°+ 1.4179606%2)|
= 15,601,233.74 m
¥ =6,270,997x 0, 1421587 sin 139.0707124° + (—0.000:256)
sin (43 139.0707124°) 5 [LA1 +(—0.0534099) 2]
In tan (257 + 1,41 T9606%2)
= 750,650.37 m
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SPACYE (OBLIQUE MERCATOR (SPHERE)- INVERSE FQUATIONS

(SEE P. 213-221}
Inversing forward example:
Given; Radius of sphere: E =a370,997.0m
Landsat 1, 2, 3 orbit: i =99.082°
PP, = 18251
Path =15
Point: x = 156801 233.74 m

¥ — 750,650.37T m
Find: &, &

Constants Ay, A, B, C), Ca, and kg are caleulated exactly wnd have the same
values as in the forward example above. To solve equation (27— 15) by iteration,
the first trial A" s &/BR, using the value of B for A" in degrees in this example:

A = 15,601,238.74/(0. (17585834 » 637099700
= 1358,2518341°

Uslng equalion (27-5) to find S for this trial A’,

& ={18251) sin 50.092° cos 130.2518341°
= —0.0R36463

Inserling these values in the right side of equatiot (27-13}),

A =415,601,233.74/6,370,997,.0 + (— 0. 0536453)
» 760, 650,37/6,370,997.0— { — 0.0018820) sin (2x139.251583419
—0.0000007 sin (4% 139.25183417)—( —0.0536463)
=L 1421597 sin 138 9518341° + (—(n.0000298)
sin (3x 139 2518341°)]/0. 0175585334

= 139 06053757

Substituting this new trial value of X" in (279—5) for a new S, then both in (27— 15)
for a new A, the next trial value is

A 139.07071%7

The fourth value iz

A 13907071247

and the fifth does not change Lo seven decimal plices. Therefore, this A’ is the
final value, The corresponding § last caleulaled from (87—5) is

8 = {14251} sin 98.082° cox 130.0T07124°

—(.053499%

Using equation (27 -18),

Intan (457 + ¢'f2) = [1 +(—~0.0534899)% ] 2« [750650.37/
H3T0897.0—0.1421597 sin 139.0707124°
—{—0.0000298) sin (3x139.0707124%)]
= (.024 75061
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EILAATEL

1.0250594
43° + /2 = arctan 1.0250594
= 45, T0R9803°
¢ = Ex{45.7089803" - 45°)

= 1.4179606°

tan {45" + §'/2)

Using equation (27-13),

M = arctan [(cos 99.092° s5in 139.07071247°- sin 99.002°
tan 1.4179500%/cos 139.0707124°1—(218/251)
1390707124 + 107.436°

= arctan [—0. 12796544 — 0. 7555187 + 97, 3BAR(15®
= 9.6131985° + 97.3868015°
= 107.000)000°

Rince the denominator of the argument of aretan is negative, and the numerator
is negalive, 180 must be subtracted from A, or

& = 107.0000000° — 180° = — 73.0000000°
=T3"W. long.

Using equation (27—-14),

¢ = arcsin (cos 99.002° sin 1.4179606° + sin 99.042°
cos 1.4179606° sin 139.0707124%)
= 40, (00000
= 40" N. lat.

For groundtrack calculations, equations (27—17) through (27—20) are used,
given the same Landsit parameters as abave for B, 7, Po/P,, and path 15, with
Ay = 107.36%, and & = 40° 8. lat. on the daylight (descending) part of the orbit, Using
equation (2717,

A = aresin [sin (—40°)Wsin 99.0887]
= —40.6145062"

To adjust for guadrant, subtract from 180°, which is the )’ of Lhe descending node:
b = 1B0F={—40.6145062%)
= B20.6145062°

Using equalion {2718},

A = arctan [(cos 99.0892° sin 220.5145062%Wens 220,6145062°]
= (18/251) = 220,6145062° + 107.26°
= arctan [0 1028658/ —0.75391065)| +~ 91,5390394°
= 88.8219462°

Bince the dengrminator of the argument for aretan is negative, add 180°, but 360°
must he then subtracted to place x between + 180° and —1807

A = 83.5219462 + 180°—360°
= =98 178053%°

= 4RI AN QLY W 1an
LR N o

"
EACPEOTEE L EH
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If & is given instead, with the above A used for the example, equations (27—19)
ahd (27-9) are iterated together using the same type of initial trial A’ as that
used in the forward example for equations (27—-8) and (27-9). In this case, as
described following equation (27— 12), Ny is 270°, byt this is enly known from the
final results. If A"}, = 90° is chosen, the same answer will be obtained, since there is
considerable overlap in actual regions for which two adjacent A'y's may be used.
If Ay = 450" is chosen, the A’ calculated will be about 487.9°, or the position on
the next orbit for this A. Using ¥'p=270" and the equation for Ay, following equa-
lion (27-12),

Agp = —96.17T80538° — 107.36° + (18/251) = 270°
= —184 175350410

for which Lhe cosine is negative. From eguation (27—9), the first trial A; is the
same as hy,. From equation (27—19),

A =aretan [tan {—184. 1755040 cos 99092
= 24. 79701207

For quadrant. adjustment, using the procedure following (27—12),

A = 247970120 + 270°—90° &in 270° x (—1)
= 204, TOTOI20°

where the (—1) takes the sign of cos kg,

Substituting this as the trial A" in (27-9),

A = —05 1780538°— 107.86° + (18/251)x204.7970

= —188.8514155°
Substituting this in place of — 184, 1755040° in (27-19),
A =44, 5812628°
put with the same quadrant adjustment as before,
A =124 5R12628°
Repeating the iteration, successive vialues of L' are
A =£10.5419815%, then
= 220.88896582°, then
= 220.5386674°, then
= 220.6346973°, then

= 220.6091287°, then
= 220.6159384°, etc.

After a total of about 16 iterations, & value which does not change to seven decimal
places is obtained:

X =220 .6145063°
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Using equation (2720},

¢ = aresin {sin 99.092° gin 22061450657
= —44), Q00"
=40° 8. lat.

SFACE OULIQUE MERCATOR (ELLIPSOID) - FORWARD FQUATIONS
(SEE P 222-224 )

While equations are alzo given for orbits of small eccentricity, the caleulations
are 30 lengthy that examples will only be given for the cirenlar Landsat 1, 2, or 3
orbit.

Given: Clarke 1866 ellipsoid: a = 06,378,206.4 m
¢ = 0. 00BTGESE

Landsat 1, 2, 8§ orbit: i = 99.002°
PP, = 18251
R, =7.284,690.0 m
Path =15
Paint: & =40° N. lat.
A =T W, long.

Find: &, y for point taken during daylight northern (first) quadrant of orbit,

The calewation of Fourier constants for the map follows the same basic proce-
dure as that given for the forward example for the spherical form, except for
greater complications in eomputing each step for the Simpson's numerical inte-
gration. The formula for Simpscon’s rule (see above) is not repeated here, but an
avareele P anl ol tinee aFn Faasalten E00 ™ Fo acmplowt A nd 17— TE7 7o afacmw T lraas
|:A(1lll|.l.l‘$ U Ll uidlduln v a lHllLL.IUU.J' L Y LUI].‘.‘L-GL]L.I'IQ aLn — L0 Ly El\‘LII PRy,

as represented in equation (27-22).
FY=U(HT-S5WI+ §2%] cos 20"
Using equations (27—24) through (27-27) in order,

4 ={1-0.00676866)°
= 0,.9798312
W = [(1-0.00676866 coz® 990927501 — 0. 00RTER66)7])—1
= (0.0133334
£ -~ 0.006T6866 ain? 99.002%¢1—0.00676866)
= 0.0066446
T = 0.00876566 sin® 99.092° x (2—0.00676866)/(1 —0.00676866)%
= 0.0133345

Using equations (27— 30} and {27-31),

8 = (182a1) sin 99.092° coz 18°x[{1 + (0133345
gin? 18701 + 0.013333d sin® 18%) (1 + 0.0066446 sin® 18%)]+2
= 0.0673250
H =1(1 + 0.0066446 sin® 181 + 0.0133334 sinf 18%)®
% [f1 + 0.0133334 ain? 181 + 0.0086446 ain® 18°)°
—~{18/251) X L0 ¢o3 99.082°]

=1.0110133
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Calculating the funetion f{A") as given above,
F (0 =T(1.0110133 x 0.97982312—0.0873250%)/(0. 97083122
+ 0.0873250¢Y2] cos (2x18%)
=0, 8122653

In tabular form, using 9° intervals in A", the caleulation of A; proceeds as follows,
integrating only to 90° for the circular orbit:

I N 5 Fenty MuMipliee B e g
10113421 G.OT0RIZ21 i 0ahaT1 wi= 10035571
10112504 0.0699846 0.9545507 x4= 3.8183229
10110133 0.0873250 0.8122693 %Z= 1.6245388
1.0106439 (1. DB 060A 0.5904 356 x4 = 23617425
1.0101732 0.06T2226 0.4106003 wE— 0.6212007
1.(GA61T 0. (499348 0. 0000000 4= 0. 00N
1,0081450 00415321 —0.3110197 wd= —0.6220384
1.0088787 0.0320638 —1{1.5910520 »d = -2, 3878116
1. 083085 0.02181R7 —1{} 8151437 HE= - 18302874
10080708 0.0110417 =1.9585531 xd = —3.8342122
1, 0079538 0. 000000 - 10079838 %= —1.(MFT9333

Total = —0.0320376

To convert to A, referring to equation (27— 22),

Az = [AR180° x 23] x(%3) = (—0.032937E)
= —0.0010970

Similar calculations of Ay, B, €, and C; lead to the values given in the text
following equation (27 —H4):

B= 0.0115544891 for A" in degrees

€, = 01434410
C., = 0.0000285

Since the caleulations of 7, and m., are not necessary (or caleulation of x and ¥
from & and k, or the inverse, and arc alse lengthy, they will be omitted in these
examples. The examples given will, however, assist in the understanding of the
text concerning their caleulations. The other peneral constant needed is by, deter-
mined from {27—37), as in the forward spherical formulas and example:

g = 1Z8.87°—(3807/251) x 15
= 107.38%

-|
b
I
K
L)

ple since ¢ and h have been made the same. The sign of eos Ay, is ulso negative.

Ay =8P
Ay = — 1739058167
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Using equation (27 —34),
A" = arctan fcos P9.092° tan (- 173.80568167%) +{1— 0. 0D676866)
sin 99,0027 tan 40%cos (—173.9058167%)]
= —d4{. 18100057

For quadrant correction,

A" = —40.1810065% + 80° — 90° sin 90° x {—1)
= 139, 8189905°

Successive iterations give

{2y Ay = -170.3231395°
A" = 139.2478915°
B8] A = —170.3740954°
A" = 139 2550483
4) k= -—170.3736822°
A" = 139.2548587°
{6) Ay = —1T0.373588¢"
A" = 138.254554U8°
8 A = — 17037368857
A" = 139.2545598°

These last values do not change within seven decimal piaces in subsequent
iterations.

Using equation (27— 38) with the final value of A,

4" = arcsin {[(1—0.006?6866) cos 99, 092° sin 40°-sin 99.092°
cos 40° sin {—170.3735885%]11 = 0.006T6R66
sin? 40714
= 14692784

From equation (27—30), using 1392549508 in place of 18° in the example for cal-
culation of Fourier constants,

S = —0.0535730
From equations {27—32) and (27-33),

@ = 6,378,206.4]0.0175544881 » 139.2548508° + (—G.0010579)
sin (2% 189.2548508% + (~0.0000013) sin (4 x 139 25495087
+ 1.4692784%2)]
= 15,607,700.94 m
¥ = 6,878,206.4 0. 1434410 sin 139.2549598° + 0.0000285
sin (3 x 139.2549598°) + [0.9798312/0. 970983127
+ (~0.0535730°)2] In tan (456° + 1.4602784%2)
= T60,636.33 m

For caleulation of positions along the groundtrack for a circular orbit, these
exampies use the same basic Landsat parameters as those in the preceding exatn-

ple, except that ¢ =40 3. lat. on the daylight {descending) part of the orbit. To
find &', ¢y is first caleulated from equation (27-41):
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dg = (~40%) — arcsin |6,378,206.4>0,00676866 sin (—40°) cos
(—40°)/| 7,294, 590.0 % {1 —0.00676866 sin® (—40°)
= —40° — (—0.1672042%)
= —30.8327958°

From equation (27—42),

A = aresin [sin (—3% 8327955%%)/sin 99,092}
= —40. 44363617

To adjust for quadrant, since the satellite is traveling south, subtract from
Ve x 380%

A = 180° — [—40.4436861")
= 220.4486361°

Using equation (27-43),

& =arctan [{cos 99.0927 sin 220.4436361%)/cos 220.4436361%)
~{18/251) x 220.4436361° + 107.36°

= gretan [0. 10250774 —(.7620445)1 + 91.5512930°
= R 8RO00065°

Since the denominator of the argument for arctan is negative, add 180°, but 360°
must also be aubtracted to place X between + 180° and — 180%

b = 83.BBO0D85° + 1RO® - 360°
= —56.1199005°
= 06°07°11.64" W. long.

If & is given inatead, with the above & used in the example, equations (2729}
and (27— 35} are iterated together with A" in place of A" in the latter. The tech-
ninue is the same as that used previously for solving (27-8) and (27-9) in the
forward spherical example. See also the discussion for the corresponding spheri-
cal groundtrack example, using equations (27—19} and (27— 9}, near the end of the
inverse example. Since the formulas for the circular orbit are the same for ellip-
soid or sphere for this particular caleulation, the various iterations are not shown
here. With A = —06.1199005°, A" is found to be 22044363617 To find the corTespond-
ing ¢ from equation {27—-44), a trial ¢ = aresin (sin 99.092° sin 220.4436361°) =
-39 B32705E8° i inserted:

4 = arcsin (sin 99.002° sin 220.4436361%) + aresin 16,378,206.4
% 0.00878866 sin [—39.8327958°) cos {—39.8327958°y
17,004 680.0 x (1--0.00676R86
gin? (—39.83270587))7].
= —30.9906234°

Substituting —39.9998234% in place of —30.8327858" in the same equation, a new
value of & is obtained:

¢ = —30.9999998"
With the next iteration,

& = —40.0000000°
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which does not change to seven decimal places. Thus,
& = 407 5. lat.

SPACE QBLIQUE MERCATOR (ELLIFSOID) - INVERSE EQUATIONS
(SEE P 224-225

This example iz alse limited to the eireutar Landsat orbit, using the parameters
of the forward example.

Inversing forward example:

Given: Clarke 15866 ellipsoid: a = 6,378,206,4 m
e = 0.0067A856
Landsat 1, 2, 3 orbit: i = 89.092°
PP, = 18251

Ky = 7.294,690.0 m
Fath =15 {thus »; = 107.36° a5 in forward
example)
Point: o= 15,607,700.94 m
¢ = T60.626.32 m

Find: o, &

All constants J, W, @, T, A, B, and C,,, as caleutated in the forward example,
must be caleulated or otherwise provided for wse for inverse calculations.

To find A" from equation {27—51) by iteration, the procedure is identieal to that
given for (27— 15) in the inverse spherical example, execept for the use of differ-
ent constants. For the initial A" = xaF,

K 15,6807, 700.94/(6,378,206.4 % 0.017565448591})
= 139.3965968°

Using equation (27-30) to find § for this value of &7,

£ = (187251} sin 990927 ros 130.3065068° » [{1 + 0.0133245
sin® 130.2060068%(1 ~ 0.0133334 sin® 130.3965068°)1
+ 0.0066448 sin® 130, 308506871t

—0.0536874

Inserting these values into {27513,
A 115,807, 700.94/6,376,206.4 + (—0.0036G874/0.4T98212)

® {760,636.33:6,378,206.4) — {—0.001097Y} =in {2

¥ 139, 3965968° Y~ {—0.0000013) sin {4 x 139 386549647

— {—0.0536874/0. 9798312} % [D,1434410 sin 129, 3965958

+ 00000285 sin (3 x 130,3963965871/0.01 7053445891
13%.2539963°

1

H

Substiiuting this new trial value of A" into {27201 for & new S, then both into
(27~51), the next trial value is

A = 13925406627
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and the fourth trial value is

139. 2549597

=
I

The Llth trial value is

i

A" 139. 2549598°

which does not change with another iteration to seven decimal places, Therefore,
this js the final value of A". The corresponding S last calculated from (2730}
using this value of A" iz —0.0535780. Using enuation (27—52),

1L + (—-0.05357301/0.9798312%
» {760,656.3%/6,378,206.4—0.1434410 sin

PLLENL R LE NS B L e

138. 25495057 — (.0000285 sin (3 X 135.2549553°)]

In tan{da® + &'2)

1

nou
-,

3

£

=

tan (45° + &"72)

=l
=3
[
[
=}
3
80

2

45" + ¢"2 = arctan 10259783
= 45.7346392°
&" = 2 % (45.7346392°—45%}

1.4692784°
Using equations (27—48), (2747}, and (27— 46} in order,

0.0067GA66 cos? 99.092°4(1— (. 0D6TE866)
= 0.0001702

V= H1-sin® 146927841 —0.006T6R66)] eos 99.002°
sin 139,2549598° —sin 99.0932% ain 14852754
* [{1 +0.0066446 sin® 139.2540598% x (1—sin? 1.4602784%
=0, 0001702 sin® 1‘4692784“]‘-"’-';!
{1—sin” 1.4882784° (1 +0,0061702))

—{.1285013

arctan {—0.1285015/cos 139.2549598%)

arctan [—0.1285013/( —0. 7576215

= 9.4264115¢

ir

1

Ay

[

Binee the denominator of the arpument for arctan is negative, and the oumerator
is negative, subtract 180

A = 0.6264115°— 180°
= —170.3735885°

Using equation (27~45),

ho= —170.3735885°—(18/251}1x 139, 2549508°% + 107.36°
= --T3.00000{K)°
=73 W. long,

b = arctan f[tan 139.2549508° cos (- 170.3TI5885% —cos 99.092°
sin (~170.37353885°)]/[(1 - (.0B76R68) sin 99.002°)
= 40, H000000°
= d40° W, lat.
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SATELLITE-TRACKING (SPYHEREY-FORWARD FQUATIONS (SEE P, 231.232, 236)

Cytindrical form:
Given: Radius of sphere: R = 10 unit
Landsat 1, 2, 3 orbit: 1 = 99,092°
PPy, = 18251
Map parameiers: Ay = H0° W, long.
dy = 30° N, and 5. lat.
Point: & = 40° N. lat.
A = T5"W, lung.
Find: =, y. k, k

Using equation {28—1),

Fs 057 30°—cos 99.092°)eos? 30°—¢os? 99,.092°)¢

[l
[rr]
[ o]
e

¥

=1

o)

Repeating this for 40° in place of 307, using equation {28—1a),
o= 02889577
Using equationg (28—2) through (28-8} in order,

A = —aresin {(sin 40%sin 39.092%)
= —40.6145062"

Ay = aretan [tan (—-40.6145062") cos 99,0927
= T.7170932°

L = T.TIT0032° —{18/251) % ~40.6145062%)
= 1{). 6296873

¥ =10 % [=75" — {—90F)] ens 30" ¥ q/180°
= G.2267Z4% unit

¥ = L0 x 1062968873 x (1/180°) cos 30°/0. 2487473
= (6459071 unit

k = ¢os 30%cos 40°
= 1.1305159

h = 11305159 x 0.26689577/0.2487473
= 1.2132788

Conic Form (fwo parallels with conformality)

Giverr:  Radius of sphere: £ = 1.0uonit
Landsat 1, 2, 3 orbit: 1 = 99.092°
PP, = 18251
Map parametars: Ao = 90° W, lung.
dy = 307 N. lat.
$; = 45" N. lat.
e = T0° N. iat.
Paint: $ = 40° N, lat.
A =T75"W. long.

Find: x, u, pg, &, b

Using equation {28~ 9) for ar = of zero,
Fy = arctan |[{16/251) cos® 30°~cos 99.092°]/(cos® 30°— cos® 99,0027
= 139686735

It
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Repeating this for & (45°) and & (70%), in place of 307,

y 15. 7111447

F. = ZR.T497148°
Using equations {28—£a) through {28—4a) for an = of zero,

Mo —arcsin (s 30%sin 99. 0427}

—30.4218063°
Mo = arctan [tan (—320.4B18063%) cos 99,0927
2.3013386°
5.3013886° —(18:/251) = {—30.4213063")
= 7.4H29821°

Lq

Repeating these equations for an » of 1 and then Z,

A, = —45.7337490°
Ay = 9.2086865°

L, = 12.4883076°
A, = —72.1102281°
A = 26.0835377°

L, = 3125478917

Using equations (28— 10) throupgh (28-12),

Tt (28.7497148°— 15,711 1447°)/(31.254 7591 — 12. 4883576}

= (6947830
sg = 157111447 - 0.6974830 x 12 4833976°
= T7.0344182°
po = 1.0 cos 45° sin 1571114471 0.6947830 sin {(0.6947830x 7. 4820821°
+7.03441827]

1. 3005467 units

These constants apply to the entire map. For the point (&, X), using equations
(28-9) and {28—2a) through {28-4a) in order for an omitted », or a & of 40°

F = 14.9469825°
X = —40.6145062°
A = 771708220
L = 10.6296873°

Since n is positive and L is preater than {-syn), the point may be plotted.
Using equation (28— 13), the caleulation is the same as that for p,, exeept that
L 1z uzed in place of Ly

p = 1.1066853 units

Using equations (14—-4), {14—-1), and (142} in order,

A =0.8947830 x [—75°— (90"
=10.4217452°

z = L.1066853 sin 10.4217452°
= 0.2001910 wnit

¥ = L300S967T — 1.1066853 ¢os 10.421 74527
= 0.2121685 unit
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Using equations (28— 14} through (28-16) in grder,
ps = 1.0 eos 45° sin 15.7111447%0.654 7530
= 0.2755908 unit
k = 1.1066853 x 0.6947830/(1.0xcos 40%
= L.OD37357
k= LOO37357 tan 14.9469825%¢an (0. 6047830 10.6296873° + 7.0344182%)
= 1.0421246
SATELLITE- TRACKING (SPHERE)- iNVERSE EQUATIONS (SEE P, 236-237 )
Inversing forward examples;
Cylindrical form:

Given: R, 1, Po/Py, &y, &) as in forward example

¥ =

$.2
y = 0.645907
Find: ¢, A
Caleulate F,' from (28—1), exactly as in the forward example:
F'o= 02487473

Using equation (28—19),

L =[0.6459071 = (0.2487473/1.0 cos 307)] x 180%/=w

10.6296460*

Using equations (28—~24) and (28-25) rather than (28-20) and (28213, and a
first trial A" of (—907),

A = tan [10.6296860° + (18/251) % { ~50°} Veos 95.002°

—0.4620014

Ax' = —[—90°—arctan { —0.48200143 01 —({ —0.4620014)% + l/eas® Y0 092
(18/251) eos 99.0692°%4(—0.4620014)% + 1)]

47.3862949°

—80° + 47.3862843°

= —42.6137057°

Ir

=
I

Eeplacing (—90°) in {28—24} and (28—25) with (—42.61370587°),

AN = 1.89959795°
AT = —40.6177262°

Repeating the iteration successively gives

ArT = 00032237
LY —40.6145026°
Ax' = —0.0000000

Since there is no change o seven decimals,

A = —40.6145026%
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Using equations (28—22) and (28—23),

¢ = —arcsinisin{ -40.6145026") sin 99,0827
=40° N, lat., neglecting round-off errors
A= 907 + [0.22672494 1.0 ens 307)] % 180°%/w

=-75" = 75" W. long.
Cuoiie form (fwo perallels with conformality):
Given: K, 7, Pul, Ay, o, 4, de 05 in forward example

x = 02001910 unit
y — 0.2121685 unit

Find: ¢, &

Caloulate £y, Fy, Fo, Ay, hygy Legn M R Do Ay R, Ty 71, 80, and pp exactly asin
the forward example. Using equations (14--10), (14—11), and (28-26) in order

g =[0,2001010% + (1.3005967—0, 2121685z
= 1. 10436853 units
arctan [0.2001910/1. 3005967 —0, 2121685 ]
10421 7462°
L = [aresin (1.0 sin 45° sin 157111447/
(1. 1UHBR5E < 0. 69470 - T.0844182°);
0.6947830
= 106295877

q

b

With (—90%) as the first trial & in (2824} and (28-25), calcalating as in the in-
verse cylindrical example,

A = 04620016
Ax"T = 47.3862806°
A = —~42.6137104°

Eeplacing (—907) as the trial A" with (—42.6137104"), and successively iterating,
the resuit converges to

K= —40.6143076°
Using equations (28—22) and (14-9),
$ = — arcsin fsin {—40.6145076°) sin 99.092°]
=407 N. lat., disregarding round-off errors.

o= -9 - 10,421746270, 6947830
= ~75" = 75" W, long.

Ty o

Given: Radius of Si}hETEZ s L0 tnit
Central meridian:  x, = 85" W. long
Foint: & =507 5. lat.
o= 160° W, long.
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Find: x, ¥
From equations {20—8), (29—23), (28—4), (295}, and (29—6a) in order,

8 = arcsin 12x{ = 50°)180%
= aresin 0.5535536
= 33. T4RORRE"
A =4 | 180°A(— 1607 —(—85°]—[({ — 1607} —{— 85")]/180°|
= L | —2 4000000 = =0.4166667) |

i3 Do reroe

= . 5016667

= cos 33. 7480886 (sin 33, T480886° + cos 33.7480886° — 1)
= £.1483315

P =2.1483815 = (2/zin 33.T480886°—1)
= 5.5B56618

Q@ = 0,9016667% + 21483315 = 3.1317342
From eguation (29—1),

x = —wx LOX[0. 9916687 (2. 14853155, 5R56618%)
= [0.9916667% % (2. 1483315~ 5, 58566187
~ (558566 18% + 0.9916667°) (2. 1453815°— 5. 58666 18%) =2/
(5.5856615% + 09916667
= —1.1954154 units

taking the initial “~" sign becanse (A—hy) is negative. Note that « is not con-
verted to 18(F here, since there is no angle in degrees to offset it. From equation
(#9-2,

¥ = —wx1.0x%5.3456618%3. 1317442 —0.9916667
*x[(0.9916667% + 1) % (5.58566 18° + (. 49166675
—3.1317342% =15, 6856618% = 5.8516667D)
= —0.9960733 units, taking the initial “—" sign becanse ¢ is

negative.
VAN DER GRINTEN (SPHERE)- INVERSE EQUATIONS (SEE P 242)
Inversing forward example:
Given: Radius of sphere: & = 1.0 unit
Central meridian:  x, = B5° W. iong.

Point: & —1.1954154 ynits
¥ = —0.9960733 unit

Find: &, &
Using equations {29—9) through [29-19) in order,

X = -1.195401540rx 1.0)

= —0,3806125
Y = —0.9960738/(mx1.0)
= —0.3170600
¢ = —0.3170608% [ 1+ (-0, 38051257 + (- 0. 317060017
- —0.3948401
e = —0.3948401—2x (—0.31T0600)" + {—0.3805125)*

= —0.4311044



g3 = —2x(~0.3548401) + 1 r 2X(—0.3170600)%
+[( = 0.3805126% + ( - 0,31 706007 |
= 2,0504147
d = (—0.2170800/2.0509147 + |2x(—0.4511044)%2.0509147%
— 0 { —0,3945401) < (—0.451 1044)/2. 050914727

=.0341124

ny — [—1.3948401 - { .45 1 143 < 2. 050014 T2 0509147
= —0.2086440

iy s 2 (0L 2086456/ 0
= {.5274409

0, = (1/3) arceos [3x0.03411244 —0. 2086455 % 0. 52724081]
= (1/3) arceos (—0.9205332)
= H2.80R0RE1"
$ = —180°%[—(0.527440U8 > cos (52 8080831° + 607
~[—0.451 1044552 x2.05091473)
= -5 = b0* 8. lat., taking the initial “- " sign because y is
negakivie,
A= 180°x{~0.83805125% + (-0.31T06000° - 1 +
[L+ 25 —0.8805125)% — (—0.31T08007%)
+ {({~(BBOS125Y® + (—0.81 TG00V ey
[2x(=0.3805123)) + (=85
= —160° = 160° W. long.

SIMNLISHDAL SPHFREE —FOARWARDY RO A THINE (SFE 1 34T
H LR IR AL R TrRRAY ARD rUL AN (AR P24 )

Given: Radius of sphere: £ = L.U unit
Central meridian: Ay - 90° W long.
Point: & =50° S, lat.
A= T8 W, lang.

Find: x, o, &, &, 8, w
From equations (30-1) through (3U0=5) in order,

@ =10 % [-T8"—{—807)]x eas (—5U°) = w/1BO°
= 1. 1682814 unit

¥ =10 = {-50% x «/180°

—1{. 8726644 anit

1]

A= {14 T8~ ]Px (7 180%)* % sin® (- B0
= 1.0159119

E =114

¢ = aresin (1/1.0199115)
= TR.68HIT19°

w =2 arctan {12 75— (-3 » (wABPY = sin (=507 |
= 1145235427

SINUSCGIDAL (SPHERE) - INVERSE TQUATIONS (SEE P, 24B )
Inversing forward example:
Given: Radius of sphere: R = 1.0 unit
Central meridian:  »; = %" W. long.
Point: = = 0.1682814 unit
y = —0.8726646 unit

Find: ¢. A
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From cquations (30— 6} and (30-7),

b =1 -0.8726646/1.0) x 180%%
= —4Y $HouRs”
— 50F 5. Tat. rounding off.
o= 900+ [0, 1ER28140 1.0 < cos (=49, EDYGREE™ | 2 180

— TH.B00000T*
=73 W, long.

SINUSQIDAL (ELLIPSOLD)- FORWARD EQUATIONS (SEE P 245 1

Griven:  Clarke 1866 ellipsoid: o = 63782084 m
e - (0.LOBTAREE
Canlral meridian: A, = %30°W_ long.
Point: & BO* K. lat.
A ™" W. long.

1}

Find: x, ¥
Using equations (3U0-8), (3 -21), and (30-9) in order,

x = 6,3TH206.4 » | -75° — (—9071] = (w/130°) cos (—50°) )
(1—0.00876866 sin” {— 50"
= 1,075,471 m
M = 63782064 = [{1-0.00876866:4 —3 =0, ETARBGE/64
—a = DODKTEER6Y256Y » (=509 % /18 — (3 x 0.0067685968%
+ 3 % LOURTBREEZAZ < 45 x N.0DBTERGEY/1024) sin (2 x (=500
v {15 x DLUORTERBAZIZER + 45 » 0.O06788667/1024) sin (4 = (=500
— (35 x 4. 008TARBR%I0T2Y sin (6 = (~H07)]
—5,540 8259 m
—3,540 8280 m

S
I

SINUSOIDAL CELLIPROND - INVERSE FOUIATIONS (SFF P 248

Inversing forward cxample;

Given: . e, hy for forward example

Using equationa (30-103, (719}, (3—24), (3-26), and (30-11) in order,

M = —5,540 6280
B = —5,540 628 W/R3TE206.4 % (1 -0.00876866:/4
—2 x 0LODBTBREEZEE — 3 0. DNETRNBE 1256)]
= —U.BT01555 radians = —49 8562300¢
£ = [L—(1-N.NETEEBE 1 + ( 1—).008TRS366) 2]
= 0.001697916
d o= —49.8562350° ¢ [(3x0.001697916/2— 27 = 0.001607916%/32)
sin (Zx(—49.8562500%) 1 (210, 001697916% 16
—535% 0001 6578164323 sin (4x{—49.3562340%))
+ (151 x0.00164TYLR™96) sin (Gx(—49.8562390%7
+ (1047 x 0.0 TR97H16Y512) sin (82 (—4%.85623507))] x 180%w
= —50° = 50¢ 3. lat.
A= 907 + |10T547L.5x(1— 0. UDBTEEEG sin® (—50°))'
(6,375.206.4 = cos (—30°) » 180°/n
= —75° = 75° W. long,
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MOLLWEIDE (SPHERE}- FORWARD EQUATIONS (SEE P, 281
Given: Radius of sphere: # = 1.0 unit
Central meridian:  »; = 90° W. long.

Foint: & = 50° 5. ut.
A= T8 W, long.

Find: x, ¥
From eguation (31—4), using ¢ or —50° as the first trial 8",
AR = —[(=50) x «/180° + sin (—50%) — w sin (~50°) )/
[1 + eos { -50%)] = 180w
= —2G,78]15465°

The next trial 87 = —50°P—26.7318469” = —175.7818469°. Using this in place of —50°
for 8 (not ) in equation (31—4), subsequent iterations produce the following:

AR = —4 367007
8 = —B1.1185564°
AR’ = —{,1301597°
8 = —81.2577163°
AR = —0.0001450°
g = —§1.2578612°
AR = —0.0000000°

Since there is no change to seven decimal places, using (31-5),

—81.2578612%/2
— 40, G23%306”

)

[Ising (31—1}) und (31-2),

r = (8%e) 7 10 (=757 — ([~ 90°) Jeos( — 40.82893067) > =/ 180°
= (. 1788845 unit
¥ = 2 % 1.0 sin (—40.628930687

'l

—{0. 9208758 unit
MOLLWEIDE (SPILERE)- INVERSE EQUATIONS (SEE P. 251.-252)
Inversing lorward example:
Given: Ruadiusof sphere: £ = 10 uoit
Central meridian: X, 90° W. long.

Point: & 0. 1788845 unit
Y — 09208758 unit,

Find: ¢, A
Using equations (31-6) through {31-8) in order,

8 = aresin [—0.B208TRALE2E » 1.03]

—40,6289211°
4 = aresini[2 x (—40.6280311°) > w/180F + sin{2 % (—40.6289311°Jin|

= Loxit - el R L e !

= —bH0° = H0° 5. lut., neglecting round-off errors
A= -0 - |mox BOUTRSRAGAEIE X 1 O ens (- 4062802117 ) x 180%T

pta g T3 PRER -l LY

= =T6° = 75° W, lomg.
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ECKERT 1Y (SPHERE)-FORWARD EQUATIONS (SEE P. 255-257 }

Given: Radius of sphere: A = 1.0 unit
Central meridian:  xp = 90° W. long.
Point: & = &0° 5, lat.
A =75 W, long.

Find: =, ¥

From equation (32—4), using {&/2} or —25% as the first trial 6,

AB = —[(—25%) x w/180° + sin (—25") cos (—25") + 2 sin (—2Z5")
—(Z+ /2] sIn (—50")M2 cos (—257) = (1 +eos (—25°)]
= -17.7554344°

The next trial @ = —25°~17.75654344° = —42.7584344°. Using this in place of ~25°

fur 0 in equution {32—4), subsequent iterations produce the following:

a8 = —Z.9912009°
U = —45.7466443°
A9 = —0.111384°
§ = —45.8580337°

Al = —0.0001573°

i1 = —45.85814910°
Ad = —0.0000006°
Since there is no change to seven decimal places, ¥ = —45 8581910°. Using (32—1a)
and (32-2a),
x = 04222382 x 1 x [ —75°— (90"} % {(«/180°) = [1 + cos{—45. 83819107 |
= (L 1B75270 unit
¥ = 1.3265004 5 1 % sin {(—45.85819107)

—{.9519210 unit

ECKERT 1V (SPHERE)—INVERSE EQUATLONS (SEE P, 257 }
Inversing forward example:

Given: HBadius of sphere: K
Central meridian: A,

Point: =«

u

1.0 unit

" W, long.

0L 1875270 unit
—{0.89514210 unit

I

Find: &, A
Using equations (32 -9, GB32-10), and (32 11a) in order,

8 = aresin [=0.95192104(1. 3265004 % 17]

—43.8581437°

$ = aresin [(—45. 858137 =« n/1B0° + sin [—45.8581937%)
cos {—45.8581937%) + 2 gin {—45 8819370

(2+m/2y]
= —HOLO0D02T = 50° 8. lat., disregarding round-off errors.
A= =907 + |0.18752T0/. 42223582 <1

% (1 + cos (—45.8381937)) ) % 180°x
—74.9899901° = 75° W, long.
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ECKERT VI (SPHERE)- FORWARD EQUATIONS (SEL P, 257)

Given: Radius of sphere: R — 1.0 unit

Central menidian: &y = 90° W, long.

Puint: ¢ = 5" 5. Jat.
A =T W long.

Find: w«, ¥
From eguatinn (32-8), using ¢ or —50° az the first trial 8,
A0 = —[[(—50° x «/180° + sin (—50°) — (1 + =/2) sin (—50°)F

1 + ens (—507)]} x 180%w
= —11.5316184°

The next trial g = —50°—11./316184° = —61.5316184°. Using thisin place nf =507
for @ (but naot ¢ in equation (32—8), subseguent ilerations produce the ollowing:

A8 = —0.63374921°
8 = -g2.1654105°
A8 = —0.0021049°
6 = —-62.1675164°

A = —0.0000000°

Since there is no change to seven decimal places, 8 = -6, 1675154%, Using (32 -5}
and (32—8),
T = 1x[- -80°)) = (w/180%) x [1 + cos (-62.1G75154)1(2 + mwik*
= 0.16 93623 unlt
¥ o= 2 x 1 x (—B2 16751547 = {(W1BFPW(2 + =)=
= —0.9570223 unit

R Y SPHERE)- [NVERSE EQUATIONS (3EE 1. 257 )

T - I

Trrrareita fomarard cvgmirlas

Given: Radius of spherer K = 1.0 ynit
Central meridian: &, = 80° W lnng
Point:  x = 0.16493623 unit

y = —0.9570228 unit
Find: &, A
{sing equalions (32—12), (32-18), and (32—14} in order,

6 = {2+ = (—0.95T0223) x (180°/mp(2x1)
= - G2.1675178°

& = arcsin [(—G62. 1675178° » w1807 + sin {(—6Z 16TDLTE VAL + )]
= —a0L.O0NNEL" = 50° 8. lat., disregarding round-off errors.

A= —90° + (2+ W x 0.1683623 x (180FmN[1x=(] + cos [—62. 1GTS1TE™N]
= =76 = 76" W. long.






APPENDIX B
USE OF MAP PROJECTIONS BY U.S. CEOLOGICAL SURVEY—SUMMARY

Note This list is not exhaustive, For further detatls, see text.

Classi Projection

P T T
Lytineriond

Mereator o

Transverse Mereator . ___

Universal Transverse Mercator

“Modified Transverse Moreator”

Oblicque Meveator .

Miller Cylindvieal
Equidistant Cylindrical

Cowe

Alpers Equal-Area Conie ...
Lambert Conformal Conie oo

Bipolar Cblique Conic

Conformal o

Peolytonic ..
b 1) [PRON LY i |
LML e

Azimuthal

{Orthographie {ebliguey ..

Stereographic (obligquey
ipolavy o

Lambert Azimuothal Equal-Area

{oblique)
tpolary

Maps

Nuirtheast Equaterial Pacifie
Indonesia {Tectonic)
Other planets and satellites
T and 15 quadrangles for
22 States
Novth America
1° lat. = 2° lung. quadrangles
of U5, metric quadrangles and
County maps.
Alashka
Gricds in soulheast
Alaska
Landsat Satellite Imapery
World
Uriled States ahd sume State Index
Maps

United States and sections
T4 and 15" quadrangles for
32 States
Quadranyles for Puerto Rico, Virgin
[slands, and Samoa
State Base Maps
GQuadrangles for International
Map of the World
Some other planets and satellites
Some State Index Maps

North America (Geolopich
Quarrangles for all States
P TP O [ (A S R |
‘-c(udll] dllgltﬂh SO LG TLALLLM LAY

Map of the World

Fictorial views of Earth

or portions ’
Other planets and satellites
Antarctica
Arvetie regions
Other planets and satellites

acific Ocean

Arctic regions {Hydvrocarbon
Frovinces)

Nurth and South Polar regions
{polar expeditions)

#mn
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Azimuthal Equidistant (obiigue) ... Waorld
Quadrangles for Guam and
Micronesix
Spree
Space Oblique Mercator _______________ Batellite image mapping

Miscellaneous
Van der Grinten eemieec— e - World (Subsea Mineral Resourees,
rnisc. )
Sinusoidal (interrupted) .. World (Hydroearbon Provinees)



STATE PLANE COORDIN
This listing indicates changes for the NAD 1983 datum
from projections, parameters, and origins of zones as
deseribed in table 8 for the NAD 1927 datum. It is im-
portant to understand that State plane coordinates based
on the datum eannot be correetly converted to eoordinates
ot the 1983 datum merely by using inverse formulas to
convert from 1927 rectangular coordinates to latitude and
longitude, and then using forward formulas with this
latitude and longitude to convert to 1983 rectangular coor-
dinates. Due to readjustment of the survey control net-
works and to the change of ellipsoid, the latitude and
longitude also change slightly from one datum to the
other.

These changed have been approved by the National
rendetic Survey (William M. Kawa, James Stem, pers.
comm., 1886). They are given in the same order as the
entries in table B, except that only the changes are shoum.
All parameters not listed remain as befare, except for the
different ellipscid and datum. Because all coordinates at
the origin have been changed, and because they vary con-
siderably, they are presented in the body of the table
rather than as footnotes. Samoa is not being changed to
the new datum.

[L tndizates Lambert Conformal Conie

_ Area Frojection . Zonea _
California L 6
Montana L 1
Nebraska L 1
Puerto Rieo and Virgin Islands L 1
South Carclina L 1
Wyoming Unresolved
Tranaverse Mercator projection ~ -
Coordinates of origin (metera)
Zone 0t ¥ o _ OtherClonge _ -
Alabama
East 200,000 0
West 600 000 0
Alaska, 2-9 500,060 0
Atizona, all 213,360 ¢ Origin in Intl. fest!
Delaware 200,000 0
Florida
East, West 200,000 4
Georgia
East 204,330 ¢
West T00,000 0
Havwaii, all H00,000 ¢
Idaho
East 200,000 0
Central 500,000 0
Wast 800,000 ¢
Illinois
East 300,000 0
West TFOO0,000 0
Indiana
East 160,000 250,000
West 500,000 250,000
Maine
East 300,000 4 Lat. of origin 43°40' N.
West 900,000 0
Mississippi
East 300,000 4] Seale reduction 1:20,000,
Lat. of origin 29°30¢" N,
West TO0,000 4 Scale reduction 1;28,000,

oA BT

T oo o e O '
Lak, ol Urigin &3° ol N,

Al
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West
New Hampshire

New Jeorsey

New bexico
Eaat
Central
West

New York
East
Central
West

Rhade Island

Yermont

Wunminge

Wyoming

Tranaverse Mercator projection

Coordinates of origin (meters)

Fa

PR ko
UHAEF CRETTER

230,000
500,000
850,000

200,000
500,000

165,000
500,000
830,000

0
0
L

8,000,000

6,000,000

4,000,000
0

U

[ Qe o]

Central meridian 74°30 W,
Scale reduction 1:10,000.

All parameters identical with above New Jersey zone.

250,000
350,000
100,000
500,000

Unresolved

oo oD
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Lambert Conformal Conic projection

Coordinates of origin (meders}

e E . Other changes
Alaska, 10 1,000,000 D
Arkansas
North 400,000 0
South 400,000 400,000 ]
California Zone 7 deleted.
1-6 2,000,000 500,000
Colorado, ali 914,401 3285 3043006096
Conneeticut 304,800.6006 152 400 3048
Florida, Narth 600,000 0
Iowa
North 1,500,000 1,000,000
Sout a00,000 ]
Kansas
North 400,000 0
South 400,000 400,000
Kentucky
North 500,000 D
South 500,000 500,000
Louisiana -
North 1,000,000 0 Lat. of origin 30°20° N.
South 1,000,000 0 Lat. of origin 28°30° N.
Offshore . 1,000,000 0 Lat. of origin 25°30" N.
Maryland 400,000 0 Lat. of origin 37°40° N.
Massachusetts
Mainland 200,000 750,000
Tsland 500,000 0
Michigan GRS 20 ellipsoid used
without alteration.
North 8,000,000 n
Central 6,000,000 0 Long. of origin 84722 W_
South 4,000,000 ] Long. of origin 84°22' W.
Minnesota, all 800,000 100,000
Montana 600,000 0 standard parallels, 45°00
(single zone) and 49°00° N.

Long. of orgin 109°30° W,
Lat. of origin 44715 N.
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Standzrd parallels, 40°00' and

Long, of erigin 100°00° W,
Lat. of origin 39°50° N.

Lat. of origin 40°10° N.

{Two previows zones identical
except for r and ¥ of origin.)
Standard parallels,

32°%30" and 34°50° N.

Long. of origin 81°00° W.
Lat. of origin 31°50° N.

Lat. of origin 24°20¢ N,

Central meridian 98°30' W.

376
Lambert Conformal Conic projection
Coprdinatea of prigin (meters)
Zone 4 i
Nebraska 500,000 ]
(single zone) 43°00r N.
New York
Long Island 300,000 0
North Carolina 608,621.22 0
North Dakota, all 800,000 0
Ohio, 2l 500,000 0
Oklahoma, &l 600,000 0
Oregon
North 2,500,000 0
South 1,500,000 a
Pennsylvania, all 600,000 0
Puerto Rieo and
Virgin Islands 200,000 200,000
South Carolina 609 600 4
(sihgle zone)
Sputh Dakaota, all 600,000 a
Tennessee 600,000 0
Texas
North 200,000 1,000,000
North Central 600,000 2,000,000
Central 700,000 3,000,000
South Central 600,000 4,000,000
South 200,000 3,000,000
Citah
Narth 300,000 1,000,000
Central 200,000 2,000,000
South 500,000 3,000,000
Virginia
North 3,500,000 2,000,000
South 3,500,000 1,000,000
Washington, all 500,000 1]
West Virginia, all 600,000 0
Wisconsin, all 600,000 0

wOTE: All these gystems are based on the GRS 80 allipsoid.
1For the International foot, 1 ina2.54 ¢m, or 1 fre30.48 cm,
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Coasl Survey . 126
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cransformatlon . . . 3l a2
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