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Preface

An inertially moving observer in the flat spacetime of special relativity has a natural
choice of coordinates adapted to her worldline which makes things look simpler than
they would for any other choice. This is ultimately because all our field theories of
physics which govern whatever is being measured and whatever is being used to
measure them have the Lorentz symmetry.

Likewise for a freely falling observer in any curved spacetime of general relativ-
ity, certain coordinates adapted to that worldline will make things look simpler than
any other coordinates, at least to a good approximation, this time because, when we
carry our field theories of physics over from their flat spacetime formulation to the
curved spacetime, we do this in principle in such a way that those theories have local
Lorentz symmetry, and precisely so that freely falling observers will be privileged
in this way.

All this is based on the assumption that the relativity theories are good theories,
and that we should build our field theories of matter in this way. But what happens
for an accelerating observer in a flat spacetime, or an observer who is not freely
falling in a curved spacetime? Is there any natural choice of coordinate frame for
such a person, relative to which things look simpler?

It has always surprised me the confidence with which quantities expressed rela-
tive to non-inertial coordinate frames are interpreted physically as though we were
just trying to understand those quantities using inertial coordinate systems. And the
way certain frames are clearly presented as though they were somehow the ‘natu-
ral’ frame to use, but with no attempt to justify this presumption, and in particular
without any reference to the operational procedures that might be adopted by accel-
erating observers to carry out their measurements.

After all, general relativity (GR) reminds us that coordinates are just coordinates.
Of course, that does not mean that it is not useful to describe coordinate frames that
are somehow adapted to the motion of an accelerating observer. And indeed this
book is intended as a didactic introduction to such coordinate systems, not to men-
tion non-holonomic frames such as tetrad fields and a lot of related mathematical
machinery for describing the motion of observers or continuous fluids in the context
of the relativity theories.
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But the tone is critical throughout, particularly with regard to the ubiquitous no-
tion of observers. The real target of the book, particularly in the later chapters which
exemplify some of the problems, is the interface between the mathematical theory
and the real world of measurements and what we like to think of as physical under-
standing.

This is a book for the undergraduate, or indeed anyone, who has been through
a first course on general relativity and found some of the claims hard to integrate
into their world picture. It is for someone who is left wondering sometimes whether
there is not perhaps some problem of careless wording or even a real problem of
physical understanding, since the two often go together. And it is for the kind of
person whose interest in physics does not stop at the elegant formulation but really
wants to know what the underlying logic might be, or why it might work in practice.
Only a superficial acquaintance with general relativity is assumed.

Chapter 11 summarises the long-discussed question of whether stationary elec-
tric charges in static spacetimes can radiate EM energy, the subject of a book pub-
lished in 2008 [30]. The chapter itself is basically a transcript of a talk given in
Bad Honnef (Germany) at the conference Problems and Developments of Classical
Electrodynamics, sponsored by the Heraeus Foundation in 2011. It was preparation
for this talk and associated investigation of the Unruh effect (discussed in Chap. 14)
which inspired the present book.

The two problems are related. They both consider Rindler observers in flat space-
time. These are people with eternal uniform acceleration in a straight line, who
happen to be mathematically identical to freely falling people in what is usually
considered to be a static homogeneous gravitational field. And it was the apparently
unquestioning assumption of what they would take to be a natural coordinate frame,
and equally uncritical assumption of the way they would interpret mathematical ob-
jects expressed relative to this frame, that spurred the investigations described here.

The book discusses uniform acceleration and incorporates a recent generalisation
by Friedman (who was at the Bad Honnef meeting) and Scarr, so there are still de-
velopments in this area. These authors address the matter of relating theory to reality
through their weak locality hypothesis, which was in turn inspired by Mashhoon’s
locality hypothesis, and all these things are part of an ongoing investigation. The
locality hypothesis encompasses what are sometimes known as the clock and ruler
hypotheses, also discussed at length in this book.

Chapter 6 attempts to extend Bell’s courageous paper How to teach special rel-
ativity [2] to the curved spacetime context, explaining the link with the clock and
ruler hypotheses and the idea recently promoted by Brown [7] that the metric field
in general relativity ultimately gets its meaning from dynamical considerations re-
garding the kind of equipment we use to measure lengths and times. The view taken
in this book is that the dynamical perspective on relativity theory championed by
Brown and Pooley [6–9] is a useful addition to our understanding of these theories.
This view is taken further in Chap. 9.

The ideas in [32], which are old ideas but throw some light on modern physics,
in particular particle physics, are reviewed in Chap. 8. The content of this chapter
was presented at a meeting in Munich entitled Physics, Maths, and Philosophy of
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Nature, from 28 to 30 June 2011, to celebrate the sixtieth birthday of Detlef Dürr.
That prepares the ground for Chap. 9, which discusses dynamical explanations for
relativistic effects such as the velocity dependence of a particle’s resistance to ac-
celeration, as gauged by its inertial mass, and the contribution of binding energy
to inertial effects in bound state particles, just as Brown and Pooley advocate dy-
namical explanations for relativistic length contraction and time dilation. However,
the position in this book is not the constructivist one criticised by Norton [44]. The
above arguments are just considered to provide further insight.

Acceleration is really the underlying theme of the book. Hence, the discussion in
Chaps. 8–10 which describe the link between the self-force ideas advocated in [32]
and the ongoing problem of mass renormalisation in quantum field theory (QFT),
a problem intimately related to the phenomenon of acceleration. At the same time,
Chap. 10 illustrates the mathematical machinery introduced earlier on.

The point of all this is just to show that these issues are still evolving and still
relevant to teaching and research in physics.
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Chapter 1
Introduction and Guide

There are two aspects to this book. One is a rather general description of frames
of reference that might be adopted by observers with various kinds of worldline.
This part is intended to be didactic, although not in a moralizing sense. The other
exemplifies and discusses the physical interpretation of quantities expressed relative
to such frames, and the interface between the theories of relativity and the real world
of observation. This part is intended to be critical, even moralizing.

Both flat and curved spacetimes are discussed, but a lot of the book is about
frames that might be used by accelerating observers of various kinds in flat space-
time. It is sometimes said that special relativity (SR) has nothing to say about accel-
eration because it deals only in Lorentz transformations between inertial frames,
while accelerating observers are not supposed to use inertial frames to describe
their environment. These more general observers are supposed to use what are often
called accelerating frames.

As a matter of fact, something happens in the transition from a Newtonian to
an Einsteinian world view that messes up this notion of accelerating frame. In the
Newtonian world, time was the same for everyone, and any observer, however he
was moving, could carry along a rigid piece of spacetime that did not deform in
any way, and was not subject to any kind of mixing between the space and time
dimensions. Things were very simple in the Newtonian world, and this simple world
view continues to serves as an approximation under the right circumstances.

In special relativity, there are still natural frames of reference for observers
moving at constant velocities relative to any inertial frame, usually called inertial
observers. (One should perhaps say inertially moving observers, or perhaps non-
accelerating observers.) These frames exist because all our field theories of phys-
ical phenomena have a symmetry associated with them. In fact, they are Lorentz
symmetric, i.e., they look the same in some sense when formulated relative to any
inertial frame. Put another way, inertial frames are the ones relative to which our
field theories take on their simplest form.

But in special relativity, as in general relativity (GR), there are no acceleration
symmetries. It may be that our field theories should be acceleration symmetric in
some sense, but if so, we have not discovered that yet. As a consequence, there

1
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are no natural frames for accelerating observers in SR, or indeed in GR. When an
observer is accelerating and wants to identify a set of coordinates relative to which
her worldline is just the time coordinate axis, there is no general choice that will
make our field theories look especially simple.

Acceleration seems to raise another problem for people who are actually acceler-
ating when they make measurements, due to the very same fact that our fundamen-
tal theories of matter have no acceleration symmetry in the way they have constant
velocity (Lorentz) symmetry. The point is that two different detectors designed to
measure the same physical quantity will always deliver the same value of that physi-
cal quantity when moving inertially under the same physical conditions, but they are
unlikely to do so when accelerating in any way under the same physical conditions.

These issues are carried over wholesale to the curved spacetime of general rela-
tivity. In the usual formulation of GR, for any selected event, one can always find
a locally inertial frame in which the metric takes the Minkowski form at that event
and changes only very slowly as one moves away from that event, a situation re-
ferred to in this book as the weak equivalence principle (WEP). Our theories of
non-gravitational physical phenomena are then shipped into the curved spacetime
context by saying that they must look roughly as they do in flat spacetime when
expressed relative to such locally inertial frames. We refer to this ploy as the strong
equivalence principle (SEP). This idea can be made precise in different ways, al-
though one stands out for its simplicity and is generally the one chosen. SEP should
be thought of as a bold hypothesis about how to do non-gravitational physics in the
curved spacetime context.

So for inertially moving, i.e., non-accelerating observers, there is a natural choice
of frame virtually by decree, the decree being SEP, which makes our field theories
look the same, and indeed makes them look their simplest, at least to a very good
approximation. These observers are identified with ones who are freely falling, i.e.,
not themselves subject to any non-gravitational effects. They follow geodesics of
the spacetime to a good approximation. They benefit from the fact that our field
theories of non-gravitational physics are locally Lorentz symmetric in GR.

But when the observer in the curved spacetime is accelerating in some way,
which now means that she is being pushed off her free fall geodesic by some non-
gravitational effect, there is no longer any natural choice of frame for this person,
for exactly the same reason as in flat spacetime. Just as the naturalness of the locally
inertial frame is shipped into GR by SEP for freely falling observers, so the lack of
any natural frame is shipped into GR by SEP for accelerating observers, by decree
as it were. Our field theories of physics as they stand have no acceleration symmetry.

And once again, acceleration raises another problem for people who are actually
accelerating when they make measurements, due to the very same fact that our fun-
damental theories of matter have no acceleration symmetry in the way they have
local Lorentz symmetry. The point is the same: if our theories are right, two dif-
ferent detectors designed to measure the same physical quantity will always deliver
the same value of that physical quantity when in free fall under the same physical
conditions, but they are unlikely to do so when accelerating in any way under the
same physical conditions.
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So does special relativity have anything to say about acceleration? And does gen-
eral relativity have anything more to say about acceleration than special relativity?
As we shall see there is nothing to stop us adapting coordinates in some highly
convenient ways to the worldlines of accelerating observers in flat spacetime. But
some would say, on the basis of a vaguely stated, or simply unstated, version of ‘the’
equivalence principle, that passage to an accelerating frame is somehow equivalent
to introducing a gravitational field and hence brings us under the jurisdiction of
general relativity.

Such claims are never spelt out very clearly because they are unfounded. We
shall argue that this is a vestige of the Newtonian world view that is completely su-
perseded by the Einsteinian one in GR. Further, we shall suggest that nothing more
is gained in our understanding of accelerating observers in GR. All the problems of
the accelerating observer and how she should describe and understand physical phe-
nomena are carried over unchanged from flat to curved spacetimes. In this book we
shall consider special relativity as a special case of general relativity, viewing spe-
cial relativity as general relativity with no gravitational effects, i.e., with no matter
or energy anywhere, and saying of course that special relativity treats gravity very
differently when there is any gravity.

There are always two aspects of acceleration:

• Accelerating objects.
• Accelerating observers who would like to describe what they measure.

So far we have been referring rather to the second of these. What about the first? Of
course, one can perfectly well consider accelerating test particles in SR, as in GR,
but if some process is occurring in the particle, e.g., an electron orbiting a central
nucleus, we do not know a priori whether that process is going just as it would for
an instantaneously comoving inertial particle of the same kind, insofar as the two
processes could be compared.

It seems unlikely, but a detailed calculation with the relevant theories would al-
low one to estimate the discrepancy, assuming those theories to be correct, or good
approximations. This will be one of the themes later in the book. Presumably such
calculations would show the discrepancy to be very small for most devices we use
as clocks, for example, and the scale of accuracy on which no physical process fits
with the theoretical proper time associated with the given worldline would be the
one where we would have to admit that our relativity theory was beginning to fail.

This also brings us back to the accelerating observer who is using the clock just
mentioned. If an observer is accelerating in a flat spacetime, what coordinates would
this observer set up? When the acceleration is uniform, everyone seems to use the
semi-Euclidean (or Rindler) coordinates described in Sects. 2.2 and 2.3, as though
there were something special about them. Of course, the observer remains at the
spatial origin of those coordinates, the time coordinate is the proper time of the ob-
server, and other obvious things like that. But are those the coordinates the observer
would naturally set up? If we are thinking about using clocks and rulers to set them
up in a real world, it would seem that we do not actually know. The clock and ruler
hypotheses described in Chaps. 5 and 6 merely assert that they would be in that
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context. Whether our actual physical clocks and rulers would fit the bill is another
matter.

But would it change anything if we were working with GR in a curved spacetime
here? Of course, there are nice coordinates for any timelike worldline, in which the
worldline remains at the spatial origin and the time coordinate is the proper time,
and so on, as explained in Chap. 3. But are those the coordinates that an observer
following that worldline would naturally set up using clocks and rulers, or light sig-
nals? It would seem that we are in exactly the same situation as in the last paragraph.

The whole of Chap. 2 is about coordinate frames adapted to the motion of ob-
servers with various timelike worldlines in a flat spacetime, i.e., without gravity.
They are adapted to these worldlines in the sense that the worldline σ(τ) of the
observer satisfies the equations

x0 = τ , xi = 0 , i = 1, 2, 3 ,

in the associated coordinate system, where τ is the proper time along the worldline.
Thus a particle is at rest at the origin of its associated frame, and the coordinate
time x0 = t of the associated coordinate system agrees with the proper time τ of the
particle along its worldline.

We begin by considering inertial worldlines, then an arbitrary accelerating world-
line. We use the convention that a Greek index runs over {0,1,2,3}, while a Latin
index runs over {1,2,3}, and try to stick to this throughout the book. Likewise,
in Chap. 2, we adopt the convention that timelike vectors have positive length, but
elsewhere these conventions are necessarily altered when the discussion aims specif-
ically at contributions to the literature. Since we must all consult the literature, it is
good practice to be flexible about the conventions.

Section 2.2 is a somewhat qualitative introduction to the construction of semi-
Euclidean coordinate frames adapted to not necessarily inertial worldlines. Then
Sect. 2.3 provides a much more explicit mathematical construction based on the
unusual account due to DeWitt in [14]. We describe in detail the notions of proper
metric, rigidity, and Fermi–Walker transport which are relevant to these frames and
obtain the corresponding form of the Minkowski metric and flat spacetime connec-
tion, noting that the latter encodes the acceleration of the observer worldline.

Section 2.4 is about a specific kind of accelerating worldline which is said to be
uniformly accelerating. This idea has recently been generalised in a rather elegant
way from uniform acceleration in a straight line (translational uniform acceleration
TUA) to a whole class of other interesting kinds of motion, including circular motion
at constant angular velocity [23]. Once again we set up semi-Euclidean coordinate
systems and discuss rigidity.

Section 2.5 discusses velocity transformations for observed objects in an arbi-
trary semi-Euclidean frame, and Sect. 2.6 the four-velocity of objects sitting at fixed
space coordinates in such frames. Section 2.7 does the same for accelerations of
observed objects but only when the observer worldline is uniformly accelerating in
the generalised sense.
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As mentioned above, the semi-Euclidean coordinate frames are more difficult
to understand physically than accelerating frames in a Newtonian world. Indeed,
the very name of accelerating frame loses something of its attraction because, even
though the geometry induced on the hyperplanes of simultaneity of these frames
from the Minkowski metric is in fact Euclidean, justifying the name semi-Euclidean
frame, objects sitting at fixed space coordinates all have different accelerations to
the observer who sets those coordinates up. Unless of course the latter is moving
inertially.

After a short summary of all the results concerning SE coordinate frames in
Sect. 2.8, we pay specific attention to the case of translational uniform accelera-
tion in Sect. 2.9. This is quite often mentioned in the literature, because the SE
coordinates and associated form of the Minkowski metric are often taken to model
a static homogeneous gravitational field (SHGF). This kind of frame is also crucial
in discussions of the radiation problem, which asks whether uniformly accelerating
charged particles radiate electromagnetic energy, and the Unruh effect, which claims
that the quantum vacuum will feel warm if one accelerates uniformly through it.
Section 2.10 exemplifies generalised uniform acceleration with the simple example
of uniform circular motion.

Section 2.11 treats the case of an observer with arbitrary circular motion, i.e.,
moving in a circle but with possibly changing angular speed. We consider two dif-
ferent SE coordinate systems adapted to this motion, one that is not rigid unless
the angular speed is constant in Sects. 2.11.1, 2.11.2, and 2.11.5, and a rigid one
in Sect. 2.11.3. The role of the acceleration matrix is reviewed in Sect. 2.11.4 and
the component forms of the Minkowski metric for the two coordinate systems are
obtained in Sects. 2.11.6 and 2.11.7.

The tone is critical. It is very easy to generate a lot of mathematics in relativity
theories, even when the spacetime is flat! So for the sake of form, we do indeed
generate plenty of mathematics. The reader should keep asking what it is all about,
especially when faced with claims that this or that choice of coordinates is somehow
natural. It should be borne in mind that there are no natural choices of coordinates
for accelerating observers, unless we somehow know what they would naturally
measure. But we do not.

In order to know what they would naturally measure, we would need to spell out
operational procedures for measuring lengths and times, say. But it is quite obvious
that the results will depend on the acceleration of the observer and on the selected
operational procedure, precisely because there are no acceleration symmetries in
our field theories of matter. The situation is quite different for inertially moving
observers, precisely because our field theories of matter are Lorentz symmetric.
Of course, it could be that our field theories of matter should actually have some
kind of acceleration symmetry that we have not yet discovered, although that seems
unlikely.

Apart from illustrating the different possibilities that exist for setting up SE co-
ordinate systems even in a relatively simple situation such as circular motion, the
results of this section are used later to discuss Mashhoon’s locality hypothesis (see
Chap. 7). He illustrates his idea by describing a length assessment that might be
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made by an observer in circular motion. We describe another way the length might
be assessed and compare the ‘naturalness’ of the two. More about that in a moment.

Section 2.12 discusses some rather tedious problems that arise with all SE co-
ordinate systems, unless the observer who sets them up is moving inertially. These
problems are illustrated for the case of circular motion. The most interesting of them
is the intersection of hyperplanes of simultaneity (HOS) of the observer when one
moves too far from the observer worldline. This kind of problem is a pure prod-
uct of relativity theory. The problem is that the observer may consider herself to be
simultaneous with a given event at two different values of her proper time.

Here again a critical attitude is worthwhile. Simultaneity is a somewhat arbitrary
matter for accelerating observers. In the standard construction of SE coordinate sys-
tems, the observer borrows the hyperplane of simultaneity of an instantaneously co-
moving inertial observer. In curved spacetime, things become even more arbitrary
as the physical notion of simultaneity is phased out altogether. Observers can at best
take spacelike hypersurfaces orthogonal to their worldline to specify simultaneous
events, but there will be lots of these hypersurfaces.

Another problem, or pseudoproblem, is that the (00) component of the semi-
Euclidean form of the Minkowski metric may go to zero in some regions off the
observer worldline. A completely general analysis of the region where g00 = 0 is
given in Sect. 2.13. Outside the surface g00 = 0, this metric component may also go
negative, suggesting that what was previously a time coordinate may have become a
space coordinate. There is no mathematical problem with that, because coordinates
are just coordinates, but it does mean that the physical interpretation must change. In
particular, it means that observers can no longer remain at fixed values of what were
intended to be the space coordinates. The situation is exemplified for an observer
with circular motion.

As mentioned above, Chap. 3 discusses the possibilities for adapted coordi-
nate frames in general relativity, dealing first with normal coordinates at an event
(Sect. 3.1). Here we introduce the exponential map from the tangent space at an
event to the manifold and basically show that a suitable choice of coordinates can
reduce the metric to the Minkowski form at the chosen event and at the same time
make all the connection coefficients zero there (but only there, in general), provided
that the spacetime is torsion free. This bears out the mathematical counterpart of the
‘principle’ referred to as the weak equivalence principle in this book, showing how
it is in fact built into the very fabric of the theory. It only remains to identify what
such coordinates would refer to in the real world (see Sect. 6.5).

Section 3.2 shows how far one can generalise the notion of semi-Euclidean frame
to curved spacetimes. Starting with an arbitrary worldline, the result is a normal
frame adapted to that worldline with a whole string of nice properties, although not
quite as many as could be obtained in a flat spacetime. As in the flat spacetime case,
the connection coefficients cannot all be made to vanish on the observer worldline
(Sect. 3.2.3). They encode its four-acceleration and also the rotation of the space
triad along the worldline, which can be chosen rather arbitrarily for the purposes
of the construction. The notion of Fermi–Walker (FW) transport is introduced to
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reduce that rotation to a minimum and hence get more of the connection coefficients
equal to zero along the worldline (Sect. 3.2.4).

Section 3.3 shows what happens when the observer is in free fall, whence her
worldline is a geodesic. The connection coefficients can then (and only then) be
made to vanish right along the worldline. This kind of frame is called a locally
inertial frame. Its theoretical existence is built into standard GR in the case where
the spacetime is torsion free. What it corresponds to physically is another matter.
How would we set up such coordinates in the real world?

Not all frames in relativity theory need be coordinate (or holonomic) frames.
Chapter 4 is about more general frames, introducing the Lie bracket and structure
coefficients for such a frame (Sect. 4.1), then discussing the connection and the
torsion tensor (Sect. 4.2).

Section 4.3 discusses the tetrad formalism and congruences of timelike world-
lines in a general curved spacetime, introducing the notions of expansion and vor-
ticity, vorticity-free congruences, and stationary and static spacetimes. The link be-
tween expansion and rigid motions is established with reference to the rate of strain
tensor for the congruence. Physically, this section is about the motion of continuous
media with arbitrary motion. Section 4.4 applies some of the ideas to the case of
a conservative continuous medium and derivation of its energy–momentum tensor,
through which it will source its own gravitational effects, in particular using a label
coordinate system introduced by DeWitt [14].

Chapter 5 discusses what Friedman and Scarr refer to as the weak locality hy-
pothesis (WLH) [23]. These authors were concerned with uniformly accelerating
observers in flat spacetime, in their generalised sense, and WLH refers to the rela-
tionship between the SE coordinate frames such observers might set up and lengths
and times that they would measure physically. The prospects for this ‘hypothesis’
are discussed critically and the connection is made with the clock and ruler ‘hy-
potheses’ encountered in the literature. Scare quotes here warn the reader that there
is some debate over the status of these statements. This section contains a brief dis-
cussion of how infinitesimal proper distances might be measured using light signals.

Chapter 6 reconsiders the clock and ruler hypotheses from another angle, with
reference to the famous, and for some notorious, paper entitled How to Teach Spe-
cial Relativity by Bell [2]. As part of this section, we introduce the notion of a static
homogeneous gravitational field, which is usually taken to have the same metric
components as would be adopted by a translationally uniformly accelerating ob-
server using the standard SE coordinate frame in a flat spacetime (see Sect. 6.3).

The considerations in Chap. 6 lead back, in Sect. 6.5, to the problem of linking
theory to measurement and interpreting the metric field in general relativity. Chap-
ter 7 considers Mashhoon’s locality hypothesis (LH), which inspired WLH, con-
sidering length measurements that might be made by rotating observers. As usual,
the tone is critical. How should proper length be defined? What would naturally be
measured? Do we actually know?

Although there seems to be a suggestion sometimes that LH is a fundamental
principle of some kind, a standpoint that is opposed here, Mashhoon defends the
following idea that is strongly supported here: if one does have an operational de-
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scription of the way some measurements are being made by an accelerating observer
in any specific situation, our theories of relativity together with any relevant theo-
ries of non-gravitational physics that are shipped into the curved spacetime context
using the strong equivalence principle will be able to estimate the error in the ob-
server’s assuming that she is using an inertial coordinate frame. That this is indeed
Mashhoon’s main agenda is borne out by the fact that he cites examples of spe-
cific calculations to estimate such errors. Naturally, this does assume that all theory
brought in here, such as the relativity theory itself, is good theory.

Chapter 8 introduces a general theme that is closely related to the phenomenon
of acceleration and prepares the ground for Chaps. 9 and 10: spatially extended
charge distributions exert forces on themselves when accelerated. This is a synopsis
of [32]. It ends with a circular but nevertheless instructive proof of the equality of
inertial mass and passive gravitational mass in general relativity theory, and an in-
depth investigation of what is usually referred to as the geodesic principle, which
states that freely falling test particles will follow geodesics. The global aim here is
to investigate the nature of inertia itself, since some have claimed [6] that it might
be a straight consequence of Einstein’s equations for the curvature of spacetime, a
thesis that is opposed here.

Chapter 9 is concerned with the undying debate about dynamical explanations for
relativistic effects such as length contraction, time dilation, the velocity dependence
of a particle’s resistance to acceleration, and the contribution of binding energy to
inertial effects in bound state particles. The claim here is that such explanations do
give some physical insight, and are of course logically consistent with the usual
geometrical or other explanations.

Chapter 10 has two aims. One is to illustrate a practical application of rigidity
assumptions in electromagnetic self-force calculations, in particular using the ear-
lier discussion of label coordinate systems and Fermi–Walker transport. The other
is to show the relevance of acceleration to the problem of classical mass renormal-
isation, as first revealed by Dirac in 1938 [16]. This section extends what was said
in Chap. 8, but a full discussion of this issue can be found in [32].

Chapter 11 is concerned with the radiation problem, discussed in the literature for
over 100 years now. Several problems are tangled up together, but they all concern
the way we interpret physical quantities expressed relative to non-inertial reference
frames: Do uniformly accelerating charged particles in flat spacetime radiate EM
energy? Do ‘stationary’ charges in static homogeneous gravitational fields, or more
generally in static gravitational fields, radiate EM energy? The scare quotes warn the
reader that stationarity can be interpreted in different ways. Regarding the second
question, we are forced to ask what we mean by ‘the’ equivalence principle.

The notion of Killing vector field comes to the fore here (Sect. 11.6). It is com-
mon practice to use Killing vector fields to construct conserved vector fields in con-
junction with an energy–momentum tensor, e.g., the energy–momentum tensor for
some EM fields. This provides a redefinition of energy for accelerating observers.
Of course, energy is a frame-dependent concept in the flat spacetime of special
relativity. We know how to transform the energy of a thing from inertial frame to
another by carrying out a Lorentz transformation of an energy–momentum four-
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vector, and this delivers a different energy for the thing in each inertial frame. But
how should we transform it, or redefine it, in non-inertial frames? How should an
accelerating observer define energy? What energy would be measured by an ac-
celerating observer using standard techniques? As a vector, an energy–momentum
four-vector can be represented relative to any coordinate or other frame, but here we
are suggesting a different definition which favours the idea that the relevant quan-
tity should be a conserved quantity. What is then the physical significance of such a
pseudo-energy? This question never seems to be actively addressed.

Chapter 12 picks up on the notion of static homogeneous gravitational field
(SHGF) and the idea that the flow of a timelike Killing vector field somehow spec-
ifies a state of rest in any curved spacetime that happens to have such a symmetry
of the metric. The claim here is always that the metric would ‘look the same’ to
someone following such a flow curve, because the Lie derivative of the metric is
zero along such a curve. This provides a kind of geometric notion of being at rest
which is questioned here.

Chapter 13 examines the possibilities for describing the electromagnetic fields
generated by a charged particle with various kinds of motion in flat spacetime, but
using tetrad frames rather than coordinate frames. The subject is a recent suggestion
by Maluf and Ulhoa [34] whereby they claim to show that a uniformly accelerating
charged particle will radiate EM energy by expressing the Faraday tensor relative
to such a tetrad field. The problem is that one can adapt many different tetrad fields
to such a worldline and the EM fields will look different mathematically depend-
ing on which is chosen. This does not help in any way with the problem of physical
interpretation because it does not try to relate operational descriptions of actual mea-
surements in the real world to the mathematical machinery.

The last chapter is about the Unruh effect, giving an overview of the aspects rel-
evant to this book, viz., those aspects depending on an interpretation of some phys-
ical quantities when they are expressed relative to a non-inertial coordinate frame.
The view taken here is that these investigations reveal a very interesting aspect of
the quantum field theoretical (QFT) vacuum, but that they teach us something even
more interesting about the phenomenon of acceleration. And this QFT vacuum re-
sult so much discussed under the heading of the Unruh effect may well raise other
problems for understanding a physical scenario if we allow accelerating observers
to redefine things like energy. The Unruh–DeWitt detector (pointlike, with two en-
ergy levels, and interacting linearly with the field) will not excite when it moves
at constant velocity through the usual QFT vacuum (in flat spacetime), but it will
whenever it accelerates. The question there is whether it is useful to try to set up an
explanatory particle picture of that for an observer moving with the detector.

A very large part of the discussion about the Unruh effect aims to do just that.
However, it is only possible for a very small subset of accelerations, viz., eternal
uniform acceleration and circular motion at constant angular speed, precisely the
ones where the observer is following the flow line of a KVF. A lot of time and effort
is being expended on this kind of particle interpretation, so we ought to make sure
it is really worthwhile and not just a mathematician’s play area.
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In summary, a large part of the present book is intended to be didactic, introduc-
ing the mathematical machinery used to describe spacetime in the relativity theories.
So it should serve as a good mathematical introduction to all that. But it is all too
easy to generate mathematics in this context, and the other aim of the book is to con-
vince the reader that we need to take more care over interpreting that mathematics,
i.e., over relating the mathematics to real world observation, at least on the didactic
or metaphysical level, of saying what we are talking about.

So the mathematical theory given here comes with a warning: whenever an ob-
server is accelerating, and the fact is that we are always accelerating to some extent
when we make measurements, we should begin with an operational description of
the way we make those measurements and then see what approximations are ap-
propriate. The fact that we can define, or redefine, well known physical quantities
within the theory means nothing in itself.



Chapter 2
Adapted Frames in Special Relativity

We work here in the context of special relativity, which is to say, in a flat Minkowski
space. In such a space, there are inertial coordinate systems, defined by the vanishing
of the connection everywhere, and the diagonalisation of the metric into the form

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.1)

2.1 Inertial Reference Frames

An inertial frame is an inertial coordinate system adapted to a moving particle in
the sense that the particle worldline is the time axis and the time coordinate its
proper time. We now claim that there exists an inertial coordinate system adapted
to the particle with worldline σ(τ), parametrised by its proper time τ , if and only if
σ(τ) is a timelike geodesic. To see this from left to right, suppose there is such an
associated coordinate system. Then σ(τ) satisfies the equations

d2xµ

dτ2 = 0 ,

and we know that the connection coefficients are all zero in an inertial coordinate
system, so σ(τ) is a geodesic. The tangent to σ(τ) has the form (1, 0, 0, 0), so σ(τ)
is timelike.

To see the converse, suppose σ(τ) is a timelike geodesic. Then in an arbitrary
inertial system {yµ}, σ(τ) satisfies

d2yµ

dτ2 = 0 ,

11
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and so is described by an equation

yµ(τ) = aµ
τ +bµ ,

for some aµ and bµ . A linear transformation, in fact, a Poincaré transformation,
gives us an inertial system {xµ} in which σ(τ) satisfies

x0 = τ , xi = 0 , i = 1, 2, 3 .

Hence inertial frames can be associated only with particles performing inertial mo-
tion, that is, particles satisfying the equation of motion

d2xµ

dτ2 +Γ
µ

νσ

dxν

dτ

dxσ

dτ
= 0 ,

in a general coordinate system, where Γ is the connection. Note that we adopt the
view that Minkowski space is a genuine special case of general relativity, in the
sense that its generally covariant formulation is valid. In other words, we are not
working only in inertial frames, where the connection is zero. Indeed, we are about
to consider what an accelerating frame might look like.

2.2 Non-Inertial Reference Frames

In the four dimensional, generally covariant Newtonian spacetime described in [22],
it is shown how rigid Euclidean frames can be associated with non-inertial trajec-
tories. This is a well-known result, except that Friedman shows how Newtonian
spacetime can be described as a 4D space, and in a generally covariant way, which
indeed reveals the main difference with the special relativistic case, viz., the con-
nection and spatiotemporal metric can vary independently in the Newtonian world.
This is not so in Minkowski spacetime, and it is a consequence that, if a Euclidean
frame can be associated with a worldline, then that worldline must be inertial.

2.2.1 Construction

The best that can be done in Minkowski spacetime is to associate what we shall
call a semi-Euclidean (SE) frame with a given timelike, not necessarily geodesic,
worldline σ(τ). This is a coordinate system with the following properties:

1. Curves yi = constant (i = 1, 2, 3) are timelike, and any curve with y0 = constant
is spacelike.

2. y0 = τ along σ(τ).
3. (gµν) = diag(1,−1,−1,−1) along σ .
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τ1

τ2

τ3

y1
y2

y1
y2

y1
y2

t

HOS(τ1)

HOS(τ2)

HOS(τ3)

Fig. 2.1 Constructing a semi-Euclidean (SE) frame for an accelerating observer. View from an
inertial frame with time coordinate t. The curve is the observer worldline. Three hyperplanes of
simultaneity (HOS) are shown at three successive proper times τ1, τ2, and τ3 of the observer. These
hyperplanes of simultaneity are borrowed from the instantaneously comoving inertial observer, as
are the coordinates y1, y2, and y3 used to coordinatise them. Only two of the latter coordinates can
be shown in the spacetime diagram

4. y1, y2, y3 are Cartesian on every hypersurface y0 = constant, meaning that the
spatial distance between (y0, y1, y2, y3) and (y0, y1′, y2′, y3′) is√

(y1− y1′)2 +(y2− y2′)2 +(y3− y3′)2 .

5. σ(τ) satisfies yi = 0 for i = 1, 2, 3.

Such a coordinate system can be constructed by choosing, for each value of τ along
σ , an inertial system {xµ} whose origin coincides with σ(τ) and whose x0 axis
is tangent to σ at σ(τ) (see Fig. 2.1). We then assign each point on the spatial
hypersurface x0 = 0 the coordinates

y0 = τ , yi = xi , i = 1, 2, 3 .

Of course, the choice of successive inertial systems must be sufficiently smooth, so
that the curves yi = constant are suitably continuous and differentiable. More will
be said about this later. In the meantime, note how we have used the instantaneously
comoving inertial frames, and how the coordinates we adopt differ from the inertial
coordinates that these would give.
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We can see that property (3) on the above list, viz.,

(gµν) = diag(1,−1,−1,−1) along σ ,

follows necessarily from the other properties. Firstly, it is clear that we have

(gµν) =


g00 g01 g02 g03
g10 −1 0 0
g20 0 −1 0
g30 0 0 −1

 .

This is because, for any neighbouring points in the same plane of simultaneity as
some point on the worldline, their separation is just given by the metric in the inertial
coordinates of the instantaneously comoving frame for that point on the worldline.
But events which are also separated by some small difference in the proper times of
their associated planes of simultaneity are quite a different matter! The problem here
is that values of the metric on σ are also supposed to give lengths to neighbouring
points which may not be on σ .

However, we can see that, for each value of τ , any curve with y0 = constant in-
tersecting the worldline at σ(τ) will be orthogonal to σ there. The point is that any
such curve lies entirely within the hyperplane of simultaneity of the instantaneously
comoving inertial frame at σ(τ) by construction. We can see the orthogonality in
this frame, because g has the usual Minkowski form in this inertial frame, and its
time axis is tangent to σ at σ(τ). Finally, orthogonality is a property which is in-
dependent of coordinates, so we have orthogonality in semi-Euclidean coordinates
and g0 j = 0 for j = 1, 2, 3.

It remains only to show that g00 = 1 in the semi-Euclidean coordinates, but this
follows because

g00 = g(∂τ ,∂τ) = g(u,u) = 1 .

These arguments do of course use the other properties listed above for the SE coor-
dinate system.

2.2.2 General Considerations

For a non-inertial observer, the above semi-Euclidean frame can be well-defined
only on a finite neighbourhood of σ , for at finite distances from σ , the hypersurfaces
y0 = constant may well intersect one another. This situation is well illustrated by the
case of translational uniform acceleration discussed in detail in Sect. 2.9.

Apart from highlighting a major difference with the rigid Euclidean frames which
exist in Newtonian spacetime, this is a rather intriguing idea. It means that, following
the procedure described above, the accelerating observer will declare herself to be
simultaneous with a certain event at two distinct proper times along her worldline.
This illustrates the limited utility of the notion of simultaneity in relativistic theories.
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Null line

Observer speeding up
in the x direction

t

x

Null line

Observer slowing down
in the x direction

t

x

Null line Null line

Observer slows to a halt,
then starts moving in the
negative x direction

t

x

Fig. 2.2 Three different worldlines in a 2D spacetime

Note how the surfaces of simultaneity are defined in the semi-Euclidean frame
by the relations τ = constant, for various constants. This is not an operational def-
inition for the accelerating observer, for she merely borrows the findings of the
simultaneously comoving inertial observer. The everyday notion of simultaneity is
simply replaced by a temporal coordinate that happens to take equal values for two
different events.

Let us briefly consider regions where the SE coordinates become problematic,
because the construction process breaks down, viz., regions where there is no unique
point on the worldline of the observer such that this observer considers a given point
in those regions to be simultaneous. The existence of a point and its uniqueness are
both crucial, but let us just consider here exactly how the non-uniqueness problem
arises in three typical, indeed generic situations that refer to the simple case of one-
dimensional motion:

• A worldline curves down toward the null line in the right quadrant of the 2D
spacetime diagram, i.e., the observer is speeding up in the x direction (Fig. 2.2
top left).
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• A worldline curves up and away from the null line in the 2D spacetime diagram,
i.e., the observer is slowing down in the x direction (Fig. 2.2 top right).

• The worldline in the last example curves right over and curves down toward the
null line in the left quadrant of the 2D spacetime diagram, i.e., the observer slows
to a stop and then speeds up in the negative x direction (Fig. 2.2 bottom).

The hyperplane of simultaneity (HOS) of an observer at a given event on her world-
line is found as follows (see Fig. 2.3). We draw the relevant null line at the event,
i.e., the null line making the smallest angle with the worldline, and the tangent to
the worldline at the event. The latter is the instantaneous time axis for that observer.
Her HOS lies at the same angle from the null line but below it. We now have the
following observations:

• As the worldline curves down in the first case above, the HOS swings up, so
neighbouring HOSs on such a worldline would meet to the left of the worldline
in the spacetime diagram (see Fig. 2.3).

• As the worldline steepens in the second case above, the HOS swings down, so
neighbouring HOSs on such a worldline would meet to the right of the worldline
in the spacetime diagram.

• As the worldline curves right over and begins to curve down on the left in the
third case above, the intersections of HOSs will all occur to the right of the world-
line.

Null line

Null line

Tangent at σ(τ1)

Tangent at σ(τ2)

HOS at σ(τ1)

HOS at σ(τ2)

To intersection
τ1

τ2

α
α

β
β

Fig. 2.3 Construction of two hyperplanes of simultaneity (HOS) at different proper times τ1 and τ2
along the observer worldline in a 2D spacetime. At each proper time, the tangent to the worldline
lies at the same angle (α at τ1 and β at τ2) above the null line as the hyperplane of simultaneity
below it
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Note that, when there is some acceleration in the worldline, there will always be
intersection of HOSs somewhere, and it turns out that this intersection is always on
the opposite side of the worldline to its centre of curvature.

In the third case we consider an observer who changes direction. When this ob-
server has the same speed but in the opposite direction at two events on her world-
line, her HOSs will meet somewhere to the right if the change of speed is to the left,
and vice versa. In the case of motion in a circle of radius r, for example, as con-
sidered in Sect. 2.10, this happens all the time, although here we involve a second
space dimension, because the observer will have moved a distance 2r in that other
space direction between two velocity reversals. The consequences for the HOSs are
discussed in some detail there.

Another consideration here is clock synchronisation. Spatially separated clocks
at rest in a semi-Euclidean frame and synchronised at one time τ1, will not in general
remain synchronised at a second time τ2. The proper length of the worldline of a
clock at rest at one point in the frame between τ1 and τ2 will differ from the proper
length of the worldline of a clock at rest at a second point between those same two
SE coordinate times. Note again that we understand ‘at rest’ here to mean having
the same spatial coordinates in a succession of the simultaneously comoving inertial
frames. This idea will be made much more precise later on.

There is sometimes a suggestion or implication that clocks sitting at fixed space
coordinates in a semi-Euclidean frame are somehow accelerating with the observer,
but this is a presumption, for we do not know a priori what a physical object would
have to do to occupy such a sequence of events in spacetime. In any case, the dif-
ference with the rigid Euclidean frame of Newtonian spacetime is once again high-
lighted. This, too, will be investigated in what follows.

Another thing can go wrong when constructing the SE coordinate system in the
way described. It may be that for some events E there is no event on the observer
worldline such that the observer considers E to be simultaneous. This situation is
illustrated in Sect. 2.9.

2.2.3 SE Connection Coefficients

A general analysis of the connection coefficients can be made along σ . They will
not be zero unless σ is an inertial worldline. Recall how the four-velocity and four-
acceleration are defined in the general context of 4D spacetime manifolds. The four-
velocity is

uµ :=
dyµ

dτ
,

the components of the tangent vector Tσ to the worldline, if it is parametrised by the
proper time, and the four-acceleration is DTσ

Tσ = Duu, with components

aµ :=
d2yµ

dτ2 +Γ
µ

νσ

dyν

dτ

dyσ

dτ
. (2.2)



18 2 Adapted Frames in Special Relativity

Note that y0 = τ and yi = 0 for i = 1, 2, 3, describes the worldline in the semi-
Euclidean coordinates, so the four-velocity has components uµ = (1, 0, 0, 0) in the
{yµ} coordinate system.

The four-acceleration is a = (a0, a1, a2, a3) with a0 = 0, since u2 = 1 is constant
and this implies that u ·a = 0. However, the definition (2.2) gives

aµ = Γ
µ

00 ,

so we deduce immediately that

Γ
0

00 = 0 , Γ
i

00 = ai , i = 1, 2, 3 , (2.3)

this being true right along the observer worldline.
What can be said about the other connection coefficients along σ? If we consider

any spacelike geodesic ρ(s), with affine parameter s, lying within a hyperplane of
simultaneity y0 = constant, the curve ρ(s) must satisfy

d2yµ

ds2 = 0 , (2.4)

since y1, y2, y3 are supposed to be Cartesian. Actually, some care is needed to sus-
tain the logic of our arguments here. We have specified a way of constructing these
coordinates in Fig. 2.1. Showing that they are Cartesian is equivalent to showing that
the above formula holds! So, what we are about to deduce concerning the connec-
tion coefficients is exactly what we would need to show if we were to show that the
coefficients are Cartesian. We may either appeal to intuition, which is clearly risky
in this domain, or else provide some explicit formulas for the semi-Euclidean coor-
dinates. In fact we shall do the latter shortly. Returning to (2.4), the consequence for
the connection is that

Γ
µ

i j = 0 , µ = 0, 1, 2, 3, i = 1, 2, 3 . (2.5)

In contrast to (2.3), this result holds everywhere, for (2.4) can be applied to any
geodesic lying entirely within some plane of simultaneity y0 = constant, whether it
intersects σ or not.

Therefore the only nonzero connection components are Γ i
00 = ai, Γ i

0 j = Γ i
j0 for

i, j = 1, 2, 3, and Γ 0
i0 = Γ 0

0i for i, j = 1, 2, 3. To see what the remainder of these
represent, note that

Dug = 0 , (2.6)

since this is a coordinate-independent relation for any vector u, once we have started
out with a metric connection [see (4.26) on p. 160]. We apply it to the unit tangent
vector u, i.e., the four-velocity, at points along σ . Since

Dug = uµ gνσ ,µ −uµ
Γ

α
νµ gασ −uµ

Γ
α

σ µ gνα ,
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and since gνσ is constant along the worldline, whence

uµ gνσ ,µ = 0 ,

the relation (2.6) amounts to

Γ
α

ν0gασ +Γ
α

σ0gνα = 0 .

It then follows that
Γ

j
0i =−Γ

i
0 j , i, j = 1, 2, 3 ,

and
Γ

i
00 = Γ

0
0i , i = 1, 2, 3 ,

these results applying only on σ .
We can summarise our results for the connection on σ by

Γ
i

00 = Γ
0

0i = Γ
0

i0 = ai , i = 1, 2, 3 , (2.7)

Γ
µ

i j = 0 , µ = 0, 1, 2, 3, i = 1, 2, 3 , (2.8)

Γ
i

0 j = Γ
i
j0 = Ω

i
j , i, j = 1, 2, 3 , (2.9)

where Ω i
j is an antisymmetric rotation matrix. We shall see later that this matrix is

related to the choice of instantaneously comoving inertial frames used to construct
the SE coordinate system as we move along the worldline. If we obtain these instan-
taneously comoving inertial frames by Fermi–Walker transporting the coordinate
axes in the instantaneously comoving inertial frame chosen at some initial point on
the worldline, we can make this matrix equal to zero.

2.2.4 Viewing Free Particles

We can write down the equation of motion of a free particle on σ now, assuming
that it intersects the observer’s worldline, and only at the unique event at which it
coincides with the observer. We obtain

d2yi

dy02 +ai +2Ω
i
j

dy j

dy0 −2a j dy j

dy0
dyi

dy0 = 0 , (2.10)

where indices run over values 1, 2, 3. Before describing how this is derived, observe
that it contains a term ai which could be referred to as an inertial force, a term
proportional to the semi-Euclidean 3-velocity which corresponds to a Coriolis force,
and finally a relativistic correction. As mentioned at the end of the last section, we
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shall show that the Coriolis term can be removed by Fermi–Walker transporting the
coordinate axes along the worldline.

To establish (2.10), we start with the geodesic equation for i = 1, 2, 3,

d2yi

dτ ′2
+ai

(
dy0

dτ ′

)2

+2Ω
i
j

dy j

dτ ′
dy0

dτ ′
= 0 ,

where τ ′ is proper time along this geodesic. If we change parameter from the affine
parameter τ ′ to the non-affine parameter y0, we simplify the left-hand side here, but
the right-hand side is now

−d2y0

dτ ′2
dyi

dy0 /

(
dy0

dτ ′

)2

.

The zero component of the geodesic equation is

d2y0

dτ ′2
+Γ

0
µν

dyµ

dτ ′
dyν

dτ ′
= 0 ,

which gives, since Γ 0
00 = 0 = Γ 0

i j , for all i, j = 1,2,3,

d2y0

dτ ′2
=−2a j dy j

dτ ′
dy0

dτ ′
,

where j is summed from 1 to 3. The result follows.
Note finally that if the acceleration ai and the rotation Ω i

j are both zero, then the
semi-Euclidean frame becomes an inertial frame, and the law of motion takes the
familiar form

d2yi

dy02 = 0 .

2.2.5 Conclusion So Far

The above discussion is still rather qualitative. Despite the cogency of the argu-
ments, it would be satisfying to obtain more explicit expressions for the SE coordi-
nates, SE metric, and SE connection. This is what we shall now do.

2.3 Toward Explicit Construction of SE Coordinates

The discussion here was inspired by [14]. Imagine a situation with a main observer,
whose worldline is given, and other observers moving rigidly with this one in a sense
to be defined. The latter will eventually be sitting at fixed SE space coordinates, once
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we have set up this frame. We shall use the notation xµ(ξ ,τ) for the worldlines of
all these observers, where τ is their proper time and ξ = (ξ 1,ξ 2,ξ 3)∈R3 are labels
for the observers which will eventually become SE space coordinates.

The worldline of the main observer is thus denoted by xµ(0,τ), where τ is her
proper time and the ξ i are all zero, so that this observer will sit at the space origin
of the system, as required for an adapted coordinate system. The general idea in
this construction is to extend the four-velocity of the main observer to a tetrad along
this observer’s worldline by finding a spacelike triad ni(τ), i = 1,2,3, along the
worldline with the properties

ni ·n j =−δi j , ni ·u0 = 0 , u2
0 = 1 , (2.11)

where we use u0 to denote the observer 4-velocity here.
We now decree that the worldlines of all the other observers will be given by a

relation of the form
xµ(ξ ,τ) = xµ(0,σ)+ξ

ini
µ(σ) , (2.12)

where σ is a certain function of the ξ i and τ to be determined. It is important to
remember that, on the left of (2.12), τ is the proper time of the observer labelled
by ξ . Furthermore, as mentioned above, we shall aim to arrange things so that the
observers form a rigid assembly, in a sense to be specified shortly. This will be
achieved by laying down a requirement on the triad {ni}{i=1,2,3}.

To achieve a relation like (2.12), given τ and ξ , we must find the proper time
σ of the main observer ξ = 0 such that the point xµ(ξ ,τ) is simultaneous with the
event xµ(0,σ) in the instantaneous rest frame of the observer labelled by ξ = 0.
Assuming that a given event off the main observer worldline is simultaneous with
just one event on that worldline, the latter event will be defined by orthogonality of
the tangent to the main observer worldline there, i.e., its four-velocity there, and the
geodesic from that event on the main observer worldline to the given event off the
worldline. But that means that xµ(ξ ,τ)− xµ(0,σ) must be a linear combination of
the ni, and that is precisely what (2.12) states to be the case.

Note that problems begin to occur in the construction if several events on the
main observer worldline are simultaneous with the chosen xµ(ξ ,τ). This becomes
more probable as one moves away from the worldline of the main observer. In gen-
eral, this construction will only be possible over some neighbourhood of that world-
line. Yet another thing can go wrong: it may be that no event on the main observer
worldline is simultaneous with the chosen xµ(ξ ,τ). Both these things are exem-
plified in the case where the main observer has translational uniform acceleration,
discussed in detail in Sect. 2.9.

To determine the function σ(ξ i,τ), write

uµ = ẋµ(ξ ,τ) = (u µ

0 +ξ
iṅ µ

i )σ̇ ,

all arguments being suppressed in the final expression. Here and in what follows, it
is to be understood that dots over u0 and the ni denote differentiation with respect to
σ , while the dot over σ denotes differentiation with respect to τ .
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In order to proceed further, we must expand ṅi in terms of the orthonormal tetrad
u0,ni :

ṅ µ

i = a0iu
µ

0 +Ωi jn
µ

j . (2.13)

The coefficients a0i are determined, from the identity

ṅi ·u0 +ni · u̇0 = 0 ,

to be just the components of the absolute acceleration of the observer ξ = 0 in her
local rest frame:

a0i =−ni · u̇0 , (2.14)

and the identity
ṅi ·n j +ni · ṅ j = 0

tells us that Ωi j is antisymmetric:

Ωi j =−Ω ji .

We now have

uµ =
[(

1+ξ
ia0i
)
u µ

0 +ξ
i
Ωi jn

µ

j

]
σ̇ . (2.15)

But
1 = u2 =

[(
1+ξ

ia0i
)2−ξ

i
ξ

j
ΩikΩ jk

]
σ̇

2 ,

whence

σ̇ =
[(

1+ξ
ia0i
)2−ξ

i
ξ

j
ΩikΩ jk

]−1/2
. (2.16)

The right-hand side of this equation is a function solely of σ and the ξ i. Therefore
the equation may be integrated along each worldline ξ = constant, subject to the
boundary condition

σ(ξ ,0) = 0 ,

which ensures that zero proper time τ = 0 for any observer is simultaneous for
the main observer with zero proper time σ = 0 for the main observer. We shall, in
particular, have the necessary condition

σ(0,τ) = τ .

Note that the rigid set of observers must be confined to regions where(
1+ξ

ia0i
)2

> ξ
i
Ωikξ

j
Ω jk (≥ 0) , (2.17)

otherwise some of its component observers will be moving faster than light. The
parameters (ξ ,σ) are of course semi-Euclidean coordinates, a point to be developed
below (see Sect. 2.3.4).
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2.3.1 Proper Metric and Rigid Motions

We can now calculate a proper metric of the set of observers. Rather than the some-
what absurd idea of a rigidly moving set of observers, let us speak here of a rigidly
moving medium. The component particles of the medium are labeled by three pa-
rameters ξ i, i = 1,2,3, and the worldline of particle ξ is given by four functions
xµ(ξ ,τ), µ = 0,1,2,3, where τ is its proper time. In general relativity, the xµ may
be arbitrary coordinates in curved spacetime, but here we assume them to be stan-
dard coordinates of some inertial frame.

If ξ i +δξ i are the labels of a neighbouring particle, its worldline is given by the
functions

xµ(ξ +δξ ,τ) = xµ(ξ ,τ)+ xµ

,i(ξ ,τ)δξ
i , (2.18)

where the comma followed by a Latin index denotes partial differentiation with
respect to the corresponding ξ . Note that the quantity xµ

,i(ξ ,τ)δξ i, representing
the difference between the two sets of worldline functions, is formally a 4-vector,
being basically an infinitesimal coordinate difference. However, it is not generally
orthogonal to the worldline of ξ . In other words, it does not lie in the hyperplane of
simultaneity of either particle.

To get such a vector one applies the projection tensor onto the instantaneous
hyperplane of simultaneity:

Pµν := η
µν − ẋµ ẋν ,

where the dot denotes partial differentiation with respect to τ . The result is

δxµ := Pµ

ν xν
,i(ξ ,τ)δξ

i = xµ
,iδξ

i− ẋµ ẋν xν
,iδξ

i . (2.19)

We find that application of the projection tensor corresponds to a simple proper time
shift of amount

δτ =−ηµν ẋµ ẋν
,iδξ

i , (2.20)

so that
δxµ = xµ(ξ +δξ ,τ +δτ)− xµ(ξ ,τ) .

Indeed,
xµ(ξ +δξ ,τ +δτ) = xµ(ξ ,τ)+ xµ

,iδξ
i + ẋµ

δτ ,

and feeding in the proposed expression for δτ , we obtain

δxµ = xµ(ξ ,τ)+ xµ
,iδξ

i + ẋµ
δτ− xµ(ξ ,τ)

= xµ
,iδξ

i−ηνσ ẋν ẋσ
,iδξ

iẋµ ,

which is precisely δxµ as defined in (2.19).
What can we conclude from this analysis? The two particles ξ and ξ +δξ appear,

in the instantaneous rest frame of either, to be separated by a distance δs given by
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(δs)2 =−δx ·δx =−γi jδξ
i
δξ

j , (2.21)

where
γi j := Pµν xµ

,ix
ν
, j . (2.22)

This follows because

δx ·δx = Pµσ xσ
,iδξ

iPµ
ν xν

, jδξ
j ,

and

Pµσ Pµ
ν = (ηµσ − ẋµ ẋσ )(δ

µ
ν − ẋµ ẋν)

= ηνσ − ẋν ẋσ − ẋσ ẋν +(ẋµ ẋµ)ẋσ ẋν

= ηνσ − ẋν ẋσ = Pνσ ,

whence
δx ·δx = Pνσ xσ

,ixν
, jδξ

i
δξ

j = γi jδξ
i
δξ

j ,

for the given γi j, as claimed. We shall call the quantity γi j the proper metric of the
medium.

The point about γi j is that the two particles or observers labelled by ξ and ξ +δξ

appear in the instantaneous rest frame of either to be separated by a proper distance
δs as they would measure it given by

(δs)2 =−γi jδξ
i
δξ

j . (2.23)

We shall say that the set of particles or observers undergoes rigid motion if and only
if the proper metric is everywhere independent of τ . This is expressed by

γ̇i j = 0 . (2.24)

Under rigid motion, the instantaneous separation distance between any pair of
neighbouring observers is constant in time as they would see it in an instantaneously
comoving inertial frame. This kind of relativistic rigidity is also known as Born
rigidity.

2.3.2 Imposing Rigidity

Let us now return to the problem of a rigidly moving set of observers associated
with a principal observer with arbitrary motion. We have

ni ·u = Ωi jξ
j
σ̇ , (2.25)

by (2.15), and also
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xµ

,i = n µ

i +(u µ

0 +ξ
jṅ µ

j )σ,i = n µ

i +uµ
σ̇
−1

σ,i , (2.26)

uµ xµ

,i = Ωi jξ
j
σ̇ + σ̇

−1
σ,i ,

and then the proper metric γi j is given by

γi j = Pµν xµ

,ix
ν
, j

= −δi j +Ωikξ
k
σ, j +Ω jkξ

k
σ,i + σ̇

−2
σ,iσ, j

−
(
Ωikξ

k
σ̇ + σ̇

−1
σ,i
)(

Ω jlξ
l
σ̇ + σ̇

−1
σ, j
)

= −δi j− σ̇
2
ΩikΩ jlξ

k
ξ

l

= −δi j−
ΩikΩ jlξ

kξ l(
1+ξ ma0m

)2−ξ nξ rΩnsΩrs
, (2.27)

using the expression (2.16) for σ̇ .
From this expression we see that there are two ways in which the motion of the

set of observers can be rigid:

• All the Ωi j are zero.
• All the Ωi j and all the a0i are constants, independent of σ .

We shall see that case one leads to a semi-Euclidean coordinate system for an arbi-
trary timelike worldline in Minkowski spacetime. In the second case the motion is
one of a six-parameter family, with the Ωi j and the a0i as fixed parameters. These
special motions are sometimes called superhelical motions. They will be considered
in Sect. 2.4, and in particular Sect. 2.4.5.

But first, briefly, what is the point in requiring rigidity for the observer ensem-
ble? It just means that any given observer can use a rigid ruler to indicate spatial
lengths, i.e., any ruler that satisfies what is sometimes called the ruler hypothesis.
Whatever its motion, such a ruler is always instantaneously ready to measure length
as specified in an instantaneously comoving inertial frame.

Geometry is of course Euclidean in any hyperplane of simultaneity of any ob-
server, by construction, but here we shall find that different observers share hyper-
planes of simultaneity. However, we shall find that they all have different rest frame
accelerations, whence the coordinate time that the main observer attributes to a given
event for another observer will not generally coincide with the latter’s proper time.

2.3.3 Fermi–Walker Transport

Saying that the Ωi j are all zero amounts to saying that the triad n µ

i is Fermi–Walker
transported along the worldline of the particle ξ = 0. Let us see briefly what this
means. If u0(σ) is the 4-velocity of the worldline, the equation for Fermi–Walker
transport of a contravector Aµ along the worldline is
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Ȧ =−(A · u̇0)u0 +(A ·u0)u̇0 . (2.28)

This preserves inner products, i.e., if A and B are FW transported along the world-
line, then A ·B is constant along the worldline:

d
dτ

(A ·B) = Ȧ ·B+A · Ḃ

=
[
− (A · u̇0)u0 +(A ·u0)u̇0

]
·B+A ·

[
− (B · u̇0)u0 +(B ·u0)u̇0

]
= 0 .

Furthermore, the tangent vector u0 to the worldline is itself FW transported along the
worldline, and if the worldline is a spacetime geodesic (a straight line in Minkowski
coordinates), then FW transport is the same as parallel transport.

Now recall that the Ωi j were defined by

ṅ µ

i = a0iu
µ

0 +Ωi jn
µ

j . (2.29)

When Ωi j = 0, this becomes
ṅ µ

i = a0iu
µ

0 , (2.30)

and this is indeed the Fermi–Walker transport equation for n µ

i , found by inserting
A = ni into (2.28), because we insist on ni · u0 = 0 and we have a0i = −ni · u̇0 [see
(2.14) on p. 22].

In fact, the orientation in spacetime of the local rest frame triad n µ

i is not kept
constant along a worldline here unless that worldline is straight (we are referring to
flat spacetimes here). Under Fermi–Walker transport, however, the triad remains as
constantly oriented, or as rotationless, as possible, in a certain sense: at each instant
of time σ , the triad is subjected to a pure Lorentz boost without rotation in the in-
stantaneous hyperplane of simultaneity. On a closed orbit, this process can still lead
to spatial rotation of axes upon return to the same space coordinates, an effect known
as Thomas precession. For a general non-Fermi–Walker transported triad, the Ωi j
are the components of the angular velocity tensor that describes the instantaneous
rate of rotation of the triad in the instantaneous hyperplane of simultaneity.

Of course, given any triad n µ

i at one point on the worldline, it is always possible
to Fermi–Walker transport it to other points by solving (2.28). We are then saying
that motions that can be given by (2.12) on p. 21, viz.,

xµ(ξ ,τ) = xµ(0,σ)+ξ
in µ

i (σ) , (2.31)

where the ξ i are assumed to label observers in our set of observers, are rigid in the
sense of the criterion given above. Furthermore, the proper geometry of the set of
observers given by the proper metric γi j in (2.22) on p. 24 is then flat, i.e.,

γi j =−δi j . (2.32)
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Note finally that, in the special case where we have arranged for Ωi j = 0, the ex-
pression for the 4-velocity in (2.15) on p. 22 becomes

u =
(
uµ

0 +ξ
iṅi

µ
)
σ̇ = u0

(
1+a0iξ

i)
σ̇ ,

and since (2.16) implies that

σ̇ = (1+a0iξ
i)−1 ,

it follows that
u(ξ ,τ) = u0

(
0,σ(ξ ,τ)

)
. (2.33)

2.3.4 Semi-Euclidean Coordinates Rediscovered

We now note that (σ ,ξ i) are indeed semi-Euclidean coordinates for an observer
with worldline xµ(0,σ), moving with the base particle ξ = 0, regardless of whether
the space triad ni, i = 1,2,3, is FW transported along that worldline. What we are
doing here is to label the observer ξ i by her spatial coordinates ξ i in the semi-
Euclidean system moving with the observer ξ = 0. Geometrically, we have the
worldline of the arbitrarily chosen observer O at the origin, viz., xµ(0,σ), with σ

her proper time. We have another worldline xµ(ξ i,τ) of an observer P labelled by ξ ,
with proper time τ . For given τ , we seek σ such that xµ(ξ i,τ) is in the hyperplane
of simultaneity (HOS) of O at her proper time σ . Then (ξ i) is the position of P in
the tetrad moving with O. Indeed, {ξ i} are the space coordinates of P relative to O
in that frame.

As attested by (2.25) on p. 24, or directly from (2.33) above, in the specific case
of an FW transported space triad ni, i = 1,2,3, we also have

ni ·u = 0 , (2.34)

so that the instantaneous hyperplane of simultaneity of the observer at ξ = 0 is an
instantaneous hyperplane of simultaneity for all the other observers in the rigid set
as well, and the triad n µ

i serves to define a rotationless rest frame for the whole set
of observers. In other words, the coordinate system defined by the observer labels
ξ i may itself be regarded as being Fermi–Walker transported, and all the observers
in the rigid set have a common designator of simultaneity in the parameter σ . In
this semi-Euclidean system, associated with observer O, σ is taken to be the time
coordinate.

Put another way, (2.34) says that the ni(σ) are in fact orthogonal to the worldline
of the observer labelled by ξ i at the value of τ corresponding to σ . This happens
because u(ξ ,τ) = u0(0,σ). In words, the 4-velocity of observer ξ at her proper time
τ is the same as the 4-velocity of the base observer when she is simultaneous with
the latter in the reckoning of the base observer, quite a remarkable thing, which is
in fact a direct consequence of the rigidity assumption.
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For more about the HOS sharing effect, see also (2.149) on p. 60 and the discus-
sion thereafter. In the case of generalised uniform acceleration discussed in Sect. 2.4,
and for the frame construction due to Friedman and Scarr, HOS sharing only occurs
when the motion of the main observer is purely translational. That is a subcase of
the one discussed here, where the motion is purely translational but does not need
to be uniform, i.e., the Ωi j are all zero but the a0i do not need to be constants.

Because σ is not generally equal to τ , it is not usually possible for the observers
to have a common synchronisation of standard clocks. The relation between σ and
τ is given by (2.16) on p. 22 as

σ̇ =
(
1+ξ

ia0i
)−1

. (2.35)

We can thus find the absolute acceleration ai of an arbitrary observer (or particle, if
we are considering a medium) in terms of a0i and the ξ i :

ai = −ni · u̇ =−ni ·
∂u
∂σ

σ̇ =−σ̇ni ·
∂

∂σ

[(
1+ξ

ja0 j
)
u0σ̇

]
= −σ̇ni · u̇0

=
a0i

1+ξ ja0 j
. (2.36)

Here we have used the fact mentioned above that u =
(
1+ξ ja0 j

)
u0σ̇ = u0. We see

that, although the motion is rigid and rotationless in the sense described above, not
all the observers (or parts of the medium) are subject to the same acceleration.

It is important to note that, when we find ξ i and σ , they constitute semi-Euclidean
coordinates (adapted to ξ = 0) for the point xµ(ξ ,τ) whether or not that point fol-
lows an observer for fixed ξ . What we are imagining here are material observers
that follow all these points with fixed ξ , for a whole 3D range of values of ξ . We
conclude that this rigid motion possesses only the three degrees of freedom that the
observer ξ = 0 herself possesses. The base observer ξ = 0 can move any way she
wants, but the rest of the observers must then follow in a well defined way.

2.3.5 SE Metric for FW Transported Coordinate Axes

In these coordinates, the metric tensor takes the form

g00 =
∂xµ

∂σ

∣∣∣∣
ξ

∂xν

∂σ

∣∣∣∣
ξ

ηµν = u2
σ̇
−2 = (1+ξ

ia0i)
2 , (2.37)

gi0 = g0i =
∂xµ

∂ξ i

∣∣∣∣
σ

∂xν

∂σ

∣∣∣∣
ξ

ηµν = (ni ·u)σ̇−1 = 0 , (2.38)

gi j =
∂xµ

∂ξ i

∣∣∣∣
σ

∂xν

∂ξ j

∣∣∣∣
σ

ηµν = ni ·n j =−δi j , (2.39)
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which has a simple diagonal structure, in particular because ni ·u = ni ·u0 = 0 in this
case. In these calculations, we need to be a little careful about the partial derivatives.

For example, note that, using

xµ(ξ ,τ) = xµ
(
0,σ(ξ ,τ)

)
+ξ

ini
µ
(
σ(ξ ,τ)

)
, (2.40)

we have

xµ
,i =

∂xµ

∂ξ i

∣∣∣∣
τ

=
∂xµ(0,σ)

∂ξ i

∣∣∣∣
τ

+ni
µ + ṅ j

µ
ξ

j
σ, j

= uµ

0
∂σ

∂ξ i

∣∣∣∣
τ

+ni
µ + ṅ j

µ
ξ

j
σ, j

= ni
µ +

(
uµ

0 +ξ
jṅ j

µ
)
σ,i ,

as claimed in (2.26). But we are now considering something much simpler to calcu-
late! Still using (2.40),

∂xµ

∂ξ i

∣∣∣∣
σ

= ni
µ , (2.41)

and in a similar vein,

∂xµ

∂σ

∣∣∣∣
ξ

= uµ

0 + ṅi
µ

ξ
i = uµ

σ̇
−1 , (2.42)

which justifies the above calculations for the metric.
We note that this metric becomes static, i.e., time-independent, with the parame-

ter σ playing the role of time, in the special case in which the absolute acceleration
of each observer is constant. Such a motion is called uniform acceleration. The no-
tion of uniform acceleration is discussed further in Sect. 2.4.

Note also that the matrix of metric components, viz.,

(gµν) =


(1+ξ ia0i)

2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (2.43)

can become singular if 1+ξ ia0i = 0. Indeed,

det(gµν) =−(1+ξ
ia0i)

2 . (2.44)

This does not mean that the Minkowski metric is singular, only that the transforma-
tion to SE coordinates is singular at such events. Clearly, the SE coordinates cannot
be extended to these events. This situation is discussed further in Sect. 2.9.
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2.3.6 SE Connection for FW Transported Coordinate Axes

Note that the above relations give the Minkowski metric components in terms of the
SE coordinate system, not only on the worldline ξ = 0 where we see immediately
that they reduce to the form ηµν given in (2.1), but also throughout the region where
the SE coordinates are well defined. This allows us to calculate the connection co-
efficients using the standard relation

Γ
µ

νσ =
1
2

gµτ(gτσ ,ν +gντ,σ −gνσ ,τ) , (2.45)

which follows from the metric condition in the torsion free case, i.e., when the con-
nection coefficients are assumed symmetric in the lower two indices.

For this, we note that

(
gµτ
)
=


(
1+ξ ja0 j

)−2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

This is diagonal, which facilitates the task. For example, we obtain

Γ
0

00 =
1
2
(
1+ξ

ja0 j
)−2

(g00,0 +g00,0−g00,0)

=
(
1+ξ

ja0 j
)−2

∂σ

[1
2
(
1+ξ

ja0 j
)2
]
,

whence

Γ
0

00 =
ξ iȧ0i

1+ξ ja0 j
. (2.46)

This gives this connection coefficient throughout the region in which the SE coordi-
nates are defined. On the worldline at the space origin of the SE coordinate system,
i.e., when ξ = 0, we find

Γ
0

00
∣∣
ξ=0 = 0 . (2.47)

Consider now

Γ
µ

i j =
1
2

gµµ(gµ j,i +giµ, j−gi j,µ) (no sum over µ) ,

which is clearly zero, since only g00 has any spacetime coordinate dependence. This
is also true throughout the region where the SE coordinates are defined, so that we
may write

Γ
µ

i j = 0 , i, j = 1,2,3, µ = 0,1,2,3 , (2.48)
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and hence a fortiori on ξ = 0, whence

Γ
µ

i j

∣∣∣
ξ=0

= 0 , i, j = 1,2,3, µ = 0,1,2,3 . (2.49)

We also have

Γ
i

00 =
1
2

gii(gi0,0 +g0i,0−g00,i) =
1
2

g00,i =
1
2

∂ξ i

[(
1+ξ

ja0 j
)2
]
,

with no sum over i, whence

Γ
i

00 =
(
1+ξ

ja0 j
)
a0i , i = 1,2,3 . (2.50)

Then on ξ = 0, we obtain

Γ
i

00
∣∣
ξ=0 = a0i , i = 1,2,3 . (2.51)

Likewise,

Γ
0

0i =
1
2

g00(g0i,0 +g00,i−g0i,0)

=
1
2

g00g00,i =
(
1+ξ

ja0 j
)−2

∂ξ i

[1
2
(
1+ξ

ja0 j
)2
]
,

whence

Γ
0

0i =
a0i

1+ξ ja0 j
, i = 1,2,3 . (2.52)

Then on ξ = 0, we obtain

Γ
0

0i
∣∣
ξ=0 = a0i , i = 1,2,3 . (2.53)

Finally,

Γ
i

0 j =
1
2

gii(gi j,0 +g0i, j−g0 j,i) ,

with no sum over i, whence

Γ
i

0 j = 0 , i = 1,2,3 . (2.54)

Then on ξ = 0, we obtain

Γ
i

0 j
∣∣
ξ=0 = 0 , i = 1,2,3 . (2.55)
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In this way, we completely recover the relations (2.7)–(2.9) on p. 19, for the case
Ω i

j = 0. The time has come to understand precisely what led to this rotation matrix
in our earlier considerations.

2.3.7 SE Coordinates with Rotating Axes

Clearly, the simpler result in the latest calculations has something to do with the
rigidity assumption, which was implemented by assuming that the spacelike triad
{ni}i=1,2,3 was FW transported along the observer worldline, whence the coeffi-
cients Ωi j were set to zero in (2.13) on p. 22. When we drop this assumption, we
may no longer have a rigid coordinate system in general (unless all the a0i and Ωi j
are constant, as mentioned on p. 25 and discussed further in Sects. 2.4 and 2.4.4),
but we still obtain one that is semi-Euclidean in the sense of the five conditions back
on p. 12.

So we shall now retain the more general relations

xµ(ξ ,τ) = xµ(0,σ)+ξ
ini

µ(σ) , (2.56)

with

uµ =
∂xµ(ξ ,τ)

∂τ
=
(
uµ

0 +ξ
iṅi

µ
)
σ̇ (2.57)

and
ṅi

µ = a0i(σ)uµ

0 +Ωi j(σ)n j
µ . (2.58)

This leads to (2.16) on p. 22, viz.,

σ̇ =
[(

1+ξ
ia0i
)2−ξ

i
ξ

j
ΩikΩ jk

]−1/2
. (2.59)

The relation (2.56) now implies

∂xµ

∂ξ i

∣∣∣∣
σ

= ni
µ , (2.60)

exactly as in (2.41), and

∂xµ

∂σ

∣∣∣∣
ξ

= uµ

0 + ṅi
µ

ξ
i = uµ

σ̇
−1 , (2.61)

exactly as in (2.42).
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2.3.8 SE Metric for Rotating Coordinate Axes

It is instructive to calculate the components of the Minkowski metric in these more
general SE coordinates. This time we have

g00 =
∂xµ

∂σ

∣∣∣∣
ξ

∂xν

∂σ

∣∣∣∣
ξ

ηµν = u2
σ̇
−2 =

(
1+ξ

ia0i
)2−ξ

i
ξ

j
ΩikΩ jk , (2.62)

gi0 = g0i =
∂xµ

∂ξ i

∣∣∣∣
σ

∂xν

∂σ

∣∣∣∣
ξ

ηµν = (ni ·u)σ̇−1 , (2.63)

gi j =
∂xµ

∂ξ i

∣∣∣∣
σ

∂xν

∂ξ j

∣∣∣∣
σ

ηµν = ni ·n j =−δi j , (2.64)

which no longer has the diagonal structure since we do not now have ni · u = 0
in general. In the rigid case, we had u = u0 to ensure diagonality of the metric
everywhere.

If we set ξ = 0, we do indeed obtain the form ηµν of (2.1), noting for example
that ni ·u|ξ=0 = ni ·u0 = 0. If we set Ωi j = 0, we retrieve the metric components in
Sect. 2.3.5, as expected (see p. 28). When Ωi j 6= 0, we have

(ni ·u)σ̇−1 = ni ·
(
u0 + ṅ jξ

j)
= ni · ṅ jξ

j

= ξ
jni · (a0 ju0 +Ω jknk)

= Ω jiξ
j ,

whence
gi0 = ξ

j
Ω ji = g0i . (2.65)

The matrix of metric components, viz.,

(gµν) =


(
1+ξ ia0i

)2−ξ iξ jΩikΩ jk ξ jΩ j1 ξ jΩ j2 ξ jΩ j3
ξ jΩ j1 −1 0 0
ξ jΩ j2 0 −1 0
ξ jΩ j3 0 0 −1

 , (2.66)

can become singular if 1+ξ ia0i = 0. Indeed, for any a, b, c, and d,

det


a b c d
b −1 0 0
c 0 −1 0
d 0 0 −1

= −a−b

∣∣∣∣∣∣
b 0 0
c −1 0
d 0 −1

∣∣∣∣∣∣+c

∣∣∣∣∣∣
b −1 0
c 0 0
d 0 −1

∣∣∣∣∣∣+d

∣∣∣∣∣∣
b −1 0
c 0 −1
d 0 0

∣∣∣∣∣∣
= −a−b2− c2−d2 .
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So for the most general SE coordinate system, the matrix of components of the
Minkowski metric has determinant

detgMink
SE =−

(
1+ξ

ia0i
)2

. (2.67)

Interestingly, this is always independent of the rotation chosen for the space triad
{ni}i=1,2,3, as specified by Ωi, i = 1,2,3, but it does depend on the acceleration of
the worldline as specified by its absolute components a0i, i = 1,2,3.

Furthermore, as just mentioned, it can be zero. We have already seen how this
happens for translational uniform acceleration in Sect. 2.3.5. In this more general
case, we see that it occurs for all ξ i satisfying

ξ
ia0i(σ) =−1 ,

for some value of the proper time σ of the observer. This specifies a 2-plane of the
3D space of ξ i for each proper time σ . Note also that

g00 ≤ 0 , when detgMink
SE = 0 . (2.68)

This issue is discussed further in Sect. 2.12.
We can now assess the validity of the first property on the list at the beginning of

Sect. 2.2.1 back on p. 12. This claimed that we could arrange the coordinates so that
the curves ξ i = constant (i = 1, 2, 3) would be timelike, and also so that any curve
with σ = constant would be spacelike:

• When a curve has ξ i = constant (i = 1, 2, 3), only the zeroth component of its
tangent vector is nonzero. Its Lorentzian pseudolength is then a positive multiple
of g00 in (2.66). So this property of our SE frame is only satisfied in regions
where g00 > 0. Hence the further discussion in Sect. 2.12.

• When a curve has σ = constant, this implies that the zeroth component of its
tangent vector is zero, so its Lorentzian pseudolength will always be negative,
according to (2.66).

2.3.9 SE Connection for Rotating Coordinate Axes

It is interesting here to see how we obtain (2.9) on p. 19 with Ω i
j 6= 0. Once again,

we use the standard formula

Γ
µ

νσ =
1
2

gµτ(gτσ ,ν +gντ,σ −gνσ ,τ) , (2.69)

which expresses the fact that we impose the metric condition on the connection and
assume that the latter is symmetric in its two lower indices. To do the full calcula-
tion for the connection components throughout the region in which the SE coordi-
nates are defined, we would have to invert the metric matrix to obtain gµτ . This is
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quite feasible, but let us focus on the values of the connection coefficients along the
worldline ξ = 0. Then we only require the contravariant metric components on the
worldline and we have

gµν |ξ=0 = η
µν .

Thus,

Γ
0

00|ξ=0 =
1
2

g00,0

∣∣∣∣
ξ=0

=
1
2

∂

∂σ

∣∣∣∣
ξ

[(
1+ξ

ia0i
)2−ξ

i
ξ

j
ΩikΩ jk

]∣∣∣∣∣
ξ=0

,

and a little thought shows that this will be zero.
Then

Γ
i

00|ξ=0 =−
1
2
(gi0,0 +g0i,0−g00,i)

∣∣∣∣
ξ=0

=−gi0,0|ξ=0 +
1
2

g00,i

∣∣∣∣
ξ=0

,

with

gi0,0|ξ=0 =
∂

∂σ

∣∣∣∣
ξ

(ξ j
Ω ji)

∣∣∣∣∣
ξ=0

= 0

and

1
2

g00,i

∣∣∣∣
ξ=0

=
1
2

∂

∂ξ i

∣∣∣∣
σ

[(
1+ξ

ja0 j
)2−ξ

j
ξ

k
Ω jlΩkl

]∣∣∣∣∣
ξ=0

=
1
2

∂

∂ξ i

∣∣∣∣
σ

[(
1+ξ

ja0 j
)2
]∣∣∣∣∣

ξ=0

= a0i ,

as expected.
Next we have

Γ
0

0i |ξ=0 =
1
2
(g0i,0 +g00,i−g0i,0)

∣∣∣∣
ξ=0

=
1
2

g00,i

∣∣∣∣
ξ=0

,

and we have just seen that this gives a0i.
Then

Γ
µ

i j |ξ=0 =
1
2

η
µµ(gµ j,i +giµ, j−gi j,µ)

∣∣∣∣
ξ=0

,

with no sum over µ . If µ = 1,2,3, we get zero since gi j = δi j. When µ = 0, we get

Γ
0

i j |ξ=0 =
1
2
(g0 j,i +gi0, j)

∣∣∣∣
ξ=0

,

but
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g0 j,i =
∂

∂ξ i

∣∣∣∣
σ

(ξ k
Ωk j) = Ωi j ,

which is antisymmetric in i and j, whence we obtain zero for all coefficients Γ
µ

i j |ξ=0,
as before.

As a matter of fact, we can do slightly better here. We can show that the connec-
tion coefficients Γ

µ

i j are actually zero wherever the SE coordinates are defined, and
not just on the observer worldline. To see this, begin with

Γ
µ

i j |ξ=0 =
1
2

gµν(gν j,i +giν , j−gi j,ν) .

If ν = 0, we obtain a term proportional to

g0 j,i +gi0, j−gi j,0 = Ωi j +Ω ji = 0 ,

and if ν = k, we obtain a term proportional to

gk j,i +gik, j−gi j,k = 0 ,

so we always get zero. This result means that any geodesic lying in one of the
spacelike hypersurfaces τ = constant is a straight line when expressed relative to
the SE coordinates, even if it does not intersect the observer worldline.

So everything is so far as before. The most interesting coefficients are

Γ
i

0 j|ξ=0 =
1
2

η
ii(gi j,0 +g0i, j−g0 j,i)

∣∣∣∣
ξ=0

= − 1
2

[
∂ j(ξ

k
Ωki)−∂i(ξ

k
Ωk j)

]∣∣∣∣
ξ=0

= Ωi j .

We conclude that the Ωi j introduced in the expansion (2.58) is in fact the same as
Ω i

j in (2.9) on p. 19.

2.4 Generalised Uniform Acceleration

At the end of Sect. 2.3.5 (see p. 29), we defined uniform acceleration as being a mo-
tion in which the absolute acceleration, i.e., the acceleration expressed in a suitably
chosen continuous sequence of instantaneously comoving inertial frames, is con-
stant. To be more precise, it was motion in which the acceleration u̇0 of the observer
had the form

u̇0(σ) = a0i(σ)ni(σ) ,
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with {ni(σ)} a Fermi–Walker transported spatial triad along the observer worldline,
and with the a0i actually independent of the proper time σ of the observer.

This notion has been generalised by Friedman and Scarr [23] in a way we shall
now describe, since it ties up a loose end from Sect. 2.3.2. There we noted that there
was a second way to achieve the rigid motion of a set of observers, viz., superhelical
motion, in which all the functions a0i(σ) and Ωi j(σ) in (2.13) on p. 22 are actually
independent of σ . Let us now examine how this works.

2.4.1 Definition

Here we closely follow the discussion by Friedman and Scarr [23]. We work in an
inertial (laboratory) frame denoted by K. For any timelike worldline, we take the
4-velocity to be the dimensionless unit 4-vector

u = (u0,u1,u2,u3) :=
1
c

dxµ

dτ
,

where τ is the proper time, and hence define the 4-acceleration to be

aµ := c
duµ

dτ
,

which has units of acceleration.
We define a uniformly accelerating worldline to be one that satisfies

c
duµ

dτ
= Aµ

ν uν , (2.70)

with some specified initial value u(0) = u0, where Aµ
ν is a tensor under Lorentz

transformations and independent of τ . We also require that the type (2,0) form Ā
of this tensor, with components Aµν := ηµσ Aσ

ν , should be antisymmetric, for the
following reason. Since u2 = 1 is constant, we must have a · u = 0, whence we
require

0 = ηµν aµ uν = ηµν Aµ
σ uσ uν = uν Aνσ uσ ,

a sufficient condition for which is that the type (2,0) tensor Aµν should be antisym-
metric, i.e.,

Aµν =−Aνµ . (2.71)

Equation (2.70) has the unique solution

u(τ) = exp(Aτ/c)u0 =

(
∞

∑
n=0

An

n!cn τ
n

)
u0 , (2.72)
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where A is the type (1,1) tensor. A key motivation for the above definition is that
this kind of motion is covariant in the sense that uniformly accelerated motion in
one inertial frame is uniformly accelerated motion in every inertial frame. This in
turn follows straight from the definition because proper time is an invariant, u is a
four-vector, Aµ

ν is a tensor (see below), and Aµν will be antisymmetric in every
inertial frame if it is so in one.

2.4.2 Tensorial Nature of A and Ā

The equation of motion (2.70) has been expressed relative to some arbitrarily chosen
inertial frame K. But how would we transform this equation of motion in order to
describe the worldline relative to a new inertial frame?

The answer is that we will get the same equation expressed relative to the new
frame if we transform the object so suggestively written as Aµ

ν as a type (1,1)
tensor. Indeed, if we are to obtain the same equation expressed relative to the new
frame, it has to transform like this because the left-hand side of (2.70) transforms as
a contravector, and so does u.

Relative to any other choice of laboratory inertial frame K1 related to K by a
homogeneous Lorentz transformation, the acceleration matrix will have the form

A1 = L−1AL , (2.73)

where L is the homogeneous Lorentz transformation from K to K1.
Naturally then, the object Ā with components Aµν := ηµσ Aσ

ν must transform as
a type (2,0) tensor when we rewrite the equation of motion relative to some other
inertial frame. Relative to any other choice of laboratory inertial frame K1 related to
K by a homogeneous Lorentz transformation L, the type (2,0) acceleration matrix Ā
will have the form

Ā1 = LTĀL . (2.74)

Note that Ā is antisymmetric if and only if LTĀL is antisymmetric.
We shall see concrete examples of such transformations shortly.

2.4.3 Nature of Generalisation

Let us see how the above extends the usual definition of uniform acceleration. The
first thing is to write down the most general possible matrix versions of Aµν and
Aµ

ν in the chosen laboratory inertial frame K, bearing in mind the antisymmetry of
the former:

Aµν(g,ω) =

(
0 gT

−g −cπ(ω)

)
, Aµ

ν(g,ω) =

(
0 gT

g cπ(ω)

)
. (2.75)
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Here we have used the notation introduced in [23]: g is a 3-component object
with units of acceleration and transpose gT, and ω = (ω1,ω2,ω3) is another
3-component object but this time with units of 1/time, and

π(ω) := εi jkω
k , (2.76)

with εi jk the completely antisymmetric Levi-Civita symbol. The factor of c with
π(ω) just ensures that this entry has units of acceleration. Since Aµν is independent
of τ , the same goes for g and ω .

Now when ω = 0, the above definition of uniform acceleration reduces to the
usual definition of uniform acceleration in a straight line. Indeed, we then have

c
duµ

dτ
= Aµ

ν uν =

(
0 gT

g 0

)(
u0

u/c

)
, (2.77)

so that

c
duµ

dτ
= (c−1g ·u,gu0) , (2.78)

since we are taking

(uµ) = (u0,u/c) , u0 = γ(v) , u = γ(v)v .

We note also that
dt
dτ

= γ ,

whence
du
dt

=
du
dτ

dτ

dt
= gu0

γ
−1 = g . (2.79)

Since g is independent of time, this is indeed the usual definition for translational
uniform acceleration. It has solution

u = gt +u0 , (2.80)

where u0 is the value of u at time t = 0. We shall see shortly how this accords with
the definition on p. 29.

Interestingly, this is precisely the motion we would obtain from a naive special
relativistic model of gravity in which gravity is just a force, for the case where
that force is given by mg for some constant acceleration g due to gravity and m
is the passive gravitational mass of the particle, assuming of course that passive
gravitational mass and inertial mass are exactly equal, as seems to be suggested
by experiment. Purely translational uniform acceleration (TUA) will be examined
explicitly in Sect. 2.9.

Note that the definition of purely translational uniform acceleration does not give
rise to a covariant notion of uniform acceleration, since it depends on having ω = 0.
This standard notion would thus only be covariant under transformations that pre-
serve this condition, viz., Lorentz boosts in the direction of g and space rotations
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about the direction of g. Rather than being the whole homogeneous Lorentz group,
as for the new definition of uniform acceleration, the covariance group would be
the little group fixing the space axis along g. In fact, the generalised form of uni-
form acceleration is even covariant under the transformations of the inhomogeneous
Lorentz group (Poincaré group), including spacetime translations.

A further motivation for the extended definition is that the action of the Lorentz
force on a charged particle can be represented by the action of the antisymmetric
electromagnetic tensor Fµν on the four-velocity of the particle:

m
duµ

dτ
= qFµ

ν uν , (2.81)

where m is the particle rest mass and q its charge. Then any constant and uniform
electromagnetic field will lead to uniformly accelerated motion.

The type (1,1) tensor A and the associated antisymmetric type (2,0) tensor Ā
are both referred to as the acceleration tensor. A uniformly accelerated motion is
uniquely defined by its acceleration tensor A and its initial four-velocity u0. The
associated worldline x̂(τ) can be found if we know the initial position x̂(0). The
basic equation (2.70) along with an initial value u(0) = u0 can be solved exactly
to obtain u(τ), and the resulting expression is easily integrated to obtain x̂(τ) if we
have the initial value x̂(0). The details can be found in [23], but also in [17], where
geometric algebra techniques are applied to the case of a constant electromagnetic
field tensor.

2.4.4 Coordinate Frame for Generalised Uniform Acceleration

Once again, we follow Friedman and Scarr for this construction [23]. The aim will
be to construct a coordinate frame K′ such that the observer with uniform acceler-
ation and proper time τ has worldline (cτ,0,0,0). We shall do this in a mathemat-
ically natural way and we shall find that the result is a rigid frame in the sense that
two nearby particles sitting at fixed space coordinates in K′ are always the same
distance apart as measured in the instantaneously comoving inertial frame of either.

Note that we already have a rigid frame, obtained by FW transporting a space
triad along the observer worldline and using the construction described in detail in
Sects. 2.3.4–2.3.6. In the present case, we shall obtain a generally different rigid
coordinate frame that depends crucially on the observer worldline being generated
as in (2.70) by a constant acceleration tensor. We shall once again transport a space
triad along the observer worldline, but the transport will be a generalisation of FW
transport, although it will be a generalisation only for the case of generalised uni-
form acceleration, and only reduce to it in the special case where we have the purely
translational form of uniform acceleration in some inertial frame in which the ob-
server comes to rest at some event.

Consider the worldline x̂(τ) of a uniformly accelerating observer in the sense
of (2.70), with motion determined by a constant acceleration matrix Ā = (Aµν),
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initial 4-velocity u(0), and initial position x̂(0). The first step is to define an instan-
taneously comoving inertial frame (ICIF) Kτ at each proper time τ , specified by a
tetrad λ (τ) = {λ(κ)(τ)}κ=0,1,2,3. To do so we choose an initial ICIF K0 with origin
at x̂(0), specified by a tetrad λ̂ = {λ̂(κ)}κ=0,1,2,3, where as usual we take λ̂(0) = u(0)
and {λ̂(i)}i=1,2,3 can be chosen arbitrarily to complete the tetrad.

We must now transport this initial tetrad along the worldline. Previously we
used FW transport and obtained a perfectly good rigid coordinate frame in that
way. However, there is a mathematically more natural way to transport our space
triad in the present case. For τ > 0, we define Kτ by requiring the origin of
Kτ at time τ to be x̂(τ) and requiring the basis of Kτ to be the unique solution
λ (τ) = {λ(κ)(τ)}κ=0,1,2,3 of the initial value problem

c
dλ

µ

(κ)

dτ
= Aµ

ν λ
ν

(κ) , λ(κ)(0) = λ̂(κ) . (2.82)

Since λ̂(0) = u(0) and u(τ) satisfies this differential equation according to (2.70),
we deduce that λ(0)(τ) = u(τ) for all values of τ . Furthermore, the type (1,1) tensor
A is a constant matrix, we can immediately solve the system (2.82) to obtain

λ (τ) = exp(Aτ/c)λ̂ . (2.83)

Note also that this kind of transport is an isometry, i.e., it preserves the Lorentzian
scalar product. To see this, suppose that v and w are any two 4-vectors at x̂(0) and
solve (2.82) to obtain vector fields v(τ) and w(τ) along x̂(τ). Then consider

d
dτ

[
v(τ) ·w(τ)

]
=
[
Av(τ)

]
·
[
w(τ)

]
+
[
v(τ)

]
·
[
Aw(τ)

]
= ηµσ Aµ

ν vν wσ +ηµσ vµ Aσ
ν wν

= Aσν vν wσ +Aµν vµ wν

= Aµν(vν wµ + vµ wν) = 0 , (2.84)

due to the antisymmetry of the type (2,0) tensor Ā. Interestingly, we do not use
the constancy of the matrix A in this proof, only the differential relations that v
and w must satisfy, so this kind of transport is isometric for quite general, possi-
bly time-varying acceleration matrices A, provided that the associated matrix Ā is
antisymmetric.

The fact that this transport is isometric is important, because it means that the
solution to (2.82) will be orthonormal right along the observer worldline, i.e., it will
be a tetrad. We shall examine the resulting coordinate system in a moment. Before
doing so, it is interesting to rewrite (2.82) in a slightly different way. To begin with,
let us think of our initial frame λ̂ as a matrix with columns

λ̂ = (λ̂(0) λ̂(1) λ̂(2) λ̂(3)) , (2.85)
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where each column comprises the components λ̂
µ

(κ)
of the given tetrad 4-vector ex-

pressed relative to the inertial (laboratory) frame K. This matrix maps the basis

e0 :=


1
0
0
0

 , e1 :=


0
1
0
0

 , e2 :=


0
0
1
0

 , e3 :=


0
0
0
1

 , (2.86)

of K to the basis we have chosen for the initial ICIF K0. Now define the new matrix

Ã := λ̂
−1Aλ̂ , (2.87)

the representation of the type (1,1) tensor A relative to the basis of the initial ICIF
K0.

We check formally that this is the right transformation. If {xµ} are the coordi-
nates in K and {x̃(µ)} are the coordinates in K0, then the correct transformed com-
ponents of A relative to the frame K0 should be

Ã(µ)
(ν) =

dx̃(µ)

dxσ

dxτ

dx̃(ν)
Aσ

τ (2.88)

Let us check that the matrix λ̂ is

λ̂ =
(
dxτ/dx̃(ν)

)
(2.89)

in this notation, with τ labelling rows and ν labelling columns. This has inverse(
dxτ/dx̃(ν)

)−1
=
(
dx̃(µ)/dxσ

)
,

with µ labelling rows and σ labelling columns, so (2.88) would then be the matrix
relation Ã = λ̂−1Aλ̂ . Now (2.89) amounts to the relations

λ̂
τ

(ν) =
dxτ

dx̃(ν)
. (2.90)

But we have
xτ eτ = x̃(ν)λ̂(ν) , (2.91)

where the eτ are defined in (2.86). This in turn implies that

xτ = x̃(ν)λ̂ τ

(ν) ,

whence we obtain (2.90).
Put another way, we now have

λ̂ Ã = Aλ̂ , (2.92)

or in component form
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λ̂
ν

(γ)Ã
(γ)

(κ) = Aν
σ λ̂

σ

(κ) . (2.93)

The point is that we can now write

c
dλ

µ

(κ)

dτ
=
[

exp(Aτ/c)
]µ

ν Aν
σ λ̂

σ

(κ)

=
[

exp(Aτ/c)
]µ

ν λ̂
ν

(γ)Ã
(γ)

(κ) ,

whence

c
dλ

µ

(κ)

dτ
= λ

µ

(γ)
Ã(γ)

(κ) . (2.94)

This is just a slightly different, but equivalent version of (2.82). It will be useful for
drawing the parallel with previous constructions, and also for showing that this kind
of transport generalises FW transport in the case of purely translational uniform
acceleration in the initial instantaneously comoving inertial frame K0 = λ̂ .

These considerations generalise easily to the case of acceleration matrices that
are not constant along the observer worldline. This is discussed in greater detail in
Sect. 2.11.4 [see in particular (2.321) on p. 101 and the following]. It is shown there
that we can always find a matrix Aµ

ν such

c
dλ µ

(0)

dτ
= Aµ

ν λ
ν
(0) , (2.95)

although it will not generally be constant, with the further property that

c
dλ µ

(i)

dτ
= Aµ

ν λ
ν
(i) , i = 1,2,3 , (2.96)

whatever smooth choice of space tetrad {λ µ
(i)}i=1,2,3 has been made along the

worldline (but noting that the matrix A then depends on that choice).
Let us now see how to set up coordinates {y(µ)} adapted to the generalised uni-

formly accelerating observer worldline. For any event X with coordinates xµ in K,
we find a proper time τ for the observer for which x̂(τ) is simultaneous with X in
the ICIF Kτ . We then define the zero (or time) coordinate of X in the proposed ac-
celerating frame K′ to be y(0) = cτ . Note that all events in this particular hyperplane
of simultaneity for Kτ will be attributed the same time coordinate cτ .

Put another way, K′ is borrowing the hyperplanes of simultaneity of an instanta-
neously comoving inertial observer, so given that we obtain the tetrad field along the
observer worldline by the isometric propagation (2.82) [or (2.94)], we have a stan-
dard construction of semi-Euclidean coordinates as described previously. And as in
our earlier constructions, we still have the problem that such hyperplanes can inter-
sect off the observer worldline. These coordinates will generally only be valid on
some neighbourhood of the worldline, and not throughout the whole of spacetime.

Now the displacement ȳ of X relative to the observer at proper time τ can be
expressed in terms of the space triad {λ(i)(τ)}i=1,2,3, since
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ȳ ·u(τ) =
[
x− x̂(τ)

]
·u(τ) = 0 ,

by the specific choice of τ . Hence, there are y(i) ∈ R, i = 1,2,3, such that

ȳ = y(i)λ(i)(τ) .

In short, we have found τ such that

xµ = x̂µ(τ)+ y(i)λ(i)(τ) . (2.97)

The coordinates of event X in the coordinate frame K′ will then be defined as
(cτ,y(1),y(2),y(3)), and the relation (2.97) tells us how to convert from these co-
ordinates to the original laboratory coordinate system K.

2.4.5 Rigidity

We shall show that this is a rigid coordinate system in the sense of Sect. 2.3.1.
It is important to understand that this notion of rigidity is not the same as saying
that the geometry of the hyperplanes of simultaneity is Euclidean, which is true by
construction.

Imagine two particles A and B at rest relative to the space coordinates of the
proposed accelerating frame K′, with worldlines of the form {(cτ,yA) : τ ∈ R} and
{(cτ,yB) : τ ∈R}, respectively. At a given τ , the particles lie in the same hyperplane
of simultaneity of the inertial frame Kτ , and since this is also the hyperplane of
simultaneity adopted in K′, the proper distance between A and B at coordinate time
τ in the K′ system is just the length of the vector

[
y(i)B − y(i)A

]
λ(i)(τ0), viz.,√

δi j
[
y(i)B − y(i)A

][
y( j)

B − y( j)
A

]
.

The fact that this is independent of τ does not prove Born rigidity.
Rigidity according to Sect. 2.3.1 means that neighbouring worldlines with fixed

space coordinates are always the same proper distance apart as measured in the
instantaneous rest frame of either. We need therefore to examine the proper distance
between A and B as measured in the instantaneous rest frame of A, for example,
which depends on the motion of A. The frame K′ is nevertheless rigid in this sense,
ultimately because the acceleration matrix is constant, but this is non-obvious and
requires more work.

We have already done this work in Sect. 2.3.2, however. The key will be (2.94).
Recall that A is a constant matrix, i.e., independent of proper time τ , and so of course
is the matrix λ̂ of (2.85). This means that the matrix Ã in (2.94) is also independent
of τ . But (2.94) corresponds exactly to the key relation (2.13) in Sect. 2.3 (see p. 22),
viz.,

cṅ µ

i = a0iuµ + cΩi jn
µ

j , (2.98)
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where we have reinstated c and replaced the notation u0 for the 4-velocity of the
observer by the present notation u, recalling that we made the latter dimensionless.

Now we have the correspondence ni↔ λ(i), i = 1,2,3, while u↔ λ(0). By (2.14)
on p. 22, we also have

a0i =−cni · u̇ , (2.99)

which means that
cu̇ = a0ini , (2.100)

since u̇ is orthogonal to u.
So, in the notation of Sect. 2.3, which was a completely general construction

using any smoothly chosen tetrad along the worldline, and for an arbitrary smooth
timelike worldline, the relation

c
dλ

µ

(κ)

dτ
= λ

µ

(ν)
Ã(ν)

(κ) (2.101)

is replaced by {
cλ̇(i) = a0iλ(0)+ cΩi jλ( j) ,

cλ̇(0) = a0iλ(i) .
(2.102)

We can now read off the matrix Ã, obtaining

Ã(ν)
(κ) =


0 a01 a02 a03

a01 0 cΩ21 cΩ31

a02 cΩ12 0 cΩ32

a03 cΩ13 cΩ23 0

 , (2.103)

with ν specifying the row and κ the column.
It looks at first glance as though there may be a proviso here: it looks as though

Ã may be a snapshot of the matrix on the right-hand side of (2.103), taken in the
initial ICIF λ̂ , whereas the matrix on the right-hand side looks as though it may be
taken relative to ICIF(τ) for each τ . But note that we have λ

µ

(ν)
(τ) on the right-hand

side of (2.101), so it really is another version of the relations (2.102).
In any case, when λ (τ) is obtained by isometric transport, as in (2.83) on p. 41,

viz.,
λ (τ) = exp(Aτ/c)λ̂ , (2.104)

we get the same result for Ã no matter what ICIF(τ) =: Kτ is used to reexpress A,
since

λ
−1(τ)Aλ (τ) = λ̂

−1 exp(−Aτ/c)Aexp(Aτ/c)λ̂

= λ̂
−1Aλ̂ = Ã . (2.105)

Returning to the above identification of the matrix Ã with the matrix on the right-
hand side of (2.103), we can immediately deduce what we need to know here in
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order to prove that we have another rigid frame by this construction, despite the
evident fact that the initial tetrad need not be FW transported along the worldline,
since we are not assuming Ωi j = 0 for all i, j ∈ {1,2,3}. The point is that A is a
constant matrix if and only if Ã is a constant matrix, and this is true if and only if a0i
and Ωi j are constant for all i, j ∈ {1,2,3}. This corresponds exactly to superhelical
motion as introduced on p. 25.

At least, we have shown that the theory in [23] always leads to cases of su-
perhelical motion, but it is not yet entirely clear that superhelical motion always
corresponds to a case of GUA with isometrically transported triad. After all, if we
begin with the relations (2.102), we obtain a relation like (2.101), viz.,

c
dλ

µ

(κ)

dτ
= λ

µ

(ν)
A(ν)

(κ) , (2.106)

where A is the constant matrix

A(ν)
(κ) :=


0 a01 a02 a03

a01 0 cΩ21 cΩ31

a02 cΩ12 0 cΩ32

a03 cΩ13 cΩ23 0

 , (2.107)

with ν specifying the row and κ the column, but we have not said anything about
how the space triad should be propagated along the worldline. Superhelical motion
occurs when the Ωi j are not necessarily zero, but all the a0i and Ωi j are constant,
but to show that we have GUA according to the definition, we need to show that we
have

c
duµ

dτ
= Aµ

ν uν , (2.108)

for some constant matrix A and for some choice of inertial frame, and we also need
to know that the space triad {λ̂(i)}i=1,2,3 has been transported isometrically accord-
ing to the rule

c
dλ

µ

(i)

dτ
= Aµ

ν λ
ν

(i) , i = 1,2,3 . (2.109)

This needs to be carefully considered if we are to claim that superhelical motion
corresponds precisely to the general GUA construction of Friedman and Scarr.

We can see how to carry out this construction. Starting with (2.106) and (2.107),
we have the solution

λ
µ

(κ)
(τ) = λ

µ

(ν)
(0)
[

exp(Aτ/c)
]ν
(κ)

, (2.110)

and we define λ̂
µ

(ν)
:= λ

µ

(ν)
(0), which is basically the initial ICIF, whence

λ
µ

(κ)
(τ) = λ̂

µ

(ν)

[
exp(Aτ/c)

]ν
(κ)

. (2.111)
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Since we expect A to correspond to the matrix Ã in our previous discussion, we now
know how we must define the matrix A by looking at (2.92) and (2.93) on p. 42:

A := λ̂Aλ̂
−1 , (2.112)

or in component form

Aν
σ := λ̂

ν

(γ)A
(γ)

(κ)

(
λ̂
−1)(κ)

σ . (2.113)

Note that A is constant, i.e., independent of τ , because the matrix λ̂ is independent
of τ . Now what we hope is that

c
duµ

dτ
= Aµ

ν uν , (2.114)

and that {λ(i)}i=1,2,3 is obtained by isometric transport, i.e., by solving

c
dλ

µ

(i)

dτ
= Aµ

ν λ
ν

(i) , i = 1,2,3 . (2.115)

Since u = λ(0), satisfying the last two equations amounts to satisfying

c
dλ

µ

(κ)

dτ
= Aµ

ν λ
ν

(κ) , κ = 0,1,2,3 . (2.116)

Let us drop indices and work from (2.111) and (2.112) in the form

λ = λ̂ exp(Aτ/c) , A = λ̂Aλ̂
−1 . (2.117)

These imply

λλ̂
−1 = λ̂ exp(Aτ/c)λ̂−1

= exp(λ̂Aλ̂
−1

τ/c)

= exp(Aτ/c) ,

whence
λ = exp(Aτ/c)λ̂ , (2.118)

and this differentiates to give the required result

c
dλ

dτ
= Aλ .

Note that the above argument generalises in a certain sense to non-constant accel-
eration tensors [see Sect. 2.11.4, and in particular the discussion around (2.319) on
p. 100 and following].
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In the present case, the conclusion from this is that the rigid motion described
earlier as superhelical is precisely the motion of fixed space points in the coordinate
system constructed by Friedman and Scarr for an observer with generalised uniform
acceleration (GUA) in the case where the rotational part of the acceleration matrix
is not zero.

Note finally that we do expect the type (2,0) object Ã(κ)(ν) to be antisymmetric,
since

λ(κ) ·λ(ν) = ηκν =⇒ λ̇(κ) ·λ(ν)+λ(κ) · λ̇(ν) = 0

=⇒
[
λ(µ)Ã

(µ)
(κ)

]
·λ(ν)+λ(κ) ·

[
λ(µ)Ã

(µ)
(ν)

]
= 0

=⇒ ηµν Ã(µ)
(κ)+ηκµ Ã(µ)

(ν) = 0

=⇒ Ã(ν)(κ)+ Ã(κ)(ν) = 0 . (2.119)

The type (2,0) object Ã(κ)(ν) := ηκµ Ã(µ)
(ν) we obtain from (2.103) is

Ã(κ)(ν) =

(
0 aT

0

−a0 cΩ

)
, (2.120)

where κ labels rows and ν labels columns, and

Ω :=

Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33

 . (2.121)

The matrix Ã(κ)(ν) is indeed antisymmetric.

2.4.6 Reduction to FW Transport

We also deduce immediately from (2.120) that the isometric transport specified by
(2.82) reduces to FW transport in the initial ICIF

λ̂ = {λ̂(κ)}=
(
u(0),n1(0),n2(0),n3(0)

)
precisely in the case where Ωi j = 0 for all i, j ∈ {1,2,3}.

Note that, if the initial ICIF happens to be the original inertial laboratory frame
K, i.e., if u(0) = (1,0,0,0) and A = Ã, then we have(

0 gT

g cπ(ω)

)
=

(
0 aT

0
a0 −cΩ

)
,

using (2.75) on p. 38, whence it follows that a0 = g and Ω =−π(ω).
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It is important to note here that we may have ordinary translational uniform ac-
celeration (TUA) in the laboratory frame K, as in (2.77) on p. 39, but when we look
at that in the initial ICIF, having carried out the Lorentz transformation (2.87), viz.,
Ã := λ̂−1Aλ̂ , we will generally obtain an acceleration matrix Ã with some rotational
terms. The situation in which the isometric transport (2.82) reduces to FW transport
is one in which Ã has the purely translational form, and not in general one in which
A has that form.

Note in this context that it may happen that the observer is at rest at some event
in the laboratory frame K. We can then construct our frame from that event, taking
the orthonormal basis of K to be the initial ICIF. In this case, still assuming that the
motion looks like TUA motion in K, the isometric transport (2.82) will reduce to
FW transport of that frame along the worldline. But this is not the only case when
TUA motion in the laboratory frame can still be TUA motion in some initial ICIF.
We merely require there to be some event E on the worldline and some ICIF at E
such that the transformation A→ Ã := λ̂−1Aλ̂ preserves the translational form of
the matrix.

A whole normal subgroup of such homogeneous Lorentz transformations, namely
the little group associated with the direction of the 3-vector g, will actually leave
the acceleration matrix completely unchanged. This subgroup contains all rotations
around the direction of g and all boosts in that direction. But in fact any pure space
rotation will transform a purely translational acceleration matrix into another. Using
L to denote the Lorentz transformation λ̂ , we would have

L =

(
1 0
0 R

)
, L−1 =

(
1 0
0 RT

)
,

where R is a 3×3 rotation matrix with inverse R−1 = RT, whence

Ã = L−1AL =

(
1 0
0 RT

)(
0 gT

g 0

)(
1 0
0 R

)
=

(
0 (RTg)T

RTg 0

)
. (2.122)

We can also see that any boost not aligned with g will spoil the purely transla-
tional aspect of the acceleration matrix. Here it is instructive to look at some simple
cases of the effects of Lorentz boosts on purely translational acceleration matrices.
A Lorentz boost in the x direction has the form

L =


c s 0 0
s c 0 0
0 0 1 0
0 0 0 1

 ,

where c := coshβ and s = sinhβ , and β = v/c, with v the speed of the boost. This
satisfies LT = L. Let us see first what happens when we boost a purely translational
acceleration matrix of the form
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Ā =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 ,

i.e., representing pure TUA in the same direction as the boost. We find

˜̄A = LTĀL =


c s 0 0
s c 0 0
0 0 1 0
0 0 0 1




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0




c s 0 0
s c 0 0
0 0 1 0
0 0 0 1



=


c s 0 0
s c 0 0
0 0 1 0
0 0 0 1




s c 0 0
−c −s 0 0
0 0 0 0
0 0 0 0



=


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , (2.123)

since c2− s2 = 1. So ˜̄A = Ā in this case. In other words, TUA motion in a given
direction always looks exactly the same from any inertial frame boosted in that
same direction.

Now let us see what happens when we view a purely translational acceleration
matrix of the form

Ā =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

 ,

from an inertial frame boosted in a space direction orthogonal to the direction of
translational acceleration, e.g., using the above boost

L =


c s 0 0
s c 0 0
0 0 1 0
0 0 0 1

 ,

in the x direction. We shall see that this introduces terms into the rotational sector
of the acceleration matrix. This time we calculate
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˜̄A = LTĀL =


c s 0 0
s c 0 0
0 0 1 0
0 0 0 1




0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0




c s 0 0
s c 0 0
0 0 1 0
0 0 0 1



=


c s 0 0
s c 0 0
0 0 1 0
0 0 0 1




0 0 0 1
0 0 0 0
0 0 0 0
−c −s 0 0



=


0 0 0 c
0 0 0 s
0 0 0 0
−c −s 0 0

 , (2.124)

so this does indeed introduce terms into the rotational sector of the acceleration
matrix.

We can now claim that TUA motion in the laboratory frame K will be TUA
motion in an initial ICIF at some event E on the worldline if the associated trans-
formation λ̂ from K to that initial ICIF involves only a boost along the 3-vector
g associated with the acceleration matrix as expressed relative to K followed by a
space rotation.

But suppose now that we have found such an event and initial ICIF and use
the isometric transport (2.82) to carry the basis of that ICIF along to some other
potential starting point E ′ on the worldline. We will obtain a tetrad ICIF′ there which
could certainly have been used as the initial ICIF because the only thing we require
of that ICIF is that the timelike basis vector should be the 4-velocity there, and the
isometric transport (2.82) guarantees that by construction for this kind of worldline.

Now since the isometric transport (2.82) coincides with FW transport in this
case, this suggests that the transformation directly from K to ICIF′ must keep the
acceleration matrix in the TUA form. If this were not the case, we might have started
with event E ′ and ICIF′, transformed our acceleration matrix A, and obtained an Ã′

with rotational entries. Then we would have said that the isometric transport (2.82)
did not coincide with FW transport and we would appear to have a contradiction
with the idea that the basis of the ICIF at E is getting FW transported along the
worldline by the process laid down by (2.82).

To reassure ourselves that everything is consistent here, we need to prove the
following. Whenever there exists an event E on the worldline and an initial ICIF
λ̂ such that the transformation from K to this ICIF involves only a boost along the
3-vector g associated with the acceleration matrix as expressed relative to K fol-
lowed by a space rotation, then for any other event E ′ and the isometric transport
(or equivalently the FW transport) of λ̂ to a new ICIF denoted by ICIF′ at E ′, the
transformation from K to ICIF′ also involves only a boost along the 3-vector g as-
sociated with the acceleration matrix as expressed relative to K followed by a space
rotation, whence the expression Ã′ of the acceleration matrix relative to ICIF′ will
still be purely translational.
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Here is the proof. By (2.83) on p. 41, we have a basis λ̂ ′ for ICIF′ given by

λ̂
′ := λ (E ′) = exp(Aτ0/c)λ̂ ,

for some fixed τ0 ∈ R. But then

Ã′ = λ̂
′−1Aλ̂

′

=
[

exp(Aτ0/c)λ̂
]−1A

[
exp(Aτ0/c)λ̂

]
= λ̂

−1[exp(−Aτ0/c)Aexp(Aτ0/c)
]
λ̂

= λ̂
−1Aλ̂ = Ã . (2.125)

So the two matrices Ã′ and Ã are actually one and the same, which proves the claim.
The reader should check that the homogeneous Lorentz transformation from K

to the basis λ̂ ′ for ICIF′ is indeed found by multiplying the two matrices exp(Aτ0/c)
and λ̂ , something that looks obvious only because we are using the notation λ̂ ′ to
denote two different things, viz., the basis for ICIF′ and the homogeneous Lorentz
transformation from K to the basis λ̂ ′.

Here we have been considering the case where both the acceleration matrix A and
its version Ã relative to some initial ICIF had purely translational form. But what
concerns us when we seek cases in which the isometric transport (2.82) along the
worldline coincides with FW transport is just that the second matrix Ã should have
purely translational form, so that the motion looks like standard TUA in one of its
instantaneous rest frames.

There is a more general argument here. Whatever ICIF λ̂ ′ we choose at a given
event E on the worldline, it must have the same timelike basis vector as any other
ICIF λ̂ ′′ at the same event, so the two ICIFs are related by a pure space rotation. So
if the acceleration matrix has purely translational form Ã′ relative to the first ICIF,
it will have purely translational form Ã′′ relative to the second ICIF.

Likewise the argument (2.125) shows that, whatever the form of the matrix A, if
we select some event E on the worldline and ICIF λ̂ at that event, and if we obtain a
purely translational Ã there, then we will obtain a purely translational Ã′ at any other
preselected event E ′ on the worldline for at least one choice of ICIF there, namely
the ICIF we denoted by ICIF′ which was obtained by the isometric transport (2.82)
(or equivalently by FW transport in this case) of λ̂ from E. And hence by the last
paragraph, we will obtain a purely translational Ã′ at E ′ for any choice of ICIF there.

These arguments reassure us that the conclusion that our isometric transport
(2.82) along the worldline coincides with FW transport does not depend on the
event E at which we choose to obtain Ã, nor on the choice of ICIF there.
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2.4.7 Extent of Generalisation

Whatever acceleration matrix A gets associated with the worldline when we express
this matrix relative to a given choice of laboratory inertial frame K, there may be
another choice of inertial frame such that the matrix takes on a purely translational
form. In other words, Friedman and Scarr’s generalisation may look like a generali-
sation for one observer but not for another. However, we shall see here that there are
plenty of cases where it really is a generalisation in the sense that there is no other
choice of inertial frame such that the matrix takes on a purely translational form.

The point is that, relative to any other choice of laboratory inertial frame K1, the
acceleration matrix will have the form

A1 = L−1AL , (2.126)

where L is the homogeneous Lorentz transformation from K to K1. Now for certain
forms of the antisymmetric matrix A, there will be some L such that A1 has purely
translational form. However, we can provide a general argument that shows why A
will not always be reducible to purely translational form by any transformation of
type (2.126).

An equivalent statement is this. If we begin with a purely translational A1, we
could generate a whole range of possible acceleration matrices A by considering
matrices LA1L−1 as L ranges over the whole group of homogeneous Lorentz trans-
formations. We may as well begin with

A =


0 g 0 0
g 0 0 0
0 0 0 0
0 0 0 0

 , (2.127)

for some arbitrary g. We can generate all matrices

A =

(
0 gT

g 0

)
, (2.128)

by suitable space rotations [for example, see (2.122) on p. 49]. This already gives
us a 3-parameter subset of the 6-parameter set of all matrices of the kind we are
interested in. [The type (1,1) matrices Aµ

ν are not antisymmetric, but the space
of such matrices obviously has the same dimension as the closely related space
of antisymmetric matrices.] But the three other parameters introduced by Lorentz
boosting in the three space directions will never completely fill out the rotational
sector of A.

In brief, the key observation here is that, although the set of all possible accel-
eration matrices is specified by 6 parameters, and this is precisely the number of
parameters required to specify all elements in the homogeneous Lorentz group, the
matrix (2.127), or indeed the matrix (2.128), is rank 2, i.e., both these matrices have
only two linearly independent columns, and the same goes for any matrix obtained
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from (2.127) by sandwiching it between L and L−1. But the general antisymmetric
4×4 matrix has rank 4.

What can we conclude from this? It is important to be very clear about this, so let
us think about what is involved in the claim that generalised uniform acceleration
really is a generalisation. The first point to consider is that, given some TUA motion,
i.e., standard uniform acceleration in a straight line, as described by (2.77) on p. 39,
viz.,

c
duµ

dτ
= Aµ

ν uν =

(
0 gT

g 0

)(
u0

u/c

)
, (2.129)

so that

c
duµ

dτ
= (c−1g ·u,gu0) , (2.130)

we could always try to view this motion relative to some other inertial frame. We
know from Sect. 2.4.2 how we would transform this equation of motion in order to
describe the worldline relative to the new inertial frame: the answer is that we will
get the same equation expressed relative to the new frame if we transform the object
so suggestively written as Aµ

ν as a type (1,1) tensor. Indeed, if we are to obtain
the same equation expressed relative to the new frame, it has to transform like this
because the left-hand side of (2.129) transforms as a contravector, and so does u.

So there is a sense in which, in many cases, we have not generalised anything
at all. In many cases, all we have done is to recognise how to express uniform
acceleration when it does not look like TUA motion because we are viewing it from
the wrong kind of inertial frame. But we do know from the discussion above that
Friedman and Scarr’s generalisation really does generate other cases.

Furthermore, their frame construction is not always the same as the one obtained
by FW transport of an initial ICIF, even when the motion looks like TUA motion in
some inertial frame, the point being that it has to look like TUA motion in an ICIF.
We can see exactly when it differs by considering the solution (2.80) of (2.129) on
p. 39, viz.,

u = gt +u0 , (2.131)

where u0 is the value of u at time t = 0. So let us suppose that we are in a case where
there is some choice of inertial frame such that the generalised uniform acceleration
(GUA) looks like (2.131).

Now if g and u0 happen to be parallel, there will even be a better choice of inertial
frame, such that the motion has the form

u = gt , (2.132)

in which the observer is at rest at inertial time t = 0. We can just carry out a simple
time translation, or we can do a Lorentz boost in the g direction. We have seen in
Sect. 2.4.6 that such a boost does not alter the acceleration matrix in the TUA case,
a remarkable property of TUA motion [see (2.123) on p. 50].

In fact it is precisely in these cases, where g and u0 happen to be parallel in
some inertial frame for which the motion looks like TUA motion, that Friedman
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and Scarr’s isometric transport (2.82) on p. 41 is the same as FW transport. If g
and u0 are not parallel in some inertial frame for which the motion looks like TUA
motion, they will not be parallel in any inertial frame for which the motion looks
like TUA motion, and then we obtain a superhelical frame construction that does
not coincide with the standard rigid FW transported frame construction.

It is the two claims in the last sentence that need to be proven. The first claim
says that, if there is some inertial frame for which the motion has the TUA form
(2.132) with the observer coming to rest at some point, then in any other inertial
frame for which the motion has the TUA form, she will also come to rest at some
point. But as we have seen in Sect. 2.4.6, it is straightforward to establish that the
TUA form of an acceleration matrix is preserved only by boosts in the relevant g
direction followed by arbitrary space rotations, so this claim is clearly true.

The second claim follows from the first because, if there is an inertial frame
for which the motion takes the form (2.131) with g not parallel to u0, then by the
first claim there is no inertial frame in which the motion takes the TUA form and
the observer comes to rest, and we know that there is always such a frame when
the isometric transport (2.82) reduces to FW transport, because the latter happens
precisely and only when the acceleration matrix has purely TUA form in some ICIF.

When we have the situation in (2.131) and g and u0 are not parallel, we can
choose an inertial frame in which they are actually orthogonal in the spatial hyper-
surface, simply by carrying out a time translation. In order to get the initial veloc-
ity to zero, we then need to do a boost perpendicular to g, and we have seen in
Sect. 2.4.6 that this would introduce terms into the rotational sector of the accelera-
tion matrix [see in particular (2.124) on p. 51].

2.4.8 Metric for Friedman–Scarr Coordinates

These coordinates are obtained by transporting a tetrad from some initial point on
the observer worldline to all other points along it and then carrying out the gen-
eral construction for an SE coordinate frame. We can thus use the general theory
developed in Sect. 2.3.8. We begin with the matrix Ã given in (2.103) on p. 45, viz.,

Ã(ν)
(κ) =


0 a01 a02 a03

a01 0 cΩ21 cΩ31

a02 cΩ12 0 cΩ32

a03 cΩ13 cΩ23 0

 , (2.133)

where ν specifies the row and κ the column. Then relative to the coordinates
{y(κ)}κ=0,1,2,3, the metric established in Sect. 2.3.8 takes the form
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g(µ)(ν) =


[
1+ y(i)a0i

]2− y(i)y( j)ΩikΩ jk y(i)Ωi1 y(i)Ωi2 y(i)Ωi3

y(i)Ωi1 −1 0 0
y(i)Ωi2 0 −1 0
y(i)Ωi3 0 0 −1

 . (2.134)

Note how this matrix is always independent of the temporal coordinate y(0), and the
a0i and Ωi j are just temporal constants for generalised uniform acceleration (GUA).

This is enough to conclude something that will be rather important for later dis-
cussions of the physical interpretation of such coordinate frames, namely that ∂y(0)
is a Killing vector field for every such coordinate construction for GUA motion. A
Killing vector field X is one such that the Lie derivative LX g of the metric along the
flow curves of X is zero.

To prove this claim, we may use the general coordinate formula for the Lie
derivative as given in [27]. For any contravariant vector field X , we have

(LX g)(η)(φ) =
∂g(η)(φ)

∂y(ι)
X (ι)+g(ι)(φ)

∂X (ι)

∂y(η)
+g(η)(ι)

∂X (ι)

∂y(φ)
. (2.135)

We then take X = ∂y(0) which has components X (0) = 1, X (i) = 0, i = 1,2,3, in these
coordinates. Hence,

(LX g)(η)(φ) =
∂g(η)(φ)

∂y(0)
X (0) = 0 ,

as claimed. We can thus say that all observers sitting at fixed space coordinate posi-
tions in these frames are Killing observers.

Explicit examples of this kind of metric are given for the case of translational
uniform acceleration in Sect. 2.9 and for the case of uniform circular motion in
Sect. 2.10.

Any spacetime with a metric of the form (2.134) has a globally defined timelike
Killing vector field and is said to be stationary (see also Sect. 4.3.17). If in addition
only the diagonal elements are nonzero, as happens when all the Ωi j are zero and
we have translational uniform acceleration, the spacetime is said to be static. Of
course, this is the flat Minkowski spacetime so we already know that it is static.
What we discover here is the plethora of Killing vector fields that can be used to get
the Minkowski metric into the stationary or static forms.

Regarding singularities of the matrix of metric components (2.134), the com-
ments at the end of Sect. 2.3.8 pertain exactly. In particular, we have (2.67) on p. 34,
viz.,

detgMink
SE =−

(
1+ξ

ia0i
)2

, (2.136)

which is always independent of the rotation chosen for the space triad {ni}i=1,2,3, as
specified by Ωi, i = 1,2,3, but does depend on the acceleration of the worldline as
specified by its absolute components a0i, i = 1,2,3. This determinant is zero for all
ξ i satisfying

ξ
ia0i(σ) =−1 ,
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for some value of the proper time σ of the observer. The proposed coordinates could
not be extended to such points.

2.4.9 More about Observers at Fixed Space Coordinates

A more general question is whether these Killing observers sitting at fixed space
coordinates in the {y(κ)}κ=0,1,2,3 system actually have GUA motion. In order to
tackle this, we need to know the proper time of these observers.

Here we can also use the general theory of semi-Euclidean coordinate systems in
Sect. 2.3. Recall that this analysis considers a space triad {ni}i=1,2,3 that is smoothly
transported along the observer worldline, without assuming anything other than
smoothness about the transport. Furthermore, we have made the link with the quan-
tities a0i and Ωi j in the relations (2.98) on p. 44, viz.,

cṅ µ

i = a0iuµ + cΩi jn
µ

j . (2.137)

So as on p. 45 ff we have the correspondence ni↔ λ(i), i = 1,2,3, while u↔ λ(0)
and

a0i =−cni · u̇ , (2.138)

which means that
cu̇ = a0ini , (2.139)

since u̇ is orthogonal to u. Then, in this notation, which was a completely general
construction using any smoothly chosen tetrad along the worldline, and for an arbi-
trary smooth timelike worldline, the relation

c
dλ

µ

(κ)

dτ
= λ

µ

(ν)
Ã(ν)

(κ)

is replaced by {
cλ̇(i) = a0iλ(0)+ cΩi jλ( j) ,

cλ̇(0) = a0iλ(i) ,
(2.140)

and we read off the matrix Ã as

Ã(ν)
(κ) =


0 a01 a02 a03

a01 0 cΩ21 cΩ31

a02 cΩ12 0 cΩ32

a03 cΩ13 cΩ23 0

 , (2.141)

with ν specifying the row and κ the column. The specific feature of GUA motion is
that the a0i and Ωi j are actually independent of the proper time along the observer
worldline. It is also important to note that the point of contact between this analysis
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and Friedman and Scarr’s is through Ã, the expression for the acceleration matrix
relative to any ICIF for the main observer, rather than through A, the expression for
the acceleration matrix relative to some arbitrary laboratory inertial frame.

Now it is established in Sect. 2.3 that the 4-velocity of an observer sitting at fixed
ξ i↔ y(i) in the accelerating frame is [see (2.15) on p. 22]

uµ(ξ ,τ) =
[(

1+ξ
ia0i
)
u0

µ +ξ
i
Ωi jn j

µ

]
σ̇ , (2.142)

where τ is the proper time for the observer at ξ and σ(ξ ,τ) is the corresponding
proper time of the main observer, corresponding in the sense that, at that proper
time, the main observer considers the observer at ξ to be simultaneous. The dot on
σ denotes the derivative with respect to τ , keeping ξ fixed, so it is the time dilation
effect between the two observers, something we encounter again in later sections.

In fact, it was shown in (2.16) on p. 22 that

σ̇ =
[(

1+ξ
ia0i
)2−ξ

i
ξ

j
ΩikΩ jk

]−1/2
. (2.143)

Note that σ̇ is constant for GUA motion, because then a0i and Ωi j are constant and
we have fixed the ξ i. So the full formula for the 4-velocity of the observer sitting at
fixed ξ is

uµ(ξ ,τ) =

(
1+ξ ia0i

)
u0

µ +ξ iΩi jn j
µ[(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

]1/2 . (2.144)

We shall encounter this again as a special case of a result derived in later sections
(see in particular Sect. 2.6). For the moment, the index µ on each side refers to
components relative to some arbitrary laboratory inertial frame.

We must now obtain the 4-acceleration aµ(ξ ,τ) by differentiating uµ(ξ ,τ) with
respect to τ for fixed ξ . The aim will be to see whether the 4-acceleration can be
obtained by multiplying the 4-velocity by some constant matrix. We have

aµ(ξ ,τ) =
∂uµ(ξ ,τ)

∂τ

∣∣∣∣
ξ

=

(
1+ξ ia0i

)
u̇0

µ +ξ iΩi jṅ j
µ[(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

]1/2 σ̇

=

(
1+ξ ia0i

)
Aµ

ν u0
ν +ξ iΩi jAµ

ν n j
ν(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

=
Aµ

ν[(
1+ξ ia0i

)2−ξ iξ jΩikΩ jk

]1/2 uν(ξ ,τ) , (2.145)

using the fact that u̇0
µ = Aµ

ν u0
ν and ṅ j

µ = Aµ
ν n j

ν , where Aµ
ν is the version of

the constant acceleration matrix expressed relative to the laboratory inertial frame.
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We conclude that an observer sitting at fixed ξ i in the Friedman–Scarr accelerating
frame would indeed have generalised uniform acceleration, with acceleration matrix

Aµ
ν(ξ ) =

Aµ
ν[(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

]1/2 , (2.146)

as expressed relative to the laboratory inertial frame. When the latter is the initial
instantaneously comoving inertial frame ICIF(0) of the main observer (or as we
know, any ICIF of the main observer and hence also of the observer at ξ ), we have

Ãµ
ν(ξ ) =

1[(
1+ξ ia0i

)2−ξ iξ jΩikΩ jk

]1/2


0 a01 a02 a03

a01 0 Ω21 Ω31
a02 Ω12 0 Ω32
a03 Ω13 Ω23 0

 , (2.147)

although it is not necessary to see this form in order to prove the above claim.
In the above calculation, we could have complicated things by writing

aµ(ξ ,τ) =
∂uµ(ξ ,τ)

∂τ

∣∣∣∣
ξ

=

(
1+ξ ia0i

)
u̇0

µ +ξ iΩi jṅ j
µ[(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

]1/2 σ̇

=

(
1+ξ ia0i

)
a0

µ +ξ iΩi j
(
a0 ju0

µ +Ω jknk
µ
)(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

. (2.148)

It is interesting to consider what this looks like in an ICIF for the main observer,
the obvious one being ICIF(σ ), i.e., {u0(σ),ni(σ)}i=1,2,3 for σ(ξ ,τ), in which the
observer at ξ appears to be simultaneous at her proper time τ . Of course, this ICIF
will change with τ . If we can show that

aµ(ξ ,τ) = Ãµ
ν(ξ ,τ)uν(ξ ,τ) in ICIF

(
σ(ξ ,τ)

)
,

where Ãµ
ν(ξ ,τ) is actually independent of τ , then we are still left with the problem

that we are expressing aµ(ξ ,τ) and uµ(ξ ,τ) relative to different inertial frames for
each value of τ . There are nevertheless ways around this, so let us get our hands
dirty with the prospect of a slightly deeper insight.

First of all, relative to ICIF(σ ), or any ICIF, u0 has the form

u0 =


1
0
0
0

 ,
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and hence

a0 = Ãu0 =


0 a01 a02 a03

a01 0 Ω21 Ω31
a02 Ω12 0 Ω32
a03 Ω13 Ω23 0




1
0
0
0

=


0

a01
a02
a03

 ,

where we use the fact that the acceleration matrix always has the constant form
given here for any ICIF of the main observer [see (2.125) on p. 52].

We now have, from (2.144),

u(ξ ,τ) =
1[(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

]1/2

(1+ξ
ia0i
)

1
0
0
0

+


0

ξ iΩi1
ξ iΩi2
ξ iΩi3


 ,

whence

u(ξ ,τ) =
1[(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

]1/2


1+ξ ia0i

ξ iΩi1
ξ iΩi2
ξ iΩi3

 . (2.149)

This shows that, unless all the Ωi j are not just constant but actually zero, the hy-
perplane of simultaneity for the main observer at σ(ξ ,τ) is never a hyperplane of
simultaneity for the observer at ξ at her proper time τ , since u(ξ ,τ) is never or-
thogonal to it. When the Ωi j are all zero and we have TUA motion, we recover
the well known result (see Sect. 2.9) that observers at fixed ξ share hyperplanes of
simultaneity with the main observer in this precise sense.

This result should be compared with the HOS sharing effect already discussed in
conjunction with (2.33) on p. 27 at the beginning of Sect. 2.3.4. There we showed
that it occurs for any FW transported space triad, i.e., purely translational acceler-
ation matrix relative to a suitable tetrad field along the worldline, even if the trans-
lational acceleration is not uniform. We can thus say that HOS sharing is a conse-
quence of the rigidity assumption for the general SE frame construction, while all
the Friedman–Scarr frame constructions for GUA motion are rigid but we only have
HOS sharing when there is no rotation in the GUA motion.

Returning to the problem at hand and using (2.148) for aµ(ξ ,τ), we have

aµ(ξ ,τ) =
1(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

(1+ξ
ia0i
)

0
a01
a02
a03

+ξ
i
Ωi j


a0 j
Ω j1
Ω j2
Ω j3


 ,

whence
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aµ(ξ ,τ) =
1(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk


ξ iΩi ja0 j(

1+ξ ia0i
)
a01 +ξ iΩi jΩ j1(

1+ξ ia0i
)
a02 +ξ iΩi jΩ j2(

1+ξ ia0i
)
a03 +ξ iΩi jΩ j3

 .

It is now a simple matter to check that

a(ξ ,τ) =
1[(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

]1/2


0 a01 a02 a03

a01 0 Ω21 Ω31
a02 Ω12 0 Ω32
a03 Ω13 Ω23 0

u(ξ ,τ) ,

(2.150)
when aµ(ξ ,τ) and uµ(ξ ,τ) are expressed in component form relative to the inertial
frame ICIF

(
σ(ξ ,τ)

)
.

How can we deduce that the observer at ξ is uniformly accelerating? As men-
tioned before, even though the matrix in the last relation is independent of τ , the
problem is that the two 4-vectors are expressed relative to different inertial frames
at each value of τ . But let L be the Lorentz transformation from ICIF

(
σ(ξ ,τ)

)
to

ICIF(0). We know from previous investigations that

L = exp
[
− Ã(ξ = 0)σ(ξ ,τ)

]
,

where

Ã(ξ = 0) =


0 a01 a02 a03

a01 0 Ω21 Ω31
a02 Ω12 0 Ω32
a03 Ω13 Ω23 0

 .

We have

āκ(ξ ,τ) = Lκ
µ aµ(ξ ,τ) , uν(ξ ,τ) = (L−1)ν

λ ūλ (ξ ,τ) ,

where bars over a and u denote versions of these 4-vectors expressed relative to
ICIF(0). The relation (2.150) can now be written

āκ(ξ ,τ) = Lκ
µ

Ã(ξ = 0)µ
ν[(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

]1/2 (L
−1)ν

λ ūλ (ξ ,τ) .

However, it is clear that

LÃ(ξ = 0)L−1 = Ã(ξ = 0) ,

since L is obtained as an exponential of Ã(ξ = 0). Hence (2.150) becomes
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ā(ξ ,τ) =
1[(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

]1/2


0 a01 a02 a03

a01 0 Ω21 Ω31
a02 Ω12 0 Ω32
a03 Ω13 Ω23 0

 ū(ξ ,τ) ,

(2.151)
when āµ(ξ ,τ) and ūµ(ξ ,τ) are expressed in component form relative to the constant
inertial frame ICIF(0), i.e., a frame independent of τ . This finalises the second proof
of the claim that an observer sitting at fixed ξ has GUA motion.

2.5 Velocity Transformations

The aim here is to consider an object or observer with arbitrary motion and relate
the description of its 4-velocity in the laboratory inertial frame to the description
of its 4-velocity in a semi-Euclidean coordinate system {y(κ)}κ=0,1,2,3. Here we use
the notation and analysis in [23] for the case of generalised uniform acceleration,
although the considerations will apply equally to the general construction of SE
coordinates.

We thus begin with the relation (2.97) on p. 44, viz.,

xµ = x̂µ(τ)+ y(i)λ(i)(τ) . (2.152)

Basically, we have found τ such that the event X with laboratory coordinates xµ can
be written in this way, and the coordinates of event X in the accelerating frame K′

are defined as (cτ,y(1),y(2),y(3)). The relation (2.152) then tells us how to convert
from these coordinates to the original laboratory coordinate system K.

We use (2.152) to relate small changes in the y(κ) to small changes in the xµ ,
which leads to

dxµ =
1
c

dx̂µ(τ)

dτ
dy(0)+λ

µ

(i)(τ)dy(i)+ y(i)
1
c

dλ
µ

(i)(τ)

dτ
dy(0) . (2.153)

Now dx̂µ(τ)/cdτ is the 4-velocity of the main observer at her proper time τ , so

1
c

dx̂µ(τ)

dτ
= λ

µ

(0)(τ) . (2.154)

We thus have

dxµ = λ
µ

(κ)
(τ)dy(κ)+ y(i)

1
c

dλ
µ

(i)(τ)

dτ
dy(0) . (2.155)

We also know that

c
dλ

µ

(κ)
(τ)

dτ
= λ

µ

(ν)
Ã(ν)

(κ) , (2.156)

according to (2.94) on p. 43. Now we can rewrite the last term in (2.155) using
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y(i)
1
c

dλ
µ

(i)(τ)

dτ
= c−2(Ãȳ)(ν)λ µ

(ν)
(τ) , (2.157)

where
ȳ := x− x̂(τ) = y(i)λ(i)(τ) . (2.158)

The meaning of (Ãȳ)(ν) is just

(Ãȳ)(ν) = Ã(ν)
(κ)ȳ

(κ) = Ã(ν)
(i)y

(i) .

Hence, finally,

dxµ = λ
µ

(κ)
(τ)dy(κ)+ c−2(Ãȳ)(ν)λ µ

(ν)
(τ)dy(0) . (2.159)

We now imagine a point object with motion xµ(τp), as described relative to the
laboratory inertial frame K, where the parameter τp is the proper time of that object.
The dimensionless 4-velocity uµ as described in K is thus

uµ :=
dxµ

cdτp
= λ

µ

(κ)
(τ)

dy(κ)

cdτp
+ c−2(Ãȳ)(ν)λ µ

(ν)
(τ)

dy(0)

cdτp
. (2.160)

The whole problem here is to establish a formula for τp. This is very similar to the
problem of determining σ̇ in (2.143) on p. 58.

The trick used to sort this out is basically the same too. We note that, if τ̃ is any
time parameter for the particle worldline xµ(τ̃), then the quantity

ũµ :=
dxµ

cdτ̃
(2.161)

is related to the dimensionless 4-velocity u by

u =
ũ

(ũ · ũ)1/2 , (2.162)

simply because u is a unit vector in the same direction as ũ. Furthermore,

u =
1
c

dx
dτp

=
1
c

dx
dτ̃

dτ̃

dτp
= ũ

dτ̃

dτp
, (2.163)

whence
dτ̃

dτp
=

1
(ũ · ũ)1/2 =: γ̃ . (2.164)

Now one option for the parameter cτ̃ is just the time coordinate y(0) = cτ in the
accelerating frame. We define

w̃(µ) :=
dy(µ)

dy(0)
. (2.165)
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This is the naive 4-velocity of the particle as measured relative to the coordinates of
the accelerating frame. Then (2.159) becomes

ũµ =
1
c

dxµ

dτ
=

dxµ

dy(0)
= λ

µ

(κ)
(τ)

dy(κ)

dy(0)
+ c−2(Ãȳ)(ν)λ µ

(ν)
(τ)

=
[
w̃(ν)+ c−2(Ãȳ)(ν)

]
λ

µ

(ν)
(τ) . (2.166)

This is the sum of the particle’s naive 4-velocity w̃ as measured within the acceler-
ating frame K′ and a term

ũa := c−2(Ãȳ)(ν)λ µ

(ν)
(τ) , (2.167)

due to the acceleration of K′ relative to the laboratory inertial frame K. Finally, the
4-velocity of the particle expressed relative to K is

u =
ũ

(ũ · ũ)1/2 =
w̃+ ũa

|w̃+ ũa|
=

[
w̃(ν)+ c−2(Ãȳ)(ν)

]
λ

µ

(ν)
(τ)

|w̃+ c−2Ãȳ| . (2.168)

To derive this, we have not assumed anything specific about the acceleration matrix
Ã, so this is a completely general result for all the semi-Euclidean frame construc-
tions of the kind discussed in Sect. 2.3.

We can express ũ and the time dilation relation dτ = γ̃dτp in more detail by
recalling the explicit form

Ã =


0 a01 a02 a03

a01 0 cΩ21 cΩ31
a02 cΩ12 0 cΩ32
a03 cΩ13 cΩ23 0

 , (2.169)

whence

Ãȳ =


0 a01 a02 a03

a01 0 cΩ21 cΩ31
a02 cΩ12 0 cΩ32
a03 cΩ13 cΩ23 0




0
y(1)

y(2)

y(3)

=


a0·y

c
[
Ω21y(2)+Ω31y(3)

]
c
[
Ω12y(1)+Ω32y(3)

]
c
[
Ω13y(1)+Ω23y(2)

]

 .

(2.170)
We can connect with the notation of [23] in (2.75) and (2.76) on p. 38, viz.,

Ã(µ)
(ν)(g̃, ω̃) =

(
0 g̃T

g̃ cπ(ω̃)

)
, π(ω̃) := εi jkω̃

k . (2.171)

We are saying that
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cπ(ω̃) := cεi jkω̃
k = c

Ω11 Ω21 Ω31

Ω12 Ω22 Ω32

Ω13 Ω23 Ω33

 , (2.172)

and we know that

(cy×ω̃)i = cεi jky jω̃k = c

Ω11 Ω21 Ω31

Ω12 Ω22 Ω32

Ω13 Ω23 Ω33


 y(1)

y(2)

y(3)



=

 c
[
Ω21y(2)+Ω31y(3)

]
c
[
Ω12y(1)+Ω32y(3)

]
c
[
Ω13y(1)+Ω23y(2)

]
 ,

so we have
Ãȳ =

(
g̃·y,cy×ω̃

)
.

We now define v by

w̃(ν) =
dy(ν)

dy(0)
=: (1,v/c) . (2.173)

Then by (2.166), ũµ is given by

ũµ =
(
w̃+ c−2Ãȳ

)(ν)
λ

µ

(ν)
(τ) ,

where
w̃+ c−2Ãȳ =

(
1+ g̃·y/c2,c−1(v+y×ω̃

))
.

Referring to (2.164), it follows that

γ̃ =
1

(ũ · ũ)1/2 =
1√(

1+
g̃·y
c2

)2

−
(

v+y×ω̃

c

)2
. (2.174)

Also by (2.164), we can now relate the proper time τp of the object to the time coor-
dinate τ that the observer spreads over the region of spacetime around her worldline,
with the result

dτp =

√(
1+

g̃·y
c2

)2

−
(

v+y×ω̃

c

)2

dτ . (2.175)

It is interesting to see how readily we claim that this relates the time dilation between
the particle and the observer in K′. As a matter of fact, the particle does not usually
coincide with the observer worldline, so this is a relation between the proper time
of the particle and a time coordinate the observer happens to have chosen in her
spacetime neighbourhood, which is not at all the same thing. This relationship is
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coordinate dependent. There are other ways to spread time over this neighbourhood.
Which one should the observer use? Which one would she most naturally use?

The answer may well be that she would use the spreading advocated so far by
every semi-Euclidean frame construction of the kind we have been considering,
viz., attributing her own proper time to all events in her instantaneous hyperplane of
simultaneity, which is the uniquely defined 3-space orthogonal to her instantaneous
4-velocity. But this does need to be pointed out.

Note once again that the results of this section are completely general for all the
semi-Euclidean frame constructions of the kind discussed in Sect. 2.3.

2.6 Four-Velocity of an Object at Fixed Space
Coordinates in the Accelerating Frame

We can use the result in the last section to rederive (2.144) on p. 58, viz.,

uµ(ξ ,τ) =

(
1+ξ ia0i

)
u0

µ +ξ iΩi jn j
µ[(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

]1/2 . (2.176)

We start from (2.153) on p. 62, viz.,

dxµ =
1
c

dx̂µ(τ)

dτ
dy(0)+λ

µ

(i)(τ)dy(i)+ y(i)
1
c

dλ
µ

(i)(τ)

dτ
dy(0) , (2.177)

considered to give an element of spacetime displacement along the object worldline.
In this case we are assuming that it sits at fixed space coordinates in the frame K′,
i.e., that dy(i) = 0. Hence, the relation we require here is

dxµ =

[
1
c

dx̂µ(τ)

dτ
+ y(i)

1
c

dλ
µ

(i)(τ)

dτ

]
dy(0) . (2.178)

By the same arguments as those leading to (2.159) on p. 63, or directly from that
relation, we have in this case

dxµ

dy(0)
= λ

µ

(0)(τ)+ c−2(Ãȳ)(ν)λ µ

(ν)
(τ) . (2.179)

If we now normalise this by dividing it by its own pseudolength, we obtain the
4-velocity of the object as expressed relative to the laboratory inertial frame K,
which is what should correspond to uµ(ξ ,τ) in (2.176).

Now y(i)↔ ξ i and
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Ã←→


0 a01 a02 a03

a01 0 cΩ21 cΩ31
a02 cΩ12 0 cΩ32
a03 cΩ13 cΩ23 0

 ,

so, as in (2.170) on p. 64, we have

Ãȳ←→


0 a01 a02 a03

a01 0 cΩ21 cΩ31
a02 cΩ12 0 cΩ32
a03 cΩ13 cΩ23 0




0
ξ 1

ξ 2

ξ 3

=


a0·y

c
(
Ω21ξ 2 +Ω31ξ 3

)
c
(
Ω12ξ 1 +Ω32ξ 3

)
c
(
Ω13ξ 1 +Ω23ξ 2

)
 .

Then bearing in mind the correspondence λ(i)↔ ni, we can thus rewrite

λ
µ

(0)(τ)+ c−2(Ãȳ)(ν)λ µ

(ν)
(τ)←→ uµ

0 (1+ c−2a0·y)+
1
c

[(
Ω21ξ

2 +Ω31ξ
3)nµ

1

+
(
Ω12ξ

1 +Ω32ξ
3)nµ

2 +
(
Ω13ξ

1 +Ω23ξ
2)nµ

3

]
= (1+a0iξ

i)uµ

0 +ξ
i
Ωi jn

µ

j .

The denominator in (2.176) is clearly just the pseudolength of this, so we obtain that
earlier result.

2.7 Acceleration Transformations for GUA Observers

The aim here is to consider an object or observer with arbitrary motion and relate
the description of its 4-acceleration in the laboratory inertial frame to the description
of its 4-acceleration in the {y(κ)}κ=0,1,2,3 coordinate system. In this section, we
consider only the case where the accelerating frame is adapted to an observer with
generalised uniform acceleration, whence the acceleration matrix Ã in the analysis
below is taken as independent of the proper time τ of that observer. Once again, the
analysis is adapted from [23].

We begin by defining

ã := c
dũ
dτ

= c2 dũ
dy(0)

, (2.180)

where we recall from (2.166) on p. 64 that

ũµ :=
dxµ

dy(0)
=
[
w̃(ν)+ c−2(Ãȳ)(ν)

]
λ

µ

(ν)
(τ) , (2.181)

and from (2.165) that

w̃(µ) :=
dy(µ)

dy(0)
, (2.182)
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the naive 4-velocity of the particle as measured relative to the coordinates of the
accelerating frame. We now write

ã = c
dw̃(ν)

dτ
λ(ν)(τ)+

[
Ã

dȳ
dy(0)

](ν)
λ(ν)(τ)+ c

[
w̃(ν)+ c−2(Ãȳ)(ν)

]dλ
µ

(ν)
(τ)

dτ

= b̃+ Ãw̄+ Ãũ , (2.183)

where we have made the definitions

b̃ := c
dw̃(ν)

dτ
λ(ν)(τ) = c2 d2y(ν)

dy(0)2
λ(ν)(τ) , (2.184)

and

w̄ :=
dȳ(ν)

dy(0)
λ(ν)(τ) , (2.185)

and we have made the deduction

c
[
w̃(ν)+ c−2(Ãȳ)(ν)

]dλ
µ

(ν)

dτ
=
[
w̃(ν)+ c−2(Ãȳ)(ν)

]
λ(κ)Ã

(κ)
(ν)

= λ(κ)Ã
(κ)

(ν)ũ
(ν)

= Ãũ , (2.186)

as stated above. In the last deduction, we may take the penultimate line as the obvi-
ous definition for the last line.

Care must be taken over the definition (2.184) of b̃. It is not true that

b̃ = c
dw̃
dτ

(not true) ,

since w̃ = w̃(ν)λ(ν)(τ), so

c
dw̃
dτ

= c
dw̃(ν)

dτ
λ(ν)+ cw̃(ν)

dλ(ν)

dτ
.

Since y(0) is a length, b̃(µ) is the naive acceleration as construed relative to the coor-
dinates {y(κ)}κ=0,1,2,3 in the accelerating frame K′.

By the term Ãw̄ we must understand

Ãw̄ = λ(κ)Ã
(κ)

(ν)
dȳ(ν)

dy(0)
=

[
Ã

dȳ
dy(0)

](κ)
λ(κ) ,

which connects with the first line of (2.183). Note also that

w̄(µ) =
dȳ(µ)

dy(0)
=

(
0,

dy(1)

dy(0)
,

dy(2)

dy(0)
,

dy(3)

dy(0)

)
= (0,v/c) , (2.187)
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with reference to the definition (2.158) on p. 63, viz.,

ȳ := x− x̂(τ) = y(i)λ(i)(τ) , (2.188)

and the definition (2.173) on p. 65, viz.,

w̃(ν) =
dy(ν)

dy(0)
=: (1,v/c) . (2.189)

This shows the relation between w̄(µ) and w̃(µ). In fact, w̄ is the projection of w̃ onto
the relevant hyperplane of simultaneity for the relevant value of τ .

We also define
d̃ := b̃+ Ãw̄ , (2.190)

the first two terms in the first line of (2.183), since these are the terms that do not
involve a differentation of λ (τ) in the step from ũ to ã. Explicitly,

d̃ = λ(ν)(τ)

[
c2 d2y(ν)

dy(0)2
+ Ã(ν)

(µ)
dȳ(µ)

dy(0)

]
. (2.191)

We also define a naive 3-acceleration ap in K′ by

b̃ =: (0,ap) , (2.192)

using (2.184).
Now if Ã has the form (2.171) on p. 64, viz.,

Ã(µ)
(ν)(g̃, ω̃) =

(
0 g̃T

g̃ cπ(ω̃)

)
, π(ω̃) := εi jkω̃

k , (2.193)

this means that, for any 4-component object r = (r0,r), we have

(Ãr)(ν) =
(

0 g̃T

g̃ cπ(ω̃)

)(
r0

r

)
=

(
g̃·r

r0g̃+ cπ(ω̃)r

)
,

and [
π(ω̃)r

]
i = εi jkω̃

kr j = (r×ω̃)i ,

so finally

(Ãr)(ν) =
(

g̃·r
r0g̃+ cr×ω̃

)
. (2.194)

We now return to (2.183), viz.,

ã = b̃+ Ãw̄+ Ãũ ,

and insert
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b̃(ν) =
(

0
ap

)
, w̃(ν) =

(
1
w

)
, w̄(ν) =

(
0
w

)
, ȳ(ν) =

(
0
y

)
, (2.195)

ũ(ν) = w̃(ν)+ c−2(Ãȳ)(ν) =
(

1
w

)
+ c−2

(
g̃·y

cy×ω̃

)
, (2.196)

where the index on the object on the left of each relation indicates that these are
components relative to λ(ν)(τ). To get (2.196), we used (2.194) with r = ȳ. Then
(2.194) and (2.196) together imply that

Ãũ =

(
g̃·u

u(0)g̃+ cu×ω̃

)
=

(
g̃·
(
w+ c−1y×ω̃

)(
1+ g̃·y/c2

)
g̃+ c

(
w+ c−1y×ω̃

)
×ω̃

)
.

Finally, by (2.194) once more,

Ãw̄ =

(
g̃·w

cw×ω̃

)
,

whereupon

ã(ν)=
(

0
ap

)
+

(
g̃·w

cw×ω̃

)
+

(
g̃·
(
w+ c−1y×ω̃

)(
1+ g̃·y/c2

)
g̃+ c

(
w+ c−1y×ω̃

)
×ω̃

)
,

leading to

ã(ν) =
(

g̃·
(
2w+ c−1y×ω̃

)
ap +

(
1+ g̃·y/c2

)
g̃+2cw×ω̃ +(y×ω̃)×ω̃

)
. (2.197)

But what can we do with this object? It gives us the quantity ã := cdũ/dτ , where ũ=
dx/cdτ , and x is here the function describing the worldline of the chosen particle,
while cτ is the zeroth coordinate y(0) for the accelerating coordinate frame K′. It is
expressed in terms of the quantities g̃ and ω̃ entering into the acceleration matrix
Ã together with the quantities y, w, and ap which describe the particle’s 3-position,
3-velocity, and 3-acceleration relative to the coordinates of K′. Furthermore, it is in
a component form relative to the tetrad {λ(µ)}µ=0,1,2,3, so that ã = ã(µ)λ(µ)(τ).

But we would like to express the 4-acceleration a of the particle, viz.,

a := c
du
dτ

= c
du
dτp

dτp

dτ
, (2.198)

where u is given by (2.168) on p. 64, viz.,

u =
ũ

(ũ · ũ)1/2 =

[
w̃(ν)+ c−2(Ãȳ)(ν)

]
λ

µ

(ν)
(τ)

|w̃+ c−2Ãȳ| . (2.199)

We obtained an expression for dτ/dτp in (2.164) on p. 63 and (2.174) on p. 65, viz.,
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dτp

dτ
= γ̃ =

1
(ũ · ũ)1/2 =

1√(
1+

g̃·y
c2

)2

−
(

cw+y×ω̃

c

)2
. (2.200)

Note that v in (2.174) was defined by (2.189) on p. 69, and this is exactly the same
(up to a factor of c) as w defined by (2.195). Furthermore, by (2.163) and (2.164) on
p. 63,

u = γ̃ ũ . (2.201)

We now have

a := c
du
dτ

= c
du
dτp

dτp

dτ
= cγ̃

d
dτ

(γ̃ ũ) = γ̃
2ã+ cγ̃ ũ

dγ̃

dτ
,

and

c
dγ̃

dτ
= c

d
dτ

1
(ũ · ũ)1/2 =−1

2
2cũ ·dũ/dτ

(ũ · ũ)3/2 =−ã · ũγ̃
3 =−ã ·uγ̃

2 ,

whence
a = γ̃

2[ã− (ã ·u)u
]
. (2.202)

Now we said that

ã = b̃+ Ãw̄+ Ãũ = d̃ + Ãũ , d̃ := b̃+ Ãw̄ , (2.203)

so

a = γ̃
2(d̃ + Ãũ)− γ̃

2[d̃ ·u+(Ãũ) ·u
]
u

= γ̃
2(d̃ + Ãũ)− γ̃

2(d̃ ·u)u−
[
γ̃(Ãu) ·u

]
u .

But
(Ãu) ·u = uT ˜̄Au = 0 ,

where ˜̄A is the type (2,0) tensor, because ˜̄A is an antisymmetric matrix. Hence,

a = γ̃
2
[
Ãũ+ d̃− (d̃ ·u)u

]
. (2.204)

If we define
d̃⊥ := d̃− (d̃ ·u)u , (2.205)

the component of d̃ orthogonal to the 4-velocity of the particle, this takes on the
simpler form

a = γ̃Ãu+ γ̃
2d̃⊥ . (2.206)

Note that this is orthogonal to the 4-velocity u of the particle, as it should be. We
just noted that Ãu is orthogonal to u, and we see why the other term can only lie
along the component of d̃ that is orthogonal to u. Remember that d̃ is supposed



72 2 Adapted Frames in Special Relativity

to describe the acceleration of the particle relative to the instantaneously comoving
inertial frame {λ(µ)}µ=0,1,2,3.

The quantity Ãu is basically the acceleration of a rest point in the accelerating
frame K′, i.e., the acceleration of a particle sitting at fixed space coordinates y(i),
i = 1,2,3, in that frame. This is because we then have d̃ = 0, since ap = 0, b̃ = 0,
w = 0, and w̄ = 0 in that case. But, of course, γ̃ 6= 1 in general, even in that case. So
we obtain

a = γ̃Ãu , for particle at fixed y(i) . (2.207)

This is quite a nice result, since it says that the acceleration matrix Ã can even be
used to find the 4-acceleration of an arbitrary fixed space point in the coordinate
frame K′ by multiplying the 4-velocity of that point, provided we include the time
dilation factor γ̃ , given in this case by (2.200) above with w = 0, viz.,

dτp

dτ
= γ̃ =

1
(ũ · ũ)1/2 =

1√(
1+

g̃·y
c2

)2

−
(

y×ω̃

c

)2
, for particle at fixed y(i) .

(2.208)
Equation (2.207) is exactly the result (2.145) on p. 58. Equation (2.208) obviously
corresponds to (2.143) on p. 58.

We can also rederive the result (2.10) on p. 19, viz.,

d2yi

dy02 +ai +2Ω
i
j

dy j

dy0 −2a j dy j

dy0
dyi

dy0 = 0 , (2.209)

which relates the coordinate acceleration ai
p := d2yi/dy02 of a free particle in a semi-

Euclidean frame to the components ai of the acceleration of the observer, the com-
ponents Ω i

j of the rotation tensor for the chosen space triad, and the components
vi := cdyi/dy0 of the coordinate velocity, all expressed relative to the SE coordi-
nate frame, at some event where the particle worldline just happens to intersect the
worldline of the observer, i.e., at some event where yi = 0, i = 1,2,3. [Note, how-
ever, that (2.209) is valid even for non-constant ai and Ω i

j, whereas the present
section is limited to the case where they are constant along the worldline.]

We begin with (2.202), setting a = 0, since this is the equation of motion of a
free particle:

ã = (ã ·u)u , (2.210)

where u = γ̃ ũ, according to (2.201). Setting y = 0 in (2.197), we have

ã(ν)
∣∣∣
y=0

=

(
2g̃·w

ap + g̃+2cw×ω̃

)
(2.211)

Setting y = 0 in (2.196) on p. 70, we have

ũ(ν)
∣∣∣
y=0

=

(
1
w

)
, w = v/c , (2.212)
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and setting y = 0 in (2.200) on p. 71, we have

γ̃|y=0 =
1√

1− v2/c2
.

The correspondence of notation is

vi

c
←→ dyi

dy0 , ap←→
d2yi

dy02 , g̃i←→ ai , cεi jkω̃
k←→Ω

i
j ,

where ai and Ω i
j are obtained by comparing (2.169) and (2.171) on pp. 64 ff [see,

for example, (2.172) on p. 65]. This implies

(v×ω̃)i = εi jkv j
ω̃

k =
1
c

Ω
i
jv j . (2.213)

We thus obtain

ã ·u =
1√

1− v2/c2

[
2g̃·w−

(
ap + g̃+2cw×ω̃

)
·v
c

]
=

1

c
√

1− v2/c2
(a−ap)·v .

The zero component of (2.210) reads

2a ·v =
1

1− v2/c2 (a−ap)·v , (2.214)

while the other three components of (2.210) imply

ap + g̃+2cw×ω̃ =
1

c2(1− v2/c2)

[
(a−ap)·v

]
v

=
2a ·v

c
v
c
,

using (2.214) in the second step. Using g̃ = a and (2.213), we thus have

ai
p +ai +

2
c

Ω
i
jv j− 2

c2 a jv jvi = 0 ,

and, by the above notational correspondence, this is the same as (2.209).

2.8 Summary

If we consider an arbitrary timelike worldline in special relativity, we can always
find coordinate systems {ξ i,τ} adapted to that worldline in the following sense:
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• The worldline is given by ξ i = 0, i = 1,2,3.
• The coordinate τ is equal to the proper time σ along the worldline.
• The metric is given at any event (ξ i,τ) by

g00 =
(
1+ξ

ia0i
)2−ξ

i
ξ

j
ΩikΩ jk , g0i = ξ

j
Ω ji = gi0 , gi j =−δi j ,

(2.215)
where Ωi j(σ) is an antisymmetric 3× 3 matrix describing the rotation of the
spatial coordinate axes as one moves along the worldline [see (2.58) on p. 32]
and a0i(σ) are the three nonzero components of the acceleration 4-vector in the
instantaneously comoving inertial frame.

• The metric reduces to the standard form ηµν of the Minkowski metric on the
worldline and induces the Euclidean metric on the spacelike hypersurfaces of
simultaneity τ = constant for these coordinates.

• The connection is given on the worldline itself by

Γ
i

00 = Γ
0

0i = Γ
0

i0 = a0i , i = 1, 2, 3 , (2.216)

Γ
µ

i j = 0 , µ = 0, 1, 2, 3, i = 1, 2, 3 , (2.217)

Γ
i

0 j = Γ
i
j0 = Ωi j , i, j = 1, 2, 3 , (2.218)

and hence encodes the acceleration of the worldline and the rotation of the spatial
coordinate axes.

Choosing spatial coordinate axes such that Ωi j(σ) = 0 for all proper times σ along
the worldline amounts to selecting a spacelike triad orthogonal to the tangent to
the worldline, which is just its 4-velocity, at some point, and then Fermi–Walker
transporting that triad along the worldline to specify the spatial coordinate axes at
other points along the worldline.

This also achieves rigidity of the coordinate system in the following sense. Any
two observers sitting at two fixed neighbouring space coordinates ξ and ξ +δξ are
always the same proper distance apart as measured by either in an instantaneously
comoving inertial frame. This in turn means that a ruler satisfying the ruler hypoth-
esis would always correctly indicate spatial coordinate separations when made to sit
at fixed spatial coordinates in this system.

In the case of non-rotating spatial coordinate axes, the metric has the form

(
gµτ

)
=


(
1+ξ ja0 j

)2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,
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which is static if and only if the absolute acceleration components a0i are constants
(independent of proper time along the worldline), a motion known as (translational)
uniform acceleration.

The notion of uniform acceleration can be generalised and a rigid coordinate sys-
tem obtained without the need to FW transport the initial instantaneously comoving
frame (ICIF) along the worldline. Such motion satisfies

c
duµ

dτ
= Aµ

ν uν , (2.219)

with some specified initial value u(0) = u0, where Aµ
ν is a tensor under Lorentz

transformations with the property that Aµν := ηµσ Aσ
ν is antisymmetric and with

the further property of being independent of τ . The initial ICIF λ̂ = {λ̂(κ)} is trans-
ported along the worldline by the isometry specified by

c
dλ

µ

(κ)

dτ
= Aµ

ν λ
ν

(κ) , λ(κ)(0) = λ̂(κ) . (2.220)

This generalised uniform acceleration (GUA) and the associated semi-Euclidean
frame are Poincaré covariant constructions.

When the acceleration matrix A has the translational form

A =

(
0 gT

g 0

)
, (2.221)

where g is constant (independent of τ along the worldline), in some inertial frame
relative to which the worldline comes to rest at some event, then the motion is pure
translational uniform acceleration (TUA) according to the standard definition of uni-
form acceleration and the isometric transport (2.220) coincides with Fermi–Walker
transport.

So we can construct semi-Euclidean (SE) coordinate systems for any observer
motion and any smooth propagation of the space triad. In general, a fluid whose
particles sit at fixed space coordinates in such a system will have rigid motion if
and only if the space triad is Fermi–Walker (FW) transported along the observer
worldline. However, for GUA motion with Friedman–Scarr (FS) isometric trans-
port of the space triad, a fluid whose particles sit at fixed space coordinates will
also have rigid (superhelical) motion. Indeed such superhelical motion can only be
achieved for GUA motion of the main observer and FS transport of the space triad
(see Sect. 2.4.5).

In the Friedman–Scarr coordinate construction for GUA motion, the Minkowski
metric has the form (2.134) on p. 56, viz.,
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g(µ)(ν) =


[
1+ y(i)a0i

]
− y(i)y( j)ΩikΩ jk y(i)Ωi1 y(i)Ωi2 y(i)Ωi3

y(i)Ωi1 −1 0 0
y(i)Ωi2 0 −1 0
y(i)Ωi3 0 0 −1

 . (2.222)

An observer sitting at fixed space coordinates in the Friedman–Scarr construction
for GUA motion is a Killing observer, i.e., the Lie derivative of the Minkowski
metric is zero along her worldline (see Sect. 2.4.8). Furthermore, she herself will
have GUA motion (see Sect. 2.4.9).

Observers sitting at fixed space coordinates in the FS frame of a main observer
with GUA motion share hyperplanes of simultaneity with the latter, in the precise
sense described just after (2.149) on p. 60, if and only if the motion of the main
observer is actually TUA. But HOS sharing also occurs for a main observer with ar-
bitrary motion provided she uses an FW transported tetrad to establish coordinates,
regardless of whether her purely translational acceleration as viewed in this frame
is uniform or not [see (2.33) on p. 27 and the ensuing discussion in Sect. 2.3.4].

These are very general considerations, but it is important to look at examples.
Section 2.9 discusses standard translational uniform acceleration, while Sect. 2.10
shows that circular motion at constant angular velocity is an example of GUA mo-
tion and a rigid frame can therefore be constructed using isometric transport (2.220),
and Sect. 2.11 gives a broad discussion of circular motion with varying angular ve-
locity, including the frame construction with Fermi–Walker transport of the initial
tetrad.

2.9 Translational Uniform Acceleration

We can deduce everything about TUA motion very quickly from the general case.
We also make a host of simplifying assumptions, without loss of generality. So we
consider the case g = (g,0,0), ω = 0 and we assume that the observer is initially at
rest at the origin of the laboratory frame K. Then we take the initial ICIF λ (0) := λ̂

to be the orthonormal basis for K, whence λ (0) = I, the identity matrix. As can be
seen from (2.87) on p. 42, this means that Ã = A. In this case then we know that the
FS accelerating frame K′ is found by FW transport of the ICIF along the worldline.

So we have

Aµ
ν =


0 g 0 0
g 0 0 0
0 0 0 0
0 0 0 0

 , (2.223)

and the ICIF λ (τ) is given by
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λ (τ) = exp(Aτ/c)λ̂ = exp(Aτ/c) =


cosh(gτ/c) sinh(gτ/c) 0 0
sinh(gτ/c) cosh(gτ/c) 0 0

0 0 0 0
0 0 0 0

 ,

(2.224)
a well known Lorentz transformation for each value of τ , namely, a boost with
rapidity tanh(gτ/c) in the x direction.

We can read off the observer’s 4-velocity u(τ) = λ(0)(τ) as a function of proper
time τ . It is just the first column. Hence,

U(τ) = λ(0)(τ) =


cosh(gτ/c)

sinh(gτ/c)

0
0

 . (2.225)

Likewise, the λ(i)(τ), i = 1,2,3, are just the other three columns:

λ(1)(τ) =


sinh(gτ/c)

cosh(gτ/c)

0
0

 , λ(2)(τ) =


0
0
1
0

 , λ(3)(τ) =


0
0
0
1

 .

(2.226)
Using the assumption that x̂(0) = 0, we can integrate the expression for u(τ) to
obtain the observer worldline x̂(τ) in the form

x̂(τ) =



c2

g
sinh

gτ

c
c2

g

(
cosh

gτ

c
−1
)

0
0


. (2.227)

The extra factor of c comes in because u was dimensionless.
This worldline is a hyperbola in spacetime. Define

t(τ) := x̂0(τ)/c =
c
g

sinh
gτ

c
, x(τ) := x̂1(τ)+ c2/g =

c2

g
cosh

gτ

c
.

Then it is straightforward to check that the worldline has equation

x2− c2t2 = c2/g , (2.228)

and is thus a hyperbola. It is illustrated in Fig. 2.4, where we have put c = 1.
We now turn to (2.97) on p. 44, viz.,
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O

x+ t = 0

x− t = 0

1/g

t

x

Fig. 2.4 The observer arrives from large positive x (bottom right), slows down to a halt at x = 1/g
(in this frame), actually x= c2/g if we reinstate c, then accelerates back up the x axis. The worldline
is asymptotic to the null cones at the origin, i.e., it is asymptotic to x+t = 0 for large negative times,
and x− t = 0 for large positive times. Naturally, the observer never actually reaches the speed of
light

xµ = x̂µ(τ)+ y(i)λ(i)(τ) . (2.229)

This is the transformation from the coordinates in the accelerating frame K′ to the
inertial coordinates in the laboratory frame K. In the present case, the above results
allow us to read off immediately


x0

x1

x2

x3

=



c2

g
sinh

gτ

c
c2

g

(
cosh

gτ

c
−1
)

0
0


+ y(1)


sinh

gτ

c
cosh

gτ

c
0
0

+ y(2)


0
0
1
0

+ y(3)


0
0
0
1

 ,

which leads to


x0

x1

x2

x3

=



[
c2

g
+ y(1)

]
sinh

gy(0)

c2[
c2

g
+ y(1)

]
cosh

gy(0)

c2 −
c2

g
y(2)

y(3)


, (2.230)

since τ = y(0)/c.
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t

x−c2/g

null
surface

HOS

HOS

O

Fig. 2.5 The uniformly accelerating observer O passes through the origin of the inertial frame with
coordinates xµ . All hyperplanes of simultaneity of O intersect at x =−c2/g on the space axis

As we well know, this transformation is unlikely to be valid everywhere in space-
time. In fact, the coordinates {y(µ)}µ=0,1,2,3 are only valid in a wedge-shaped region
of spacetime, often called the Rindler wedge, with x1 >−c2/g and bounded by the
null lines x0 = x1 + c2/g and x0 = −x1− c2/g, which contains the hyperbolic path
of the observer (see Fig. 2.5).

Let us examine this more closely and prove the above claim. First note from
(2.134) on p. 56 that the Minkowski metric takes the component form

g(µ)(ν) =


[
1+gy(1)/c2

]2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (2.231)

relative to the coordinates y(µ).
As we have seen, the transformation from the semi-Euclidean coordinates y0 and

y1 of a uniformly accelerating observer located at y1 = 0 is

t =
c
g

sinh
gy0

c
+

y1

c
sinh

gy0

c
, (2.232)

x =
c2

g

(
cosh

gy0

c
−1
)
+ y1 cosh

gy0

c
, (2.233)

ignoring the irrelevant coordinates, using t to denote x0/c and x to denote x1, and
simplifying the notation for the SE coordinates somewhat. The coordinate y0 here
is just the proper time of the observer fixed at y1 = 0, as can be seen directly from
the metric, and the planes y0 = constant are the hyperplanes of simultaneity of the
observer at y1 = 0. So if we fix y0 = κ for some constant κ in the above transfor-
mation equations, allowing y1 to vary, we pick out the relevant HOS in Minkowski
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spacetime. As we have suppressed two spatial dimensions, we shall consider the
straight line in the (t,x) plane given parametrically by

x =
c2

g

(
cosh

gκ

c
−1
)
+ y1 cosh

gκ

c
, (2.234)

t =
c
g

sinh
gκ

c
+

y1

c
sinh

gκ

c
, (2.235)

with y1 as variable. Eliminating y1, we obtain the HOS in Minkowski coordinates as

x− c2

g

(
cosh

gκ

c
−1
)
= ccoth

gκ

c

(
t− c

g
sinh

gκ

c

)
. (2.236)

We do not have to do complicated algebra to find out that all these hyperplanes
of simultaneity intersect on the t = 0 axis of Minkowski spacetime, since t = 0 in
(2.236) implies that x =−c2/g, regardless of the value of κ (see Fig. 2.5). In other
words, if we looked at the HOS for y0 = κ1, we would get the Minkowski formula

x− c2

g

(
cosh

gκ1

c
−1
)
= ccoth

gκ1

c

(
t− c

g
sinh

gκ1

c

)
,

and this too crosses the t = 0 axis at x = −c2/g. So the semi-Euclidean coordinate
system breaks down at this point, or rather, on this plane, if we reinstate y2 and y3.

This region also corresponds to a singularity in the semi-Euclidean form of the
Minkowski metric, since gSE

00 is zero there. Its determinant is thus zero in this region.
Naturally, this is not due to any intrinsic singularity of the Minkowski metric, whose
determinant is not zero anywhere when it is expressed as a matrix relative to any
inertial coordinate system. The point is that the transformation to SE coordinates is
singular in precisely this region.

Something else goes wrong outside the wedge-shaped region with x > 0 between
the null cones at the origin in Fig. 2.4, and it is very easy to see by looking at the
hyperplanes of simultaneity in the translated wedge of Fig. 2.5 as the observer’s
proper time tends to ±∞. In fact, for any event outside this wedge, there will be no
proper time on the observer’s hyperbolic worldline such that the observer considers
it to be simultaneous! So no event outside the wedge will be attributed these SE
coordinates.

We thus have three potential problems for any semi-Euclidean coordinate system
adapted to an accelerating worldline:

• There is always a possibility that hyperplanes of simultaneity for different events
on the worldline will intersect somewhere in spacetime, thereby making it impos-
sible to extend this kind of adapted coordinate system beyond the intersection.

• The proposed transformation may be singular at some events, leading to a singu-
lar matrix of components of the Minkowski metric at those events.
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x = tx = −t

I

II

III

IV

O

x = tx = −t

I

II

III

IV

O

Fig. 2.6 Minkowski spacetime view of the TUA observer O. Left: The set of points from which O
can receive signals is the union of all backward light cones of points on the worldline of O, i.e., the
union of regions I and IV. Right: The set of points that O can signal to is the union of all forward
light cones of points on the worldline of O, i.e., the union of regions I and II

• There may be some events that the given observer will never find to be simulta-
neous with her by borrowing the hyperplanes of simultaneity of instantaneously
comoving inertial observers.

All three problems are illustrated by TUA motion.
As a relativist, the semi-Euclidean observer could of course use other coordinates

and remove the singularity. However, as a real observer uniformly accelerating in a
flat spacetime (with no gravitational effects), it should be noted that she could never
receive information about events in the region x− t < 0 and she could never send
information to events in the region x+ t < 0, in the portrayal of Fig. 2.4. So there is
a real physical significance to the boundaries of the wedge as far as this observer is
concerned (see Fig. 2.6). These boundaries are referred to as a horizon.

Within the wedge (region I in Fig. 2.6), the coordinate transformation of (2.230),
or (2.232) and (2.233), can of course be inverted, since it has nonzero determinant
there. Indeed, it is easy to check that

y0 =
c2

g
tanh−1 x0

x1 + c2/g
, y1 =

[(
x1 +

c2

g

)2

− (x0)2

]1/2

− c2

g
, (2.237)

y2 = x2 , y3 = x3 , (2.238)

in the appropriate region.
Let us now consider a particle at rest relative to the space coordinates of the frame

K′, therefore sitting at some fixed (y(1),y(2),y(3)). Hence, w̃ = (1,0,0,0) and b̃ = 0
in (2.189) and (2.192) on p. 69, viz.,

w̃(ν) =
dy(ν)

dy(0)
=: (1,v/c) , b̃ := c

dw̃(ν)

dτ
λ(ν)(τ) = c2 d2y(ν)

dy(0)2
λ(ν) =: (0,ap) .
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y(0)

α β y(1)

T1 T2

HOS

O1 O2

Fig. 2.7 Two observers O1 and O2 at fixed values α and β in the semi-Euclidean coordinate sys-
tem, as viewed from a Minkowski frame. It turns out that both O1 and O2 are uniformly accelerat-
ing, but with different accelerations [see (2.245)]. The dashed line marked HOS is the hyperplane
of simultaneity of O1 at some event on its worldline, defined as the HOS of the ICIF at that event.
It turns out that it is also a HOS for O2 at the event where it intersects the worldline of O2. The
dashed lines marked T1 and T2 are time axes of the ICIOs for O1 and O2 at the two events. What
we are saying is that they turn out to be parallel in Minkowski spacetime

Now (2.196) tells us that, in general,

ũ(ν) = w̃(ν)+ c−2(Ãȳ)(ν) =
(

1
w

)
+ c−2

(
g̃·y

cy×ω̃

)
, (2.239)

where w = 0 and ω = 0 in this case, with g̃·y = gy(1). Hence,

ũ = ũ(ν)λ(ν) =

[
1+

gy(1)

c2

]
λ(0)(τ) . (2.240)

Then the time dilation factor is

γ̃ =
dτ

dτp
=

1
|ũ| =

1
1+gy(1)/c2

. (2.241)

We thus find the 4-velocity of this worldline as

u(y(1),y(2),y(3)) = γ̃ ũ = λ(0)(τ) =


cosh(gτ/c)

sinh(gτ/c)

0
0

 . (2.242)

For a given τ , i.e., in the associated hyperplane of simultaneity of the accelerating
observer, borrowed from the instantaneously comoving inertial frame (ICIF), each
fixed space point relative to the frame K′ has the same 4-velocity, viz., the 4-velocity
of the observer herself at that proper time τ . This clearly illustrates the HOS sharing
effect discussed on pp. 28 and 60 (see Fig. 2.7).
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We can also get the 4-acceleration of the fixed space point at (y(1),y(2),y(3)). For
this, we use (2.207) on p. 72, viz.,

a = γ̃Ãu , for particle at fixed y(i) . (2.243)

This gives

a(y(1),y(2),y(3)) =
1

1+gy(1)/c2


0 g 0 0
g 0 0 0
0 0 0 0
0 0 0 0




cosh(gτ/c)

sinh(gτ/c)

0
0

 ,

whence

a(y(1),y(2),y(3)) =
g

1+gy(1)/c2


sinh(gτ/c)

cosh(gτ/c)

0
0

=
g

1+gy(1)/c2
λ(1)(τ) , (2.244)

bearing in mind that the parameter τ here is not the proper time of an observer at
the chosen space point, but the time coordinate y(0) in the SE frame. The Lorentzian
pseudolength of this four-vector is

√
−a ·a =

g
1+gy(1)/c2

, (2.245)

which is constant for fixed y(1), showing that this point once again has uniform
acceleration.

However, each fixed space point has to have a different uniform acceleration
in order to remain at the fixed point [see Fig. 2.7, where observers O1 and O2 at
y(1) = α and y(1) = β are shown to have curves of different steepness]. This shows
that the term ‘accelerating frame’ is somewhat misleading. In the Newtonian world,
it meant something to talk about an ‘accelerating frame’ because all space points in
such a frame had the same acceleration relative to some other frame, and time never
became part of the issue. But in relativity theories, a frame is just a frame, and what
we have here are just convenient coordinates.

2.10 Uniform Circular Motion
as Generalised Uniform Acceleration

Consider an observer following the worldline

t(τ) = γτ , x(τ) = Rcos(νγτ) , y(τ) = Rsin(νγτ) , z = 0 , (2.246)
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which is a regular spiral in spacetime with space radius R in the (x,y) plane, proper
time τ , and constant speed v := νR. Of course,

γ := (1− v2)−1/2 = (1−ν
2R2)−1/2 .

The four-velocity u of the observer is

u(τ) :=
dx(τ)

dτ
= γ
(
1,−vsin(νγτ),vcos(νγτ),0

)
, (2.247)

and her four-acceleration is

a(τ) :=
du(τ)

dτ
=−vνγ

2(0,cos(νγτ),sin(νγτ),0
)
. (2.248)

Note that c = 1 in this analysis. It can now be checked that we have

duµ

dτ
= Aµ

ν uν , (2.249)

where the acceleration matrix A = (Aµ
ν) is

A = γν


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 . (2.250)

Since this is a constant matrix, we immediately deduce that we have a generalised
uniform acceleration here.

It is easy to show that

(
A
γν

)2n

= (−1)n


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,

(
A
γν

)2n+1

= (−1)n


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,

(2.251)
whence
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exp(Aτ) = I +
∞

∑
n=1

(−1)n(γντ)2n

(2n)!


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0



+
∞

∑
n=0

(−1)n(γντ)2n+1

(2n+1)!


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

+ cos(γντ)


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0



+sin(γντ)


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 .

Consequently,

exp(Aτ) =


1 0 0 0
0 cos(γντ) −sin(γντ) 0
0 sin(γντ) cos(γντ) 0
0 0 0 1

 . (2.252)

We can now construct the isometrically transported frame, starting with the initial
ICIF

λ̂(0) = u(0) = γ


1
0
v
0

 , λ̂(1) = n1(0) =


0
1
0
0

 , (2.253)

λ̂(2) = n2(0) = γ


v
0
1
0

 , λ̂(3) = n3(0) =


0
0
0
1

 , (2.254)

where {ni}i=1,2,3 is the notation for the space triad in Sect. 2.3 [see (2.11) on p. 21].
The isometric transport equation is

dλ
µ

(κ)

dτ
= Aµ

ν λ
ν

(κ) , κ = 0,1,2,3 , (2.255)

which has solution
λ(κ)(τ) = exp(Aτ)λ̂(κ) , (2.256)

where exp(Aτ) is given by (2.252).
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We can check that this gives back u(τ) = λ(0)(τ), since for κ = 0, (2.256) implies

λ(0)(τ) =


1 0 0 0
0 cos(γντ) −sin(γντ) 0
0 sin(γντ) cos(γντ) 0
0 0 0 1

γ


1
0
v
0

= γ


1

−vsin(γντ)
vcos(γντ)

0

 ,

which is indeed u(τ) as given by (2.247).
More interestingly, we can now transport the space triad along the spiralling

worldline in spacetime. We have

λ(1)(τ) =


1 0 0 0
0 cos(γντ) −sin(γντ) 0
0 sin(γντ) cos(γντ) 0
0 0 0 1




0
1
0
0

=


0

cos(γντ)
sin(γντ)

0

 , (2.257)

λ(2)(τ) =


1 0 0 0
0 cos(γντ) −sin(γντ) 0
0 sin(γντ) cos(γντ) 0
0 0 0 1

γ


v
0
1
0

= γ


v

−sin(γντ)
cos(γντ)

0

 ,

(2.258)
and

λ(3)(τ) =


1 0 0 0
0 cos(γντ) −sin(γντ) 0
0 sin(γντ) cos(γντ) 0
0 0 0 1




0
0
0
1

=


0
0
0
1

 . (2.259)

It is easy to check that {λ(κ)(τ)}κ=0,1,2,3 form an orthonormal basis for all τ .
It is interesting to visualise this tetrad moving along the spiralling worldline in

spacetime, suppressing the third space direction in a diagram. As viewed in the
laboratory inertial frame, λ(1)(τ) always points radially out from the center of the
circular orbit [and lies in the hyperplane of simultaneity of x(τ) for the laboratory
observer], while λ(0)(τ) and λ(2)(τ) are symmetrically arranged inside and outside
the null cone at the point x(τ), respectively, and their projections on the instanta-
neous hyperplane of simultaneity are tangent to the projection of the spiral there.

There is no precession of the tetrad here, in contrast with the FW transported
case to be considered in Sect. 2.11. Whenever τ is such that x(τ) and y(τ) get back
to the same values, the {λ(κ)(τ)}κ=0,1,2,3 will also have got back to the same values.
This is because x(τ) and y(τ) are trigonometric functions with argument γντ , and
the same arguments arise in the trigonometric functions occurring in the expressions
for the tetrad.

We can now find the picture Ã := λ̂−1Aλ̂ of the acceleration matrix in the initial
ICIF, where

λ̂ :=
(
λ̂(0), λ̂(1), λ̂(2), λ̂(3)

)
.
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But let us go the whole hog and find the picture Ã(τ) := λ−1(τ)Aλ (τ) of the accel-
eration matrix in the ICIF at time τ , since according to the calculation (2.125) on
p. 52 this should be independent of τ . We have

λ (τ) =
(
λ(0)(τ),λ(1)(τ),λ(2)(τ),λ(3)(τ)

)
=


γ 0 γv 0

−γvsin(γντ) cos(γντ) −γ sin(γντ) 0
γvcos(γντ) sin(γντ) γ cos(γντ) 0

0 0 0 1

 . (2.260)

It is easy to check that this has unit determinant, as it should, since it is a Lorentz
transformation from one inertial frame to another. It is also straightforward to show
that

λ
−1(τ) =


γ γvsin(γντ) −γvcos(γντ) 0
0 cos(γντ) sin(γντ) 0
−γv −γ sin(γντ) γ cos(γντ) 0

0 0 0 1

 . (2.261)

A short matrix calculation leads to

Ã(τ) := λ
−1(τ)Aλ (τ) = γ

2
ν


0 −v 0 0
−v 0 −1 0
0 1 0 0
0 0 0 0

 . (2.262)

This is indeed independent of τ . We note that, as viewed from any of these ICIFs, the
acceleration matrix contains a translational component as well as the entries in the
rotational sector, the latter being accompanied by an extra factor of γ as compared
with the entries in the rotational sector of the original version of the acceleration
matrix A. The reason for the translational component is that λ(1)(τ) points radially
outward from the center of the orbit in the hyperplane of simultaneity of the lab-
oratory inertial observer, and the acceleration is actually in this direction for that
observer.

We could have calculated the entries of the matrix Ã directly using (2.103) on
p. 45, viz.,

Ã(ν)
(κ) =


0 a01 a02 a03

a01 0 cΩ21 cΩ31

a02 cΩ12 0 cΩ32

a03 cΩ13 cΩ23 0

 , (2.263)

where the a0i are given by (2.99) as

a0i =−ni · u̇ =−λ(i)(τ) · u̇ , (2.264)

and the Ωi j by the first relation of (2.102), which implies
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Ωi j =−ṅi ·n j =−λ̇(i)(τ) ·λ( j)(τ) , (2.265)

in the two notations. Since

u̇ =−vνγ
2


0

cos(γντ)
sin(γντ)

0

 ,

by (2.248) on p. 84, the relations (2.264) give

a01 = vνγ
2


0

cos(γντ)
sin(γντ)

0

 ·


0
cos(γντ)
sin(γντ)

0

=−vνγ
2 ,

which is indeed constant and equal to the entry in row 0 and column 1 of (2.262),
together with

a02 = vνγ
3


0

cos(γντ)
sin(γντ)

0

 ·


v
−sin(γντ)
cos(γντ)

0

= 0

and

a03 = vνγ
2


0

cos(γντ)
sin(γντ)

0

 ·


0
0
0
1

= 0 ,

yielding the other two entries of (2.262) in row 0. Then using (2.265), we would
obtain

Ω12 =−λ̇(1)(τ) ·λ(2)(τ) =−γ
2
ν


0

−sin(γντ)
cos(γντ)

0

 ·


v
−sin(γντ)
cos(γντ)

0

= γ
2
ν ,

which is indeed the entry in row 2 and column 1 of the matrix (2.262).
In conclusion, circular motion at constant angular velocity provides a perfect

example of what can be incorporated into the generalised notion of uniform ac-
celeration, and at the same time it provides an example of DeWitt’s superhelical
motion [14]. A continuous medium whose material elements sit at constant space
positions in the coordinates associated by the semi-Euclidean construction with the
tetrad frame {λ(κ)(τ)}κ=0,1,2,3 is moving rigidly.

We can also write down the components of the Minkowski metric in the above
coordinate system, using the result in Sect. 2.4.8 [see (2.134) on p. 56] and inserting
the values
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a01 =−vνγ
2 , a02 = 0 = a03 , Ω12 = γ

2
ν =−Ω21 ,

to obtain

g(µ)(ν) =


1− vνγ2y(1)−

[
y(1)− y(2)

]2
γ4ν2 −y(2)γ2ν y(1)γ2ν 0

−y(2)γ2ν −1 0 0
y(1)γ2ν 0 −1 0

0 0 0 −1

 .

(2.266)
Here we used

y(i)y( j)
ΩikΩ jk = y(1)y(1)Ω1kΩ1k + y(1)y(2)Ω1kΩ2k

+y(2)y(1)Ω2kΩ1k + y(2)y(2)Ω2kΩ2k

=
[
y(1)− y(2)

]2
γ

4
ν

2 .

2.11 General Circular Motion

An observer A moves round a circle of radius r centered on the origin in the (x,y)
plane of an inertial frame L in flat spacetime. At t = 0, A is at azimuthal angle
ϕA = 0. For t > 0, her motion is specified by the angular frequency Ω̂0(t) > 0, so
that her position is given by

ϕA(t) =
∫ t

0
Ω̂0(t ′)dt ′ . (2.267)

Although we still have motion in an exact circle, the angular speed is allowed to
change here, whereas it was constant in Sect. 2.10. Let γ̂(t) be the Lorentz factor
corresponding to the speed

v̂(t) = rΩ̂0(t) . (2.268)

The notation here is due to Mashhoon [36]. The results of this section will be used
later for further discussion.

The coordinates of A in L are

xµ

A = (t,r cosϕA,r sinϕA,0) , (2.269)

and the proper time along the worldline is

τ =
∫ t

0

√
1− v̂2(t ′)dt ′ , (2.270)
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where we take τ = 0 at t = 0. We also assume that τ = τ(t) has an inverse denoted
by t = F(τ), whence

dt
dτ

=
dF
dτ

= γ(τ) :=
[
1− v(τ)

]−1/2 (2.271)

is the Lorentz factor along the worldline of A. We are inventing a notation that
distinguishes functions of t and τ , with v(τ) := v̂(t) and γ(τ) := γ̂(t).

We also define φ(τ) := ϕA(t) and note that

dφ

dτ
= γΩ0(τ) , (2.272)

where Ω0(τ) := Ω̂0(t).

2.11.1 A First Tetrad for an Adapted Coordinate System

According to Mashhoon [36], the natural orthonormal tetrad frame along the world-
line of A for τ > 0 is given by

λ
µ

(0) = γ(1,−vsinφ ,vcosφ ,0) ,

λ
µ

(1) = (0,cosφ ,sinφ ,0) ,

λ
µ

(2) = γ(v,−sinφ ,cosφ ,0) ,

λ
µ

(3) = (0,0,0,1) ,

(2.273)

where

λ
µ

(0) =
dxµ

A
dτ

(2.274)

is the four-velocity of A. He claims that the spatial triad here is natural, but does not
specify the criteria he applies for assessing naturalness.

As we know, for constant angular speed, we construct a rigid coordinate sys-
tem with the above choice of tetrad (see Sect. 2.10), not just one with Euclidean
spacelike hypersurfaces. But for varying angular speed, we know that the only rigid
coordinate systems are ones in which the space triad is FW transported along the
worldline, which is not the case here. There is no precession for the above space
triad, and this may be what makes it appear natural.

Mashhoon effectively implies this in his justification. We note that, if r = 0 so
that v = 0 and γ = 1, we obtain the natural tetrad of the fixed observer at the space
origin who refers her observations to the axes of the (x′,y′,z′) coordinate system
obtained from (x,y,z) by a rotation about the z axis with frequency Ω̂0(t). It is just
a space triad that rotates with the points A and B. We can then boost this tetrad with
speed v along the second space axis, tangent to the circle of radius r, to give the
tetrad in (2.273).
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2.11.2 Acceleration Matrix for the Non-Precessing Tetrad

Another justification is just to choose some convenient space triad orthogonal to the
four-velocity λ(0) at time τ = 0, and then use Friedman and Scarr’s construction
with the acceleration matrix, which we now introduce. That is mathematically nat-
ural! Orthonormality of the tetrad system implies that the acceleration tensor Aαβ ,
obtained by lowering one index of the object Aα

β such that

dλ
µ

(α)

dτ
= Aα

β
λ

µ

(β )
, (2.275)

must be antisymmetric. Note, however, that this falls outside the FS construction
unless the angular speed of rotation is constant! But the space triad in (2.273) does
satisfy a constraint relating to the acceleration matrix, because (2.275) holds with
the same acceleration matrix for all four values of µ .

Note also that we have changed notational conventions compared with the earlier
discussion based on the paper [23] by Friedman and Scarr. In (2.275), the matrix
Aα

β corresponds to the transpose of Ã(α)
(β ) in (2.262) on p. 87, for example (see

Sect. 2.10), as can be seen by comparing (2.281) below for the case dv/dτ with
(2.262).

As we have seen, the translational acceleration of A is given by ai = A0i, for
i ∈ {1,2,3}, and the rotational acceleration by A jk for j,k ∈ {1,2,3}, the latter
giving us an angular velocity three-vector Ω defined by

Ωi :=
1
2

εi jkA
jk . (2.276)

So let us determine A . The first thing is to write down a matrix with entry λ
µ

(α)
,

where α labels rows and µ labels columns. So its rows are just the component
forms of the four vectors in (2.273):

λ
µ

(α)
=


γ −vγ sinφ vγ cosφ 0
0 cosφ sinφ 0
vγ −γ sinφ γ cosφ 0
0 0 0 1

 . (2.277)

This array is designed to be multiplied on the left by the matrix Aα
β as in (2.275).

The result should be the matrix with entries dλ
µ

(α)
/dτ , arranged in the same way,

which we now calculate. We use the fact that

dγ

dτ
= γ

3v
dv
dτ

,
dφ

dτ
= γΩ0 , (2.278)

the first being standard and the second being (2.272). Note also that
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d
dτ

(γv) = γ
3v2 dv

dτ
+ γ

dv
dτ

= (1+ γ
2v2)γ

dv
dτ

= γ
3 dv

dτ
. (2.279)

Finally, we obtain

dλ
µ

(α)

dτ
=


γ

3v
dv
dτ
−γ

3 dv
dτ

sinφ − vγ
2
Ω0 cosφ γ

3 dv
dτ

cosφ − vγ
2
Ω0 sinφ 0

0 −γΩ0 sinφ γΩ0 cosφ 0

γ
3 dv

dτ
−vγ

3 dv
dτ

sinφ − γ
2
Ω0 cosφ vγ

3 dv
dτ

cosφ − γ
2
Ω0 sinφ 0

0 0 0 0

 ,

(2.280)
once again with α labelling rows and µ labelling columns.

It is straightforward to check that the following matrix multiplies the one in
(2.277) on the left to give the matrix in (2.280):

Aα
β =


0 −γ2vΩ0 γ2dv/dτ 0

−γ2vΩ0 0 γ2Ω0 0

γ2dv/dτ −γ2Ω0 0 0
0 0 0 0

 . (2.281)

Multiplying on the left by the Minkowski metric η := diag(−1,1,1,1) to raise the
index (using Mashhoon’s convention for the metric signature), we have

A αβ =


0 γ2vΩ0 −γ2dv/dτ 0

−γ2vΩ0 0 γ2Ω0 0

γ2dv/dτ −γ2Ω0 0 0
0 0 0 0

 . (2.282)

Now we have

Ω1 =
1
2
(ε123A

23 + ε132A
32) = ε123A

23 = 0 ,

Ω2 =
1
2
(ε231A

31 + ε213A
13) = ε231A

31 = 0 ,

Ω3 =
1
2
(ε312A

12 + ε321A
21) = ε312A

12 = γ
2
Ω0 .

Hence,

Ω =

 0
0

γ2Ω0

 , a =

−γ2vΩ0
γ2dv/dτ

0

 . (2.283)

Note in passing that, for any antisymmetric tensor Aαβ , i.e., of the form
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Aαβ =


0 a1 a2 a3

−a1 0 b3 −b2

−a2 −b3 0 b1

−a3 b2 −b1 0

 , (2.284)

the quantities a ·b and a2−b2 are Lorentz invariants. This is seen by calculating

I :=
1
2

Aαβ Aαβ , I∗ :=
1
2

A∗
αβ

Aαβ , (2.285)

where
A∗

αβ
:=

1
2

εαβγδ Aγδ , (2.286)

and εαβγδ is the completely antisymmetric tensor density with ε0123 = 1. These are
obviously Lorentz invariants, by construction. The Faraday tensor provides a well
known example, leading to invariants E2−B2 and E ·B.

In the present case the invariants are obtained from a and Ω in (2.283), which
give a·Ω = 0 and

I :=−a2 +Ω
2 =−γ

4v2
Ω

2
0 − γ

4
(

dv
dτ

)2

+ γ
4
Ω

2
0 =−γ

4
(

dv
dτ

)2

+ γ
2
Ω

2
0 . (2.287)

In the case of an EM field, if both invariants are zero, this is called a null EM field.
It may be that both invariants are zero for the acceleration tensor [36].

We would like a physical interpretation of a and Ω . Since Ω0 = v/r, the first com-
ponent of a can be written−γ2v2/r, a centripetal acceleration, since this component
is associated with the space tetrad vector λ(1), which points radially outward. The
second component of a, associated with the space tetrad vector λ(2), is γ2dv/dτ , and
this is clearly some kind of tangential acceleration. Note that λ(2) has a time compo-
nent in the inertial frame L, but its space components are tangential to the spiralling
worldline.

It is important to understand why the components of a, which is just part of a
row of the acceleration matrix, should be associated with the directions of the space
tetrad vectors λ(i), i ∈ {1,2,3}. This has already been discussed in Sect. 2.4.5, but
will given specific attention again in Sect. 2.11.4.

Interpreting Ω is more intricate since we would like to say that it gives the fre-
quency of rotation of the space frame relative to a non-rotating frame, and the clos-
est we can come to a non-rotating frame is one that is FW transported. Here we
shall also see precisely why the FW transported frame is sometimes said to be non-
rotating: basically it is always got at one instant by a pure Lorentz boost from the
frame at the previous instant, as viewed in that previous frame.
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2.11.3 Fermi–Walker Transported Tetrad

Here we shall show that the FW transported space frame is {λ̃(i)}i=1,2,3, where

λ̃
µ

(0) = λ
µ

(0) ,

λ̃
µ

(1) = cosΦλ
µ

(1)− sinΦλ
µ

(2) ,

λ̃
µ

(2) = sinΦλ
µ

(1)+ cosΦλ
µ

(2) ,

λ̃
µ

(3) = λ
µ

(3) ,

(2.288)

with the tetrad {λ µ

(κ)
}κ=0,1,2,3 as defined in (2.273) and the angle Φ defined by

Φ :=
∫

τ

0
Ω(τ ′)dτ

′ =
∫

τ

0
γ

2(τ ′)Ω0(τ
′)dτ

′ , Ω := |Ω | , (2.289)

so that
dΦ

dτ
= Ω = γ

2
Ω0 , (2.290)

by (2.283). This gives a rather elegant picture, but remains to be justified (see be-
low).

The point about the angular frequency Ω is that it will always be higher than Ω0,
but usually only a little bit higher. For most ordinary kinds of speed v, the quantity
γ will be only slightly greater than unity. So this is a relativistic effect. Note that
Ω is a proper time frequency. The corresponding inertial time frequency in L (the
original inertial frame) would be

Ωinertial =
dΦ

dt
=

dΦ

dτ

dτ

dt
= γΩ0 . (2.291)

But what is rotating at this frequency, and relative to what? The relations (2.288)
show that this is the frequency of rotation of the pair of space vectors λ̃(1) and λ̃(2)
relative to the other pair of space vectors λ(1) and λ(2). Note also that it is a rotation
in the opposite direction to the rotation of the latter relative to L, and at almost the
same frequency, as just mentioned, unless γ is very different from unity.

So the pair λ̃(1) and λ̃(2) is of course busy undoing the rotation of λ(1) and λ(2),
in order that the former may remain more or less constantly oriented in the inertial
frame L. They would be exactly constantly oriented if we had γ = 1, but then we
would have no motion at all! However, for non-relativistic v, we have γ ≈ 1, and the
FW transported pair λ̃(1) and λ̃(2) will barely rotate relative to L.

Recalling that Ω0 is an angular frequency relative to inertial time in L, whence
dφ/dτ = γΩ0 as in (2.272) on p. 90, and since Ω0 is the rate of rotation of the pair
of space vectors λ(1) and λ(2) relative to L, we obtain the estimate (1− γ)Ω0 for the
(Thomas) precession of the pair of space vectors λ̃(1) and λ̃(2) relative to the inertial
frame L.



2.11 General Circular Motion 95

Let us now prove that the tetrad in (2.288) also satisfies the FW transport equa-
tion. With the convention η = diag(−1, 1, 1, 1) for the Minkowski metric, the FW
transport equation for a four-vector A is

Ȧ = (A · u̇)u− (A ·u)u̇ , (2.292)

where u is the four-velocity. In a case where we know that A is always orthogonal
to u, as happens for λ̃(1) and λ̃(2), this equation reduces to

Ȧ = (A · u̇)u , for A orthogonal to u . (2.293)

We thus aim to show directly that

˙̃
λ(1) =

[
λ̃(1) · u̇

]
u , ˙̃

λ(2) =
[
λ̃(2) · u̇

]
u , (2.294)

where

u = λ(0) = λ̃(0) = γ


1

−vsinφ

vcosφ

0

 , (2.295)

and

u̇ = γ
3 dv

dτ


v

−sinφ

cosφ

0

− vγ
2
Ω0


0

cosφ

sinφ

0

=



vγ
3 dv

dτ

−γ
3 dv

dτ
sinφ − vγ

2
Ω0 cosφ

γ
3 dv

dτ
cosφ − vγ

2
Ω0 sinφ

0


.

(2.296)

Check that ˙̃
λ(1) =

[
λ̃(1) · u̇

]
u

First note that

λ̃(1) · u̇ = cosΦ
[
λ(1) · u̇

]
− sinΦ

[
λ(2) · u̇

]
= −cosΦ

(
vγ

2
Ω0
)
+ sinΦ

[
γ

4 dv
dτ

(v2−1)
]

= −vγ
2
Ω0 cosΦ− γ

2 dv
dτ

sinΦ , (2.297)

while
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˙̃
λ(1) = −Φ̇ sinΦλ(1)+ cosΦλ̇(1)− Φ̇ cosΦλ(2)− sinΦλ̇(2)

= −γ
2
Ω0 sinΦ


0

cosφ

sinφ

0

− γ
2
Ω0 cosΦ


γv

−γ sinφ

γ cosφ

0

 (2.298)

+cosΦ


0

−γΩ0 sinφ

γΩ0 cosφ

0

− sinΦ



γ
3 dv

dτ

−vγ
3 dv

dτ
sinφ −Ω0γ

2 cosφ

vγ
3 dv

dτ
cosφ −Ω0γ

2 sinφ

0


.

The latter has to be equal to

[
λ̃(1) · u̇

]
u =−

(
vγ

2
Ω0 cosΦ + γ

2 dv
dτ

sinΦ

)
γ


1

−vsinφ

vcosφ

0

 . (2.299)

It is straightforward to check this row by row.

Check that ˙̃
λ(2) =

[
λ̃(2) · u̇

]
u

First note that

λ̃(2) · u̇ = sinΦ
[
λ(2) · u̇

]
+ cosΦ

[
λ(2) · u̇

]
= −sinΦ

(
vγ

2
Ω0
)
− cosΦ

[
γ

4 dv
dτ

(v2−1)
]

= −vγ
2
Ω0 sinΦ + γ

2 dv
dτ

cosΦ , (2.300)

while
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˙̃
λ(2) = Φ̇ cosΦλ(1)+ sinΦλ̇(1)− Φ̇ sinΦλ(2)+ cosΦλ̇(2)

= γ
2
Ω0 cosΦ


0

cosφ

sinφ

0

− γ
2
Ω0 sinΦ


γv

−γ sinφ

γ cosφ

0

 (2.301)

+sinΦ


0

−γΩ0 sinφ

γΩ0 cosφ

0

+ cosΦ



γ
3 dv

dτ

−vγ
3 dv

dτ
sinφ −Ω0γ

2 cosφ

vγ
3 dv

dτ
cosφ −Ω0γ

2 sinφ

0


.

The latter has to be equal to

[
λ̃(2) · u̇

]
u =−

(
vγ

2
Ω0 sinΦ− γ

2 dv
dτ

cosΦ

)
γ


1

−vsinφ

vcosφ

0

 . (2.302)

It is straightforward to check this row by row. �

In the case of constant angular frequency ν , as discussed in Sect. 2.10, we would
obtain

n1(τ) =


−vγ sin(νγ2τ)

cos(νγτ)cos(νγ2τ)+ γ sin(νγτ)sin(νγ2τ)

sin(νγτ)cos(νγ2τ)− γ cos(νγτ)sin(νγ2τ)

0

 (2.303)

and

n2(τ) =


vγ cos(νγ2τ)

cos(νγτ)sin(νγ2τ)− γ sin(νγτ)cos(νγ2τ)

sin(νγτ)sin(νγ2τ)+ γ cos(νγτ)cos(νγ2τ)

0

 . (2.304)

We can compare (2.303) with
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λ̃(1) = cosΦλ(1)− sinΦλ(2)

= cosΦ


0

cosφ

sinφ

0

− sinΦ


γv

−γ sinφ

γ cosφ

0



=


−γvsinΦ

cosφ cosΦ + γ sinφ sinΦ

sinφ cosΦ− γ cosφ sinΦ

0

 , (2.305)

whence we find that φ ↔ νγτ and Φ ↔ νγ2τ , with the extra factor of γ that we
would expect to find with Φ as compared with φ . Likewise, we can compare (2.304)
with

λ̃(2) = sinΦλ(1)+ cosΦλ(2)

= sinΦ


0

cosφ

sinφ

0

+ cosΦ


γv

−γ sinφ

γ cosφ

0



=


γvcosΦ

cosφ sinΦ− γ sinφ cosΦ

sinφ sinΦ + γ cosφ cosΦ

0

 , (2.306)

with the same correspondence.

2.11.4 Understanding Acceleration Matrices

The fact that the tetrad {λ̃(µ)}µ=0,1,2,3 satisfies the FW transport equation tells us
something about the acceleration matrix for this tetrad, namely that it is pure trans-
lational. We can get that from the general analysis in Sect. 2.4.5, and in particular on
p. 44 ff, although we were considering constant acceleration matrices in that case.
The key relation in this general account was

ṅi
µ = a0iuµ +Ωi jn j

µ . (2.307)

Now we have the correspondence ni ↔ λ(i), i = 1,2,3, while u ↔ λ(0), where
{λ(µ)}µ=0,1,2,3 can be any tetrad, either the rotating tetrad (2.273) on p. 90 or the
FW transported tetrad in (2.288) on p. 94 which carries a tilde. We also have

a0i = ni · u̇ , (2.308)
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for the convention η = diag(−1,1,1,1), which means that

u̇ = a0ini , (2.309)

since u̇ is orthogonal to u. So, in the notation of Sect. 2.3, which was a completely
general construction using any smoothly chosen tetrad along the worldline, and for
an arbitrary smooth timelike worldline, the relation

dλ
µ

(κ)

dτ
= λ

µ

(ν)
Ã(ν)

(κ)

is replaced by {
λ̇(i) = a0iλ(0)+Ωi jλ( j) ,

λ̇(0) = a0iλ(i) .
(2.310)

We can now read off the matrix Ã, obtaining

Ã(ν)
(κ) =


0 a01 a02 a03

a01 0 Ω21 Ω31

a02 Ω12 0 Ω32

a03 Ω13 Ω23 0

 , (2.311)

with ν specifying the row and κ the column.
This allows us to answer the question on p. 93, viz., why should the components

of a, which is just part of a row of the acceleration matrix, be associated with the
directions of the space tetrad vectors λ(i), i ∈ {1,2,3}? It is because of (2.308).

When the tetrad in question is FW transported, this immediately tells us that the
Ωi j in (2.307) are all zero, because this equation, with the help of the definition
a0i := ni · u̇ from (2.308), then becomes the FW transport equation for any space
vectors ni

µ that are known to remain permanently orthogonal to the four-velocity u
of the worldline. So the acceleration matrix for an FW transported tetrad always has
the form

Ã(ν)
(κ) =


0 a01 a02 a03

a01 0 0 0
a02 0 0 0
a03 0 0 0

 (FW transported tetrad) . (2.312)

This is the case for the tetrad {λ̃(µ)}µ=0,1,2,3, as we carefully demonstrated in the
last section. We know immediately then that there is a three-vector ã such that

dλ̃
µ

(κ)

dτ
= λ̃

µ

(ν)
Ã(ν)

(κ) , (2.313)

with Ã(ν)
(κ) of the form (2.312). We thus have the relation



100 2 Adapted Frames in Special Relativity

dλ̃
µ

(i)

dτ
= ãiλ̃

µ

(0) , i = 1,2,3 , (2.314)

and this brings us back to (2.307) in the case where the Ωi j are all zero. The three
quantities ãi, i = 1,2,3, are given by (2.308), i.e.,

ãi = λ̃(i) · u̇ , (2.315)

and we have calculated the interesting cases in (2.297) and (2.300), viz.,

ã1 = λ̃(1) · u̇ =−vγ
2
Ω0 cosΦ− γ

2 dv
dτ

sinΦ , (2.316)

ã2 = λ̃(2) · u̇ =−vγ
2
Ω0 sinΦ + γ

2 dv
dτ

cosΦ , (2.317)

and, of course, ã3 = 0. So finally,

ã =


−vγ

2
Ω0 cosΦ− γ

2 dv
dτ

sinΦ

−vγ
2
Ω0 sinΦ + γ

2 dv
dτ

cosΦ

0

 , (2.318)

noting again that this is generally a function of the proper time.
We can make a general point about the notion of acceleration matrix here. As

we have just seen, for arbitrary motion of the observer and arbitrary smooth choice
of tetrad {λ(κ)}κ=0,1,2,3 along the observer worldline with λ(0) the observer four-
velocity, there is a matrix Ã(ν)

(κ) such that

dλ
µ

(κ)

dτ
= λ

µ

(ν)
Ã(ν)

(κ) , (2.319)

where Ã transforms as a type (1,1) tensor and its covariant associated tensor with
components Ã(µ)(ν) is antisymmetric. Equation (2.319) just expresses the fact that
the four-vector field dλ

µ

(κ)
/dτ along the worldline can be expressed as a linear

combination of the tetrad for each τ , and antisymmetry follows from the argument
(2.119) on p. 48, viz.,

λ(κ) ·λ(ν) = ηκν =⇒ λ̇(κ) ·λ(ν)+λ(κ) · λ̇(ν) = 0

=⇒
[
λ(µ)Ã

(µ)
(κ)

]
·λ(ν)+λ(κ) ·

[
λ(µ)Ã

(µ)
(ν)

]
= 0

=⇒ ηµν Ã(µ)
(κ)+ηκµ Ã(µ)

(ν) = 0

=⇒ Ã(ν)(κ)+ Ã(κ)(ν) = 0 . (2.320)
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But we may also ask whether there is always a matrix Aµ
ν such that

dλ
µ

(0)

dτ
= Aµ

ν λ
ν

(0) . (2.321)

The answer is affirmative. Of course, we simply define

A := λ Ãλ
−1 , (2.322)

where λ (τ) is the 4×4 matrix whose columns are the component forms of the four
four-vectors λ(κ), κ = 0,1,2,3, in whatever inertial frame K is being used to express
quantities. As explained in Sect. 2.4.4 for the case of constant acceleration matrices
(see, in particular, p. 42), we are just reexpressing the tensor Ã relative to the inertial
frame K for each value of τ . In component form, the definition (2.322) reads

Aµ
σ := λ

µ
(κ)Ã

(κ)
(ε)(λ

−1)(ε)σ . (2.323)

It is in fact easy to show that we have, not only (2.321), but the general result

dλ
µ

(α)

dτ
= Aµ

σ λ
σ

(α) . (2.324)

Indeed,

Aµ
σ λ

σ

(α) = λ
µ
(κ)Ã

(κ)
(ε)(λ

−1)(ε)σ λ
σ

(α)

= λ
µ
(κ)Ã

(κ)
(ε)δ

(ε)
(α)

= λ
µ
(κ)Ã

(κ)
(α)

=
dλ

µ

(α)

dτ
,

by (2.319). Then by the general argument (2.84) on p. 41, we have an isometric
transport of four-vectors along the observer worldline, in the sense that, for

d
dτ

v(τ) = Av(τ) ,
d

dτ
w(τ) = Aw(τ) , (2.325)

we have

d
dτ

[
v(τ) ·w(τ)

]
=
[
Av(τ)

]
·
[
w(τ)

]
+
[
v(τ)

]
·
[
Aw(τ)

]
= ηµσ Aµ

ν vν wσ +ηµσ vµ Aσ
ν wν

= Aσν vν wσ +Aµν vµ wν

= Aµν(vν wµ + vµ wν) = 0 . (2.326)
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The kind of transport satisfying (2.325) preserves scalar products of four-vectors
because the covariant acceleration matrix appearing in (2.325) is antisymmetric.

As mentioned on p. 43, this shows that, whatever tetrad {λ(κ)}κ=0,1,2,3 we
choose, it can be considered to be isometrically transported along the observer
worldline in the sense of (2.82) on p. 41, or indeed (2.95) and (2.96) on p. 43, for
the matrix Aµ

σ . Naturally, this matrix depends on the choice of space triad, as can
be seen from (2.322). The difference with that earlier discussion is that we are now
considering quite general acceleration matrices which may not be constant along
the worldline.

In the parallel discussion for constant acceleration matrices on p. 46 and follow-
ing pages, we made the definition [see (2.112) on p. 47]

Aν
σ := λ̂

ν

(γ)Ã
(γ)

(κ)

(
λ̂
−1)(κ)

σ , (2.327)

where λ̂ is the initial ICIF λ (0), rather than λ (τ) as in the above argument. But if
Ã is constant, this amounts to exactly the same definition since we have

λ (0)Ãλ (0)−1 = λ (τ)Ãλ (τ)−1 , ∀τ , when Ã is constant .

This follows because, by (2.117) on p. 47,

λ (τ) = λ (0)exp(Ãτ/c) = λ̂ exp(Ãτ/c) ,

whence

λ (τ)Ãλ (τ)−1 = λ̂ exp(Ãτ/c)Ãexp(−Ãτ/c)λ̂−1

= λ̂ Ãλ̂
−1 ,

as claimed.

2.11.5 Geodesic Coordinates for Rotating Tetrad

We now use the rotating tetrad {λ(µ)}µ=0,1,2,3 of (2.273) on p. 90 to construct co-
ordinates according to the discussion in Sect. 2.3. Such coordinates are often called
geodesic coordinates. This is an idea that generalises to curved spacetimes, as we
shall see later (Sect. 3.2.1). We choose any smooth tetrad frame along the worldline,
with the first member of the tetrad being the four-velocity and the other three mem-
bers being orthogonal to it, hence spacelike. For any finite stretch of the worldline,
there is then some neighbourhood of that part of the worldline such that, for any
event chosen in that neighbourhood, there is a unique proper time τ on the world-
line such that there exists a spacelike geodesic from the event corresponding to τ on
the worldline to the chosen event with the property that this geodesic is orthogonal
to the worldline at the event corresponding to τ .



2.11 General Circular Motion 103

The spacelike geodesic found in this way has a tangent vector at the event on the
worldline corresponding to τ which can be uniquely expressed as a linear combina-
tion X iλ

µ

(i)(τ) of the three spacelike members λ
µ

(i)(τ), i = 1,2,3, of the tetrad. We

then attribute geodesic coordinates (τ,X1,X2,X3) to the originally chosen event.
In a flat spacetime, of the kind considered here, the inertial coordinates xµ of the

chosen event can be related algebraically to the geodesic coordinates (τ,X) by

xµ = xµ

A(τ)+X i
λ

µ

(i)(τ) , T := τ , (2.328)

where xA(τ) specifies the worldline of the revolving observer (or object) A in the
inertial coordinate system. This works because the geodesics are straight lines in the
inertial coordinate system. Equation (2.328) is just an example of (2.18) on p. 23.

Note, however, that there is no particular reason to choose the rotating tetrad
{λ(µ)}µ=0,1,2,3 which Mashhoon finds so natural, rather than, say, the FW trans-
ported tetrad {λ̃(µ)}µ=0,1,2,3, for this construction. This is the real problem with
attempts to make an observer picture: there is too much choice. Note also that, in
the present case, where the angular speed of the observer A may not be constant,
only an FW transported tetrad will deliver a rigid coordinate system, and these are
likely to provide a better agreement with the approximation hoped for by the locality
hypothesis to be discussed later.

We now write X = (X ,Y,Z) and recall that we assumed on p. 90 that τ = τ(t)
has an inverse t = F(τ). We have the notation ϕA(t) = φ(τ) [see the definition just
prior to (2.272) on p. 90]. Then we also need the coordinates xµ

A of A in L as given
by (2.269) on p. 89, viz.,

xµ

A = (t,r cosϕA,r sinϕA,0) =
(
F(T ),r cosφ(T ),r sinφ(T ),0

)
, (2.329)

and the components of the tetrad {λ(κ)}κ=0,1,2,3 in L, as given by (2.273) on p. 90,
viz.,

λ
µ

(0) = γ(1,−vsinφ ,vcosφ ,0) ,

λ
µ

(1) = (0,cosφ ,sinφ ,0) ,

λ
µ

(2) = γ(v,−sinφ ,cosφ ,0) ,

λ
µ

(3) = (0,0,0,1) .

(2.330)

With µ = 0 in (2.328),

t = x0
A(τ)+X i

λ
0
(i)(τ) = F(T )+ γ(T )v(T )Y .

With µ = 1, we obtain

x = x1
A(τ)+X i

λ
1
(i)(τ) = (X + r)cosφ(T )− γ(T )Y sinφ(T ) .

With µ = 2, we obtain

x = x2
A(τ)+X i

λ
2
(i)(τ) = (X + r)sinφ(T )+ γ(T )Y cosφ(T ) .
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With µ = 3, we obtain
x = x3

A(τ)+X i
λ

3
(i)(τ) = Z .

Summing all that up,

t = F(T )+ γ(T )v(T )Y ,

x = (X + r)cosφ(T )− γ(T )Y sinφ(T ) ,

y = (X + r)sinφ(T )+ γ(T )Y cosφ(T ) ,

z = Z .

(2.331)

When r = 0, so that v = 0 and γ = 1, this becomes

t = F(T )+ γ(T )v(T )Y = T ,

x = X cosφ(T )− γ(T )Y sinφ(T ) = X cosφ(T )−Y sinφ(T ) ,

y = X sinφ(T )+ γ(T )Y cosφ(T ) = X sinφ(T )+Y cosφ(T ) ,

z = Z ,

(2.332)

which is just the transformation from the coordinates (t ′ = t,x′,y′,z′) obtained from
(x,y,z) by rotation about the z axis with frequency Ω̂0(t). Interestingly, Mashhoon
describes this as the geodesic coordinate system constructed along the worldline of
the non-inertial observer at rest at the origin of the space coordinates in L. Such
an observer is of course inertial, if she merely chooses a rotating space tetrad! She
would be non-inertial in some sense if she spun round with the frequency Ω̂0(t),
assuming that she had spatial extent.

2.11.6 Metric for Rotating Tetrad

We can now obtain the components of the Minkowski metric tensor relative to the
coordinates (T,X ,Y,Z). We shall do this in two ways. First of all, we can make the
connection with the general results in Sect. 2.3.8:

gµν =


(
1+ξ ia0i

)2−ξ iξ jΩikΩ jk ξ jΩ j1 ξ jΩ j2 ξ jΩ j3

ξ jΩ j1 −1 0 0
ξ jΩ j2 0 −1 0
ξ jΩ j3 0 0 −1

 . (2.333)

It remains only to identify the notation. In the earlier construction, the relation

xµ(ξ ,τ) = xµ(0,σ)+ξ
ini

µ(σ) (2.334)

corresponds to the above relation (2.328), viz.,
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xµ = xµ

A(τ)+X i
λ

µ

(i)(τ) , T := τ . (2.335)

In (2.334), τ is the proper time of the point with fixed spatial SE coordinates ξ i,
i = 1,2,3, while σ(ξ ,τ) is the proper time of the main observer at the space origin
ξ = 0 at which the latter considers herself simultaneous with (ξ ,τ). So σ in (2.334)
corresponds to τ , and hence T , in (2.335). Naturally, ξ i corresponds to X i and ni to
λ(i).

To rewrite the above metric (2.333), we just have to identify a0i and Ωi j using the
discussion in Sect. 2.11.4. Comparing the acceleration matrix in (2.311) on p. 99,
viz.,

Ã(ν)
(κ) =


0 a01 a02 a03

a01 0 Ω21 Ω31

a02 Ω12 0 Ω32

a03 Ω13 Ω23 0

 , (2.336)

with (2.281) on p. 92, viz.,

Aα
β =


0 −γ2vΩ0 γ2dv/dτ 0

−γ2vΩ0 0 γ2Ω0 0

γ2dv/dτ −γ2Ω0 0 0
0 0 0 0

 , (2.337)

we have the correspondence

a01 =−γ
2vΩ0 , a02 = γ

2v̇ , a03 = 0 , (2.338)

Ω12 =−γ
2
Ω0 =−Ω21 , Ω23 = 0 = Ω31 , (2.339)

where v̇ := dv/dτ . Noting that ξ iξ jΩikΩ jk is the sum of the squares of the terms
ξ jΩ j1, ξ jΩ j2, and ξ jΩ j3, which gives

ξ
i
ξ

j
ΩikΩ jk = (X2 +Y 2)γ4

Ω
2
0 ,

we thus obtain our first version of the metric for this coordinate construction:

gµν =


(
1−Xγ2vΩ0 +Y γ2v̇

)2− (X2 +Y 2)γ4Ω 2
0 Y γ2Ω0 −Xγ2Ω0 0

Y γ2Ω0 −1 0 0

−Xγ2Ω0 0 −1 0
0 0 0 −1

 .

(2.340)
Note that the components are functions of T as well as X and Y . This dependence
occurs through the functions v(T ), v̇(T ), γ(T ) and Ω0(T ).

To check that everything is working, and in particular that we are justified in
quoting the general result from Sect. 2.3.8, let us go back to the coordinate transfor-
mation relations (2.331) on p. 104, viz.,
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t = F(T )+ γ(T )v(T )Y ,

x = (X + r)cosφ(T )− γ(T )Y sinφ(T ) ,

y = (X + r)sinφ(T )+ γ(T )Y cosφ(T ) ,

z = Z ,

(2.341)

and use the standard transformation formula

gµν =
∂xσ

∂X µ

∂xτ

∂Xν
ηστ , (2.342)

where the capital letter X µ denotes (T,X ,Y,Z).
Recall from (2.278) and (2.279) on p. 91 that

dγ

dτ
= γ

3v
dv
dτ

,
d

dτ
(γv) = γ

3 dv
dτ

,
dφ

dτ
= γΩ0 ,

and by (2.271) on p. 90 that

dF
dτ

= γ(τ) = γ(T ) .

We obtain
∂x0/∂X0

∂x1/∂X0

∂x2/∂X0

∂x3/∂X0

=


γ + γ3v̇Y

−(X + r)γΩ0 sinφ −Y γ3vv̇sinφ −Y γ2Ω0 cosφ

(X + r)γΩ0 cosφ +Y γ3vv̇cosφ −Y γ2Ω0 sinφ

0

 ,


∂x0/∂X1

∂x1/∂X1

∂x2/∂X1

∂x3/∂X1

=


0

cosφ

sinφ

0

 ,


∂x0/∂X2

∂x1/∂X2

∂x2/∂X2

∂x3/∂X2

=


γv

−γ sinφ

γ cosφ

0

 ,

and 
∂x0/∂X3

∂x1/∂X3

∂x2/∂X3

∂x3/∂X3

=


0
0
0
1

 .

According to (2.342), the components of gµν are found by taking scalar products of
these four-component objects for the metric ηµν . For example, we find that
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g00 =
(
γ + γ

2v̇Y
)2−

[
(X + r)γΩ0 sinφ +Y γ

3vv̇sinφ +Y γ
2
Ω0 cosφ

]2

−
[
(X + r)γΩ0 cosφ +Y γ

3vv̇cosφ −Y γ
2
Ω0 sinφ

]2

= γ
2 +2γ

4v̇Y + γ
6v̇2Y 2− (X + r)2

γ
2
Ω

2
0 sin2

φ −2(X + r)γ4
Ω0vv̇Y sin2

φ

−2(X + r)γ3
Ω

2
0Y sinφ cosφ −2vv̇γ

5
Ω0Y 2 sinφ cosφ

−γ
6v2v̇2Y 2 sin2

φ − γ
4
Ω

2
0Y 2 cos2

φ

−(X + r)2
γ

2
Ω

2
0 cos2

φ −2(X + r)γ4
Ω0vv̇Y cos2

φ

+2(X + r)γ3
Ω

2
0Y sinφ cosφ +2vv̇γ

5
Ω0Y 2 sinφ cosφ

−γ
6v2v̇2Y 2 cos2

φ − γ
4
Ω

2
0Y 2 sin2

φ

= γ
2 +2γ

4v̇Y + γ
6v̇2Y 2− (X + r)2

γ
2
Ω

2
0 −2(X + r)γ4

Ω0vv̇Y

−γ
4v2v̇2Y 2− γ

4
Ω

2
0Y 2

= γ
2 +2γ

4v̇Y + γ
6v̇2Y 2− (X + r)2

γ
2
Ω

2
0 −2(X + r)γ4

Ω0vv̇Y − γ
4
Ω

2
0Y 2 .

The reason why this does not look like g00 in (2.340) is simply that we need to
eliminate r = v/Ω0 [see (2.268) on p. 89]. Eliminating r from the last version of
g00, we do indeed recover the first version.

Taking the Lorentzian scalar product of the first and second four-component ob-
jects, we also have

g01 =


∂x0/∂X0

∂x1/∂X0

∂x2/∂X0

∂x3/∂X1

 ·


∂x0/∂X1

∂x1/∂X1

∂x2/∂X1

∂x3/∂X1


= cosφ

[
(X + r)γΩ0 sinφ +Y γ

3vv̇sinφ +Y γ
2
Ω0 cosφ

]
+sinφ

[
− (X + r)γΩ0 cosφ −Y γ

3vv̇cosφ +Y γ
2
Ω0 sinφ

]
= Y γ

2
Ω0 ,

as we found previously. Taking the Lorentzian scalar product of the first and third
four-component objects, we have
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g02 =


∂x0/∂X0

∂x1/∂X0

∂x2/∂X0

∂x3/∂X0

 ·


∂x0/∂X2

∂x1/∂X2

∂x2/∂X2

∂x3/∂X2


= γ

2v(1+ γ
2v̇Y )− γ sinφ

[
(X + r)γΩ0 sinφ +Y γ

3vv̇sinφ +Y γ
2
Ω0 cosφ

]
−γ cosφ

[
(X + r)γΩ0 cosφ +Y γ

3vv̇cosφ −Y γ
2
Ω0 sinφ

]
= γ

2v+ γ
4vv̇Y − γ

2
Ω0(X + r)− γ

4vv̇Y

= −γ
2
Ω0(X + r)+ γ

2v

= −Xγ
2
Ω0 ,

as before, having substituted in r = v/Ω0. Other components are trivial.

2.11.7 Metric for FW Transported Tetrad

We can also apply the general result (2.333) to the SE coordinates that would be
constructed using the FW transported tetrad (2.288) of Sect. 2.11.3. We simply read
off the values of a0i, i = 1,2,3, from (2.318) on p. 100, viz.,

a01 =−vγ
2
Ω0 cosΦ− γ

2 dv
dτ

sinΦ , a02 =−vγ
2
Ω0 sinΦ + γ

2 dv
dτ

cosΦ ,

and a03 = 0, and insert Ωi j = 0, ∀i, j ∈ {1,2,3}. For the record, the result is

gFW
µν =


gFW

00 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (2.343)

where

gFW
00 =

[
1+
(
−vγ

2
Ω0 cosΦ− γ

2 dv
dτ

sinΦ

)
XFW (2.344)

+

(
−vγ

2
Ω0 sinΦ + γ

2 dv
dτ

cosΦ

)
Y FW

]2

,

with XFW and Y FW the first and second space coordinates. It should be noted that
a01 and a02 are not constant. Indeed, the component gFW

00 is a function of the time
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coordinate T FW. It depends on this coordinate through each of the functions v(τ),
v̇(τ), γ(τ), Φ(τ) as given by (2.289) on p. 94, and Ω0(τ).

Regarding this time coordinate T FW, it is worth remembering that it is just the
proper time of the observer in circular motion, spread over her hyperplanes of si-
multaneity in just the same way as when setting up the rotating tetrad coordinates in
Sect. 2.11.5. It is merely by choosing a suitable space triad along the worldline that
we get the components gFW

0i , i = 1,2,3, equal to zero.

2.12 Range of Validity of SE Coordinates

As usual, the component g00 of the metric (2.340) in Sect. 2.11.6 goes to zero on
a surface beyond which it is negative. There is no fundamental problem with its
being negative, although the interpretation of the coordinates has to change then
(see below), but the coordinates are not useful in places where they make the matrix
of metric components singular. Note, however, that this is the Minkowski metric,
which is defined throughout spacetime, so the problem has to come from the matrix
(∂x/∂X) which we used to transform the matrix of metric components, as already
explained in Sect. 2.3.8.

To recapitulate that discussion, note that

det
∂x
∂X

= 0

precisely where
detg = 0 .

For the most general semi-Euclidean form of the metric, viz., (2.333) on p. 104,
which is

gµν =


(
1+ξ ia0i

)2−ξ iξ jΩikΩ jk ξ jΩ j1 ξ jΩ j2 ξ jΩ j3

ξ jΩ j1 −1 0 0
ξ jΩ j2 0 −1 0
ξ jΩ j3 0 0 −1

 , (2.345)

the matrix of components of the Minkowski metric has determinant

detgMink
SE =−

(
1+ξ

ia0i
)2

. (2.346)

This is always independent of the rotation chosen for the space triad {ni}i=1,2,3, as
specified by Ωi, i = 1,2,3, but it does depend on the acceleration of the worldline
as specified by its absolute components a0i, i = 1,2,3. It is zero for all ξ i satisfying

ξ
ia0i(σ) =−1 ,
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for some value of the proper time σ of the observer. This specifies a 2-plane of the
3D space of ξ i for each proper time σ . Note that we also have

g00 ≤ 0 , when detgMink
SE = 0 . (2.347)

Other things can go wrong with this kind of coordinate construction, especially in a
context where one would like each point of constant {ξ i}i=1,2,3 to correspond to a
particle in a medium, as was the case for the initial discussion in Sect. 2.3. Recall
that we had

xµ(ξ ,τ) = xµ(0,σ)+ξ
inµ

i (σ) , uµ := ẋµ(ξ ,τ) = (uµ

0 +ξ
iṅµ

i )σ̇ , (2.348)

where xµ(ξ ,τ) specifies the worldline of the point of constant {ξ i}i=1,2,3, with τ

being its proper time, a dot on this symbol refers to its partial derivative with respect
to τ for fixed {ξ i}i=1,2,3 (thereby delivering the four-velocity uµ of this point), and
σ is a proper time of the main observer at ξ = 0, depending on both ξ i and τ , such
that the event xµ(ξ ,τ) is simultaneous with xµ(0,σ) in the reckoning of the main
observer at ξ = 0.

This construction assumes first and foremost that the latter always exists, i.e., for
the event xµ(ξ ,τ), there exists a point on the main worldline that the main observer
considers to be simultaneous with it. A case where this assumption breaks down is
translational uniform acceleration, if we choose events outside region I in Fig. 2.6 on
p. 81. It also assumes that there is a unique event on the main worldline that the main
observer considers to be simultaneous with it. This assumption also breaks down for
translational uniform acceleration, and it breaks down in general for accelerating
observers (see the discussion in Sect. 2.2.2).

Yet another problem is that the object uµ in (2.348) may not have the credentials
of a four-velocity, i.e., it may be impossible for it to satisfy u2 = 1. This happens
when the four-vector

W µ := uµ

0 +ξ
iṅµ

i

is null or spacelike. When we write

ṅµ

i = a0iu
µ

0 +Ωi jn
µ

j ,

this becomes
W µ = (1+ξ

ia0i)u
µ

0 +ξ
i
Ωi jn

µ

j ,

and there should be no great surprise to note that the condition for uµ to be a four-
velocity is precisely

g00 =
(
1+ξ

ia0i
)2−ξ

i
ξ

j
ΩikΩ jk > 0 .

So this is never satisfied, for example, when detgMink
SE = 0 [see (2.347) above]. Note,

however, that there is no fundamental problem with g00 being zero or negative. It
just means that we cannot interpret worldlines of fixed ξ as being worldlines of



2.12 Range of Validity of SE Coordinates 111

particles or observers when this is the case. Basically, it disallows the first property
on the list back on p. 12.

2.12.1 Range of Validity for General Circular Motion
and Rotating Tetrad

In the case of an observer with general circular motion and the FS transported tetrad
leading to the metric (2.340) on p. 105,

a01 =−γ
2vΩ0 , a02 = γ

2v̇ , a03 = 0 , (2.349)

Ω12 =−γ
2
Ω0 =−Ω21 , Ω23 = 0 = Ω31 . (2.350)

Note that each of these quantities is a function of T , but neither X , Y , nor Z. The
coordinate transformation to (T,X ,Y,Z) is singular when

detgSE = 0 ⇐⇒ 1+ξ
ia0i = 0 ⇐⇒ 1− γ

2vΩ0X + γ
2v̇Y = 0 . (2.351)

This can be written

detgSE = 0 ⇐⇒ 1− v2 + v̇Y = vΩ0X . (2.352)

For each value of T , this is a plane in the (T,X ,Y,Z) system.
It is more difficult to express relative to the original inertial system (t,x,y,z) in

the completely general case. However, since v = rΩ0, we have

1+ v̇Y = v(X + r)Ω0 , (2.353)

and we have {
X + r = xcosφ + ysinφ ,

γY =−xsinφ + ycosφ ,
(2.354)

whence the condition for coordinate singularity becomes

1+ v̇γ
−1(−xsinφ + ycosφ) = v(xcosφ + ysinφ)Ω0 . (2.355)

Unfortunately, this still refers to the coordinate T through the functions φ(T ),
v(T ) and v̇(T ). We can in principle obtain T = T (t,Y ) by inverting the relation
t = F(T )+ γ(T )v(T )Y , then eliminate it from (2.355), but this brings back Y and
we still have T in the expression if we eliminate Y using the second relation of
(2.354). Of course, in specific cases, one might obtain an explicit expression for the
surface of singularity of the coordinate transformation in the (t,x,y,z) coordinate
system.

The condition for g00 to be positive discussed above, viz.,
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1+ξ

ia0i
)2

> ξ
i
ξ

j
ΩikΩ jk ,

becomes
(1− γ

2vΩ0X + γ
2v̇Y )2 > (X2 +Y 2)γ4

Ω
2
0 . (2.356)

This expands out to

1+X2
γ

4v2
Ω

2
0 +Y 2

γ
4v̇2−2XY γ

4vv̇Ω0 +2Y γ
2v̇−2Xγ

2vΩ0

−X2
γ

4
Ω

2
0 −Y 2

γ
4
Ω

2
0 > 0 .

The second and seventh terms on the left-hand side join to give

1−X2
γ

2
Ω

2
0 +Y 2

γ
4v̇2−2XY γ

4vv̇Ω0 +2Y γ
2v̇−2Xγ

2vΩ0−Y 2
γ

4
Ω

2
0 > 0 .

This rearranges to

X2
Ω

2
0 + γ

2(Ω 2
0 − v̇2)Y 2 +2XY γ

2vv̇Ω0 < 1− v2 +2Y v̇−2XvΩ0 . (2.357)

For each value of T , entering this through the functions Ω0(T ), v(T ), γ(T ), and
v̇(T ), we obtain a cylindrical surface in the (X ,Y,Z) space, since Z is free to vary.
Its section in the (X ,Y ) plane will be a conic section, whose nature depends on the
relative signs of the terms.

Note that it is not sufficient to examine the coefficient of Y 2 in the above. The
sign of this term would depend on whether Ω 2

0 was bigger than, equal to, or smaller
than v̇2, and one might naively think that this would lead to an ellipse, a parabola, or
a hyperbola, respectively. However, a more careful analysis is needed (see Sect. 2.13
and in particular Sect. 2.13.5). The actual condition is

I < 0 , hyperbola ,
I = 0 , parabola ,
I > 0 , ellipse ,

(2.358)

where I := γ2(Ω 2
0 − γ2v̇2) is the Lorentz invariant quantity we encountered in

(2.287) on p. 93. Note the extra factor of γ2 compared with the naive suggestion
above. But of course, one would expect the condition for the shape of these surfaces
to be Lorentz invariant, and hence involve a Lorentz invariant quantity like I.

2.12.2 Light Cylinder for Uniform Circular Motion
and Rotating Tetrad

We can analyse one very simple case in which Ω 2
0 is definitely bigger than γ2v̇2,

namely the case of uniform angular speed, so that v̇ = 0. The condition gSE
00 = 0,

viz.,
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X2
Ω

2
0 + γ

2(Ω 2
0 − v̇2)Y 2 +2XY γ

2vv̇Ω0 = 1− v2 +2Y v̇−2XvΩ0 , (2.359)

then just specifies the light cylinder

(x2 + y2)1/2 = r/v =: rLC . (2.360)

Anyone rotating around the same centre with the same angular speed but at this
radius would be moving at the speed of light, because if we multiply this by the
frequency Ω0 = v/r to get the actual speed, we obtain unity, the speed of light in
these units.

Let us just prove that claim. First, when v̇ = 0, (2.359) becomes

X2
Ω

2
0 + γ

2
Ω

2
0Y 2 = 1− v2−2XvΩ0 . (2.361)

Let us transform this to the original inertial coordinates (t,x,y). We go to the con-
version (2.331) on p. 104 from (T,X ,Y ) to (t,x,y), viz.,

t = F(T )+ γ(T )v(T )Y ,

x = (X + r)cosφ(T )− γ(T )Y sinφ(T ) ,

y = (X + r)sinφ(T )+ γ(T )Y cosφ(T ) ,
(2.362)

bearing in mind that v and γ are constant, and that F(T ) = γT because dF/dT = γ .
Recall also that φ(T ) = Ω0γT . In this calculation, we shall just use φ for φ(T ),
since it will be the same everywhere. Hence

t = γT + γvY , (2.363)

and we can invert the second and third relations of (2.362) to obtain

t = γT + γvY ,

X + r = xcosφ + ysinφ ,

γY =−xsinφ + ycosφ .

(2.364)

The last two are inserted in (2.361) to give

(xcosφ + ysinφ − r)2
Ω

2
0 +(−xsinφ + ycosφ)2

Ω
2
0

= 1− v2−2vΩ0(xcosφ + ysinφ − r)

= 1− v2−2vΩ0xcosφ −2vΩ0ysinφ +2vrΩ0 .

Multiplying out the left-hand side and using Ω0 = v/r, we soon obtain

(x2 + y2 + r2−2xr cosφ −2yr sinφ)
v2

r2 = 1− v2− 2v2x
r

cosφ − 2v2y
r

sinφ +2v2 ,

and this in turn quickly boils down to
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(x2 + y2)
v2

r2 = 1 ,

which is just the equation (2.360) for the light cylinder.
In [35, 36], Mashhoon asserts that the SE coordinates (T,X ,Y,Z) we have been

discussing for general circular motion are valid within the cylindrical region whose
nature is specified by (2.358), but he does not specify what goes wrong outside
this region. He merely talks about a region outside of which the SE coordinates are
not permissible. However, it should be stressed that there is nothing mathematically
problematic until we reach the surface where the coordinate transformation from
inertial coordinates to SE coordinates is singular. In fact, Mashhoon’s problem here
is with the physical interpretation of the SE coordinates in regions where g00 is zero
or negative. We shall return to that issue later.

2.12.3 Intersecting Hyperplanes of Simultaneity
for Circular Motion

A general discussion of the condition g00 = 0 for these coordinate constructions is
given in Sect. 2.13. However, we have not yet given any consideration to regions
where we are sure that the SE coordinates become problematic, because the con-
struction process breaks down, viz., regions where there is no unique point on the
worldline of the main observer such that this observer considers a given point in
those regions to be simultaneous (the existence of a point and its uniqueness are
both crucial).

That does not seem to be a tractable problem in the completely general case,
although we have already considered how this non-uniqueness problem arises from
a qualitative point of view in Sect. 2.2.2. One case we considered was an observer
who changes direction. When this observer has the same speed but in the opposite
direction at two events on her worldline, her HOSs will meet somewhere to the right
if the change of speed is to the left, and vice versa. In the case of circular motion,
this happens all the time, although here we need a second space dimension, because
the observer will have moved (a distance 2r) in that other space direction between
two velocity reversals.

To consider general circular motion would obscure the essential issue here, so
let us deal only with constant angular velocity. If we picture the spiralling world-
line with constant gradient for uniform rotation, the HOSs of two velocity-reversed
events always meet outside the spiral in the direction to which the observer was
originally moving (at the lower of the two events in the time dimension). It looks
as though the intersections of all HOSs may generate a circular cylinder containing
the spiral. The steeper its gradient, i.e., the smaller the angular speed, the further
away this cylinder will be and the bigger the region in which we can build the SE
coordinate system.
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But if the gradient of the spiral were shallow, lying close to, but just above the
null gradient, so that the HOSs were steep, lying just below the null gradient, could
the HOSs for two consecutive velocity-reversed events on the worldline actually
meet within the spiral? The two events would be closer in time coordinate. Note,
however, that there is a limit to how big we can make the spiral radius if we are to
keep that time difference between the two events equal, since the observer cannot
move faster than light.

Let us analyse this quantitatively for the case of uniform rotation. Mashhoon does
not consider this in [35, 36]. We shall show that things go wrong outside a cylinder
of radius r/v2. Since v < 1, this is always outside the light cylinder, which lies at
rLC = r/v.

First consider the event on the spiralling worldline at time t = 0. This event is

(t,x,y) = (0,r,0) ,

dropping the z coordinate throughout the calculation. The HOS here is spanned by
the vectors λ(1)(φ = 0) and λ(2)(φ = 0) as given by (2.330) on p. 103, viz.,

λ(1)(φ = 0) = (0,1,0) , λ(2)(φ = 0) = (γv,0,γ) .

The plane through the relevant event and spanned by these vectors is given byλ

 0
1
0

+µ

 v
0
1

 : λ , µ ∈ R

 ,

or

HOSφ=0 =


 µv

λ

µ

 : λ , µ ∈ R

 . (2.365)

Now consider the event on the spiralling worldline at t = φ/Ω0. This event is

(t,x,y) =
(
φ/Ω0,r cosφ ,r sinφ

)
.

The HOS here is spanned by the vectors λ(1)(φ) and λ(2)(φ) as given by (2.330) on
p. 103, viz.,

λ(1)(φ = 0) = (0,cosφ ,sinφ) , λ(2)(φ = 0) = (γv,−γ sinφ ,γ cosφ) .

The plane through the relevant event and spanned by these vectors is given by
 φ/Ω0

r cosφ

r sinφ

+α

 0
cosφ

sinφ

+β

 v
−sinφ

cosφ

 : α, β ∈ R

 ,

or
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HOSφ =


 φ/Ω0 +βv
−β sinφ +(r+α)cosφ

β cosφ +(r+α)sinφ

 : α, β ∈ R

 . (2.366)

We now find the line of intersection of HOSφ=0 and HOSφ as given by (2.365) and
(2.366), by solving the three simultaneous equations

φ

Ω0
+βv = µv ,

−β sinφ +(r+α)cosφ = λ ,

β cosφ +(r+α)sinφ = µ ,

(2.367)

in the four unknowns λ , µ , α , and β . The first and third can give us β in terms of
α , viz.,

β =
(r+α)vsinφ −φ/Ω0

v(1− cosφ)
. (2.368)

We can then get λ and µ in terms of α alone, viz.,

λ =
φ/Ω0− (r+α)vsinφ

v(1− cosφ)
sinφ +(r+α)cosφ , (2.369)

µ =
(r+α)vsinφ −φ/Ω0

v(1− cosφ)
cosφ +(r+α)sinφ , (2.370)

and the line of intersection of the two hyperplanes of simultaneity is given by in-
serting these in the vector

 µv
λ

µ

=



(r+α)vsinφ −φ/Ω0

1− cosφ
cosφ +(r+α)vsinφ

φ/Ω0− (r+α)vsinφ

v(1− cosφ)
sinφ +(r+α)cosφ

(r+α)vsinφ −φ/Ω0

v(1− cosφ)
cosφ +(r+α)sinφ

 ,

to give finally

L0,φ =





(r+α)vsinφ −φ/Ω0

1− cosφ
cosφ +(r+α)vsinφ

φ/Ω0− (r+α)vsinφ

v(1− cosφ)
sinφ +(r+α)cosφ

(r+α)vsinφ −φ/Ω0

v(1− cosφ)
cosφ +(r+α)sinφ

 : α ∈ R


, (2.371)

where L0,φ denotes the line of intersection of the hyperplanes of simultaneity at
these two events.
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We now consider the distance D of this line from the space origin, still ignoring
the z dimension. We are going to minimise D to obtain the closest point to the
space origin at which the coordinate construction breaks down, and this will give
the closest point for any z. Indeed, it is the freedom in z that makes the final surface
of breakdown a cylinder in the spacelike hypersurface covered by (x,y,z) for each
value of t. But there is some work to do to get this picture clear (see below).

First note that

D2 =

[
φ/Ω0− (r+α)vsinφ

v(1− cosφ)
sinφ +(r+α)cosφ

]2

+

[
(r+α)vsinφ −φ/Ω0

v(1− cosφ)
cosφ +(r+α)sinφ

]2

,

whence

D2 =

[
φ/Ω0− (r+α)vsinφ

v(1− cosφ)

]2

+(r+α)2 . (2.372)

We now minimise that with respect to α , which will also deliver the corresponding
value of t when the line comes closest to the space origin, by inserting the relevant
value of α into the first component of the vector in (2.371).

To minimise D2(α), we consider

d
dα

D2 = 2
φ/Ω0− (r+α)vsinφ

v(1− cosφ)
×− vsinφ

v(1− cosφ)
+2(r+α) .

Then, recalling that Ω0 = v/r,

d
dα

D2 = 0⇐⇒ φ/Ω0− (r+α)vsinφ

v2(1− cosφ)2 × vsinφ = r+α

⇐⇒
[

1+
v2 sin2

φ

v2(1− cosφ)2

]
(r+α) =

φrvsinφ

v3(1− cosφ)

⇐⇒ r+α =
φr sinφ

v2(1− cosφ)2
[

1+
sin2

φ

(1− cosφ)2

]
=

φr sinφ

v2
[
(1− cosφ)2 + sin2

φ
]

=
φr sinφ

2v2(1− cosφ)
.

For the record, the value αmin of the parameter α that minimises the distance of the
line L0,φ from the space origin in the (x,y) plane is given by
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r+αmin =
φr sinφ

2v2(1− cosφ)
. (2.373)

Note that this works even for values of φ like π or π/2. For φ = π , the observer has
reversed its velocity with respect to φ = 0, while φ = π/2 represents a rotation of
the velocity through one quarter turn relative to φ = 0.

We feed the above value of α back into (2.372) to obtain the minimum distance
D2

min as

D2
min =

φ 2r2 sin2
φ

4v4(1− cosφ)2 +


φr
v
− φr sin2

φ

2v(1− cosφ)

v(1− cosφ)


2

=
φ 2r2

v4


sin2

φ

4(1− cosφ)2 +

1− sin2
φ

2(1− cosφ)

1− cosφ


2 ,

whence

D2
min =

φ 2r2

4v4(1− cosφ)2

[
sin2

φ +

(
2− sin2

φ

1− cosφ

)2]
.

This simplifies enormously using

sin2
φ = 1− cos2

φ = (1− cosφ)(1+ cosφ) ,

whence

sin2
φ +

(
2− sin2

φ

1− cosφ

)2

= sin2
φ +

[
2− (1+ cosφ)

]2
= sin2

φ +(1− cosφ)2

= sin2
φ +1−2cosφ + cos2

φ = 2(1− cosφ) .

Hence finally,

D2
min =

φ 2r2

2v4(1− cosφ)
. (2.374)

We now obtain the value tmin of t when the line comes closest to the space origin,
by inserting the relevant value αmin of α into the first component of the vector in
(2.371) to obtain
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tmin =

φr sin2
φ

2v(1− cosφ)
− φr

v
1− cosφ

cosφ +
φr sin2

φ

2v(1− cosφ)

=
φr sin2

φ

2v(1− cosφ)

(
cosφ

1− cosφ
+1
)
− φr cosφ

v(1− cosφ)

=
φr

2v(1− cosφ)

(
sin2

φ

1− cosφ
−2cosφ

)
=

φr
2v(1− cosφ)

(1+ cosφ −2cosφ) ,

whence finally

tmin =
φr
2v

=
1
2

φ

Ω0
. (2.375)

Now the observer reaches the event parametrised by φ at inertial time φ/Ω0, so the
minimum distance Dmin from the space origin of the (x,y) plane at which these two
hyperplanes of simultaneity coincide occurs at an event with inertial time halfway
between the two events. This could be expected from the symmetry of the situation.

Also by the symmetry of the situation, if we had started by considering hyper-
planes of simultaneity at events for −φ/2 and φ/2, the relevant intersection of hy-
perplanes of simultaneity would have occurred at inertial time zero. Then varying φ

from π down toward zero, we would get a whole set of minimum distances of HOS
intersection occurring at inertial time t = 0. The minimum of these, if there is one,
sets the distance at which the coordinate construction breaks down for this value of
the inertial time. But all values of the inertial time are equivalent by the symmetry
of the situation, so we get this distance (at which the coordinate construction breaks
down) for all values of t.

Now we need to find the x and y coordinates of the point of breakdown, returning
to the calculation above for angles 0 and φ . This is important, because we have
only calculated the distance from the origin of the (x,y) plane. We would like to
show that the minimum of this distance occurs at angle φ/2. The point is that the
observer reaches this angle precisely at the inertial time of the coordinate breakdown
due to this point of closest HOS intersection. That observer event on the observer’s
worldline then lies on the straight line from the space origin at that inertial time to
the breakdown event at that inertial time.

Inserting the relevant value αmin of α into the second component of the vector in
(2.371), we obtain
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xmin =

φr
v
− φr sin2

φ

2v(1− cosφ)

v(1− cosφ)
sinφ +

φr sinφ cosφ

2v2(1− cosφ)

=
φr sinφ

2v2(1− cosφ)

(
2− sin2

φ

1− cosφ
+ cosφ

)
=

φr sinφ

2v2(1− cosφ)

[
2− (1+ cosφ)+ cosφ

]
=

φr sinφ

2v2(1− cosφ)
,

whence finally

xmin =
φr sinφ

2v2(1− cosφ)
. (2.376)

Inspection of the first and third components of (2.371) shows that

ymin =
tmin

v
=

φr
2v2 . (2.377)

It is easy to check that

D2
min = x2

min + y2
min =

φ 2r2

4v4

[
sin2

φ

(1− cosφ)2 +1
]

=
φ 2r2

4v4

[
1+ cosφ

1− cosφ
+1
]

=
φ 2r2

2v4(1− cosφ)
,

agreeing with (2.374).
For φ = π , we obtain Dmin = πr/2v2. On the other hand, for φ = π/2, we obtain

Dmin = πr/2
√

2v2. It turns out that Dmin decreases to a finite limit as φ → 0. Since

cosφ = 1− φ 2

2
+O(φ 4) ,

we obtain

lim
φ→0

Dmin =
r
v2 , (2.378)

as claimed earlier. This is well outside the light cylinder at r/v.
Concerning the angle φmin of the closest breakdown event to the space origin

(and also to the observer), as measured from the x axis in the instantaneous (x,y)
plane at the inertial time t = φ/2Ω0 = φr/2v = tmin, we have
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tanφmin =
ymin

xmin
=

1− cosφ

sinφ
=

1− cos2
φ

2

sin2
φ

2

=

1−
(

1−2sin2 φ

2

)
2sin

φ

2
cos

φ

2

= tan
φ

2
,

which is enough to show that

φmin =
φ

2
, (2.379)

as claimed above.

2.12.4 A Brief Conclusion for Uniform Rotation

The problem of intersecting hyperplanes of simultaneity which complicates the con-
struction of accelerating coordinate systems by this method occurs well outside the
light cylinder. The problem considered by Mashhoon to invalidate the construction
beyond a certain distance begins right on the light cylinder, where the (00) compo-
nent of the semi-Euclidean metric goes to zero, even though there is no particular
problem with the matrix of components of the metric relative to these coordinates
either here or beyond the light cylinder, unless one wishes for observers to be able
to sit at fixed SE space coordinates (a condition he does not mention explicitly).

Things do go seriously wrong with the matrix of components of the metric rel-
ative to these coordinates in regions where detgSE = 0, and this happens because
the transformation from inertial to SE coordinates has a singularity. For uniform
rotation (v̇ = 0), the condition for singularity is (2.352) on p. 111, viz.,

X =
1

vΩ0γ2 =
r

v2γ2 =
r
v2 − r . (2.380)

To visualise this in the inertial coordinate system, we require an inverse for the
transformation given in (2.331) on p. 104, viz.,

t = γT + γvY ,

x = (X + r)cosγΩ0T − γY sinγΩ0T ,

y = (X + r)sinγΩ0T + γY cosγΩ0T ,

z = Z .

(2.381)

This is quite a complicated problem, even for this uniform rotation case. Note, how-
ever, that the SE spatial plane given by (2.380) lies at large X values for low speeds
v� 1, but moves in toward X = 0 as v→ 1. One would expect it to occur a long
way from the observer for low speeds, and become closer as v increases.
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2.13 General Analysis of the Surface g00= 0

Mashhoon asserts in [36] that the SE coordinates (T,X ,Y,Z) are valid within a cylin-
drical region with boundary an elliptic cylinder for I > 0, a parabolic cylinder for
I = 0, and a hyperbolic cylinder for I < 0, where I is the invariant given by (2.287)
on p. 93, viz.,

I :=−a2 +Ω
2 = γ

2
Ω

2
0 − γ

4v̇2 . (2.382)

It should be borne in mind, however, that the only thing that becomes impossible
is for observers to sit at fixed (X ,Y,Z) in this region, i.e., these are no longer like
spatial inertial coordinates in that respect. But they are still coordinates.

The aim in this section is to give a general discussion of the conditions on g00,
based on Mashhoon’s account in [35]. He constructs the usual SE coordinate system
along the arbitrary worldline D, specified by xD(τ), where τ is the proper time.
The orthornormal tetrad is denoted by {λ µ

(α)
}α=0,1,2,3, where λ(0) = uD is the four-

velocity. The tetrad is a function of the proper time and we define the SE coordinates
{Xα}α=0,1,2,3 as usual by

τ = X0 , xµ = xµ

D(τ)+X i
λ

µ

(i)(τ) , (2.383)

at least as far as this construction is allowed by non-intersection of the spacelike
geodesics orthogonal to the worldline at different proper times.

In Mashhoon’s notation, the Minkowski metric now has components

g00 =−S , g0i =Ui , gi j = δi j , (2.384)

where
S := (1+a ·X)2−U2 , U = Ω×X , (2.385)

and a and Ω are the usual three-vector functions of the proper time defined as the
components of the four-acceleration relative to the space triad {λ µ

(i)}i=1,2,3, in the
case of a, and the rotational frequency of the same space triad defined by examining
the expression of its proper time derivative relative to this same triad.

In the notation of Sect. 2.3,

S = (1+ξ
ia0i)

2−ξ
i
ξ

j
ΩikΩ jk , U i = ξ

j
Ω ji , (2.386)

with the correspondence

ξ
i←→ X i , a0i←→ ai , Ωi j←→ εi jkΩk .

We can then check that

ξ
j
Ω ji←→ X j

ε jikΩk = εi jkΩ jXk = (Ω×X)i =U i . (2.387)

Note that the matrix of metric components has determinant
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g := detgMink
SE =−(1+a ·X)2 , (2.388)

as proven in (2.67) on p. 34. It is easy to show that the inverse of this matrix is given
by

g00 =
1
g
, g0i =−U i

g
, gi j = δ

i j +
1
g

U iU j , (2.389)

in the case where g 6= 0.
We use the signature −2 here, following Mashhoon. In this picture, Mashhoon’s

view is that things go wrong when g00 ≥ 0, although he does not explain why. In fact
it is just because he would like observers to be able to sit at fixed X. It will then be
possible to pretend under some circumstances that these SE coordinates are inertial,
to a degree of approximation that will remain concealed by experimental error. As
we shall see, such a pretence is licensed by his locality ‘hypothesis’.

So the boundary of the region that is admissible in this sense is a 3-surface spec-
ified by

S = 0 . (2.390)

We write this in the form

S(X0,X) = 1+2ai(X0)X i +Mi j(X0)X iX j = 0 , (2.391)

where Mi j is a symmetric matrix found by expanding out the expression for S in
(2.385), and bearing in mind that X0 is just proper time along the observer worldline.
Clearly,

S = 1+2aiX i +aia jX iX j− (Ω×X)·(Ω×X) .

Using the result (2.387) established above, the last term is

(Ω×X)·(Ω×X) = X iX j
ΩikΩ jk

= X iX j
εiklΩlε jkmΩm

= X iX j
ΩlΩm(δi jδlm−δimδl j)

= Ω
2X iX j

δi j−ΩiΩ jX iX j ,

whence finally,

Mi j = aia j +ΩiΩ j−Ω
2
δi j , (2.392)

with Ω 2 := Ω 2
1 +Ω 2

2 +Ω 2
3 .

2.13.1 Eigenvalues and Determinant of M

The last relation gives a symmetric matrix
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M =

 a2
1 +Ω 2

1 −Ω 2 a1a2 +Ω1Ω2 a1a3 +Ω1Ω3

a1a2 +Ω1Ω2 a2
2 +Ω 2

2 −Ω 2 a2a3 +Ω2Ω3

a1a3 +Ω1Ω3 a2a3 +Ω2Ω3 a2
3 +Ω 2

3 −Ω 2

 , (2.393)

which has characteristic equation det(M−αI) = 0 given by

det

 a2
1 +Ω 2

1 −Ω 2−α a1a2 +Ω1Ω2 a1a3 +Ω1Ω3

a1a2 +Ω1Ω2 a2
2 +Ω 2

2 −Ω 2−α a2a3 +Ω2Ω3

a1a3 +Ω1Ω3 a2a3 +Ω2Ω3 a2
3 +Ω 2

3 −Ω 2−α

= 0 . (2.394)

Let us define β := α +Ω 2 and solve this cubic equation in β , viz.,

det

 a2
1 +Ω 2

1 −β a1a2 +Ω1Ω2 a1a3 +Ω1Ω3

a1a2 +Ω1Ω2 a2
2 +Ω 2

2 −β a2a3 +Ω2Ω3

a1a3 +Ω1Ω3 a2a3 +Ω2Ω3 a2
3 +Ω 2

3 −β

= 0 . (2.395)

This reads

0 = (a2
1 +Ω

2
1 −β )

[
(a2

2 +Ω
2
2 −β )(a2

3 +Ω
2
3 −β )− (a2a3 +Ω2Ω3)

2
]

+(a1a2 +Ω1Ω2)
[
(a2a3 +Ω2Ω3)(a1a3 +Ω1Ω3)

− (a1a2 +Ω1Ω2)(a2
3 +Ω

2
3 −β )

]
+(a1a3 +Ω1Ω3)

[
(a1a2 +Ω1Ω2)(a2a3 +Ω2Ω3)

− (a1a3 +Ω1Ω3)(a2
2 +Ω

2
2 −β )

]
.

This becomes

0 = (a2
1 +Ω

2
1 −β )

[
(a2

2 +Ω
2
2 )(a

2
3 +Ω

2
3 )−β (a2

2 +Ω
2
2 +a2

3 +Ω
2
3 )

+β
2− (a2a3 +Ω2Ω3)

2
]

+2(a1a3 +Ω1Ω3)(a1a2 +Ω1Ω2)(a2a3 +Ω2Ω3)

−(a1a2 +Ω1Ω2)
2(a2

3 +Ω
2
3 )+β (a1a2 +Ω1Ω2)

2

−(a1a3 +Ω1Ω3)
2(a2

2 +Ω
2
2 )+β (a1a3 +Ω1Ω3)

2 .

The coefficient of β 2 in this is just

coefficient of β 2 = a2 +Ω
2 , (2.396)

where a2 := a2
1 +a2

2 +a2
3 and Ω 2 := Ω 2

1 +Ω 2
2 +Ω 2

3 . The coefficient of β is
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coefficient of β = −(a2
2 +Ω

2
2 )(a

2
3 +Ω

2
3 )− (a2

3 +Ω
2
3 )(a

2
1 +Ω

2
1 )

−(a2
1 +Ω

2
1 )(a

2
2 +Ω

2
2 )

+(a2a3 +Ω2Ω3)
2 +(a1a2 +Ω1Ω2)

2 +(a1a3 +Ω1Ω3)
2

Note the necessary symmetry in permutations of (123). Multiplying out, we soon
find that

coefficient of β =−(a1Ω2−a2Ω1)
2− (a2Ω3−a3Ω2)

2− (a3Ω1−a1Ω3)
2 .

This can be written in the form

coefficient of β =−(a×Ω)2 = (a·Ω)2−a2
Ω

2 . (2.397)

The constant term in the cubic is

constant term = (a2
1 +Ω

2
1 )(a

2
2 +Ω

2
2 )(a

2
3 +Ω

2
3 )− (a2

1 +Ω
2
1 )(a2a3 +Ω2Ω3)

2

+2(a1a3 +Ω1Ω3)(a1a2 +Ω1Ω2)(a2a3 +Ω2Ω3)

−(a2
2 +Ω

2
2 )(a1a3 +Ω1Ω3)

2− (a2
3 +Ω

2
3 )(a1a2 +Ω1Ω2)

2 .

After a long-winded expansion of the terms, we find that the constant term is zero.
The characteristic equation for M thus becomes

0 = β
3− (a2 +Ω

2)β 2 +
[
a2

Ω
2− (a·Ω)2]

β , β = α +Ω
2 . (2.398)

One solution is β = 0, leading to the eigenvalue α0 := −Ω 2. The other two eigen-
values are α± := β±−Ω 2, where β± satisfy the quadratic equation

0 = β
2− (a2 +Ω

2)β +a2
Ω

2− (a·Ω)2 . (2.399)

We thus find

β± =
1
2
(a2 +Ω

2)± 1
2

√
(a2 +Ω 2)2−4

[
a2Ω 2− (a·Ω)2

]
,

whence
α± =

1
2
(a2−Ω

2)± 1
2

√
(a2−Ω 2)2 +4(a·Ω)2 .

Now recall the Lorentz invariants associated with a tensor of the form of (2.284) on
p. 93. Mashhoon defines

I =−a2 +Ω
2 , I∗ =−a·Ω , (2.400)

whence the eigenvalues of M can be written
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α± =−1
2

I±
√(

1
2

I
)2

+ I∗ , α0 =−Ω
2 , (2.401)

and not as Mashhoon gives them, without the remaining factors of 1/2. It would
have been neater here to consider the invariants I/2 and I∗.

So we have three eigenvalues α+ ≥ 0, α0 ≤ 0, and α− ≤ 0, and the determinant
of M is

detM = α−α0α+ = −Ω
2
[

1
4

I2−
(

1
4

I2 + I∗2
)]

= +Ω
2I∗2 = Ω

2(a·Ω)2 ,

or for reference
detM = Ω

2(a·Ω)2 . (2.402)

Now we need to talk about changing the space coordinates (X1,X2,X3) in order to
make the matrix M look simpler, and hence simplify the condition g00 = 0.

2.13.2 Simplifying the Condition g00= 0

The matrix M can be diagonalized at any time X0 (recall that this coordinate is the
proper time of the observer distributed equally over each hyperplane of simultane-
ity). In fact, this can be done by a simple rotation of the space coordinates because
M is a real symmetric 3×3 matrix. So let R(X0) be the orthogonal matrix such that

R−1 = RT , R−1MR =

α+ 0 0
0 α0 0
0 0 α−

 . (2.403)

Now change to the coordinates

X̂0 := X0 , X̂ := R−1X , (2.404)

assuming that R is a smooth function of X0. Note that

ĝ00 =
∂X µ

∂ X̂0

∂Xν

∂ X̂0
gµν 6= g00 , (2.405)

in general. This is because

X0 = X̂0 , X = R(X̂0)X̂ . (2.406)

This means that
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∂X µ

∂ X̂0
=

∂R(X̂0)µ
ν

∂ X̂0
X̂ν 6= 0 . (2.407)

Hence the condition ĝ00 = 0 is not the same as g00 = 0. Does this matter? Not as
long as we bear in mind that we are just rewriting g00, and not really considering
the metric induced on the hyperplanes of simultaneity by a new coordinate system.

In the end, the aim is to describe the surface geometrically. Suppose for example
that we show that it intersects each HOS in an elliptical cylinder as described relative
to the space coordinates (X̂1, X̂2, X̂3). Since we have just done a rotation, which
preserves this kind of property, it means that the surface intersects each HOS in an
elliptical cylinder as described relative to the space coordinates (X1,X2,X3). Later
we shall do a time dependent translation of coordinates in each HOS, and the same
reasoning will apply.

The metric component g00 will now look simpler. Recall that we had (2.391),
viz.,

0 = 1+2ai(X0)X i +Mi j(X0)X iX j = 1+2a ·X+XTMX . (2.408)

But of course

XTMX = X̂T
RTMRX̂ = α+

(
X̂1)2

+α0
(
X̂2)2

+α−
(
X̂3)2

. (2.409)

Regarding the term linear in X, we define

â := R−1a , (2.410)

so that
a ·X = aTX = âTRTRX̂ = âTX̂ , (2.411)

and our condition g00 = 0 becomes

1+2â·X̂+α+

(
X̂1)2

+α0
(
X̂2)2

+α−
(
X̂3)2

= 0 . (2.412)

2.13.3 The Case detM 6= 0

Later we shall consider the two cases where detM = 0, but for the moment, let us
assume that each of α0 and α± is nonzero, so that detM 6= 0.

We now observe that

2âiX̂ i +α
(
X̂ i)2

= α

[(
X̂ i)2

+
2âi

α
X̂ i
]
= α

[(
X̂ i +

âi

α

)2

−
(

âi

α

)2
]
,

so we can write
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g00 = 1− â2
1

α+
− â2

2
α0
− â2

3
α−

(2.413)

+α+

(
X̂1 +

â1

α+

)2

+α0

(
X̂2 +

â2

α0

)2

+α−

(
X̂3 +

â3

α−

)2

.

In a moment, we shall show that

1 =
â2

1
α+

+
â2

2
α0

+
â2

3
α−

, (2.414)

whence it follows that

g00 = α+

(
X̂1 +

â1

α+

)2

+α0

(
X̂2 +

â2

α0

)2

+α−

(
X̂3 +

â3

α−

)2

. (2.415)

We now do another transformation of the space coordinates:

ξ := X̂1 +
â1

α+
, η := X̂2 +

â2

α0
, ζ := X̂3 +

â3

α−
. (2.416)

As above, we are not talking here about obtaining a new component version g′µν

of the metric and considering the condition g′00 = 0, which would be a different
condition to g00 = 0. We are merely describing the surface g00 = 0, or rather its in-
tersection with each HOS, relative to new coordinates on the given HOS. We are in-
terested in geometric shape, but both rotation and translation preserve shape within
the HOS.

Anyway, the upshot of these space transformations within a given HOS is a sur-
face given by

0 = α+ξ
2 +α0η

2 +α−ζ
2 , (2.417)

at least once we have shown (2.414) (see below). Recalling that α+ ≥ 0, α0 ≤ 0,
and α− ≤ 0, we have

0 = α+ξ
2−|α0|η2−|α−|ζ 2 . (2.418)

Let us therefore prove (2.414). First we prove(
M−1)

i ja
ia j = 1 . (2.419)

Note that it would be equivalent to show that(
matrix of cofactors of M

)
i ja

ia j = detM = Ω
2(a·Ω)2 . (2.420)

The matrix of cofactors of
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M =

 a2
1 +Ω 2

1 −Ω 2 a1a2 +Ω1Ω2 a1a3 +Ω1Ω3

a1a2 +Ω1Ω2 a2
2 +Ω 2

2 −Ω 2 a2a3 +Ω2Ω3

a1a3 +Ω1Ω3 a2a3 +Ω2Ω3 a2
3 +Ω 2

3 −Ω 2

 (2.421)

is clearly a symmetric matrix of the form

matrix of cofactors of M =

A B C

B D E

C E F

 , (2.422)

where

A = (a2
2 +Ω

2
2 −Ω

2)(a2
3 +Ω

2
3 −Ω

2)− (a2a3 +Ω2Ω3)
2 (2.423)

= a2
2Ω

2
3 −a2

2Ω
2 +a2

3Ω
2
2 −Ω

2
2 Ω

2−a2
3Ω

2−Ω
2
3 Ω

2 +(Ω 2)2−2a2a3Ω2Ω3 ,

D = (a2
3 +Ω

2
3 −Ω

2)(a2
1 +Ω

2
1 −Ω

2)− (a3a1 +Ω3Ω1)
2 (2.424)

= a2
3Ω

2
1 −a2

3Ω
2 +a2

1Ω
2
3 −Ω

2
3 Ω

2−a2
1Ω

2−Ω
2
1 Ω

2 +(Ω 2)2−2a3a1Ω3Ω1 ,

F = (a2
1 +Ω

2
1 −Ω

2)(a2
2 +Ω

2
2 −Ω

2)− (a1a2 +Ω1Ω2)
2 (2.425)

= a2
1Ω

2
2 −a2

1Ω
2 +a2

2Ω
2
1 −Ω

2
1 Ω

2−a2
2Ω

2−Ω
2
2 Ω

2 +(Ω 2)2−2a1a2Ω1Ω2 ,

B = (a1a3 +Ω1Ω3)(a2a3 +Ω2Ω3)− (a1a2 +Ω1Ω2)(a2
3 +Ω

2
3 −Ω

2) (2.426)

= a1a3Ω2Ω3 +a2a3Ω1Ω3−a1a2Ω
2
3 +a1a2Ω

2−Ω1Ω2a2
3 +Ω1Ω2Ω

2 ,

C = (a1a2 +Ω1Ω2)(a2a3 +Ω2Ω3)− (a1a3 +Ω1Ω3)(a2
2 +Ω

2
2 −Ω

2) (2.427)

= a3a2Ω1Ω2 +a1a2Ω3Ω2−a3a1Ω
2
2 +a3a1Ω

2−Ω3Ω1a2
2 +Ω3Ω1Ω

2 ,

E = (a1a3 +Ω1Ω3)(a1a2 +Ω1Ω2)− (a2a3 +Ω2Ω3)(a2
1 +Ω

2
1 −Ω

2) (2.428)

= a2a1Ω3Ω1 +a3a1Ω2Ω1−a2a3Ω
2
1 +a2a3Ω

2−Ω2Ω3a2
1 +Ω2Ω3Ω

2 .

Now observe that
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(
matrix of cofactors of M

)
i ja

ia j = (a1 a2 a3)

A B C

B D E

C E F


 a1

a2
a3



= (a1 a2 a3)

 Aa1 +Ba2 +Ca3
Ba1 +Da2 +Ea3
Ca1 +Ea2 +Fa3


= Aa2

1+Da2
2+Fa2

3+2Ba1a2+2Ea2a3+2Ca1a3 .

Inserting the values for A, B, C, D, E, and F , we find

(Mcof)i jaia j = a2
1a2

2Ω
2
3 −a2

1a2
2Ω

2 +a2
1a2

3Ω
2
2 −a2

1Ω
2
2 Ω

2

−a2
1a2

3Ω
2−a2

1Ω
2
3 Ω

2 +a2
1(Ω

2)2−2a2
1a2a3Ω2Ω3

+a2
2a2

3Ω
2
1 −a2

2a2
3Ω

2 +a2
2a2

1Ω
2
3 −a2

2Ω
2
3 Ω

2

−a2
2a2

1Ω
2−a2

2Ω
2
1 Ω

2 +a2
2(Ω

2)2−2a2
2a3a1Ω3Ω1

+a2
3a2

1Ω
2
2 −a2

3a2
1Ω

2 +a2
3a2

2Ω
2
1 −a2

3Ω
2
1 Ω

2

−a2
3a2

2Ω
2−a2

3Ω
2
2 Ω

2 +a2
3(Ω

2)2−2a2
3a1a2Ω1Ω2

+2a2
1a2a3Ω2Ω3 +2a1a2

2a3Ω1Ω3−2a2
1a2

2Ω
2
3

+2a2
1a2

2Ω
2−2a1a2Ω1Ω2a2

3 +2a1a2Ω1Ω2Ω
2

+2a2
2a3a1Ω3Ω1 +2a2a2

3a1Ω2Ω1−2a2
2a2

3Ω
2
1

+2a2
2a2

3Ω
2−2a2a3a2

1Ω2Ω3 +2a2a3Ω2Ω3Ω
2

+2a1a2
3a2Ω1Ω2 +2a2

1a3a2Ω3Ω2−2a2
3a2

1Ω
2
2

+2a2
3a2

1Ω
2−2a1a3a2

2Ω3Ω1 +2a1a3Ω3Ω1Ω
2 .

Now note that all terms in the following cancel:

a2
1a2

2Ω
2
3 , a2

1a2
2Ω

2 , a2
1a2

3Ω
2
2 , a2

1a2
3Ω

2 , a2
2a2

3Ω
2
1 , a2

2a2
3Ω

2 , a2
1a2

2Ω
2 ,

2a2
1a2a3Ω2Ω3 , 2a1a2

2a3Ω1Ω3 , 2a1a2a2
3Ω1Ω2 .

This leaves us with

(Mcof)i jaia j=Ω
2
[
(a2

1 +a2
2 +a2

3)Ω
2−a2

1Ω
2
2 −a2

1Ω
2
3 −a2

2Ω
2
3 −a2

2Ω
2
1

−a2
3Ω

2
1 −a2

3Ω
2
2 +2a1a2Ω1Ω2 +2a2a3Ω2Ω3 +2a1a3Ω1Ω3

]
.

This soon boils down to

(Mcof)i jaia j = Ω
2(a·Ω)2 ,

as claimed in (2.420).
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We now use this to prove (2.414), viz.,

1 =
â2

1
α+

+
â2

2
α0

+
â2

3
α−

. (2.429)

We have shown that
aTM−1a = 1 ,

and we defined â := RTa, where R is the orthogonal matrix such that

RTMR = diag(α+,α0,α−) .

Taking the inverse of each side of the latter,

RTM−1R = diag(1/α+,1/α0,1/α−) .

Hence,

âTRTM−1Râ = (â1 â2 â3)

 1/α+ 0 0
0 1/α0 0
0 0 1/α−

 â1
â2
â3


=

â2
1

α+
+

â2
2

α0
+

â2
3

α−
.

But the left-hand side of the latter is

âTRTM−1Râ = (Râ)TM−1(Râ) = aTM−1a = 1 ,

as required.
This ends discussion of the case where none of α0 and α± are zero, i.e., the case

where M is non-singular. We obtain the quadric surface (in fact, an elliptic cone)
given by (2.418), viz.,

0 = α+ξ
2−|α0|η2−|α−|ζ 2 . (2.430)

Remember exactly what this means: in each hyperplane of simultaneity (spacelike
surface of constant X0) for this coordinate system (X0,X1,X2,X3), the hypersurface
g00 = 0 intersects that 3D space in a quadric cone, but these cones generally change
smoothly as we move from one HOS to the next.

2.13.4 The Case detM= 0

Since detM = Ω 2(a·Ω)2, the matrix M is singular iff Ω = 0 or a and Ω are orthog-
onal.
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The Case Ω= 0

Consider first Ω = 0, whence

M =

 a2
1 a1a2 a1a3

a1a2 a2
2 a2a3

a1a3 a2a3 a2
3

=

 a1
a2
a3

(a1 a2 a3) . (2.431)

It is interesting to note that we can always arrange for this by FW transporting the
chosen tetrad, no matter what rotation there may be in the observer worldline.

In this case, α0 = 0, α+ = 0, and α− = −I = a2, using (2.401) and the fact that
I∗ = 0. The diagonalised form of M is thus

R−1MR =

 0 0 0
0 0 0

0 0 a2

 .

Of course, the diagonalised form of M has to have the same trace as M, which is a2.
Defining â := R−1a, we have

â =

 0
0
â3

 ,

where â3 = |a|, which concords with the second relation in (2.431). What does
the hypersurface g00 = 0 look like relative to the space coordinates X̂ = R−1X on
some prechosen HOS of fixed X0 (we are considering here the intersection of this
hypersurface with the given HOS)? We have

1+2|a|X̂3 + |a|2
(
X̂3)2

= 0 ,

equivalent to (
1+ |a|X̂3)2

= 0 ,

which is in turn equivalent to
X̂3 =−1/|a| , (2.432)

a plane in the 3D space.
Mashhoon says that the surface g00 = 0 degenerates into coincident planes. As we

have seen in Sect. 2.9, this is indeed the case for eternal uniform linear acceleration
of the kind much discussed in the context of the radiation problem (Chap. 11) or
the Unruh effect (Chap. 14). This corresponds to the case where a is constant, i.e.,
independent of the proper time of the observer. It then picks out a space direction in
the original inertial frame, and the X̂3 coordinate axis lies in this direction.

In Sect. 2.9, it is shown that all the hyperplanes of simultaneity of the observer
intersect in the spacetime region t = 0, x = −c2/g, using the notation there (see
Fig. 2.5). This is actually a space plane (2D region) in the HOS t = 0 of the original
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inertial frame, since we have complete freedom in the values of y and z. As a matter
of fact, it is precisely the same as the region g00 = 0 in this case. This is where
the SE coordinate system even breaks down mathematically because there are many
different SE time values that could be assigned to any given event in this region!

But what happens when Ω = 0, i.e., we have an FW transported tetrad, as we are
discussing here, but a is a changing function of the proper time of the observer? Are
the planes in (2.432) coincident, as suggested by Mashhoon? It certainly does not
look like it, since the specification of the plane in this relation now becomes

X̂3 =−1/|a(X̂0)| , (2.433)

where X̂0 is just X0, the proper time of the observer distributed over the neigh-
bourhood of her worldline by borrowing hyperplanes of simultaneity from instanta-
neously comoving inertial observers.

For one thing, the 2D spacelike region specified in (2.433) is contained in a HOS
of preselected X0 in the SE coordinate system (X0,X1,X2,X3), and although these
HOSs inevitably intersect somewhere for nonzero acceleration of the observer, we
do not know where they intersect. They will not generally intersect precisely where
g00 happens to be zero. That is a special result for eternal uniform linear accelera-
tion.

The Case Ω 6= 0

Consider now Ω 6= 0, but a and Ω orthogonal. This is the case that concerns us
when we consider an observer revolving around a circle of constant radius with
arbitrary (possibly changing) angular speed. This can be seen directly from (2.283)
on p. 92. We still have I∗ = 0, but now α0 =−Ω 2 6= 0, by hypothesis, and µ+ = 0,
µ− =−I = a2−Ω 2, giving TrM = a2−2Ω 2, as one would expect from the general
form (2.393) for M on p. 124.

There exist coordinates X̂1, X̂2, X̂3, found by rotating the original spatial coordi-
nate axes, such that

a =

a
0
0

 , Ω =

 0
Ω

0

 ,

and hence

M =

 a2−Ω 2 0 0
0 0 0

0 0 −Ω 2

 . (2.434)

The condition g00 = 0 becomes

0 = 1+2aX̂1 +(a2−Ω
2)
(
X̂1)2−Ω

2(X̂3)2
. (2.435)

If a2 = Ω 2, this condition becomes
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0 = 1+2aX̂1−Ω
2(X̂3)2

, (2.436)

which rearranges to

X̂1 =
Ω 2

2a

(
X̂3)2− 1

2a
. (2.437)

This is a typical parabola. Since it was obtained by a space rotation from the coor-
dinates X1, X2, X3, the surface g00 = 0 in spacetime intersects this particular (and
hence every) HOS of fixed X0 in a parabolic cylinder. Note, however, that this shape
is expressed relative to the SE coordinates X1, X2, X3, and these are the space co-
ordinates of a global inertial frame, viz., one that is instantaneously comoving with
the observer at her proper time X0.

Now consider the situation where a2−Ω 2 6= 0. We have

(a2−Ω
2)
(
X̂1)2

+2aX̂1 +1−Ω
2(X̂3)2

= (a2−Ω
2)

[(
X̂1)2

+
2a

a2−Ω 2 X̂1
]
+1−Ω

2(X̂3)2

= (a2−Ω
2)

[(
X̂1 +

a
a2−Ω 2

)2

− a2

(a2−Ω 2)2

]
+1−Ω

2(X̂3)2

= (a2−Ω
2)

(
X̂1 +

a
a2−Ω 2

)2

+1− a2

a2−Ω 2 −Ω
2(X̂3)2

,

and finally, the condition g00 = 0 becomes

(a2−Ω
2)

(
X̂1 +

a
a2−Ω 2

)2

−Ω
2(X̂3)2

=
Ω 2

a2−Ω 2 . (2.438)

If a2−Ω 2 > 0, then the terms in(
X̂1 +

a
a2−Ω 2

)2

and
(
X̂3)2

have opposite signs, so we have a hyperbolic cylinder. If a2−Ω 2 < 0, then these
terms have the same sign and we have an elliptical cylinder.

The Case a = 0

The condition g00 = 0 expressed by (2.435) relative to the special choice of coordi-
nates X̂1, X̂2, X̂3, becomes

0 = 1+2aX̂1−Ω
2(X̂1)2−Ω

2(X̂3)2
, (2.439)

which clearly describes a circular cylinder.
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Interestingly, this is not the case when an observer revolving around a circle of
constant radius with arbitrary (possibly changing) angular speed uses rotating tetrad
coordinates, as can be seen from (2.283) on p. 92, because a is clearly not zero there.
This in turn is partly due to the possibility of acceleration v̇ tangential to the circle,
but perhaps also partly due to the choice of tetrad. In the case of constant Ω0, is
there a choice of tetrad such that a = 0?

When Ω0 and hence v = Ω0r are constant, a has a nonzero component in the
radial direction λ1 [see (2.277) and then (2.283) on p. 92]. So what situation is
described by Ω 6= 0 and a = 0. We can answer this question by looking at (2.102)
and (2.103) on p. 45, viz., {

cλ̇(i) = a0iλ(0)+ cΩi jλ( j) ,

cλ̇(0) = a0iλ(i) ,
(2.440)

and

Ã(ν)
(κ) =


0 a01 a02 a03

a01 0 cΩ21 cΩ31

a02 cΩ12 0 cΩ32

a03 cΩ13 cΩ23 0

 , (2.441)

with ν specifying the row and κ the column, which become{
cλ̇(i) = cΩi jλ( j) ,

cλ̇(0) = 0 ,
(2.442)

and

Ã(ν)
(κ) =


0 0 0 0
0 0 cΩ21 cΩ31

0 cΩ12 0 cΩ32

0 cΩ13 cΩ23 0

 . (2.443)

Clearly, the observer is stationary in some inertial frame, since dv/dτ = λ̇(0) is zero.
But since λ̇(i) = Ωi jλ( j), she has chosen a rotating space triad.

2.13.5 The Case of Rotating Tetrad Coordinates

Let us now consider the specific case of an observer revolving around a circle of
constant radius with arbitrary (possibly changing) angular speed and using rotating
tetrad coordinates. The condition g00 = 0 was found in (2.357) on p. 112 to be

X2
Ω

2
0 + γ

2(Ω 2
0 − v̇2)Y 2 +2XY γ

2vv̇Ω0 = 1− v2 +2Y v̇−2XvΩ0 . (2.444)
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We now know how to do a proper analysis of this. First we write it in the form

(X Y )

(
Ω 2

0 γ2vv̇Ω0

γ2vv̇Ω0 γ2(Ω 2
0 − v̇2)

)(
X
Y

)
= 1− v2 +2Y v̇−2XvΩ0 . (2.445)

We then diagonalise the 2×2 matrix

M :=

(
Ω 2

0 γ2vv̇Ω0

γ2vv̇Ω0 γ2(Ω 2
0 − v̇2)

)
. (2.446)

We begin by writing the characteristic equation

(Ω 2
0 −λ )

[
γ

2(Ω 2
0 − v̇2)−λ

]
= γ

4v2v̇2
Ω

2
0 . (2.447)

This is
λ

2−λ
[
γ

2(Ω 2
0 − v̇2)+Ω

2
0
]
+ γ

2
Ω

2
0 (Ω

2
0 − v̇2) = γ

4v2v̇2
Ω

2
0 ,

and completing the square,{
λ − 1

2
[
(γ2 +1)Ω 2

0 − γ
2v̇2]}2

− 1
4
[
(γ2 +1)Ω 2

0 − γ
2v̇2]2 + γ

2
Ω

2
0 (Ω

2
0 − v̇2)

= γ
4v2v̇2

Ω
2
0 ,

whence we must solve{
λ − 1

2
[
(γ2 +1)Ω 2

0 − γ
2v̇2]}2

=
1
4
[
(γ2 +1)Ω 2

0 − γ
2v̇2]2− γ

2
Ω

2
0 (Ω

2
0 − v̇2)+ γ

4v2v̇2
Ω

2
0 .

The constant on the right-hand side is

1
4

[
(γ2 +1)2

Ω
4
0 + γ

4v̇4−2(γ2 +1)γ2
Ω

2
0 v̇2
]
− γ

2
Ω

2
0 (Ω

2
0 − v̇2)+ γ

4v2v̇2
Ω

2
0

= v̇2
Ω

2
0

[
−1

2
(γ2 +1)γ2 + γ

2 + γ
4v2
]
+

[
1
4
(γ2 +1)2− γ

2
]

Ω
4
0 +

1
4

γ
4v̇4

=
1
2

γ
4
Ω

2
0 v2v̇2 +

1
4
(γ2−1)2

Ω
4
0 +

1
4

γ
4v̇4

=
1
4

γ
4(v̇4 +2Ω

2
0 v2v̇2 + v4

Ω
4
0
)
=

1
4

γ
4(v̇2 +Ω0v2)2 ,

using relations like
γ

2−1 = v2
γ

2 .

The characteristic equation is thus
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λ − 1

2
[
(γ2 +1)Ω 2

0 − γ
2v̇2]}2

=
1
4

γ
4(v̇2 +Ω0v2)2 , (2.448)

which has two solutions

λ± =
1
2
[
(γ2 +1)Ω 2

0 − γ
2v̇2]± 1

2
γ

2(v̇2 +Ω0v2) . (2.449)

These can be simplified. We soon find

λ+ = Ω
2
0 γ

2 , λ− = Ω
2
0 − γ

2v̇2 . (2.450)

As a quick test, note that

λ++λ− = Ω
2
0 + γ

2(Ω 2
0 − v̇2) ,

which is indeed the trace of M in (2.446).
We must now find the eigenvectors of M, since the 2×2 matrix whose columns

are these eigenvectors is the rotation matrix that diagonalises M, and we shall need
that to get (2.444) into a suitable form. The eigenvectors are(

a±
b±

)
such that

(
Ω 2

0 γ2vv̇Ω0

γ2vv̇Ω0 γ2(Ω 2
0 − v̇2)

)(
a±
b±

)
= λ±

(
a±
b±

)
.

The components of the eigenvector for λ+ thus satisfy{
Ω 2

0 (1− γ2)a++ γ2vv̇Ω0b+ = 0 ,

γ2vv̇Ω0a+− γ2v̇2b+ = 0 ,

whence the unit eigenvector for λ+ is

e+ =
1

(v̇2 + v2Ω 2
0 )

1/2

(
v̇

vΩ0

)
. (2.451)

The components of the eigenvector for λ− satisfy{
γ2v̇2a−+ γ2vv̇Ω0b− = 0 ,

γ2vv̇Ω0a−+(γ2−1)Ω 2
0 b− = 0 ,

whence the unit eigenvector for λ− is

e− =
1

(v̇2 + v2Ω 2
0 )

1/2

(
vΩ0
−v̇

)
. (2.452)

Now M in (2.446) is a real symmetric matrix, and can be diagonalised by an orthog-
onal matrix R. The columns of R, which is a rotation matrix, are the unit eigenvec-
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tors e+ and e−, which are of course orthogonal, since they correspond to different
eigenvalues. Let us check that this works. We have

R :=
1

(v̇2 + v2Ω 2
0 )

1/2

(
v̇ vΩ0

vΩ0 −v̇

)
, (2.453)

and we can check that

MR =
1

(v̇2 + v2Ω 2
0 )

1/2

(
Ω 2

0 γ2vv̇Ω0

γ2vv̇Ω0 γ2(Ω 2
0 − v̇2)

)(
v̇ vΩ0

vΩ0 −v̇

)

=
1

(v̇2 + v2Ω 2
0 )

1/2

(
λ+v̇ λ−vΩ0

λ+vΩ0 −λ−v̇

)
,

and

RTMR=
1

v̇2 + v2Ω 2
0

(
v̇ vΩ0

vΩ0 −v̇

)(
λ+v̇ λ−vΩ0

λ+vΩ0 −λ−v̇

)

=
1

v̇2 + v2Ω 2
0

(
λ+(v̇2 + v2Ω 2

0 ) 0

0 λ−(v̇2 + v2Ω 2
0 )

)
=

(
λ+ 0
0 λ−

)
,

in the usual way.
Now that we can diagonalise M, let us return to the condition g00 = 0 as expressed

by (2.445) on p. 136, viz.,

(X Y )

(
Ω 2

0 γ2vv̇Ω0

γ2vv̇Ω0 γ2(Ω 2
0 − v̇2)

)(
X
Y

)
= 1− v2 +2Y v̇−2XvΩ0 . (2.454)

Put another way

(X Y )M
(

X
Y

)
= 1− v2 +2Y v̇−2XvΩ0 . (2.455)

This in turn means that

(X Y )RRTMRRT
(

X
Y

)
= 1− v2 +2Y v̇−2XvΩ0 ,

and the left-hand side is

(X Y )RRTMRRT
(

X
Y

)
=

[
RT
(

X
Y

)]T
(

λ+ 0
0 λ−

)[
RT
(

X
Y

)]
.

So if we define new coordinates W and U by
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W
U

)
:= RT

(
X
Y

)
,

(
X
Y

)
:= R

(
W
U

)
, (2.456)

the left-hand side of (2.455) becomes

(X Y )M
(

X
Y

)
= (W U)

(
λ+ 0
0 λ−

)(
W
U

)
= λ+W 2 +λ−U2 . (2.457)

The second relation of (2.456) gives(
X
Y

)
:= R

(
W
U

)
=

1
(v̇2 + v2Ω 2

0 )
1/2

(
v̇ vΩ0

vΩ0 −v̇

)(
W
U

)
, (2.458)

whence 
X =

1
(v̇2 + v2Ω 2

0 )
1/2 (v̇W + vΩ0U) ,

Y =
1

(v̇2 + v2Ω 2
0 )

1/2 (vΩ0W − v̇U) .
(2.459)

We can now write the condition g00 = 0, or at least its intersection with the chosen
hypersurface of simultaneity for these coordinates, in the form

Ω
2
0 γ

2W 2 +(Ω 2
0 − γ

2v̇2)U2=1− v2 +
2v̇(vΩ0W − v̇U)

(v̇2 + v2Ω 2
0 )

1/2 −
2vΩ0(v̇W + vΩ0U)

(v̇2 + v2Ω 2
0 )

1/2

= 1− v2− 2v̇2 +2v2Ω 2
0

(v̇2 + v2Ω 2
0 )

1/2 U

= 1− v2−2(v̇2 + v2
Ω

2
0 )

1/2U , (2.460)

recalling that the other space dimension labelled by Z is left unconstrained by the
condition and it is this that gives the surface its cylindrical aspect. So the final ex-
pression for this surface is

Ω
2
0 γ

2W 2 +(Ω 2
0 − γ

2v̇2)U2 = 1− v2−2(v̇2 + v2
Ω

2
0 )

1/2U . (2.461)

As we expected, this is an ellipse when Ω 2
0 > γ2v̇2, a hyperbola when Ω 2

0 < γ2v̇2,
and a parabola when Ω 2

0 = γ2v̇2. So it is the sign of the invariant I in (2.287) on
p. 93 that decides, as claimed in the discussion around (2.358) on p. 112.





Chapter 3
Adapted Frames in General Relativity

At any point p in the spacetime manifold M of general relativity, under the usual
assumption that the covariant derivative of the metric is zero and the connection is
torsion free, i.e., symmetric in its two lower indices when expressed relative to a
coordinate frame (see Sect. 4.2), coordinates can be found on some neighbourhood
of p such that the metric has the Minkowski form at p and the connection and first
derivatives of the metric are zero at p.

This result is often called the weak equivalence principle, although it is actually
built into the standard construction of general relativity in the torsion free case. To
be of any practical use, it has to have a counterpart in observation, so the principle
here is really the statement that such locally inertial frames correspond to freely
falling, non-rotating laboratory frames. The reader is referred to Chap. 6.5 for a more
critical appraisal of this idea. For the moment, we concentrate on the mathematical
statement in the last paragraph.

There are two standard approaches for showing this. The first is to begin with
arbitrary coordinates and then specify a new set in terms of them for which the
conditions hold. The second is to determine such coordinates directly by means of
a canonical map from the tangent space at p, and this is the approach which will
be described here. The aim will be to show how such canonical coordinates can be
used to specify a normal frame, extending the idea of semi-Euclidean frames in flat
spacetime as far as possible.

In Sect. 3.1, we establish special coordinates called normal coordinates at an ar-
bitrary point of an arbitrary differentiable manifold M of n dimensions with metric
and metric connection. In this section, we use Latin indices throughout. In Sect. 3.2,
we describe special coordinate systems adapted to arbitrary timelike worldlines in
spacetime and return to the convention that Greek indices run over {0,1,2,3} and
Latin indices run over {1,2,3}.

141
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3.1 Normal Coordinates

For a suitably differentiable connection, the standard existence theorems for ordi-
nary differential equations applied to the coordinate form of the geodesic equation
show that, for any point p ∈M and any vector Xp at p, there exists a maximal
geodesic λX (v) in M with starting point p and initial direction Xp, i.e., such that [27]

λX (0) = p and (∂/∂v)λ |v=0 = Xp .

This geodesic is unique and depends continuously on p and Xp. We use this fact to
construct a map

exp : Tp −→M ,

where for each X ∈ Tp, exp(X) is the point in M a unit parameter distance along
the geodesic λX from p.

This map may not be defined for all X ∈ Tp, since the geodesic λX (v) may not
be defined for all v. If v does take all values, the geodesic λ (v) will be said to be
a complete geodesic. The manifold itself is said to be geodesically complete if all
geodesics on it are complete, that is, if exp is defined on all of Tp for every point p,
as will be supposed in the following.

It is intuitively obvious that the map expp will be of rank n = dimM at p. There-
fore, by the implicit function theorem, there exists an open neighbourhood N0 of
the origin in Tp and an open neighbourhood Np of p ∈M such that the map exp
is a diffeomorphism of N0 onto Np. Such a neighbourhood Np is called a normal
neighbourhood of p. In addition, Np can be chosen to be convex, i.e., to be such
that any point q ∈Np can be joined to any other point r ∈Np by a unique geodesic
starting at q and totally contained in Np. Within a convex normal neighbourhood
N , coordinates (x1, . . . , xn) can be defined by choosing any point q∈N , choosing
a basis {Ea} of Tq, and defining the coordinates of the point r ∈N by the relation

r = exp(xaEa) .

The procedure, then, is to expand exp−1(r) ∈ Tq in terms of the basis {Ea}, taking
the vector components as the coordinates of r.

We shall now demonstrate that

(∂/∂xi)
∣∣
q = Ei and Γ

i
( jk)

∣∣∣
q
= 0 , (3.1)

where the notation ( jk) indicates symmetrisation. This will be done by showing first
that the n curves λi given by

λi(t) = (0, . . . , t, . . . , 0) ,

with t in the i th place, are geodesics when the coordinates are constructed as above
(see Fig. 3.1). For simplicity, we shall suppose that, for the normal neighbourhood
Nq of q,
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Tq(M) Ei

tEi

O

exp

M

λEi
λtEi

q

λi(ν) = (0, . . . , ν, . . . , 0)

expEi = (0, . . . , 1, . . . , 0)

exp(tEi) = (0, . . . , t, . . . , 0)

Fig. 3.1 Picture of the exponential map from the tangent space Tq(M ) to the manifold at some
point q ∈M

Ei ∈ exp−1 Nq , ∀i ,
where {Ei} is the basis of Tq(M ) chosen to determine the normal coordinates.

For any X ∈ Tq(M ), λX is the geodesic with

λX (0) = q ,
∂

∂ t

∣∣∣∣
λX

= X ,

that is, the direction of λX at q is X . This is the geodesic used to define

expX = λX (1) .

For each t, λtEi(1) determines exp(tEi). But since we are using normal coordinates,
exp(tEi) has coordinates

(0, . . . , t, . . . , 0) = λi(t) .

This therefore shows that
λtEi(1) = λi(t) , ∀t .

Now for each t, consider the curve µit given by

µit(w) = λEi(tw) , ∀w ,

so that µit is the same curve as λEi , but with a different parametrisation. From the
homogeneity of the geodesic equation, which is satisfied by λEi , we see that µit is
also a geodesic, satisfying the same equation. Furthermore,
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∂

∂w

∣∣∣∣
µit

= t
∂

∂v

∣∣∣∣
λEi

= tEi .

This means that µit is the unique geodesic through q with direction tEi at q, and this
in turn implies that

exp(tEi) = µit(1) .

But from the definition of µit ,

µit(1) = λEi(t) ,

and consequently,

λEi(t) = exp(tEi) = (0, . . . , t, . . . , 0) = λi(t) .

Finally, we deduce
λEi = λi , ∀i .

Hence λi is a geodesic, satisfying

d2xa
(
λi(t)

)
dt2 +Γ

a
bc

dxb
(
λi(t)

)
dt

dxc
(
λi(t)

)
dt

= 0 .

But we have an explicit formula for the curve when {xa} are normal coordinates,
and the functions are linear in t, so

d2xa
(
λi(t)

)
dt2 = 0 , ∀a .

Furthermore, from this explicit formula,

dxb
(
λi(t)

)
dt

= δ
b
i ,

dxc
(
λi(t)

)
dt

= δ
c
i ,

which implies
Γ

a
ii = 0 , ∀i, a .

Notice that this result holds for a given i all along the curve λi. It therefore holds
for all i at the point q. However, it is not quite the symmetry result we require to
demonstrate (3.1). There is a little more work to do to show that.

We can show that Ei = ∂/∂xi
∣∣
q in two different ways:

1. The direction of λi at q is ∂/∂xi
∣∣
q, so λi(1) must be exp(∂/∂xi

∣∣
q). But we know

that λi(1) = expEi, and exp is one-to-one.
2. λi has direction ∂/∂xi

∣∣
q at q, and λEi has direction Ei at q. But λi = λEi .

So we have at least proven the first result stated in (3.1).
These constructions are not quite enough to show that the symmetric part of the

connection is zero at q in these coordinates, but they point the way. For each pair
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i, j such that i 6= j, define a curve

λi j(t) = (0, . . . , t, . . . , t, . . . , 0) .

By definition of normal coordinates,

exp t(Ei +E j) = λi j(t) , ∀t .

Consider the geodesics λEiE jt with

λEiE jt(0) = q ,
∂

∂v

∣∣∣∣
λEiE jt

= t(Ei +E j) ,

used to define exp t(Ei +E j) by their value at v = 1, and hence giving

λEiE jt(1) = exp t(Ei +E j) .

Again define µi jt by
µi jt(w) = λEiE j1(tw) ,

for each t. By homogeneity of the geodesic equation, µi jt is a geodesic through q,
with direction there given by

∂

∂w

∣∣∣∣
µi jt

= t(Ei +E j) .

Consequently,
µi jt(1) = exp t(Ei +E j) = λi j(t) .

This means that
λEiE j1 = λi j , ∀i 6= j .

Therefore λi j satisfies

d2xa
(
λi j(t)

)
dt2 +Γ

a
bc

dxb
(
λi j(t)

)
dt

dxc
(
λi j(t)

)
dt

= 0 .

Once again
d2xa

(
λi j(t)

)
dt2 = 0 , ∀a ,

and
dxb
(
λi j(t)

)
dt

= δ
b
i +δ

b
j ,

dxc
(
λi j(t)

)
dt

= δ
c
i +δ

c
j ,

which implies

0 = Γ
a

bc
dxb
(
λi j(t)

)
dt

dxc
(
λi j(t)

)
dt

= Γ
a

i j +Γ
a
ji , ∀i 6= j ,
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on the intersection of all these curves. The second result of (3.1) thus follows at q
alone.

In the torsion free case (see Sect. 4.2), we thus have all connection coefficients
equal to zero at the point q where we have chosen to set up these normal coor-
dinates. Furthermore, since there is a metric, we can choose the basis {Ea} to be
orthonormal, whence the metric is in Minkowski form at q for these coordinates.

In the context of the 4D spacetime manifold of general relativity, this is therefore
a locally inertial coordinate frame, and we have proven that the weak equivalence
principle always holds in such a manifold, i.e., equipped with a Lorentzian metric
and the unique symmetric (torsion free) connection that guarantees the so-called
metric condition, i.e., the condition that the metric have zero covariant derivative.

3.2 Normal Frames

In the context of general relativity, there are no privileged inertial coordinate sys-
tems, unless there is no matter anywhere, since the curvature is not generally zero.
And neither are there any rigid Euclidean frames, because the metric is semi-
Riemannian, and hence entirely determined by the connection. However, we can
associate a particularly useful kind of coordinate frame, called a normal frame, with
any given timelike (not necessarily geodesic) worldline σ(τ). In this section, we
return to the convention that Greek indices run over {0,1,2,3}, while Latin indices
run only over {1,2,3}.

The normal coordinate system {yµ} has the following properties:

1. Curves yi = constant (i = 1, 2, 3) are timelike, and any curve with y0 = constant
is spacelike.

2. y0 = τ along σ(τ) .
3. The metric assumes the usual Minkowski form along σ(τ) .
4. Any purely spacelike geodesic through σ on a y0 = constant hypersurface satis-

fies d2yi/ds2 = 0.
5. {yµ} is adapted to σ , in the sense that σ is given by yi = 0, i = 1, 2, 3.

The difference between a normal frame and a semi-Euclidean frame in flat space-
time, as described in Sect. 2.2.1, lies in (4). In a semi-Euclidean frame, (4) is true
for any purely spacelike geodesic, and not just for spacelike geodesics intersecting
σ . Semi-Euclidean frames have Euclidean spatial geometry on every y0 = constant
hypersurface. Normal frames do not necessarily have Euclidean spatial geometry.

3.2.1 Construction

Let us see how such a normal frame can be constructed, with the help of the normal
coordinate systems in the last section. Referring to Fig. 3.2, for any value of τ ,
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E0

E1

E2

σ

VP

Hypersurface generated
by {Ei(τ)}i=1, 2, 3

Unique geodesic λ through
σ(τ) and P , spatial and
orthogonal to E0

P (τ, x1, x2, x3)

Fig. 3.2 Construction of a normal frame along an arbitrary timelike worldline in general relativity

choose a quadruple of orthonormal vectors E0, E1, E2, E3 at σ(τ), in such a way
that each Eµ is a smooth function of τ , i.e., it is a vector field along the curve. By
orthonormal, we mean that(

gσ(τ)(Eµ , Eν)
)
= diag(1,−1,−1,−1) ,

for each τ . The timelike vector E0 is chosen to be the unit tangent to the curve,
for each τ . Now we can construct our normal coordinates around each point of the
curve, but how are we going to fit them together?

Firstly, for each τ , consider the hypersurface occupied by all spatial geodesics
through σ(τ) and which are orthogonal to σ at their intersection with it. It is an
assumption that we do get a hypersurface in this way, but one which will certainly
be true in some neighbourhood of σ(τ), because spacetime manifolds always look
locally like some neighbourhood of R4. Since we only require this construction on
some neighbourhood of σ , let us assume that we do get a hypersurface orthogonal
to the worldline for each value of τ .

These spacelike hypersurfaces are clearly the natural generalisation of the hyper-
planes of simultaneity (HOS) we used in flat spacetime, and we shall use them to
reinstate a vestige of the notion of simultaneity in our coordinate frame construc-
tions below. We may thus continue to refer to them as hypersurfaces of simultaneity
(HOS).

Now if we take any point P near enough to σ (see Fig. 3.2), there will be a
unique spacelike geodesic λ through P which intersects σ and is also orthogonal
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to the curve there. The tangent to λ at σ(τ) is a spacelike vector VP lying in the
subspace of the tangent space spanned by E1, E2, E3.

It is important to see what is involved in the existence and uniqueness claim
regarding the curve λ . First note that, given a point P near σ but not actually on it,
there may be several geodesics through it which intersect σ . There is at least one, if
it is near enough, from the theorem that the map exp is onto. But this geodesic may
be timelike. Intuitively, there will be some τ such that there is a geodesic linking P
to σ(τ) which is spacelike, but then without further analysis, it remains open as to
whether this geodesic will be orthogonal to σ .

What we are talking about here is whether or not the union of all the hypersur-
faces of simultaneity we defined a moment ago actually contains a neighbourhood
of the worldline σ . This is of course the case under suitable conditions, and can be
proven by consideration of the exponential map. However, we shall not do so here
since it is a mathematical issue and the aim is rather to understand physics.

For an example of what can go wrong, and what might be suitable conditions for
such a theorem, the reader may refer to the case of translational uniform acceleration
discussed in Sect. 2.9. It is noted there that, for any event outside region I in Fig. 2.6,
there will be no proper time on the observer’s hyperbolic worldline such that the
observer considers it to be simultaneous, so the chosen point does not lie on any
hyperplane of simultaneity for the observer.

Thus if P is near enough to σ , it will lie in one of the above HOSs, which are
generated by geodesics starting out from σ in such a way that they are orthogonal
to σ at their intersection with it. The question of uniqueness nevertheless remains
open, for even if P lies near enough to σ to be within the range over which exp is
injective, there may be some τ ′ such that σ(τ ′) is also linked to P by a spacelike
geodesic, and this latter may even be orthogonal to σ where it intersects it. Even in
flat spacetime, we remarked that hyperplanes of simultaneity would always intersect
somewhere for accelerating observers (see in particular Sects. 2.2.2 and 2.12.3).

In a rigorous investigation, the need for more detailed analysis is clear. However,
for the the present purposes we shall assume that, for P sufficiently close to σ , a
unique spacelike geodesic orthogonal to σ can be found to link it with σ(τ) for
some unique τ . What we are doing then is mapping our subspaces {Ei}i=1,2,3 of
Tσ(τ) onto 3D submanifolds containing σ(τ) for all τ and only coordinatising those
P which lie on a single geodesic whose tangent at its intersection with σ lies in the
subspace mentioned.

The rest of the construction is straightforward. Given the geodesic λ , with an
affine parametrisation ν adjusted so that P = λ (1), find

VP =
∂λ

∂ν

∣∣∣∣
σ(τ)

,

and write it (uniquely) in the form

VP = y1E1 + y2E2 + y3E3 .
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Then the point P will be attributed the coordinates (0, y1, y2, y3) in the scheme of
normal coordinates devised above. Of course, VP cannot have a nonzero component
y0E0, since λ was chosen orthogonal to σ .

The coordinates of P for the purposes of our normal frame will be (τ, y1, y2, y3),
where τ is assumed to be the unique value allowing the construction for the given
P. We also know that

P = expVP .

Let us restate this in terms of the metric. Let λ ′ be the same curve as λ but
reparametrised by proper distance s. Note that λ has been parametrised so that
P = λ (1). Now both s and ν are affine parameters, with the same origin, and in this
situation there is always some constant κ such that s = κν . What we are proposing
then is to define

λ
′(s) := λ (ν) = λ (s/κ) ,

and this implies
∂λ ′

∂ s

∣∣∣∣
σ(τ)

=
1
κ

VP = n .

The symbol n denotes the unit tangent vector to our geodesic λ . We can now write
the space coordinates yi in terms of this vector n, the proper distance separating P
from σ , as measured along the unique geodesic λ , and the metric:

yi =−gσ(τ)(n, Ei)s .

Note that the value of s here is just κ , because P is given when ν = 1. In other words,
the spatial coordinates of P are found by identifying the components of its direction
from σ(τ), relative to the basis at this point, and multiplying by its proper distance
from this point, along the unique geodesic. The temporal coordinate is obtained
as the value of the unique τ such that the spacelike geodesic from P intersects σ

orthogonally. This works because we diagonalised the metric by the choice of basis
{Ei}i=1,2,3 along σ .

We have also established the coordinate formula for the unique spacelike geodesic
from σ(τ) to P : (

yµ(λP(ν))
)
= (τ, νy1, νy2, νy3) , (3.2)

where (yi, i = 1, 2, 3) are the coordinates of P. As mentioned at the beginning of
Sect. 2.11.5, such coordinates are also called geodesic coordinates, and it is not
difficult to see why!

3.2.2 Checking Properties

The main task now is to check that we have satisfied all the claims made about this
coordinate system. It is clear that σ satisfies yµ = 0, i = 1, 2, 3 and that y0 = τ along
the curve. To see why the metric is diagonalised at any point of σ , we must evaluate
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g(∂/∂yµ , ∂/∂yν) , ∀ µ, ν .

The point is, of course, that

∂

∂yi

∣∣∣∣
σ(τ)

= Ei , i = 1, 2, 3 ,

as shown in Sect. 3.1 on normal coordinates, and

∂

∂y0

∣∣∣∣
σ(τ)

= E0 ,

is the tangent vector to σ . But {Ei} was an orthonormal basis for the tangent space
at this point.

Concerning the spacelike geodesics through σ on some y0 = constant hypersur-
face, we have specifically arranged for them to be linear functions of the spatial
coordinates, as can be seen from (3.2), so that they must satisfy

d2yi

ds2 = 0 .

Note also that curves with y0 = constant which intersect σ but are not necessarily
geodesics must be orthogonal to σ where they intersect it. Suppose the curve is
λ (ν), so that

y0 ◦λ (ν) = constant ,

and only yi ◦ λ (ν) vary for i = 1, 2, 3. Then the tangent at σ(τ) has zero zeroth
component, as claimed.

What about the claim that the curves y0 = constant are spacelike, and the curves
yi = constant are timelike? In the case of the semi-Euclidean frame in flat space-
time, we eventually examined this question explicitly by constructing the matrix of
components of the Minkowski metric relative to these coordinates in Sect. 2.3.8. Of
course, it is clear in both the flat and curved spacetime cases that the y0 = constant
curves are spacelike, because they lie in spacelike hypersurfaces. For the semi-
Euclidean frame, the spacelike hypersurface in question is the plane of simultaneity
of an inertial frame, and we can check explicitly that any curve contained com-
pletely within such a hypersurface must have tangent everywhere spacelike. In the
present case, we would have to show that the hypersurface spanned by the spacelike
geodesics from a given σ(τ) is indeed spacelike.

Intuitively speaking, i.e., without going into the mathematical details, the metric
varies little from its diagonalised form, provided we remain close enough to the
point at which it has been diagonalised, and this is sufficient to establish the result.
A similar argument will work for the curves yi = constant. So here we can capitalise
on the idea that we only need to set up our coordinate system in a neighbourhood of
the worldline. In specific cases, of course, we can be more specific!
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3.2.3 Connection Coefficients

Let us now examine the connection coefficients in such a frame. They will not gen-
erally be zero anywhere. This is no surprise, because we did not adopt the timelike
normal coordinate, which can get all the connection coefficients equal to zero at one
spacetime event, but replaced it by proper time along the curve. We shall analyse
these coefficients along σ .

Firstly, note that, in the new coordinates, σ has 4-velocity and 4-acceleration

u = (1, 0, 0, 0) , a = (0, a1, a2, a3) .

Here we use the fact that the 4-velocity has constant pseudolength, and hence is al-
ways orthogonal to the 4-acceleration, a consequence of the metric condition, which
says that the covariant derivative of the metric is zero. A general proof follows from
the fact that

a0 = g(Tσ , DTσ
Tσ ) =

1
2

DTσ
g(Tσ , Tσ ) = 0 ,

where we have used Dg = 0 and g(Tσ , Tσ ) = 1. Of course, the 4-velocity is just the
unit tangent vector to σ .

Now if we consider any spacelike geodesic intersecting σ orthogonally, we have
seen that

d2yi

ds2 = 0 ,

for i = 1, 2, 3. We also know that the first derivatives are constants. Hence,

Γ
µ

i j

∣∣∣
σ

= 0 , ∀µ and ∀ i, j = 1, 2, 3 . (3.3)

This follows from the geodesic equations for these spatial geodesics. Note that here
arises the main difference with the semi-Euclidean frame. In the hyperplane of si-
multaneity of an inertial frame, all the spacelike geodesics, even those not inter-
secting σ , are given by linear functions of their parameter, and consequently, the
connection coefficients specified above are zero everywhere (see the discussion on
p. 36). In the present case, those coefficients can only be guaranteed to go to zero
on σ itself.

Concerning the equation for σ itself, which is specified by y0 = τ , yi = 0, for
i = 1, 2, 3, we can say that the 4-acceleration is

aµ =
d2yµ

dτ2 +Γ
µ

νσ

dyν

dτ

dyσ

dτ
= Γ

µ

00 ,

whence
Γ

0
00
∣∣
σ
= 0 , Γ

i
00
∣∣
σ
= ai , i = 1,2,3 . (3.4)
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The remaining nonzero coefficients are Γ i
j0

∣∣∣
σ

= Γ i
0 j

∣∣∣
σ

for i, j = 1, 2, 3, and also

Γ 0
i0

∣∣
σ
= Γ 0

0i

∣∣
σ

, for i = 1, 2, 3. We can deduce something about these from the fact
that the connection is the unique metric connection, and therefore DTσ

g = 0. Recall
that

0 = gµν ;σ = gµν ,σ −Γ
λ

µσ gλν −Γ
λ

νσ gµλ ,

and, when this is contracted with the tangent vector to the curve σ , the first term
on the right-hand side gives the derivative of the metric component along the curve,
which is zero. Furthermore, we know the values of gλν and gµλ along σ , and we
can deduce that

Γ
λ

µ0

∣∣∣
σ

ηλν + Γ
λ

ν0

∣∣∣
σ

ηµλ = 0 ,

whence
Γ

i
j0
∣∣
σ
= Γ

i
0 j
∣∣
σ
= Ω

i
j , i, j = 1, 2, 3 , (3.5)

where Ω is an antisymmetric (rotation) matrix, and also

Γ
0

i0
∣∣
σ
= Γ

0
0i
∣∣
σ
= Γ

i
00
∣∣
σ
= ai , i = 1, 2, 3 . (3.6)

We thus obtain the same system of connection coefficients as for SE coordinates in
flat spacetimes (see Sect. 2.3.9).

3.2.4 Eliminating the Rotation Matrix

We can guess how it will be possible to remove the rotation matrix Ω i
j and make

the coefficients Γ i
0 j equal to zero on the observer worldline. Let us suppose that we

select the tetrad {Tσ ,Ei}i=1,2,3 at some point σ(τ0) on the worldline, then Fermi–
Walker (FW) transport it along the worldline to obtain a tetrad everywhere along the
worldline. If we use this tetrad, we find that the connection coefficients Γ i

0 j are zero.
To show this, consider the equation for FW transport

Ȧ =−(A · Ṫσ )Tσ +(A ·Tσ )Ṫσ , (3.7)

which works exactly like (2.28) on p. 26 in the flat spacetime context. We shall be
inserting A = Ei, for i = 1,2,3. Now

Ṫσ =
DTσ

dτ
= a ,

the 4-acceleration of the worldline, which has components a = (0,a1,a2,a3), while
Tσ has the component form Tσ = (1,0,0,0). Furthermore, Eµ

i = δ
µ

i . Now

Ė j
i :=

DE j
i

dτ
:=

dE j
i

dτ
+Γ

j
µν Eµ

i T ν
σ = Γ

j
i0 ,
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and the FW equation (3.7) sets this equal to

−(Ei · Ṫσ )T
j

σ +(Ei ·Tσ )Ṫ
j

σ = 0 .

We conclude that Γ
j

i0

∣∣
σ
= 0 for all i, j = 1,2,3. Note that the converse is true. If we

assume the latter, the above argument works backwards and we conclude that the Ei
are FW transported.

3.2.5 Viewing Free Particles

We can now write down the equation of motion of a free particle on σ , assuming
that it intersects the observer’s worldline, and only at the unique event at which it
coincides with the observer. We obtain exactly the same result as in (2.10) on p. 19,
viz.,

d2yi

dy02 +ai +2Ω
i
j

dy j

dy0 −2a j dy j

dy0
dyi

dy0 = 0 , (3.8)

where indices run over values 1, 2, 3. It contains a term ai which could be referred to
as an inertial force, a term proportional to the semi-Euclidean three-velocity which
corresponds to a Coriolis force, and finally a relativistic correction. As mentioned
at the end of the last section, the Coriolis term can be removed by Fermi–Walker
transporting the coordinate axes along the worldline.

This formula is established in the same way as (2.10). We start with the geodesic
equation for i = 1, 2, 3,

d2yi

dτ ′2
+ai

(
dy0

dτ ′

)2

+2Ω
i
j

dy j

dτ ′
dy0

dτ ′
= 0 ,

where τ ′ is proper time along this geodesic. If we change parameter from the affine
parameter τ ′ to the non-affine parameter y0, we simplify the left-hand side here, but
the right-hand side is now

−d2y0

dτ ′2
dyi

dy0 /

(
dy0

dτ ′

)2

.

The zero component of the geodesic equation is

d2y0

dτ ′2
+Γ

0
jk

dy j

dτ ′
dyk

dτ ′
= 0 ,

which gives, since Γ 0
00 = 0,

d2y0

dτ ′2
=−2a j dy j

dτ ′
dy0

dτ ′
,

where j is summed from 1 to 3. The result follows.
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3.3 Locally Inertial Frames

Let us note finally what happens if the acceleration ai and the rotation Ω i
j are all

zero. In this case, the normal frame becomes a local inertial frame, and the law of
motion (3.8) for a free particle takes the familiar form

d2yi

dy02 = 0 .

Note that ai = 0 for i = 1,2,3, if and only if the curve σ followed by the observer
setting up these coordinates is a geodesic, while Ω i

j = 0 for i, j = 1,2,3, if and
only if the spacelike triad {Ei} used to construct the normal frame has been FW
transported along σ . As pointed out earlier, this in turn means that {Ei} has in
fact been parallel transported along the geodesic σ , since FW transport reduces to
parallel transport when the worldline in question is a geodesic. We also know from
the earlier discussion that ai and the rotation Ω i

j are all zero if and only if

Γ
µ

νγ

∣∣
σ
= 0 , ∀µ,ν ,γ .

In short, we can arrange for all the connection coefficients to be zero right along
the worldline σ if and only if σ is a geodesic, i.e., if and only if the observer is
freely falling. Then all freely falling particles whose worldlines intersect σ follow
coordinate-straight worldlines in the normal frame coordinates, at least close to the
intersection.



Chapter 4
Holonomic and Non-Holonomic Frames
in General Relativity

A frame in a region U of a spacetime M is a basis {eα}α=0,1,2,3 for the tangent
space Tp(M ) at each event p in U . A holonomic frame is one that arises from
coordinates {xµ}µ=0,1,2,3 over U , observing that the four contravectors

∂µ :=
∂

∂xµ

∣∣∣∣
p

form a basis for Tp(M ), for each p ∈U .
So far we have constructed coordinates, and hence coordinate frames, that are

adapted to observers with arbitrary motion either in flat or curved spacetime. All our
frames have therefore effectively been holonomic frames. However, non-holonomic
frames can also be of interest for formulating physical problems.

A well known example are tetrad frames in which the four contravectors eα actu-
ally constitute an orthonormal basis for Tp(M ) at each event p for the given space-
time metric g :

(eα |eβ ) := g(eα ,eβ ) = ηαβ .

We shall stick to the convention η := diag(−1,1,1,1) until further notice. If a tetrad
frame turns out to be holonomic, i.e., if there exist coordinates xα , α = 0,1,2,3, such
that

eα = ∂α , α = 0,1,2,3 ,

then the spacetime is flat in the given region.
This is a broad subject that can be found in many standard textbooks (good ref-

erences are [12, 14]). The aim here will be to review some of the essentials, for
completeness, then look at how those essentials relate to the problem of physical
observation that are the main concern here. As mentioned in the title, we discuss
this in the context of general relativity, considering the manifold of special relativity
(Minkowski spacetime) as a special case when there are coordinates such that the
metric is just η .

We shall talk about arbitrary (possibly non-holonomic) contravector frames
{eα}α=0,1,2,3 in a region U of spacetime, forming a basis for the tangent space

155
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Tp(M ) at each p ∈U , with dual covector (1-form) frame {eα}α=0,1,2,3, defined by

eα(eβ ) = δ
α

β
, (4.1)

forming a basis for the cotangent space T ∗p (M ) at each p ∈U . Under a change of
such frame to {e′α}α=0,1,2,3, there always exists a field of invertible matrices A over
U such that

e′α = Aα
β eβ , (4.2)

and it is easy to check that
eα ′ = eβ A−1

β
α , (4.3)

since

eγ A−1
γ

α(e′
β
) = eγ(Aβ

δ eδ )A
−1

γ
α

= Aβ
δ eγ(eδ )A

−1
γ

α

= Aβ
δ

δ
γ

δ
A−1

γ
α

= δ
α

β
.

4.1 Lie Bracket and Structure Coefficients

Associated with any frame {eα}α=0,1,2,3 is a set of numbers cα
βγ called structure

coefficients which are useful for understanding the frame in an abstract sense. To
define them we need first to define the Lie bracket of two vector fields X and Y ,
variously denoted LXY , XY−Y X , and [X ,Y ]. The Lie bracket of two vector fields is
another vector field. We shall define it here by its action on functions f specified on
the relevant region U of the spacetime manifold. There are many other ways, some
more elegant, but our purpose here is not an exhaustive presentation of differential
geometry.

The Lie bracket LXY is defined at p ∈U by the following action on a smooth
function f in the neighbourhood of p :

(LXY )(p) f =
[
X
(
Y ( f )

)
−Y
(
X( f )

)]
(p)

= X µ(Y ν f,ν),µ −Y µ(Xν f,ν),µ , (4.4)

where indices µ and ν refer to a local coordinate system and commas denote partial
coordinate derivatives. It is easy to check that this has the properties of a vector at
each p, viz., linearity as a map on the local function space F ,

(LXY )(a f +bg) = a(LXY ) f +b(LXY )g , ∀a,b ∈ R , ∀ f ,g ∈F ,

and Leibniz rule,
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(LXY )( f g) =
[
(LXY ) f

]
g+ f (LXY )g , ∀ f ,g ∈F .

From (4.4), the component form of LXY = [X ,Y ] relative to a coordinate frame
{∂µ}µ=0,1,2,3 is clearly

[X ,Y ]µ = Xν
∂νY µ −Y ν

∂ν X µ . (4.5)

It is also clear that

LXY =−LY X , or [X ,Y ] =−[Y,X ] . (4.6)

Given a vector field X , one can also define the Lie derivative LX T of any type (r,s)
tensor field T . This gives another type (r,s) tensor field. Note that the derivatives in
the definition (4.4) are coordinate derivatives, not covariant derivatives. No metric
structure or connection is needed to define the Lie derivative, and more sophisticated
presentations show why this is the case [14, 27].

A very important property of the Lie bracket is the Jacobi identity:[
X , [Y,Z]

]
+
[
Z, [X ,Y ]

]
+
[
Y, [Z,X ]

]
= 0 . (4.7)

This is straightforward but somewhat tedious to prove. The highly suggestive nota-
tion [X ,Y ] = XY −Y X makes it look misleadingly obvious! Another result that can
be proven straight from the definition is

[ f X ,gY ] = f g[X ,Y ]+ f X(g)Y −gY ( f )X , ∀ f ,g ∈F , ∀X ,Y ∈ T (M ) . (4.8)

Then, given any frame {eα}α=0,1,2,3 and any contravector fields X and Y in some
region U of spacetime, we can expand them as X = Xα eα and Y =Y β eβ , where Xα

and Y β are functions in F , and (4.8) implies

[X ,Y ] = XαY β [eα ,eβ ]+Xα eα(Y β )eβ −Y β eβ (X
α)eα . (4.9)

This idea throws up the Lie bracket of pairs of vector fields selected from the frame
{eα}α=0,1,2,3. But such a Lie bracket always delivers another contravector field, and
since the frame provides a basis everywhere in the given region, we must be able
to express these Lie brackets as linear combinations of the eα . Hence there exist
functions Cγ

αβ on U such that

[eα ,eβ ] =Cγ
αβ eγ . (4.10)

These are the structure coefficients of the frame {eα}α=0,1,2,3. They are obviously
antisymmetric in the lower indices:

Cγ
αβ =−Cγ

βα =Cγ
[αβ ] , (4.11)

where the square bracket around indices denotes antisymmetrisation over those in-
dices.
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It should be noted that these sets of 43 numbers do not transform as tensor com-
ponents under change of frame eα → e′α = Aα

β eβ . Indeed, the new coefficients
C′α βγ are defined by

[e′α ,e
′
β
] =C′γ αβ e′γ ,

whence

C′γ αβ Aγ
δ eδ = [Aα

γ eγ ,Aβ
δ eδ ]

= Aα
γ Aβ

δ [eγ ,eδ ]+Aα
γ eγ(Aβ

δ )eδ −Aβ
δ eδ (Aα

γ)eγ

= Aα
γ Aβ

δCε
γδ eε +Aα

γ eγ(Aβ
δ )eδ −Aβ

δ eδ (Aα
γ)eγ ,

where the second step uses (4.8). Now equating coefficients of eδ on both sides, we
deduce that

C′γ αβ Aγ
ε = Aα

γ Aβ
δCε

γδ +Aα
γ eγ(Aβ

ε)−Aβ
δ eδ (Aα

ε) ,

and hence

C′λ αβ = Aα
γ Aβ

δCε
γδ A−1

ε
λ +Aα

γ eγ(Aβ
ε)A−1

ε
λ −Aβ

δ eδ (Aα
ε)A−1

ε
λ ,

so that, finally,

C′λ αβ = Aα
γ Aβ

δCε
γδ A−1

ε
λ +2A[α

γ eγ(Aβ ]
δ )A−1

δ
λ , (4.12)

where the antisymmetrization in the second term (denoted by square brackets) is
over α and β alone. If the structure coefficients transformed tensorially, we would
expect only the first term on the right-hand side.

It is clear straight from (4.5) that the structure coefficients are zero for a holo-
nomic frame:

[∂µ ,∂ν ] = 0 , Cρ
µν = 0 (holonomic frame) . (4.13)

It turns out that the converse is also true, i.e., if we have a frame {eα}α=0,1,2,3
such that Cγ

αβ = 0 for all α,β ,γ ∈ {0,1,2,3} on the region U of spacetime, then
there exist coordinates {xα}α=0,1,2,3 on the region U such that eα = ∂α . This is one
consequence of the Frobenius theorems [12]. Looking back at (4.9) applied to a
holonomic frame, we immediately rederive (4.5).

4.2 Connection and Torsion

Since

eγ(Aβ
δ )A−1

δ
λ = eγ(Aβ

δ A−1
δ

λ )−Aβ
δ eγ(A−1

δ
λ )

= eγ(δ
λ

β
)−Aβ

δ eγ(A−1
δ

λ )

= −Aβ
δ eγ(A−1

δ
λ ) ,



4.2 Connection and Torsion 159

the transformation equation (4.12) for the structure coefficients can be written

C′λ αβ = Aα
γ Aβ

δCε
γδ A−1

ε
λ +2Aα

γ Aβ
δ e[δ (A

−1
γ]

λ ) . (4.14)

It is interesting to compare this with the transformation rule for the connection, viz.,

Γ
′λ

αβ = Aα
γ Aβ

δ
Γ

ε
γδ A−1

ε
λ −Aα

γ Aβ
δ eδ (A

−1
γ

λ ) . (4.15)

This transformation law ensures that the covariant derivative of any type (r,s) tensor
defined in the usual way is a type (r,s+1) tensor:

• For a contravector field Y = Y α eα ,

∇αY β := eα(Y β )+Γ
β

γαY γ . (4.16)

• For a covector field ω = ωα eα ,

∇α ωβ := eα(ωβ )−Γ
γ

βα
ωγ . (4.17)

• For a type (r,s) tensor T = T αβ ...
µν ...eα ⊗ eβ ⊗·· ·⊗ eµ ⊗ eν ⊗·· · ,

∇α T βγ...
µν ... := eα(T βγ...

µν ...)+Γ
β

δα
T δγ...

µν ...+Γ
γ

δα
T βδ ...

µν ...+ · · ·

−Γ
ρ

µα T αβ ...
ρν ...−Γ

ρ

να T αβ ...
µρ...−·· · . (4.18)

Of course, we define

∇XY := (Xα
∇αY β )eβ =

[
X(Y β )+Xα

Γ
β

γαY γ
]
eβ , (4.19)

whence
∇Y X−∇XY =

[
Y (Xβ )−X(Y β )+2Γ

β

[αγ]
XαY γ

]
eβ . (4.20)

But looking at (4.9),[
Y (Xβ )−X(Y β )

]
eβ = [Y,X ]+Cβ

αγ XαY γ eβ . (4.21)

So if we define the type (1,2) torsion tensor T by

T (X ,Y ) := ∇Y X−∇XY − [Y,X ] , (4.22)

it follows that

T (Y,X) =
(
2Γ

β

[αγ]
+Cβ

αγ

)
XαY γ eβ , (4.23)

or in component form,

T β
αγ = 2Γ

β

[αγ]
+Cβ

αγ . (4.24)
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We know already that this is a tensor by construction, but we can immediately see
why it transforms correctly from (4.14) and (4.15).

Relative to a holonomic basis {∂µ}µ=0,1,2,3, the structure coefficients are zero
and the torsion tensor has component form

T ρ
µν = 2Γ

ρ

[µν ]
, (4.25)

showing that this tensor is entirely determined by the connection. A torsion free
connection is then one for which the torsion tensor is zero. This happens if and only
if the connection coefficients are symmetric in the two lower indices whenever the
connection is expressed relative to a coordinate frame. In Sect. 3.1, we assumed a
torsion free connection in order to construct normal coordinates at any given point
in spacetime.

In building relativistic theories of gravitation, it is commonplace to assume a
certain compatibility between metric and connection. Basically, one assumes that
parallel transport, determined by the connection, preserves inner products. This in
turn is valid if and only if the covariant derivative of the metric is zero, often called
the metric condition:

∇α gβγ = 0 . (4.26)

From the definition (4.18), this means that

eα(gβγ) = Γ
δ

βα
gδγ +Γ

δ
γα gβδ . (4.27)

If in addition the connection is torsion free, then we have seen from (4.24) that

2Γ
β

[αγ]
=−Cβ

αγ . (4.28)

It is now straightforward to check that the connection is fully determined by the
metric, since (4.27) and (4.28) imply that

Γ
γ

αβ
=

1
2

gγδ

[
eβ (gαδ )+ eα(gδβ )− eδ (gαβ )

]
(4.29)

+
1
2

[
Cγ

βα +gγδ gαεCε
δβ +gγδ gεβCε

δα

]
.

Expressed relative to a coordinate frame, where the structure coefficients are zero,
the connection thus has components

Γ
ρ

µν =
1
2

gρσ

(
∂ν gµσ +∂µ gσν −∂σ gµν

)
, (4.30)

the well known formula for the Christoffel symbols.
From a physical point of view, torsion is sourced by spinning matter and energy.

In fact, it is sourced by the spin currents of matter in such a way that, in contrast to
curvature, it does not propagate in spacetime, so it could only be nonzero in regions
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where there is matter or energy with some rotation. A very clear, though somewhat
sophisticated account can be found in [25, Chap. 5].

4.3 Timelike Congruences and the Tetrad Formalism

As mentioned above, a tetrad frame {eα}α=0,1,2,3 is one in which the four contravec-
tor fields eα constitute an orthonormal basis for the tangent space Tp(M ) at each
event p where they take values. The aim here is to review this formalism, closely
following the presentation in [12, Chap. 4].

The starting point is a congruence of timelike curves γ with tangent vector field
X such that (X |X) =−1. We use the proper time τ for the parameter on each curve,
with

X = γ̇ ,

and synchronise suitably over the curves. This congruence can model the world-
lines of particles making up a material, e.g., a fluid, or a physical observer, or the
observer’s laboratory. The aim will be eventually to see how this kind of formalism
can actually be used to relate the theory to physical measurement.

Synchronising the proper time τ suitably over the curves is an issue here. In
Minkowski spacetime, when setting up coordinates for an observer identified here
with one worldline in the congruence, with proper time τ0, we favour hyperplanes of
simultaneity HOS(τ0) borrowed from instantaneously comoving inertial observers
at each value of τ0, which seems a natural enough choice. We then attribute the same
value τ0 of the time coordinate to each worldline in the congruence at its intersection
with HOS(τ0). We noted in Sect. 2.3.4 that this time coordinate would not generally
be equal to the proper time along each worldline, even when we had synchronised
proper times on some particular hyperplane of simultaneity [see (2.35) on p. 28].

Still in flat spacetime, another problem is that the hyperplanes of simultaneity
for one worldline in the congruence will not generally intersect the other world-
lines orthogonally, so they will not generally be a natural choice for the hyperplanes
of simultaneity for observers following other worldlines in the congruence. A case
where hyperplanes of simultaneity are shared between all members of the congru-
ence, in the flat spacetime context, is when those members move rigidly together,
an effect referred to as HOS sharing in Sect. 2.3.4.

The first difference in a curved spacetime is that there is not even a natural
choice for the hypersurfaces of simultaneity, at least over regions where the cur-
vature is significant. In flat spacetime, it was natural enough to borrow a hyperplane
of simultaneity from an instantaneously comoving inertial observer. But in a curved
spacetime, there are no hyperplanes, only hypersurfaces, and we may expect there
to be several of these. So which should we choose? The only obvious constraint is
that the hypersurfaces be orthogonal to one of the worldlines in the congruence, but
that leaves plenty of freedom over what the hypersurface should do elsewhere in the
congruence.
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In a curved spacetime, if we find a series of spacelike hypersurfaces intersecting
each member of the congruence at the same proper time for all members, there is
no obvious reason why those hypersurfaces should be orthogonal to the members of
the congruence. Conversely, for a given timelike congruence, if we can find shared
hypersurfaces of simultaneity, i.e., spacelike hypersurfaces that are orthogonal to
all members of the congruence, they are unlikely to intersect the members of the
congruence at equal values of their proper times.

Note that, whatever the curvature, spacetime will always look flat to within mea-
surement accuracy over some small enough region. This is basically the import of
the weak equivalence principle (WEP) mentioned at the very beginning of Chap. 3
(see p. 141). At any point p in the spacetime manifold M of general relativity, un-
der the usual assumption that the covariant derivative of the metric is zero and the
connection is torsion free, i.e., symmetric in its two lower indices when expressed
relative to a coordinate frame, coordinates can be found on some neighbourhood of
p such that the metric has the Minkowski form at p and the connection and first
derivatives of the metric are zero at p. This mathematical facet of the weak equiva-
lence principle is thus built into the standard construction of general relativity in the
torsion-free case.

So given any event in spacetime, one can always find a locally inertial frame
containing it, in which the spacetime looks flat to within measurement accuracy,
and where the timelike congruence intersects this small region, we can always treat
the spacetime as flat, e.g., borrow hyperplanes of simultaneity of instantaneously
comoving inertial observers, where the notion of hyperplane is an approximation
specified by the locally inertial coordinate system. We shall have more to say about
this kind of approximation later.

In what follows we may assume that, for some preselected event on one worldline
of the congruence, we can find a spacelike hypersurface σ through that event inter-
secting all the worldlines of the congruence orthogonally, then for each worldline
γ , assign zero proper time for γ at the event where it intersects this hypersurface σ .
The details of the strategy adopted here will not be immediately important in what
follows. For example, we shall not worry for the moment about whether other hy-
persurfaces of simultaneity intersect any of the worldlines orthogonally. However,
in Sect. 4.3.14, we shall find a simple condition that is mathematically equivalent to
the existence of a family of 3D hypersurfaces everywhere orthogonal to the congru-
ence.

The aim here will just be to construct a tetrad frame over the whole region occu-
pied by the congruence in such a way that the tangent to the congruence is always
one of the vectors in the frame. Note the difference with the discussion in Sect. 2.3.
There we also had a timelike congruence, with each label ξ denoting a different
worldline. However, we only constructed a tetrad along one timelike worldline, viz.,
ξ = 0, which we took to be the worldline of a pointlike observer, then used that to
construct convenient coordinates (adapted to the observer ξ = 0). In the present
case, the tetrad frame will occupy all events covered by the congruence.

Of course, the three spacelike members of the tetrad at each event are orthogo-
nal to the worldline through that event, so in a very local sense (so local that it is



4.3 Timelike Congruences and the Tetrad Formalism 163

pointwise), we are implementing a notion of simultaneity, and presumably the most
natural one possible.

For any p ∈ γ with γ in the congruence, let X
∣∣

p = u and define projection opera-
tors h and π in TpM by [12]

π(w) :=−(u|w)u , h(w) = w−π(w) = w+(u|w)u , ∀w ∈ TpM .

In component form, relative to a coordinate frame,

π(w)ν = π
ν
µ wµ , π

ν
µ =−uµ uν ,

h(w)ν = hν
µ wµ , hν

µ = δ
ν
µ +uµ uν .

In this notation, hν
µ corresponds to the projection operator Pν

µ introduced in
Sect. 2.3.1 and used elsewhere. We then express the tangent space at p as a di-
rect sum of a 1D subspace spanned by u and a 3D subspace orthogonal to it under
the metric:

TpM = T‖pM⊕T⊥pM ,

in the obvious way.

4.3.1 Tetrad

We now construct the tetrad. For each p on some γ in the congruence, we choose
three mutually orthogonal unit spacelike vectors nâ ∈ T⊥pM, with â = 1,2,3, so that

(nâ|nb̂)p = δâb̂ .

The reader will understand shortly why we put hats on the new indices. These tri-
ads are chosen smoothly along curves, and from one curve to the next, but for the
moment, no other constraint is put on them, e.g., parallel transport or Fermi–Walker
transport along γ , etc. We now set X =: n0̂, so that the set {nα̂}, α̂ = 0,1,2,3, forms
an orthonormal basis. This is the tetrad, satisfying

(nα̂ |nβ̂
) = η

α̂β̂
.

We now introduce the matrices transforming between a coordinate basis {∂µ} and
the tetrad, viz.,

nα̂ = nµ

α̂
∂µ , ∂µ = nβ̂

µ n
β̂
. (4.31)

The position of different indices at the top or bottom constitutes a sufficient no-
tational difference to distinguish these two matrices, which are obviously mutual
inverses:

nµ

α̂
nβ̂

µ = δ
β̂

α̂
, nµ

α̂
nα̂

ν = δ
µ

ν . (4.32)

Orthonormality of the tetrad gives more relations. The first is
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η
α̂β̂

= (nα̂ |nβ̂
) = nµ

α̂
nν

β̂
(∂µ |∂ν) = nµ

α̂
nν

β̂
gµν . (4.33)

Another is
gµν = (∂µ |∂ν) = η

α̂β̂
nα̂

µ nβ̂

ν . (4.34)

Of course, we also have the interesting

gµν nν

α̂
= (∂µ |nα̂) = η

α̂β̂
nβ̂

µ , (4.35)

and it is tempting to define

nα̂µ := η
α̂β̂

nβ̂

µ , (4.36)

or
nα̂µ := gµν nν

α̂
. (4.37)

Fortunately, the right-hand sides of the last two definitions are the same, since we
have (4.35).

This is an important point in the following manipulations. We raise and lower
indices on the transformation matrices in (4.31) paying no regard to whether they
appear left or right in this index formulation. (A proper matrix formulation would
pay attention to this.) We can do this with impunity because any two objects which
end up looking the same are in fact the same. For example,

nα̂
µ = η

α̂β̂ gµν nν

β̂
. (4.38)

We really do get the inverse of nν

β̂
by raising and lowering its indices, as can be seen

from (4.35).

4.3.2 Form Tetrad

We can also define a form tetrad {nα̂} by

nα̂ := nα̂
µ dxµ . (4.39)

We have arranged this to be the dual basis to {nα̂}, since

nα̂(n
β̂
) = nα̂

µ dxµ(n
β̂
) = nα̂

µ nµ

β̂
= δ

α̂

β̂
.

Now we really do have to be careful. The problem is not that the new objects, i.e.,
the 1-forms in (4.39), have their own components, viz., nα̂

µ , because these numbers
are the same as nα̂

µ , from (4.39). The problem is that we can define forms by

nα̂ = η
α̂β̂

nβ̂ , (4.40)
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and these are obviously not the same objects as nα̂ , because they are forms, whereas
the latter are contravectors. Note, however, that

nα̂µ = η
α̂β̂

nβ̂

µ = η
α̂β̂

nβ̂

µ = nα̂µ .

We have to be particularly careful when taking covariant derivatives of these objects,
as we shall see later.

4.3.3 Tetrad and Projection Operators

There are some relations between the tetrad and the projection operators hν
µ and πν

µ .
In fact,

nâ
µ nν

â = hν
µ , n0̂

µ nν

0̂ = π
ν
µ , (4.41)

where it is understood that â only runs over space indices {1,2,3}. We now see the
utility of the hat notation. Although we already distinguish arbitrary tetrad indices
from arbitrary coordinate indices by using letters in the first part of the alphabet for
the former and letters in the middle of the alphabet for the latter, there are times
when a specific index appears, in this case 0̂, and we could soon become confused.
There are other examples below.

4.3.4 Tetrad and Determinant of the Metric

Taking the determinant of both sides of (4.34), we have
√−g = detnα̂

µ . (4.42)

4.3.5 Tetrad Components of a Tensor

Any tensor T µν ...
ρσ ... has components relative to the tetrad frame given by

T α̂β̂ ...

δ̂ γ̂...
= T µν ...

ρσ ... nα̂
µ nβ̂

ν . . .n
ρ

δ̂
nσ

γ̂
. . . .

This is indeed how tensor components change under change of frame.
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4.3.6 Some Other Relations

For any contravector v, we have

vµ

⊥ = hµ

ν vν = nµ

â nâ
ν vν = nµ

â vâ , (4.43)

by the first relation of (4.41). By the second relation of (4.41),

vµ

‖ = π
µ

ν vν = nµ

0̂
n0̂

ν vν = nµ

0̂
v0̂ . (4.44)

Here is another situation where the hat on the index 0 is crucial, since v has a zero
coordinate component, too, denoted by v0.

By (4.43), and since hν
µ is a projection operator, we have

hµν vµ vν = (v⊥|v⊥) = gµν nµ

â nν

b̂ vâvb̂ = ηâb̂vâvb̂ = δâb̂vâvb̂ , (4.45)

recalling that ηâb̂ = δâb̂ because â, b̂ ∈ {1,2,3}. The last result in this sequence is,
from (4.44),

πµν vµ vν = (v‖|v‖) = gµν nµ

0̂
v0̂nν

0̂ v0̂ =−(v0̂)2 . (4.46)

4.3.7 Tetrad as Coordinate Frame

The tetrad frame could not generally be a coordinate frame, i.e., one cannot gener-
ally find coordinates x̂α̂ such that

nα̂ =
∂

∂ x̂α̂
, α̂ = 0,1,2,3 . (4.47)

The degree of non-integrability of these equations is described by the structure con-
stants Cα̂

β̂ γ̂
given by [12] [

n
β̂
,nγ̂

]
=Cα̂

β̂ γ̂
nα̂ . (4.48)

The Frobenius theorem tells us that coordinates satisfying (4.47) exist if and only if
Cα̂

β̂ γ̂
= 0 for all α̂ , β̂ , and γ̂ . In terms of 1-forms, this means that there are coordinates

x̂α̂ such that nα̂ = dx̂α̂ if and only if dnα̂ = 0 for all α̂ , i.e., if and only if ∂[ν nα̂

µ] = 0
for all α̂ , µ , and ν .

4.3.8 Propagation of Tetrads

We denote the absolute derivative of nα̂ along a γ in the congruence by a dot. Recall
that we only required the tetrad to vary smoothly along each γ (and from one γ to the
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next), so there is a priori no condition on the ṅα̂ . However, since it is itself a vector
field, it can be expressed in terms of the tetrad, thus determining sixteen coefficients
Λα̂

β̂ by
ṅα̂ = γ̇

µ
∇µ nα̂ = Λα̂

β̂ n
β̂
. (4.49)

Of course, we can raise and lower the indices using the Minkowski metric η , so we
also have

ṅα̂ = Λ
α̂β̂

nβ̂ . (4.50)

The left or right location of an index on Λ now matters. Indeed, (Λ
α̂β̂

) is an anti-
symmetric matrix. This is because the tetrad is always orthonormal by definition,
whence

0 =
D

Dτ
g(nα̂ ,nβ̂

)

= g
(

Dnα̂

Dτ
,n

β̂

)
+g

(
nα̂ ,

Dn
β̂

Dτ

)

= g
(
Λα̂ γ̂ η

γ̂ δ̂ n
δ̂
,n

β̂

)
+g
(
nα̂ ,Λβ̂ ε̂

η
ε̂ φ̂ n

φ̂

)
= Λα̂ γ̂ η

γ̂ δ̂ g(n
δ̂
,n

β̂
)+Λ

β̂ ε̂
η

ε̂ φ̂ g(nα̂ ,nφ̂
)

= Λα̂ γ̂ η
γ̂ δ̂

η
δ̂ β̂

+Λ
β̂ ε̂

η
ε̂ φ̂

η
α̂φ̂

= Λ
α̂β̂

+Λ
β̂ α̂

.

We now have
Ẋ = ṅ0 = Λ0̂b̂nb̂ , ṅâ = Λâb̂nb̂−Λâ0̂X . (4.51)

The first of these tells us that

Λ0̂â = Ẋâ := ηâb̂Ẋ b̂ , (4.52)

where Ẋ b̂ is the b̂ component of the four-acceleration along the chosen curve γ of
the congruence. Note that this four-acceleration has no component along the curve
itself, i.e., Ẋ 0̂ = 0, because we know that (Ẋ |X) = 0. It is also clear from the second
equation of (4.52) that

Λâb̂ = (ṅâ|nb̂) . (4.53)

Comparing with Sect. 2.3, we see that nâ corresponds to ni, with i↔ â, and the an-
tisymmetric 3×3 matrix Λâb̂ corresponds to Ωi j. Here we have merely generalised
to arbitrary spacetimes, although it is clear that the presentation, and in particular
the notation, in Sect. 2.3 generalise in a straightforward way.
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4.3.9 Fermi Rotation Coefficients

The antisymmetric 3× 3 matrix Λâb̂ generates an instantaneous rotation. At the
given instant, all the triad vectors {nâ} are rotating together about some axis which
can be determined from the matrix. Λâb̂ are called the Fermi rotation coefficients.
There is a coordinate component version:

Λ[µν ] = Λâb̂nâ
µ nb̂

ν

= (ṅâ|nb̂)n
â
µ nb̂

ν

= g
(
ṅâ,nb̂

)
nâ

µ nb̂
ν

= gρτ Xσ nρ

â;σ nτ

b̂nb̂
ν nâ

µ

= Xσ nâρ;σ hρ

ν nâ
µ . (4.54)

When all the coefficients Λâb̂ are zero along a given γ , the tetrad is said to be Fermi–
Walker transported. In a sense there is no rotation of the tetrad frame as it moves
along γ . In fact this lack of rotation is only a lack of rotation relative to the frame
itself! A rotation may be happening relative to the manifold as a whole, as can be
seen by the Thomas precession, even in a Minkowski spacetime (see Sects. 2.3.3
and 2.11.3).

When the tetrad is indeed FW transported along each worldline in the congru-
ence, the second equation of (4.51) together with (4.52) gives

ṅâ = ẊâX . (4.55)

If a vector w has constant components in an FW transported frame, then by (4.55),

ẇ = wâṅâ +w0̂Ẋ = (w|Ẋ)X− (w|X)Ẋ , (4.56)

whence
ẇ = wµ(Ẋµ X−Xµ Ẋ) . (4.57)

Such a vector is itself said to be FW transported. This is the general relativistic
generalisation of (2.28) on p. 26, also discussed in Sect. 3.2.4. As we have seen,
one vector that is always FW transported is the tangent to the curve itself, viz., X .
It obviously satisfies the last equation. Furthermore, this kind of transport coincides
with parallel transport when the curve is a geodesic, i.e., when Ẋ = 0.

The other important observation made earlier is that FW transport preserves
scalar products: if u and v are two vector fields that are FW transported along the
curve γ , then g(u,v) is constant along γ . Hence, orthogonality to the curve is pre-
served: if u is FW transported along γ and orthogonal to it at some point, then since
γ̇ is always FW transported along γ , we have g(u, γ̇) = 0 all along the curve.



4.3 Timelike Congruences and the Tetrad Formalism 169

4.3.10 Ricci Rotation Coefficients

We consider the covariant derivatives of the dual basis nδ̂ along the tetrad vectors
nα̂ , viz.,

(∇α̂ nγ̂)
β̂
=−Γ

γ̂

β̂ α̂
, (4.58)

where ∇α̂ means ∇nα̂
. This follows from the general rule

(∇α̂ φ)
β̂
= nα̂(φβ̂

)−Γ
γ̂

β̂ α̂
φγ̂ , (4.59)

for any 1-form φ [see (4.17) on p. 159], and the fact that, when φ = nδ̂ ,

φ
β̂
= nδ̂ (n

β̂
) = δ

δ̂

β̂
.

We can lower the index to obtain

Γ
γ̂ β̂ α̂

= η
γ̂ δ̂

Γ
δ̂

β̂ α̂
=−(∇α̂ nγ̂)β̂

. (4.60)

These are the Ricci rotation coefficients. They are just the connection coefficients
relative to the tetrad frame.

At first sight it seems important to keep nγ̂ in the last expression, as opposed to
nγ̂ , because that would change the covariant derivative. In fact, it appears to make
no sense to replace nγ̂ by nγ̂ in (4.60) since the index β̂ is lowered. However, since

(∇α̂ u)β̂ = nα̂(uβ̂ )+nε̂

α̂
Γ

β̂

δ̂ ε̂
uδ̂ ,

for any contravector u, according to (4.16) on p. 159, we also have the result

(∇α̂ nγ̂)
β̂ = nα̂(δ

β̂

γ̂
)+δ

ε̂

α̂
Γ

β̂

δ̂ ε̂
δ

δ̂

γ̂
= Γ

β̂

γ̂α̂
. (4.61)

We can now lower the index β̂ to obtain

Γ
δ̂ γ̂ α̂

= η
δ̂ β̂

Γ
β̂

γ̂α̂
= (∇α̂ nγ̂)δ̂

, (4.62)

or for direct comparison with (4.60),

Γ
γ̂ β̂ α̂

= (∇α̂ n
β̂
)γ̂ . (4.63)

There are two differences: the opposite sign, and two indices transposed. It may
seem confusing to have a vector with a lowered index, but we do this all the time
with the coordinate metric components, and no problems arise, precisely because,
for the metric connection, covariant differentiation commutes with raising and low-
ering indices.
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In fact, (4.60) and (4.63) together effectively constitute a proof that the Ricci
rotation coefficients are antisymmetric in the first two indices, viz.,

Γ
α̂β̂ γ̂

= Γ[α̂β̂ ]γ̂ , (4.64)

which is in fact the case. It can also be proved as follows. Since the tetrad is or-
thonormal everywhere, the covariant derivative of the constant η

α̂β̂
= (nα̂ |nβ̂

) along
any nγ̂ is zero, i.e.,

0 = ∇nγ̂
(nα̂ |nβ̂

) = (∇nγ̂
nα̂ |nβ̂

)+(nα̂ |∇nγ̂
n

β̂
)

= Γ
β̂ α̂ γ̂

+Γ
α̂β̂ γ̂

.

We have taken the covariant derivative past the metric brackets with impunity. In
fact, what the last calculation amounts to is this:

0 = (∇γ̂ η)
α̂β̂

= nγ̂(ηα̂β̂
)−Γ

δ̂

α̂ γ̂
η

δ̂ β̂
−Γ

δ̂

β̂ γ̂
η

α̂δ̂

= −Γ
β̂ α̂ γ̂
−Γ

α̂β̂ γ̂
.

Finally, note that the coordinate form of the relations we are dealing with here is

Γ
γ̂ β̂ α̂

= n
β̂ ν ;µ nν

γ̂
nµ

α̂
=−nγ̂ν ;µ nν

β̂
nµ

α̂
, (4.65)

which are immediate from (4.60) and (4.63), respectively.

4.3.11 Torsion-Free Connection

In (4.24) on p. 159, we obtained the components of the torsion tensor with respect
to any frame as

T β
αγ = 2Γ

β

[αγ]
+Cβ

αγ . (4.66)

When the connection is torsion-free, this means that

2Γ
β̂

[α̂ γ̂]
=Cβ̂

γ̂α̂ , (4.67)

in the present orthonormal frame.
In (4.29) on p. 160, it was shown that, in the torsion-free case, we have for any

frame {eα},
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Γ
γ

αβ
=

1
2

gγδ

[
eβ (gαδ )+ eα(gδβ )− eδ (gαβ )

]
(4.68)

+
1
2

[
Cγ

βα +gγδ gαεCε
δβ +gγδ gεβCε

δα

]
.

Applying to the present orthonormal frame, where the metric coefficients are con-
stants, and lowering indices, we have

Γ
α̂β̂ γ̂

=
1
2
(C

α̂ γ̂ β̂
+C

β̂ α̂ γ̂
+C

γ̂ α̂ β̂
) . (4.69)

Note that we can deduce the antisymmetry of Γ
α̂β̂ γ̂

in α̂ and β̂ from this, using the
antisymmetry of C

α̂β̂ γ̂
in its last two indices.

4.3.12 Fermi Rotation Coefficients as Ricci Rotation Coefficients

In fact, we have the result
Λ

α̂β̂
=−Γ

α̂β̂ 0̂ . (4.70)

This is proved as follows. We have

Γ
α̂β̂ 0̂ = (∇X n

β̂
)α̂ [by (4.63)]

= (∇X n
β̂
|nα̂)

= (ṅ
β̂
|nα̂)

= (Λ
β̂ γ̂

nγ̂ |nα̂) [by (4.50) on p. 167]

= Λ
β̂ γ̂

δ
γ̂

α̂
= Λ

β̂ α̂
, (4.71)

as claimed.

4.3.13 Expansion and Vorticity

We now consider the congruence of timelike curves as the flow of a material. Fol-
lowing the account in [12], we may define the expansion by

Θâb̂ :=−Γ0̂(âb̂) =−
1
2
(
Γ0̂âb̂ +Γ0̂b̂â

)
, a,b ∈ {1,2,3} , (4.72)

where round brackets among indices indicate symmetrization. This is not a very
elegant way of defining it. Things looks nicer if we refer to arbitrary coordinates
{xµ} and make the definition
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Θâb̂ :=Θµν nµ

â nν

b̂ , a,b ∈ {1,2,3} , (4.73)

where

Θµν := X(ρ;σ)h
ρ

µ hσ
ν =

1
2
(
Xρ;σ +Xσ ;ρ

)
hρ

µ hσ
ν . (4.74)

This is in fact the rate of strain tensor for a continuous medium whose constituent
particles or fluid elements follow the worldlines in the congruence, as we shall see
in Sect. 4.3.16.

Let us show the equivalence of the last definition with (4.72). First a technical
detail. If we take the µ component of n0̂, we obtain n0̂µ

= η0̂α̂
nα̂

µ . We do have to
check this from the definition (4.39) on p. 164, viz.,

nα̂ := nα̂
µ dxµ ,

and the definition
n

β̂
:= η

β̂ α̂
nα̂ = η

β̂ α̂
nα̂

µ dxµ .

We also have n0̂µ
= Xµ := gµν Xν , because X := gµν Xν dxµ has coordinate compo-

nents gµν nν

0̂
, which are equal to η0̂α̂

nα̂
µ . Indeed, in general, by (4.35) on p. 164,

η
α̂β̂

nβ̂

µ = gµν nν

α̂
.

To sum up,
(n0̂)µ = n0̂µ

= Xµ . (4.75)

Now by the first relation of (4.41) on p. 165,

hρ

µ nµ

â = nb̂
µ nρ

b̂
nµ

â = nρ

â , (4.76)

so the definitions (4.73) and (4.74) imply that

Θâb̂ =
1
2
(
Xρ;σ +Xσ ;ρ

)
hρ

µ hσ
ν nµ

â nν

b̂ =
1
2
(
Xρ;σ +Xσ ;ρ

)
nρ

â nσ

b̂ . (4.77)

But

−Γ0̂(âb̂) = −
1
2
(
Γ0̂âb̂ +Γ0̂b̂â

)
=

1
2

[
(∇b̂n0̂)â +(∇ân0̂)b̂

]
[by (4.60) on p. 169]

=
1
2

[
nµ

â nν

b̂ (n0̂µ,ν −Γ
ρ

νµ n0̂ρ
)+nµ

b̂
nν

â (n0̂µ,ν −Γ
ρ

νµ n0̂ρ
)
]

=
1
2

nµ

â nν

b̂

(
n0̂µ,ν +n0̂ν ,µ −Γ

ρ

νµ n0̂ρ
−Γ

ρ

µν n0̂ρ

)
=

1
2

nµ

â nµ

b̂

(
Xµ;ν +Xν ;µ

)
,
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as required. We do not need to assume a torsion-free connection here.
It can also be shown in the torsion-free case that

Θâb̂ =−nµ(âLX nµ

b̂)
. (4.78)

To prove this, we start with the observation that

LX nb̂ = ∇X nb̂−∇b̂X , (4.79)

which follows from (4.22) on p. 159 in the torsion-free case. Note that we are not
assuming that the n

β̂
are parallel transported along the curves of the congruence, so

in general we have ∇X nb̂ 6= 0. Of course, this can be written

LX nb̂ = ṅb̂−∇b̂X , (4.80)

or again
LX nb̂ = Λb̂γ̂

nγ̂ −∇b̂X , (4.81)

by the definition (4.50) of Λb̂γ̂
on p. 167. We now have

−nµ(âLX nµ

b̂)
= −1

2

[
nµ âLX nµ

b̂
+n

µ b̂LX nµ

â

]
= +

1
2

[
nµ

â (∇b̂X)µ +nµ

b̂
(∇âX)µ

]
=

1
2

[
nµ

â nν

b̂ (Xµ,ν −Γ
ρ

νµ Xρ)+nµ

b̂
nν

â (Xµ,ν −Γ
ρ

νµ Xρ)
]
,

from which we retrieve a previous expression for Θâb̂. It should be noted here that
LX nµ

b̂
means (LX nb̂)

µ . In the second step, the terms in Λb̂γ̂
in (4.81) drop out due

to their antisymmetry.
We now turn to the vorticity, defined by

ωâb̂ :=−Γ0̂[âb̂] =−
1
2
(
Γ0̂âb̂−Γ0̂b̂â

)
, a,b ∈ {1,2,3} . (4.82)

As before, this is not a very elegant way of defining it. It looks nicer if we make the
definition

ωâb̂ := ωµν nµ

â nν

b̂ , a,b ∈ {1,2,3} , (4.83)

where

ωµν := X[ρ;σ ]h
ρ

µ hσ
ν =

1
2
(
Xρ;σ −Xσ ;ρ

)
hρ

µ hσ
ν . (4.84)

These definitions give

ωâb̂ =
1
2
(
Xρ;σ −Xσ ;ρ

)
hρ

µ hσ
ν nµ

â nν

b̂ =
1
2
(
Xρ;σ −Xσ ;ρ

)
nρ

â nσ

b̂ . (4.85)
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But

−Γ0̂[âb̂] = −
1
2
(
Γ0̂âb̂−Γ0̂b̂â

)
=

1
2

[
(∇b̂n0̂)â− (∇ân0̂)b̂

]
=

1
2

[
nµ

â nν

b̂ (n0̂µ,ν −Γ
ρ

νµ n0̂ρ
)−nµ

b̂
nν

â (n0̂µ,ν −Γ
ρ

νµ n0̂ρ
)
]

=
1
2

nµ

â nν

b̂

(
n0̂µ;ν −n0̂ν ;µ

)
=

1
2

nµ

â nν

b̂

(
Xµ;ν −Xν ;µ

)
,

as required to show equivalence with (4.82). Once again, we do not need to assume
a torsion-free connection to get this.

Note that, immediately from the definitions (4.72) and (4.82), we have

Θâb̂ +ωâb̂ =−Γ0̂âb̂ , Θâb̂−ωâb̂ =−Γ0̂b̂â . (4.86)

There is another expression for ωâb̂ in the torsion-free case, viz.,

ωâb̂ =−Λâb̂−nµ[âLX nµ

b̂]
. (4.87)

Once again, we use (4.81), viz.,

LX nb̂ = Λb̂γ̂
nγ̂ −∇b̂X , (4.88)

which is true in the torsion-free case. This time the terms in Λb̂γ̂
do not cancel out.

We have

−nµ[âLX nµ

b̂]
= −1

2

[
nµ âLX nµ

b̂
−n

µ b̂LX nµ

â

]
= +

1
2

[
nµ

â (∇b̂X)µ −nµ

b̂
(∇âX)µ

]
− 1

2
(
nµ

â Λb̂γ̂
nγ̂

µ −nµ

b̂
Λâγ̂ nγ̂

µ

)
=

1
2

[
nµ

â nν

b̂ (Xµ,ν −Γ
ρ

νµ Xρ)−nµ

b̂
nν

â (Xµ,ν −Γ
ρ

νµ Xρ)
]
−1

2
(
Λb̂â−Λâb̂

)
=

1
2

nµ

â nν

b̂ (Xµ;ν −Xµ;ν)+Λâb̂

= ωâb̂ +Λâb̂ ,

as required.
There is yet another expression for the vorticity in the torsion-free case, namely

ωâb̂ =−
1
2

Xµ(Lnb̂
nâ)

µ . (4.89)
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Once again, for a torsion-free connection,

Lnb̂
nâ = ∇nb̂

nâ−∇nânb̂ , (4.90)

whence

−1
2

Xµ(Lnb̂
nâ)

µ = −1
2

nµ

0̂
(Lnb̂

nâ)µ

= −1
2

[
(∇b̂nâ)µ − (∇ânb̂)µ

]
nµ

0̂

= −1
2

[
(∇b̂nâ)0̂− (∇ânb̂)0̂

]
= −1

2
(
Γ0̂âb̂−Γ0̂b̂â

)
[by (4.63) on p. 169]

= Γ0̂[b̂â] = ωâb̂ ,

as claimed.

4.3.14 Vorticity-Free Congruence

Equation (4.89) can also be written

ωâb̂ =−
1
2
(Lnb̂

nâ)
0̂ . (4.91)

Furthermore, we have structure constants Cγ̂

b̂â such that

Lnb̂
nâ =

[
nb̂,nâ

]
=Cγ̂

b̂ânγ̂ , (4.92)

whence

ωâb̂ =−
1
2

C0̂
b̂â =

1
2

C0̂
âb̂ . (4.93)

Let us consider what happens if the vorticity is zero. It is clear from the last relation
that

ωâb̂ = 0 ⇐⇒ C0̂
âb̂ = 0 . (4.94)

If all these structure constants are zero, we can apply the Frobenius theorem men-
tioned on p. 158 and presented in [12]. According to this theorem, there are coor-
dinates {xµ} such that n0

â = 0 for â = 1,2,3. This means that the 3D hypersurfaces
x0 = constant are orthogonal to all the curves in the congruence.

How do we prove this? We have to show that, at any point, the tangent X = n0̂
to the congruence there is orthogonal to any vector tangent to the hypersurface. But
the vectors {∂1,∂2,∂3} span the tangent space to the hypersurface x0 = constant,
and each of the linearly independent vectors n1̂, n2̂, and n3̂ can be expressed as a
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linear combination of ∂1, ∂2, and ∂3 (without the need for ∂0), so the three vectors
n1̂, n2̂, and n3̂ span the space of vectors tangent to the hypersurface at the point in
question. But these are orthogonal to X = n0̂ and so we are through.

Conversely, one can say that, if there is a family of 3D hypersurfaces orthogonal
to the congruence, then the congruence has zero vorticity. Let us see how to prove
that. First note that each hypersurface intersects each curve of the congruence at
a single point. For if a short section of some curve lies in the given hypersurface,
then the tangent to that curve cannot be orthogonal to all vectors tangent to the
hypersurface, and indeed, the hypersurface cannot be entirely spacelike. This means
that we can label the hypersurfaces smoothly by the parameter τ (e.g., proper time)
of a chosen curve in the congruence.

Now choose coordinates on each hypersurface in such a way that they vary
smoothly as we move along any curve in the congruence. Attribute to any point
the coordinate x0 = τ labelling the hypersurface it is in, and the values x1,x2,x3 of
the coordinates of the point in the given hypersurface. At any point, because of the
orthogonality of the hypersurfaces to the congruence at that point, ∂0 will be pro-
portional to n0̂ and ∂1, ∂2, and ∂3 will be linear combinations of n1̂, n2̂, and n3̂. This
in turn implies that n0

â = 0 everywhere.
As always, we have(

Lnb̂
nâ
)µ

=
[
nb̂,nâ

]µ
= nν

b̂ nµ

â,ν −nν
â nµ

b̂,ν
. (4.95)

If we calculate Xµ

(
Lnb̂

nâ
)µ , then since X only has a zero component in the co-

ordinate frame, being tangent to the congruence everywhere, what we find will be
proportional to [

nb̂,nâ
]0

= nν

b̂ n0
â,ν −nν

â n0
b̂,ν , (4.96)

and the two terms on the right-hand side of (4.96) contain a derivative of n0
â and

a derivative of n0
b̂
, respectively. But these two objects are zero everywhere and we

conclude that ωâb̂ =−Xµ(Lnb̂
nâ)

µ/2 is also zero everywhere, as claimed.
Recall the labelling coordinates (ξ ,τ) introduced in the case of flat spacetime in

Sect. 2.3. That approach is interesting even in a general curved spacetime, when we
have a congruence made up of timelike worldlines of real particles in a medium.
Each particle carries a label ξ i, i = 1,2,3, and its worldline is expressed as xµ(ξ ,τ),
µ = 0,1,2,3, where τ is its proper time. The xµ are arbitrary coordinates in space-
time. We can in principle invert this to obtain ξ i and τ as functions of the xµ in the
domain of spacetime occupied by the medium. These coordinates {τ,ξ 1,ξ 2,ξ 3}
look rather like the kind of coordinates envisaged above.

But what are the differences? To set this system up, we need to synchronise
the proper times somewhere. Then ‘later’ can be taken as an attribution of some
common, larger value of the proper time to all material particles. But do we get a
spacelike hypersurface by looking at all the particles at some value of τ , and more
importantly, is this hypersurface orthogonal to the congruence (which would ensure
its being spacelike)? In fact there is no guarantee here. If we did, we would have the
kind of coordinates mentioned above, and the vorticity would be zero. So it would
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be enough to show that the vorticity is not necessarily zero in order to prove that
these hypersurfaces are not necessarily orthogonal to the particle worldlines. But
then, the motion of the medium is presumably quite arbitrary (unless we assume
rigidity, and we shall generalise that idea to curved spacetimes in the next section),
so the vorticity is not necessarily going to be zero.

On the other hand, we ought to be able to see explicitly what might go wrong with
our intuitive idea that the medium occupies a spacelike hypersurface orthogonal to
the particle worldlines for any given value of τ . Referring back to Sect. 2.3.1, and
in particular (2.19) on p. 23, we examined the 4-vector representing the spacetime
displacement between a particle and one of its neighbours for the same value of
the synchronised proper time along their worldlines. The problem we tackled there
was the fact that this infinitesimal 4-vector is not generally orthogonal to either
worldline. In (2.20), we established the infinitesimal proper time difference that
must be taken in order for either particle to view the other as simultaneous.

4.3.15 Rigid Motions in Curved Spacetimes

The aim here is to generalise the notion of proper metric introduced for the flat
spacetime case in Sect. 2.3.1. In fact, everything carries over with very minor
changes. We return to the continuous medium in which particles are labelled by
ξ i, i = 1,2,3. Then arbitrary coordinates xµ can be considered as functions of the ξ i

and τ , and conversely, at least in the region of spacetime occupied by the medium.
Let ξ and ξ i +δξ i label neighbouring particles in the medium. The worldline of

the particle with label ξ i +δξ i is given by the functions

xµ(ξ +δξ ,τ) = xµ(ξ ,τ)+ xµ

,i(ξ ,τ)δξ
i , (4.97)

where the comma followed by a Latin index denotes partial differentiation with
respect to the corresponding ξ as before. Once again, the quantity xµ

,i(ξ ,τ)δξ i,
representing the difference between the two sets of worldline functions, is formally
a 4-vector, being basically an infinitesimal coordinate difference. However, it is not
generally orthogonal to the worldline of ξ . In other words, it does not lie in the
approximate ‘hyperplane’ of simultaneity of either particle.

To get such a vector one applies the projection tensor

Pµν = gµν − ẋµ ẋν ,

where the dot denotes partial differentiation with respect to τ keeping the ξ i fixed.
The result is

δxµ := Pµ

ν xν
,i(ξ ,τ)δξ

i = xµ
,iδξ

i− ẋµ ẋν xν
,iδξ

i . (4.98)

We find that application of the projection tensor corresponds to a simple proper time
shift of amount
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δτ =−gµν ẋµ ẋν
,iδξ

i , (4.99)

so that
δxµ = xµ(ξ +δξ ,τ +δτ)− xµ(ξ ,τ) .

Indeed,
xµ(ξ +δξ ,τ +δτ) = xµ(ξ ,τ)+ xµ

,iδξ
i + ẋµ

δτ ,

and feeding in the proposed expression for δτ , we obtain

δxµ = xµ(ξ ,τ)+ xµ
,iδξ

i + ẋµ
δτ− xµ(ξ ,τ)

= xµ
,iδξ

i−gνσ ẋν ẋσ
,iδξ

iẋµ ,

which is precisely δxµ as defined in (4.98).
As in Sect. 2.3.1, we conclude that the two particles ξ and ξ +δξ appear, in the

instantaneous rest frame of either, to be separated by a distance δs given by

(δs)2 = (δx)2 = γi jδξ
i
δξ

j , (4.100)

where
γi j := Pµν xµ

,ix
ν
, j . (4.101)

This follows because

(δx)2 = Pµσ xσ
,iδξ

iPµ
ν xν

, jδξ
j ,

and

Pµσ Pµ
ν = (gµσ − ẋµ ẋσ )(δ

µ
ν − ẋµ ẋν)

= gνσ − ẋν ẋσ − ẋσ ẋν +(ẋµ ẋµ)ẋσ ẋν

= gνσ − ẋν ẋσ = Pνσ ,

whence
(δx)2 = Pνσ xσ

,ixν
, jδξ

i
δξ

j = γi jδξ
i
δξ

j ,

for the given γi j, as claimed. As before, we call the quantity γi j the proper metric of
the medium.

So once again the point about γi j is that the two particles or observers labelled
by ξ and ξ +δξ appear in the instantaneous rest frame of either to be separated by
a proper distance δs as they would measure it given by

(δs)2 = γi jδξ
i
δξ

j . (4.102)

We shall say that the set of particles or observers undergoes rigid motion if and only
if the proper metric is everywhere independent of τ . This is expressed by

γ̇i j = 0 . (4.103)
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Under rigid motion, the instantaneous separation distance between any pair of
neighbouring observers is constant in time as they would see it in an instantaneously
comoving inertial frame.

4.3.16 Rate of Strain Tensor

The aim here will be twofold:

• To understand the relationship between ordinary non-relativistic concepts of fluid
motion and the expansion and vorticity of a timelike congruence as described in
Sects. 4.3.13 and 4.3.14.

• To express the rigid motion condition γ̇i j = 0 of Sect. 4.3.15 [see (4.103)] in
terms of derivatives with respect to the arbitrary coordinates xµ by introducing
the relativistic analog of the rate of strain tensor in ordinary continuum mechan-
ics.

The non-relativistic strain tensor can be defined by

ei j :=
1
2

(
∂u j

∂xi
+

∂ui

∂x j

)
,

where ui(x) are the components of the displacement vector of the medium, describ-
ing the motion of the point originally at x when the material is deformed. One also
defines the antisymmetric tensor

ωi j :=
1
2

(
∂u j

∂xi
− ∂ui

∂x j

)
,

which describes the rotation occurring when the material is deformed. Clearly,

ei j−ωi j =
∂ui

∂x j
,

and hence, if all distortions are small,

∆ui = (ei j−ωi j)∆x j .

We can consider that ei j describes non-rotational distortions, i.e., stretching, com-
pression, and shear.

In the present discussion, ui is replaced by a velocity field vi and we have a rate
of strain tensor. The nonrelativistic rate of strain tensor is

ri j = vi, j + v j,i , (4.104)

where vi is a 3-velocity field and the differentiation is with respect to ordinary Carte-
sian coordinates. Let us look for a moment at this tensor. The nonrelativistic condi-
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tion for rigid motion is
ri j = 0 everywhere .

This equation implies

0 = ri j,k = vi, jk + v j,ik , (4.105)

0 = r jk,i = v j,ki + vk, ji . (4.106)

Subtracting (4.106) from (4.105) and commuting the partial derivatives, we find

vi, jk− vk, ji = 0 , (4.107)

which, upon permutation of the indices j and k, yields also

vi,k j− v j,ki = 0 . (4.108)

Adding (4.105) and (4.108), we obtain

vi, jk = 0 ,

which has the general solution

vi =−ωi jx j +βi , (4.109)

where ωi j and βi are functions of time only. The condition ri j = 0 constrains ωi j to
be antisymmetric, i.e.,

ωi j =−ω ji ,

and nonrelativistic rigid motion is seen to be, at each instant, a uniform rotation with
angular velocity

ωi =
1
2

εi jkω jk

about the coordinate origin, superimposed upon a uniform translation with velocity
βi. Because the coordinate origin may be located arbitrarily at each instant, rigid
motion may alternatively be described as one in which an arbitrary particle in the
medium moves in an arbitrary way while at the same time the medium as a whole
rotates about this point in an arbitrary (but uniform) way. Such a motion has six
degrees of freedom.

Note that when ri j is zero, we can also deduce that vi,i = 0, i.e., divv = 0, which
is the condition for an incompressible fluid. This is evidently a weaker condition
than rigidity.

Let us see how this generalises to special and general relativity. We return to
the continuous medium in which particles are labelled by ξ i, i = 1,2,3. Just as the
coordinates xµ are functions of the ξ i and τ , so the ξ i and τ can be regarded as
functions of the xµ , at least in the region of spacetime occupied by the medium.
Following [14], we write
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uµ := ẋµ , u2 =−1 , Pµν = gµν +uµ uν ,

where, for the present purposes, the dot over a symbol denotes partial differentiation
with respect to τ , keeping the ξ i fixed. If f is an arbitrary function in the region
occupied by the medium then

f,µ = f,iξ i
,µ + ḟ τ,µ ,

where the comma followed by a Greek index µ denotes partial differentiation with
respect to the coordinate xµ . This is just the good old chain rule.

Let us begin by considering the flat spacetime case of special relativity with
inertial coordinates {xµ}, whence Pµν = ηµν + uµ uν . It is very important to note
that the dot over a symbol corresponds to the covariant derivative along the relevant
worldline in the congruence, because the connection is zero for these coordinates.
Hence, u̇ is the four-acceleration, but it will not be for the curved spacetime case
considered below. We thus have the following relations:

ẋ · ẍ = 0 or u · u̇ = 0 ,

since u2 =−1, and

uµ uµ

,ν = 0 , u̇µ = uµ,ν uν , uµ uµ

,i = 0 ,

xµ

,iξ
i
,ν + ẋµ τ,ν = δ

µ

ν ,

ξ i
,µ xµ

, j = δ i
j , ξ i

,µ ẋµ = 0 ,

τ,µ xµ

,i = 0 , τ,µ ẋµ = 1 ,

Pµν ẋν
,i = Pµν uν

,i = uµ,i .

(4.110)

Note that some of these relations will change when we use arbitrary coordinates
{xµ} in a curved spacetime (see below).

We now define the rate of strain tensor for the medium by

rµν := γ̇i jξ
i
,µ ξ

j
,ν , (4.111)

where γi j is defined as in (4.101) on p. 178, viz.,

γi j := Pµν xµ

,ix
ν
, j . (4.112)

We then have the following analysis in the flat spacetime case with {xµ} being
inertial coordinates:
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rµν := γ̇i jξ
i
,µ ξ

j
,ν

=
(

Ṗστ xσ
,ix

τ
, j +Pστ ẋσ

,ix
τ
, j +Pστ xσ

,iẋ
τ
, j

)
ξ

i
,µ ξ

j
,ν

= (u̇σ uτ +uσ u̇τ)(δ
σ

µ −uσ
τ,µ)(δ

τ
ν −uτ

τ,ν)

+uτ,iξ
i
,µ(δ

τ
ν −uτ

τ,ν)+(δ σ
µ −uσ

τ,µ)uσ , jξ
j
,ν

= u̇µ uν +uµ u̇ν + u̇µ τ,ν + τ,µ u̇ν +uν ,µ − u̇ν τ,µ +uµ,ν − u̇µ τ,ν

= uµ,σ uσ uν +uµ uσ uν ,σ +uν ,µ +uµ,ν

= P σ

µ P τ
ν (uσ ,τ +uτ,σ ) . (4.113)

This is to be compared with (4.104) to justify calling it the rate of strain tensor. At
any event xµ , it lies entirely in the instantaneous hyperplane of simultaneity of the
particle ξ i that happens to coincide with that event.

This generalises to curved spacetimes. We define

rµν := γ̇i jξ
i
,µ ξ

j
,ν , (4.114)

as before, where the dot over γi j still denotes partial differentiation with respect
to τ keeping the ξ i fixed. We note that rµν is a tensor, since γi j, γ̇i j, ξ i, and ξ j

are scalars under change of coordinates. At any x, there are coordinates such that
gµν ,σ

∣∣
x = 0, whence covariant derivatives with respect to the Levi-Civita connection

are just coordinate derivatives at x, and it follows immediately by the above flat
spacetime argument that

rµν = P σ

µ P τ
ν (uσ ;τ +uτ;σ ) , (4.115)

where semi-colons denote covariant derivatives and Pµν is given by

Pµν = gµν + ẋµ ẋν ,

for metric gµν .
This is the neat way to establish (4.115) but it is instructive to see how the above

argument changes in the details when we use arbitrary coordinates {xµ} and take
into account the nonzero connection. We must now be altogether more careful about
some of the relations in (4.110).

To begin with, recall that the dot over a symbol denotes the ordinary partial
derivative with respect to τ , keeping the ξ i fixed, so u̇ is not the four-acceleration.
For the purposes only of this section, let us define a new symbol by

�
uµ := uν uµ

;ν = uν(uµ
,ν +Γ

µ

ρν uρ) = u̇µ +Γ
µ

ρν uρ uν . (4.116)

Likewise,
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�
uµ := uν uµ;ν = uν(uµ,ν −Γ

ρ

µν uρ) = u̇µ −Γ
ρ

µν uρ uν . (4.117)

So we still have u ·�u = 0, but we do not have u · u̇ = 0. The point is that

u̇µ := uν uµ
,ν , u̇µ := uν uµ,ν , (4.118)

are just directional derivatives along the congruence. We thus have the argument

(uµ uµ),ν = 0⇐⇒ uµ uµ
,ν +uµ,ν uµ = 0

⇐⇒ uµ uµ
,ν +(gµρ uρ),ν uµ = 0

⇐⇒ uµ uµ
,ν +gµρ,ν uρ uµ +gµρ uρ

,ν uµ = 0 ,

whence finally,

uµ uµ
,ν =−1

2
gµρ,ν uρ uµ . (4.119)

An exactly analogous argument shows that

uµ uµ
,i =−

1
2

gµρ,iuρ uµ . (4.120)

In this context, note that

ẋµ = uµ , ġµν = uρ gµν ,ρ . (4.121)

We still have
xµ

,iξ
i
,ν + ẋµ

τ,ν = δ
µ

ν , (4.122)

which is basically just the chain rule applied to ∂xµ/∂xν under the assumption that
the transformation to the label coordinates (ξ ,τ) is invertible. Likewise by the chain
rule,

uµ
,iξ

i
,ν + u̇µ

τ,ν = uµ
,ν . (4.123)

The chain rule still gives the four relations

ξ
i
,µ xµ

, j = δ
i
j , ξ

i
,µ ẋµ = 0 , τ,µ xµ

,i = 0 , τ,µ ẋµ = 1 . (4.124)

Finally,

Pµν ẋν
,i = Pµν

∂ 2xν

∂τ∂ξ i = Pµν uν
,i

= gµν uν
,i +uµ uν uν

,i

= uµ,i−gµν ,iuν +uµ uν uν
,i ,
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whence

Pµν ẋν
,i = uµ,i−gµν ,iuν − 1

2
uµ gνρ,iuρ uν . (4.125)

Let us now see what becomes of the argument (4.113) on p. 182 when it is trans-
posed to a curved spacetime.

The first step is

rµν := γ̇i jξ
i
,µ ξ

j
,ν

=
(
Ṗστ xσ

,ixτ
, j +Pστ ẋσ

,ixτ
, j +Pστ xσ

,iẋτ
, j
)
ξ

i
,µ ξ

j
,ν

=
(
ġστ + u̇σ uτ +uσ u̇τ

)(
δ

σ
µ −uσ

τ,µ

)(
δ

τ
ν −uτ

τ,ν

)
+
(
gστ +uσ uτ

)(
uσ

,µ − u̇σ
τ,µ

)(
δ

τ
ν −uτ

τ,ν

)
+
(
gστ +uσ uτ

)(
δ

σ
µ −uσ

τ,µ

)(
uτ

,ν − u̇τ
τ,ν

)
,

where ġστ := uρ gστ,ρ , u̇σ := uρ uσ ,ρ , and so on. Note immediately that(
gστ +uσ uτ

)(
δ

τ
ν −uτ

τ,ν

)
= gσν +uσ uν ,

since uτ uτ =−1, so uτ(gστ +uσ uτ) = 0. Recalling (4.117), we thus write

rµν =
(
uρ gστ,ρ +

�
uσ uτ +uσ

�
uτ +Γ

ρ

σφ
uφ uρ uτ +Γ

ρ

τφ
uφ uρ uσ

)
×
(
δ

σ
µ −uσ

τ,µ

)(
δ

τ
ν −uτ

τ,ν

)
+
[(

gσν +uσ uν

)(
uσ

,µ −
�
uσ

τ,µ +Γ
σ

ρφ uρ uφ
τ,µ

)
+(µ ↔ ν)

]
.

Recalling that uσ�uσ = 0, the bottom line is

gσν uσ
,µ −

�
uν τ,µ +gσνΓ

σ
ρφ uρ uφ

τ,µ +uν uσ uσ
,µ +uν uσΓ

σ
ρφ uρ uφ

τ,µ +(µ ↔ ν) .

(4.126)
Regarding the top line, we have first(

uρ gστ,ρ +
�
uσ uτ +uσ

�
uτ +Γ

ρ

σφ
uφ uρ uτ +Γ

ρ

τφ
uφ uρ uσ

)(
δ

σ
µ −uσ

τ,µ

)
= uρ gµτ,ρ +

�
uµ uτ +uµ

�
uτ +Γ

ρ

µφ
uφ uρ uτ +Γ

ρ

τφ
uφ uρ uµ

−uρ gστ,ρ uσ
τ,µ +

�
uτ τ,µ −Γ

ρ

σφ
uφ uρ uτ uσ

τ,µ +Γ
ρ

τφ
uφ uρ τ,µ .

Multiplying this now by
(
δ τ

ν −uτ τ,ν

)
, we obtain the terms
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uρ gµν ,ρ +
�
uµ uν +uµ

�
uν +Γ

ρ

µφ
uφ uρ uν +Γ

ρ

νφ
uφ uρ uµ −uρ gσν ,ρ uσ τ,µ

+
�
uν τ,µ −Γ

ρ

σφ
uφ uρ uν uσ τ,µ +Γ

ρ

νφ
uφ uρ τ,µ −uτ τ,ν uρ gµτ,ρ

+τ,ν
�
uµ + τ,νΓ

ρ

µφ
uφ uρ −Γ

ρ

τφ
uφ uρ uµ uτ τ,ν +uρ gστ,ρ uσ τ,µ uτ τ,ν

−Γ
ρ

σφ
uφ uρ uσ τ,µ τ,ν −uτ τ,νΓ

ρ

τφ
uφ uρ τ,µ

(4.127)

So rµν is the sum of all the terms in (4.126) and (4.127). The coefficient of all terms
containing τ,µ τ,ν is

uρ gστ,ρ uσ uτ−Γ
ρ

σφ
uφ uρ uσ−uτ

Γ
ρ

τφ
uφ uρ =

(
gστ,ρ−2Γστρ

)
uσ uτ uρ

=
[
gστ,ρ−(gρσ ,τ +gρτ,σ −gστ,ρ)

]
uσ uτ uρ

= 0 ,

where we have used (4.30) on p. 160, assuming a torsion free connection. The coef-
ficient of τ,µ in the sum of all the terms in (4.126) and (4.127) is

−�uν +Γνρφ uρ uφ +uνΓσρφ uσ uρ uφ −uρ uσ gσν ,ρ +
�
uν

−Γρσφ uφ uρ uσ uν +Γρνφ uφ uρ .

This in turn is equal to

uρ uσ
(
Γνρσ +Γρνσ −gσν ,ρ

)
= 0 ,

after another application of (4.30) on p. 160. By symmetry, the coefficient of τ,ν in
the sum of all the terms in (4.126) and (4.127) is also zero.

We thus have

rµν = gσν uσ
,µ +uν uσ uσ

,µ +gσ µ uσ
,ν +uµ uσ uσ

,ν

+uρ gµν ,ρ +
�
uµ uν +uµ

�
uν +Γρµφ uφ uρ uν +Γρνφ uφ uρ uµ

=
�
uµ uν +uµ

�
uν +(gσν +uσ uν)uσ

,µ +(gσ µ +uσ uµ)uσ
,ν

+uρ
(
gµν ,ρ +Γρµφ uφ uν +Γρνφ uφ uµ

)
,

where

(gσν +uσ uν)uσ
,µ =

[
(gσν +uσ uν)uσ

]
,µ
− (gσν +uσ uν),µ uσ

= −gσν ,µ uσ −uσ ,µ uσ uν +uν ,µ

and
(gσ µ +uσ uµ)uσ

,ν =−gσ µ,ν uσ −uσ ,ν uσ uµ +uµ,ν ,

whence



186 4 Holonomic and Non-Holonomic Frames in General Relativity

rµν =
�
uµ uν +uµ

�
uν −gσν ,µ uσ −gσ µ,ν uσ +uρ gµν ,ρ

−uσ ,µ uσ uν +uν ,µ −uσ ,ν uσ uµ +uµ,ν +uρ
(
Γρµφ uφ uν +Γρνφ uφ uµ

)
.

But

−gσν ,µ uσ −gσ µ,ν uσ +uρ gµν ,ρ = −uσ
(
gσν ,µ +gσ µ,ν −gµν ,σ

)
= −2Γσ µν uσ ,

and in addition,

−uσ ,µ uσ uν −uσ ,ν uσ uµ +uρ
(
Γρµφ uφ uν +Γρνφ uφ uµ

)
= 0 ,

because

−uσ ,µ uσ +Γρµφ uφ uρ = −uσ
(
uσ ,µ −Γ

ρ

µσ uρ

)
= −uσ uσ ;µ

= −1
2
(uσ uσ );µ = 0 .

The expression for the rate of strain tensor has now boiled down to

rµν =
�
uµ uν +uµ

�
uν +uν ,µ +uµ,ν −2Γσ µν uσ ,

and hence,
rµν =

�
uµ uν +uµ

�
uν +uν ;µ +uµ;ν .

But of course,

Pµ
σ Pν

τ(uσ ;τ +uτ;σ ) = (δµ
σ +uµ uσ )(δν

τ +uν uτ)(uσ ;τ +uτ;σ )

= uµ;ν +uν ;µ +uµ;τ uν uτ +uν uτ uτ;µ +uσ ;ν uµ uσ

+uν ;σ uµ uσ +uµ uσ uν uτ uσ ;τ +uµ uσ uν uτ uτ;σ

=
�
uµ uν +uµ

�
uν +uν ;µ +uµ;ν ,

which completes the second proof of (4.115) back on p. 182.
The second proof is given here to show the value of the trick used in the first

proof, which basically means that, at any preselected spacetime event, we can drop
all the terms in the second proof that depend on first coordinate derivatives of the
metric or on the connection coefficients, provided we assume a torsion-free connec-
tion. As mentioned, this in turn happens because the weak equivalence principle is
built into the manifold model of spacetime, in the sense that, at any event, we can
find coordinates in some neighbourhood of that event such that the metric is very
close to the Minkowski form (in the sense made precise earlier).
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Summary

To sum up then, the result

rµν := γ̇i jξ
i
,µ ξ

j
,ν = P σ

µ P τ
ν (uσ ;τ +uτ;σ ) (4.128)

expresses the rate of strain tensor in terms of coordinate derivatives of the four-
velocity field of the medium. We now characterise relativistic rigid motion by

rµν = 0 , γ̇i j = 0 . (4.129)

Once again, we observe that the criterion for rigid motion, viz., rµν = 0, is indepen-
dent of the coordinates, because rµν is a tensor, even in a curved spacetime.

Furthermore, up to a factor of 1/2, the rate of strain tensor rµν is just the expan-
sion tensor Θµν as defined by (4.74) on p. 172. So we may conclude that what we
called the expansion in Sect. 4.3.13 will be zero if and only if the motion of the
timelike congruence is rigid.

4.3.17 Stationary and Static Spacetimes

A stationary spacetime is one with a globally defined, timelike Killing vector field
K. We already mentioned Killing vector fields (KVF) in Sect. 2.4.8 since they have
been taken to play a role in the physical interpretation of general relativistic space-
times. In fact, each KVF is associated with a one-parameter isometry. The mathe-
matical condition for K to be a KVF is that the Lie derivative of the metric tensor
along K should be zero:

LKg = 0 . (4.130)

In terms of components relative to arbitrary coordinates, using the definition of the
Lie derivative of a type (2,0) tensor, this becomes

Kµ;ν +Kν ;µ = 0 . (4.131)

We can then choose coordinates in such a way that the components of the metric are
independent of the time coordinate. Such coordinates can be obtained by taking a
parameter along the flow lines of the KVF as time coordinate and completing it by
a suitable set of spatial coordinates. The idea then is that, along a flow line of the
Killing vector field, the geometry of spacetime ‘looks the same’ at all times.

The converse is also true here. If there exist coordinates such that the metric com-
ponents are independent of the time coordinate, then the temporal coordinate curves
(curves such that only x0 changes, while x1, x2, and x3 are held constant) constitute
the flow curves of a KVF and the spacetime is stationary (up to the problem of fix-
ing this up globally). It is instructive to prove this. Let K := ∂0 := ∂x0 , whence it has
components K0 = 1, K1 = K2 = K3 = 0. The hypothesis is that
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gµν ,0 := ∂0gµν = 0 , ∀µ,ν ∈ {0,1,2,3} ,

and we would like to show that

Kµ;ν +Kν ;µ = 0 ,

that is,
Kµ,ν +Kν ,µ −2Γ

ρ

µν Kρ = 0 .

Now
Kµ,ν = (gµρ Kρ),ν = gµ0,ν , Kνµ = gν0,µ .

But

2Γ
ρ

µν Kρ = (gρµ,ν +gρν ,µ −gµν ,ρ)Kρ

= g0µ,ν +g0ν ,µ −gµν ,0

= g0µ,ν +g0ν ,µ ,

which effectively completes the proof.
In general the Killing vector field will not be orthogonal to a continuum of space-

like hypersurfaces, e.g., the hypersurfaces obtained by holding x0 constant and al-
lowing only the three spacelike coordinates x1, x2, and x3 to vary. It will in general
possess a non-vanishing spatial component relative to such coordinates. In terms of
the metric, when it is expressed relative to such coordinates, there will be nonzero
components of the form g0i and gi0 for i = 1,2,3.

If the Killing field is also orthogonal to a family of hypersurfaces, which are then
automatically spacelike, the spacetime is said to be static. In terms of the compo-
nents of the metric tensor this means that coordinates can be chosen such that the
metric has block diagonal form with g0i = 0= gi0 for i= 1,2,3, and the components
are all independent of the time coordinate. Naturally, every static spacetime is also
stationary.

In a stationary spacetime, the integral curves of the associated timelike Killing
vector field K form a timelike congruence of the kind we have been investigating.
Of course, K might not do for the vector field X in previous sections, because X is
supposed to be normalised, and we do not know whether K is normalised. Suppose
that K does happen to be normalised, so that we can set X ≡ K. Now the Killing
equation is

Xµ;ν +Xν ;µ = 0 ,

and interestingly this means precisely that the expansion is zero, and hence also that
any medium whose fluid elements have this motion is moving rigidly. Unfortunately,
the vorticity is not necessarily zero. If it had been, from the results in Sect. 4.3.14,
we would have automatically obtained the other requirement for the spacetime to be
static, namely, the existence of a family of orthogonal hypersurfaces.

To investigate further, one might introduce the scalar function κ with the property
that X = κK. We then have
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−1 = (X |X) = κ
2(K|K) , κ =

[
− 1
(K|K)

]1/2

,

assuming that (K|K) is never zero. (This is part of the assumption that the Killing
vector field is timelike, hence non-null.) We then have

Xµ;ν = κ,ν Kµ +κKµ;ν ,

and therefore

Xµ;ν +Xν ;µ = κ,ν Kµ +κ,µ Kν , Xµ;ν −Xν ;µ = κ,ν Kµ −κ,µ Kν +2κKµ;ν .

The vorticity is half the projection of the second of these onto the directions per-
pendicular to the congruence. If there is a family of 3D hypersurfaces orthogonal
to the congruence (or equivalently, orthogonal to the Killing vector field), then the
vorticity has to be zero, from what we have said above. This gives another equation
on the Killing vector field that must be satisfied if it makes the spacetime static:(

κ,ν Kµ −κ,µ Kν +2κKµ;ν
)
hµ

ρ hν
σ = 0 . (4.132)

4.3.18 Transformation Properties of the Tetrad Quantities

Let us return to the earlier discussion of general timelike congruences. The question
addressed here is: how do the different quantities defined transform under change of
tetrad, i.e., under local Lorentz transformation? This is highly relevant if we are to
determine whether a quantity such as the vorticity or the expansion really describes
the congruence or whether it describes the congruence and the tetrad together. These
quantities might not transform as Lorentz tensors. In particular, they only have 9
components as defined above! Are the other components set to zero, and would they
stay that way under change of tetrad?

We can immediately answer the last point by referring to (4.73) and (4.74) on
p. 172 for the expansion and (4.83) and (4.84) on p. 173 for the vorticity. We have
to extend the definitions like this:

Θ
α̂β̂

:=Θµν nµ

â nν

β̂
, Θµν := X(ρ;σ)h

ρ

µ hσ
ν =

1
2
(
Xρ;σ +Xσ ;ρ

)
hρ

µ hσ
ν , (4.133)

ω
α̂β̂

:= ωµν nµ

α̂
nν

β̂
, ωµν := X[ρ;σ ]h

ρ

µ hσ
ν =

1
2
(
Xρ;σ −Xσ ;ρ

)
hρ

µ hσ
ν . (4.134)

These are just the tetrad components of well defined tensors. Note that this means

Θ
α̂ 0̂ = 0 =Θ0̂α̂

, ∀ α̂ ∈ {0,1,2,3} . (4.135)

This follows because we have projected Xρ;σ +Xσ ;ρ onto a space orthogonal to the
worldlines. Explicitly, we have
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hρ

µ nµ

α̂
= nb̂

µ nρ

b̂
nµ

α̂
= nρ

b̂
δ

b̂
α̂
=

{
nρ

α̂
for α̂ ∈ {1,2,3} ,

0 for α̂ = 0 ,

and hence,

Θ
α̂β̂

=
1
2
(
Xρ;σ +Xσ ;ρ

)
hρ

µ hσ
ν nµ

α̂
nν

β̂

=


1
2
(
Xρ;σ +Xσ ;ρ

)
nρ

α̂
nσ

β̂
for α̂, β̂ ∈ {1,2,3} ,

0 for α̂ = 0 or β̂ = 0 .

Likewise,
ω

α̂ 0̂ = 0 = ω0̂α̂
, ∀ α̂ ∈ {0,1,2,3} . (4.136)

So if we now make a local Lorentz transformation

n′
α̂
= Lα̂

β̂ n
β̂
, (4.137)

i.e., one that may vary from point to point in spacetime, we find that Θ
α̂β̂

and ω
α̂β̂

transform according to

Θ
′
α̂β̂

= Lα̂
γ̂ L

β̂

δ̂
Θ

γ̂ δ̂
, ω

′
α̂β̂

= Lα̂
γ̂ L

β̂

δ̂
ω

γ̂ δ̂
. (4.138)

Of course, any Lorentz transformation that does not fix n0̂ will spoil the fact that the
tetrad is adapted to this particular congruence. It will also mean that Θ ′

α̂0 and ω ′
α̂0

are not generally zero. This is why we limit the discussion of these quantities to the
local rotation group, i.e., local Lorentz transformations that do not alter n0̂ at any
point in spacetime. In fact, these are precisely the Lorentz transformations Lα̂

β̂ for
which L0̂

0̂ = 1 and otherwise both α̂ and β̂ must be in {1,2,3} to obtain a nonzero
value.

Transformation of Structure Constants

Let us establish the relation between Cρ̂σ̂ τ̂ and C′
α̂β̂ γ̂

, referring to the general trans-
formation (4.14) for structure constants given on p. 159:

C′ε̂
β̂ γ̂

= L
β̂

ρ̂ Lγ̂
σ̂ L−1ε̂

δ̂
Cδ̂

ρ̂σ̂ +2L
β̂

ρ̂ Lγ̂
σ̂ n[σ̂ L−1ε̂

ρ̂] , (4.139)

whence

C′
α̂β̂ γ̂

= ηα̂ ε̂ L
β̂

ρ̂ Lγ̂
σ̂ L−1ε̂

δ̂
Cδ̂

ρ̂σ̂ +2ηα̂ ε̂ L
β̂

ρ̂ Lγ̂
σ̂ n[σ̂ L−1ε̂

ρ̂] . (4.140)

For the record, it should be remembered that these relations are designed to ensure
that
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[n
β̂
,nγ̂ ] =Cα̂

β̂ γ̂
nα̂ =⇒ [n′

β̂
,n′

γ̂
] =C′α̂

β̂ γ̂
n′

α̂
.

Consider the first term on the right-hand side of (4.140), viz.,

ηα̂ ε̂ L
β̂

ρ̂ Lγ̂
σ̂ L−1ε̂

δ̂
Cδ̂

ρ̂σ̂ = ηα̂ ε̂ L−1ε̂

δ̂
η

δ̂ τ̂Cτ̂ ρ̂ σ̂ L
β̂

ρ̂ Lγ̂
σ̂ .

Now in matrix language, we have LηLT = η , whence L = ηL−1Tη−1 and

ηα̂ ε̂ L
β̂

ρ̂ Lγ̂
σ̂ L−1ε̂

δ̂
Cδ̂

ρ̂σ̂ = Lα̂
τ̂ L

β̂

ρ̂ Lγ̂
σ̂Cτ̂ ρ̂ σ̂ ,

which is a neat enough form for this term, and of course, quite unsurprising.
Consider now the second term on the right-hand side of (4.140). We have manip-

ulations of the kind

L
β̂

ρ̂ nσ̂

(
L−1ε̂

ρ̂

)
= L

β̂

ρ̂ nσ̂
µ

∂µ

(
L−1ε̂

ρ̂

)
= nσ̂

µ
∂µ

(
L

β̂

ρ̂ L−1ε̂
ρ̂

)
−
(
nσ̂

µ
∂µ L

β̂

ρ̂
)
L−1ε̂

ρ̂

= −
(
∂σ̂ L

β̂

ρ̂
)
L−1ε̂

ρ̂ ,

using the notation
∂σ̂ := nσ̂

µ
∂µ .

So the second term on the right-hand side of (4.140) is

2ηα̂ ε̂ L
β̂

ρ̂ Lγ̂
σ̂ n[σ̂ L−1ε̂

ρ̂] = ηα̂ ε̂ L
β̂

ρ̂ Lγ̂
σ̂

[
nσ̂

(
L−1ε̂

ρ̂

)
−nρ̂

(
L−1ε̂

σ̂

)]
= ηα̂ ε̂

[
−Lγ̂

σ̂
(
∂σ̂ L

β̂

ρ̂
)
L−1ε̂

ρ̂ +L
β̂

ρ̂
(
∂ρ̂ Lγ̂

σ̂
)
L−1ε̂

σ̂

]
= −Lα̂

τ̂
ητ̂ ρ̂ Lγ̂

σ̂
(
∂σ̂ L

β̂

ρ̂
)
+Lα̂

τ̂
ητ̂ σ̂ L

β̂

ρ̂
(
∂ρ̂ Lγ̂

σ̂
)

= ηρ̂σ̂

[
Lα̂

ρ̂ L
β̂

τ̂
(
∂τ̂ Lγ̂

σ̂
)
−Lα̂

σ̂ Lγ̂
τ̂
(
∂τ̂ L

β̂

ρ̂
)]

,

where we have used ηL−1T = Lη in the third step and changed dummies in the
last. We are free to swap the dummies ρ̂ and σ̂ inside the square bracket, due to the
symmetry of ηρ̂σ̂ . We now have

C′
α̂β̂ γ̂

= Lα̂
τ̂ L

β̂

ρ̂ Lγ̂
σ̂Cτ̂ ρ̂ σ̂ +ηρ̂σ̂

[
Lα̂

ρ̂ L
β̂

τ̂
(
∂τ̂ Lγ̂

σ̂
)
−Lα̂

ρ̂ Lγ̂
τ̂
(
∂τ̂ L

β̂

σ̂
)]

. (4.141)

But since LηLT = η , we also have results like

ηρ̂σ̂ Lα̂
ρ̂

∂τ̂ Lγ̂
σ̂ = ∂τ̂

(
ηρ̂σ̂ Lα̂

ρ̂ Lγ̂
σ̂
)
−ηρ̂σ̂ Lγ̂

σ̂
∂τ̂ Lα̂

ρ̂

= −ηρ̂σ̂ Lγ̂
σ̂

∂τ̂ Lα̂
ρ̂ ,

and likewise,
ηρ̂σ̂ Lα̂

ρ̂
∂τ̂ L

β̂

σ̂ =−ηρ̂σ̂ L
β̂

σ̂
∂τ̂ Lα̂

ρ̂ .
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Hence we finally arrive at the slightly tidier result

C′
α̂β̂ γ̂

= Lα̂
τ̂ L

β̂

ρ̂ Lγ̂
σ̂Cτ̂ ρ̂ σ̂ +2ηρ̂σ̂ L[β̂

σ̂ Lγ̂]
τ̂
∂τ̂ Lα̂

ρ̂ . (4.142)

Transformation of Connection Coefficients

For the transformation of Γâb̂ĉ, we refer to the formula (4.15) on p. 159, viz.,

Γ
′ε̂

β̂ γ̂
= L

β̂

ρ̂ Lγ̂
σ̂ L−1ε̂

δ̂
Γ

δ̂
ρ̂σ̂ −L

β̂

ρ̂ Lγ̂
σ̂ nσ̂

(
L−1ε̂

ρ̂

)
, (4.143)

whence

Γ
′

α̂β̂ γ̂
= ηα̂ ε̂ L

β̂

ρ̂ Lγ̂
σ̂ L−1ε̂

δ̂
Γ

δ̂
ρ̂σ̂ −ηα̂ ε̂ L

β̂

ρ̂ Lγ̂
σ̂ nσ̂

(
L−1ε̂

ρ̂

)
. (4.144)

As for the structure constants, we have

ηα̂ ε̂ L
β̂

ρ̂ Lγ̂
σ̂ L−1ε̂

δ̂
Γ

δ̂
ρ̂σ̂ = Lα̂

σ̂ L
β̂

τ̂ Lγ̂
ρ̂
Γσ̂ τ̂ ρ̂ .

The manipulations with the other term are not identical, but they are very similar.
We have

−ηα̂ ε̂ L
β̂

ρ̂ Lγ̂
σ̂ nσ̂

(
L−1ε̂

ρ̂

)
= ηα̂ ε̂ Lγ̂

σ̂
(
∂σ̂ L

β̂

ρ̂
)
L−1ε̂

ρ̂

= Lα̂
τ̂
ητ̂ ρ̂ Lγ̂

σ̂
∂σ̂ L

β̂

ρ̂

= −ητ̂ ρ̂

(
∂σ̂ Lα̂

τ̂
)
Lγ̂

σ̂ L
β̂

ρ̂

= −ηρ̂σ̂

(
∂τ̂ Lα̂

ρ̂
)
Lγ̂

τ̂ L
β̂

σ̂ ,

by the same kind of manipulations as before. Putting the results together, we have

Γ
′

α̂β̂ γ̂
= Lα̂

ρ̂ L
β̂

σ̂ Lγ̂
τ̂
Γρ̂σ̂ τ̂ −ηρ̂σ̂ L

β̂

σ̂ Lγ̂
τ̂
∂τ̂ Lα̂

ρ̂ . (4.145)

Transformation of Fermi Rotation Coefficients

We are only concerned here with Lorentz transformations that fix the tangent to
the congruence everywhere, i.e., rotations of the spacelike triad. This means that
L0̂

τ̂ = δ τ̂

0̂
for τ̂ ∈ {0,1,2,3} and Lâ

0̂ = 0 for â ∈ {1,2,3} as usual. Using (4.145),
we have the following deduction:
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Λ
′
âb̂ = −Γ

′
âb̂0̂

= −Lâ
ρ̂ Lb̂

σ̂ L0̂
τ̂
Γρ̂σ̂ τ̂ +ηρ̂σ̂ Lb̂

σ̂ L0̂
τ̂
∂τ̂ Lâ

ρ̂

= −Lâ
r̂Lb̂

ŝ
Γr̂ŝ0̂ +ηr̂ŝLb̂

ŝ
∂0̂Lâ

r̂

= Lâ
r̂Lb̂

ŝ
Λr̂ŝ +δr̂ŝL̇â

r̂Lb̂
ŝ ,

or
Λ
′
âb̂ = Lâ

r̂Lb̂
ŝ
Λr̂ŝ +δr̂ŝL̇â

r̂Lb̂
ŝ , (4.146)

where

L̇â
r̂ := ∂0̂Lâ

r̂ = X µ ∂

∂xµ
Lâ

r̂ . (4.147)

This shows that the Fermi rotation coefficients do not transform as Lorentz tensors,
even under these purely rotational Lorentz transformations. We observe, however,
that we can always solve the equation Λ ′

âb̂
= 0 by suitable choice of rotation Lâ

r̂. So
there is always a Fermi–Walker transported tetrad for any congruence.

The coefficients Γâb̂ĉ do not transform as Lorentz tensors under space rotations
either. By (4.145), we have

Γ
′

âb̂ĉ = Lâ
r̂Lb̂

ŝLĉ
t̂
Γr̂ŝt̂ −δr̂ŝLb̂

ŝLĉ
t̂
∂t̂Lâ

r̂ . (4.148)

The rotations Lb̂
â have to satisfy

∂ĉLb̂
â := nµ

ĉ
∂

∂xµ
Lb̂

â = 0 , â, b̂, ĉ ∈ {1,2,3} , (4.149)

everywhere in order for Γâb̂ĉ to behave as Lorentz tensors under the rotations.

4.4 Energy–Momentum Tensor
of a Conservative Continuous Medium

It is interesting to see some of the above machinery in action for a crucial problem
in general relativity, namely the description of energy density and the dynamics of
a continuous fluid. This section is adapted from [14].

The energy–momentum density plays the role of source for the gravitational field.
Indeed, matter in all its forms is coupled to the gravitational field. If we wish to find
the gravitational field produced by a certain material system for which we do not
have an action functional, we then need a general description of the system and
its dynamical behavior to keep track of its energy and momentum content without
necessarily knowing all fundamental aspects of its structure.

Here we consider briefly a phenomenological treatment of a conservative contin-
uous medium, i.e., one in which there are no irreversible dissipative processes. We
use the notation developed to discuss rigid motions of continuous media in Sects. 2.3
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and 4.3.15, but we add two new elements. First of all, we postulate an orthonormal
triad field na

µ defined throughout the medium and satisfying everywhere

na ·nb = δab , na ·u = 0 , uµ =
∂

∂τ
xµ(ξ ,τ) ,

as in Sect. 4.3. Secondly, we postulate a scalar field w0 equal at each point to the
proper energy density at that point, i.e., the density of total energy (rest mass as
well as internal energy) as viewed in the local rest frame of the medium defined by
the n µ

a at that point. We do not impose any additional conditions on the n µ
a , e.g.,

Fermi–Walker transport, beyond their orthonormality and orthogonality to uµ . As
before, τ is the proper time of the particle labelled by ξ and uµ is the 4-velocity
of that particle. We recall that ξ ,τ can be used as coordinates for the region of
spacetime occupied by the medium.

We assume that the dynamical behavior of the medium is determined solely by its
proper energy density and its internal stresses, to be described shortly. The density
w0 is defined in a local Cartesian rest frame of the medium. The first task is to
reexpress it relative to the arbitrary curvilinear coordinates xµ of spacetime, and
also the internal coordinate system provided by the labels ξ i.

The transformations between the local Cartesian rest frame and the (in general
curvilinear) frame of the ξ i are described by the transformation coefficients

Aai := naµ xµ

,i

and their inverses
A−1i

a = ξ
i
,µ n µ

a .

That these are the inverses is proven as follows:

A−1i
aAa j = ξ

i
,µ n µ

a naν xν
, j = ξ

i
,µ(δ

µ

ν +uµ uν)xν
, j = δ

i
j , (4.150)

AaiA−1i
b = naµ xµ

,iξ
i
,ν n ν

b = naµ(δ
µ

ν − ẋµ
τ,ν)n ν

b = δab . (4.151)

A key fact used here is that

naµ naν = gµν +uµ uν =: Pµν , (4.152)

the relativistic projection operator onto the instantaneous hyperplane of simultaneity
of an observer moving with the fluid element at τ,ξ i. This is basically the first
relation of (4.41) on p.165. We note that

AaiAa j = naµ xµ

,inaν xν
, j = Pµν xµ

,ix
ν
, j = γi j , (4.153)

where γi j is the proper metric of the medium defined in (4.101) on p. 178. Hence,
assuming as we may that the ξ axes have the same relative orientation as the vectors
n µ

a ,
det(Aai) = γ

1/2 , where γ = det(γi j) .
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As discussed on p. 201, it will then turn out that the proper energy density in the ξ

coordinate system can be written

wξ := det(Aai)w0 = γ
1/2w0 . (4.154)

4.4.1 Three Reference Frames

It is a good thing to be clear about the three reference frames available here:

• We have a general coordinate system {xµ} with associated frame {∂/∂xµ}.
• We also have a coordinate system {τ,ξ i}, where ξ i, i = 1,2,3, label particles,

and xµ(τ,ξ i) is the worldline of the particle or fluid element labelled by ξ i, with
τ its proper time. The frame associated with the label coordinates {τ,ξ i} is of
course {∂/∂τ,∂/∂ξ i}. Now uµ = ∂xµ/∂τ is the 4-velocity of the particle or
fluid element labelled by ξ i, fixed in working out the partial derivative ∂xµ/∂τ .
Hence u = ∂/∂τ and this frame is {u,∂/∂ξ i}. Note that ∂/∂ξ i has components
∂xµ/∂ξ i = xµ

,i in the general coordinate frame.
• We have one other frame, that is not a coordinate frame, viz., {u,na}, which

shares the timelike vector u with the label frame and is a tetrad frame.

Let us relate the two frames {u,na} and {u,∂/∂ξ i}. First observe that

(Aaina)
ν = na

ν naµ xµ
,i

= (δ ν
µ +uν uµ)xµ

,i

=
∂xν

∂ξ i +uν uµ

∂xµ

∂ξ i ,

using the fact that
na

ν naµ = δ
ν

µ +uν uµ =: Pν
µ ,

whence
∂

∂ξ i +

(
u · ∂

∂ξ i

)
u = Aaina .

But
AaiA−1i

b = δab ,

so we have
AainaA−1i

b = nb ,

and hence

na = A−1i
a

[
∂

∂ξ i +

(
u · ∂

∂ξ i

)
u
]
.

Finally, we have the result
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na = A−1i
a

∂

∂ξ i +

(
u · ∂

∂ξ i

)
A−1i

au , (4.155)

expressing na in terms of the 4 frame vectors u, ∂/∂ξ i. We observe that some u is
required even though na · u = 0, because u · ∂/∂ξ i is not generally zero. Indeed it
follows immediately from (4.155) that na ·u = 0.

Let us now obtain ∂/∂ξ i in terms of na,u. We start with

A−1i
a

∂

∂ξ i = na
µ ∂ξ i

∂xµ

∂

∂ξ i

= na
µ

(
∂

∂xµ
− ∂τ

∂xµ

∂

∂τ

)
= na− τ,µ na

µ u .

But

Aa jA−1i
a

∂

∂ξ i = δ
i
j

∂

∂ξ i =
∂

∂ξ j ,

so
∂

∂ξ i = Aaina−Aaiτ,µ na
µ u . (4.156)

Once again, some u is required in the mix.
So far, A is a 3×3 matrix. Although we shall not need it in what follows, it can

be extended naturally to a 4×4 matrix with components

(
Aα

φ

)
=


1 −u ·∂/∂ξ 1 −u ·∂/∂ξ 2 −u ·∂/∂ξ 2

0
0 (Aa

i)

0

 , (4.157)

where α ∈ {0,1,2,3} labels rows and φ ∈ {0,1,2,3} labels columns, and we have
raised the a on Aai with impunity using η , so in fact Aa

i = Aai, for a, i ∈ {1,2,3}.
Then extending the tetrad frame notation so that n0 := u and using a Greek index α

to cover all four members of the tetrad frame, we have

u = nα Aα
0 ,

∂

∂ξ i = nα Aα
i . (4.158)

Then A is just the matrix that transforms from the tetrad frame to the label coordinate
frame. The first relation of (4.158) reads u = n0, since Aa

0 = 0, for a = 1,2,3, while
the second relation reads
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∂

∂ξ i = uA0
i +naAa

i =−
(

u · ∂

∂ξ i

)
u+nanaµ

∂xµ

∂ξ i

= −
(

u · ∂

∂ξ i

)
u+
(

na ·
∂

∂ξ i

)
na ,

which is just the expansion of ∂/∂ξ i in terms of the tetrad basis {u,na}a=1,2,3.
It is easy to check that the above matrix A has inverse

(
A−1φ

α

)
=


1 τ,µ n1

µ τ,µ n2
µ τ,µ n3

µ

0

0 (A−1i
a)

0

 , (4.159)

where φ ∈ {0,1,2,3} now labels rows and α ∈ {0,1,2,3} labels columns. Indeed,
it is obvious that A0

φ A−1φ
0 = 1, while

A0
φ A−1φ

a = τ,µ na
µ −

(
u · ∂

∂ξ i

)
ξ

i
,µ na

µ

= τ,µ na
µ −u ·

(
∂ξ i

∂xµ

∂

∂ξ i

)
na

µ

= τ,µ na
µ −u ·

(
∂

∂xµ
− ∂τ

∂xµ

∂

∂τ

)
na

µ

= τ,µ na
µ −uµ na

µ +(u ·u)τ,µ na
µ

= 0 , since u ·na = 0 and u2 =−1 .

Finally, Aa
φ A−1φ

b = Aa
iA−1i

b = δ a
b by (4.151). So A is a left inverse for A−1 and

hence also a right inverse.

4.4.2 Useful Identities

Returning now to the 3×3 matrices A−1i
a (:= ξ i

,µ n µ
a ) and Aai (:= naµ xµ

,i), we have
the following identities:

A−1i
aA−1 j

a = γ
i j , γi jA−1i

aA−1 j
b = δab , γ

i jAaiAb j = δab , (4.160)

where γ i j is the contravariant proper metric tensor, inverse to γi j. As proof, consider

γikA−1k
aA−1 j

a = AbiAbkA−1k
aA−1 j

a = AaiA
−1 j

a = δ
j

i ,

γi jA−1i
aA−1 j

b = AciAc jA−1i
aA−1 j

b = δcaδcb = δab ,
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γ
i jAaiAb j = A−1i

cA−1 j
cAaiAb j = δcaδcb = δab ,

as required. �

If we use the notation

(
uµ

na
µ

)
:=


u0 u1 u2 u3

n1
0 n1

1 n1
2 n1

3

n2
0 n2

1 n2
2 n2

3

n3
0 n3

1 n3
2 n3

3

 ,

then we have (
−uµ

n µ
a

)tr( uν

n ν
a

)
= (−uµ uν +n µ

a n ν
a ) = (gµν) , (4.161)

by (4.152), and this implies

−
[

det
(

uµ

n µ
a

)]2

= det(gµν) =−g−1 ,

where we define g :=−detgµν . Hence, assuming uµ , n µ

1 , n µ

2 , n µ

3 to have respec-
tively the same relative orientation as positive displacements along the x0, x1, x2, x3

axes,

det
(

uµ

n µ
a

)
= g−1/2 . (4.162)

From this and the fact that (
−uµ

naµ

)tr

=

(
uµ

n µ
a

)−1

,

because (
−uµ

naµ

)tr( uν

n ν
a

)
=
(
−uµ uν +naµ na

ν
)
= (δµ

ν) ,

by (4.152) once again, it follows quite unsurprisingly that

det
(
−uµ

naµ

)
= g1/2 . (4.163)

Now let us show that

εabcnaµ nbν ncσ = −1
ετµνσ g1/2uτ , (4.164)

where the −1 on the 4D permutation symbol −1ετµνσ reminds us that it is a tensor
density of weight −1, in the sense that it transforms according to
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−1
εµ1...µn =

∂ (x)
∂ (x)

∂xν1

∂xµ1
· · · ∂xνn

∂xµn

−1
εν1...νn =

−1
εµ1...µn .

As a preamble to the proof, it is interesting to demonstrate (4.152) in the following
way. Recall that

gµν uµ uν =−1 , nµ
a nbµ = δab , naµ uµ = 0 ,

and from this we wish to deduce that

nµ
a nν

a = gµν +uµ uν . (4.165)

A simple proof is found by choosing, for any event z in spacetime, a coordinate
frame at z in which g(z) = η and

uµ = (1000) , nµ

1 = (0100) , nµ

2 = (0010) , nµ

3 = (0001) . (4.166)

Now, at z, nµ
a nµ

a can be written as the matrix

nµ
a nν

a =


0

1
1

1

 ,

with µ the row index and ν the column index. In the same way,

gµν =


−1

1
1

1

 , uµ uν =


1

0
0

0

 .

We then find that (4.165) holds as a matrix relation in this frame, and since it is a
tensorial relation, it must hold in all frames.

We can prove that

εµνρσ uσ =−g−1/2(z)εabcnaµ nbν ncρ (4.167)

in a similar way. We first check the result in the above frame. εµνρσ uσ is equal to
zero unless {µ,ν ,ρ}= {1,2,3} (6 possibilities). The same is true of εabcnaµ nbν ncρ

because na0 = 0. Furthermore, ε1230u0 =−1 and

εabcna1nb2nc3 = det

1
1

1

= 1 .

We also note that g−1/2(z) = 1 in this frame. The result (4.167) therefore holds in
this frame. Now in some primed frame,
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−g′−1/2(z)εabcn′aµ ′n
′
bν ′n

′
cρ ′ = −det

∂ z′

∂ z
g−1/2

εabc
∂ zε

∂ zµ ′ naε

∂ zφ

∂ zν ′ ncφ

∂ zλ

∂ zρ ′ ncλ

= −
(

det
∂ z′

∂ z

)
∂ zε

∂ zµ ′
∂ zφ

∂ zν ′
∂ zλ

∂ zρ ′ g
−1/2

εabcnaε nbφ ncλ

=

(
det

∂ z′

∂ z

)
∂ zε

∂ zµ ′
∂ zφ

∂ zν ′
∂ zλ

∂ zρ ′ εεφλι u
ι

=

(
det

∂ z′

∂ z

)
∂ zε

∂ zµ ′
∂ zφ

∂ zν ′
∂ zλ

∂ zρ ′
∂ zι

∂ zσ ′ εεφλι u
σ ′

= det
∂ z′

∂ z
det

∂ z
∂ z′

εµ ′ν ′ρ ′σ ′u
σ ′

= εµ ′ν ′ρ ′σ ′u
σ ′ ,

which shows that the result (4.167) is tensorial and must hold in every frame if it
holds in one. �

We can now use (4.164) to make the deduction

εi jkγ
1/2 = εi jkdet(Aab) = εabcAaiAb jAck

= εabcnaµ nbν ncσ xµ

,ix
ν
, jx

σ
,k

= −1
ετµνσ g1/2uτ xµ

,ix
ν
, jx

σ
,k

= εi jkg1/2 ∂ (x)
∂ (τ,ξ )

,

so that

γ
1/2 = g1/2 ∂ (x)

∂ (τ,ξ )
. (4.168)

4.4.3 Energy Density

The last relation enables us to write

wξ = γ
1/2w0 =

∂ (x)
∂ (τ,ξ )

w , (4.169)

where w is the proper energy density of the medium relative to the coordinates xµ ,
defined by

w := g1/2w0 . (4.170)
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Note that w0 is a scalar under both transformations of the ξ (relabelling) and trans-
formations of the xµ , whereas wξ is a scalar under transformations of the xµ but
transforms as a density of unit weight under transformations of the ξ . The quan-
tity w is a scalar under transformations of the ξ but transforms as a density of unit
weight under transformations of the xµ .

A few comments are perhaps in order. Consider first the physical interpretation
of w0, wξ , and w. Let d3ξ be an infinitesimal coordinate volume in the label coordi-
nates, for a volume element at some (τ0,ξ0), keeping τ constant through the region,
i.e., the volume element is

E(τ0,ξ0) =
{
(τ,ξ ) : τ = τ0 , ξ

i ∈
(
ξ

i
0−δ

i,ξ i
0 +δ

i) , i = 1,2,3
}
,

where 2δ i = dξ i. An observer moving with the particle labelled by ξ0 considers the
element to be more or less at rest, because nearby particles move with infinitesimally
close values of their 4-velocity.

The first claim here is that wξ d3ξ = γ1/2w0d3ξ is the rest mass energy plus
internal energy contained in the element. But of course γ1/2d3ξ is the proper volume
of this element. This was precisely the idea behind the definition γi j := Pµν xµ

,ixν
, j

on p. 178. Although the observer moving with ξ0 considers the element to be at rest,
d3ξ does not give its proper 3-volume for this observer. We know that the quantity
ds2 = γi jdξ idξ j gives the distance ds by which the two particles ξ and ξ +dξ appear
to be separated in the instantaneous rest frame of either. This means that γ := detγi j
is the volume factor converting the coordinate volume d3ξ to a proper volume in the
rest frame of ξ0.

If we multiply this proper volume by the scalar field w0 equal at each point to
the proper energy density at that point, i.e., the density of total energy (rest mass
as well as internal energy) as viewed in the local rest frame defined by the n µ

a at
that point, we obtain the rest mass plus internal energy contained in the element.
Note that the existence of a smooth label coordinate system does suggest no random
motions within the volume element and hence no internal energy, but just rest mass.
On the other hand, one may just be labelling fluid elements, within which there are
random motions, so that the quantity delivered here does include internal energy.
This needs to be borne in mind when the theory is applied.

The quantity w := g1/2w0 is interpreted as the proper energy density of the
medium relative to the coordinates xµ . But what does this mean? Is the idea that
wd3x should be the energy (rest mass plus internal) in a volume element through-
out which x0 is kept constant, like the one above for the label coordinates? Such
an interpretation could not be valid, because g1/2 delivers volumes of spacetime via
g1/2d4x, and not volumes of space in spacelike hypersurfaces, in the general case it
is supposed to represent. Clearly, there is no simple physical interpretation of this
object w for general coordinates, something that should be borne in mind when it is
put to use.

Note, however, that the definition w := g1/2w0 is at least consistent in some sense
with the definition wξ = γ1/2w0, for we may take our general coordinates {xµ} to
be the label coordinates {τ,ξ i} and use the result (4.168) proven above, viz.,
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γ
1/2 = g1/2 ∂ (x)

∂ (τ,ξ )
,

to conclude that, when the general coordinates are just the label coordinates, we
have γ1/2 = g1/2. This is just saying that detγi j is the determinant of the metric in
the label coordinate system, up to a sign. And of course in this case w = wξ as we
have defined it above. So there are some specific cases in which w has a physical
interpretation.

Concerning the claims that w0 is a scalar under both transformations of the ξ

(relabelling) and transformations of the xµ , whereas wξ is a scalar under transfor-
mations of the xµ but transforms as a density of unit weight under transformations
of the ξ :

• w0 is a scalar because it is defined in the unique (up to space rotation) rest frame.
• wξ is scalar under transformations of the xµ because γi j is a scalar field on the

region of spacetime occupied by the medium.
• wξ transforms as a density of unit weight under transformations of the ξ for the

following reason. If {τ,ξ ′i } are new label coordinates, then

γ
′1/2 =

∂ (τ,ξ i)

∂ (τ,ξ ′i)
γ

1/2 ,

whence

wξ ′ = γ
′1/2w0 =

∂ (τ,ξ i)

∂ (τ,ξ ′i)
γ

1/2w0 =
∂ (τ,ξ )

∂ (τ,ξ ′)
wξ ,

which is indeed the transformation rule for a density of weight 1.

Concerning the claims that the quantity w is a scalar under transformations of the ξ

but transforms as a density of unit weight under transformations of the xµ :

• w is a scalar under transformations of the ξ for the simple reason that its defini-
tion w := g1/2w0 makes no reference to the label coordinates.

• w transforms as a density of unit weight under general coordinate transformations
because w0 is a scalar and g1/2 transforms as a density of unit weight under these
coordinate transformations.

4.4.4 Stress Tensor

We now ask how the proper energy density varies with time. The argument in this
section is a fleshed out version of the one given in [14, Chap. 10]. If the medium is
conservative, which means that energy does not flow around by dissipative mecha-
nisms, w0 can vary only as a result of the action of forces on the component parts
of the medium. These forces can be described phenomenologically by means of a
stress tensor.
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Let us suppose to begin with that the coordinates xµ have been chosen to be
canonical at a certain point x, oriented in such a way that(

uµ

n µ
a

)
becomes the unit matrix at x [see (4.166) on p. 199], and adjusted in the neighbour-
hood of x so that the derivatives of the metric tensor vanish at x. Then the coordinates
xµ may be regarded as an extension of the local Minkowski frame, which strictly
speaking has mathematical existence only in the tangent space, to a small neighbor-
hood of x.

So basically, given x, we can choose coordinates {xµ} such that

u
∣∣
x =

∂

∂x0

∣∣∣∣
x
, n1

∣∣
x =

∂

∂x1

∣∣∣∣
x
, n2

∣∣
x =

∂

∂x2

∣∣∣∣
x
, n3

∣∣
x =

∂

∂x3

∣∣∣∣
x
,

and we can also arrange these coordinates so that the derivatives of the metric tensor
are zero at x, whence the Levi-Civita connection coefficients are also zero at x.
Bear in mind, however, that the derivatives of the metric and Levi-Civita connection
coefficients can only be made exactly equal to zero on a whole neighbourhood of x
if the spacetime is flat there.

Now let dΣa be a directed 2D surface element in this frame. Then one would
intuitively expect the material on the side of dΣa away from the direction in which
dΣa points to exert on the material on the opposite side a force that depends linearly
on dΣa :

dFa = tabdΣb . (4.171)

The coefficients tab of the linear dependence are the components of the stress tensor
in the local Minkowski rest frame.

Of course, this looks nice as long as one does not think too much about it! How-
ever, it reveals something about the way physics is often done. One has an intuition
for what the right formulation should be, from simpler situations, e.g., a flat or even
non-relativistic spacetime, and one does not worry too much about the actual phys-
ical interpretation in the more sophisticated context (here, a curved spacetime). The
definition (4.171) immediately raises the question as to whether tab will be symmet-
ric in its indices, on the basis of another intuition. Keep reading for the answer.

The force dFa is a contact force and as such is expected to respect the law of
action and reaction. This means that the material on the side of dΣa toward which
dΣa points must exert a force −dFa across dΣa. As a consequence the total force
experienced by a small volume V of the medium, as a result of the action of the
surrounding medium, is given by

Fa =−
∫

Σ

dFa =−
∫

Σ

tabdΣb =−
∫

V
tab,bd3x , (4.172)

where Σ is the surface of V . Here V is assumed to contain the point x and the deriva-
tive in the final integrand is taken with respect to the extended local coordinates.
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According to DeWitt [14], because V is otherwise arbitrary, it is evident that the
internal stresses which the tensor tab describes give rise to a net force density in the
immediate vicinity of x given by

fa =−tab,b . (4.173)

This is not actually quite correct, as we shall see shortly. However, it will not raise
problems for the rest of DeWitt’s argument, exposed hereafter.

Suppose the origin of the coordinates xµ is taken at the point x. Then, lowering
the spatial indices on the xµ , we may express the torque about x, exerted on V by
the surrounding medium, in the form

Ta := −
∫

Σ

εabcxbdFc =−εabc

∫
Σ

xbtcddΣd

= −εabc

∫
V
(xbtcd),dd3x = T I

a +T II
a , (4.174)

where
T I

a := εabc

∫
V

xb fcd3x , T II
a := εabc

∫
V

tbcd3x . (4.175)

The value of T I
a depends on the location of the origin. It is what one would expect

to get for the torque using the force density fa. The value of T II
a , on the other hand,

is independent of the location of the origin, and is in fact an unwanted residual. We
argue that it must be zero by the following argument. In the limit V → 0, it may be
expressed simply as

T II
a =V εabctbc .

On the other hand, the moment of inertia of V is of the order

I ∼ w0V 5/3 .

To understand this estimate, consider the moment of inertia ∼ mr2 of a solid sphere
of mass m and radius r. The mass m is proportional to the volume, which goes as
r3, so the moment of inertia goes as r5, hence as V 5/3. The residual torque therefore
imparts a contribution to the angular acceleration of V given by

ẇII
a =

T II
a

I
∼V−2/3w−1

0 εabctbc .

But unless εabctbc = 0, this becomes infinite as V → 0, which is absurd, and we thus
conclude that

εabctbc = 0 ,

or, alternatively,

tab− tba = (δacδbd−δadδbc)tcd = εabeεecdtcd = 0 .

That is, the stress tensor is necessarily symmetric.
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The symmetry of the stress tensor may be illustrated in the particularly simple
case of a gas at equilibrium, where we obviously have

tab = pδab , (4.176)

p being the pressure. We note that p, like w0, is a scalar field.
So far we have obtained the stress tensor in the local Minkowski rest frame, but

like the energy density, it can also be expressed in the ξ coordinate system and in
the general coordinate system xµ . When viewed in an arbitrary coordinate system,
unlike the energy density, it must be regarded as a tensor density, known as the stress
density. The relevant definitions are then

t i j := γ
1/2A−1i

aA−1 j
btab , tµν := g1/2n µ

a n ν
b tab . (4.177)

We note that
tµν uν = 0 .

Once again, these are just definitions, but the real question is, what can we do with
them? The definition of t i j can be motivated as follows:

tabna⊗nb = tab

[
A−1i

a
∂

∂ξ i +Oau
]
⊗
[

A−1 j
b

∂

∂ξ j +Obu
]

= tabA−1i
aA−1 j

b
∂

∂ξ i⊗
∂

∂ξ j + terms in
∂

∂ξ i⊗u, u⊗ ∂

∂ξ i , and u⊗u ,

where Oa is a shorthand for

Oa :=
(

u · ∂

∂ξ i

)
A−1i

a ,

and we have used (4.155) on p. 196. So t i j∂/∂ξ i⊗∂/∂ξ j is the piece of tabna⊗nb
in the ∂/∂ξ i⊗∂/∂ξ j direction, so to speak, but with a factor of γ1/2 inserted, which
reminds us that this is a density.

Regarding tµν , note that

tabna⊗nb = tabna
µ nb

ν ∂

∂xµ
⊗ ∂

∂xν
= g−1/2tµν ∂

∂xµ
⊗ ∂

∂xν
.

Once again, the factor of g1/2 in the definition of tµν reminds us that it is a density.
There does remain the question of what these mean physically and what one can

do with them, but for the moment, let us show that

t i j =
∂ (x)

∂ (τ,ξ )
ξ

i
,µ ξ

j
,ν tµν , tµν =

∂ (τ,ξ )

∂ (x)
Pµ

σ Pν
τ xσ

,ix
τ
, jt

i j . (4.178)

We have
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t i j = γ
1/2A−1i

aA−1 j
btab = γ

1/2
ξ

i
,µ n µ

a ξ
j
,ν n ν

b tab

= γ
1/2g−1/2

ξ
i
,µ ξ

j
,ν tµν =

∂ (x)
∂ (τ,ξ )

ξ
i
,µ ξ

j
,ν tµν ,

using (4.168) on p. 200, and

tab = γ
−1/2AaiAb jt i j = γ

−1/2naµ xµ

,inbν xν
, jt

i j ,

whence

tµν = g1/2n µ
a n ν

b tab = g1/2n µ
a n ν

b γ
−1/2naσ xσ

,inbτ xτ
, jt

i j

=
∂ (τ,ξ )

∂ (x)
Pµ

σ Pν
τ xσ

,ix
τ
, jt

i j ,

as required.
In the two relations of (4.178), we basically transform from coordinates {xµ}

to coordinates {τ,ξ i} and back again. The Jacobian factors show that we have a
density of weight 1. Note also that there are 16 components of tµν and only 9 com-
ponents of t i j. The projectors Pµ

σ and Pν
τ in the second relation ensure that

uµ tµν = 0 = tµν uν . (4.179)

The point here has been to eliminate the quantities tab which expressed the stresses
relative to a very special local Minkowski rest frame at the chosen event x. We are
still waiting to see what can be done with the quantities tµν and t i j.

4.4.5 Dynamics. Accounting for the Energy Balance

Consider now three nonparallel infinitesimal displacements δiξ
j, i = 1,2,3, that are

fixed in the medium and have the same orientation as the vectors n µ
a . Relative to

the local Minkowski rest frame, these become

δixa = Aa jδiξ
j , i = 1,2,3 . (4.180)

Let us understand this better.
Note first that {xa}, a = 1,2,3, are the local Minkowski rest frame coordinates of

p. 203. We have to select our event x in spacetime first and carry out the calculation
in the vicinity of that event. The displacements δ1ξ i, δ2ξ i, and δ3ξ i, each with three
components relative to the label coordinates ξ i, link neighbouring material points
with the same proper time coordinate τ . Now

Aa jδiξ
j = naµ xµ

, jδiξ
j = naµ

∂xµ

∂ξ j δiξ
j = naµ δixµ ,
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and in this coordinate system (see p. 203),

na
∣∣
x =

∂

∂xa

∣∣∣∣
x
,

so

na
µ
∣∣
x =

∂xµ

∂xa

∣∣∣∣
x
= δa

µ ,

whence
naµ

∣∣
x = gµν(x)na

ν
∣∣
x = ηµν na

ν
∣∣
x = ηµa , (4.181)

and finally,
Aa jδiξ

j = naµ δixµ = δixa ,

as claimed.
The three displacements define an infinitesimal parallelipiped whose volume is

δV = det(δixa) = det(Aak)det(δiξ
j) = γ

1/2det(δiξ
j) . (4.182)

The first step, viz., δV = det(δixa), follows because g1/2 = 1 at x in these coordi-
nates. Note also that one would expect δV = γ1/2det(δiξ

j) from the result that the
instantaneous proper distance δs between particles with neighbouring values of their
labels as viewed in the instantaneous rest frame of either is given by

(δs)2 = (δx)2 = γi jδξ
i
δξ

j ,

as explained earlier, where the proper metric γi j of the medium is in fact defined by
this relation.

The surface elements of the three pairs of opposite faces of this parallelipiped are
±δiΣa, where

δiΣa =
1
2

εi jkεabcδ jxbδkxc

=
1
2

εi jkεabcAbmAcnδ jξ
m

δkξ
n

=
1
2

γ
1/2

εi jkεlmnA−1l
aδ jξ

m
δkξ

n .

On the object δiΣa, the index i numbers the pairs and a gives the 3 spatial compo-
nents of the surface element numbered by i. Further, δ1Σa is the surface element
defined by δ2x and δ3x, in that order, δ2Σa is the surface element defined by δ3x and
δ1x, in that order, and δ3Σa is the surface element defined by δ1x and δ2x, in that
order. The factor of 1/2 in the last calculation appears because the sum over j and k
gives two equal terms.

The forces exerted on these faces by the surrounding medium are±δiFa, as given
by (4.171), so



208 4 Holonomic and Non-Holonomic Frames in General Relativity

δiFa = −tabδiΣb =−
1
2

γ
1/2

εi jkεlmnA−1l
btabδ jξ

m
δkξ

n

= −1
2

εi jkεlmnAartrl
δ jξ

m
δkξ

n , (4.183)

using the first definition of (4.177) in the last step. During an increment dτ of proper
time, the faces of the parallelipiped will suffer displacements relative to its center
given by

±1
2

(
d

dτ
δixa

)
dτ =±1

2
Ȧa jδiξ

jdτ , (4.184)

according to (4.180). Note that Aa j was defined as Aa j = naµ xµ
, j. This is a function

of the event in spacetime, hence of the coordinates {τ,ξ i}. The quantity Ȧa j is then
the rate of change of Aa j with respect to τ , keeping the ξ i fixed.

The rate of change of the energy density wξ with proper time may be computed
by taking into account the work done by the forces ±δiFa on the faces of the paral-
lelipiped as a result of these displacements. Recall that wξ is that quantity such that
wξ d3ξ is the rest mass energy plus internal energy contained in the label coordinate
volume element d3ξ (see p. 201). But det(δiξ

j) is the coordinate volume of that
element, and ẇξ det(δiξ

j) is therefore the proper time rate of change of rest mass
energy plus internal energy in the element. Hence we are interested in

ẇξ det(δiξ
j) =

d
dτ

[
wξ det(δiξ

j)
]
=

d
dτ

(w0δV ) . (4.185)

In the second equality, we have used the fact that

wξ det(δiξ
j) = w0δV ,

which follows from the fact that wξ = γ1/2w0 [see (4.154) on p. 195] and the result
δV = γ1/2 det(δiξ

j) [see (4.182) on p. 207]. One can interpret d(w0δV )/dτ as the
proper time rate of change of energy in δV in the local Cartesian rest frame moving
with δV , which corroborates the interpretation of ẇξ det(δiξ

j) just made.
All the real physics, i.e., not just interpretation, but physical law, now occurs in

the step
d

dτ
(w0δV ) =

(
d

dτ
δixa

)
δiFa . (4.186)

The proper time rate of energy change in the material element is equal to the proper
time rate at which the forces on the surface do work. The right-hand side is a sum
over i of 3D Cartesian scalar products (sums over a) of each 3-force element with
each rate of displacement 3-vector in the local Minkowski frame. In actual fact, the
relevant rate of displacement vectors are

±1
2

d
dτ

(δixa) ,
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relative to the center of the volume element, but the result is the same because the
forces are in pairs ±δiFa (each i labels one of the pairs of opposite faces).

This brings us to the conclusion that

ẇξ det(δiξ
j) =

(
d

dτ
δixa

)
δiFa = Ȧasδiξ

s
δiFa

= −1
2

εi jkεlmnȦasAartrl
δiξ

s
δ jξ

m
δkξ

n ,

using (4.184) to get the second equality and (4.183) to get the third. Factoring out
the determinant, we get

ẇξ =−ȦalAartrl , (4.187)

because
εi jkδiξ

s
δ jξ

m
δkξ

n = ε
smn det(δiξ

j) ,

and then
ε

smn
εlmn = 2δl

s .

Hence, we now have

ẇξ = −ȦalAartrl

= −1
2
(ȦaiAa j +AaiȦa j)t i j (t i j is symmetric)

= −1
2

γ̇i jt i j [see (4.153) on p. 194]

= −1
2

∂ (x)
∂ (τ,ξ )

γ̇i jξ
i
,µ ξ

j
,ν tµν [see (4.178) on p. 205]

= −1
2

∂ (x)
∂ (τ,ξ )

rµν tµν =− ∂ (x)
∂ (τ,ξ )

uµ;ν tµν , (4.188)

where rµν is the rate-of-strain tensor discussed in Sect. 4.3.16. This tensor is defined
by

rµν := γ̇i jξ
i
,µ ξ

j
,ν ,

from which it was shown that

rµν = Pµ
σ Pν

τ(uσ ;τ +uτ;σ ) .

It was the latter relation that justified calling it the rate of strain tensor. Now

rµν tµν = (uσ ;τ +uτ;σ )tµν Pµ
σ Pν

τ

= 2uσ ;τ tµν Pµ
σ Pν

τ ,

because tµν = tνµ . By the second relation of (4.178) on p. 205,
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tµν =
∂ (τ,ξ )

∂ (x)
Pµ

ρ Pν
φ xρ

,ix
φ

, jt
i j ,

and because P is a projection operator, we have

Pµ
ρ Pµ

σ = Pσ
ρ , Pν

φ Pν
τ = Pτ

φ ,

so it follows that
rµν tµν = 2uσ ;τ tστ ,

as claimed above.
We now observe that

ẇξ =
∂

∂τ

[
∂ (x)

∂ (τ,ξ )
w
]

[keeping ξ constant and using (4.169) on p. 200]

=
∂ (x)

∂ (τ,ξ )

[(
∂τ

∂xµ

∂ 2xµ

∂τ2 +
∂ξ i

∂xµ

∂ 2xµ

∂ξ i∂τ

)
w+w,µ ẋµ

]
=

∂ (x)
∂ (τ,ξ )

[
w

∂

∂xµ

(
ẋµ
)
+w,µ ẋµ

]
=

∂ (x)
∂ (τ,ξ )

(wuµ);µ . (4.189)

In the second step, it is not so obvious why

∂

∂τ

∂ (x)
∂ (τ,ξ )

=
∂ (x)

∂ (τ,ξ )

∂ξ m

∂xµ

∂ 2xµ

∂ξ m∂τ
,

where we define ξ 0 := τ and m is summed over 0, 1, 2, and 3. Here is a proof. We
have

ε
αβγδ ∂ (x)

∂ (τ,ξ )
= εi jkl

∂xα

∂ξ i
∂xβ

∂ξ j
∂xγ

∂ξ k
∂xδ

∂ξ l ,

so

ε
αβγδ ∂

∂τ

∂ (x)
∂ (τ,ξ )

= εi jkl

(
∂

∂τ

∂xα

∂ξ i

)
∂xβ

∂ξ j
∂xγ

∂ξ k
∂xδ

∂ξ l +3 similar terms

= εi jkl
∂ 2xα

∂ξ m∂τ

∂ξ m

∂xε

∂xε

∂ξ i
∂xβ

∂ξ j
∂xγ

∂ξ k
∂xδ

∂ξ l +3 similar terms

=
∂ 2xα

∂ξ m∂τ

∂ξ m

∂xε
ε

εβγδ ∂ (x)
∂ (τ,ξ )

+3 similar terms

=
∂ (x)

∂ (τ,ξ )

[
ε

εβγδ ∂ 2xα

∂ξ m∂τ
+ ε

αεγδ ∂ 2xβ

∂ξ m∂τ

+ε
αβεδ ∂ 2xγ

∂ξ m∂τ
+ ε

αβγε ∂ 2xδ

∂ξ m∂τ

]
∂ξ m

∂xε
.

Put (αβγδ ) = (0123). The object in square brackets multiplied by ∂ξ m/∂xε is then
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∂ξ m

∂xµ

∂ 2xµ

∂ξ m∂τ
,

as claimed.
There is one more detail concerning the calculation (4.189). At the very end we

have

w
∂

∂xµ

(
ẋµ
)
+w,µ ẋµ = (wuµ);µ .

A priori we only know that

w
∂

∂xµ

(
ẋµ
)
+w,µ ẋµ = (wuµ),µ .

However,
(wuµ),µ = (wuµ);µ ,

because the ordinary coordinate divergence of a contravector density of unit weight
is always equal to its covariant divergence, something that is not hard to prove.

Hence, finally, putting together (4.188) and (4.189), we deduce the neat result

(wuµ);µ +uµ;ν tµν = 0 , (4.190)

or, alternatively,
uµ(wuµ uν + tµν);ν = 0 . (4.191)

Let us just check that the relation (4.191) follows from its predecessor (4.190). We
have

uµ

(
wuµ uν + tµν

)
;ν = uµ uµ(wuν);ν +uµ wuν uµ

;ν +uµ tµν
;ν

= uµ;ν tµν +uµ tµν
;ν [by (4.190)]

= (uµ tµν);ν = (uµ tµν),ν = 0 .

The second term on the right-hand side of the first line is zero because

uµ uµ
;ν =

1
2
(uµ uµ);ν =

1
2
(uµ uµ),ν ,

and uµ uν =−1. We have
(uµ tµν);ν = (uµ tµν),ν

because uµ tµν is a contravector of unit weight again, so its covariant divergence
reduces to its coordinate divergence. Finally, (uµ tµν),ν = 0 because uµ tµν = 0.
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4.4.6 Dynamics. Accounting for the Momentum Balance

This accounts for the energy balance in the medium. Let us now account for the
momentum balance, a task that turns out to be much easier. Consider again the
parallelipiped of volume δV . Its 4-momentum is

pµ = w0uµ
δV ,

because δV is the proper volume measured in a frame moving with the material and
w0 is the energy density in that frame. In the local (instantaneous) rest frame of the
parallelipiped, the time rate of change of this momentum is equal to

naµ ṗµ = w0naµ u̇µ
δV = w0aaδV , (4.192)

where the dot denotes the covariant proper time derivative and the aa are the rest-
frame components of the absolute acceleration of δV . Note that the term containing
the proper time rate of change of the rest frame energy w0δV of the material element
as it moves is projected out by the presence of naµ , i.e.,

naµ ṗµ = naµ

d
dτ

(w0δV )uµ +naµ u̇µ w0δV ,

and the first term is zero because naµ uµ = 0.
This change of momentum can only be caused by the stresses which are

Fa =−g−1/2naµ tµν

;ν δV . (4.193)

Equation (4.193) looks plausible, but it is not that obvious. On p. 204, we had
(4.173), viz.,

Fa =−tab,bδV ,

and to get (4.193) from this, we would have to show the plausible result

tab,b = g−1/2naµ tµν
;ν , (4.194)

using the definition (4.177) on p. 205, viz.,

tµν := g1/2n µ
a n ν

b tab . (4.195)

Note that both sides of (4.194) are scalars under general coordinate change, because
the tab are defined in a fixed frame and hence scalars, and both sides of (4.195) are
type (2,0) tensor densities of weight 1 under general coordinate change, for the same
reason. This means that it would suffice to show (4.194) when the right-hand side is
expressed in a particular, well chosen coordinate frame.

For example, we could choose the coordinates on p. 203, i.e., the local Minkow-
skian frame fitted to uµ , na

µ at some event x, which are the very coordinates used to
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express the left-hand side of (4.194). In (4.181) on p. 207, we noted that

naµ

∣∣
x = ηaµ .

Furthermore, the first derivatives of the metric tensor are zero at x, whence

tµν
;ν
∣∣
x = tµν

,ν

∣∣
x

and g1/2(x) = 1. We would thus be down to showing that

tab,b = ηaµ tµν
,ν

∣∣
x ,

in these coordinates, using
tµν
∣∣
x = δa

µ
δb

ν tab ,

and it would be nice just to say that this is obvious! But there is a problem, because
we cannot get tµν

,ν

∣∣
x from the defining relation (4.195) if we have restricted it to x.

We have to consider

tµν
;ν = (g1/2n µ

a n ν
b );ν tab +g1/2n µ

a n ν
b tab,ν ,

recalling that tab is a scalar for each a,b. If the first term is zero, we have

naµ tµν
;ν
∣∣
x = ηaµ δc

µ
δb

ν tcb,ν = tab,b ,

as required. Now (g1/2);ν = 0, so it would be sufficient to show that

(n µ
a n ν

b );ν = 0 .

In the special coordinates at x, the covariant derivative is the coordinate derivative,
and this would amount to showing that

(n µ
a n ν

b ),ν
∣∣
x = 0 .

However, it is clear that there is no general reason why this should be so.
As a matter of fact, as hinted earlier, the problem is actually with the relation

(4.173) on p. 204. We can see directly that the correct relation (4.193) does not
actually imply that Fa =−tab,bδV in canonical coordinates at x. We may write

Fa = −g−1/2naµ tµν
;ν δV

= −g−1/2na
µ gνσ tµσ ;ν δV ,

and in the canonical coordinates at x,

tµσ ;ν = tµσ ,ν , na
µ = δa

µ , gνσ = η
νσ , g−1/2 = 1 ,

provided we look only at x. It thus follows that
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Fa =−η
νσ taν ,σ δV =−tab,bδV + ta0,0δV , at x .

This may look good if we are aiming to prove (4.173), because we would only have
to show that ta0,0 = 0, and we know that tµν uν = 0, according to (4.195), and in the
canonical coordinate frame at x, u has components (1,0,0,0), so at x, tµ0 = 0. But of
course what we need here is the derivative of ta0 along the worldline of the material
through x, i.e., along u, and we just do not know that ta0 will remain zero along this
worldline.

In a specific case, we might be able to arrange for this, but note that, if we adopt
the proper time along the relevant worldline as time coordinate as we did in Sect. 3.2
when setting up our normal frame, then we no longer get all the connection coeffi-
cients equal to zero at x, unless the fluid element passing through event x happens
to have zero four-acceleration there [see (3.4) on p. 151].

Of course, it would suffice to have u ∝ ∂/∂x0 in order to obtain ta0 = 0 along the
worldline and hence ta0,0 = 0 at x, but this flexibility is unlikely to allow us to waive
the consequence Γ i

00 6= 0 in general since it only gives us one degree of freedom with
which we have to get rid of three quantities, as i takes values in {1,2,3}. But in any
case, DeWitt implied that (4.173) was valid for any choice of canonical coordinates
at x and this contradicts the implications of the correct relation (4.193).

We can see what goes wrong in (4.172) back on p. 203, and it is a good illustration
of the complications that arise in relativistic theories. When we talk about 2D surface
elements in this discussion, those elements are near x, but not at x. Naturally, they
should be taken simultaneous with x according to the choice of coordinates, for
mathematical reasons, in order to derive (4.173). But the simultaneity dictated by the
canonical coordinates is largely arbitrary physically speaking as far as the relevant
fluid element is concerned. When we come to do physics, as in the present section,
the ‘force density’ derived there proves to be inadequate.

So why is (4.193) the right relation? Ultimately, the answer is that it will lead to
the right formulation of the energy–momentum–stress density in the next section.

Now we come to the physics. Equating Fa in (4.193) and naµ ṗµ in (4.192), and
recalling that w := g1/2w0 according to (4.170), we get

0 = naµ(wu̇µ + tµν

;ν)

= naµ(wuµ

;ν uν + tµν

;ν)

= naµ(wuµ uν + tµν);ν ,

using the fact that na ·u = 0 to get the last step. The conclusion here is thus that

naµ(wuµ uν + tµν);ν = 0 . (4.196)
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4.4.7 Energy–Momentum–Stress Density

Equation (4.196) may be combined with the energy balance equation (4.191) to
yield finally

T µν

;ν = 0 , (4.197)

where T µν is the energy–momentum–stress density defined by

T µν := wuµ uν + tµν . (4.198)

As an example, consider the well known case of a gas at equilibrium. Recall from
(4.176) on p. 205 that tab = pδab in this case. Then we have

tµν := g1/2na
µ nb

ν tab = g1/2na
µ na

ν p = g1/2Pµν p ,

and hence,

T µν = g1/2(w0uµ uν +Pµν p) (gas at equilibrium) . (4.199)

Let us also examine T µν in canonical coordinates in the case of flat spacetime in
which one has the strictly conserved quantities

Pµ =
∫

Σ

T µν dΣν ,

where Σ is any spacelike hypersurface and dΣ the usual measure. Separating Pµ

into its energy and momentum components and choosing for Σ the hypersurface
x0 = constant, we have

P0 =
∫

T 00d3x , Pi =
∫

T i0d3x .

These expressions, together with the differential identities

T 00
,0 +T 0i

,i = 0 , T i0
,0 +T i j

, j = 0 ,

allow one to make the standard identifications

• T 00 = energy density,
• T i0 = T 0i = momentum density = energy flux density,
• T i j = momentum flux density.

In the case of the conservative medium, we have

T µν := wuµ uν + tµν ,

and, since g1/2 = 1 in canonical coordinates, and also tµν uν = 0 from (4.179) on
p. 206, whence

t00u0 = t0iui , t i0u0 = t i ju j ,
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and consequently, defining vi := ui/u0,

t00 = t0ivi , t i0 = t i jv j , t00 = t i jviv j ,

it follows that

T 00 = w0u0u0 + viv jt i j , T i0 = w0u0ui + t i jv j . (4.200)

The first terms on the right-hand sides of these equations are easy to understand.
Because of Lorentz contraction, the proper energy density, i.e., the total energy den-
sity of the medium in the local Minkowski rest frame, becomes w0u0 in an arbitrary
Lorentz frame, and these terms evidently give the contributions to the densities of
energy and momentum arising from the bulk motion of the matter. The remaining
terms are described by DeWitt as curious residuals arising from the internal stresses.
These residuals are by no means unimportant and DeWitt gives a simple mechanical
example [14, Chap. 10].

4.4.8 Summary

The point of exposing this analysis was to illustrate the way the label coordinate
frame based on coordinates {τ,ξ i} can be put to use to build a heuristic picture of
what is happening in a continuous fluid, even given the complexities that arise in
curved spacetimes.

We began by defining the proper energy density w0 of the medium, and variants
wξ and w in Sect. 4.4.3. The quantity wξ d3ξ was the rest mass energy plus internal
energy contained in the fluid element d3ξ ‘comoving’ with the fluid, where ‘comov-
ing’ was determined by some synchronization of the proper times of the particles
labelled by ξ i. But we also saw there that it is not always possible to give a physical
interpretation of a quantity like w when it relates to arbitrary coordinates, a general
issue for all physical quantities when expressed relative to arbitrary coordinates.

In Sect. 4.4.4, we introduced what we called canonical coordinates at some pre-
selected spacetime event x. These were just the normal coordinates of Sect. 3.1 for
the given choice of tetrad {u,na}a=1,2,3 along the fluid worldline through x. We then
defined a stress tensor density tab somewhat heuristically by its components at x,
showing in (4.171) on p. 203 how it determines the force dFa = tabdΣb on a surface
element described by a 3-vector dΣb relative to the canonical coordinates at x. We
criticised the naive conclusion in (4.173) that fa =−tab,b could be interpreted as the
force density at x.

By considering turning forces, it was shown in the remainder of Sect. 4.4.4 that
tab had to be symmetric in a and b, and it was shown in (4.177) on p. 205, viz.,

t i j := γ
1/2A−1i

aA−1 j
btab , tµν := g1/2n µ

a n ν
b tab , (4.201)
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how to express the stress tensor density relative to the label coordinates and arbitrary
coordinates, respectively. The transformation from arbitrary to label coordinates and
back was then specified by (4.178) on p. 205, viz.,

t i j =
∂ (x)

∂ (τ,ξ )
ξ

i
,µ ξ

j
,ν tµν , tµν =

∂ (τ,ξ )

∂ (x)
Pµ

σ Pν
τ xσ

,ix
τ
, jt

i j . (4.202)

The quantities tab which depended on a specific choice of coordinates for each x
were thereby eliminated.

In Sect. 4.4.5, we tackled the dynamics of the fluid by considering an infinitesi-
mal volume element in the form of a parallelipiped specified by three linearly inde-
pendent infinitesimal displacements δ1ξ i, δ2ξ i, and δ3ξ i (each with three compo-
nents) fixed in the medium in the sense that they link neighbouring material points
at the same value of their proper time. This assumes some kind of sensible synchro-
nisation of the proper times of the fluid elements. We also made use once more of
the local canonical coordinates at a preselected spacetime event x.

The reader should be quite clear as to how these coordinate systems served as
an intermediary allowing us to formulate the forces δiFa, i = 1,2,3, acting on the
six faces ±δiΣa of the parallelipiped in (4.183) on p. 208. We were then able to
formulate the physical law (4.186) on p. 208, which states that the proper time rate
of energy change in the material element is equal to the proper time rate at which
the forces on the surface do work.

We thus found in (4.188) on p. 209 that

ẇξ =− ∂ (x)
∂ (τ,ξ )

uµ;ν tµν , (4.203)

a completely covariant formulation relative to arbitrary coordinates. But wξ was
related to w by (4.169) on p. 200, viz.,

wξ =
∂ (x)

∂ (τ,ξ )
w , (4.204)

whence we obtained (4.189) on p. 210, viz.,

∂ (x)
∂ (τ,ξ )

(wuµ);µ , (4.205)

which is another covariant expression for ẇξ in terms of arbitrary coordinates, to be
equated with the one in (4.203). Finally, we obtained (4.191) on p. 211, viz.,

uµ(wuµ uν + tµν);ν = 0 . (4.206)

Once again, what is important is to see how we obtain a generally covariant result
like this by first formulating the physics in special coordinate systems adapted to the
physical medium.
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In Sect. 4.4.6, by considering the time rate of change (4.192) of the momentum
of the tiny parallelipiped in the local instantaneous rest frame of the parallelipiped,
viz.,

naµ ṗµ = w0naµ u̇µ
δV = w0aaδV , (4.207)

and equating it to the force on the parallelipiped given by (4.193), viz.,

Fa =−g−1/2naµ tµν

;ν δV , (4.208)

we obtained (4.196) on p. 214, viz.,

naµ(wuµ uν + tµν);ν = 0 . (4.209)

Defining the energy–momentum–stress density T µν by

T µν := wuµ uν + tµν , (4.210)

the relations (4.206) and (4.209) implied its covariant conservation, i.e.,

T µν

;ν = 0 . (4.211)

Of course, with this approach, it remains to interpret T µν physically, and this is
done for a very simple case in Sect. 4.4.7. What is achieved here physically is that
we understand how the conservation of this quantity expresses Newton’s laws, or
their generalisation to general relativity, operating within the continuous medium.
The standard interpretation of T is then that Tµν vµ vν is the energy density that
would be measured by an observer with instantaneous four-velocity v using standard
techniques, whatever standard techniques may mean.



Chapter 5
Weak Locality Hypothesis

Let us go back to flat spacetimes and the frames that may be set up by accelerating
observers, i.e., frames adapted to accelerating worldlines, using the formalism of
Friedman and Scarr [23], as discussed in Sects. 2.4–2.7.

So far we have just done something entirely theoretical. We have found new
coordinates {y(µ)}µ=0,1,2,3 for a region of spacetime, such that the accelerating ob-
server sits permanently at y = 0. They have other properties that may seem nice
theoretically. In fact, they have all the properties we achieve for any semi-Euclidean
(SE) coordinate system, plus the rigidity property (superhelical rigidity if there is
rotational acceleration), as summarized in Sect. 2.8.

But as we learn from general relativity, coordinates are just coordinates. The
whole physical problem is to relate some given coordinates to things like lengths
and times that would be measured physically. A case in point is the time dilation
discussed by Friedman and Scarr [23], and which we commented on in Sect. 2.5.
The quantity

γ̃ =
dτ

dτp
,

defined in (2.164) on p. 63, is supposed to be the time dilation factor between a clock
or physical process ticking along with the particle in question and a clock carried
by the observer. But this claim contains no physics at all for the moment because it
does not explain how these quantities could be compared.

There is a danger here of talking about time running at different rates in dif-
ferent frames. This would be a mistake, not because it is inherently wrong when
interpreted correctly, but because it reverses the logic of the situation. When we talk
about time in a given frame, thinking of it as a coordinate, this is just a way of com-
paring the rates of different physical processes, and it is better to talk about the rates
of different physical processes than the rate of a construct from that, viz., the time
coordinate. This gives logical precedence to the physical process, and other phys-
ical processes (e.g., in clocks) used to measure their rates. This is the dynamical
approach to relativity theory discussed by Brown [6], and advocated here.

219
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The accelerating observer has specified hyperplanes of simultaneity by borrow-
ing them from the instantaneously comoving inertial frames. Of course, the observer
must choose some way of separating out space and time. At least that is the way,
perhaps naively, that we conceive of our environment. And from a mathematical
point of view, it seems a natural thing to borrow from an ICIF, but it is nevertheless
physically arbitrary, like all aspects of non-inertial coordinate frame construction.

When her proper time changes from τ to τ + dτ , she can then ask the clock
or physical process ticking along with the particle how much τp has changed
by between the events where the two hyperplanes of simultaneity HOS(τ) and
HOS(τ +dτ) intersect the worldline of the particle. The whole problem of relating
theoretical coordinates to physical measurements still remains, however, because
the observer must be able to establish the events where the two borrowed hyper-
planes of simultaneity intersect the particle worldline. The way her time coordinate
is spread out over the neighbouring region of spacetime would indeed appear to be
the trickiest physical aspect of relating coordinates to real measurements.

Let us see what Friedman and Scarr have to say about all this [23]. They begin
as follows. K′ is the uniformly accelerated frame determined by the initial position
x̂(0) of the observer, the initial comoving frame λ̂ , and the acceleration tensor A. The
worldline x̂(τ) of the observer is known, given x̂(0), u(0), and A, and the comoving
frame matrix λ (τ) can also be given explicitly in terms of λ̂ and A [see (2.83) on
p. 41].

For each τ , they define Xτ to be the collection of all events simultaneous with x̂(τ)
in Kτ , which is the ICIF at τ . This is what we refer to above as borrowing the HOS
from an instantaneously comoving inertial observer. Now Xτ is orthogonal to u(τ),
so there exists a neighbourhood of τ and a spatial neighbourhood of the observer
in which the Xτ are pairwise disjoint. So spacetime can be split locally into disjoint
spacelike hyperplanes. The splitting does not depend on the choice of the original
laboratory inertial frame K, and it ensures that, at least locally, the same event does
not occur at two different coordinate (proper) times for the observer setting up these
coordinates. So we can define local coordinates for the observer in an unambiguous
way.

This is of course entirely theoretical. The whole physical problem now consists
in specifying those spacelike hypersurfaces Xτ in the real world. At this point, Fried-
man and Scarr introduce what they call the weak hypothesis of locality:

Let K′ be a uniformly accelerated frame for an accelerated observer with worldline x̂(τ).
For any fixed time τ , the rates of the clock of the accelerated observer and the clock of the
comoving inertial observer at time τ are the same, and for events simultaneous to x̂(τ) in the
instantaneously comoving inertial frame Kτ , the comoving inertial observer and accelerated
observer measure the same spatial lengths.

Hidden in here are what are often called the clock hypothesis and the ruler hypoth-
esis. The length aspect is more problematic than the time aspect, although both are
problematic. Regarding the proper time of the accelerating observer, she merely has
to carry a good clock and look at it when necessary. But what is a good clock? One
that satisfies the condition of always running at the same rate as an instantaneously
coincident clock in the ICIF.
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This ignores the fundamental fact that maybe no clock could ever do this. Accel-
eration may well have universal effects. That would presumably take us beyond the
relativity theories as we know them, since there is no hint in our present relativity
theories of how those universal effects could be taken into account. We are assum-
ing here precisely that there are none. That is perhaps the sole theoretical import of
the weak locality hypothesis with regard to time. The clock hypothesis refers to a
specific putative clock and assumes that it fits the bill.

Regarding lengths, we do not specify how the accelerating observer measures
them. In a rigid frame like this one, a rigid ruler would be needed. This is one
that satisfies the ruler hypothesis: however it is moving, it is always instantaneously
ready to measure length in the instantaneously comoving inertial frame. As with the
clock, this may never be possible due to universal effects of acceleration that are
not taken into account by our relativity theories as they stand. Presumably the weak
locality hypothesis says that this is at least theoretically possible, in the sense that
it rules out universal effects due to acceleration, but the question still remains as to
whether such rulers actually exist. The ruler hypothesis refers to a specific putative
ruler and assumes that it fits the bill.

We shall return to the clock and ruler hypotheses in the following chapters. But
what about using light signals somehow? If we assume Maxwell’s equations, the
theory tells us where light beams will go. Then on the basis of that theoretical as-
sumption, we still need to be able to time emission and reception, so from a practical
standpoint, we still need the assumptions about the clocks. At this point it is inter-
esting to consider a very general discussion of the question of ascertaining proper
lengths between neighbouring worldlines, so let us refer to Ryder’s account in his
excellent Introduction to General Relativity [50].

For a moment then, we consider an argument that will be valid also in general
relativity. Ryder merely refers to two points A and B. The analysis shows that he is
discussing the proper separation, defined in some way to be specified, between two
timelike worldlines, and in particular two worldlines determined by fixing space
coordinates. We thus consider the worldlines obtained by fixing (x1,x2,x3) for A
and (x1 +dx1,x2 +dx2,x3 +dx3) for B, and then allowing only the time coordinate
x0 = ct to vary.

Ryder specifies an operational definition for the proper distance between these
two worldlines. This operational definition uses light signals. What we shall do here
is to compare the resulting formula with a theoretical definition that declares their
proper separation to be the proper distance orthogonal to either worldline, where
orthogonality is defined in the relativistic sense by orthogonality to the 4-velocity
of either worldline.

Let us begin with the operational definition. We send a light signal from worldline
A to worldline B, where it is reflected and returns to A. The distance between the two
worldlines is then defined from the total proper time elapsing at A between emission
and reception of the light signal. Let us say that the light leaves A at coordinate time
x0 + dx0(2), reaches B at coordinate time x0, and returns to A at coordinate time
x0 +dx0(1), where dx0(1) will be positive and dx0(2) negative.

Now the intervals



222 5 Weak Locality Hypothesis

• from
(
x0 +dx0(2),x1,x2,x3

)
to
(
x0,x1 +dx1,x2 +dx2,x3 +dx3

)
and

• from
(
x0,x1 +dx1,x2 +dx2,x3 +dx3

)
to
(
x0 +dx0(1),x1,x2,x3

)
are both null. We conclude that

0 = g00(dx0)2 +2g0idx0dxi +gikdxidxk , (5.1)

where dx0 stands in for either dx0(1) or dx0(2). Note that this result holds for the
completely general case, i.e., any coordinates in any spacetime, even a curved one.
Now (5.1) is effectively a quadratic equation for dx0, with two solutions

dx0 =
1

g00

[
−g0idxi±

√
(g0ig0k−g00gik)dxidxk

]
, (5.2)

where we use the convention that Latin indices run over {1,2,3}. Naturally, there
may be no solutions or only one, but these cases correspond to situations in which
observers could not sit on worldlines A and B and exchange light signals, for some
reason which will not concern us here.

Bearing in mind that dx0(1) will be positive and dx0(2) negative, and also that
g00 < 0, we deduce that the coordinate time ∆x0 elapsed between emission and
reception of the signal at A is given by the positive difference between the two
solutions in (5.2), viz.,

∆x0 = dx0(1)−dx0(2) =− 2
g00

√
(g0ig0k−g00gik)dxidxk . (5.3)

The corresponding proper time interval between these events is then given by

c∆τ =
√−g00∆x0 ,

and the operational proper distance dl by

dl =
c
2

∆τ ,

whence finally,

dl2 =

(
gik−

g0ig0k

g00

)
dxidxk . (5.4)

The aim now will be to derive this same result as the orthogonal proper distance
between the two worldlines A and B, which means that it is the proper distance
between the two worldlines as measured by either observer in their instantaneous
rest frame, i.e., the instantaneously comoving inertial frame.

We are considering worldlines xµ(τ) at fixed space coordinates, whence

ẋµ :=
dxµ

dτ
=

(
dx0

dτ
,0,0,0

)
,
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whence
ẋµ =

1√−g00
(1,0,0,0) =

1√−g00
δ

µ
0 , (5.5)

which is of course the unit tangent vector to such a worldline.
We now introduce the projection Pµ

ν onto the normal to the worldline, given as
usual by

Pµ
ν = δ

µ
ν + ẋµ ẋν , (5.6)

where
ẋν := gνσ ẋσ =

1√−g00
(g00,g01,g02,g03) . (5.7)

In particular,

ẋi =
1√−g00

g0i . (5.8)

It is straightforward to show that, for this kind of worldline with fixed space coordi-
nates, this takes the form

Pµ
ν =− 1

g00


0 g10 g20 g30
0 −g00 0 0
0 0 −g00 0
0 0 0 −g00

 . (5.9)

Now if we were using coordinate simultaneity for these coordinates, the separation
of the worldlines in hyperplanes of constant x0 would be

dxµ = (0,dx1,dx2,dx3) .

The idea then is to project this spacelike separation 4-vector to one that is actually
orthogonal to worldline A at each instant of proper time of A. We now obtain an
object

δx⊥ := Pµ
ν dxν =− 1

g00


0 g10 g20 g30
0 −g00 0 0
0 0 −g00 0
0 0 0 −g00




0
dx1

dx2

dx3



= − 1
g00


g0idxi

−g00dx1

−g00dx2

−g00dx3

 , (5.10)

and it is the length of this 4-vector that we intend to show is equal to Ryder’s dl. We
thus consider
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δx2
⊥ = gµν Pµ

idxiPν
jdx j

= gµν(δ
µ

i + ẋµ ẋi)(δ
ν

j + ẋν ẋ j)dxidx j

= gµν

(
δ

µ
i−

1
g00

δ
µ

0gi0

)(
δ

ν
j−

1
g00

δ
ν

0g j0

)
dxidx j

=

(
gi j−

gµν δ µ
0gi0δ ν

j

g00
− gµν δ ν

0g j0δ µ
i

g00
+

gµν δ µ
0δ ν

0gi0g j0

g2
00

)
dxidx j

=

(
gi j−

g0ig0 j

g00

)
dxidx j ,

which is indeed dl2 as given by (5.4).
The above discussion refers to neighbouring points, whereas [23] concerns rather

the proper distances between any two points in a given HOS of the accelerating ob-
server. However, it does establish that, at least to a good approximation, one natural
way of determining proper distance, viz., using light signals, does deliver a proper
distance in the hyperplane orthogonal to the observer worldline.

Note, however, that for a more remote particle worldline under observation,
we have not considered a light signal measurement and we do not actually know
whether a spacelike hyperplane in inertial coordinates would be the most natural
spacelike hypersurface to use to measure the proper distance. Furthermore, we do
not even know what spacelike curve in the chosen spacelike hypersurface is the one
whose length should be measured to give the most natural proper length as it would
naturally be measured by the accelerating observer.

But is naturalness important? If not, then it does not matter what spacelike curve
we use to specify proper length between two non-neighbouring events, and proper
length becomes somewhat arbitrary. But if we are only trying to set up coordinates
such that the spatial coordinates are proper lengths according to some choice of
spacelike curves, then that arbitrariness is just part of the arbitrariness we know to
be inherent in all coordinate systems.

What is different for an inertially moving observer is that we do have a natural
choice for these things, which naturally leads to inertial coordinates in flat space-
times, and locally inertial coordinates in general spacetimes. In fact, what guides
us ultimately in those cases is the simplicity of our field theories of matter, a point
we shall develop later on. And if there are only arbitrary coordinate systems, and
no fundamentally natural ones, for the accelerating observer, then we have to admit
that the theoretical usefulness of the role of such observers is reduced to nothing.

Before moving on, an interesting detail in Ryder’s calculation with the light
signals is the claim that the proper distance between the neighbouring worldlines
should be determined from the proper time interval ∆τ between emission and re-
ception by the simple relation dl = c∆τ/2. But why should the observer use her
proper time interval and not an interval of some other time coordinate to get the
proper distance by this formula? After all, we do not specify what time system is
used when we say that light travels c meters per unit time. Presumably, the only
guide here is, in some unspecified sense, the naturalness of the idea.
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Returning to the weak locality hypothesis, we are interested in this because it
is clearly the point where the purely theoretical construction of the coordinates
{y(µ)}µ=0,1,2,3 is related to what might actually be measured physically. This comes
close to a point that will be criticised in detail later: how do we interpret quantities
expressed relative to non-inertial coordinate frames? In the end, what really interests
us here is to see the interface between the theory and the real world.

We construct the coordinates {y(µ)}µ=0,1,2,3 theoretically in terms of some iner-
tial coordinates {xµ}µ=0,1,2,3 using the relation (2.97) on p. 44, viz.,

xµ = x̂µ(τ)+ y(i)λ(i)(τ) . (5.11)

This is done in a purely mathematical way, and the whole physical problem then
consists in relating those new coordinates to things like lengths and times that would
be measured physically.

Of course, since we think we know how to relate inertial coordinates to measured
lengths and times, we could just establish the inertial coordinate system physically
in this way and then use (5.11) to establish the coordinate system {y(µ)}µ=0,1,2,3
physically. But our idea is to try to relate the latter coordinates directly to what an
accelerating observer might measure. And the aim of the weak locality hypothesis
(WLH) is to claim that we can achieve the same relation between the coordinates
{y(µ)}µ=0,1,2,3 and physically measured lengths and times as we would obtain if we
first related the latter to inertial coordinates and then used the conversion (5.11), or
rather its inverse.

It assumes first that, at any proper time τ of the accelerating person, the rate of
her clock will be instantaneously the same as that of the instantaneously comoving
inertial observer. Let us see what would be involved in such a claim. First of all, we
define τ in terms of the inertial time t in the laboratory inertial frame K to be such
that

dt
dτ

= γ(v) , (5.12)

where v is the instantaneous speed of the observer relative to K. Theoretically, we
make that definition so that the 4-velocity of the observer dxµ/dτ has unit pseu-
dolength.

Now for an instantaneously comoving inertial observer (ICIO) at proper time τ ,
moving therefore with constant velocity v relative to the laboratory frame K,

dt
dt ′

= γ(v) , (5.13)

where t ′ is the time coordinate of that ICIO. If this ICIO carried an ordinary clock,
we consider it to be established by the special theory of relativity (SR) that the time
t ′ she would measure with that clock would be related to inertial time t in K by this
last relation.

So the theoretical definition of proper time for the accelerating observer in (5.12)
has it precisely that its rate of change relative to the inertial time t in K will be the
same as the rate of change of the proper time of the ICIO given in (5.13). This
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means that, if real clocks actually do always measure proper time as defined by
(5.12), we do not need the first assumption of WLH. But is this likely to be borne
out in reality? After all, there is a major difference between the ICIO and the AO:
the latter is accelerating.

The question thus remains as to whether the accelerating observer would actually
measure this proper time if she carried an ordinary clock with her. In other words,
would a real clock, or a real physical process, really go at the rate specified in (5.12)
if it were being accelerated? Clearly, the first statement of WLH concerning time
measurement is the assumption that some specified clock will run at this rate.

Later we shall discuss the Unruh–DeWitt (UD) detector in quantum field theory
(see Chap. 14). We shall see that this detector will detect nothing if it moves at
constant velocity through the usual Minkowski space vacuum of the quantum field,
whereas it will excite if it accelerates in any way. One can say that it is designed not
to excite when sitting still in the usual QFT vacuum, and it then follows that it will
not excite when moving at any constant velocity. This boils down to a consequence
of Lorentz symmetry. The QFT vacuum looks the same in any inertial frame and
its relation with the detector is the same. But something changes when the detector
accelerates.

There is a general point here about any accelerating detector. Imagine design-
ing two different detectors to measure the same physical quantity. Whenever they
are moving inertially in the same physical context, we expect them to deliver the
same value for whatever quantity it is they are supposed to measure. This is because
all our field theories of matter, which govern both the internal constitution of the
detectors and the environment of the detectors, are Lorentz symmetric (or locally
Lorentz symmetric in GR). But what can we say when they are accelerating? Will
they always deliver the same result for the given physical quantity? After all, there
is no corresponding acceleration symmetry in our field theories of matter.

It is this lack of acceleration symmetry that shows that we can never be sure that a
standard detector of something, designed to detect that thing in a certain way when-
ever it is moving inertially, will still be a standard detector of that thing when it is
accelerating. We could of course try to define whatever it does register when accel-
erating to be the same quantity for a comoving accelerating observer, but even that
is problematic given the point made in the last paragraph, because our definitions
may become detector dependent.

Another example here is the Mould EM radiation detector, also discussed in
Chaps. 11 and 14. According to its inventor, this measures no EM radiation when
comoving with an accelerating charge, even though the latter would be considered
to radiate by any inertially moving observer. We could define whatever it measures
to be radiation for whoever is carrying it, and that may or may not be a useful defini-
tion. But what if there is another perfectly good design of radiation detector, which
always delivers the same values as the Mould detector when moving inertially, but
delivers different values to the Mould detector when accelerating? Which detector
should we then use to define radiation for the accelerating observer?

In the present situation, we have to consider time detectors, i.e., clocks. We could
consider a hydrogen atom, counting orbits of its electron. In a now classic paper [2],
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Bell put forward an argument using classical electromagnetism which shows that,
if the acceleration is not too great in relation to certain parameters determining the
structure of the atom, then this time detector will work rather well for the AO. How-
ever, there will be some error, even on the purely theoretical level, in the sense that
it will never exactly register the proper time of the AO due to changes in its con-
stitution that arise because it is accelerating, or rather, due to specific, acceleration-
related delays to such changes.

What we are saying is that the atom will satisfy the clock hypothesis to a good
approximation, depending on the way it is accelerated, but never exactly. Another
kind of clock will also satisfy the clock hypothesis to some level of approximation,
the accuracy of which will depend on the way it is made to accelerate, but in the
detail it is very unlikely to give the same readings as the atom. On the other hand,
we have a theoretical definition of proper time and we can design better and better
clocks for reading it when those clocks have the given acceleration. In other words,
we can make specific designs for each kind of acceleration.

And if we are just after measuring proper time for this curve, and we know what
the proper time should be theoretically from the definition (5.12), maybe there is no
point in such an exercise. After all, if the Bell-type argument allows us to estimate
the error in the reading from the hydrogen atom, then we can just recalibrate the
reading from the hydrogen atom to know what proper time has elapsed.

It should be noted that the heart of the Bell-type argument is the standard as-
sumption that the relevant field theories of matter are Lorentz symmetric. But that
is nevertheless an assumption, which amounts to assuming that the special theory
of relativity is right. What would happen here if there were in fact universal ef-
fects due to acceleration in the sense that there are universal effects due to velocity?
This would presumably imply that WLH could never be fully borne out in the finest
details.

So what is the aim of WLH? The idea of the first statement that the rates of the
clock carried by the AO and one carried by the ICIO are the same is to say that AO
would naturally measure the theoretical quantity we call her proper time τ , i.e., that
τ is somehow her natural time coordinate. The unspoken implication is also that the
hyperplanes of simultaneity of the ICIOs are somehow the HOSs that AO should
naturally adopt to spread her natural time coordinate over the spacetime neighbour-
hood of her worldline. This assumption should perhaps feature more explicitly in
WLH, where it is only implicit.

Is that spreading of time a natural one? As we saw above, the light signal de-
termination of proper distances between neighbouring worldlines does pick out the
HOS of the ICIO, at least to a first approximation, and this is the hyperplane in-
stantaneously orthogonal to the AO worldline. What other spreading is available?
Whether this is natural or not, any other spreading is likely to be less natural. What
we are talking about here is naturalness of coordinate construction in reality, be-
cause in theory any coordinates are as good as any other coordinates.

The other claim in WLH says that, for events simultaneous with x̂(τ) in the ICIO
Kτ , the comoving and accelerating observers measure the same spatial lengths. This
assumes that we know what events should count as simultaneous for an accelerating
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observer, as mentioned in the last paragraph. The natural choice may well be the
HOS of the ICIO, but we are still just making an operational definition on the basis
of naturalness, for what that is worth. In fact, it is the worth of these naturalness
claims that constitutes the main subject of the discussion.

And what are the grounds for thinking that AO would measure the same spatial
components as the ICIO, viz., y(i), i = 1,2,3? As implied above, there is a sense
in which AO can measure what she wants by suitably designing and refining her
length detector, i.e., her ruler. But the suggestion here is once again that she would
naturally measure the length intervals between events in the given HOS, and that
she would naturally measure the length intervals found by intervals in the values of
the y(i), i = 1,2,3, within that HOS.

But no mention is made of the methods she could use to do that. Would she just
use a rigid ruler? How would it have to be moving to deliver the right values? Could
AO get it moving like that? Is that how it would naturally move? Or would AO use
light signals somehow? Does the theory of null structure in the spacetime show that
this would work?

And what is the aim of the claim that these coordinates are what AO would
naturally measure? We are asking, even if that were the case, so what? It is almost
as though the aim were to somehow validate this particular coordinate choice. But
why should we need to do that? After all, coordinates are just coordinates (unless
they are inertial coordinates, which have some privileges, because these are the ones
in which all our field theories of matter take on their simplest forms).

We have to be careful that there is no hidden agenda here. We shall see later how
some authors try to pretend that the coordinates {y(µ)}µ=0,1,2,3 in (5.11) are inertial
coordinates, so that they may interpret EM or other fields expressed relative to this
coordinate frame as though they were the EM or other fields we know and love from
our school days (see Chap. 11).

But even if we could license this kind of somewhat naive interpretation of fields
by whatever arguments may support WLH, what are these interpretations for? Are
they just to make us feel more comfortable about these spacetime theories? The
fact is that this hypothesis, if it is worth anything at all, must be a hypothesis about
specific instruments and methods for measuring lengths and times under specific
conditions of acceleration. Its theoretical content is only to rule out (if it is valid)
universal effects of acceleration.



Chapter 6
Extending Bell’s Approach
to General Relativity

In his paper How to Teach Special Relativity [2], Bell considers the nucleus of an
atom as an accelerating point charge for which the exact electromagnetic potential
(the Liénard–Wiechert potential) is known from Maxwell’s theory, then proposes
to calculate the exact orbit of the electron in this field as the nucleus accelerates.
In principle, this would give a perfect (pre-quantum) description of the way the
length of the atom would change in the direction of acceleration, as measured in the
original inertial frame. One can also imagine calculating the way the period of the
electron orbit will change, as measured in the original inertial frame. The result is
a dynamical explanation of the FitzGerald contraction and time dilation, using as
premise Maxwell’s theory of electromagnetism.

It is worth noting at the outset that such a dynamical explanation of these
phenomena does not circumvent the theoretical need to posit a spacetime with
the usual attributes, as first described so elegantly by Minkowski, viz., a metric
and a coordinate description in which the metric takes the usual diagonal form
η = diag(1,−1,−1,−1). Otherwise one could not even apply Maxwell’s theory.
The view adopted here is that dynamical explanations like this live happily along-
side the standard philosophy and add to our understanding of what is going on (see
also Chap. 9).

It is natural to ask if one could not do something similar for an atom sitting in
a curved spacetime that was supposed to represent some gravitating configuration.
Here we shall sketch briefly how this can be done for three spacetimes:

• the de Sitter empty universe,
• the Schwarzschild spacetime,
• the static homogeneous gravitational field.

This may seem a strange choice. The point about the first spacetime is that one has an
empty world, but in which space itself is supposed to be expanding. This does raise
the question of what one means by space expanding, and we use the Bell atom to try
to find out. Regarding the second choice, it will be an opportunity to present a mild
criticism of the way this spacetime is often presented in textbooks. One proposes
coordinates that are suggestively represented by r,θ ,φ for a spherically symmetric
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manifold and solves Einstein’s equations for the metric, but the obvious question
is not always directly addressed: what do the coordinates mean in terms of real
life? Once again, we can use the Bell atom to carry out an investigation. Finally, the
highly idealistic static homogeneous gravitational field (SHGF) brings us back to the
issue originally addressed by Bell, because the metric usually used here is precisely
the semi-Euclidean metric generally proposed for a uniformly accelerating observer
in a Minkowski spacetime with no gravitational effects, not even non-tidal ones.

The heart of the matter here is the strong equivalence principle (SEP), without
which one could not even do electromagnetism in curved spacetime, at least, without
which one would have to invent some other way of formulating non-gravitational
bits of physics within general relativity. Throughout the discussion, we use abso-
lutely standard general relativity with zero torsion, so that the connection is the
well-known metric connection with coefficients

Γ
µ

νσ :=
1
2

gµτ
(
gντ,σ +gτσ ,ν −gνσ ,τ

)
. (6.1)

As mentioned earlier, this already guarantees a weak form of equivalence principle
(WEP), viz., at any spacetime event P, there exists a choice of coordinates in some
neighbourhood of that event for which

gµν

∣∣
P = ηµν , Γ

µ

νσ

∣∣
P = 0 , (6.2)

where η is the usual Minkowski metric. In fact, for any original set of coordinates
{xa}, a new set with the property of having zero connection coefficients at the cho-
sen event is

x′µ := xµ − xµ

0 +
1
2

Γ
µ

νρ

∣∣
0

(
xν − xν

0
)(

xρ − xρ

0

)
, (6.3)

using the subscript 0 to denote the chosen event and arranging for this event to
lie at the origin of the new coordinates. One then gets the metric components into
Minkowski form by a linear coordinate transformation, which preserves the fact that
the connection coefficients are zero at the chosen event.

The idea here is that the spacetime looks roughly Minkowskian at the chosen
event, and even in a small neighbourhood of it, when we use these coordinates. Be-
cause the connection coefficients are zero at P in the primed system, the first coor-
dinate derivatives of the metric components are also zero at P in the primed system,
so the metric components are not going to change quickly from the Minkowski val-
ues when we move away from P. However, the connection coefficients themselves
will generally change when we move away from P, unless the spacetime is flat. Any
primed coordinates with the property (6.2) will be called normal coordinates. This
is a cheap version of the more elegant ploy in Sect. 3.1.

The strong equivalence principle (SEP) is then the hypothesis that other theories
of physics not concerned with gravity itself will look roughly as they do in flat space-
time relative to such a coordinate system. This is not a very precise formulation. We
implement it more precisely by saying that any inertial coordinate derivatives in the
dynamical equations of the flat spacetime theory are to be replaced by covariant
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derivatives with respect to the metric connection to get the minimal extension of the
theory in the curved spacetime. Non-minimal extensions are not considered here.

So what can the Bell atom do for us in a curved spacetime? We have to look
again at what it was doing in special relativity, where we said it could explain time
dilation and FitzGerald contraction. If our atom is moving inertially, we now make
the definition that it can be used as a clock and a ruler in the inertial frame moving
with it, by taking its spatiotemporal dimensions to gauge intervals of space and time
in that frame. What we find is that the length and time values it delivers agree with
what the Minkowski metric components give according to the usual interpretation
of the metric components in relativity.

One can well imagine that this works because Maxwell’s theory is Lorentz co-
variant. One can also imagine that the spatiotemporal dimensions of any system
governed by a Lorentz covariant theory could thus be used as a clock and ruler
that would predict time dilation and FitzGerald contraction. One is giving logical
precedence to the Lorentz covariance of one’s theories and then understanding the
physical effects of setting one’s clocks and rulers in motion. Then the class of co-
ordinate systems relative to which one’s theories are Lorentz covariant is defined as
the class of inertial coordinate systems.

In general relativity, there are not usually any inertial coordinate systems, but we
have SEP, so theories that work in special relativity can be carried over in a perfectly
defined way to general relativity (although it remains to be seen whether they are
still good theories when so transformed). When we are given some coordinates and
the components of a metric for those coordinates, we do not a priori know how to
associate those coordinates with real events in the world we are trying to model. On
the standard account, it is the metric that tells us how to convert a coordinate interval
into a real time or length as it would be measured. It is then effectively assumed that,
wherever they are and whatever they are doing, our clocks and rulers will deliver the
time or space intervals predicted by the metric (if interpreted correctly). One might
also conclude that, wherever it it is and whatever it is doing, an atom could be used
as a clock or ruler that would deliver the time or space intervals predicted by the
metric.

The present idea is to turn this around. We start with the theories carried over
by SEP from the theories in special relativity that govern our clocks and rulers,
we see what happens to our clocks and rulers in the relevant context in our curved
spacetime, according to the theory provided by SEP, and we make the operational
definition that they can be used to measure space and time intervals. The aim is
then to show why the metric in such a construction delivers the lengths and times
that would be measured by our clocks and rulers. Naturally, we focus on one atom
because it provides the simplest possible measuring instrument.

The program described here is too ambitious to be carried out to the letter. For
one thing, it is not obvious what theory to use for the atom because the minimum ex-
tension of Maxwell electromagnetism to the curved spacetime actually predicts that
the electron will radiate electromagnetic waves and crash into the nucleus. And even
if there were a stable orbit for the electron, it would be difficult to carry out exact
calculations, so one would have to resort to numerical approximation, as happened



232 6 Extending Bell’s Approach to General Relativity

even in the special relativistic case when the atom was accelerating. The obvious
theory to use would be a quantum theory, and the problem of obtaining an exact
result would surely be made worse. On the other hand, it is possible to carry out
approximate calculations. The strong equivalence principle provides a very simple
way of doing this.

The idea actually put into practice in each of the examples below is as follows.
Given some event in the spacetime, through which the nucleus of our atom is as-
sumed to pass, one finds normal coordinates at that event such that the nucleus is
instantaneously stationary when it passes through it. One then assumes a very sim-
ple form for the electron orbit, viz., circular with a well-defined period, relative to
these normal coordinates. The actual theory proposed above, carried over from spe-
cial relativity, might well give some other spatiotemporal characteristics relative to
the normal coordinates, but whatever it did give, one could then transform the char-
acteristics of the resulting atom to the original coordinate system, in which one is
trying to interpret the metric components. With the operational definition of space
and time intervals, viz., wherever it is and whatever it is doing, an atom can be used
as a clock or ruler that will deliver the time or space intervals (if it is used correctly,
i.e., provided that the atom is instantaneously stationary in the relevant coordinate
system), one then obtains the usual interpretation of the metric components.

Since the details of the atom have completely disappeared here — in the end we
make a completely arbitrary decision about its structure, with no regard for theory
— one must ask what remains of Bell’s original idea. The key to understanding what
the metric components do for us in some arbitrary coordinate interval now lies en-
tirely in the conversion of a normal coordinate interval to the interval relative to the
relevant coordinates. Obviously, this is something that could be examined without
any reference to atoms or the theories governing their structure. Of course, what
remains is the justification for this procedure. It is the idea that our clocks and rulers
measure normal coordinates (when used correctly), and this because the physics of
these objects is governed by theories that carry over from Lorentz covariant theories
in special relativity by means of the strong equivalence principle.

In fact, what remains is the understanding that, without the strong equivalence
principle, not only could one not even do non-gravitational physics in general rela-
tivity (without the help of some other such principle), but one could not even under-
stand how the coordinates should be related to what is actually observed, because
one must simply postulate that the metric provides time and length intervals from
coordinate intervals.

But there is another point. This idea of carrying out an exact calculation for the
physical structure of some real physical entity, and the possibility of doing so even
approximately, means that one can in principle test another hypothesis, the clock
hypothesis. Or rather, one can assess it theoretically in specific instances, i.e., for
specific clocks under specific acceleration conditions, whence it is itself no longer
required as a further hypothesis. This is achieved on the basis of our Lorentz co-
variant theories in special relativity, where the problem already existed, and those
same theories assisted by SEP in general relativity, since the problem carries over
identically to curved spacetimes, precisely via the strong equivalence principle.
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6.1 De Sitter Empty Universe

It would be easy to present this spacetime by saying that we have a metric of the
form

(gµν) = diag
(
c2 ,−e2Ht ,−e2Ht ,−e2Ht) , (6.4)

where H is a constant. What we mean in fact, and it is logically rather different, is
that there are coordinates {t,x,y,z} such that the metric takes the above form. But
since we now begin by mentioning coordinates, this in turn raises the question as to
what the coordinates correspond to physically. That is, how would we set up such
a coordinate system, or even recognise the coordinates corresponding to a given
spacetime event, in the real world around us? This question ought to be raised for
any curved spacetime of general relativity, not just this one which happens to be
empty and thereby exacerbates the problem.

We shall not be concerned with the dynamics of this spacetime, which was never
proposed as a serious cosmological model. In fact, it would have to be empty of mat-
ter and energy and pumped up by a cosmological constant Λ related to the constant
H in the above equation by [40]

Λ =
3H2

c2 .

The test particles considered here are all assumed to have negligible effect on this
geometry.

The aim here is to make a critical analysis of what coordinates mean in this
cosmological context. It is usual to say by examination of the above metric that the
de Sitter universe is expanding since the proper distance between particles sitting at
fixed spatial coordinates is increasing. Of course, the fact that the spatial coordinates
of the particle are unchanging means nothing in itself, because coordinates are just a
relative thing, i.e., not intrinsic to the spacetime. Note, however, that such particles
would then be following geodesics of the metric, as can be shown by considering
the connection coefficients (given below). This is taken to mean that there are no
forces on them, in the sense that the only things that can be affecting a particle
following a timelike geodesic are gravity and the cosmic repulsion given by Λ . And
it is clear that the cosmic repulsion is at work here, since what is usually called the
proper distance between two such particles, on the usual interpretation of the metric,
is actually increasing exponentially with the time coordinate t, which happens to be
the proper time of a particle sitting at fixed spacetime coordinates, on the usual
interpretation of the metric.

In fact, we set up our notion of proper distance in a coordinate dependent way.
It depends on getting the metric into a form with g0µ = 0 for µ = 1, 2, 3. This is
the ploy motivating the Weyl postulate [40], a starting assumption of cosmological
models which says roughly speaking that the worldlines of galaxies designated as
fundamental observers form a 3-bundle of non-intersecting geodesics orthogonal to
a series of spacelike hypersurfaces. The 0-coordinate is then called cosmic time and
hypersurfaces t = constant are spacelike with an obvious positive-definite metric
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induced from g. The latter determines proper distance. In the case of the de Sitter
metric displayed above, this means that the proper distance between test particles
sitting at constant values of (x,y,z) increases exponentially with the cosmic time t.

But what are x,y,z, and t ? Does the construction in the last paragraph really an-
swer that question? Does it answer that question in an empty universe? Of course,
if one disallows the usual postulate about the geometric interpretation of the met-
ric, there is no hope of linking these coordinates with reality without the strong
equivalence principle (SEP). This is what we shall invoke here in the context of
a pre-quantum atom, governed by Maxwell’s theory and its minimal extension via
SEP to the curved spacetime. The fact that the atom is not understood here via quan-
tum mechanics is irrelevant, as is the fact that we ignore the radiation disaster for
such an atom, which means that we are even ignoring one of the consequences of
the Maxwell theory that carries over directly via SEP to its minimal extension. In
fact, even the details of Maxwell’s theory will turn out to be irrelevant. What will be
relevant will just be the fact that something we understand in flat spacetime carries
over to a good approximation to the curved spacetime.

We consider an atom at the spatial origin for some t = T . There is no loss of
generality here, since the de Sitter universe is spatially homogeneous and isotropic.
Letting the subscript 0 denote this point (T, 0, 0, 0), we use the normal coordinates
specified in (6.3), viz.,

x′µ = xµ − xµ

0 +
1
2

Γ
µ

νρ

∣∣
0 (x

ν − xν
0 )(x

ρ − xρ

0 ) .

Note that the primed coordinates are adjusted so that the origin is (0, 0, 0, 0) in these
coordinates. They are not quite the coordinates we want. The first derivatives of the
metric are zero at our origin, so that the connection coefficients are also zero at the
origin, but we have not necessarily got the metric into the Minkowski form there.
This is done by a making a further linear transformation of coordinates. We shall see
that it is a simple matter in the present case, because the metric remains in diagonal
form.

The connection coefficients are easily calculated from the metric using (6.1), and
evaluated at the chosen origin (the last step just means putting t = T ). They can be
presented most conveniently in the form of four matrices:

Γ
0

µν

∣∣
0
=−2He2HT


0

1
1

1

 , Γ
1

µν

∣∣
0
= 2H


0 1
1 0

0
0

 ,

Γ
2

µν

∣∣
0
= 2H


1 0
0 0

1 0
0 0

 , Γ
3

µν

∣∣
0
= 2H


0 1
0 0

0 0
1 0

 .



6.1 De Sitter Empty Universe 235

We can now write down the coordinates which make the connection zero at the
origin. We use (yµ) rather than the prime notation:

y0 = t−T −He2HT [(x1)2 +(x2)2 +(x3)2] ,
y1 = x1 +2H(t−T )x1 ,

y2 = x2 +2H(t−T )x2 ,

y3 = x3 +2H(t−T )x3 .

Note that t = x0. We must recalculate the metric in the y coordinates using the for-
mula

g′µν =
∂x′µ

∂xσ

∂x′ν

∂xτ
gστ .

It is easier to transform the contravariant tensor, because we do not have the inverse
coordinate transformation. We are only interested in the metric at the origin. At this
point, the two matrices of partial derivatives occurring in the last formula are just
the identity, a general feature of the way we defined the coordinate change. We thus
have

g′µν(0) = diag
(
c−2 ,−e−2Ht ,−e−2Ht ,−e−2Ht) .

We now apply a linear map yµ → zµ which gets this into the Minkowski form
diag(c−2,−1,−1,−1). We require

∂ zµ

∂yν
=


1

eHT

eHT

eHT

 .

Hence, keeping the origin at (0, 0, 0, 0) in the z coordinates,

z0 = y0 , z1 = eHT y1 , z2 = eHT y2 , z3 = eHT y3 ,

so that finally,
z0 = t−T −He2HT [(x1)2 +(x2)2 +(x3)2] ,
z1 = eHT x1[1+2H(t−T )

]
,

z2 = eHT x2[1+2H(t−T )
]
,

z3 = eHT x3[1+2H(t−T )
]
.

These are the required normal coordinates at the chosen event.
We now introduce electron orbits about the nucleus at the origin. The first thing

to note is that the nucleus is stationary in the z coordinates. Indeed, its path in these
coordinates is just (t−T, 0, 0, 0), using t as the parameter. The electron orbits are
thus the usual flat space paths for non-moving nuclei, relative to the z coordinates.
The reason this works out so neatly is just that the nucleus is following a geodesic,
i.e., it is in free fall. This will slightly complicate the analysis in Schwarzschild
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spacetime, but in an interesting and important way. The problem is that we shall
consider a supported atom, i.e., the nucleus will be sitting at fixed Schwarzschild
space coordinates r,θ ,φ and hence will not be following a geodesic. It will there-
fore have motion relative to the normal coordinates, even if we arrange for it to be
instantaneously stationary.

Let us assume following Bell that there is a circular orbit relative to these z coor-
dinates. It can be chosen in the plane z3 = 0, giving z1(z0) and z2(z0) such that

[z1(z0)]2 +[z2(z0)]2 = r2
atom .

The idea is to take the atomic radius as a unit of proper distance here. We are mak-
ing the operational definition that the atom can be used to measure proper lengths,
wherever it is, whatever it is doing (with the proviso about being at least instanta-
neously stationary relative to the relevant coordinate system). This is what happens
in special relativity, where the inertially moving observer continues to use the same
standard atom even though it may appear to have shrunk to another observer. We
are now going to see how this unit of proper distance will look in the original de
Sitter coordinates, something we usually deduce from the metric without further
explanation.

We shall go further, however. We shall take

z1(z0) = ratom cos
2πz0

P
, z2(z0) = ratom sin

2πz0

P
.

We are going to take P, the period of the electronic orbit, as a unit of proper time
for the atomic nucleus (not for the electron, of course). In other words, we make the
operational definition that this physical process defines proper time. We can then
look at the period of the atom, the unit of proper time, when referred to the original
de Sitter coordinates.

Note in passing a rather pleasant idea, which illustrates perfectly why the details
of Maxwell’s theory are irrelevant here. We could take our time-defining process to
be a planetary orbit. On this cosmological scale, the planetary orbit would still be
infinitesimal. Some thought must be given to the physical theory used to define the
orbit, however, since we are now outside Maxwellian electromagnetism. We need
a reason why the planetary orbit should look like a flat space orbit in the normal
coordinates, and this reason is the strong equivalence principle.

What does our electron orbit look like in x coordinates? The easiest way to get
z3 = 0 is just x3 = 0. The other equations are now

eHT x1 [1+2H(t−T )] = ratom cos
2π

P

{
t−T −He2HT [(x1)2 +(x2)2]} ,

eHT x2 [1+2H(t−T )] = ratom sin
2π

P

{
t−T −He2HT [(x1)2 +(x2)2]} .

Note that
x2

x1 = tan
2π

P

{
t−T −He2HT [(x1)2 +(x2)2]} .
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The term He2HT
[
(x1)2+(x2)2

]
is roughly constant over the orbit. In fact, we have a

roughly circular orbit in the de Sitter coordinates, with the same period P and radius

e−HT ratom .

We are neglecting the terms H(t − T ) since H is assumed very small and t ≈ T
during the orbit. This is the result we were looking for. The coordinate t measures
proper time, but we must multiply dr by an exponential factor eHT to get the proper
distance. Orbits shrink by e−HT with increasing T when viewed in de Sitter coordi-
nates, so that their proper radius can remain the same.

Before continuing with a similar analysis of the Schwarzschild spacetime, let
us ask what could be achieved by an exact calculation here. In other words, what
could we discover if we took our best theory of electron orbits (or wave functions)
in flat spacetime (presumably a quantum theory) and replaced all inertial coordinate
derivatives by covariant derivatives with respect to the metric connection for the de
Sitter spacetime, then worked out exactly what the electron orbit (or wave function)
looked like relative to the above de Sitter coordinates? Naturally, we are not con-
cerned about whether there is such a thing as an orbit in the given theory. We could
take any spatial and temporal characteristics of the electron dynamics that our theory
could provide us with. These could then be used to find an exact relation between
the coordinates and the proper times and distances that this atom would measure
for us between neighbouring events, if we took this as the operational definition for
these quantities.

Of course, no measurements are exact in practice. When space and time intervals
themselves are being measured, by placing atoms side by side or counting elec-
tron orbits over some period of time, it is easy to see how error will be introduced.
But one does at least have a practical understanding of how to link a coordinatised
manifold with the real world.

6.2 Schwarzschild Spacetime

The aim here is to study the shape and period of electron orbits around a nucleus
placed in the context of Schwarzschild spacetime. Once again, although we assume
here that Maxwell’s theory of electromagnetism extends successfully by application
of the strong principle of equivalence, it will make no difference which theory we
actually extend in this way. Maxwell’s theory just provides a vocabulary for talking
about the spatiotemporal dimensions of the system, i.e., the atom. So we expect
the electron orbits to look roughly as they would in flat spacetime when referred to
normal coordinates.

Relative to the usual pseudopolar coordinates (t,r,θ ,φ) for the Schwarzschild
spacetime, whatever they are supposed to correspond to in the real world, the metric
is
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gµν =



(
1− A

r

)
c2

−
(

1− A
r

)−1

−r2

−r2 sin2
θ


,

where A = 2GM/c2. This is usually derived directly from Einstein’s equation with-
out further comment about what the coordinates mean or how the metric should be
interpreted. It is only by asking such a question explicitly when examining some
of the applications that the reader can get an idea of what is happening. However,
this idea does not come by understanding what justifies the interpretation. It comes
rather by guesswork from what is being claimed of the coordinates, in particular,
when authors discuss what are called the experimental tests of general relativity,
e.g., gravitational redshift, perihelion precession of Mercury, deflection of light, and
so on.

The deflection of light is a good example of the didactic problems that are raised
when talking about spacetime. The reader is challenged to find a textbook which
explains relative to what the light is being deflected. The excellent book [50] by Ry-
der illustrates the consequences of the ‘deflection’ by means of a diagram. Nearby
stars close to the limb of the Sun (itself momentarily concealed by the Moon during
an eclipse) appear to shift away from the Sun as viewed relative to the distant back-
ground of celestial objects. One might just be tempted to say that the light from these
stars is deflected from the path it would have had if the Sun had not been there. But
there is no such path in the spacetime one happens to occupy. We are being asked to
compare a path in one spacetime with a path in a different one that does not exist.

Let us just look at two typical claims in the literature of the Schwarzschild solu-
tion, to illustrate the problem with the didactic aspects of these discussions. We find
this in an elementary course on general relativity [3]:

To get a more quantitative feel for the distortion of the geometry produced by the grav-
itational field of a star, consider a long stick lying radially in the gravitational field, with
its endpoints at the [Schwarzschild] coordinate values r1 > r2. To compute its length L, we
have to evaluate

L =
∫ r1

r2

dr (1−2m/r)−1/2 .

Here m stands in for GM/c2. Since this set of points lies in a hyperplane of si-
multaneity for the Schwarzschild coordinates, a Schwarzschild observer would call
this the proper distance between the two endpoints, using the standard geometric
interpretation of the metric. But is it really the length of a stick? What would we
have to do to get a stick to do this? For example, none of the points of it are in free
fall, so they all have some kind of 4-acceleration, and in fact, they all have different
4-accelerations. It is clear that if real rods do behave like this, there must be some
physical reason for it.

In fact it is interesting to see how that account continues with regard to the related
question of proper distance [3]:
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Note that the [increment in the] proper radius R of a two-sphere [centered on the singular-
ity], obtained from the spatial line element by setting θ = const., φ = const., is

dR = (1−2m/r)−1/2dr > dr . (6.5)

In other words, the proper distance between spheres of radius r and radius r+dr is dR > dr,
and hence larger than in flat space.

It is intriguing to wonder what the last comment means. For this is not really a
comparison with any spheres in flat space. The coordinate interval dr need not be at a
point where the spacetime is even approximately flat. The so-called proper distance
is something that is related to the coordinate r in this way, according to the usual
geometric interpretation of the metric. In fact, the quoted relation (6.5) is telling us
how to understand the coordinates, although it is not telling us why our rulers should
be apt for this.

As an aside, we have the same kind of pedagogical difficulty in the following,
still in the context of the Schwarzschild metric [3]:

Let us consider proper time for a stationary observer, i.e., an observer at rest at fixed values
of r,θ ,φ . Proper time is related to coordinate time by

dτ = (1−2m/r)1/2dt < dt . (6.6)

Thus clocks go slower in a gravitational field.

But they go slower than what? Of course, this is a neat inequality and very simple.
But does it really tell us that the clock is going slower than the same clock in flat
spacetime? After all, dt is a coordinate change at a place where r 6= ∞ and spacetime
is not flat. The above relation tells us how to understand the coordinate t at the
relevant point, provided that we understand how to interpret proper time as given by
the metric.

Anyway, the aim here is indeed to go directly to a justification for the way the
metric is interpreted, and the main claim is that one must appeal to the strong equiv-
alence principle to get this. So let us return to the present issue. It is convenient to
display the metric connection coefficients relative to these coordinates in the form
of four 4×4 matrices:

Γ
0

µν =


0

A
2r2 B(r)−1 0 0

A
2r2 B(r)−1 0 0 0

0 0 0 0
0 0 0 0

 ,
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Γ
1

µν =



Ac2

2r2 B(r) 0 0 0

0 − A
2r2 B(r)−1 1

r
0

0
1
r

−rB(r) 0

0 0 0 −rB(r)sin2
θ


,

Γ
2

µν =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −sinθ cosθ

 , Γ
3

µν =



0 0 0 0

0 0 0
1
r

0 0 0 cotθ

0
1
r

cotθ 0

 ,

where the definition B(r) := 1−A/r is just a device to get the second matrix onto
one line.

We must now choose a point at which to place the atom. Since cotθ = 0 when
θ = π/2, we shall take this value, together with φ = 0 and r = R. We may as well
choose t = 0. These choices are based on the symmetries of the metric, e.g., it is
independent of t and φ , so one may as well choose the simplest values. In fact, the
coordinate curves associated with t and φ , and even θ , are the flows of Killing vector
fields [30, Sect. 16.4].

Normal coordinates are then given in the neighbourhood of this point by the
standard formula (6.3) on p. 230:

y0 = t +
A

2R2

(
1− A

R

)−1

(r−R)t ,

y1 = r−R+
Ac2

4R2

(
1− A

R

)
t2− A

4R2

(
1− A

R

)−1

(r−R)2

−1
2

R
(

1− A
R

)(
θ − π

2

)2
+

1
R
(r−R)

(
θ − π

2

)
− 1

2
R
(

1− A
R

)
φ

2 ,

y2 = θ − π

2
,

y3 = φ +
1
R
(r−R)φ =

rφ

R
.

Note the simplification for y3. Note also that these coordinates are adjusted so that
their origin is exactly at the point we chose. The second order terms in t, r, θ and φ

will not be of much interest to us, because the atomic radius and period are assumed
more or less infinitesimal here. This is indeed an assumption inherent in their use as
a gauge for length and time.

The next step is to calculate the metric components in the new coordinates so that
we can proceed to put it into Minkowski form, by a linear transformation yµ → zµ .
We use the contravariant metric components because we have yµ in terms of xµ :
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g′µν =
∂yµ

∂xσ

∂yν

∂xτ
gστ ,

to be evaluated at the point x = (0, R, π/2, 0). Now the matrices of partial deriva-
tives are just the identity at this point, by the way we have defined the normal coor-
dinates. Hence,

g′µν
∣∣
origin =



1
c2

(
1− A

R

)−1

1− A
R

1
R2

1
R2


.

Relative to y coordinates, the z coordinates must have derivative matrix

∂ z
∂y

=



(
1− A

R

)1/2

(
1− A

R

)−1/2

R

R


.

We can now write down the normal coordinates in the form required:

z0 =

(
1− A

R

)1/2

t

[
1+

A
2R2

(
1− A

R

)−1

(r−R)

]
,

z1 =

(
1− A

R

)−1/2

(r−R)

+

(
1− A

R

)−1/2
[

Ac2

4R2

(
1− A

R

)
t2− A

4R2

(
1− A

R

)−1

(r−R)2

− 1
2

R
(

1− A
R

)(
θ − π

2

)2
+

1
R
(r−R)

(
θ − π

2

)
− 1

2
R
(

1− A
R

)
φ

2
]
,

z2 = R
(

θ − π

2

)
,

z3 = rφ .

We shall consider two electron orbits: one occurring at a more or less fixed value of
r and one occurring over a small range of r values. However, we must first exam-
ine the motion of the nucleus relative to the normal coordinates. Indeed, if it were
moving in the sense of having a coordinate velocity relative to the normal coordi-
nates, SEP tells us that we should have to consider Lorentz contraction effects. And
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even if it had zero coordinate velocity at the relevant event, it might have nonzero
coordinate acceleration, and then we would have to take into account another of-
ten unspoken assumption which lies at the very heart of this discussion, namely
the clock hypothesis. At this point, let us just spell out the problem as clearly as
possible, and return to the clock hypothesis at the end of the section.

The worldline of the nucleus is in fact (t, R, π/2, 0) in Schwarzschild coordi-
nates, where only t varies. In z coordinates, this becomes([

1− A
R

]1/2

t,
Ac2

4R2

[
1− A

R

]1/2

t2, 0, 0

)
,

where t can be taken as a parameter. So the nucleus is going to move, but at present
finds itself at standstill in the normal coordinates. In the de Sitter case, our nucleus
was following a geodesic and it came as no surprise to find that it had no motion
whatever relative to the normal coordinates. Indeed, not only was it not moving, but
it was not going to move either, having no coordinate acceleration or higher order
time derivatives of its spatial position in these coordinates. [Its path in the normal
coordinates was just (t−T,0,0,0).] The situation now is rather different, because
we have a supported nucleus. Although it is not moving in the sense that its speed
is zero relative to the normal coordinates, it is going to move, i.e., it has nonzero
acceleration relative to the normal coordinates.

The t2 dependence of z1 implies that z1 goes as (z0)2 for small z0. Hence, it has
zero velocity in these coordinates, even though its acceleration is nonzero. This is
just what one would expect. The acceleration relative to these coordinates is the
acceleration that any object must have in order not to be in free fall, but rather to
just stay put relative to the Schwarzschild system. In fact,

dz1

dz0 =
Ac2

2R2(1−A/R)1/2 z0 . (6.7)

We shall return to this point at the end of the section.
But for the time being let us consider our first electron orbit, assuming it to be

circular (see Fig. 6.1). Taking the x axis along θ = π/2 and φ = 0, and the y axis
along θ = π/2 and φ = π/2, our origin occurs on the x axis at x = R, the y and z
coordinates being zero. At this point, a small change in z is given by Rdθ . But this
is just dz2. In addition, when dr = 0, dz3 = Rdφ = dy. If we consider an orbit lying
in a plane parallel to the (y, z) plane, we expect no distortion or dilatation, but the
period should be changed by an R dependent factor. The orbit will be the circular
orbit given by z1 = 0 and

z2(z0) = ratomcos
2π

P
z0 ,

z3(z0) = ratomsin
2π

P
z0 .
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θ

φ

z1

z2

z3

x

y

z

R
θ = π/2
φ = π/2

Fig. 6.1 Normal coordinates z1,z2,z3

Now z1 = 0 implies r ≈ R remains roughly constant. We are basically ignoring
second order terms in the coordinate transformations. Hence,

2π

P
z0 ≈ 2π

P

(
1− A

R

)1/2

t .

When t changes by P/(1−A/R)1/2, τ has changed by P, because we defined the
changes in proper time by the atomic process. This means

dτ =

(
1− A

R

)1/2

dt .

This is exactly what we would conclude from the usual interpretation of the metric.
What about the spatial aspect of the orbit in Schwarzschild coordinates? We have

R
[
θ(t)− π

2

]
≈ ratomcos

2π

P

(
1− A

R

)1/2

t ,

Rφ(t) ≈ ratomsin
2π

P

(
1− A

R

)1/2

t .

From the quasi-Euclidean interpretation of the coordinates on the left-hand side, we
see that we have a roughly circular orbit relative to Schwarzschild coordinates, with
the same radius relative to these coordinates but slowed down by the R-dependent
factor. The latter claim means that t must change by slightly more than P for the
electron to return to its starting point. This does not imply that any observer will
notice anything! If her clock measures proper time, the atom will be behaving nor-
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mally. All the processes in the observer’s body will be slowed down likewise. This
slowing down is relative to the coordinate t, which would only be the proper time of
an observer at infinity.

We now consider an orbit in the (z1, z3) plane, with z2 = 0. According to the
analysis above, this lies in the plane θ = π/2. We shall take

z1(z0) = ratomcos
2π

P
z0 ,

z3(z0) = ratomsin
2π

P
z0 .

We now find the orbit in Schwarzschild coordinates:(
1− A

R

)−1/2

(r−R)≈ ratom cos
2π

P

(
1− A

R

)1/2

t ,

and also

rφ = ratom sin
2π

P

(
1− A

R

)1/2

t .

Here we view r and φ as functions of the parameter t. Now r−R is roughly dx and
rφ is roughly dy for these tiny (atomic scale) values of r−R and φ . We have an
ellipse of width 2ratom in the y direction and 2(1−A/R)1/2ratom in the x direction.

We conclude that the orbital motion of the atom is slowed down relative to the
t coordinate, by just the same factor as in the first orbit. In addition, the orbit is
now squashed up in the x direction, which is the radial direction, relative to the r
coordinates. A rigid rod comprising a row of juxtaposed atoms lying along a small
interval of the x axis will take up less dr than it did at infinity. In fact,

dr = 2
(

1− A
R

)1/2

ratom

corresponds to proper distance 2ratom, so that proper distance is given by(
1− A

R

)−1/2

dr ,

just as one would predict from the usual interpretation of the metric.
So what about the fact that our atomic nucleus is about to move relative to the

normal coordinates? We said at the outset that we were applying SEP, so that any-
thing happening relative to such coordinates must look roughly as it would in an
inertial frame in flat spacetime. (Not forgetting that SEP does much better than
this statement containing the word ‘roughly’, because it provides a way of carrying
physical theories over exactly.) This means that the problem of an accelerating atom
that happens to be stationary at the relevant spacetime event, referring everything to
normal coordinates in the curved spacetime, reduces to precisely the same problem
but referring everything to inertial coordinates in a flat spacetime.
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But this was (part of) the problem discussed by Bell in his paper [2] and also in
Chap. 5. It is often treated in special relativity by making the following assumption,
generally called the clock hypothesis [6]:

When a clock is accelerating, the effect of motion on the rate of the clock is no more than
that associated with its instantaneous velocity, i.e., the acceleration changes nothing.

There is a related statement for the effect of motion on the length of a measuring
rod, which one might call the ruler hypothesis. These hypotheses are discussed in
the book by Brown [6]. The point being made in the present section is of course that
one does not need to assume this, because SEP must deliver it via the Bell argument.
If Maxwell’s theory were the final word in our atomic theory today, we could use an
atom as both clock and ruler and calculate exactly what would happen to its shape
and period under acceleration, at least in principle. In other words, one could find
out whether the above hypotheses were justified for the atom as clock and ruler and
for the particular acceleration being considered.

Naturally, if they were not justified in the case of the atom, one might seek some
other clock or ruler. The situation gets complicated, because one might not have a
good enough theory to test the hypothesis. Indeed, coming back to the atom, which
one would nowadays model with quantum theory, one might not be able, even in
theory, to test the clock hypothesis. There is room for some more debate here, but it
does look as though the key to not introducing any further principles or hypotheses
into relativity might be found in Bell’s approach, which Brown calls the dynamical
perspective in the title of his book [6] and which is being advocated here. And once
one has achieved this in special relativity, it is claimed here that SEP immediately
transposes the result to general relativity in the way described above for the de Sitter
and Schwarzschild spacetimes.

As a final point, note that we might consider the case of a freely falling atom
in the Schwarzschild spacetime. To simplify, we could assume that the atom is sta-
tionary relative to the Schwarzschild coordinates at the relevant spacetime event of
our analysis, like the supported atom in the above analysis. This atom would then
follow a timelike geodesic and would sit at the spatial origin of our normal coordi-
nates. Its coordinate acceleration relative to the normal coordinates would be zero
and we could apply the strong principle of equivalence and draw the same con-
clusions about measuring times and lengths with either supported or freely falling
atoms, provided that the freely falling atoms are instantaneously stationary when
used for measurement.

What we are saying with regard to the clock and ruler hypotheses is therefore this.
We are still assuming them here, in our rather rough demonstration that, if atoms
are used as clocks and rulers, then they deliver the usual geometric interpretation of
the metric. The claim is that exact calculations with our Lorentz covariant theories
in special relativity, and exact calculations with the transposition of these theories
to general relativity, could in principle decide one way or the other whether these
‘hypotheses’ are justified for a given clock or ruler. In brief, they are consequences
in this approach, rather than assumptions.
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6.3 Static Homogeneous Gravitational Field

This is a spacetime with coordinates (y0,y1,y2,y3) such that the metric components
take the form

gµν =



(
1+

gy3

c2

)2

0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (6.8)

It is well worth discussing the physical interpretation of this spacetime in some
detail before beginning our analysis of the Bell atom in this context. We should
say immediately that, when y3 = −c2/g, this metric is degenerate because g00 = 0
and g00 is not defined. However, we shall soon find that this problem is due to the
choice of coordinates, rather like the singularity at the event horizon in the usual
representation of the Schwarzschild metric. Such singularities can be removed by a
better choice of coordinates.

Of course, we ought to say a word about the coordinates (y0,y1,y2,y3) in which
the metric assumes this representation, in particular, about the way they might be
related to observations of the real world. With some pessimism, the reader is invited
to search some standard textbooks for an answer.

Intuitively, the idea is that there is a parallel gravitational field in the negative y3

direction. This field is declared to be static because the metric components do not
depend on y0, which is clearly a time coordinate of some kind. But what about ho-
mogeneity? Well, it is natural to seek a locally inertial frame, e.g., at the spatiotem-
poral origin of these coordinates, and this will in fact explain why this spacetime
is said to describe a homogeneous spacetime. Consider the coordinates (t,x,y,z)
defined by

t =
c
g

sinh
gy0

c2 +
y3

c
sinh

gy0

c2 , (6.9)

x = y1 , y = y2 , (6.10)

z =
c2

g

(
cosh

gy0

c2 −1
)
+ y3 cosh

gy0

c2 . (6.11)

Note that the spatiotemporal origins of the two systems coincide. For the record, the
inverse transformation is

y0 =
c2

g
tanh−1 gt/c

1+gz/c2 , (6.12)

y1 = x , y2 = y , (6.13)

y3 =

[(
z+

c2

g

)2

− c2t2

]1/2

− c2

g
. (6.14)
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If we evaluate the metric components relative to the coordinates (t,x,y,z), we find
that the metric takes the Minkowski form everywhere in the spacetime. These coor-
dinates are not therefore merely locally inertial, with Minkowski form at the event
in question and zero connection coefficients at that same event. They are in fact
globally inertial. The spacetime we are considering has zero curvature everywhere
and is therefore identical to the Minkowski spacetime, apart from the limited range
of validity of the original coordinates.

This means that (y0,y1,y2,y3) constitute some non-inertial coordinatisation of a
flat spacetime, in which there are therefore no tidal effects (since curvature describes
precisely the tidal effects). One can immediately deduce that the origin (x,y,z) =
(0,0,0) of the spatial hypersurfaces {t = constant} in the new coordinate system
is in free fall, since it obviously satisfies the geodesic equation. According to the
usual rules of general relativity, and in particular SEP, the coordinates (t,x,y,z) are
the ones that would be set up in a freely falling frame, in which the connection
coefficients are zero and freely falling bodies, i.e., not subjected to any forces, will
follow straight lines. (In general relativity, one adopts the idea that free fall is not
due to a force. This is a linguistic adjustment which not everyone accepts, made to
accord with the idea that forces and accelerations are intimately linked. In general
relativity, freely falling bodies follow geodesics, and the geodesic equation says
precisely that their four-acceleration is zero.)

For the freely falling observer who uses the (t,x,y,z) coordinate system, the ori-
gin (y1,y2,y3) = (0,0,0) of the spatial hypersurfaces {y0 = constant} of the (yi)
coordinate system is moving with uniform acceleration. The worldline comprising
these events is given, with parameter σ , by

y0 = σ , y1 = y2 = y3 = 0 . (6.15)

In the inertial coordinates, we have

t =
c
g

sinh
gσ

c2 , x = 0 = y , z =
c2

g

(
cosh

gσ

c2 −1
)
. (6.16)

Eliminating the parameter, this gives the worldline

x = 0 = y , z =
c2

g

[(
1+

g2t2

c2

)1/2

−1

]
. (6.17)

This is the worldline of a particle whose 4-acceleration aµ has constant squared
magnitude a2 = ηµν aµ aν =−g2 (see Sect. 2.9).

The above change of coordinates (6.9)–(6.11) seems to be somewhat miracu-
lous, in the sense that we did not explain how it was obtained. However, one could
find it in this way. Starting with a Minkowski spacetime and inertial coordinates
like (t,x,y,z), we can envisage an accelerating observer, following the worldline
(6.17). We can set up semi-Euclidean coordinates for the accelerating observer, us-
ing the process described earlier in this book, i.e., at each event on her worldline, the
observer borrows the space coordinates of an instantaneously comoving inertial ob-
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server for all events in the instantaneous hyperplane of simultaneity, and attributes
her own proper time to all events in that hyperplane of simultaneity. These semi-
Euclidean coordinates are precisely the coordinates (y0,y1,y2,y3) that we started
out with here, and indeed the component form of the Minkowski metric in (6.8),
with Euclidean geometry on the spatial hypersurfaces {y0 = constant}, is precisely
the component form of the Minkowski metric we obtained for a TUA observer in
(2.231) on p. 79. Such coordinates are also called Rindler coordinates.

The idea put forward in standard presentations is that a uniformly accelerating
observer in a flat spacetime without even non-tidal gravitational effects would adopt
these coordinates (yi), but this is a debatable point as already discussed, if only be-
cause, in general relativity, an observer is free to adopt any coordinates whatever.
One way to motivate the classic view is to consider the notion of rigidity given by
Rindler [48]. The idea is that, when a rod is made to move along its axis, i.e., ac-
celerated, different elements of it will be moving at different speeds, but the rod is
declared to be rigid if each element instantaneously adopts the appropriate FitzGer-
ald contracted length for that speed. One does not worry about the microphysical
explanation of this process, or even whether it is possible for any object to behave
like this.

In fact it is very easy to see that, if the uniformly accelerating observer (UAO)
carried measuring rods that were rigid in Rindler’s sense, laying them along the axis
of motion, they would always mark out the semi-Euclidean coordinate length. Put
another way, they would always have constant semi-Euclidean coordinate length.
Rindler rigidity corresponds exactly to the more general notion of rigid motion we
have been discussing in this book [31]. But when the semi-Euclidean coordinates are
set up, UAO adopts precisely the spatial coordinates of an instantaneously comoving
inertial observer (ICIO). One comes straight back to the ruler hypothesis, and also
to Bell’s idea here. The point is that these Rindler-rigid rods exactly obey the ruler
hypothesis. But if the rods were Bell atoms, or strings of Bell atoms laid side by
side and held together by electromagnetic forces, one could in principle do an exact
calculation with Maxwell’s theory to find out whether the Bell ruler would serve as
a Rindler ruler. That is, one should be able to test, by calculation, the hypothesis
that when a ruler is accelerating, the effect of motion on the length of the ruler is no
more than that associated with its instantaneous velocity, i.e., that the acceleration
changes nothing.

Let us return to the metric (6.8) at the beginning of this section, what would
the general relativist deduce from the discovery of a global inertial frame? There
would appear to be several possibilities, all of which are equivalent as far as general
relativity is concerned. One might say that one was in a perfectly flat region of
spacetime far from any source of curvature (gravity), and that the coordinates {yµ}
were simply those adopted by a uniformly accelerating observer clever enough to
set up a system so well adapted to her motion. This is what we have just been
considering. But one might also say that the coordinates (t,x,y,z) are those of an
observer freely falling in a static and homogeneous gravitational field (SHGF). The
fact that the field is static and homogeneous is what leads to there being no tidal
effects, i.e., zero curvature.
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Presumably, in the second case, if the observer looked around, she would find
some source, i.e., some distribution of energy (e.g., mass energy) to which one could
attribute the presence of this SHGF. It is hard to imagine what it might be. However,
a practically-minded observer with knowledge of physics would probably just say
that, in reality, the curvature is not quite zero but that this is a good approximation
over some region of spacetime, of the kind usually made in Earth-based laboratories,
given the accuracy with which measurements can be made.

But the Earth-based observer would in fact have a considerable advantage over
one who was simply presented with the interval associated with this metric, viz.,
(6.18) below, and could not see the source. In the laboratory, one can measure the
acceleration relative to the floor, for example, assuming that it is at rest relative to
the gravitational source. At some risk of confusion, let us call this the acceleration
due to gravity, but bearing in mind that there is no acceleration due to gravity in
general relativity (there is only acceleration when one is not allowed to free-fall).
Without sight of the gravitational source or other reference point, our relativist in
possession of the appropriate interval, viz.,

ds2 =

(
1+

gy3

c2

)2

(dy0)2− (dy1)2− (dy2)2− (dy3)2 , (6.18)

could not even determine the acceleration due to gravity. Looking at the expression
in (6.18), one might want to say that it was equal to g, because the interval does
indeed single out this value. But in a certain sense, the value g is just an artefact of
the choice of coordinates.

One should have no doubt about this. Starting with the Minkowski frame, one
could have chosen any uniformly accelerating observer, with value g′ say, and ob-
tained new coordinates {y′µ} such that the interval takes the form

ds2 =

(
1+

g′y′3

c2

)2

(dy′0)2− (dy′1)2− (dy′2)2− (dy′3)2 . (6.19)

The fact is, of course, that in this specific context, one cannot say how much of the
acceleration is due to gravity and how much is due to some other effect, e.g., the
kind of accelerating effect we were presumably imagining when we considered a
uniformly accelerating body in a flat spacetime (with no gravity).

Perhaps enough has been said to show how tricky relativity can be when one
begins to think about coordinates and the way they might be related to the real
world. Let us turn to the kind of analysis we have done with an ideal atom in the
other two spacetimes. Starting in the proposed SHGF laboratory frame given by
the coordinates {yµ}, we seek normal coordinates at some point. Since the met-
ric components (6.8) depend on y3, we take inertial coordinates about some point
{yµ}= (0,0,0,Z). We now seek coordinates {xµ}with inertial metric and the corre-
spondence (0,0,0,Z)←→ (0,0,0,0). It is also essential that an atom sitting motion-
less at the spatial point (0,0,Z) of the {yµ} system should also be sitting motionless
at the spatial origin of the {xµ} system, at least at the event (xµ) = (0,0,0,0). (We
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shall soon show that it must start moving relative to the inertial system, but it is at
least instantaneously stationary there.) For this, we have to find the worldline of the
spatial point (0,0,Z) of the {yµ} coordinate system as y0 goes by and work out its
motion relative to the inertial coordinates.

We propose the coordinates

x0 =

(
c2

g
+ y3

)
sinh

gy0

c2 , x3 =

(
c2

g
+ y3

)
cosh

gy0

c2 −
c2

g
−Z , (6.20)

with the usual x1 = y1 and x2 = y2. Note that the event (0,0,0,Z) in the {yµ} system
corresponds to the origin of the new system. The transformation is easily inverted.
Since,

tanh
gy0

c2 =
x0

x3 + c2/g+Z
, (6.21)

we have

y0 =
c2

g
tanh−1 x0

x3 + c2/g+Z
, (6.22)

whence, after a little manipulation,

y3 =

[(
x3 +

c2

g
+Z
)2

− (x0)2

]1/2

− c2

g
. (6.23)

What we have done here is to use the previous inertial coordinates, whose origin
coincided with the event (yµ) = (0,0,0,0), and translate the origin a distance Z up
the third axis. It is quite obvious that these coordinates must be inertial too, i.e., if
we worked out the metric, it would have the Minkowski form.

What about the speed of the spatial point (0,0,Z) of the {yµ} system as viewed
relative to these inertial coordinates? As the time y0 goes by, this point is given by

x0(σ) =

(
c2

g
+Z
)

sinh
gσ

c2 , x3(σ) =

(
c2

g
+Z
)(

cosh
gσ

c2 −1
)
, (6.24)

where we have renamed the parameter y0 as σ . Naturally, x1(σ) = 0 and x2(σ) = 0.
We now eliminate the parameter to obtain the worldline in the form

x1 = 0 = x2 , x3(x0) =

[(
c2

g
+Z
)2

+(x0)2

]1/2

−
(

c2

g
+Z
)

. (6.25)

This is similar to (6.17) on p. 247, which is retrieved by putting Z = 0. The speed as
viewed in the inertial frame is

v(x0) = c
dx3

dx0 =
cx0[(

c2

g
+Z
)2

+(x0)2

]1/2 , (6.26)
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and this is zero when x0 = 0. It is interesting to note that this worldline also has
uniform acceleration aµ . In fact, it turns out that

aµ aµ =− g2(
1+

gZ
c2

)2 , (6.27)

so the pseudolength of the four-acceleration of the worldline through (y1,y2,y3)
= (0,0,Z) decreases as Z increases, something already established in Sect. 2.9. This
shows that the Rindler ruler mentioned above, carried by a uniformly accelerating
observer, must undergo different accelerations at different points along its length.

We have a similar situation to the one we had for the Schwarzschild spacetime.
An atomic nucleus with worldline (y0,0,0,Z) as y0 varies is instantaneously sta-
tionary relative to the global inertial coordinate system {xµ} when y0 = 0, but it is
accelerating, so it is going to move, and indeed it was moving prior to y0 = 0. We
are now ready to examine the electron orbit. As before, we shall assume it to have
the form

x1(x0) = ratom cos
2πx0

P
, x3(x0) = ratom sin

2πx0

P
, (6.28)

on the grounds that we expect Maxwell’s theory to apply in this frame and the
nucleus is instantaneously at rest there. But we shall bear in mind that, even though
it is an inertial frame, and not just a locally inertial frame, there are still errors here
due to the fact that the nucleus was moving a short while ago, and it is its state a
short while ago which determines its fields out at the radius of the electron orbit.
For the moment we may consider that we are making the approximation that the
electron orbit is small and fast enough for us to be able to ignore this fact for the
present purposes. In this view of things, the clock and ruler hypotheses (as applied
to the atom) are taken as stating that this approximation is adequate for the present
purposes, so they could be viewed as assumptions here. However, it should be borne
in mind that what is being advocated here is the idea that they are not independent
hypotheses, but claims that could be justified by theory, using a better theory for the
atom and a more accurate calculation.

We reexpress the electron orbit in terms of the {yµ} coordinates. The result is

y1 = ratom cos
[

2π

P

(
c2

g
+ y3

)
sinh

gy0

c2

]
, (6.29)

(
c2

g
+ y3

)
cosh

gy0

c2 −
(

c2
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= ratom sin

[
2π
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(
c2

g
+ y3

)
sinh

gy0

c2

]
. (6.30)

We must now approximate. The period will be very short compared with times we
would expect to measure. Throughout the short duration of the orbit, the coordi-
nate y0 will barely change, remaining close to its initial value of zero. To a first
approximation, we can take
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sinh
gy0

c2 ≈
gy0

c2 and cosh
gy0

c2 ≈ 1 . (6.31)

Now the orbit is given by

y1 ≈ ratom cos
2π

(
1+

gy3

c2

)
y0

P
, (6.32)

y3−Z ≈ ratom sin
2π

(
1+

gy3

c2

)
y0

P
. (6.33)

Since the orbit occurs near the point (0,0,0,Z) of the {yµ} coordinates, y3 also
remains close to Z, as attested by (6.33), and we insert y3 ≈ Z. It thus takes the form

y1 ≈ ratom cos
2π

(
1+

gZ
c2

)
y0

P
, (6.34)

y3−Z ≈ ratom sin
2π

(
1+

gZ
c2

)
y0

P
. (6.35)

Our electron orbit will therefore have the same circular shape with unchanged radius
in the {yµ} picture, but its period will now be

Plab = P
(

1+
gZ
c2

)−1

≈ P
(

1− gZ
c2

)
, (6.36)

relative to the y0 coordinate. Note that an orbit in the (x2,x3) or (x1,x2) planes would
give the same results, i.e., the same radius and a period changed in the above way.

We can now express proper time and proper distance in terms of the {yµ} co-
ordinates, something usually taken directly from the metric. The atomic radius is
ratom in the {yµ} coordinate system, so the coordinates y1,y2,y3 give the proper dis-
tance directly. This agrees with what we would deduce from the metric, which has
(−1,−1,−1) down the leading diagonal of the spatial sector in these coordinates.
However, it is now (

1+
gZ
c2

)
dy0

that measures the proper time interval when y0 changes by dy0. Once again, this is
what the metric suggests in the usual interpretation.
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6.4 Taking Stock

The last example has brought us back to the subject of Bell’s paper [2], because the
characteristics of this spacetime allow one to interpret it as a spacetime in which
there are no gravitational effects, not even non-tidal ones. The worldline (y0,0,0,0)
with varying y0 can be viewed as the worldline of an observer with uniform ac-
celeration in such a spacetime and the coordinates {yµ} as semi-Euclidean coordi-
nates this observer might adopt to describe events. Alternatively one can view the
worldline (y0,0,0,0) with varying y0 as the worldline of an observer supported, i.e.,
prevented from free fall, in an SHGF with the appropriate ‘acceleration due to grav-
ity’. Whatever the interpretation, our idea is to use an atom following the worldline
(y0,0,0,Z) to define proper length and time intervals in the neighbourhood of this
event: its radius indicates proper length and its period indicates proper time, by def-
inition. Likewise for the other two spacetimes.

The strong equivalence principle (SEP) is used to relate the proper lengths and
times as defined operationally in this way with normal coordinates in the vicinity
of the chosen events. Approximations inevitably enter here. For one thing, normal
coordinates for a given event are not unique for various reasons, one being that the
connection coefficients are only required to be zero at the chosen event and in fact
there is no restriction on them away from this event. Another is that the atom has
spatial extent, and its period extends in time, so it cannot be said to probe just one
event. Yet another is that we have not gone into the details of the theory governing
the structure of the atom, and even if we did, we would only have approximate the-
oretical solutions. But we can still claim that the approximation is good enough to
demonstrate the worth of this operational definition, because we are able to repro-
duce the usual interpretation of the metric. In fact, the three calculations have been
completely concerned with this last issue, which is really the question of how the
normal coordinates relate to whatever coordinates we started with, relative to which
the metric components were originally specified. So the problem has fallen into two
parts:

• The first asks how we measure normal coordinates.
• The second asks how we relate normal coordinates to the coordinates we started

out with, and which we are trying to understand physically, particularly with
regard to the metric components as specified relative to that original coordinate
system.

The calculation part of our discussions deals with the second point and is largely
trivial because it is indeed a quite general result: intervals of normal coordinates
are intervals of proper time or length for the relevant observer as they are defined
under the standard interpretation of the metric. The interesting part of the discussion
is whether atoms can be used to measure normal coordinates, and if so, why. The
claim here is just that, if we decree proper length and time to be what atoms measure,
by definition, we can then use SEP and whatever theories we have for the atom to
justify the claim that normal coordinates give a good approximation to proper length
and time under this definition. At this point we deduce that the metric can be used to
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give proper length and time in the usual way. In this approach, we understand why
the metric components can be used in this way. So we are defining proper time and
length by what the atom measures, then using SEP to say that normal coordinates
will give this to a good approximation.

This does turn things round compared with a standard view in which we posit
Minkowski spacetime in SR or a curved metric manifold in GR, with metric fields
η or g, respectively, and postulate that the metric field corresponds in the usual way
to lengths and times we measure by the usual techniques. And it shows that, for this
classic approach to work, we are compelled to build Lorentz symmetric or locally
Lorentz symmetric field theories of matter, otherwise the devices we traditionally
use to measure lengths and times could not always agree, even approximately, with
the dictates of the metric. So this kind of postulate regarding the metric is not in-
nocent with regard to our field theories of matter, a point that may be overlooked
in anti-constructivist accounts such as [44] (see also Chap. 9). The converse view
discussed and advocated in this chapter, whilst stopping short of constructivist pre-
tensions, claims that, if we build Lorentz symmetric or locally Lorentz symmetric
field theories of matter, then we can deduce the usual interpretation of the metric
field.

Let us just focus once more on the problem that led us to consider the clock
and ruler hypotheses. In two of our investigations with the Bell atom, we con-
sider an observer who is not following a geodesic, viz., an observer sitting at fixed
Schwarzschild space coordinates and another sitting at fixed semi-Euclidean space
coordinates in a flat spacetime. One can arrange normal coordinates at any given
event on these worldlines in such a way that an atom moving with these observers
is instantaneously stationary relative to the coordinates, but one cannot avoid the
atom beginning to move or having had motion relative to these coordinates in some
neighbourhood of the chosen event. Our definition of proper length and time for
these observers tells us that these accelerating atoms will indicate these quantities
by their spatiotemporal dimensions. In the process we use to deduce what the atoms
will look like relative to these normal coordinates, we find that we have a prob-
lem that was already encountered in special relativity when an atom is accelerating,
viz., the fact that the atom is instantaneously stationary does not guarantee that its
spatiotemporal aspects will be identical to those of a coincident atom that is perma-
nently stationary.

In fact, Bell’s analysis indicates that this is only likely to work as an approxima-
tion. Using some exact theory in special relativity, one can in principle say exactly
what the accelerating atom will look like. One can therefore justify the hypothesis
that it will look sufficiently like the inertial atom, should that be the case. In other
words, the clock and ruler hypotheses that make the similarity claim for the two
atoms in special relativity are not fundamental assumptions required by the theory.
They are just assumptions about measurement accuracy and they can be justified or
rejected on Bell’s approach, although one might prefer to reject the atom as mea-
suring device, a point we come to below. In any case, this problem is carried over
identically by SEP to general relativity and solved in the same way there.
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We could for example look at things like this. Suppose the accelerating observers
we have been talking about in Schwarzschild spacetime or in an SHGF were to use
freely falling atoms to measure proper length and time, since this is in a sense what
the clock and ruler hypotheses would appear to recommend. It is clear from our
definition of proper length and time by the spatiotemporal characteristics of atoms
that these freely falling atoms are not a priori indicating the proper length and time
of the accelerating observers, although it might turn out by chance that they were, or
indeed that they gave a good approximation. Relative to the normal coordinates at
the chosen events, one can arrange for the freely falling atoms to remain stationary
at the origin of these normal coordinate systems, and this would mean that they had
slightly different spatiotemporal characteristics to the atoms that accelerate relative
to these coordinate systems. This is exactly the question raised by the clock and ruler
hypotheses. The question in any particular circumstance is just whether the expected
difference would be big enough given the accuracies elsewhere in the calculation or
the measurement.

Brown says this about the clock hypothesis (extending the quote on p. 245):

This is the claim that when a clock is accelerating, the effect of motion on the rate of the
clock is no more than that associated with its instantaneous velocity — the acceleration
adds nothing. This allows for the identification of the integration of the metric along an
arbitrary timelike curve — not just a geodesic — with the proper time. This hypothesis
is no less required in general relativity than it is in the special theory. The justification of
the hypothesis inevitably brings in dynamical considerations, in which forces internal and
external to the clock (rod) have to be compared. Once again, such considerations ultimately
depend on the quantum theory of the fundamental non-gravitational interactions involved
in material structure.

So these ‘hypotheses’ follow from the minimal extensions of our theories of physics
from special to general relativity with the help of the strong equivalence principle,
provided we are ready to apply Bell’s approach. What we can do (at least in prin-
ciple) when we have the minimally extended theories, and when we are ready to
apply Bell’s reasoning, is to find the exact motion of the electron around the nucleus
in arbitrary coordinates for an arbitrary spacetime, or in quantum theoretical terms,
the exact shape of the electron wave function as a 4D region of spacetime. By the
way these theories are set up via the strong equivalence principle, we know that,
in normal coordinates in which the atom is instantaneously at rest at the origin, we
will get a close approximation to the behaviour of the same atom but stationary in a
flat spacetime. We thus decree this as the operational definition of clock and ruler,
accepting of course that there will be a small error due to the curvature and the
non-inertial motion of the atom. The standard, purely theoretical relation between
the normal coordinates and whatever coordinates we are trying to understand (along
with their metric) then tells us how to interpret the metric components in those other
coordinates.

Along the way, the clock and rod hypotheses will be justified by the fact that the
minimally extended theories and this Bell approach give practically the same an-
swers for cases that are actually sure to differ slightly. For example, one can look at
the number of revolutions of the electron (as given exactly by the minimal extension
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of Maxwell’s theory MEME) for an atom that is accelerating in a flat spacetime and
for another which, at some event, has instantaneously the same speed (and maybe
is not accelerating, or has a different acceleration). There is an inevitable approx-
imation due to the fact that the period of the electron is finite, even though small,
so that, in order to count a few periods of the two electrons, one cannot avoid the
two atoms moving to different spacetime events. The point is that the main effect
here is due to the speed and that any effect due to curvature or acceleration is simply
written off by the certitude that one is condemned to make an approximation.

But if one found oneself in a situation where the clock or ruler hypotheses were
not valid at the given level of accuracy, would this not suggest that one’s measuring
instrument were not adequate to that situation? Would this be a criterion for seeking
some more refined measuring tool? And how far could one go on using quantum
wave functions to gauge lengths and times before spacetime so defined became
impossible to manage? How far could one go in imposing the spacetime continuum
of a differentiable manifold on length and time intervals obtained in this way?

6.5 Linking Theory to Measurement.
Interpretation of the Metric

Friedman and Scarr’s weak locality hypothesis (WLH) is inspired by Mashhoon’s
locality hypothesis (LH), as reviewed in [36, 37]. The aim in the next chapter will
be to identify Mashhoon’s motivations and confirm the conclusions of this and the
last chapter. In Mashhoon’s own terms, LH is the assumption that, at each instant
along her worldline, an accelerated observer is physically equivalent to an otherwise
identical momentarily comoving inertial observer, or more briefly, accelerated ob-
servers are always pointwise inertial. We shall need to understand what is meant by
physically equivalent, or indeed by being pointwise inertial.

But before commenting on the above papers, let us attempt to make a clear state-
ment about how to link the manifold and metric structure of GR to observations of
the real world. To begin with, we may postulate a weak equivalence principle (WEP)
which states that the locally inertial frames we know to exist in the mathematical
structure of the theory correspond to freely falling, non-rotating laboratory frames
in the following sense: if we naturally set up coordinates in such laboratories by
using standard techniques (whatever they may be!), then we obtain locally inertial
coordinates. There are two pressing questions:

• Why should this be a good starting point?
• How do we know whether our laboratory is non-rotating?

The techniques we use to measure lengths and times and hence set up real coor-
dinates involve real measuring equipment, so they indirectly involve all our field
theories of physics. To justify this WEP as starting point, we thus need the strong
equivalence principle (SEP) that tells us how to ship our non-gravitational theories
of physics into the curved spacetime context. The usual way of doing this is to say
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that, in a locally inertial frame (LIF), our non-gravitational field theories should
look roughly as they do in flat spacetime. This can be achieved in a minimal way by
replacing coordinate derivatives by covariant derivatives for the metric connection,
for example. So if the freely falling, non-rotating laboratory really did correspond
to a LIF, one would expect to just use standard measuring techniques in the normal
way, as though one were in a flat spacetime.

Regarding the second question, the answer is probably that we do not know
whether the laboratory is non-rotating. We can think of it as a specific hypothesis
about the specific situation we are in. If we succeed in setting up a correspondence
between theory and measurement that reveals no contradictions, we could suppose
the hypothesis valid. If we fail, it may be this hypothesis that is invalid and we must
then start comparing options. A worse situation would be one in which we obtain
what appears to be a good correspondence but this hypothesis along with one of the
others, such as WEP, is invalid. On the other hand, a good metaphysical hypothe-
sis here is perhaps that such collusion would be improbable. This is then a typical
question of global consistency between theory and measurement. The hypothesis
that laboratories with fixed orientations relative to remote objects in the Universe
are non-rotating seems successful within present accuracies, although we do not
know why.

This is actually the end of the story when it comes to linking the manifold and
metric structure of GR to observations of the real world. We can then consider non-
gravitational phenomena in the LIF and transform to any other coordinates or frame
we choose. This exploits SEP and the hypothesis that the representation of all phys-
ical quantities by tensorial objects in the mathematical picture gives a good corre-
spondence with reality.

This is where the idea of interpreting the metric field comes in, along with the
possibility of assessing the suitability of putative clocks and rulers, i.e., real time and
length measuring devices, under specific conditions of acceleration using our non-
gravitational field theories of physics. The main claim is that one can actually prove
that the metric field in GR can be interpreted as it usually is in terms of lengths and
times as they are normally measured. In Bell’s approach, we ask what happens to a
clock or ruler when it accelerates. We use an idealistic classical atom to fulfill both
functions. We make the operational definition that, wherever it is and whatever it is
doing, the radius and period of the atom indicate lengths and times, respectively, for
an observer moving with it. The minimum extension of electromagnetism (MEME)
to the curved spacetime, or a better theory, can be used to say exactly what happens
to the atom when carried by an observer following some arbitrary worldline. We
first describe the atom in normal, i.e., locally inertial coordinates, then convert to
any coordinates we like, e.g., coordinates adapted to the observer in some sense.

We find that to a good approximation the atom indicates lengths and times as
we would usually calculate them using the metric. We can also test the clock and
ruler hypotheses for this particular clock and ruler, viz., the atom, under whatever
conditions are specified by the worldline of the nucleus. That is, we can actually
assess the extent to which the atom resembles an instantaneously comoving inertial
atom, i.e., an identical atom in free fall at the same event, with the same four-velocity
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there. Put another way, if the aim is to show that the metric is good for defining
lengths and times, we can calculate the expected error using the atom as ruler and
clock, and hence actually determine the extent to which the atom fails as clock or
ruler for the given accelerating worldline.

But could all this also prove that the metric field delivers the lengths and times
that would be measured by standard techniques by observers out there in the real
world? A counterargument is that this been assumed anyway in the first step of this
discussion, where we set up locally inertial coordinates in a real laboratory. We said
earlier that, if we naturally set up coordinates in freely falling, non-rotating labora-
tories by using standard techniques, whatever they may be, then we obtain locally
inertial coordinates. But such coordinates are intimately related to the metric, be-
cause they are coordinates such that the metric is assumed to take on the Minkowski
diagonalised form diag(1,−1,−1,−1). So saying that standard techniques naturally
measure lengths and times in the freely falling, non-rotating laboratory does seem
implicitly to assume that the metric field indicates those lengths and times the way
we usually take it to.

In this picture then, or rather in this attempt at a logical account of the link be-
tween the manifold and metric structure of GR and observations of the real world,
the metric field would be defined as specifying lengths and times, but statements like
the clock and ruler hypotheses, or more generally the Mashhoon locality hypothesis
(see Chap. 7), could be tested by calculations using SEP for the specific measuring
equipment proposed, and estimates made for the errors they involve.

There is nevertheless a sense in which, without SEP, one would have difficulty
even interpreting the metric field, although this may seem unlikely on the above
account, where we define the metric field as being the thing that specifies lengths
and times in LIFs. Is there any vestige of truth in such a claim? Here we argue
that there is, since we do need to invoke SEP, which tells us how to ship our non-
gravitational theories of physics into the curved spacetime context, precisely so that
we can justify carrying out measurements as though we were in a flat spacetime.
Indeed, SEP says that, in a locally inertial frame, our non-gravitational field theories
should look roughly as they do in flat spacetime, and it is these theories that govern
our measuring devices.

Another line of thinking would be to decree that the metric indicates lengths and
times once we have coordinates, but the problem is then to know what coordinates
we have set up. If we could also decree that coordinates naturally set up in freely
falling, non-rotating laboratories are inertial, without trying to justify that claim,
it seems that we would logically succeed in simply imposing the meaning of the
metric by edict, but then we lose the benefits of the justification described above.
And as mentioned in Sect. 6.4, we are then forced to build Lorentz symmetric field
theories of matter in order to understand why what we usually refer to as clocks and
rulers do in fact deliver times and lengths, so the edict is not innocent with respect
to our dynamical theories.

So far we have considered two possible views of the metric field:

• Definable as what specifies lengths and times.
• Provable as what specifies lengths and times.
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The discussion in Brown’s paper entitled The behaviour of rods and clocks in gen-
eral relativity, and the meaning of the metric field [7] focuses on the following op-
posing views:

• The metric field is fundamentally of geometrical significance and regarded as
being an intrinsic property of spacetime, specifying the very fabric of spacetime
in some sense.

• The metric field is just like any other field over spacetime, but happens to specify
lengths and times as we would usually measure them (at least approximately) by
our rulers and clocks for a deeper reason related directly to the fact that all our
non-gravitational field theories of matter governing the internal constitution and
interactions of our rulers and clocks are locally Lorentz symmetric.

The above discussion is clearly related to this through the attempt to specify the
exact role of SEP and the dynamical theories that are absolutely necessary in every
case when trying to decide whether the metric does in fact yield the length or time
measured by a real ruler or clock.

The fact that we always require several non-gravitational field theories to under-
stand the relationship between a real length or time measurement and the metric
field suggests that the latter is not primarily or intrinsically concerned with lengths
or times. On the other hand, the fact that the metric field can nevertheless always
yield a value for the length or time actually measured suggests that it is somehow
intimately related to our notions of length and time. Brown suggests that this in-
timate relation is due to the deeper fact that, for some mysterious reason, all our
non-gravitational field theories of matter are locally Lorentz symmetric.

He shows that (global) Lorentz symmetry of our field theories of matter is also
the most fundamental hypothesis of special relativity. In his account, it is better to
begin with this than principles like the relativity principle which can be deduced
easily from it, or talk of light signals that implicitly depend on a theory of light
which needs to be Lorentz symmetric, while at the same time one must deduce
anyway at the end of the day that all field theories are actually Lorentz symmetric.

The opposing idea that the metric field is fundamentally of geometrical signifi-
cance and should be regarded as an intrinsic property of spacetime, specifying the
very fabric of spacetime in some sense, is best put by Brown’s quote from Will [52]:

The property that all non-gravitational fields should couple in the same manner to a single
gravitational field is sometimes called universal coupling. Because of it, one can discuss
the metric as a property of spacetime itself rather than as a field over spacetime. This is be-
cause its properties may be measured and studied using a variety of different experimental
devices, composed of different non-gravitational fields and particles, and the results will be
independent of the device. Thus for instance the proper time between two events is char-
acteristic of spacetime and of the location of the events, not of the clocks used to measure
it.

But the interpretation of the mathematically defined quantity proper time as the
extent to which physical processes of all kinds will have proceeded in systems fol-
lowing the chosen worldline depends heavily on the non-gravitational field theories
at work in the system and the only reason why different systems deliver the same
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(or closely similar) estimates for what we usually call time is that we assume SEP,
which itself assumes local Lorentz symmetry of those non-gravitational field theo-
ries. Put another way, the fact that we can discuss the metric as a property of space-
time itself rather than as a field over spacetime distracts us from the fact that this
depends entirely on the unexplained and often unmentioned hypotheses of universal
coupling and local Lorentz symmetry that license this.

So there is a risk of missing the fundamental role of these hypotheses, which are
themselves mysterious in Brown’s sense of being explanation-seeking, if we simply
decree the metric as being part of the very fabric of spacetime, or merely declare it to
specify the geometry of spacetime. In addition, Brown’s picture reminds us that we
must actually set up coordinates in the real world, which we expect to correspond
somehow to the theoretical coordinates, and here we come to the idea put forward
above that we can achieve this by identifying freely falling, non-rotating laboratories
through a notion of global consistency of construction and theory, always assuming
that the theory is good enough to describe reality.

Naturally, the issue of which account is most logical has been widely debated,
particularly among philosophers. Even in pure mathematics, there are different log-
ical accounts of any given theory. These go down as different axiomatisations. And
axiomatisation serves two specific purposes in the context of pure mathematics:

• By filtering an axiomatisation, i.e., by keeping a subset of the axioms and drop-
ping others, a given mathematical theory can be generalised.

• Generalisation, but also the modification of axiomatisations, leads to an under-
standing of the mathematical theory, by showing what aspects of it depend on
what other aspects, rather in the manner of analysis (extracting axioms) and syn-
thesis (producing theorems).

But although pure mathematics is always inspired by something in the real world
(since we are part of that world), it is never held accountable by that world in the
way that a theory of physics would be. It is held accountable to some extent, because
it has to be logically consistent, but it is not required to correspond in detail to things
that happen around us in the way that a theory of physics must, particularly through
its predictions.

So on top of the axioms of the theory, if one may refer to the logical grounding of
a physical theory in those terms (and why not, since it is only mathematics?), there
is another major ingredient in physics: the correspondence with reality. All the more
reason then to try to get a better understanding of physics by doing something like
axiomatisation, but taking into account the extra ingredient. And the purpose in this
case is presumably only the second of the above, namely to obtain a better under-
standing, by generating several explanations for what we are doing which happily
live together without conflict.

Since there is so much debate, sometimes conflictual, between human beings who
prefer one way of putting things rather than another, instead of viewing the existence
of mutually consistent explanations as a bonus, perhaps it is worth remembering
that all these explanations, even what we call the laws of nature, are only our way of
understanding the world, no matter how well they seem to us to predict what is going
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on in that world. The present view is that the dynamical explanations for special
relativistic effects are worth having, and we shall return to this in detail in Chap. 9,
since these explanations turn out to be closely connected with the phenomenon of
acceleration.





Chapter 7
Mashhoon’s Locality Hypothesis

Let us now turn specifically to Mashhoon’s locality hypothesis, as reviewed in
[36,37]. He motivates the whole discussion by the observation that the basic laws of
microphysics have been formulated with respect to ideal inertial observers, whereas
in fact all actual observers are accelerated. So, for example, we originally ob-
tained Maxwell’s equations of electromagnetism, describing these effects in inertial
frames, and now we have the problem of describing what a real, i.e., accelerating
observer, will consider to be these effects.

For Mashhoon, it is clear that we are talking about a real problem, namely the
problem of relating what real, probably accelerating observers observe to the fun-
damental theory. This problem concerns observers in gravity-free contexts just as
much as observers in situations where there is gravity. His aim then is to establish
a connection between actual and inertial observers, achieved in SR by the locality
hypothesis, viz., the assumption that an accelerated observer at each instant along
her worldline is physically equivalent to an otherwise identical momentarily co-
moving inertial observer. He considers a non-inertial observer as passing through,
in some sense, a continuous infinity of hypothetical momentarily comoving inertial
observers.

It is important to understand what is meant in practice by the term physically
equivalent and this is the aim of the following sections of this chapter. We shall see
(e.g., on p. 269) that it means that every measurement of any physical quantity by
the accelerating observer or her measuring device will give the same measurement
as would have been obtained by the instantaneously comoving inertial observer, to
within measurement accuracy.

So here is Mashhoon’s picture. The special theory of relativity, i.e., the standard
relativistic physics of Minkowski spacetime, is primarily based on a fundamental
symmetry in nature, namely, Lorentz symmetry, which allows us to relate the physi-
cal measurements of inertial observers at rest in one inertial frame to those at rest in
another inertial frame. Of course, we have to be able to identify the inertial frames,
and this is done on the level of global consistency of theory and measurement: the
(real) inertial frames are ones in which measurements show the theory to take on its
simplest form.

263
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The basic laws of microphysics are initially formulated with respect to inertial
observers, i.e., in inertial coordinate frames, but all actual observers are accelerating
in some way. The term ‘observer’ is used in an extended sense to include any mea-
suring device. In order to interpret experimental results then, we need to establish
a physical connection between accelerated and inertial observers. The assumption
that is supposed to achieve this in the standard theory of relativity is the hypothesis
of locality:

An accelerated observer (measuring device) along its worldline is at each instant physically
equivalent to a hypothetical inertial observer (measuring device) that is otherwise identical
and instantaneously comoving with the accelerated observer (measuring device).

Then Lorentz symmetry and the locality hypothesis together form the physical basis
for the special theory of relativity in this view. He notes that Lorentz invariance
is consistent with quantum theory, but that this is not the case with his locality
hypothesis (LH). The aim of Mashhoon’s nonlocal formulation of special relativity
[37] (not discussed here) is to correct this situation. He then considers LH to be an
extension of Lorentz symmetry, in some sense.

The inspiration is Newtonian point particle mechanics: the accelerated observer
and the otherwise identical instantaneously comoving inertial observer have the
same position and velocity, and hence share the same state, whatever that means.
He claims that they are thus pointwise physically identical in classical mechanics.
But this seems an odd suggestion since, even in Newtonian mechanics, accelerating
observers have to imagine the so-called inertial forces in order to pretend that they
are moving inertially! Such a motivation therefore looks rather weak.

In Mashhoon’s picture, in SR, the accelerated observer is envisaged through LH
as a continuous infinity of hypothetical momentarily comoving inertial observers,
and interestingly enough, this is strongly reminiscent of the construction of semi-
Euclidean (SE) coordinate systems. Mashhoon mentions that Lorentz first intro-
duced such an assumption in his theory of electrons when he conceived of an elec-
tron as a small ball of charge that would always be exactly FitzGerald contracted
along its direction of motion, an assumption still commonly made when carrying
out self-force calculations (see Sect. 9.3 and [32]). This is indeed precisely the as-
sumption that the electron is rigid, or undergoing rigid motion, in the sense described
earlier. Lorentz viewed this as an approximation. Physically, it amounted to assum-
ing that the electron velocity would change over a much longer time scale than the
period of its internal oscillations.

But are we talking about subjects of physical investigation like electrons, or ob-
servers and the coordinate systems or other frames they might set up? There is cer-
tainly a similarity in the assumptions, but what remains crucial is what Mashhoon
means by physically equivalent in his statement about accelerating observers in LH.
Actually, this highlights the difference between accelerating observers and acceler-
ating measuring devices in that statement. The measuring device does not need to
set up coordinates and so is more like Lorentz’s electron!

Mashhoon also mentions Einstein’s understanding of rods and clocks, claiming
that the hypothesis of locality underlies Einstein’s development of the theory of
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relativity. He sees the locality assumption as fitting perfectly together with Einstein’s
local principle of equivalence to ensure that every observer in a gravitational field
is pointwise inertial. On the other hand, only freely falling observers are usually
considered to be inertial, so it is not obvious how to interpret such a claim.

He goes on to say that, in order to preserve the operational significance of Ein-
stein’s heuristic principle of equivalence, which he takes to be the presumed local
equivalence of an observer in a gravitational field with an accelerated observer in
Minkowski spacetime, whatever equivalence may mean here, it must be coupled
with a statement regarding what accelerated observers actually measure. Taken from
this angle, it looks like it is the measuring device that really matters in the statement
of LH, rather than people with preferences about coordinate systems.

When coupled with the hypothesis of locality, then, Mashhoon considers that
Einstein’s principle of equivalence provides a physical basis for a field theory of
gravitation that is consistent with (local) Lorentz invariance. But how do we for-
mulate that notion of consistency? The idea is perhaps that the instantaneously co-
moving (locally) inertial, i.e., freely falling, measuring devices we invoke in LH are
somehow consistent with (local) Lorentz invariance because physics ‘looks like’ flat
spacetime physics to observers comoving with such devices. However, that looks
rather like making a mountain out of a molehill, or taking LH to be a fundamental
principle rather than a purely pragmatic one.

The earlier of the two papers [36] gets more quickly down to the nitty gritty of the
approximations involved. The idea is that, if all physical phenomena were somehow
reducible to pointlike events, then LH would be exactly valid. The problem thus
arises, in this view, because things like EM waves involve intrinsic length and time
scales, viz., their wavelength λ and period λ/c. To measure the frequency of a wave
would require observation of several oscillations, but during this time, the observer
or measuring device will have changed its Newtonian state, i.e., changed its velocity.

If the change in velocity occurring over a few periods of the wave can be dis-
regarded, then LH is considered to be vindicated. This idea, or approximation, is
quantified by defining an acceleration length L for the observer and saying that LH
amounts to λ/L � 1 for the case of the EM wave, for example. The observer will
also have an acceleration time L /c. For translational acceleration a, we could take
L = c2/a, and for rotation at angular speed Ω , we could take L = c/Ω .

One can also consider the locality hypothesis as an adiabaticity assumption anal-
ogous to the one for sufficiently slow processes in thermodynamics. This would
therefore be expected to be a good approximation only up to some acceleration, for
a given measuring device and measured phenomenon. The whole issue here is one of
estimating the validity of approximations in real physical measurement situations.
In itself, it contains no profound features.

If we consider an accelerated measuring device in Minkowski spacetime, the
internal dynamics of the device is then subject to inertial effects that consist of the
inertial forces of classical mechanics together with electromagnetic and quantum
effects. If the net influence of these inertial effects integrates over the relevant length
and time scales of a measurement to perturbations that do not appreciably disturb



266 7 Mashhoon’s Locality Hypothesis

the result of the measurement and can therefore be neglected, then LH is valid and
the device can be considered acceptable for that particular measurement.

The response of measuring devices to acceleration, i.e., the influence of inertial
effects on their operation, should eventually be determined on the basis of a proper
theory of accelerated systems. This is precisely what is done in Bell’s approach to
the one-electron atom in flat spacetime, which is subject to Maxwell’s equations,
but can also be done in curved spacetimes using MEME, as we saw in Chap. 6.
The added difficulty in GR is that one needs to specify how to set up coordinates,
e.g., locally inertial coordinates, and this is a heavily theory-laden process. In SR,
we think we know how to set up inertial coordinates, and SEP licenses the idea
of doing exactly the same thing operationally speaking when freely falling in the
curved spacetime. We expect this to set up locally inertial coordinates in the latter
case.

As Mashhoon notes, in an Earth-based laboratory, the translational acceleration
length would be Ltrans = c2/g ∼ 1 light-year, with g as the acceleration due to
gravity at the Earth’s surface, while the rotational acceleration length would be
Lrot = c/Ω ∼ 28 A.U., with Ω the angular frequency of rotation of the Earth about
its axis. These acceleration effects are thus likely to be negligible for most measure-
ment purposes.

Mashhoon also mentions the decay time of muons in storage rings as investigated
by Eisele under the title On the behaviour of an accelerated clock [20], also cited
and discussed by Brown in [7]. The hypothesis of locality implies that τµ = γτ0

µ ,
where τ0

µ is the lifetime of the muon when it is at rest, and γ is the Lorentz factor
corresponding to the circular motion of muons in the storage ring. But one can
avoid the locality hypothesis by using a model in which the muon decays from
a high-energy Landau level in a constant magnetic field. The muon decay is then
susceptible to quantum calculations which give

τµ ≈ γτ
0
µ

[
1+

2
3

(
λ

L

)2
]
, (7.1)

where λ = h̄/mc is the Compton wavelength of the muon and L is its effective
acceleration length, i.e., L = c2/a, where a = γ2v2/r ∼ 1018g is the effective cen-
tripetal acceleration of the muon in the storage ring. In practice, the nonlocal cor-
rection term turns out to be very small.

Brown says that, in all such experiments, the clock retardation as gauged by muon
decay is calculated in conformity with the clock hypothesis, which is the instance
of LH we are concerned with here, whence the effect is due to root mean square ve-
locities or integration over instantaneous velocities of the clocks. The instantaneous
accelerations themselves are assumed to contribute nothing to the effect. The point
to note here, however, is that, for any given clock, no matter how ideal its behaviour
when moving inertially, there will in principle be an acceleration such that, in order
to achieve that acceleration, the external force acting on the clock will disrupt its
inner workings sufficiently to make a significant difference.
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Mashhoon does not mention the possibility, not encoded within present theories,
that there may also be universal effects due to acceleration, just as there are universal
effects due to velocity. The word ‘universal’ here means that we refer to effects that
do not depend on the specific clock. Such effects would presumably signal some
kind of acceleration symmetry that should be included in our field theories of matter.

In Brown’s account, we have more on the Eisele calculation. The muon orbits are
described in terms of a Landau level with high quantum number, and perturbation
techniques in the theory of the weak interactions are used to estimate the muon
lifetime theoretically. Even for these high accelerations a∼ 1018g, the correction to
the clock hypothesis estimate would only be of the order of 1 part in 1025, far too
small for the original experiment to detect. But note that there is nothing to prevent
a more accurate experiment detecting this one day.

No clock is perfect, but with a better clock, we should always be able to measure
the inaccuracies of the less perfect one. A better clock is one which, by definition,
conforms better to the requirements of the clock hypothesis in the given circum-
stance, i.e., for the given worldline. This is because proper time is defined within
the theory, but that definition is justified by the fact that it is relevant to the way real
clocks behave. As Eisele says, the most interesting part of the calculation lies not in
potential applications, but rather in the possibility of checking the clock hypothesis
in this special case with the help of an accepted physical theory. There is one clock
hypothesis for each system, and we can in principle check it.

Brown puts the issue particularly clearly. In contrast to time dilation induced by
uniform motion, which is usually understood to be independent of the constitution
of the clock because it is universal in the sense mentioned above, the effects of the
acceleration will depend on the constitution of the clock. The reason why time dila-
tion induced by uniform motion appears to be independent of the clock constitution
boils down to the fact that all the field theories of matter governing the functioning
of the clock are Lorentz symmetric. Of course, we expect acceleration effects that
depend on the clock constitution, and there may in principle be other acceleration
effects that are universal because they arise from an as yet unknown acceleration
symmetry of the field theories of matter.

So Eisele’s calculations tell us why the muon can be used as a microscopic way-
wiser for timelike curves in relativistic spacetime, even when the curves are non-
geodesic and involve enormous accelerations of the order of 1018g. It is simply be-
cause the process they instantiate nevertheless runs at the rate decreed by the proper
time of the curve.

Mashhoon goes on to discuss Lorentz’s models of the electron as spatially ex-
tended charge distributions with the usual rigidity assumption, which amounts to
another instance of LH, indeed, what is usually called the ruler hypothesis. He also
mentions Einstein’s remark that one must assume that the behaviour of rods and
clocks depends only upon velocities and not upon accelerations, which as we have
seen is not strictly true. This is in fact just a reasonable assumption in many cases.
The real issue here is whether specific instances of rods and clocks are up to the task
in the given situation, i.e., for the given worldline.
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Oddly, Mashhoon also seems to miss this point. He says that the modern exper-
imental foundation of Einstein’s theory of gravitation requires an extension of this
assumption to all standard measuring devices, whence LH supersedes the clock and
ruler hypotheses. But it would be better to say that, in each instance, i.e., for each
measuring device and each worldline, we must apply our fundamental theories to
estimate what these devices will actually register. We can then compare with what
would be expected if LH were valid and determine whether the accuracy of the
device requires us to take the acceleration or gravitational field into account.

So LH is not a fundamental addition to our theoretical paraphernalia, as Mash-
hoon seems to imply at times. It is merely an approximation that we can in principle
always justify, or reject. He notes for example that LH rests upon the possibility of
defining instantaneous inertial rest frames along the worldline of an arbitrary point
particle, and that Minkowski raised this possibility, and hence LH likewise, to the
level of a fundamental axiom. The present view is that this confuses theory and
practice. Theoretically, we can always construct instantaneously comoving inertial
frames in the usual manifold context. Making this an axiom in some other approach
to theoretical construction of the spacetime changes nothing in the usual theoretical
picture.

The real question here is whether we can construct something in the real world
that corresponds to what we construct, or lay down axiomatically in theory. That is
another matter. The fact that one can construct the theory by laying such a condition
down as an axiom does not help us in any way. In practice, we have to assume at
some point that what we are actually doing out there with clocks and rulers can be
taken to construct a real physical counterpart to the theoretical structure. Theory can
tell us what is likely to work as a good clock or ruler in the given circumstance. Then
every experiment serves to check the overall consistency of the relevant theoretical
considerations and practical constructions. When disagreements are found, we first
question the practical construction, and if there is no reason for doubt there, we
finally obtain criticism of the theory itself.

7.1 Mashhoon on Length Measurement
by Rotating Observers

This section is based on the discussion in [36]. Observers A and B move round a
circle of radius r about the origin in the (x,y) plane of an inertial frame L in flat
spacetime. At t = 0, A is at azimuthal angle ϕA = 0 and B is at ϕB = ∆ . For t > 0,
they have motions specified by the same angular frequency Ω̂0(t)> 0, so that their
positions are given by

ϕA(t) =
∫ t

0
Ω̂0(t ′)dt ′ , ϕB(t) = ∆ +

∫ t

0
Ω̂0(t ′)dt ′ . (7.2)
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For an observer in L, the angular separation ∆ϕ of A and B is constant at any time
t > 0, viz.,

∆ϕ = ϕB(t)−ϕA(t) = ∆ .

The spatial separation along the arc is

l(t) = r∆ϕ = r∆ .

We now consider a set O of observers O covering all points on the arc from A
to B, and moving exactly as A and B, with angular frequency Ω̂0(t). For t > 0, the
observer in L considers all members of O to be at rest in a rotating coordinate system
(x′,y′,z′) obtained from (x,y,z) by rotation about the z axis with frequency Ω̂0(t).

We now ask what length the arc from A to B should have as assessed by the
observers in O . The locality hypothesis suggests (or rather hopes) that, at any time
t > 0 in L, each observer O is instantaneously equivalent to a comoving inertial ob-
server O′, in the sense that both O and O′ would register exactly the same values
for all physical quantities they try to measure by applying exactly the same mea-
suring device and method to the task. This is what is meant by the term physically
equivalent in Mashhoon’s general statement of LH on p. 264.

In this case, the hypothesis hopes that O will register the same infinitesimal arc
length as O′, and we know that to be δl′(t) = γ̂δl(t), where γ̂(t) is the Lorentz factor
corresponding to the speed v̂(t) = rΩ̂0(t), and δl(t) is the arc length in question as
gauged in L. If we now define

l′ := ∑δl′ = γ̂(t)∑δl = γ̂(t)l , (7.3)

this could be called the arc length as measured by the observers O . However, each
δl′ is an infinitesimal length at rest in a different inertial frame.

Mashhoon claims that the same result is obtained if length is measured using
light travel time over infinitesimal distances between observers in O . We know the-
oretically from Chap. 5 that measurements of infinitesimal proper distances using
light travel times should deliver the answer δl′(t) = γ̂δl(t), at least to a certain level
of accuracy. The problem with (7.3), if it is a problem, is the sum, because we add
up quantities measured in very different inertial frames.

Mashhoon says that (7.3) is not a proper geometric definition of length, and
even wonders whether it is physically reasonable. But would the situation be im-
proved, as he suggests, by somehow combining the infinite number of disjoint iner-
tial frames into one continuous accelerated frame of reference? The word ‘combin-
ing’, although not appropriate here, immediately makes us think of the SE frames.
Mashhoon’s proposal, the most natural in his view, is to choose one of the non-
inertial observers on the arc, say A, and set up a geodesic coordinate system along
its worldline.

He claims that the measure of interval along the worldline (proper time) and
away from it (proper length) would be determined by LH. But does this not reveal
a misunderstanding of his own idea? Surely LH does not determine anything, only
proposes that such and such a measuring device will to a sufficiently good approx-
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imation (better than measurement accuracy) measure the same thing as an instanta-
neously comoving inertial measuring device of the same kind, whence theory tells
us what it will measure, at least to within measurement accuracy.

The misunderstanding seems to be confirmed by his statement:

[. . . ] at any instant of proper time the rules of Euclidean geometry are applicable, as the
accelerated observer is instantaneously inertial.

But it would be hard to get a clear understanding by putting things in this way. An
accelerated observer is never inertial, even instantaneously. That is the whole prob-
lem. LH just seems to embody the idea that we can sometimes pretend it is, to within
measurement accuracy. So for the moment, let us not make further claims about the
role of LH in understanding the continuous accelerated frame of reference. Let us
just follow Mashhoon’s account of how to construct such a frame both theoretically
and pragmatically, and assess its role for ourselves.

The aim then is to find the proper length of the arc from A to B in what Mashhoon
calls a geodesic coordinate system adapted to the worldline of A. Of course, this will
deliver a different answer to (7.3). But so what? Where is the surprise? And why use
this coordinate system? If we want to measure the result in (7.3) or the result we are
about to calculate, we will of course have to do something different in each case.
How will that throw light on LH? Let us establish how this new definition of the arc
length might be measured physically and see how it elucidates this issue.

7.2 Calculating a Length in the Rotating Tetrad
Coordinate System

Here we shall actually investigate two ways of calculating the arc length occupied
by the continuous set O of observers O lying between the two observers A and B, as
described in Sect. 7.1. We refer here to the formalism set up in Sect. 2.11. The two
approaches are as follows:

• The most natural way to do this is to intersect the cylinder of worldlines by a HOS
of the rotating tetrad coordinate system associated with A, i.e., by a hyperplane
of constant T , and then integrate dL := (dX2 + dY 2)1/2 along the appropriate
interval corresponding to the arc from A to B. This is straightforward, apart from
establishing the endpoint corresponding to the last observer B.

• Mashhoon integrates dL := (dX2 +dY 2)1/2 along a different curve in spacetime,
namely, the intersection of the cylinder of worldlines with a HOS of the inertial
coordinate system, i.e., a hyperplane of constant t. This approach is less natural,
because it mixes views from two different frames, but it does evaluate a length
for the same curve in spacetime as (7.3). It is also more difficult, because T varies
from one observer to the next, and one must identify exactly how it varies.

Note that dL is worked out as though the (X ,Y ) plane had Euclidean geometry, and
it does in a hyperplane of constant T [see the metric (2.340) on p. 105], a point in
favour of the first calculation.
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7.2.1 Calculating the Length in a Constant T Hyperplane

The worldline of A is given in inertial coordinates by

xA(t) =
(
t,r cosϕA(t),r sinϕA(t),0

)
, (7.4)

as t varies, where

ϕA(t) =
∫ t

0
Ω̂0(t ′)dt ′ . (7.5)

The worldline of B is given in inertial coordinates by

xB(t) =
(
t,r cosϕB(t),r sinϕB(t),0

)
, (7.6)

as t varies, where

ϕB(t) = ∆ +
∫ t

0
Ω̂0(t ′)dt ′ , (7.7)

for a constant ∆ which effectively specifies B. And finally, the worldline of O is
given in inertial coordinates by

x(t) =
(
t,r cosϕ(t),r sinϕ(t),0

)
, (7.8)

as t varies, where

ϕ(t) = δ +
∫ t

0
Ω̂0(t ′)dt ′ , (7.9)

for a constant δ which specifies O.
If ∆ = 2π , all these observer worldlines form a cylinder in spacetime as viewed

in the inertial frame (if we drop the z dimension), specified by

x2 + y2 = r2 . (7.10)

Since from (2.331) on p. 104, we have(
x
y

)
=

(
cosφ −sinφ

sinφ cosφ

)(
X + r

γY

)
, (7.11)

it follows that (
X + r

γY

)
=

(
cosφ sinφ

−sinφ cosφ

)(
x
y

)
. (7.12)

It then follows immediately that

(X + r)2 + γ
2Y 2 = x2 + y2 , (7.13)

so the above cylinder (7.10) is expressed by

(X + r)2

r2 +
Y 2

(rγ−1)2 = 1 . (7.14)



272 7 Mashhoon’s Locality Hypothesis

Dropping the Z dimension, this is an elliptical cylinder in spacetime, not surpris-
ingly. The observer A at the space origin of the (T,X ,Y,Z) coordinate system is
instantaneously borrowing the HOS of an ICIO, and we expect this to cut the circu-
lar cylinder in an ellipse.

The direction of motion of A is the Y direction, tangential to the circle in the (x,y)
plane, as can be seen from (2.330) on p. 103 [see in particular λ

µ

(1)], so the ellipse

is squashed by a factor of γ−1 < 1 in the Y direction, where γ corresponds to the
instantaneous speed of A. The general formula for an ellipse centered at the point
(X ,Y ) = (−r,0) is

(X + r)2

a2 +
Y 2

b2 = 1 . (7.15)

This has eccentricity

e :=

√
a2−b2

a
. (7.16)

In the present case, a = r and b = rγ−1, so it turns out that the eccentricity here is
e = v. The semi-major axis is r, since the ellipse passes through the space origin of
the (X ,Y ) plane (where A sits), and the semi-minor axis is rγ−1.

So we have a picture of the cylinder of all the observer worldlines as it would be
recorded by A relative to the (T,X ,Y,Z) coordinates in constant T snapshots, ignor-
ing the Z dimension. In such a constant T hyperplane, it is convenient to replace X
and Y by another parameter, in fact, a single parameter θ specified by

X + r = r cosθ , Y = rγ
−1 sinθ , (7.17)

which runs from 0 to 2π as one moves around the ellipse from A to A. In a con-
stant T hyperplane, and systematically ignoring Z in the following, the event on the
elliptical cylinder specified by θ has inertial coordinates

t = F(T )+ γ(T )v(T )Y = F(T )+ rv(T )sinθ , (7.18)

x = (X + r)cosφ(T )− γ(T )Y sinφ(T )

= r cosθ cosφ(T )− r sinθ sinφ(T )

= r cos
[
θ +φ(T )

]
, (7.19)

and

t = (X + r)sinφ(T )+ γ(T )Y cosφ(T )

= r cosθ sinφ(T )− r sinθ cosφ(T )

= r sin
[
θ +φ(T )

]
. (7.20)

We can now say which observer O ∈ O happens to be at this event, since we have
(7.8), and comparison dictates that
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ϕ(t) = θ +φ(T ) , (7.21)

recalling that ϕ(t) = δ +ϕA(t) specifies an observer through the value of δ . The
relation (7.18) is important here because it tells us the value of t we should be using
to understand (7.21).

At the risk of becoming tedious, it is worth formulating this a little more closely
since there are so many parameters around. The aim is to integrate the quantity
dL :=

√
dX2 +dY 2 around part of the above ellipse in a hyperplane of fixed T = TA

chosen by A at the outset. The relevant part of the ellipse is specified by some value
Θ of θ which specifies the event where the worldline of observer B intersects the
hyperplane T = TA. This value of θ will generally depend on the chosen value TA of
T .

Now from (7.17) specifying X and Y in terms of θ , we have

dX =−r sinθdθ , dY = rγ
−1 cosθdθ , (7.22)

so

dL = r(sin2
θ + γ

−2 cos2
θ)1/2dθ

= r
[
1− cos2

θ(1− γ
−2)
]1/2dθ

= r(1− v2 cos2
θ)1/2dθ . (7.23)

The aim is therefore to find Θ(TA) and calculate

L = r
∫

Θ

0
(1− v2 cos2

θ)1/2dθ . (7.24)

Note immediately that v in the integrand does not depend on θ , but is just the speed
v(TA) of A at the chosen time TA (which is a proper time of A, in fact). This means
that the integral itself is rather easily found from tables of elliptic integrals.

An incomplete elliptic integral of the second kind is

E(k,α) :=
∫

α

0

√
1− k2 sin2

θ dθ , 0 < k < 1 . (7.25)

This is also called Legendre’s form for the elliptic integral of the second kind [51].
In the integral for L, the constant v satisfies 0 < v < 1, but we have a cosine rather
than a sine function. However,

cosθ = sin(π/2−θ) ,

so
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Θ

0

√
1− v2 cos2 θ dθ =

∫
π/2

π/2−Θ

√
1− v2 sin2

θ dθ

=
∫

π/2

0

√
1− v2 sin2

θ dθ −
∫

π/2−Θ

0

√
1− v2 sin2

θ dθ .

Then we have

L = r
[
E(v,π/2)−E(v,π/2−Θ)

]
. (7.26)

We still need to determine Θ(TA) specifying the position of B on the ellipse formed
by intersecting the HOS of A at its proper time TA with the cylinder of worldlines
described earlier. What equation do we need to solve to obtain Θ(TA)?

Given TA and ∆ specifying B via its angular position

ϕB(t) = ∆ +
∫ t

0
Ω̂0(t ′)dt ′ = ∆ +ϕA(t) , (7.27)

we have to find where the hyperplane HTA of constant T = TA cuts the worldline WB
of B. The latter is given in inertial coordinates by

xB(t) =
(
t,r cosϕB(t),r sinϕB(t),0

)
=
(

t,r cos
[
∆ +ϕA(t)

]
,r sin

[
∆ +ϕA(t)

]
,0
)
.

The former is given by

HTA =

{(
F(TA)+ γ(TA)v(TA)Y,(X + r)cosφ(TA)− γ(TA)Y sinφ(TA),

(X + r)sinφ(TA)+ γ(TA)Y cosφ(TA),Z
)

: X , Y , Z alone vary

}
.

The ellipse lies on this plane and we know there will be a value of θ depending on
∆ such that the intersection of WB and HTA occurs for that θ . We see here why this
value Θ of θ should be expected to depend on TA.

As noted earlier [see (7.18), but we now have a more specific notation], the iner-
tial time t(TA) for the intersection we seek is given by

t(TA) = F(TA)+ γ(TA)v(TA)Y = F(TA)+ rv(TA)sinΘ(TA) . (7.28)

We also have the value of the inertial coordinate x at the intersection, viz.,

r cosϕB
(
t(TA)

)
= (X + r)cosφ(TA)− γ(TA)Y sinφ(TA)

= r cos
[
Θ(TA)+φ(TA)

]
,

mirroring (7.19), and the value of the inertial coordinate y at the intersection, viz.,
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r sinϕB
(
t(TA)

)
= (X + r)sinφ(TA)+ γ(TA)Y cosφ(TA)

= r sin
[
Θ(TA)+φ(TA)

]
,

so we only need one other relation to describe the event in spacetime that concerns
observer B for the purposes of this calculation, viz.,

ϕB
(
t(TA)

)
=Θ(TA)+φ(TA) . (7.29)

Feeding in (7.28), we can obtain Θ(TA) by solving

ϕB

(
F(TA)+ rv(TA)sinΘ(TA)

)
=Θ(TA)+φ(TA) . (7.30)

Note that, by (7.27), this can be written

ϕA

(
F(TA)+ rv(TA)sinΘ(TA)

)
+∆ =Θ(TA)+φ(TA) . (7.31)

Recall also from the definition of φ just prior to (2.272) on p. 90, that φ(TA) is equal
to ϕA(tsomething) for some value tsomething of the inertial time corresponding to the
proper time TA of A. However, the two occurrences of the function ϕA appearing in
(7.31) are evaluated at different values of the inertial time! Otherwise we might have
made the hasty deduction that ∆ =Θ(TA) just after (7.21) on p. 273.

To be precise, the time t(TA) =F(TA)+rv(TA)sinΘ(TA) at which ϕA is evaluated
on the left-hand side is the inertial time when B is considered by the ICIO for A at
its proper time TA to be simultaneous with A, whereas the time tsomething is found
from (7.18) on p. 272 with T = TA and Y = 0, whence

tsomething = F(TA) 6= F(TA)+ rv(TA)sinΘ(TA) . (7.32)

Equation (7.31) could thus be written

ϕA

(
F(TA)+ rv(TA)sinΘ(TA)

)
+∆ =Θ(TA)+ϕA

(
F(TA)

)
. (7.33)

Note that the relations (7.31) and (7.33) generalise immediately to any of the inter-
mediately placed observers O ∈ O specified by δ ∈ [0,∆ ]. We would then obtain a
generally different value of Θ(TA) for the given value of TA, so we ought to use a
symbol like θ(δ ,TA). The general relations are thus

ϕA

(
F(TA)+ rv(TA)sinΘ(TA)

)
+δ = θ(δ ,TA)+φ(TA) (7.34)

or

ϕA

(
F(TA)+ rv(TA)sinΘ(TA)

)
+δ = θ(δ ,TA)+ϕA

(
F(TA)

)
. (7.35)
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For the present purposes then, we use (7.26) together with (7.33) to calculate the
length between observers A and B in the most natural way if A records data using
the coordinate system (T,X ,Y,Z). It would be miraculous if that delivered the value
for the length obtained in (7.3) on p. 269.

But so what? Even inertial observers with different motions get different lengths.
The difference when an observer has acceleration is that there is no single agreed
definition for a length, even given the motion of the observer, and this ultimately is
because our field theories of matter have no acceleration symmetry to match their
velocity (Lorentz) symmetry.

There will not even be a natural measured length, since different operational
definitions will deliver different values, and this too is ultimately because our field
theories of matter have no acceleration symmetry to match their velocity (Lorentz)
symmetry.

7.2.2 Calculating the Length in a Constant t Hyperplane

Let us now calculate dL :=
√

dX2 +dY 2 on a circular arc of x2 + y2 = r2 in a con-
stant t slice, even though this is still somewhat unnatural, as pointed out previously,
since it adds up lengths calculated in one frame but at different times in that frame,
whereas in the first approach, the one leading to (7.3), we added up lengths calcu-
lated in different frames, and in the approach described in the last section we added
up lengths calculated in one frame and at one time as specified by that frame. The
calculation in this section is the one advocated by Mashhoon.

We can use the relation (7.18) on p. 272, viz.,

t = F(T )+ γ(T )v(T )Y = F(T )+ rv(T )sinθ , (7.36)

which gives the inertial time of the event on the cylinder of worldlines specified by
θ and T . The point is that T will vary now as we change θ , whereas we previously
held T constant. Differentiating (7.36), we have

0 =
dt
dT

=
dF(T )

dT
+ rv̇(T )sinθ(T )+ rv(T )cosθ(T )

dθ

dT
,

and we know from (2.271) on p. 90 that

dF(T )
dT

= γ(T ) .

Hence,
dT
dθ

=− rvcosθ

γ + rv̇sinθ
. (7.37)

Now X = r cosθ − r, so
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dX
dθ

=−r sinθ ,

and Y = r
√

1− v2 sinθ , with v dependent on T and hence on θ , so

dY
dθ

=−rvv̇(1− v2)−1/2 sinθ
dT
dθ

+ rγ
−1 cosθ .

Hence,

1
r2

[(
dX
dθ

)2

+

(
dY
dθ

)2
]
= sin2

θ +

(
γrv2v̇sinθ cosθ

γ + rv̇sinθ
+ γ
−1 cosθ

)2

= 1− cos2
θ

[
1−
(

γrv2v̇sinθ

γ + rv̇sinθ
+

1
γ

)2
]
.

In square brackets, we have

1− 1
γ2 −

2rv2v̇sinθ

γ + rv̇sinθ
− γ2r2v4v̇2 sin2

θ

(γ + rv̇sinθ)2 = v2
[

1− 2rv̇sinθ

γ + rv̇sinθ
− γ2r2v2v̇2 sin2

θ

(γ + rv̇sinθ)2

]
= v2

γ
2 1− r2v̇2 sin2

θ

(γ + rv̇sinθ)2 ,

after a short calculation.
So finally,

dL =

√(
dX
dθ

)2

+

(
dY
dθ

)2

= r
√

1− v2W cos2 θ , (7.38)

where

W := γ
2 1− r2v̇2 sin2

θ

(γ + rv̇sinθ)2 , (7.39)

and

L = r
∫

Θ

0

√
1− v2W cos2 θdθ . (7.40)

The upper limit of the integral is somehow determined by the worldline of B. Indeed,
it specifies the event at the intersection of the worldline of B with the hyperplane of
constant t.

Now for the given value of t, observer B is located at

xB(t) =
(
t,r cosϕB(t),r sinϕB(t),0

)
, (7.41)

where ϕB(t) = ∆ +ϕA(t). This event has coordinates (TB,XB,YB,ZB), where ZB = 0
and

t = F(TB)+ γ(TB)V (TB)YB = F(TB)+ rv(TB)sinθB , (7.42)
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with θB such that

XB + r = r cosθB , YB = rγ
−1(TB)sinθB . (7.43)

By (7.19) and (7.20) on p. 272, this leads to

r cosϕB(t) = r cos
[
θB +φ(TB)

]
, r sinϕB(t) = r sin

[
θB +φ(TB)

]
,

which imply
θB +φ(TB) = ϕB(t) , (7.44)

or
θB +φ(TB) = ∆ +ϕA(t) . (7.45)

The key relations for determining the two unknowns Θ := θB and TB given t are
(7.42) and (7.45). Note that φ(TB) = ϕA(tsomething) by the definition just prior to
(2.272) on p. 90, where tsomething is the inertial time corresponding to a proper time
TB at A, i.e., tsomething = F(TB), since A is at Y = 0. So the final equations to be
solved to find TB and eventually Θ := θB are{

t = F(TB)+ rv(TB)sinθB ,

∆ +ϕA(t) = θB +ϕA
(
F(TB)

)
.

(7.46)

Naturally, this would be impossible to do in all generality, and difficult even in many
specific cases.

Mashhoon proposes to solve the problem in the case where all observers move
at constant angular speed, so that v̇ = 0. Then his function W in (7.39) is equal to
unity. We return to the case of an elliptic integral for L in (7.40) and the upper limit
Θ := θB is found as follows. We have F(TB) = γTB, where γ is constant, so

t = γTB + rvsinθB .

Furthermore, ϕA(t) = vt/r and

ϕA
(
F(TB)

)
=

v
r

F(TB) =
v
r

γTB .

Hence,
∆ +

v
r

t = θB +
v
r

γTB .

Eliminating TB, we obtain

∆ +
v
r

t = θB +
v
r
(t− rvsinθB) ,

and finally,
∆ = θB− v2 sinθB . (7.47)
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Mashhoon finds once again that L is not generally equal to the length obtained in
(7.3) on p. 269. Once again, where is the surprise?

He comments as follows. The proper acceleration length of the uniformly rotating
observer A is given by L = 1/γΩ0, since c is taken as unity here (it would normally
be c/Ω0, according to Mashhoon’s earlier remarks). How does the γ factor come in?
This factor ranges from unity for v = 0 to infinity as v→ c, so it makes L smaller,
and that is important, because L is supposed to be a large number. This problem
aside, Mashhoon has proven that L 6= l′ in (7.3) on p. 269, but that, irrespective of
the magnitude of ∆ ,

L
l′
−→ 1 as

r
L

= vγ −→ 0 .

So provided that r is much smaller than L , which amounts to requiring v to be
small of course, the two ways of defining the length between A and B, although
known theoretically to give different answers, will give very similar answers.

He also notes that, for ∆ → 0, we have L/l′ → 1 regardless of the value of v.
So the two ways of defining the length between A and B tend to give very similar
answers if the two observers are very close. Mashhoon remarks that ‘consistency can
be achieved’ only if the length under consideration is negligibly small compared to
the acceleration length of the observer. The implication is that, in other cases, the
acceleration might be too great and thereby mess up the agreement, depending on
one’s measurement accuracy.

7.3 Conclusion

There is is a final discussion section to the paper [36]. He reiterates that the locality
hypothesis is an essential element of the theories of special and general relativity.
This is supposed to be true because all real observers must be accelerating to some
extent, and presumably can be assumed not to know this in many situations. They
may thus be going through the motions of some standard length measurement pro-
cedure as though they had set up inertial coordinates comoving with them, and incur
errors through this ignorance. The locality hypothesis then steps in to rescue them,
or not in some cases.

This seems a dubious way of viewing the situation. After all, the theories of
special and general relativity do not require us to start talking about how we relate
them to the real world, even though they would be of no use to us without doing so.
The problem with length is one of making operational definitions and then seeing
what the theories have to say about the values we should expect to get. For circular
motion the theories deliver values like L and l′, with different values for L depending
on the theoretical definition, as we have discussed. One must then decide whether
one’s operational definition corresponds best to this or that theoretical calculation.
Surely that is the end of the story?

Mashhoon claims that relativistic measurement theory must take the basic as-
sumption he refers to as the locality hypothesis into account along with its limita-
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tions. But when one does this, it does not have the status of an assumption at all!
It is just an analysis of a typical situation at the interface between theory and real-
ity, in which one asks whether it might not be possible to pretend that accelerating
coordinates are inertial coordinates. But since there is no obligation to treat accel-
erating coordinates in this way, there would be no real problem in situations where
that turned out to introduce inaccuracies, especially since our theories are apparently
capable of dealing with such situations.

As far as time measurement is concerned, there is no doubt that we can make
realistic estimates of how acceleration is likely to affect time measurements when
defined operationally in some way or other for real situations encountered today in
experimental work, e.g., on board Earth-orbiting satellites. But the situation for dis-
tance measurements is rather different precisely because there is a significant lack
of uniqueness in the operational definitions of lengths, as attested by the calcula-
tions in this section. On the other hand, we are not always just intent on measuring
proper times along worldlines, but sometimes also times we would like to attribute
to remote events according to some operational procedure for setting up coordinates.
When we measure proper times along worldlines, the only question is: what kind
of clock are we using, and how will its working be affected by the acceleration? In
the case of length measurements, we are always forced to choose some procedure
as well as the measuring instrument.

Mashhoon’s view is that ‘this kind of problem can be resolved’ for distance mea-
surements, by which he means that one can sometimes nevertheless ignore the ef-
fects of acceleration in the sense of pretending that one’s coordinate system is an
inertial system. This works, for example, when the distance to be measured is much
smaller than the relevant acceleration length of the observer. On the other hand,
when that condition is not fulfilled, there seems to be no problem anyway, since the
theory tells us how to deal with such situations.

Interestingly, he concedes that ‘from a basic standpoint’, which presumably
means ‘on the most fundamental level’, the significance of non-inertial frames is
rather limited. This is quite obvious. They are just coordinate systems, and we know
very well that physical significance should not depend on choice of coordinates.
This is the whole issue of covariance. On the other hand, any specific measurement
will depend on how it is made, and we do always require some coordinate system
or another, and some kind of operational definitions for measurements. What is new
about this?

It seems then that there is nothing deep here, but just a purely practical prob-
lem such as: can we treat our operationally defined length and time measurements
in an Earth-based laboratory as though the laboratory were moving inertially, even
though it is rotating about the Earth’s axis of rotation? Mashhoon has estimated that
there could be an error of about 10−2 cm in a measurement of the Earth’s equatorial
circumference, due to this effect. Here is a real physical application of these con-
siderations. But the very fact that we can estimate the error means that we do not
require the locality hypothesis!



Chapter 8
Acceleration, Self-Force, and Inertia

The aim here will be to revive an old idea that has been around now for over 100
years, since before the advent of relativity theory. The subjects will be:

• inertial mass,
• Newton’s second law F = ma,
• the dichotomy between spatially extended and point particles,

and

• the idea of classical mass renormalisation as introduced by Dirac in 1938.

All the claims in this chapter are justified in detail in [32].

8.1 Electromagnetic Mass and Newton’s Laws

We begin with a simplistic model of the electron as a uniform spherical shell of
charge of radius a. When the charge shell is sitting still in an inertial frame, we can
calculate the energy in its Coulomb fields, and we obtain the value

Energy in EM fields =
e2

2a
,

where e is the charge distributed over the shell. Today we would automatically as-
sociate a mass with this energy by dividing by c2 :

Mass associated with EM field energy =
e2

2ac2 . (8.1)

We can call this the energy-derived mass of the fields.
Now there is an obvious problem here if we let a tend to zero, since both this

energy and the associated mass tend to infinity. And this raises the question as to
whether it is ever justified to take the point particle limit for a charged particle.

281
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We can also calculate the three-momentum of the EM fields produced by the
charge shell. When it is sitting still in an inertial frame, there is no momentum in
the fields, but when it is moving with constant velocity v, we find

p =
4
3

e2

2ac2 v .

This is the momentum of a particle of mass

Momentum-derived mass of EM fields =
4
3

e2

2ac2 . (8.2)

Note that the momentum-derived mass of the fields of the charged shell is equal to
4/3 of the energy-derived mass, a point we shall return to later.

If the charge shell is moving very fast, but still at constant velocity, in an inertial
frame, we can do a relativistic calculation of the three-momentum in the EM fields
and we obtain exactly the same thing as before except that now there is a relativistic
factor γ(v), which is an increasing function of the speed v :

p =
4
3

e2

2ac2 γ(v)v , γ(v) :=
1√

1− v2
.

This is the momentum of a particle of mass

Momentum-derived mass of EM fields =
4
3

e2

2ac2 γ(v) .

So what we discover here is that the momentum-derived mass of the EM fields due
to this charged shell increases with speed v in exactly the way one would expect
the inertial mass of a particle to increase with speed in relativistic dynamics (see
Sect. 9.3 for further discussion of this kind of explanation).

Note that we have to assume that the charge shell FitzGerald contracts in the
direction of motion and this reminds us that there must be some binding forces in the
system. Indeed the various elements of negative charge distributed over the spherical
surface will tend to repel one another and some other force will be needed to hold
these elements in place. The actual shape of the charge distribution will depend on
the balance between the repulsive EM forces between the charge elements and these
binding forces.

So far we have talked about the energy and momentum in the fields of a charged
shell and the associated masses, but how do we actually predict the resistance that
something will show to being accelerated, as quantified by its inertial mass?

In modern particle physics there are basically two kinds of particle:

• Truly elementary particles like quarks and leptons (the electron is an example of
a lepton) which are not considered to be made of smaller particles.

• A whole host of bound state particles.
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A good example of the latter would be the proton, a bound state of three quarks,
according to modern theory. Now if we had to estimate the mass of a proton, we
would certainly want to include the rest masses of the constituent quarks, but we
would also want to include the kinetic energy of those quarks, not to mention any
strong, weak, or electromagnetic binding energy involved in the system, with the
energies being suitably divided by c2. Here, of course, we are making ample use of
the celebrated relation E = mc2.

But what about the electron? If it really is a point particle, as often assumed, we
cannot make a model for its inertia that is intrinsic to its structure in order to predict
its inertial mass. So for the truly elementary particles like quarks and leptons, we
invent a field called the Higgs field, and we arrange for these particles to interact
with that field in such a way that moving through it is rather like moving through
honey, according to one analogy. Put another way, the elementary particles get their
inertia from the outside.

However, we still need to renormalise the electron mass in quantum electrody-
namics (QED), and we need to renormalise the masses of the other elementary par-
ticles likewise in the sophisticated quantum field theories appropriate to them. This
suggests that we should not treat the electron as a point particle. At least that would
save us the trouble we noted for the charge shell model of the electron in the clas-
sical case, as discussed above. So for the purposes of this discussion, let us assume
that there are in fact no elementary particles, i.e., that all particles do in fact have
some structure, and make the rather radical bootstrap hypothesis that it is the very
structure of each particle that causes it to resist being accelerated.

It should be noted that at the present time we use a hybrid model for bound state
particles. For example, the quarks in the proton get their mass by interacting with
the Higgs field, but most of the mass of the proton comes from its internal structure.
It should be noted in this context that ab initio determinations of the light hadron
masses are now possible using lattice quantum chromodynamics (QCD) [19]. The
hadrons are strongly interacting particles like the proton and the neutron, and QCD
is our best theory for the strong force. Using very sophisticated computer simula-
tions, these calculations do indeed confirm that most of the mass of the proton and
other similar bound state particles comes from their internal structure.

With the above bootstrap hypothesis in mind, could it be then that all the mass
of the electron comes somehow from the electrodynamic effect, i.e., from the mass
associated with its EM fields? If this were to be true, we would have to have

me ∼
e2

ac2 ,

where me is the electron mass, e the electron charge, c the speed of light, and a the
linear dimension of the charge distribution being used to model the electron. This
can be rearranged to estimate the latter:

a∼ e2

mec2 =: rclassical ,
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which is called the classical electron radius. The latter can be calculated from the
measured values of the constants in the above expression, whence

rclassical = 2.82×10−15 m .

Unfortunately this is much too big. Experiment suggests that the linear dimension
of the electron cannot be greater than 10−18 m, so it would have to be at least a
thousand times more massive for this to work.

Another problem is the strange discrepancy between the energy-derived and
momentum-derived EM masses, i.e., the factor of 3/4 in the relation

mEDM
EM =

3
4

mMDM
EM ,

as can be seen from (8.1) and (8.2). This has caused a long controversy, still under-
way in some quarters. However, the basic explanation was pointed out by Poincaré
over a hundred years ago! It is due to leaving out the binding forces in the system.
The point is that the EM energy–momentum tensor for the charge shell system is not
conserved everywhere, and one cannot obtain a Lorentz covariant four-momentum
by integrating a non-conserved energy–momentum tensor over spacelike hypersur-
faces.

One approach here is to redefine the EM energy–momentum tensor, or the
energy–momentum of the EM fields, in an ad hoc way so that things work out. But
another is to say that the discrepancy should be there in general until we include all
the forces involved in the particle. Then we obtain a total energy–momentum tensor
which is conserved, and we can integrate that over spacelike hypersurfaces to obtain
an energy–momentum four-vector which is Lorentz covariant.

So whatever happened to electromagnetic mass? Feynman thought that as soon
as one had to introduce unknown binding forces into the model for the electron, that
made the whole idea too complicated to be worth bothering about [21]. And then of
course quantum electrodynamics came along and that deals with the electron in a
very different way, although as mentioned earlier, it does leave us with some of the
same problems, in particular, the problem of mass renormalisation.

And what about a mechanism here? Why should these electromagnetic effects
cause a spatially extended charge distribution to resist being accelerated? So far we
have talked about the EM fields around the charge shell, found their energy, and
divided it by c2 to associate a mass with that. And we have found the momentum of
the EM fields, but not the momentum of the charge shell itself. However, we may
ask what brings about this momentum.

Remember that, when the charge shell is sitting still in an inertial frame, there
is no momentum in the fields. But if we push it for a while and get it moving, we
find that there is some momentum in the fields, and this suggests that we must have
supplied some force in addition to the one required by the mechanical inertial of the
electron, by which we mean any inertia from other origins than the electromagnetic
effects. But that in turn suggests that there must have been a corresponding extra
force acting back on the accelerating agent.
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And this is indeed the case. Whenever we try to accelerate a spatially extended
charge distribution, it will exert an EM force on itself, in fact, an EM self-force.
Here is the formula Feynman gives in [21]:

Fself =−α
e2

ac2 ẍ+
2
3

e2

c3
...x +β

e2a
c4

....x +O(a2) . (8.3)

What we have here is the EM self-force for a rather arbitrarily shaped spatially ex-
tended charge distribution or charge blob of linear dimension a, moving in an arbi-
trary way in one dimension. The symbol x denotes the position of some preselected
point within the charge blob, a function of the proper time τ along the worldline of
that point. Dots over the x denote proper time derivatives, so ẋ is the speed, ẍ is the
acceleration, and so on.

The self-force has been expanded as a power series in a, with a leading order
term that goes as a−1, then a term that is independent of a, then a whole infinite
sum of terms going as a, a2, and so on. The total charge on the charge blob is e,
and α and β are constants that depend more or less only on the shape of the charge
distribution (although not quite, as we shall see). For example, α has the value 2/3
for the spherical charge shell.

The first thing to note is that, if we try to take a point particle limit by letting a
tend to zero, that leading order term goes to infinity, so the EM self-force is always
infinite in the point particle limit.

The second thing to note is that the leading order term, going as a−1, is propor-
tional to the acceleration ẍ. This will be very important when we come to consider
mass renormalisation in a moment. The coefficient of the acceleration in this lead-
ing order term has units of mass and we may call it the self-force-derived mass of
the charge blob:

mSFDM
EM = α

e2

ac2 . (8.4)

This can be compared with the energy-derived and momentum-derived masses in
(8.1) and (8.2).

We can think of the self-force as expressing a breakdown of Newton’s third law
within the particle, in the sense that the sum of all the electromagnetic actions and
reactions within the particle is not zero when the particle is being accelerated. This
last condition is very important. The EM self-force effect makes a clear distinction
between constant velocity motion, when the self-force is always zero, as can be seen
by inserting ẋ = constant in (8.3), and accelerated motion, when it is unlikely ever
to be zero.

This is very important because it saves Newton’s first law, which proclaims that
no external force should be required to keep an object moving at constant velocity.
This law would not be true for any spatially extended charge distribution, not even
one that is overall electrically neutral, unless the self-force were zero for constant
velocity motion.

We can put this in a rather amusing way. When Newton’s first law applies, i.e.,
there is no external force and hence we have constant velocity motion, Newton’s
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third law also applies, in the above sense that the sum of all the EM actions and
reactions within the particle is then zero. But when Newton’s first law fails, i.e., we
have an external force and accelerated motion, then Newton’s third law also fails.

Another important point to mention is that the momentum-derived and self-force-
derived masses in (8.2) and (8.4) are always exactly equal, i.e.,

mMDM
EM = mSFDM

EM .

This confirms the idea that momentum gets into the fields by our having to overcome
this leading order term in the self-force.

We should say a word about the shape of the accelerating charge blob. As men-
tioned earlier, its shape in any given situation results from the equilibrium between
the binding forces and the repulsive EM forces between charge elements making
up the blob. When it changes its velocity, it will be desperately trying to FitzGerald
contract to suit its instantaneous velocity, but with some delay effects depending on
exactly how it is accelerated.

In self-force calculations, we generally assume rigidity of the blob, in the rela-
tivistic sense, known as Born rigidity, much discussed earlier in this book. This basi-
cally amounts to assuming that the charge blob always has exactly the same shape in
its instantaneous rest frame, that is, in the instantaneously comoving inertial frame.
Achieving this physically will depend as much on how the blob is accelerated as on
the nature of the binding forces.

Note, however, that more sophisticated self-force calculations are possible that
do not assume rigidity. The reader is referred to very recent work by Gralla, Harte,
and Wald in Chicago [26].

We should also comment on the second term in the EM self-force, viz.,

F rad
self :=

2
3

e2

c3
...x . (8.5)

This term does not depend on the spatial dimensions a of the system, and it does not
even depend on its shape, as can be seen from the above expression. This remarkable
term is the radiation reaction force. The rate of doing work against this part of the
bootstrap force is exactly the rate of energy emission by radiation as given by the
Larmor formula.

Note that we would lose this explanation for the EM radiation by accelerating
electrons if we treated them as point particles, so this is another bonus of our earlier
bootstrap hypothesis, according to which there are no point particles.

8.2 Classical Mass Renormalisation

So we find that the EM self-force is in general a very complicated infinite sum of
terms. Now obviously the expression (8.3) would be vastly simplified if we could
set a equal to zero. Then we would get rid of all the terms going as a, a2, and so on,
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and we would still have the radiation reaction term, which we would like to keep
since it explains why accelerating charged particles radiate electromagnetic energy.
But as noted earlier, the problem with this strategy is that the leading order term
goes to infinity as the spatial extent of the charge distribution tends to zero.

Then in 1938, Dirac came along [16], and he said, let us suppose that the electron
acts on itself only through the second self-force term and not through the first or any
of the higher order terms. And that peculiar suggestion is the basis of classical mass
renormalisation. Let us sketch briefly how that works.

We begin with Newton’s second law, which says that force equals mass times
acceleration. In this case the force is the sum of an external force causing the ac-
celeration and the resulting EM self-force, and this is equal to the mass times the
acceleration ẍ, so we have

Fext +Fself = mbareẍ .

For the moment, let us call the mass the bare mass.
We now analyse the self-force into the infinite series (8.3), but drop all the terms

going as a, a2, and so on, since we intend to let a tend to zero at the end. We keep
the radiation reaction term on the left of our new equation with the external force,
but the clever thing here is that we group the potentially divergent leading order
term with the bare mass times the acceleration. And the reason why this is useful is
just that the leading order term is itself proportional to the acceleration. That is what
makes this ploy work.

The result is a new version of Newton’s second law, viz.,

Fext +
2
3

e2

c3
...x =

(
mbare +α

e2

ac2

)
ẍ .

On the left we have the external force plus the radiation reaction force, and on the
right a new mass term times the radiation. The renormalisation step in the argument
consists in saying that everything in the round brackets on the right-hand side must
just be the measured mass. We do not worry about the fact that part of it must tend
to infinity in the limit a→ ∞. We thus define the measured or renormalised mass to
be

mren := mbare +α
e2

ac2 .

This is the process of classical mass renormalisation.

8.3 Self-Force Calculations

The spherically symmetric charge shell is very nice because we can actually carry
out the self-force calculation, but it is certainly not the simplest spatially extended
charge distribution we can imagine. That must surely be the distribution shown in
Fig. 8.1, i.e., two point charges A and B held some distance apart by some binding
forces that we shall try not to think about.
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Fig. 8.1 Charge dumbbell, or toy model for the electron, at rest in an inertial frame, as used to
investigate EM self-force. There are some binding forces and the system is in equilibrium under
the forces between A and B

How do we do a self-force calculation? We get the dumbbell moving in some
arbitrary way in an inertial frame, describing the motion of each point charge, and
then we use the remarkable Liénard–Wiechert formula which tells us the electric
and magnetic fields E and B produced by each point charge and at every point in
spacetime as a result of its specific motion. We can then calculate the fields created
by A at B and vice versa, and hence the EM force exerted by A on B, and the EM
force of B on A, and we simply add these together to estimate the total EM force the
system exerts on itself.

Let us try to get an intuitive picture of how the self-force comes about by con-
sidering the charge dumbbell moving in some arbitrary way in one dimension, but
perpendicular to its own axis, as shown in Fig. 8.2. Now B will produce some fields
which will affect A slightly later due to retardation effects, and slightly later, A will
have moved a little bit to the right. Of course, if A and B are like charges, they repel
one another, so it looks as though the electric force of B on A will have a main com-
ponent along the system axis AB and a small component in the direction of motion.
Likewise it looks as though the electric force of A on B will have a main component
along AB and a small component in the direction of motion. When we add these
together, the components along the system axis will cancel exactly by symmetry,
and it looks as though there will be two small components in the direction of motion
that add up to give a net electric self-force in the direction of motion.

Fig. 8.2 Charge dumbbell moving with arbitrary motion in one dimension in an inertial frame,
with direction of motion perpendicular to its own axis
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However, that could not possibly be correct. If it were, we could just get the
charge dumbbell moving at constant velocity in 1D perpendicular to its axis and
it would begin to accelerate itself! This would be very nice, of course, because it
would solve all today’s energy problems. However, this does not happen. Recall
that the EM self-force is zero for constant velocity motion, so the intuitive picture
breaks down.

This is in fact due to a remarkable result from Maxwell’s theory of electromag-
netism: when a charged particle moves with constant velocity, the electric field it
produces is radial, not from its retarded position, but from its current position. It is
as though the fields corrected themselves to first order for retardation effects, and
first order is sufficient for constant velocity motion. Here we should think about
Newton’s first law, which would not be true for the charge dumbbell with this kind
of motion if it were not for this fundamental result from electromagnetic theory.

So the intuitive picture is not valid and we are stuck with carrying out a somewhat
tedious calculation using the Liénard–Wiechert formulas for the fields. What do we
find for the charge dumbbell moving in an arbitrary way but perpendicular to its own
axis as shown in Fig. 8.2? In fact, the electric force of A on B does indeed have a
small component in the direction of motion and a main component along the system
axis, and likewise for the electric force of B on A. However, the small components
in the direction of motion are always counteraligned with the acceleration for like
charges, and pay no heed to the direction of the velocity.

When we add together these electric forces, the axial components (along AB)
do indeed cancel, while the components counteraligned with the acceleration for
like charges add up to produce a net electric self-force that is also opposed to the
acceleration. The magnetic force of A on B lies along the system axis. Likewise for
the magnetic force of B on A, and they cancel exactly.

Now here is an interesting thing. If the charges at A and B have opposite signs,
then the self-force changes sign. So it will actually assist the acceleration! This may
look somewhat suspicious, but it is exactly what one would expect for a charge
dipole. Recall that the EM binding energy in a charge dipole is negative, and we
expect any negative binding energy in a bound state particle to decrease its inertial
mass.

So we expand the EM self-force in powers of d, the separation between A and B.
We find that the Coulomb terms cancel so there is no term going as 1/d2. However,
there is a residue going as 1/d and we find, as always, that the self-force diverges
when d tends to zero. The EM self-force is in this case

Fself =−
e2

4c2d
γ(v)3ẍ+O(d0) . (8.6)

Here we see that the factor α in Feynman’s general self-force expression (8.3) is
equal to 1/4 for this shape of charge distribution with this motion.

Equation (8.6) is the result of a relativistic calculation and we see appearing
the relativistic factor γ , function of the instantaneous speed. Note that it occurs as
a cube, which may look awkward. However, this gamma factor is just right for
renormalising the relativistic version of Newton’s second law, thanks to the simple
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identity
d
dt

[
γ(v)v

]
= γ(v)3ẍ .

So here we have a dynamical explanation as to why the inertial mass of an object
should increase with speed as γ(v). It is because the EM self-forces increase in
the appropriate way, in this case as a cube of γ , and this in turn is presumably a
consequence of the Lorentz symmetry of Maxwell’s equations. One would expect
the same explanation to work for contributions to the inertial mass from other fields
operating within a bound state particle, if those fields satisfy Lorentz symmetric
equations (see Sect. 9.3 for further discussion of this kind of explanation).

So for this system, we obtain the renormalised mass

mren := mbare +
1
4

e2

c2d
.

If we calculate the next term in the series expansion of the self-force, i.e., the one
independent of d, we do indeed get the correct radiation reaction to explain the EM
energy radiation by this charge distribution when it moves in this way.

We can also consider our charge dumbbell moving in an arbitrary way in one
dimension, but this time along its own axis, as shown in Fig. 8.3. Here we must
make some assumption about the length, such as a rigidity assumption, for example.
In this case there are no magnetic forces of either A on B or B on A, and the leading
order term in the electric self-force acts along the system axis. Once again it is
always counteraligned with the acceleration for like charges A and B and pays no
heed to the direction of the velocity.

The EM self-force is now

Fself =−
e2

2c2d
γ(v)3ẍ+O(d0) . (8.7)

Interestingly, the self-force-derived EM mass has changed. We now find

mren := mbare +
1
2

e2

c2d
,

so the factor α in Feynman’s general self-force expression (8.3) is equal to 1/2 for
this shape of charge distribution with this motion. Note that we still get the right γ

factor in (8.7) to be able to renormalise the relativistic version of Newton’s second
law.

Fig. 8.3 Charge dumbbell moving with arbitrary motion in one dimension in an inertial frame,
with direction of motion along its own axis
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So what we discover here is that the EM mass of an object depends on which way
it moves relative to its own geometric configuration. In the present case we have

mSFDM
EM (longitudinal) = 2mSFDM

EM (transverse) .

Such a dependence is hardly surprising when we consider what is going on within
these bound state systems.

We can also consider the charge dumbbell rotating about a distant center as
shown in Fig. 8.4. The distance R from the center of rotation should be consid-
ered much greater than the length d of the dumbbell. Now the acceleration is along
the system axis and the velocity is perpendicular to it. But despite the very differ-
ent configuration, we find once again that the leading order term in the self-force
is counteraligned with the acceleration for like charges, i.e., it is radially outward
from the center of rotation, and the relativistic factors work out perfectly to be able
to renormalise the relativistic version of Newton’s second law.

We can also consider the charge dumbbell rotating about a distant center as
shown in Fig. 8.5. Once again the distance R from the center of rotation should be
considered much greater than the length d of the dumbbell. This situation is quite
different again. The acceleration is perpendicular to the system axis and the velocity
lies along it, but once again we find that the leading order term in the self-force is
counteraligned with the acceleration for like charges, i.e., it is still radially outward
from the center of rotation, and the relativistic factors work out perfectly to be able
to renormalise the relativistic version of Newton’s second law.

Fig. 8.4 Charge dumbbell rotating at constant angular speed about a center at distance R from A,
in such a way that the system axis AB always points to the center of rotation
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Fig. 8.5 Charge dumbbell rotating at constant angular speed about a center at distance R from A,
in such a way that the system axis AB is always perpendicular to the line joining its midpoint to the
center of rotation

This raises a question: is the leading order term in the EM self-force always
aligned or counteraligned with the acceleration? The answer is negative. Despite the
positive results just mentioned for the charge dumbbell, it turns out that these are
exceptions. When the charge dumbbell moves (rigidly) along an arbitrary worldline,
the leading order term in the self-force contains a contribution along the system axis,
in addition to the contribution aligned or counteraligned with the acceleration which
can be removed by mass renormalisation (see Chap. 10).

Note, however, that this unwanted term can be made to disappear by consider-
ing a spherically symmetric charge distribution. Indeed, the result for the charge
dumbbell can be used in an integration to obtain the leading order term in the EM
self-force for a spherically symmetric distribution, and one sees exactly how the un-
wanted contribution to this term drops out. This suggests that renormalisability in
QFT may contain a hidden assumption of spherical symmetry.

So what is the connection between all this and bound state particles? In modern
particle physics, energy and mass are the same thing because

E = mc2 .

So this is why we include binding energy in the inertial mass of composite particles,
and everything is very simple. However, this hides another dynamical explanation,
albeit a pre-quantum theoretical explanation. Binding forces in composite particles
lead to bootstrap effects, and that is why binding energy must be included in their
inertial mass. So the message here is that we include binding energies because they
reflect the related self-forces in those bound states (see Sect. 9.4 for further discus-
sion of this kind of explanation).
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8.4 Rewriting Newton’s Second Law

So what are the benefits of our radical bootstrap hypothesis, made at the beginning
of this discussion. First of all, Newton’s second law has become much simpler. It
now says just F = 0. However, F has become much, much more complicated. It is
the sum of the external force causing acceleration and all the resulting self-forces
due to fields operating within the bound state particle:

Fext + ∑
fields

Fself = 0 . (8.8)

The usual form for Newton’s second law is obtained by analysing the self-forces and
moving the leading order terms, proportional to the acceleration, to the right-hand
side.

And now we deduce results that were simply imposed before. For example, we
get a numerical value for the mass in the F = ma form of the above law. And since
self-forces make a clear distinction between uniform velocity and changing veloc-
ity, we get a nice explanation of Newton’s first law. We really understand why no
external force is needed to keep a particle in constant velocity motion: it is because
the particle then exerts no forces on itself.

At this point, one might wonder about the so-called Mach principle, which in
one version suggests that a particle somehow (mysteriously, causally) gets its inertia
from the overall distribution of matter and energy in the Universe. Under the present
hypothesis, a particle gets its inertia solely and completely from within itself. What
picks out the overall distribution of matter and energy in the Universe is that it
seems to specify what pass for inertial frames, i.e., those frames in which our field
theories of matter take on their simplest forms. But what seems more cogent would
be the idea that the matter and energy in the Universe has evolved into its present
distribution because of the existence of such frames, themselves a consequence of
the underlying (Lorentz) symmetry of the field theories of matter.

8.5 Self-Force Effects in Modern Particle Physics

Let us now look briefly at what happens in particle physics today. As mentioned
before, we have several truly elementary particles like leptons and quarks which
are not considered to have any internal structure, and then we have a whole host of
bound state particles like baryons and mesons which we try to organise into multi-
plets.

What is a multiplet? Mathematically, it is a vector space carrying a representation
of a group. But physically, it is just a set of particles with similar properties. And
one of the properties that has to be similar across a multiplet is the inertial mass.
So one task of modern particle physics is to group bound state particles together
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into sets with similar masses, and another is to explain why the masses are not quite
equal across a given multiplet, something known in the jargon as mass splitting.

A good example is provided by the neutron, with inertial mass 939.5 MeV/c2,
and the proton, with inertial mass 938.2 MeV/c2. These have very similar masses,
so they are ideal for putting together in a multiplet. We thus make the hypothesis
that their quantum states carry an irreducible representation of the isospin SU(2)
symmetry group:

|p〉= |T = 1/2, T3 = 1/2〉 , |n〉= |T = 1/2, T3 =−1/2〉 , (8.9)

characterized by an isospin value of T = 1/2.
Another example is the pion isotriplet. Once again, the positively charged, neu-

tral, and negatively charged pions have very similar masses so they are ideal for
grouping together into a multiplet, and we make the hypothesis that their quantum
states carry an irreducible representation of the isospin SU(2) symmetry group, but
this time characterized by an isospin value of T = 1:

|π+〉=−|T = 1,T3 = 1〉 , 139.6 MeV/c2 ,

|π0〉= |T = 1,T3 = 0〉 , 135.0 MeV/c2 ,

|π−〉= |T = 1,T3 =−1〉 , 139.6 MeV/c2 .

(8.10)

Note the slightly smaller mass of the neutral pion, something we shall be able to
explain shortly.

And of course we also have the quark flavour models for these particles. The
neutron and proton are bound states of three quarks. The neutron is a bound state of
one up quark and two down, while the proton is a bound state of one down and two
up:

n = udd , p = uud .

The pions are mesons, i.e., quark–antiquark bound states:

π
− = du , π

0 = dd , uu , π
+ = ud . (8.11)

So, for example, the positively charged pion is a bound state of an up quark and
an antidown quark and the neutral pion a superposition of down–antidown and up–
antiup. And note that the up and down quarks themselves form a multiplet. We
make the hypothesis that their quantum states carry an irreducible representation of
the isospin SU(2) symmetry group characterized by an isospin value of T = 1/2.

Now these multiplets reflect a symmetry under the strong force. Recall that the
strong interaction is at work in the above bound states, and indeed, they are largely
held together by the strong interaction. In each case we model that by means of a
strong interaction Hamiltonian Hstrong which describes the energy of all the strong
interactions going on within the bound state. Then the symmetry hypothesis is ex-
pressed by saying that this strong interaction Hamiltonian commutes with all the
generators T1, T2, and T3 of the isospin SU(2) symmetry group:
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Hstrong,Ti

]
= 0 , i = 1,2,3 .

This in turn implies that the operator

Sstrong = exp
iHstrongt

h̄

determining the time evolution of the bound state commutes with all generators and
hence with all members of the isospin SU(2) group.

That is the mathematical statement of the symmetry assumption, but what does
it mean physically? In fact it asserts that the strong interactions make no distinction
between states in the multiplet. Put another way, the up quark and the down quark
look the same as far as the strong force is concerned. However, electromagnetic
interactions are also at work within these bound states, and these interactions do
make a distinction here. The up quark has electric charge +2/3 and the down quark
has electric charge −1/3, so these look very different to the EM interaction.

Now the mass of a state ψ in quantum theory is expressed as an expectation value
of the relevant Hamiltonian in the given state, viz.,

Mψ = 〈ψ|H|ψ〉 , (8.12)

where H is the Hamiltonian modelling all the energy sources in the system. In this
case then, we expect to have

H = Hstrong +HEM .

Inserting this in the expression (8.12) for the mass, we expect the masses of these
bound states to be a sum of a strong contribution, which is expected to largely dom-
inate, and a much smaller EM contribution:

Mψ = 〈ψ|Hstrong|ψ〉+ 〈ψ|HEM|ψ〉

= Mstrong
ψ +MEM

ψ .

And the upshot of the symmetry hypothesis is that the strong contributions to the
masses of all the bound states within a given multiplet will all be exactly equal, if
the symmetry assumption holds exactly, while the much smaller EM contributions
will differ from one state to the next.

The symmetry hypothesis concerning the strong interactions therefore explains
the nearly equal masses of all the bound states within a given multiplet, while the
EM contributions explain, at least in part, the mass differences. For example, we
expect

mn = mstrong
nucleon +mEM

n , mp = mstrong
nucleon +mEM

p ,

so the strong contributions to the neutron and proton masses are expected to be
exactly equal if the isospin symmetry holds exactly, while the EM contributions
will explain, at least in part, the difference in mass between the two particles.
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In modern particle physics then, the notion of electromagnetic mass is still there,
but it is found in a very different way as the expectation value of the electromagnetic
interaction Hamiltonian in the quantum state for the given bound state, e.g., for the
proton and neutron,

mEM
p = 〈p|HEM|p〉 , mEM

n = 〈n|HEM|n〉 .

Before leaving the domain of particle physics, it is worth pointing out that the clas-
sical self-force model can be more sophisticated than just a charge shell or a charge
dumbbell. This is fortunate because, as Feynman points out [21], if the proton were
just a charged sphere and the neutron a neutral one, then from what was said earlier,
we would expect the neutron to have the lower mass, and this is not the case [see
(8.9)].

However, when we consider that the neutron and proton are each today consid-
ered to be bound states of three charged particles, there is absolutely no reason to
think that, if we could actually carry out the classical self-force calculation, the neu-
tron would turn out to have the lower EM mass simply on the grounds that it is
overall electrically neutral.

And in fact the dumbbell model works rather well for the pions. As we can see
from (8.11), the charged pions are composed of like charges, e.g., the positively
charged pion π+ = ud comprises an up quark with charge +2/3 and an antidown
with charge +1/3, while the neutral pion is composed of opposite charges. So from
what was said earlier, we would expect the neutral pion to have the smaller inertial
mass, and indeed it does [see (8.10)].

We can even use the crude classical dumbbell model to estimate the length of
a pion, obtaining a value d ∼ 10−16 m, which accords quite well with estimates
of pion diameters from cross-section measurements. Note that the spherical shell
model also works surprisingly well here.

So the conclusion from all this is that mass splittings in multiplets of bound state
particles are explained today, at least in part, by a quantum theoretical version of the
classical self-force idea. But this comes with a warning. Mass splittings in multiplets
of quark bound states are complicated by the different masses of the different quark
flavours.

In fact, the isospin SU(2) flavour symmetry is broken by the fact that the up and
down quarks have very different masses. Worse, we cannot measure these masses
directly because it has so far proven impossible to isolate an individual quark, so
we can only infer their masses from other observations, and a lot remains to be
understood yet.

8.6 An Interim Conclusion

What are the bonuses of our radical bootstrap hypothesis made at the beginning of
this discussion, i.e., the assumption that there are no point particles and that the in-
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ertial mass of all particles results entirely from self-forces due to the various funda-
mental interactions operating within them? To begin with, we have a simpler version
of Newton’s second law, which now says just that the total force on any particle is
always zero. And we have dynamical explanations for:

• Inertia and inertial mass, with the possibility of actually calculating the latter.
• The speed dependence of inertial mass as it is usually found in relativistic dy-

namics (see also Sect. 9.3).
• The inclusion of binding energies in inertial mass (see also Sect. 9.4).
• The EM energy radiation by accelerating charged particles.

But there is one more thing that we have not discussed in the above.

8.7 Passive Gravitational Mass and the Geodesic Principle

We have been talking about inertial mass, and it is well known that, according to
very accurate measurements, the inertial mass of any object is exactly equal to its
passive gravitational mass (PGM). Recall that the passive gravitational mass gauges
the extent to which the particle is affected by gravity in Newtonian gravitational
theory. Now it is sometimes said that general relativity explains why we should have
this equality. The point is that any particle will follow a geodesic of the spacetime
metric if there are no non-gravitational effects around to act on it. But that implies
that any two particles, no matter what their inertial mass, will fall in the same way
in the absence of any non-gravitational effects, i.e., free fall does not depend on the
nature of the particle, and in particular on its inertial mass.

Actually, there are some provisos regarding this so-called geodesic principle,
which we shall turn to in Sects. 8.7.2–8.7.5. But let us just note that the above
explanation could be considered to turn things upside-down, since general relativity
would not even be possible if it were not for the equality of inertial and passive
gravitational mass, and it was the very discovery of this equality that led eventually
to Einstein’s formulation of the general theory of relativity (GR). Furthermore, there
is a sense in which the above explanation lacks somewhat in impact, since it just
seems to be a sophisticated reformulation of the equality of the PGM and the inertial
mass, rather than providing any kind of mechanism. Let us try to do a little better.

8.7.1 Equality of Inertial Mass and Passive Gravitational Mass

If we place an object on our outstretched hand, we prevent it from free fall. In the
GR picture there is only one force on the object, namely the force we exert upwards
on it in order to push it off its geodesic. In the usual view of GR, gravity is not
a force and there is no such thing as weight. This can be viewed as a linguistic
adjustment, ensuring that forces are always associated with accelerations: the freely



298 8 Acceleration, Self-Force, and Inertia

falling object has zero acceleration in the GR picture, while our supported object is
being accelerated by the upward force from our hand.

However, we nevertheless feel the object pushing down on our hand, and it is
interesting to wonder how it does that. One might say that this is just the reaction,
according to Newton’s third law, to the force we are exerting on the object. Indeed,
by pushing on it, we slightly deform the microscopic structure of the object near
its lower surface, and that structure will react to that. But there is another rather
intriguing way of looking at this through the idea of the self-force. Let us examine
how that works.

Just to set the scene in this GR view, consider a spacetime with coordinates(
y0,y1,y2,y3)

and a metric that only differs from the Minkowski form in the 00 component, which
is the following function of one of the space coordinates:

g00 =

(
1+

gy3

c2

)2

,

where c is the speed of light and g a constant with units of acceleration. These are
supposed to be the coordinates one would set up in a laboratory held fixed relative
to a distant gravitational source. The metric then describes a parallel gravitational
field in the y3 direction (see also Sect. 6.3).

By the weak equivalence principle (WEP), at any event in any curved spacetime
there is a neighbourhood with coordinates such that the metric looks Minkowskian
to a good approximation. However, for this particular metric, the neighbourhood can
be the whole spacetime, because this spacetime happens to be flat. The curvature is
zero and there are no tidal effects.

The Minkowski coordinates whose existence is guaranteed by WEP are supposed
to be the coordinates that would naturally be used by a freely falling observer, in
the sense that an observer sitting at the space origin of such coordinates would be
following a geodesic. The coordinates {yµ} can be viewed as coordinates that might
be adopted by a uniformly accelerating observer, in the sense that an observer sitting
at the space origin of the {yµ} coordinates would have uniform acceleration.

Now consider a charge shell held fixed at the origin of the {yµ} system, i.e., a
sphere supported against the uniform gravitational field. Since the four-acceleration
is nonzero, this requires a force. The sphere is being pushed off its geodesic. As
viewed from the freely falling frame, the sphere will appear to be accelerating (and
it has nonzero acceleration according to the GR definition of acceleration).

We now import the theory of electromagnetism using the strong principle of
equivalence (SEP). This states that any theory of non-gravitational physics will look
roughly as it does in flat spacetime when described in locally inertial coordinates.
The principle is usually formulated by taking the flat spacetime field equations for
the non-gravitational effect and replacing all (inertial) coordinate derivatives by co-
variant derivatives (minimal extension of the theory from flat to curved spacetime).
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According to SEP, an exactly equivalent view in this case (because our spacetime
is in fact flat) is of the charge shell accelerating uniformly in a flat spacetime without
gravity. But then we know that the sphere will exert an EM force on itself that
opposes the acceleration, i.e., that acts toward the gravitational source. Put another
way, the EM self-force will oppose the supporting force of the laboratory table upon
which the sphere sits. In fact, it contributes to its weight.

But what is weight in GR? We said above that GR effectively does away with
this notion. However, there is a natural way to reinstate it. We simply define it to be
the negative of the force required to support the object at a fixed distance from the
source:

W =−Fsupp .

Then we need to reinstate passive gravitational mass, also rendered obsolete by
general relativity. Since it is supposed to gauge the extent to which the object is
affected by gravitational effects, the natural definition is to take it as (minus) the
constant of proportionality between the weight and the four-acceleration A, i.e.,

W =−mPGA ,

whence
Fsupp = mPGA .

We now propose the new dynamical law (8.8), viz.,

Fsupp +Fself = 0 , (8.13)

but this time in the GR framework. Here we are assuming the radical bootstrap
hypothesis that all the inertial mass of an object arises due to the leading order
terms in self-forces. Since

Fself =−minertialA+ smaller terms ,

at least for spherically symmetric charge distributions, we deduce that

mPG = minertial . (8.14)

Note that all this is just standard theory, and precisely the way we always naturally
think about things today, although with a different, and classical, mechanism. Think,
for example, about the weight of a proton or atomic nucleus: we automatically in-
clude the binding energy as part of the weight. In GR, energy is gravitationally
attractable.

Amusingly, if some part of the binding energy of a particle is negative, we have
an antigravity effect. Think, for example, of a charge dipole lying on the labora-
tory table. The negative EM binding energy in the system will slightly decrease its
weight. And we can see why no particle or object has ever been seen to float up into
the air under the Earth’s gravity! It is simply because no particle or object we have
ever observed has ever been found to have negative inertial mass.
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Of course, the above argument leading to (8.14) is circular (see also Sect. 8.7.3).
After all, we use this very same experimental result to formulate GR in the first
place. But here perhaps we also have a mechanism, at least for bound state particles,
or for the binding energy contributions to the inertial masses of bound state particles.
Contrast with a naive special relativistic version of gravity in which gravity is just
a force. The object supported by my outstretched hand is subject to two forces: the
supporting force from my hand and its weight. But they exactly balance. There is
no acceleration and there is no hope of an explanation of the kind just given.

In GR as it is usually presented, the supporting force is needed because the
particle has nonzero four-acceleration. But we do not ask why a nonzero four-
acceleration should require a supporting force, any more than we ask why an accel-
eration should require a force in Newtonian physics. The picture here, in the radical
bootstrap hypothesis, is that all forces on an object must always exactly balance to
give a zero resultant, as in (8.13).

And as mentioned earlier, self-forces make a clear distinction between uniform
velocity and changing velocity. Here we understand why no supporting force is
needed to keep a particle in free fall in GR. It is simply because it is not accelerating
in the GR picture, so it does not exert any force on itself.

8.7.2 Geodesic Principle

This states that, when point particles are not acted upon by forces (apart from grav-
itational effects), their trajectories take the form

d2xµ

ds2 +Γ
µ

νρ

dxν

ds
dxρ

ds
= 0 , (8.15)

where xµ(s) gives the worldline as a function of the proper time s of the particle
and Γ

µ

νρ are the connection coefficients in the given coordinate system. In the lit-
erature, this is often derived from an action principle. One writes the worldline as
a function xµ(λ ) of some arbitrary parameter λ , whence the appropriate action for
the worldline between two points P1 = x(λ1) and P2 = x(λ2) of spacetime is

s(P1,P2) :=
∫

λ2

λ1

(
gµν

dxµ

dλ

dxν

dλ

)1/2

dλ =
∫

λ2

λ1

Ldλ =
∫

λ2

λ1

ds , (8.16)

with Lagrangian

L :=
(

gµν

dxµ

dλ

dxν

dλ

)1/2

. (8.17)

The Euler–Lagrange equations extremising the action under variation of the world-
line are

d
dλ

(
∂L
∂ ẋµ

)
− ∂L

∂xµ
= 0 , (8.18)
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with ẋµ := dxµ/dλ , and these lead to the above geodesic equation (8.15).
The action for some particles labelled by a is

A =−∑
a

cma

∫
dsa , (8.19)

where ma is the mass of particle a and sa is its proper time. This is the action because
variation of the worldline of particle a gives its equation of motion as

d2aµ

ds2
a

+Γ
µ

νρ

daν

dsa

daρ

dsa
= 0 . (8.20)

Likewise, if some of the particles are charged with charge ea for particle a, and there
are some EM fields Fµν , one declares the action to be

A =−∑
a

cma

∫
dsa−

1
16πc

∫
Fµν Fµν(−g)1/2d4x−∑

a

ea

c

∫
Aµ daµ , (8.21)

where Aµ is a 4-vector potential from which Fµν derives, simply because variation
of the worldline of particle a gives its equation of motion as

d2aµ

ds2
a

+Γ
µ

νρ

daν

dsa

daρ

dsa
=

ea

ma
Fµ

ν

daν

dsa
, (8.22)

the minimal generalisation of the Lorentz force law to a curved manifold, while
variation of Aµ gives the EM field equations as the minimal extension of Maxwell’s
equations to the curved spacetime. Of course, these actions are designed to give
appropriate field equations, and we are just decreeing here that the appropriate field
equation for the particle labelled by a is a geodesic equation, or an equation like
(8.22).

So what is the physical motivation for the geodesic principle? It is claimed here
that the appropriate physical argument supporting (8.15) is an application of the
strong principle of equivalence. This is where we discover exactly how we are to
link what happens mathematically in a curved manifold with measurements in our
own world. We start from an action, but at some point we must say what the point
of contact would be with physical reality. Let us suppose we impose a strong prin-
ciple of equivalence, that is, we say roughly speaking that any physical interaction
other than gravitation behaves in a locally inertial frame as though gravity were ab-
sent. Relative to such a frame, any particle that is not subject to (non-gravitational)
forces will then move in a straight line with uniform velocity, i.e., it will follow the
trajectory described by

dvµ

ds
= 0 , (8.23)

where vµ is its 4-velocity. This is expressed covariantly through (8.15). If there are
non-gravitational forces, we start with F = ma in the locally inertial frame and we
find (8.15) with a force term on the right-hand side. It is quite clear that we still have
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a version of Newton’s second law F = ma, so the present view is that we have not
explained inertia and inertial effects by this ploy, but merely extended this equation
of motion to the new theory.

It is worth looking more closely at the claim that (8.23) is expressed covariantly
through (8.15). A cheap way is to set the connection coefficients equal to zero in
(8.15). This is basically the observation that the two equations are the same relative
to Cartesian coordinates in a flat spacetime. Such a claim misses out some of the
machinery of the connection construction that lies at the heart of non-Euclidean
geometry, but this is not the place to expose all that. A justification of sorts can be
found in [30, Sect. 2.5].

It is not totally obvious from what has just been said that SEP is absolutely neces-
sary here and some authors would claim that it is not. This will be discussed further
in the following (see in particular Sect. 8.7.4).

8.7.3 Equality of Inertial and Passive Gravitational Mass Revisited

Equation (8.15) is thus taken as the equation of motion of a point particle upon
which no forces are acting, unless one counts gravity as a force. We observe that
there is no mention of any parameters characterising the point particle. In particular
there is no mention of its inertial mass. Of course there is no mention of parame-
ters describing its inner make-up. After all, it is supposed to be a point particle. In
this chapter, we are considering what would happen to a slightly spatially extended
particle, i.e., with a world tube that intersects spatial hypersurfaces in a small re-
gion rather than a single mathematical point. This object might be spinning in some
sense, or contain a charge distribution, for example. We shall return to this point in
a moment, but let us begin with the disappearance of the inertial mass since this is
directly relevant to the discussion.

So where did the inertial mass of the particle go? If we look back to (8.22), viz.,

minertial
a

(
d2aµ

ds2
a

+Γ
µ

νρ

daν

dsa

daρ

dsa

)
= eaFµ

ν

daν

dsa
, (8.24)

we find the inertial mass minertial
a multiplying the acceleration term in the equation to

give a force on the right that is determined by an external field Fµν and a coupling
constant ea characterising the particle. This is a typical equation of motion when
there is some non-gravitational force (in this case electromagnetic) acting on the
particle. Now in Newtonian gravitational theory, if the external field happens to be
a gravitational potential Φ , one gets an equation of motion like this:

minertial
a

(
d2aµ

ds2
a

+Γ
µ

νρ

daν

dsa

daρ

dsa

)
= mpg

a hµν
Φ,ν , (8.25)
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where mpg
a is the passive gravitational mass of particle a, (hµν) = diag(0,1,1,1),

and Γ
µ

νρ is the connection appropriate to Newtonian spacetime and relative to what-
ever coordinates we have chosen to describe it. But due to the observed equality of
inertial mass and passive gravitational mass, viz., mpg

a = minertial
a , the coupling factor

on the right-hand side is just the same factor as we have on the left-hand side. The
only relevant characteristic of our point particle thus cancels out.

This explains how the inertial mass disappears from the equation, precisely be-
cause of the observed equality of inertial mass and passive gravitational mass, but
how do we get rid of the gravitational potential we have just introduced? Of course,
we can absorb it into the connection, following the much more detailed account of
all this in [22]. We now have a new connection

Γ
µ

νρ := Γ
µ

νρ +hµσ
Φ,σ tν tρ , (8.26)

where (tµ) := (1,0,0,0), so that tµ = ∂ t/∂xµ . Equation (8.25) becomes

d2aµ

ds2
a

+Γ
µ

νρ

daν

dsa

daρ

dsa
= 0 , (8.27)

still in this Newtonian context. So the equality of inertial and passive gravitational
mass allows us to treat the trajectories of particles subjected only to gravitational
effects as geodesics of a non-flat connection, because we do expect this new con-
nection in (8.26) to be non-flat in general.

As Friedman says in [22], the equality of inertial and passive gravitational mass
implies the existence of a connection Γ such that freely falling objects follow
geodesics of Γ . This does not work for other types of interaction, where the ra-
tio of ma := minertial

a to the coupling factor, e.g., ea for a charged particle, is not the
same for all bodies. The worldlines of charged particles in an EM field cannot be
construed as the geodesics of any single connection, because ma/ea in (8.22) varies
from one particle to another.

Put another way, the equality of inertial and passive gravitational mass must be
true if any theory of gravitation like general relativity, in which gravitational inter-
action is explained by the dependence of a non-flat connection on the distribution of
matter, is to be possible. Note in passing that general relativity is not the only theory
of this type. Classical gravitational theory can also be formulated in this way by
taking advantage of the very same equivalence of inertial and passive gravitational
mass. Friedman’s book [22] is recommended for anyone who thinks that Newtonian
gravitational theory cannot be given a fully covariant and totally geometric treat-
ment. The essential difference with general relativity is that, in this treatment of
Newtonian gravity, there is a flat connection Γ living alongside the non-flat con-
nection Γ of (8.26). The deep fact here is that, in general relativity, the non-flat
connection is the only connection of the spacetime.

So what of the criticism mentioned earlier, namely that the very possibility of a
theory like GR implies the equality of inertial and passive gravitational mass? Might
this not undermine the result of Sect. 8.7.1 which used GR and SEP to show that
at least the self-force contributions to inertial mass are likely to equal the self-force
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contributions to passive gravitational mass? Put like this, we appear to be assuming
the result in order to demonstrate it.

Looking back at Sect. 8.7.1, what we proposed was a new law (8.13), viz.,

∑
fields

Fself +Fsupp = 0 , (8.28)

which would replace Newton’s second law F = ma and its direct extensions to GR
with the help of SEP. Newton’s second law in its usual form follows from (8.28) by
analysing the self-forces into some multiple of the four-acceleration, and as men-
tioned earlier, the whole problem of the research program suggested in this chapter
is to show that this is always possible, not just for EM forces, but for the other
forces too, and then to show that there is no other mechanical mass. So a dynamical
law, viz., (8.28), is still necessary here, but from it we can deduce results that were
merely imposed previously, at least in the case where the inertia is entirely due to
self-force effects.

To repeat the arguments at the end of Sect. 8.7.1, we understand physically why
a supporting force is needed, namely to balance self-forces. In GR as it is usually
presented, the supporting force is needed because the particle has non-zero four-
acceleration, but we do not know why a non-zero four-acceleration should require
a (supporting) force any more than we know why an acceleration should require a
force in Newtonian physics.

Another point is that self-forces make a distinction between uniform velocities
and changing velocities. The self-force is zero when the particle has a uniform ve-
locity, and only becomes non-zero when the particle velocity is changing. So we
understand from (8.28) why no force Fsupp is required on the particle to keep it in
free fall. And we understand the contrast between Newton’s first and second laws,
in the same way as the self-force idea explains this contrast in Newtonian physics.

And finally, although the equality of inertial and passive gravitational mass was
crucial to the very existence of a theory like GR, we do have a mechanism here to
explain why this should be the case.

8.7.4 Do Einstein’s Equations Explain Inertia?

It turns out that the geodesic principle is not a principle at all, and neither is it likely
to be any better than an approximation for a real particle that cannot be treated as
a mathematical point. For the fact is that the geodesic principle follows from Ein-
stein’s equations in general relativity, provided that we also have SEP and provided
that we can make suitable assumptions about the particle. Here follows a proof of
sorts.

Recall first that Einstein’s equations can be written

Gµν =−κTµν , (8.29)
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where
Gµν := Rµν −

1
2

gµν R (8.30)

is the Einstein tensor expressed in terms of the Ricci tensor Rµν and curvature scalar
R, κ is a constant that turns out to be expressible as

κ =
8πG
c4 , (8.31)

and Tµν is the energy–momentum tensor expressing the distribution of mass and
energy in the spacetime.

Now the covariant divergence of the Einstein tensor is zero in many circum-
stances, in particular when the torsion is zero. But the torsion is indeed often zero.
In fact, it is sourced by the spin currents of matter in such a way that, in contrast to
curvature, it does not propagate in spacetime, so it could only be nonzero in regions
where there is matter or energy with some rotational property. A very clear, though
somewhat sophisticated account of all this can be found in [25, Chap. 5].

Anyway, in a region where there is no spinning matter, Einstein’s equation
(8.29) implies that the covariant divergence of the energy–momentum tensor is
zero. This is what we shall now use to derive the geodesic ‘principle’. A more so-
phisticated approach is given in Sect. 8.7.5. In both cases, it is crucial to note that
non-innocent assumptions are made about the particle, and in particular about the
energy–momentum tensor that is taken to describe it.

We consider an almost-pointlike particle. So when almost-point particles are not
acted upon by forces (apart from gravitational effects), we would like to show that
their trajectories take the form

d2xµ

ds2 +Γ
µ

νρ

dxν

ds
dxρ

ds
= 0 . (8.32)

We consider a small blob of dustlike (i.e., zero pressure) matter with density ρ and
velocity field

vµ =
dxµ

ds
. (8.33)

This equation expresses the fact that we view each component dust particle as having
its own worldline xµ(s). The energy–momentum tensor for this matter is then

T µν = ρ
dxµ

ds
dxν

ds
(8.34)

and we are saying that Einstein’s field equation (8.29) implies that

T µν
;ν = 0 . (8.35)

We analyse (8.35) by inserting (8.34) and the result is the geodesic equation (8.15).
For completeness, here is the argument. We have
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ρ,ν
dxµ

ds
dxν

ds
+ρ

(
∂

∂xν

dxµ

ds
+Γ

µ

νρ

dxρ

ds

)
dxν

ds
+ρ

dxµ

ds

(
∂

∂xν

dxν

ds
+Γ

ν
νρ

dxρ

ds

)
= 0 .

(8.36)
If we did not have the idea of a velocity field vµ , it would be difficult to interpret
partial derivatives of dxµ/ds with respect to the coordinates. But as things are, we
can say

dxν

ds
∂

∂xν

dxµ

ds
=

dxν

ds
∂vµ

∂xν
=

dvµ

ds
=

d2xµ

ds2 . (8.37)

The terms in the second bracket of (8.36) are

∂vν

∂xν
+Γ

ν
νρ vρ = divv , (8.38)

and the whole thing can now be expressed by

div(ρv)
dxµ

ds
+ρ

(
d2xµ

ds2 +Γ
µ

νρ

dxν

ds
dxρ

ds

)
= 0 . (8.39)

By mass conservation,
div(ρv) = 0 , (8.40)

and the result follows.
This proof purports to show that each constitutive particle of the blob follows a

geodesic. But then we did not allow these particles to jostle one another. For exam-
ple, we have zero pressure, as attested by the form of the energy–momentum tensor
in (8.34). And we did not allow the particles to generate any torsion by revolving
about the center of energy of the blob. And neither did we endow them with electric
charge. It is in this sense that the geodesic ‘principle’ is in fact just an approxi-
mation, unless the test particle is not a blob, but a mathematical point. But more
importantly, we still assume a certain form for the appropriate energy–momentum
tensor, viz., (8.34). Why should this be the right thing?

Some argue that inertia is explained in general relativity, precisely because of the
above proof or better variants of it (such as the one in Sect. 8.7.5). This point of view
is expressed in the philosophical study by Brown [6, p. 141]. He claims that GR is
the first in the long line of dynamical theories, based on the Aristotelian distinction
between natural and forced motions of bodies, that explains inertial motion. This is
not the view taken here, for reasons to be explained shortly. However, other issues
discussed in Brown’s book, in particular what he refers to as the dynamical approach
to spacetime structure, are exactly in line with the approach advocated in the present
book, and in particular with the issues discussed in Bell’s paper [2] and extensions
of those points to GR (see Chap. 6).

Concerning the supposed explanation of inertial motion according to Brown [6,
Sect. 9.3], the idea is that inertia in GR is just as much a consequence of the grav-
itational field equations as gravitational waves, i.e., inertial motion of test particles
is just part of the gravitational dynamics. Here is an argument against that view.
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Recall the discussion just after (8.22) on p. 301. It was pointed out that actions
like (8.19) and (8.21) are designed to give appropriate field equations, and that the
appropriate field equation for the particle labelled by a is a geodesic equation, or an
equation like (8.22). Now in GR, one adds a gravitational part to the action, viz.,

Agrav :=
c3

16πG

∫
R(−g)1/2d4x . (8.41)

Some textbooks motivate this as follows. When the metric is varied in Agrav, a con-
stant multiple of the Einstein tensor pops out. The point about this is the observation
that, when the metric is varied in an action like (8.21), the energy–momentum ten-
sor Tµν pops out. One gets a sum of contributions to this tensor from the matter as
encapsulated in the action term

−∑
a

cma

∫
dsa , (8.42)

and from the EM fields as encapsulated in the action term

− 1
16πc

∫
Fµν Fµν(−g)1/2d4x .

Setting the variation of the full action with respect to the metric equal to zero, one
then obtains the Einstein equations, with the Einstein tensor on one side and the
total non-gravitational energy–momentum on the other side.

Now the covariant divergence of the Einstein tensor is zero (assuming zero tor-
sion) and this could in principle be worrying, because the Einstein equation then
implies that the covariant divergence of the total energy–momentum is zero. It is
interesting at this point to note that there is a general result according to which the
energy–momentum tensor derived from a matter action of the form∫

L(−g)1/2d4x (8.43)

by varying the metric always has zero covariant divergence on shell in the torsion-
free case when L is a scalar, as explained very clearly in [14, Chap. 9] (see below).
The expression ‘on shell’ means ‘when the matter field equations are satisfied’.
Another version of this theorem in [25, Sect. 6.5] shows that invariance of the matter
action under the group of diffeomorphisms is sufficient to guarantee zero covariant
divergence of the corresponding energy–momentum tensor on shell if the torsion is
zero. As mentioned above, if the torsion is not zero, the covariant divergence of the
Einstein tensor is not zero either. This case is not considered here.

Of course, the action A in (8.42) does not have the form (8.43), but one ex-
pects some general theorem to ensure that the resulting energy–momentum tensor
will have zero covariant divergence on shell, i.e., when the field equations, that is,
the geodesic equations, are satisfied. So here we have a very general converse of
the idea that covariant conservation of the energy–momentum tensor implies the
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geodesic principle, a converse that only requires the matter action to be coordinate
independent. We shall return to this general idea in Sect. 8.7.5.

The main point we would like to make is that the geodesic equations, and their
variants with a force on one side, are built in by construction of the action. It is no
surprise therefore that they should pop out again when we set the covariant diver-
gence of the energy–momentum tensor equal to zero. Perhaps one should be more
suspicious of arguments from actions. They are neat, and bring a level of unity in
the sense that one can derive several dynamical equations from the same action by
varying different items. On the other hand, we are only getting out what we put in
somewhere else.

Actions like (8.16) at the beginning of Sect. 8.7.2, or (8.42) above, are a case
in point. We saw that (8.16) was in fact designed to deliver the geodesic principle
when extremised under variation of the worldline, so we have already fed in the idea
that freely moving test particles follow (roughly) straight lines at constant velocity
in (locally) inertial frames. Hence the conclusion at the end of Sect. 8.7.2 that the
physical motivation for the geodesic principle must still pass by an application of
the strong equivalence principle and the hypothesis, still a necessary assumption of
the theory, that any particle not subject to forces in a flat spacetime will move with
constant velocity.

A recent commentator [10] asserts that the motion of massive test particles is
independent of SEP. This refers to the above idea that geodesic motion follows by
conservation of energy–momentum, which in turn follows from Einstein’s equa-
tions, whence the inertia of massive objects is supposed to be explained by the the-
ory. So here we are arguing against both conclusions:

(i) independence from SEP, and
(ii) insofar as geodesic motion is a consequence of Einstein’s equations, the claim

that this explains inertia.

Note, however, that the paper [10] is recommended for its clear account of the idea
advocated by Brown, and also in this book, that the metric tensor in relativity theo-
ries gets its geometric significance through detailed physical arguments.

Regarding (ii), the unwarranted claim that inertial motion drops out of Einstein’s
theory as a consequence of Einstein’s equations for the gravitational field without
further assumptions, we have just seen a counter-argument. When we wanted to
deduce geodesic motion from Einstein’s equations, we decreed that the energy–
momentum tensor of the test particle was that of a very small cloud of dust, then
reasoned heuristically and took a point-particle limit at the end of a short calculation.
Further, we assumed that the component matter was not spinning in any way, and
that the component particles carried no electric charge. Put like that, one sees how
limited the proof is. No real particle with spatial extent could be like this, and indeed,
no real particle would actually free fall along a geodesic, and nor even would its
center of energy (see, for example, [14, Appendix A] for the analysis of spinning
test particles and [13] for the case of a spatially extended charged particle interacting
with its own fields). All this shows clearly that the motion of (real) test particles is
indeed part of the dynamics of the relevant non-gravitational fields, provided that we
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make sufficient assumptions about the nature of the test particles and provided that
we have a principle like SEP to formulate those assumptions in the curved spacetime
context.

The point is then that one still needs to explain the choice of energy–momentum
tensor. A more sophisticated proof of the geodesic principle from Einstein’s equa-
tions using distributions will be sketched in Sect. 8.7.5. There one derives the
energy–momentum tensor (distribution) for a point particle by varying the metric
in the usual action S = −m

∫
dτ for a point particle in relativity theory. One then

shows that conservation implies the geodesic equation. But it would be a circular
argument to say that this proves that the geodesic equation follows from Einstein’s
equation, because the action S = −m

∫
dτ is designed to deliver the geodesic equa-

tion when one varies the particle worldline of which it is a functional. Once again,
since the action S is invariant under coordinate changes and we assume zero torsion,
this alone implies that the covariant divergence of the energy–momentum tensor de-
rived from it by varying the metric will be zero if the particle follows a geodesic.
But of course, as mentioned above, the action is designed to yield geodesic motion.

So far we have focused on massive test particles, but it is very instructive to ask
why free photons should follow null geodesics. There is clearly more input here
than just Einstein’s equations for the gravitational field. We need to apply SEP in
order to ship the flat spacetime situation into the locally inertial frames of curved
spacetimes. But the flat spacetime situation can only be had by assuming Maxwell’s
equations. In other words, we do require the minimal extension of Maxwell’s equa-
tions (MEME) to the curved spacetime in order to get the ‘geodesic principle’ for
photons.

Interestingly, and probably significantly, the above discussion of material test
particles assumes that there is no torsion, because it uses the Levi-Civita connection.
But torsion is generated by spinning matter as mentioned above [25, Chap. 5]. This
brings us to the claim (i) above that SEP would not be needed to show that test
particles follow geodesics.

In the above demonstration of the geodesic principle, we require the particle to be
moving in a region of spacetime where the torsion is zero, because this is a sufficient
condition for the covariant divergence of the Einstein tensor to be zero. One often
forgets torsion outright and just decrees the connection coefficients to be symmetric
in their two lower indices. However, it is interesting to draw attention to torsion
here since it is precisely spinning matter that generates torsion. As torsion does not
propagate beyond its sources, one only needs to assume that the test particle (blob)
moves in empty spacetime. But what if the blob is itself spinning?

Now it is known that a spinning blob of matter will not free fall along a geodesic.
The spin angular momentum of the blob couples with the curvature and tweaks it
off the geodesic [14, Appendix A]. How does one show this? One begins with a
Lagrangian which treats the blob as an ensemble of particles, then expands every-
thing about the center of energy. The best thing would be to include all the elec-
tromagnetic forces holding the particles together, but fortunately one can just make
a quasi-rigidity assumption and go from there. The latter assumption avoids talk-
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ing about, but nevertheless embodies, non-gravitational forces. It thus assumes, in a
very hidden way admittedly, the strong principle of equivalence.

It is the center of energy of the blob that approximately (but not quite) follows a
geodesic. It seems a remarkable achievement just to get this. But it is not so remark-
able, because that Lagrangian mentioned in the last paragraph is precisely the one
that is designed to deliver geodesic motion for the constituent particles of the blob,
were they not constrained by quasi-rigidity.

In fact, Butterfield does specify that he is talking about non-rotating test particles
in [10]. But the point remains that one really must ask what is meant by a test
particle. It is supposed to be a mathematical point, but that is an approximation.
And the fact is that all test particles are going to involve non-gravitational forces.
Of course, it is precisely for the blob of dust that one gets one of the derivations,
taking a limit in the end as the size of the blob goes to zero. On the other hand,
any realistic test particle (even with a limit at the end) is going to involve non-
gravitational forces, and will in general be spinning (not spinning would be a very
special and improbable case). Even if not spinning, the general Lagrangian approach
including EM forces is going to predict deviations from the geodesic.

Note once again that photons have to follow null curves because of Maxwell’s
equations [12, Chap. 7], and this brings in a need for SEP. Now it would be a strange
thing in a way if SEP were required to show that photons have to follow null curves,
but massive particles could get away without having to obey any vestige of the laws
of any of the forces governing their make-up, and hence avoid any need for SEP.
Put another way, if we say that there are no non-gravitational effects to be taken
into account when considering our test particle, then since SEP deals only in non-
gravitational effects, it cannot be needed to say anything about the test particle. This
is pure logic. There is no physics at all in it.

8.7.5 Geodesic Principle from Einstein’s Equations:
Another ‘Proof’

The argument to say that Einstein’s equations explain inertia uses the idea that the
geodesic principle is implied by Einstein’s equations [6, Sect. 9.3]. But we need to
postulate an energy–momentum tensor for the test particle. According to Einstein’s
equations, this is proportional to the Einstein tensor which has zero covariant diver-
gence in the torsion-free case, so the energy–momentum tensor for the test particle
must also have zero covariant divergence. Writing down the latter equation for the
right energy–momentum tensor, the geodesic equation drops out for the test particle.

But what is the right energy–momentum tensor for the test particle? It is often
derived from an action by varying the metric and applying a variational principle,
so we have to ask where that action came from. We then find that the action was
actually designed to give the geodesic principle anyway, by varying the particle
worldline and applying another variational principle. That would make such a proof
circular.
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This will be illustrated here by the following approach adapted from results in
[14]. For a point particle, it is commonplace to take the action functional to be

S =−m
∫

dτ . (8.44)

We vary the metric and apply a variational principle in order to derive an energy–
momentum tensor T µν from S, involving some distributions. Covariant conserva-
tion of T µν then implies the geodesic equation. But S was designed to deliver the
geodesic equation when we vary the particle worldline and apply another variational
principle.

The action functional of the free particle is given by (8.44). To obtain the func-
tional derivative of this action with respect to the metric tensor gµν , we must subject
gµν to a variation δgµν . If the worldline of the particle does not intersect the support
of δgµν , the action will remain unaffected. It is evident therefore that the functional
derivative is going to involve a delta function δ (x,z) having as arguments the point
x where the derivative is being taken and the location zα(λ ) of the particle. We use
indices from the first part of the Greek alphabet to denote tensors taken at the point
zα(λ ) and from the middle of the alphabet to denote tensors taken at the point xµ .
With this convention we may employ the abbreviations

gµν = gµν(x) , gαβ = gαβ

(
z(λ )

)
.

We also need the identity
δgαβ

δgµν

= δ
µν

αβ
, (8.45)

where
δ

µν

αβ
:=

1
2
(δ

µ

σ δ
ν
τ +δ

ν
σ δ

µ

τ)δ (x,z)
∣∣∣
σ=α,τ=β

.

δ
µν

αβ
is a bitensor density, of unit weight at the point x and zero weight at the point

z. We show below that it satisfies

δ
µν

αβ ;ν =−1
2
(δ

µ

α;β +δ
µ

β ;α) , δ
µ

α := δ
µ

ν δ (x,z)
∣∣∣
ν=α

, (8.46)

as may be verified by passing to a coordinate system in which the derivatives of gµν

vanish at x. We record here two other properties of the functional derivative:

• Functional differentiation is commutative (like ordinary differentiation).
• Functional differentiation commutes with ordinary differentiation with respect

to coordinates or worldline parameter λ . (It does not commute with covariant
differentiation!)

Regarding the definition of δ
µν

αβ
, it seems reasonable to ask why we do not have

δgαβ

δgµν

= δ
µ

σ δ
ν
τ δ (x,z)

∣∣∣
σ=α,τ=β

.
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The problem is that there is a constraint on the functions gαβ , viz., gαβ = gβα .
Indeed,

gαβ =
1
2
(gαβ +gβα) ,

and applying δ/δgµν to this, we obtain the given result. Put another way, we expect
δgαβ/δgµν to be symmetric in α , β or in µ , ν , and the given result is obtained by
symmetrising the above proposal.

However, the result (8.45) says that

δgα=0,β=1

δgµ=0,ν=1
=

1
2

δ (x,z) ,

whereas one normally defines

δ f (z)
δ f (x)

= δ (x,z) .

The point here is that we can only account in this way for the interdependence
(symmetry) of the gαβ if we insist on a sum over all indices, i.e., the given formula
is only right when we sum over indices. Note that in the application (8.47), we do
indeed sum over all α and β .

Another point here is the justification of the covariant derivative result in (8.46).
By definition, the covariant derivative at x of an object with two contravariant indices
at x and weight 1 at x is

δ
µν

αβ ;ν := δ
µν

αβ ,ν +Γ
µ

ρν δ
ρν

αβ +Γ
ν

ρν δ
µρ

αβ −Γ
ρ

ρν δ
µν

αβ ,

the last term being due to the weight at x. The last two terms cancel. Now

δ
µ

α := δ
µ

ν δ (x,z)
∣∣∣
ν=α

has weight 1 at x, hence weight 0 at z, so the covariant derivative at z is

δ
µ

α;β := δ
µ

α,β −Γ
γ

αβ
δ

µ
γ .

(Here we use the convention for δ (x,z). One can attribute some weight at x and the
rest at z, so that the total weight is 1, as required for this distribution.) Hence,

−1
2
(δ

µ

α;β +δ
µ

β ;α) =−
1
2
(δ

µ

α,β +δ
µ

β ,α)+Γ
γ

αβ
δ

µ
γ .

In a frame where
Γ

µ

νρ

∣∣∣
x
= 0 ,

we only have to show that

δ
µν

αβ ,ν =−1
2
(δ

µ

α,β +δ
µ

β ,α) .
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This amounts to showing that

(δ µ
σ δ

ν
τ +δ

ν
σ δ

µ
τ)δ (x,z),ν

∣∣∣
σ=α,τ=β

=−δ
µ

σ δ (x,z),β
∣∣∣
σ=α

−δ
µ

τ δ (x,z),α
∣∣∣
τ=β

=
[
δ

µ
σ δ (x,z),τ +δ

µ
τ δ (x,z),σ

]∣∣∣
σ=α,τ=β

,

which is true. Of course, we can also check that

Γ
µ

ρν δ
ρν

αβ = Γ
γ

αβ
δ

µ
γ .

This says that

1
2

Γ
µ

ρν(δ
ρ

σ δ
ν

τ +δ
ν

σ δ
ρ

τ)δ (x,z)
∣∣∣
σ=α,τ=β

= δ
µ

σΓ
γ

αβ
δ (x,z)

∣∣∣
σ=γ

,

and the left-hand side is

1
2
(Γ

µ

στ +Γ
µ

τσ )δ (x,z)
∣∣∣
σ=α,τ=β

,

as required.
Writing the particle worldline zα(λ ) for some parameter λ , the action (8.44) is

S =−m
∫ [
−gαβ (z)ż

α żβ
]1/2dλ .

The computation of the energy–momentum density for the free particle is now ele-
mentary. We find

T µν = 2
δS

δgµν

= m
∫

δ
µν

αβ
żα żβ (−ż2)−1/2dλ

−→
λ→τ

m
∫

δ
µν

αβ
żα żβ dτ =

∫
δ

µν

αβ
pα uβ dτ . (8.47)

Look at the special form this expression takes in canonical coordinates in flat space-
time (in flat spacetime, the worldline is of course straight, but we make no use of
this at this point):

T µν =
∫

pµ(τ)uν(τ)δ
(
x− z(τ)

)
dτ

=
∫

pµ(τ)uν(τ)δ
(
x− z(τ)

)
δ
(
x0− z0(τ)

)dz0(τ)

ż0(τ)

= δ (x− z)pµ uν

u0

∣∣∣∣
z0(τ)=x0

,

so that
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T µ0 = δ (x− z)pµ , T µi = δ (x− z)pµ vi , vi =
ui

u0 .

The three-dimensional delta function appearing in these last equations displays the
pointlike character of the particle. T 00 is clearly the particle’s energy density: all
the energy p0 is located where the particle is! T i0 is just as clearly the momentum
density. However, if one remembers the relativistic relation pi = p0vi between mo-
mentum and energy, one can alternatively regard momentum as a rate of transport
of energy. This permits T i0 or T 0i to be interpreted also as a rate of flow of energy
per unit area or energy flux density. In a similar vein, T i j is to be regarded as a
momentum flux density.

Returning to the curved spacetime case, we have

T µν
;ν =

∫
δ

µν

αβ ;ν pα uβ dτ =−
∫

δ
µ

α;β pα żβ dτ

= −
∫

δ̇
µ

α pα dτ =
∫

δ
µ

α ṗα dτ , (8.48)

where we have used (8.46). Now let Aµ be an arbitrary covariant vector of compact
support. Multiply both sides of this equation by Aµ and integrate over spacetime. If
T µν

;ν = 0, one gets ∫
Aα ṗα dτ = 0 .

Because Aα is arbitrary this implies ṗα = 0 (the geodesic equation).
This is a sophisticated version of the result that Einstein’s field equations imply

that particles will follow geodesics. What exactly is the logic here? T µν for the free
particle was derived from the action (8.44), so the assumption here is that this is
the right action for a free particle. Next, if Einstein’s field equations are satisfied for
this system, the contracted Bianchi identity (which always holds for zero torsion)
implies that T µν

;ν = 0, and as we have just seen, this implies that the particle follows
a geodesic.

This brings us to our criticism of the claim that GR implies inertia, i.e., that
this theory forces free particles to follow geodesics. We clearly have to assume
that (8.44) is the action for this system, but this is tantamount to assuming that the
free particle will follow a geodesic, as one finds by varying the worldline in the
action. Indeed, this action is designed so that, when one varies the worldline, the
geodesic equation drops out, as shown in the standard textbook demonstration at the
beginning of Sect. 8.7.2.

The action S in (8.44) is invariant under coordinate changes. As mentioned ear-
lier, there is a theorem which says that, in a torsion-free spacetime, the coordinate
invariance of the matter action alone is enough to imply that the covariant diver-
gence of an energy–momentum tensor derived from it by varying the metric will be
zero if the matter satisfies the related field equations, which for the action in (8.44)
means that the particle follows a geodesic. As an aside to the above discussion, let
us see the more general picture painted by DeWitt in [14, Chap. 9] (for a variant see,
e.g., [25, Sect. 6.5]). We assume zero torsion.
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Consider an action functional SM for some matter in a torsion-free spacetime and
assume that this functional is coordinate invariant. Therefore if δgµν and δΦA are
the changes induced in the metric tensor and the matter dynamical variables by an
infinitesimal coordinate transformation, we must have

0≡
∫

δSM

δgµν

δgµν d4x+
δSM

δΦA δΦ
A ,

with implicit summation or integration over the index A. When the matter dynamical
equations are satisfied (we say that the matter is on shell), the second term is zero.
Therefore, writing [14, Sect. 4.4]

δgµν = −Lδξ gµν

= −gµν ,σ δξ
σ −gσν δξ

σ
,µ −gµσ δξ

σ
,ν

= −δξµ;ν −δξν ;µ ,

for some infinitesimal coordinate transformation expressed by the contravector field
δξ µ , assumed to have compact support, with δξµ := gµν δξ ν , and carrying out an
integration by parts, we have

0 = −
∫

δSM

δgµν

(
δξµ;ν +δξν ;µ

)
d4x

= −
∫

T µν
δξµ;ν d4x =

∫
T µν

;ν δξµ d4x .

Because δξµ is arbitrary, we have

T µν
;ν = 0 , (8.49)

whenever the matter dynamical equations are satisfied.
Equation (8.49) generally holds only when the matter dynamical equations are

satisfied. As DeWitt points out, in many cases, it is completely equivalent to the
matter dynamical equations and can be used in place of them. This is exemplified
by the case of the free particle in the above derivation from (8.48), which showed
that covariant conservation implied the geodesic equation.

Although T µν has zero covariant divergence, this is not a true conservation law,
because T µν accounts only for the energy and momentum of the matter. When a
gravitational field is present (i.e., when spacetime is not flat), it can exchange energy
and momentum with the matter. One might ask whether the energy and momentum
of the gravitational field could be accounted for by treating the gravitational action
functional SG in the same way. It too is coordinate independent and hence satisfies(

δSG

δgµν

)
;ν
= 0 .
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Interestingly, this relation is an identity that holds whether or not the gravitational
field equations are satisfied. Its explicit form is [14, Chap. 8]

0 =− 1
16πG

[
(−g)1/2

(
Rµν − 1

2
gµν R

)]
;ν

.

The factor (−g)1/2 drops out right away, since (−g)1/2 has weight 1, whence[
(−g)1/2]

;µ :=
[
(−g)1/2]

,µ
−Γ

ν
νµ(−g)1/2 ,

and it is a standard result that

Γ
ν

νµ = (−g)−1/2[(−g)1/2]
,µ
,

so [
(−g)1/2]

;µ = 0 .

We thus have

0 =

(
Rµν − 1

2
gµν R

)
;ν

.

This is known as the contracted Bianchi identity, and the object in brackets is the
Einstein tensor.

To show that the identity

0≡
(

Rµν − 1
2

gµν R
)

;ν

can be obtained by contracting the Bianchi identity twice, recall that, for zero tor-
sion, this identity is [14, Sect. 4.4]

Rτσ µν ;ρ +Rτσνρ;µ +Rτσρµ;ν = 0 ,

and consider

0 = Rµν

µν ;σ +Rµν

νσ ;µ +Rµν

σ µ;ν

= R;σ −Rµ

σ ;µ −Rν
σ ;ν =−2gσ µ

(
Rµν − 1

2
gµν R

)
;ν

.

The contracted Bianchi identity imposes no constraint on the gravitational field. It
does, however, impose a constraint on the matter through the Einstein equations,
forcing T µν to have zero covariant divergence. So in many cases, explicitly those
where zero covariant divergence of the energy–momentum tensor implies the matter
dynamical equations, the latter are superfluous, because the Einstein equations are
sufficient.

But just to reiterate the point we would like to make here, the success of this
theory does depend on our having the right energy–momentum tensor, or indeed
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the right matter action SM, to describe the matter, and when we are dealing with
the action (8.44) for a point particle on p. 311, we have to remember that this was
chosen explictly so that the freely falling particle would follow a geodesic.

Finally, as DeWitt reminds us, it is nice to know that the equations obtained
from the complete variational principle are at least consistent. They would not be
consistent if SM were not coordinate independent.

8.7.6 A Brief Conclusion

When we make suitable assumptions about the energy–momentum tensor used to
describe a massive test particle, we can deduce from covariant conservation of this
energy–momentum tensor that the particle will closely follow a timelike geodesic
when subject only to gravitational effects, and of course, covariant conservation
of this tensor is required by Einstein’s equations for the gravitational field in a
torsion-free region of spacetime. We do need to know what constitutes an appro-
priate energy–momentum tensor describing the test particle, or at least put some
constraints on it. As Malament puts it [33], assumptions other than covariant con-
servation are required to obtain a geodesic worldline, i.e., we need to put more into
our premisses in order to get the geodesic principle out.

In sophisticated arguments [33] modelling the particle as a limit of ever smaller
bodies of matter, this so-called geodesic principle can be derived by making some
extremely general assumption about the way energy flows within the body, viz., that
its flow curves are timelike. This is referred to as an energy condition on the mat-
ter fields constituting the particle. Although this is intriguing in itself, it confirms
the idea stressed throughout the above discussion that we do effectively feed in the
notion of inertial motion somewhere, albeit possibly in a disguised way, when we
apply variational or other methods. For example, an explicit energy–momentum ten-
sor is assumed for the argument in Sect. 8.7.4 [see (8.34) on p. 305] and an explicit
action is assumed for the argument in Sect. 8.7.5 [see (8.44) on p. 311]. In the lat-
ter case, that action was designed to deliver the geodesic principle by extremisation
under variation of the worldline.

We have also noted that, when the internal makeup of the ‘freely falling’ particle
is taken seriously, e.g., taking spin into account [14, Appendix A], or the interac-
tion of a spatially extended charge distribution with its own fields [13], dynamical
calculations show that it will be tweaked off its geodesic, clearly revealing the role
of the strong equivalence principle even in cases of free fall. Finally, we note that
photons follow null geodesics, not by some mysterious consequence of Einstein’s
equations, but because this is what is dictated by Maxwell’s theory in flat spacetime
and its minimal extension to curved spacetimes.

So these theorems all assume something about inertial motion in flat spacetime
and carry the import of those same assumptions over to curved spacetimes via the
strong equivalence principle. There is no deeper understanding of inertial motion
than we had before, although it has to be said that the strong equivalence principle
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is a bold and sweeping hypothesis, and may of course turn out to be wrong, or
need to be implemented in a non-minimal way. (This means that, in addition to
replacing coordinate derivatives by covariant derivatives with respect to the metric
connection, we may also need to include terms involving the curvature directly in
the field equations of whatever non-gravitational phenomena we are describing.) But
does the discussion in Sect. 8.7.1 really provide a deeper understanding of inertial
motion?

There is an extremely elegant philosophical paper by Nerlich [42] which is worth
the detour here. It claims that, if one can take it as a real entity, spacetime with
accompanying metric structure does in fact explain why particles should follow
geodesics when not affected by electromagnetic fields, collisions, and so on. How-
ever, the explanation is not a causal one, rather a geometrical one, since as Galileo
pointed out, no cause is needed for this motion! To quote Nerlich:

Gravity makes no sense as action across a distance by some massive things on others. It
is not a force, not a cause. GR makes sense only as a local theory: it demands proximal
explanation. In lots of pure gravitation situations, the only proximal feature available to
explain anything is local spacetime structure. But surely it cannot explain matter’s motion
by causing it. So a style of geometrical explanation both local and acausal surely looks
worth at least consideration.

This is strongly recommended reading.
Section 8.7.1 presents what is apparently a rather different line of thought con-

cerning the reason why particles should resist being pushed off their geodesic, what-
ever agent may be the cause of that pushing. It concerns the force that a spatially
extended particle must exert upon itself in that context, whenever the particle con-
tains a continuous spatial distribution of something that is the source for any kind
of force field. In GR, this self-force effect could at least explain why (by an explicit
mechanism) the self-force contribution to the passive gravitational mass should be
exactly equal to the self-force contribution to the inertial mass.

The argument appeals to the strong equivalence principle, and the strong equiv-
alence principle is at least partly inspired by the idea that passive gravitational and
inertial mass are exactly equal anyway, so one might just accuse this argument of
circularity. The claim here is that it does nevertheless provide an insight. On the
other hand, we still appeal to a version of Newton’s second law which says that the
total force on any object is zero [see (8.28) on p. 304]. Nerlich points out that forces
are usually thought of as pulling on masses [43]. So what do the forces pull on now?
The idea here must be that forces pull on each other, and in such a way that they
always exactly cancel.

The reader must make his or her own decision about what is the better ontology: a
real spacetime capable of geometrical explanation or dynamical effects that always
act to cancel one another. But one could argue within the self-force picture that,
through the metric, the geometry tells us when there is no aceleration and hence no
self-force that needs to be overcome in order to maintain such motion.



Chapter 9
Dynamical Explanations
for Relativistic Effects

The strong focus of modern theoretical physics on geometrical pictures and group
theory sometimes makes us lose sight of the real physics that underlies phenomena
like FitzGerald contraction and time dilation, the velocity dependence of particle
mass, and the effect of binding energy on the inertial masses of bound state particles.
Although geometry and group theory are essential tools of physics today, we should
not forget their physical origins. Let us try to readjust the balance in this section,
and break free from what one might describe as the Minkowski straightjacket.

9.1 Introduction

We discuss here four physical phenomena: FitzGerald contraction and time dilation
(Sect. 9.2), the velocity dependence of particle mass (Sect. 9.3), and the effect of
binding energy on the inertial masses of bound state particles (Sect. 9.4). Each of
these effects is generally presented without physical explanation today:

• FitzGerald Contraction and Time Dilation. When a measuring stick is accel-
erated along its axis relative to some inertial frame, something happens to its
length. In fact, it gets shorter. But in Minkowski’s geometrical picture, a measur-
ing stick is a 4D region of spacetime, and it is often intimated that the relativistic
contraction effect is not a real effect at all, but merely some kind of illusion, de-
pending on which spacelike hypersurface an inertially moving observer should
use to define its length. Regarding time dilation, we learn that moving clocks run
slow, but we should also be allowed to ask why they do so.

• Velocity Dependence of Particle Mass. It is common knowledge in relativity
theory that the resistance of a particle to acceleration will increase as it moves
faster. When at rest, this resistance will be measured by its rest mass m0, but
when moving at speed v, it will be given by a speed-dependent function

m(v) = m0γ(v) =
m0√

1− v2/c2
. (9.1)

319
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No explanation is usually offered up for this, except that it plays a role in the
successful extension of Newton’s second law to a Lorentz covariant version.

• Inertial Consequences of Binding Energy. When we consider a bound state
particle like the proton in modern particle physics, comprising two up quarks and
a down quark according to current theory, its inertial mass is taken to be made
up of several components: the intrinsic inertial masses of the quarks (insofar
as they can be ascertained in the difficult context of quark confinement), the
kinetic energies of the quarks, and the strong, electromagnetic, or other binding
energies. The usual explanation for including binding energy is simply the claim
that energy and mass are equivalent!

The aim here is to show that each of these effects has a dynamical explanation. In
each case, the argument makes crucial reference to acceleration, and so deserves its
place in this discussion.

9.2 FitzGerald Contraction and Time Dilation

Suppose a measuring rod starts out at rest in some inertial frame, where its length is
measured to be L, but later is moving at speed v along its axis relative to that same
frame. Assuming it has fully recovered from the acceleration process, it will now be
found to have a length L/γ(v), where

γ(v) :=
1√

1− v2/c2
.

During the acceleration, it is not at all obvious what its length might be at any instant
of time. That would depend on how it was accelerated, and also on its material
constitution. And neither is it obvious that it would ever fully recover from the
acceleration process. The worry is that it might be made of something like putty,
and we might have got it moving by hitting the back of it hard with a baseball bat.
So for sure it would be shorter, but not just by the generally tiny factor mentioned
above.

In that sense, the measuring rod seems to be a bad example for the above thought
experiment, except that by definition it is supposed to be good for measuring lengths,
whatever may be happening to it. So a better idea would be to replace the measur-
ing rod by a hydrogen atom and get it moving by accelerating the nucleus, as we
discussed in Chap. 6. In this case, we can make a model for the spatial, and in-
deed temporal, characteristics of the atom using Maxwell’s theory of electromag-
netism [2]. The spatiotemporal characteristics are taken as specified by the diameter
D and period P of the electron orbit.

If the atom is accelerated in such a way that it is not broken apart, and indeed
if it is accelerated gently enough for the electron to get plenty of orbits in before
the velocity has changed by much, one finds that the diameter of the orbit is always
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instantaneously approximately equal to the FitzGerald contracted length D/γ(v) for
the instantaneous speed v of the nucleus, and its period is always instantaneously
approximately increased to Pγ(v) for that instantaneous speed. But this means that
one could justify using the electron orbit of the atom as a clock or ruler for measur-
ing the times and lengths in an instantaneously comoving inertial frame, as they are
usually predicted by the Minkowski metric.

We still need to constrain the acceleration in this story, but in a way that is per-
fectly comprehensible to any practising physicist. If the acceleration broke the atom,
there would be no electron orbit to talk about, and even then, if the acceleration was
so great that the electron could not get round its orbit before the velocity had signif-
icantly changed, one could not justify talking about the instantaneous diameter or
period of the orbit.

Bell describes the practicalities of all this with some care in [2], and it has in part
stimulated a positive reaction, and an interesting insight into a dynamical interpreta-
tion of the metric in relativity theories [6,8,9,18]. Briefly, the idea is that the metric
ultimately gets its chronogeometrical interpretation from dynamical considerations.
A good discussion of this very important idea can be found in [10].

Put succinctly, relativity theories provide us with a manifold and a second rank
tensor field gµν , but we have to link this mathematical structure with what is out
there, and the standard practice is to do this by postulating that the times and lengths
specified in the usual way by gµν are just what our clocks and rulers would mea-
sure. On the other hand, our clocks and rulers are complex material systems whose
behaviour is assumed in the detail to be governed by the field theories of the funda-
mental non-gravitational forces, such as electromagnetic forces. If the metric does
indeed specify what we usually measure with clocks and rulers, there must be some
dynamical explanation for that. And indeed, there always is.

Bell’s pre-quantum atom is a case in point. If we define proper time and length by
what the atom indicates for our measurements via its period and diameter, wherever
it may be and whatever it may be doing, provided that it is not being too stressed
by accelerations, calculation with the appropriate field theory, viz., Maxwell’s the-
ory, shows that the Minkowski metric will indeed provide times and lengths that
correspond closely to the values obtained. This idea transfers to curved spacetimes
as described by general relativity, where our field theories of the fundamental non-
gravitational forces are extended in the usual minimal way by application of the
strong equivalence principle (see Chap. 6).

Note in passing that the fact that the atom is not understood here via quantum
mechanics is irrelevant, as is the fact that we ignore the radiation disaster for such
an atom, which means that we are even ignoring one of the consequences of the
Maxwell theory. In fact, even the details of Maxwell’s theory turn out to be irrelevant
in these calculations. What counts here, in the flat spacetime case, is merely that our
theories of non-gravitational forces should be Lorentz symmetric.

Note that times and lengths implied by the metric will never concur exactly with
those measured by our clocks and rulers. In a nutshell, this is because no measure-
ment in physics can be perfectly accurate. Put another way, no clock or ruler is a
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perfect clock or ruler. In this context, one may ask whether, or to what extent, the
clock satisfies the clock hypothesis:

Clock Hypothesis. Whatever worldline it may follow in spacetime, the putative clock mea-
sures exactly the proper time along that worldline, as defined by the metric, which amounts
to saying that the effect of motion on the rate of the putative clock is no more than that
associated with its instantaneous velocity, while any acceleration changes nothing.

Or indeed, one may ask whether, or to what extent a measuring rod satisfies the ruler
hypothesis:

Ruler Hypothesis. Whatever motion it has, the putative ruler is always instantaneously
ready to measure proper length in an instantaneously comoving inertial frame.

Of course, these two requirements could never be satisfied by any real clock or
measuring rod under arbitrary acceleration.

As we saw in Sect. 6.3, one way for a ruler to satisfy the ruler hypothesis would
be for the material continuum of the rod to undergo rigid motion, where rigid motion
is defined in a relativistic sense, viz., the proper distance between any two neigh-
bouring particles as measured in a frame that is instantaneously comoving with ei-
ther of them is constant. This can only be achieved by ensuring that each particle has
exactly the right acceleration, while no two particles would actually have the same
acceleration [see, for example, Sect. 2.9, and in particular (2.245) on p. 83]. And
furthermore, it could never be achieved by applying a force at one end. On the other
hand, one expects some objects to be close to ideal rulers under many conditions.
See [31] for more discussion of these points.

One can think of the clock hypothesis as the condition that defines an ideal clock.
A general discussion can be found in [1]. Of course, in the real world, a clock may
be close to ideal in one situation, and not work at all in another. A lot depends on
how it is accelerated, in other words, on the nature of the worldline it has to follow
while doing its job.

In their classic textbook, Misner et al. claim that whether the clock is pushed be-
yond the point where it can still keep good time depends entirely on the construction
of the clock and not at all on any universal influence of acceleration on the march
of time, stressing their view that velocity produces universal time dilation, while
acceleration does not [38]. This is an assumption, however. How do they know that?
Of course, it could be turned into a truism, by including, if necessary, universal in-
fluences of acceleration on the putative clock among the things that push it beyond
the point where it can still keep good, i.e., proper, time. This kind of issue reveals
a naive trust we all seem to have in relativity theory. Relativity theory may or may
not dictate the idea Misner et al. express here, but relativity theory may be wrong.

Maybe one day someone will demonstrate that there is no universal influence of
acceleration on putative clocks. It does matter what happens to real putative clocks
here. This seems to underlie Brown and Pooley’s concerns [8, 9]. It really matters
whether there are any good approximations to ideal clocks. It really matters whether
there might not be some universal influences of acceleration on putative real clocks.

In fact, the Bell type of calculation gives us a handle on these questions about how
good our clocks and rulers will be, at least as far as relativity theory is concerned.
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Relative to some theoretical coordinate system for our spacetime, the field theories
governing the dynamics of our proposed clock or ruler will tell us how they behave.
In the purely theoretical context, we can then see whether the times and lengths
indicated by the given systems would be expected to concur with the times and
lengths predicted by the Minkowski metric (or a curved metric in general relativity).

In a sense, this would indeed appear to turn things round, taking the metric pre-
dictions as a standard (see also the discussion in Sects. 6.4 and 6.5). However, in
practice, one must have a way of linking the theoretical coordinate system with ac-
tual spacetime events. If one had adopted the wrong manifold with the wrong metric,
general inconsistencies would eventually show up. The theoretical metric is indeed
answerable to what we put forward as clocks and rulers in the real world, despite
the approximations involved.

The dynamical approach to justifying the chronogeometric properties of gµν can
in fact be seen as eliminating geometry from physics [7], for the simple reason that
the measurement of lengths and times is now viewed as a dynamical exercise involv-
ing our fundamental field theories of non-gravitational forces, while the chronogeo-
metric significance of gµν is relegated to a secondary role. In a flat spacetime, where
gµν =ηµν is the Minkowski metric, this tensor field serves only to single out coordi-
nate systems in which our field theories take on a particularly simple form, while its
chronogeometric interpretation is then a consequence of the field theories applied to
putative measuring tools. In a curved spacetime, the primary role of the tensor field
gµν is to describe the interaction between non-gravitational and gravitational effects
via the strong equivalence principle used to extend our flat spacetime field theories
for non-gravitational forces to the curved manifold context.

That is one way of taking the import of Bell’s paper. But it has also stimulated a
fierce negative reaction in some quarters [41,47], and it is important and instructive
to see why. Indeed the reversal of roles advocated by Brown and Pooley in [8, 9] is
anathema to those who view relativity as a mere exercise in geometry. One reason
for this is undoubtedly that the geometrical view of Minkowski spacetime provides
a very good way of picturing what is happening. One does not really need a dy-
namical explanation. The measuring rod or electron orbit are viewed as 4D regions
of spacetime, and the different spatial dimensions they appear to have for different
inertially moving observers are put down to the different hypersurfaces of simul-
taneity those observers might choose, or would naturally choose, to use to gauge
lengths.

This is indeed a very elegant and useful picture. But it does not help us to un-
derstand what happens to the measuring rod when it is accelerated, or an electron
orbit when an atom is accelerated. And since something does happen, and we can
describe it using field theories that live in perfect harmony with the geometrical pic-
ture of spacetime, why should we not be allowed to add this dynamical picture to
our understanding?

One obvious reaction to the idea that the relativistic contraction (referred to ad-
visedly as the FitzGerald contraction in the above) indicates a real dynamical change
in the measuring stick is just this: if the observer moves into a new inertial frame
with motion relative to the rod, and nothing happens to the rod, it will still be rela-
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tivistically contracted. This is known in the jargon as a passive Lorentz boost, while
an active Lorentz boost is nothing other than what one would normally call an ac-
celeration in any other context. Even in this case, one has a dynamical explanation
from field theories as to why the observer should adopt a different way of gauging
lengths, or indeed times. The point is that the observer changes while accelerating
to the new frame [2].

Another accusation is precisely that the dynamical picture is a one-frame picture,
while much of the beauty of relativity theory comes from viewing the world as
a single mathematical object, a differentiable manifold, that can be described by
different coordinate choices. But from our one-frame dynamical view of length and
time measurements, do we really have to build up the whole multiframe view of
Minkowski’s spacetime in some pseudo-axiomatic way? Can we not just say that the
dynamical picture lives alongside the geometrical one, adding a touch of real physics
to what has become a largely mathematical exercise in our university textbooks?

In this context, proponents of dynamical explanations for relativistic effects are
sometimes written off as constructivists [44], whose aim in life is to deduce the
whole of the geometrical spacetime theory starting out only from field theories of
matter. As discussed earlier (see p. 260), axiomatisation is a good route to under-
standing and also to generalisation in the field of pure mathematics, and although it
can be similarly useful in physics, it does not seem to be an obligation for our theo-
ries of nature. Surely, any piece of understanding is a good piece of understanding,
so long as it is logically consistent. But Norton [44] thinks that, if the dynamical
approach cannot lead in an axiomatic way to the whole theory of relativity, it is
worthless, in the sense that it adds nothing to our understanding. Furthermore, he
attempts to achieve such an aim, in order to show that it will fail unless it does in
fact already assume the tenets of the Minkowskian dogma.

There is an obvious point that seems at first sight to be in favour of Norton’s
criticism, and brought up by Nerlich too [41]. In order to apply our field theories for
the dynamical explanation of the FitzGerald contraction proposed above, we need
a manifold with the Lorentz metric structure on it, and we need Lorentz symmetric
field theories. So there is no doubt that we are starting in the middle, so to speak.
But perhaps physics always has to be like that? For there remains the job of relating
the theory to what we actually measure out there, and assigning abstract spacetime
points to real spacetime events. And geometry alone cannot do that.

Nerlich’s slant on this [41] is to point out that any interpretive problem about
contracted rods also arises with the contraction of the fields of the charges making
up the rod, because it is for him the same contraction. That is indeed the geometrical
picture. But with Bell’s calculation, we have a dynamical argument to show why
they are the same. Some of us just feel that that is useful.

There is also a sense in which, with the Minkowski picture of things, nothing
ever happens, so there need be no dynamical cause for something like a relativistic
contraction. The point here is that the measuring rod is just a 4D region of space-
time, even during an acceleration. What an observer, even an accelerating one, might
choose as a continuous sequence of spacelike hypersurfaces intersecting that region
is neither here nor there. Indeed, the 4D region is just a 4D region, so why talk about
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cause? Is cause not just an obsolete notion for those who never grasped the mixing
of space and time inherent in the Minkowski picture?

One might put it like that. But if we can view what is happening in the world by
taking what seem to us to be suitable 3D spacelike sections of a 4D object, and if we
can provide what would once have been called a dynamical cause for the changes in
those sections, should we not be allowed to do that? Would that really add nothing to
our understanding, just because it could not be taken as a new axiom for deducing
the whole geometric structure of the manifold we must use to obtain a coherent
multiframe description? Many who read Bell’s paper [2] feel that it does add to our
understanding, and another example of such heresy will be described in Sect. 9.3.
After all, our non-gravitational field theories do give us dynamical equations, and
that is the way we have evolved to appreciate the world around us.

To end this brief review of a vast debate, let us cast a quick glance at the thought
experiment that opens Bell’s paper [2]. An inertial observer sees two rockets accel-
erate along the same line, one in front of the other, in such a way that they always
remain exactly the same distance apart for that observer. The fragile thread joining
them, initially stretched to its tolerance limit, will thus break.

Petkov claims that the thread breaks because the proper distance between the two
rockets, as observed by an inertial observer instantaneously comoving with either,
is increasing [47]. This is indeed the geometrical way of looking at things, although
perhaps slightly problematic, as he points out himself, because proper distance is a
relative concept, depending on the observer, and one would prefer the breaking to
depend on something that is not observer-dependent if possible.

Nerlich says that the thread breaks because the forces accelerating the rockets
pull the thread apart [41]. One could say that, of course. It amounts to the following
explanation: the thread breaks because something, in fact the wrong kind of thing,
happens to it. This goes beyond the geometrical explanation, but it stops short of
what is actually possible.

The dynamical explanation for the breakage using Maxwell’s theory is real
physics, of the kind we were allowed to talk about before threatened with the
Minkowski straightjacket! At the beginning of the experiment, the forces within
the thread are in an equilibrium that allows one to consider it as a single entity, but
only just. Once it is moving, it can no longer achieve the equilibrium it once had,
because the fundamental fields within it change. Put another way [2], as the rockets
gather speed, the thread will become too short because of its need to FitzGerald
contract. It must break when the artificial prevention of this inevitable contraction,
due to being attached at each end to the rockets, imposes intolerable stress.

9.3 Velocity Dependence of Particle Mass

The notion of velocity v in pre-relativistic physics is replaced by the notion of four-
velocity

V := (γc,γv)
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in the special theory of relativity, where γ(v) is given by (9.1). Having done this, one
seeks a Lorentz covariant extension of Newton’s second law F=ma determining the
acceleration a of a particle of mass m under the effects of a force F, to the special
relativistic context. The simplest choice by far is

F =
dP
dτ

, (9.2)

where F is a four-vector, the four-force, to be specified by looking at what effects
are acting on the particle, P := m0V is another four-vector, the four-momentum,
with m0 some constant mass, and τ is proper time along the particle worldline. P is
called four-momentum because its spacelike part looks very like what one used to
call momentum, provided the particle is not moving too fast. Indeed,

P := (γm0,γm0v) ,

and we call p := γm0v the relativistic 3-momentum. If m0 were the inertial mass of
the particle, this would be γ times the Newtonian momentum. For small v, γ(v)≈ 1,
and the relativistic 3-momentum would be approximately equal to the Newtonian
momentum.

Let us write
F = (γ f0,γf) , (9.3)

We now make the crucial hypothesis that f is the usual 3-force measured in the
laboratory. Using the fact that dt/dτ = γ , the law (9.2) then requires

f =
dp
dt

=
d
dt
(γm0v) =

d
dt
(mv) , (9.4)

where t is the coordinate time in our chosen inertial frame and we have defined
m(v) := m0γ(v). So for example, if the particle carries a charge e and there is a
magnetic field B, we will equate the right-hand side of (9.4) with ev×B. That still
leaves the zero component of F open, at least on the face of things.

In fact, f0 is completely determined by the proposed law of motion (9.2). The
reason is that the latter can be written

F = m0A ,

where
A :=

dV
dτ

is called the four-acceleration. Then since V 2 = c2 in special relativity, we deduce
by differentiation that

V · dV
dτ

= 0 ,

where the dot denotes pseudoscalar product under the Minkowski pseudometric. So
V ·A = 0, and we also have F ·V = 0 for any F that satisfies our equation of motion
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(9.2). But then

F ·V = 0 ⇐⇒ γ f0γc = γ
2f ·v

⇐⇒ f0 =
f ·v
c

,

so what we must choose for f0 is completely determined by our proposed law of
motion (9.2) and the statement that f in (9.3) is the usual 3-force measured in the
laboratory.

Note that the proposal for the new law (9.2) is entirely motivated by consider-
ations of Lorentz covariance, but along the way we have spawned a new notion
of inertial mass, viz., m := m0γ(v), which increases with the speed v of the parti-
cle. The hypothesis (9.4) already contains the bold suggestion that the acceleration
caused by a given force will be less if the particle is moving. The m on the right-
hand side of (9.4) is a very different thing to m0, because we absorbed γ into it. So
the real innovation here seems to be (9.4) along with the physical identification of f.

But no physical explanation is forthcoming in this account. We make these hy-
potheses on the basis of Lorentz symmetry considerations and then simply note that
it works. However, even before Einstein’s relativistic revolution, there were theo-
retical indications that inertial mass, or at least certain contributions to it, should
increase with speed according to the function γ(v). Here is a brief review of what
has also been touched upon in Sect. 8.1, but full details can be found in [32].

We consider the momentum of the electromagnetic fields of a moving charge
qe. However, we shall not consider that charge to be concentrated at a point, but
instead uniformly distributed over a spherical shell of radius a, at least when the
system is stationary in some inertial frame. This was an early model for the electron.
Naturally, there must be some binding forces in the system to stop the charge from
flying apart, and we shall assume that these binding forces are due to some other
fields with Lorentz symmetric dynamics. Then, when the charge shell is moving at
a constant velocity v, we expect it to contract in the direction of motion according
to the usual factor. Taking the x axis in the direction of motion, the equation for the
small shell will be

γ
2(x− vt)2 + y2 + z2 = a2 . (9.5)

Note that it is the equilibrium between the EM forces and the binding forces that
determines the shape the system will have when it is accelerated from one state of
motion to another, and we shall return to this point shortly.

For a point P at distance r from the present position of the charge center C, such
that the line CP makes an angle θ with the velocity v, the electric field lies radially
outward from the present position of C and is in fact given by [32]
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Ex =
qeγ(v)
4πε0

x− vt
[γ2(x− vt)2 + y2 + z2]3/2 , (9.6)

Ey =
qeγ(v)
4πε0

y
[γ2(x− vt)2 + y2 + z2]3/2 , (9.7)

Ez =
qeγ(v)
4πε0

z
[γ2(x− vt)2 + y2 + z2]3/2 . (9.8)

Further, the magnetic field is B = v×E/c2 [32]. Note that, if the sign of the charge
were in fact negative, both E and B would be reversed, but the momentum density
given by the Poynting vector g, viz.,

g = ε0E×B ,

would remain the same. Because the magnetic field has magnitude vE sinθ/c2, the
momentum density has magnitude

g =
ε0v
c2 E2 sinθ ,

and points down toward the path of the charge, making an angle θ with the vertical.
Note that it is because there is motion that there is a magnetic field, and it is

because there is a magnetic field that there is a momentum carried by the electro-
magnetic fields. The corresponding momentum density is not a radiation field in the
present case, because it drops off as quickly as the Coulomb field of a static charge
with distance from the source.

If we integrate the momentum density over the whole space outside the ellipsoid
in order to work out the total momentum p in the fields, only a component along the
axis of motion will remain. This is a straightforward symmetry consideration. So we
can forget about the component of g perpendicular to v, and the relevant component
of the momentum density is gsinθ . Integrating over all space outside the ellipsoid
given by (9.5), we eventually find

p =
2
3

q2
e

4πε0

γ(v)v
ac2 . (9.9)

Making the replacement e2 = q2
e/4πε0, which amounts to a change of units, this

becomes

p =
2
3

e2

ac2 γ(v)v . (9.10)

We can thus attribute an electromagnetic mass

mEM(v) =
2
3

e2

ac2 γ(v) (9.11)

to an electron with such a shell structure.
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Note that there is no momentum in the fields when the system is not moving. So
if this spatially extended charge distribution were gently accelerated from rest to the
constant velocity v, we would see momentum building up in the fields. A gentle ac-
celeration is required so that a new static equilibrium can be set up between binding
forces and EM forces, and since all forces are assumed to be due to Lorentz sym-
metric fields, we expect the final shape of the system to be roughly the FitzGerald
contracted ellipsoid. Now whatever force is required to get the system into the new
state of motion, some part of it is being used to get momentum into the EM fields,
and this part of it is in fact overcoming an EM force that the system exerts on itself
during acceleration [32].

The self-force calculation is not as easy as the momentum calculation, but it is es-
sential to this account, because it explains the mechanism we wish to advertise here.
Qualitatively, this is how it works. We imagine the centre of the charge shell moving
along the x axis so that it reaches x(t) at time t. We take this function to be arbitrary,
so ẍ(t) may not be zero. (Note that t is coordinate time in our inertial frame, and dots
denote derivatives with respect to this time.) We must then make some assumption
about the shape of the shell, because we could not know that without detailed calcu-
lations concerning the equilibrium between the binding forces and the EM forces in
the system. A common assumption is that the system is rigid in the relativistic sense
discussed earlier in this book, which amounts here to saying that the shell is always
exactly spherical in the inertial frame instantaneously comoving with the centre.

For each charge element on the surface we calculate the fields it produces using
the exact Liénard–Wiechert solution to Maxwell’s equations for a charge element
with the given motion. We then calculate the forces (to be precise, the relativistic
3-forces) those fields will exert on all the other charge elements on the shell, simply
adding them up, even though they act at different points of the system. And finally,
we sum the result for all such forces on the system due to other charge elements
on the surface. The result is a net EM force which the system exerts on itself when
accelerated:

Fself =−
2
3

e2

ac2 γ(v)3ẍ+O(a0) , (9.12)

where v := ẋ. Note here the crucial point that

d
dt

[
γ(v)v

]
= γ(v)3ẍ .

Comparing (9.12) with (9.11), we see that it is indeed by overcoming this self-force
that we get momentum in the EM fields.

Note in passing that there are higher order terms in (9.12), going as a0, a, a2, and
so on. The term in a0, i.e., independent of the system size (and as it turns out, even
its shape), is crucial to explaining why charged particles radiate EM energy when
accelerated. It is the celebrated radiation reaction. The rate of doing work against
this term in the self-force is exactly the rate of emission of EM energy given by
the Larmor formula [32]. One loses this explanation for the EM radiation by an
accelerating electron when the latter is treated as a point particle!
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But for the moment, we are interested in the first term, which would diverge if we
tried to make this into a point particle model for the electron by putting a = 0. This
term exactly opposes the acceleration and the coefficient of ẍ has units of mass.
In fact, the EM mass in (9.11) is part of the inertial mass of the system (see also
Sect. 9.4). Let us justify this claim. The usual relativistic extension of Newton’s
second law can be written

Fself +Fext = mmechanicalγ(v)3ẍ ,

where Fext is the total external force on the system, and mmechanical is what we might
call the mechanical mass, whatever may cause that, due to other origins than the EM
self-force. Inserting (9.12), dropping all terms of order a or higher, and rearranging,
we find that

Fext + radiation reaction =

(
mmechanical +

2
3

e2

ac2

)
γ(v)3ẍ .

If one did not think about EM self-forces, and one does not usually do so except for
the radiation reaction term (often left unexplained), one would say that the quantity
in round brackets on the right-hand side had to be what one usually measures as the
inertial mass.

How can we justify dropping the higher order terms in (9.12)? We can just say
that they are negligible because a is small. Alternatively, we can set a = 0, thereby
making a point particle model for the electron. We do not need to worry about the
divergent term in the inertial mass, because we can simply point to the fact that it is

mrenormalised := mmechanical +
2
3

e2

ac2 (9.13)

that we actually measure in practice, and this is finite. This ploy goes by the name
of mass renormalisation, and the need for such a ploy plagues all point particle
pictures.

It turns out that any spatially extended charge distribution will exert such a force
on itself when accelerated, and the leading order term going as a−1, for some length
a specifying the spatial dimensions of the distribution, is always directly aligned or
counteraligned with the acceleration for spherically symmetric charge distributions.
(In many other cases too, but not in all, as we shall see in Chap. 10.) So this self-
force effect always contributes to the inertial mass of a bound state particle made up
of charged particles, for example, such as the proton or the neutron.

There is a hypothesis that one might call the self-force or bootstrap hypothesis
which says in fact that all particles actually have spatial structure, and further, that
all their resistance to being accelerated as represented by the letter m in Newton’s
second law comes from forces they exert on themselves when we try to accelerate
them. The crucial thing to note then is that contributions to the inertia such as mEM
in (9.11) will all come with the speed-dependent factor γ(v), provided that all the
self-forces in the system, e.g., due to binding force fields, or strong force fields, or
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whatever fields are operating within the given particle, are indeed due to fields with
Lorentz symmetric dynamics.

In this case, we do indeed have a full dynamical explanation for the fact that
inertial mass increases like γ(v) when a particle moves faster: it is simply because
self-forces on the system increase in the corresponding way. And even if self-forces
only lead to part of the inertial mass, we still have a dynamical explanation for why
those contributions increase as they do with speed.

Note that it is generally considered to be a heresy to try to explain this mass in-
crease. Perhaps the historical role of such reactions has been to protect students of
physics from certain fallacies. Here is one trap that would be easy to fall into. Sup-
pose we have a standard 1 kg mass A for measuring purposes. When we accelerate
into a new inertial frame I ′, moving with respect to our original inertial frame I ,
our standard mass A, carried with us, will have a higher mass as far as an observer
in I is concerned, but since it is our standard, we still refer to it as 1 kg, by defini-
tion. Comparing with another standard 1 kg mass B which we left behind in I , we
would now want to say that the latter had a lower mass than 1 kg. On the other hand,
relativity theory tells us clearly that, because B is moving at some speed relative to
ourselves, it is the one that has a mass greater than 1 kg.

As usual with paradoxes in relativity theory, the solution here is to have a very
clear multiframe view of things, and a good grasp of the ideas of Lorentz covariance.
The point we make with our dynamical explanation above is that it is not invalidated
just because someone might make a mistake somewhere down the line. The dynam-
ical explanation lives alongside the geometric view, and is logically compatible with
it, provided we exercise the usual care. It is not because it is a one-frame view that
it should be declared invalid. All we are saying is that, when a bound state particle
is accelerated, any self-force contributions to its inertial mass must increase as γ(v)
because the self-forces increase in the corresponding way.

9.4 Inertial Consequences of Binding Energy

In modern particle physics, many particles are considered to be bound states of
others. For example, all baryons are bound states of three quarks, and mesons are
quark–antiquark bound states. The inertial masses of the quarks themselves are
today generally assumed to result from interaction with the Higgs field (but see
the bootstrap hypothesis in Sects. 8.1 and 9.3), while the inertial masses of bound
state particles are considered to comprise the inertial masses of the quarks, suit-
ably increased depending on their motion, hence kinetic energy, within the bound
state, plus another crucial term: the strong and electromagnetic binding energies of
the system. The only justification for including the latter is generally to point out
that mass and energy are equivalent. If pushed, we say that this in turn is because
E = mc2. So let us see where that last relation comes from.

We have seen that the input (9.3) in the last section together with the law (9.2)
require the first component f0 of the four-force to be given by f0 = f ·v/c. But the
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first component of (9.2) requires

γ f0 =
d(m0γc)

dτ
.

Then since dt/dτ = γ , this means that

f0 = c
dm
dt

,

where m := m0γ is commonly called the relativistic inertial mass. So if we have
f0 = f ·v/c, we must have

d(mc2)

dt
= f ·v . (9.14)

The quantity f ·v is the rate at which work is done on the particle by the force f, i.e.,
the rate of increase of energy of the particle, so mc2 is identified with the total energy
of the particle. This is a standard way of reaching the conclusion that E = mc2 [28].

The m on the left-hand side of (9.14) is a very different thing to m0, because we
absorbed γ into it. Since v < c, we can expand the function γ(v) as a series in powers
of v/c to obtain

mc2 = m0c2 +
1
2

m0v2 +
3
8

m0
v4

c2 + · · · . (9.15)

The first term here is optimistically called rest mass energy, although it seems un-
likely that the pioneers really expected to get energy out of it in the early days, and
the second term is the old kinetic energy. So we have simply fed the kinetic energy
into our mc2 on the left-hand side of (9.14). There are of course the remaining terms,
which are part of the boldness of the hypothesis.

Once again, all this is entirely motivated by considerations of Lorentz symmetry.
We make a bold hypothesis in the form of (9.2) and the physical interpretation of
(9.4), then just note that it works. But as we have seen in Sect. 8.3, there is a pre-
quantum explanation for why binding energies should alter the resistance a bound
state particle will show when we try to accelerate it. Here is a brief review, but full
details can be found in [32].

In fact, we have already done most of the work. In the last section, we discussed
the self-forces that spatially extended charge distributions exert on themselves when
accelerated. These always contribute directly to the inertia of a bound state particle
made up of charged particles, e.g., the proton comprising two up quarks and one
down quark, because it turns out that the leading term in the EM self-force for
small spherically symmetric charge distributions is always aligned or counteraligned
with the acceleration. Now we can in theory calculate the EM binding energy of
any spatially extended charge distribution. It is just the energy in the EM fields it
produces in an inertial frame in which it is at rest, or indeed the energy required to
assemble it from charges at infinity in such a frame.

What is the connection with the EM self-force? In fact, up to a physically dimen-
sionless constant, the coefficient of the acceleration in the leading order term of the
EM self-force is equal to the EM binding energy divided by c2. For example, for the
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charge shell, the Coulomb energy in its EM fields is e2/2a, corresponding to a mass
of e2/2ac2. This is 3/4 of the contribution of the self-force to the inertial mass. The
factor of 3/4 is unfortunate and needs explaining. Indeed it led to a very long debate
in the literature, still going on today.

But putting that discrepancy aside until the next paragraph, our explanation for
the success of simply adding binding energies (divided by c2) to other sources of
inertial mass in order to get a total inertial mass is just this: binding forces in com-
posite particles lead to bootstrap effects, and that is why binding energy must be
included in their inertial mass. Put another way, we include binding energies be-
cause they reflect the related self-forces in those bound states.

What about the discrepancy? Briefly, the difference between the energy-derived
and momentum-derived (or self-force-derived) EM masses arises because we are
trying to write down a four-momentum for the EM fields of our charge distribu-
tion. However, the EM energy–momentum tensor alone is not conserved, i.e., its
covariant divergence is not zero, so it cannot be used to get a Lorentz covariant
four-momentum for the fields by integrating over spacelike hypersurfaces.

One solution here is to make a purely ad hoc redefinition of the EM energy–
momentum tensor so that one does obtain a Lorentz covariant four-momentum [32].
This approach is advocated for other purposes than considering spatially extended
charge distributions. But when we are genuinely interested in the consequences of
self-forces in the context of spatially extended particles, it is better to write down the
total energy–momentum tensor, including EM fields but also all the other binding
fields that must be present in the bound state in order to achieve an equilibrium, and
then take integrals of this over spacelike hypersurfaces in order to produce a total
four-momentum. The latter will be Lorentz covariant, because the total energy–
momentum tensor will be conserved.

The latter ploy leads to a total self-force contribution to the inertial mass of the
bound state, including terms from EM effects, but also from all the other fields oper-
ating within the bound state. In this case, if we could achieve such a calculation, the
total binding energy divided by c2 would be just the self-force-derived contribution
to the inertial mass. This concludes our dynamical justification for simply adding
binding energies to get a contribution to the inertial mass.

9.5 Conclusion

The big debate blowing up around dynamical explanations for the relativistic con-
traction effect is only part of a bigger issue of whether it is worth holding on to dy-
namical explanations for anything at all in what is in effect a Minkowski block uni-
verse, where the geometrical view sees everything at a glance in a 4D world. Dieks
has written a more balanced view of all this, contrasting top-down and bottom-up
approaches to physics [15]. The Minkowskian geometrical view, with its emphasis
on unexplained principles and Lorentz symmetry, is a top-down approach, while the
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causal or dynamical explanations we have been resuscitating here are examples of
the bottom-up approach.

In Dieks’ words, the possibility of bottom-up strategies in relativity is not some-
thing new, but it is still worth stressing in view of the continuing dominance of the
top-down approach both in the teaching of relativity and in philosophical accounts
of the theory [15]. There is no single best way of explaining relativistic effects. It all
depends what our aims are. But one thing seems clear: when we are teaching this
subject, surely we need to give our students all the help we can, so that they have
access to all the insights we can muster.

This is especially true when we consider the future of our theories, since if history
repeats itself, we are going to need to go beyond current hypotheses. In that sense,
it would be a serious mistake to become too dogmatic.



Chapter 10
Non-Renormalisability of EM Self-Force.
A Classical Picture

10.1 Overview

In the last two chapters, we briefly discussed the electromagnetic forces that spa-
tially extended charge distributions exert on themselves when accelerated, and men-
tioned the link with the problem of renormalisation that still plagues quantum elec-
trodynamics [see, for example, Sect. 8.2 or (9.13) on p. 330]. It was also mentioned
there that the potentially divergent leading order term in the EM self-force was not
always aligned or counteraligned with the acceleration (see in particular the conclu-
sion on p. 292). In such cases, this means that one cannot simply retrieve a finite
version of Newton’s second law in the point particle limit by renormalising the ‘par-
ticle’ mass. This is relevant to the themes of this book as a fundamental insight into
the phenomenon of acceleration.

To prove the above claims, we consider a rigid charge dumbbell, i.e., two point
charges held some distance apart by an unspecified binding force, such that, when
one charge follows an arbitrary timelike worldline in Minkowski spacetime, the mo-
tion of the other is completely specified by the condition that the axis of the system is
Fermi–Walker transported along that worldline. The electromagnetic force the sys-
tem exerts on itself under such conditions is calculated to leading order and found
as usual to go as the reciprocal of the distance between the charges. However, it is
shown that this term, which diverges in the point particle limit, is not proportional
to the four-acceleration of the system except in special cases, whence the relativistic
extension of Newton’s second law cannot be renormalised in this limit. It is shown
how this problem is resolved when the charge dumbbell is replaced by a spherically
symmetric charge distribution.

In Sect. 10.2, we obtain a formula for the EM fields very close to the worldline of
a point charge with arbitrary motion in Minkowski spacetime, following the analysis
by Dirac [16]. In this paper, Dirac showed how to renormalise the mass of a classical
point electron by assuming it was a point particle and considering conservation of
energy and momentum within a tube containing the worldline, an analysis which led
him to the notorious Lorentz–Dirac equation for the motion of a point charge. This

335
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equation is based in part on an (infinite) adjustment of the electron mass to cater for
the (infinite) energy in the EM fields close to the charge [30, Chap. 11].

In this section, the aim is to consider the electron as a spatially extended entity,
making the very simple charge dumbbell model of two point charges held some
distance apart by unspecified binding forces and calculating the EM force the sys-
tem exerts upon itself when accelerated in some arbitrary way through Minkowski
spacetime. Electromagnetic self-forces of this kind are discussed at length in [32].
The leading order term is not Coulomb, i.e., going as d−2, where d is the separation
of the point charges, but in fact goes as d−1. In the point particle limit where one
allows d to go to zero, this introduces an infinite self-force.

However, in some cases, the offending term can be absorbed into the mass times
acceleration term of Newton’s second law. This requires it to be proportional to the
acceleration vector (four-vector or three-vector, depending on whether one consid-
ers a fully relativistic analysis or not). The mass of the charge gets adjusted by an
amount that goes to infinity in the point particle limit, but this does not have physi-
cally measurable consequences if one considers the resulting m to be the physically
measured mass. The fact that one has to go through such a procedure is just an in-
convenient truth about the point particle approximation, and one which carries over
to quantum field theory.

In [32], it was conjectured that the divergent leading order term in the EM self-
force would always be aligned with the acceleration vector, so that mass renormal-
isation would always be possible, and that this might be the case precisely because
Maxwell’s theory is a gauge theory, since we know that all gauge theories are fully
renormalisable in quantum field theory. In the present section it is shown that the
mass of the charge dumbbell system will in fact only be renormalisable in some
special cases, in particular those considered in [32], but that the situation is saved
for spherically symmetric charge distributions, suggesting that the point particle
limit may only be valid in such a case, viz., where the point particle is considered to
be spherically symmetric.

Some assumptions have to be made about the charge dumbbell in order to build
any model of its motion under acceleration (see Sect. 10.3). If the two charges are
labelled A and B, we attribute an arbitrary timelike worldline xA(τA) to A and spec-
ify the motion of xB(τB) of B by assuming the relativistic version of rigidity widely
discussed in earlier chapters (but see also [14, 31]), and further assuming that the
system is as rotationless as possible, i.e., that the system axis is Fermi–Walker trans-
ported along the worldline xA. Calculations relaxing the last assumption might also
be interesting, but more difficult.

As mentioned above, it is shown that the leading order term in the EM self-force
is not generally parallel to the four-acceleration ẍA of particle A (see Sect. 10.4),
whence the relativistic version of Newton’s dynamical equation cannot generally be
renormalised. Finally, the very same formulas are used to show in Sect. 10.5 that, if
the system has spherical symmetry, e.g., if one considers a rigid spherical shell of
charge, the EM self-force is then proportional to the four-acceleration, and Newton’s
second law can be rescued by adjusting the mass of the shell, a well known result.
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10.2 EM Fields Close to the Worldline of a Point Charge

Here we follow the analysis in [16]. The Liénard–Wiechert retarded potential for
the EM fields produced by a point charge e following a worldline z(s) in Minkowski
spacetime, with metric diag(1,−1,−1,−1), is given as a function of the field point
x by [32, Chap. 2]

Aµ(x) =
eżµ

ż · (x− z)

∣∣∣∣
s+

,

where the dot over a symbol denotes differentiation with respect to the proper time
s along the worldline, and everything is evaluated at the unique retarded proper time
s+ for the given field point, i.e., the value of s such that[

x− z(s+)
]2

= 0 , z0(s+)< x0 . (10.1)

Now for any two continuous functions f (s) and g(s) of s with ġ(s)> 0, we have the
following result from distribution theory:∫

f (s)δ
(
g(s)

)
ds =

∫ f (s)
ġ(s)

δ
(
g(s)

)
dg(s) =

f (s)
ġ(s)

,

evaluating the result at any value of s within the range of integration that satisfies
g(s) = 0. By this ploy, we establish the more convenient result

Aµ(x) = 2e
∫

żµ(s)δ
([

x− z(s)
]2)ds ,

integrating s from−∞ to any value between the retarded and advanced proper times
for the given field point x. One can relax the restriction on the range of integration
by introducing a step function θ

(
x0− z0(s)

)
into the integrand. But using the form

given here, we have

∂Aµ

∂xν

= 4e
∫

żµ(xν − zν)δ ′
([

x− z(s)
]2)ds

= −2e
∫ żµ(xν − zν)

żλ (xλ − zλ )

d
ds

δ

([
x− z(s)

]2)ds

= 2e
∫ d

ds

[
żµ(xν − zν)

żλ (xλ − zλ )

]
δ

([
x− z(s)

]2)ds ,

whence it follows that

Fµν(x) :=
∂Aν

∂xµ

− ∂Aµ

∂xν

= −2e
∫ d

ds

[
żµ(xν − zν)− żν(xµ − zµ)

żλ (xλ − zλ )

]
δ

([
x− z(s)

]2)ds ,
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and finally,

Fµν(x) = − e
ż · (x− z)

d
ds

[
żµ(xν − zν)− żν(xµ − zµ)

ż · (x− z)

]∣∣∣∣
s+

, (10.2)

where everything in the last expression is evaluated at the retarded proper time s+.
We now choose a field point x very close to the worldline. If it is close enough,

there will be a unique proper time s0 such that x is simultaneous with the charge at
z(s0) for an observer instantaneously comoving with the charge. So s0 is defined to
be the unique proper time such that[

xµ − zµ(s)
]
· v(s) = 0 , v(s) := ż(s) .

We define the spacelike vector from z(s0) to the field point, viz.,

γ
µ := xµ − zµ(s0) . (10.3)

Hence, we have
γ · v(s0) = 0 . (10.4)

By hypothesis, the γµ will be very small.
To apply (10.2), we need to consider the retarded time for the given field point x.

We know there will be some small σ ∈R+ such that the retarded time is s0−σ . We
expect σ to be of the same order of magnitude as the γµ . The aim now is to expand
the right-hand side of (10.2) in powers of σ . Of course, the leading order term will
go as σ−2. Following Dirac, we retain terms up to O(σ0), even though we shall only
require those up to O(σ−1) for present purposes.

We begin with the Taylor expansions

xµ − zµ(s0−σ) = γ
µ +σvµ − 1

2
σ

2v̇µ +
1
6

σ
3v̈µ +O(σ4) , (10.5)

żµ(s0−σ) = vµ −σ v̇µ +
1
2

σ
2v̈µ +O(σ3) ,

where v, v̇, and v̈ on the right-hand side are all evaluated at s = s0, and it should be
remembered that γ ∼ σ . Applying the trivial results

v2 = 1 , v · v̇ = 0 , v · v̈+ v̇2 = 0 ,

and also (10.4), we obtain

ż · (x− z) = σ −σ(γ · v̇)+ 1
2

σ
2(γ · v̈)− 1

6
σ

3v̇2 +O(σ4) ,

and consequently,

[
ż · (x− z)

]−1
= σ

−1[1− (γ · v̇)
]−1
[

1− 1
2

σ(γ · v̈)+ 1
6

σ
2v̇2 +O(σ3)

]
.
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For the moment, we refrain from expanding out
[
1− (γ · v̇)

]−1. We also have

żµ(xν − zν)− żν(xµ − zµ)

= vµ
γ

ν −σ v̇µ
γ

ν − 1
2

σ
2v̇µ vν +

1
2

σ
2v̈µ

γ
ν +

1
3

σ
3v̈µ vν − (µ ←→ ν) ,

where once again the quantities v, v̇, and v̈ on the right-hand side are evaluated at
s = s0. We now have

żµ(xν − zν)− żν(xµ − zµ)

ż · (x− z)

=
[
1− (γ · v̇)

]−1

[
σ
−1vµ

γ
ν − v̇µ

γ
ν − 1

2
σ v̇µ vν − 1

2
(γ · v̈)vµ

γ
ν

+
1
6

σ v̇2vµ
γ

ν +
1
2

σ v̈µ
γ

ν +
1
3

σ
2v̈µ vν − (µ ←→ ν)

]
.

In the formula for the EM fields, this has to be differentiated with respect to s, and
this can be done by differentiating with respect to σ and changing the sign, because
we have not yet applied the condition that fixes σ . We thus obtain

d
ds

[
żµ(xν − zν)− żν(xµ − zµ)

ż · (x− z)

]

=−
[
1− (γ · v̇)

]−1

[
−σ

−2vµ
γ

ν − 1
2

v̇µ vν +
1
6

v̇2vµ
γ

ν

+
1
2

v̈µ
γ

ν +
2
3

σ v̈µ vν − (µ ←→ ν)

]
,

which leads us to an expansion for the EM fields in powers of σ :

Fµν = e
[
1− (γ · v̇)

]−2

[
−σ

−3vµ
γ

ν − 1
2

σ
−1v̇µ vν +

1
2

σ
−2(γ · v̈)vµ

γ
ν

+
1
2

σ
−1v̈µ

γ
ν +

2
3

v̈µ vν − (µ ←→ ν)

]
.

We now determine σ itself in powers of the small quantity ε ∈ R+ defined by

γ
2 =−ε

2 . (10.6)

Now σ is determined by (10.1), into which we insert the approximation (10.5) to
obtain

γ
2 +σ

2−σ
2(γ · v̇)+ 1

3
σ

3(γ · v̈)− 1
12

σ
4v̇2 = 0 ,
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which is correct to O(σ5). But σ = ε to first order, so this can be written

−ε
2 +σ

2−σ
2(γ · v̇)+ 1

3
ε

3(γ · v̈)− 1
12

ε
4v̇2 = 0 .

Hence

σ
2 =

[
1− (γ · v̇)

]−1
[

ε
2− 1

3
ε

3(γ · v̈)+ 1
12

ε
4v̇2
]
,

and finally,

σ = ε
[
1− (γ · v̇)

]−1/2
[

1− 1
6

ε(γ · v̈)+ 1
24

ε
2v̇2
]
.

Inserting this into the above expression for the EM fields, we have

Fµν = e
[
1− (γ · v̇)

]−1/2

{
− ε
−3vµ

γ
ν − 1

2
ε
−1v̇µ vν

[
1+(γ · v̇)

]
+

1
8

ε
−1v̇2vµ

γ
ν+

1
2

ε
−1v̈µ

γ
ν +

2
3

v̈µ vν − (µ ←→ ν)

}
.

This is Dirac’s result [16]. It is accurate to O(ε0) and could be used to calculate EM
self-forces to this order in the linear dimensions ε of a small charge distribution.
Terms of O(ε0) explain EM radiation by such a system when it is accelerated [32].

In the present discussion, we shall only require terms to O(ε−1), which diverge
as the linear dimensions of our charge distribution tend to zero, i.e., ε → 0. These
are the terms that require renormalisation, even in the classical context, if we insist
on point particles. To this order, we have

Fµν = e
[
1− (γ · v̇)

]−1/2
[
−ε
−3vµ

γ
ν − 1

2
ε
−1v̇µ vν − (µ ←→ ν)

]
.

We can also expand out the factor[
1− (γ · v̇)

]−1/2
= 1+

1
2
(γ · v̇)+O(ε2) ,

whence finally, defining the unit spacelike vector u := γ/ε ,

Fµν = e
[

uµ vν − vµ uν

ε2 +
vµ v̇ν − v̇µ vν +(uµ vν − vµ uν)(u · v̇)

2ε
+O(ε0)

]
. (10.7)

This is the result we shall apply below.
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10.3 Charge Dumbbell and Rigidity Assumption

We wish to consider the simplest possible spatially extended charge distribution,
namely two point charges eA and eB held some distance d apart by an unspecified
binding force. When A has an arbitrary timelike worldline xA(τA) in Minkowski
spacetime, we know from Sect. 10.2 the EM field Fµν

A (B) it will produce at the
nearby point B, provided we also know the worldline xB(τB) of B. We can then
calculate the EM four-force of A on B from the standard result

Fµ(A on B) = eBFµν

A (B)vB
ν , (10.8)

where vB is the four-velocity of B. We can then find the four-force of B on A in
a similar way and simply add the two together, even though they act at different
points of the charge distribution. This gives a total EM force of the system on itself
for arbitrary motion.

We call this the EM self-force Fself. The idea then is to expand Fself as a power
series in the length d of the system. We expect the Coulomb terms going as d−2 to
cancel out, but we also expect terms going as d−1, d0, and so on, to remain. In the
point particle limit d→ 0, we need to be able to absorb the divergent term into the
mass times acceleration component of the relativistic version of Newton’s second
law, viz.,

F =
dP
dτ

= m
da
dτ

, P := mv ,

where m is rest mass, v is four-velocity, F is four-force, a is four-acceleration, and
τ is proper time. To do this, it must clearly be proportional to the four-acceleration
of the system. If it is not, this ploy, known as renormalisation, will not work.

But how do we formulate the motions of A and B? We would like to attribute an
arbitrary worldline xA(τA) to A. But then this constrains the worldline of B, which
is supposed to be a distance d from it. On the other hand, whenever the system has
a component of its motion along its own axis, we expect some degree of relativistic
contraction, and this contraction will depend on the equilibrium between the un-
specified binding forces and the EM forces, whereas we wish to do the calculation
without going into too much detail about the binding forces. So what would be a
good rule for constraining the worldline of B?

A related problem is that we will specify the two worldlines as spacetime func-
tions of proper time, and the proper times τA and τB of the two charges will depend
on the worldlines, whereas our self-force calculation must work out the four-force
of A on B and then the four-force of B on A at the same coordinate time in whatever
inertial frame we have selected at the outset. A solution to these conundrums is to
assume that the charge dumbbell is rigid, in the well defined relativistic sense of the
word discussed earlier in the book [14, 31], and also that it is non-rotating, at least
as far as this is possible. The purpose of this section is to explain briefly how this
works. An in-depth discussion of rigid motion can be found in Sects. 2.3.2 and 2.4.5
(but see also [31]).
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We consider an orthonormal triad nµ

i (τA) i = 1,2,3, of spacelike vectors along
xA, orthogonal to the worldline at each value of τA, whence

ni ·n j =−δi j , ni · vA = 0 , v2
A = 1 ,

setting c = 1. We assume that the worldline of B can be given by

xµ

B(τB) = xµ

A

(
τA(τB)

)
+ξ

inµ

i

(
τA(τB)

)
, (10.9)

for some function τA(τB) to be determined, where ξ i are just three fixed numbers.
Naturally, τA(τB) will depend on these three numbers. It is clear from the form of
(10.9) that, given any value τB of the proper time of B, the function τA(τB) deliv-
ers the unique proper time of A such that xµ

B(τB) is simultaneous with the event
xµ

A

(
τA(τB)

)
in the instantaneously comoving inertial frame ICIFA of A at its proper

time τA.
For the moment we have not completely specified the choice of spacelike triad

{ni}i=1,2,3. It can rotate as it moves up the worldline xA. However, given the triad
and the three numbers {ξi}i=1,2,3, the worldline xB of B is fully determined. Differ-
entiating (10.9) with respect to τB, we have

vµ

B(τB) = ẋµ

B(τB) =
[
vµ

A

(
τA(τB)

)
+ξ

iṅµ

i

(
τA(τB)

)]dτA

dτB
,

where the dot over ni denotes differentiation with respect to τA. For each value
of τA, we can express the three four-vectors ṅi in terms of the orthonormal basis
{vA,n1,n2,n3} :

ṅµ

i (τA) = a0i(τA)v
µ

A(τA)+Ωi j(τA)n
µ

j (τA) ,

for three functions a0i(τA) and nine functions Ωi j(τA). It is easy to show that only
three of the latter are independent since

Ωi j(τA) =−Ω ji(τA) , i, j ∈ {1,2,3} .

Furthermore, the three functions a0i(τA) are given by

a0i(τA) =−ni(τA) · v̇A(τA) , i ∈ {1,2,3,} ,

whence they may be interpreted as the three components of the absolute acceleration
of A at proper time τA, i.e., the three spatial components of the four-acceleration of
A in its instantaneous rest frame ICIFA (the temporal component being zero in that
frame).

We now have

vµ

B(τB)=

{[
1+ξ

ia0i
(
τA(τB)

)]
vµ

A

(
τA(τB)

)
+ξ

i
Ωi j
(
τA(τB)

)
nµ

j

(
τA(τB)

)}dτA

dτB
.
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Dropping the arguments of the functions, this implies that

1 = v2
B =

[(
1+ξ

ia0i
)2−ξ

i
ξ

j
ΩikΩ jk

](dτA

dτB

)2

,

whence
dτA

dτB
=
[(

1+ξ
ia0i
)2−ξ

i
ξ

j
ΩikΩ jk

]−1/2
,

with the right-hand side a function of τA(τB). The function τA(τB) itself can then be
found by integrating this along the worldline xB(τB), with the boundary condition
τA(0) = 0, so that the proper times of A and B are synchronised when either is zero.

Now one case in which the system is said to be rigid in the relativistic sense is
when Ωi j = 0, for all i, j ∈ {1,2,3}. We then have

vµ

B(τB) =
[
1+ξ

ia0i
(
τA(τB)

)]
vµ

A

(
τA(τB)

)dτA

dτB
,

with
dτA

dτB
=
(
1+ξ

ia0i
)−1

. (10.10)

One very significant feature of this case is thus that

vµ

B(τB) = vµ

A

(
τA(τB)

)
.

So for a rigid motion of our system, if we choose any event xB(τB) on the world-
line of B and find the unique event xA

(
τA(τB)

)
on the worldline of A for which an

inertial observer instantaneously comoving with A considers B to be simultaneous,
both charges have the same four-velocity. So an inertial observer moving instanta-
neously with B at the event xB(τB) would also consider the event xA

(
τA(τB)

)
to be

simultaneous.
This symmetry is going to be very useful below and is more or less the entire jus-

tification for the rather artificial rigidity assumption. Note that it is not at all obvious
how such a situation might arise physically. It would have to result from the bal-
ance of forces between binding effects and EM effects within the charge dumbbell,
not to mention the way the system is accelerated. Still, like many approximations
in physics, it is justified by making some kind of analysis possible rather than by
physical considerations!

Thinking back to the analysis in Sect. 10.2, for any choice of τB and considering
xB(τB) as a field point at which to evaluate the EM fields due to A, we have Dirac’s
spacelike four-vector of (10.3):

γ
µ(τB) = xµ

B(τB)− xµ

A

(
τA(τB)

)
= ξ

inµ

i

(
τA(τB)

)
, (10.11)

with
γ

2 =−ξ
2 :=−(ξ 1)2− (ξ 2)2− (ξ 3)2 .
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This is of course constant, because we assumed at the outset that (10.9) would be
possible for some constant choice of the ξ i. Naturally, this is part of the rigidity
assumption. It says that whenever an inertial observer instantaneously comoving
with A looks at B, or vice versa, the other charge always seems to be the same
distance away. So |ξ | =: d is the constant length of the charge dumbbell as judged
by any inertial observer instantaneously comoving with either charge, and it will
correspond to ε of (10.6) when we come to work out the EM forces of either charge
on the other.

A word should be said about the assumption that Ωi j = 0 for all i, j ∈ {1,2,3}.
These numbers constitute an antisymmetric matrix, and hence generate rotations.
However, setting them equal to zero does not completely save our triad from rotation
relative to space in some initially chosen inertial frame. In fact it amounts to saying
that the triad nµ

i is Fermi–Walker transported along the worldline of particle A, as we
have seen in Sect. 2.3.3. Let us recall briefly what this means in the present context.

Recalling that vA(τA) is the 4-velocity of the worldline of A, the equation for
Fermi–Walker transport of a contravector Mµ along the worldline is

Ṁµ =−(M · v̇A)vA +(M · vA)v̇A . (10.12)

This preserves inner products, i.e., if M and N are FW transported along the world-
line, then M ·N is constant along the worldline. Furthermore, the tangent vector vA
to the worldline is itself FW transported along the worldline, and if the worldline is
a spacetime geodesic (a straight line in Minkowski coordinates), then FW transport
is the same as parallel transport.

Now recall that the Ωi j were defined by

ṅµ

i = a0iv
µ

A +Ωi jn
µ

j . (10.13)

When Ωi j = 0, this becomes
ṅµ

i = a0iv
µ

A . (10.14)

This is indeed the FW transport equation for nµ

i , found by inserting M = ni into
(10.12), because we insist on ni · vA = 0 and we have a0i =−ni · v̇A.

In fact, the orientation in spacetime of the local rest frame triad nµ

i cannot be
kept constant along a worldline unless that worldline is straight (we are referring to
flat spacetimes here). Under Fermi–Walker transport, however, the triad remains as
constantly oriented, or as rotationless, as possible, in the following sense: at each
instant of time τA, the triad is subjected to a pure Lorentz boost without rotation in
the instantaneous hyperplane of simultaneity. (On a closed orbit, this process can
still lead to spatial rotation of axes upon return to the same space coordinates, an
effect known as Thomas precession.) For a general non-Fermi–Walker transported
triad, the Ωi j are the components of the angular velocity tensor that describes the
instantaneous rate of rotation of the triad in the instantaneous hyperplane of simul-
taneity.

Of course, given any triad nµ

i at one point on the worldline, it is always possible
to Fermi–Walker transport it to other points by solving (10.12). We are then saying
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that, if the motion of B is given by

xµ

B(τB) = xµ

A

(
τA(τB)

)
+ξ

inµ

i

(
τA(τB)

)
, (10.15)

where the ξ i are fixed numbers, then the motion of the resulting dumbbell is rigid.
We need to check carefully that we do have all the necessary details of the above

symmetry. Suppose therefore that we are trying to find the EM force of B on A for
some choice τA. We shall need an orthogonal triad {n′i(τB)} along the worldline of
B. But we can take the triad at xB(τB) to be

n′i(τB) := ni
(
τA(τB)

)
,

where τA(τB) is the function we discussed above. This automatically satisfies

n′i ·n′j =−δi j , n′i · vB = 0 ,

since vB(τB) = vA
(
τA(τB)

)
. Interestingly, {n′i} is also FW transported along xB. This

is shown by

ṅ′i = ṅi
dτA

dτB

=
[
− (ni · v̇A)vA +(ni · vA)v̇A

]dτA

dτB

= −(n′i · v̇B)vB +(n′i · vB)v̇B ,

which is the equation for FW transport of n′i along xB, as required.
Effectively, we now have two functions τA(τB) and τB(τA). They are bijective and

mutual inverses (see below for the proof). If we begin with an event xA(τA) on xA,
the unique event xB(τB) on xB such that xA(τA) is simultaneous with it in the inertial
frame instantaneously comoving with four-velocity vB(τB) is xB

(
τB(τA)

)
, where the

four-velocity is vB
(
τB(τA)

)
. Now Dirac’s spacelike vector γ ′µ(τA) from the unique

xB
(
τB(τA)

)
to the chosen xA(τA) is in this case

γ
′µ(τA) = xµ

A(τA)− xµ

B

(
τB(τA)

)
=−γ

µ
(
τB(τA)

)
, (10.16)

using (10.11). We express this in terms of the triad n′i
(
τB(τA)

)
= ni(τA) along xB.

But we know that
xµ

B

(
τB(τA)

)
= xµ

A(τA)+ξ
inµ

i (τA) ,

so
γ
′µ(τA) =−ξ

inµ

i (τA) =−ξ
in′µi (τB) ,

and
γ
′2 =−ξ

2 =−d2 .

So the numbers corresponding to the ξ i are −ξ i when we approach the problem
from this way around. Furthermore, the absolute acceleration of B is
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a′0i(τB) = −ni
(
τA(τB)

)
· v̇B(τB)

= −ni ·
d

dτB
vA
(
τA(τB)

)
= −ni ·

dvA

dτA

dτA

dτB

=
a0i

1+ξ ia0i
,

using (10.10). Also by (10.10), we have

dτB

dτA
=

1
1−ξ ia′0i

=
1

1−ξ
i a0i

1+ξ ia0i

= 1+ξ
ia0i =

(
dτA

dτB

)−1

,

proving the above claim that the functions τA(τB) and τB(τA) are mutual inverses.

10.4 Leading Order Term in EM Self-Force

We now wish to use (10.7) and (10.8) to calculate the EM force of A on B for some
choice of the proper time τB :

Fµ(A on B) = eBFµν

A (B)vB
ν .

To this we wish to add the EM force of B on A for some choice of the proper time
τA :

Fµ(B on A) = eAFµν

B (A)vA
ν .

This is where we use the symmetry established above for rigid motion: we work
out Fµ(A on B) and Fµ(B on A) at corresponding values of τA and τB, viz., when
τA = τA(τB) with the latter function determined by integrating (10.10). The point
is that the two charges then have the same four-velocity, so we can find an inertial
frame in which the two events xA(τA) and xB(τB) are simultaneous and the two
charges instantaneously at rest. If we worked out the two EM forces in this inertial
frame, we could add them to get the total EM self-force as a four-vector at this
instant in this frame. Since vA(τA) and vB(τB) are also equal for this choice of τA
and τB, we could then boost back to the original inertial frame and obtain

Fµ

self = eBFµν

A (B)vB
ν + eAFµν

B (A)vA
ν .
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Here Fself can be considered as a function of either τA or τB, where τA has to be given
by the function τA(τB) discussed above. The rigidity assumption obviously plays a
key role in this convenient picture!

Actually, the convenient picture reveals a problem when carrying out self-force
calculations for any spatially extended charge distribution. We have to add up forces
acting at different points of the distribution, but this then requires a choice of hy-
perplane of simultaneity at which to consider the sum. In a way, the above choice
looks natural enough: we add up the two forces at times which an inertial observer
instantaneously comoving with either point charge A or B would consider to be si-
multaneous, so one might call this the rest frame self-force, even though we can of
course boost the result to any inertial frame, as we have done here.

We could just have added the two forces at the same time for an arbitrary inertial
observer. The reader is invited to estimate the difference that could make. These
considerations reveal the complexity introduced into relativistic dynamics of real
extended objects by the fact that simultaneity is no longer absolute as compared
with a Newtonian world.

Now by (10.7),

Fµν

A (B) = eA

[
uµ vν

A− vµ

Auν

d2 +
vµ

A v̇ν
A− v̇µ

Avν
A +(uµ vν

A− vµ

Auν)(u · v̇A)

2d
+O(d0)

]
,

where u = γ/d is the unit four-vector from xA
(
τA(τB)

)
to xB(τB) and vA and v̇A are

both evaluated at τA(τB). We thus calculate

Fµ(A on B)=eBFµν

A (B)vB
ν(τB)=eAeB

[
uµ

d2 +
−v̇µ

A +(u · v̇A)uµ

2d
+O(d0)

]
,

using the fact that u · vB = 0, vA · vB = 1, and v̇A · vB = 0. The latter follows from

v̇B = v̇A
dτA

dτB
=

v̇A

1+ξ ia0i
,

together with the fact that v̇B · vB = 0. Likewise,

Fµ(B on A)=eAFµν

B (A)vA
ν(τA)=eAeB

[
u′µ

d2 +
−v̇µ

B +(u′ · v̇B)u′µ

2d
+O(d0)

]
,

where u′ = γ ′/d is the unit four-vector from xB
(
τB(τA)

)
to xA(τA) and vB and v̇B are

both evaluated at τB(τA). By (10.16), u′ =−u.
It is this last observation that shows why the Coulomb terms going as O(d−2)

cancel in the total self-force. There is just one more approximation to be made in
determining the O(d−1) term in the self-force:

v̇B =
v̇A

1+ξ ia0i
= v̇A +O(d) , (10.17)

since |ξ |= O(d). Hence, finally,



348 10 Non-Renormalisability of Electromagnetic Self-Force. A Classical Picture

Fself =
eAeB

d

[
(u · v̇A)u− v̇A

]
+O(d0) . (10.18)

This shows that, contradicting the claim in [32], the EM self-force is not gener-
ally aligned with the four-acceleration of the system, taking the latter to be the
four-acceleration of charge A here. It will not therefore be possible in general to
renormalise the relativistic version of Newton’s dynamical law.

There are two simple cases where the EM self-force is aligned with the four-
acceleration of the system, in fact precisely the two cases considered in [32]:

• The charge dumbbell moves along a straight line perpendicular to its axis.
• The charge dumbbell moves along a straight line parallel to its axis.

10.4.1 Transverse Linear Acceleration

Taking the motion along the x axis,

xA = (x0
A,x

1
A,0,0) , vA = (ẋ0

A, ẋ
1
A,0,0) ,

where x0
A, x1

A are functions of the proper time τA and dots over symbols denote
differentiation with respect to τA. Likewise,

xB = (x0
B,x

1
B,d,0) , vB = (ẋ0

B, ẋ
1
B,0,0) ,

where τB = τA, x0
B(τB) = x0

A(τA), and x1
B(τB) = x1

A(τA). We thus also have vB = vA
and v̇B = v̇A. Furthermore,

γ = (0,0,d,0) , u = (0,0,1,0) .

Hence, u · v̇A = 0 and we obtain simply

Fself =−
eAeB

d
v̇A +O(d0) ,

agreeing with the result in [32].

10.4.2 Longitudinal Linear Acceleration

Once again, we take the motion to be along the x axis. In the local rest frame of A,
u = (0,1,0,0), so in the fixed inertial frame relative to which A has four-velocity
vA(τA),

u =
(
γ(w)w,γ(w),0,0

)
, vA =

(
γ(w),γ(w)w,0,0

)
,

where w is the coordinate velocity of A in the x direction and
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γ(w) := (1−w2)−1/2 .

A little calculation shows that

v̇A = γ(w)4a(w,1,0,0) , a :=
dw
dt

,

where a is the coordinate acceleration of A in the x direction. We then have

u · v̇A =−γ(w)3a ,

so that, using (10.18) and a little manipulation,

Fself =−
2eAeB

d
v̇A +O(d0) .

Once again this agrees with the result in [32].

10.5 Spherical Symmetry

In the last section, we identified two special cases in which the general result (10.18)
does in fact lead to a renormalisable mass in the limit as the system size tends to
zero. But the general result itself contains a term proportional to the separation four-
vector u between the two charges which means that the leading order term in the
expansion of Fself, going as d−1, is not proportional to the four-acceleration vector
of the system, whence renormalisation will not generally be possible.

One way round this problem is to hypothesise that any real particle comprising
a spatially extended charge distribution is spherically symmetric. It is in fact a well
known result, for example, that the leading order term in the EM self-force of a
spherical charge shell will be aligned with the four-acceleration, and indeed we can
prove this from (10.18). This result is not wholly surprising. What vectors are left
for Fself to pick out when the system geometry itself does not specify any particular
vector? There is of course the four-velocity, but it turns out that Fself picks out the
four-acceleration and mass renormalisation is then possible.

We thus consider a rigid spherical charge shell of radius R whose center follows
an arbitrary timelike worldline in such a way that any line segment between diamet-
rically opposite charge elements on the surface is Fermi–Walker transported along
that worldline, i.e., the sphere undergoes as little rotation as possible in the sense
described in Sect. 10.3. Rigidity means here that there is always an inertial frame in
which the whole charge shell is instantaneously at rest, and that the shell is always
spherical in that frame [31].

We consider the charge shell in its instantaneous (inertial) rest frame. The surface
charge density is ρ = e/4πR2, assuming a total charge of e on the surface. We take
surface charge elements in pairs dσ1 = edΩ1/4π and dσ2 = edΩ2/4π , where dΩ1
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and dΩ2 are the corresponding solid angle elements subtended at the center. For
each pair of charge elements there is a unit separation four-vector u = (0,n).

There is also an acceleration vector v̇ = (0,a) which can be the four-acceleration
of either of the charge elements, or better still of the sphere center, since we know
that these four-acceleration vectors differ by at most a term of O(R) [see (10.17),
for example]. Of course, the unit three-vector n will vary as we change the pair of
surface charge elements, but the three-vector a will not, because we carry out our
calculation for some particular instantaneous snapshot of the charge shell.

By (10.18), the EM self-force on this pair of charge elements is

δFself(Ω1,Ω2) =−
e2dΩ1dΩ2

d(Ω1,Ω2)(4π)2

[
(n ·a)n+a

]
,

where d(Ω1,Ω2) is a distance function, specifying the separation of the two charge
elements in this frame, and n is of course also a function of the pair (Ω1,Ω2). The
total EM self-force is thus

Fself =−
e2

2(4π)2

∫∫
(n ·a)n+a
d(Ω1,Ω2)

dΩ1dΩ2 ,

with an extra factor of 1/2 to account for the fact that we count each pair of charge
elements twice in the integral.

We now write n = n‖+n⊥, where n‖ is the component of n parallel to a and n⊥
is its component perpendicular to a. Then

(n ·a)n = (n‖·a)n‖+(n‖·a)n⊥ .

However, the integral of the second term here is zero:∫∫ (n‖·a)n⊥
d(Ω1,Ω2)

dΩ1dΩ2 = 0 .

This is because, for every pair of solid angle elements dΩ1 and dΩ2, there is another
pair dΩ ′1 and dΩ ′2 obtained by rotation through 180◦ about a, for which n‖ = n′‖ but
n⊥ =−n′⊥. Contributions therefore cancel.

Hence,

Fself =−
e2

2(4π)2

∫∫ (n‖·a)n‖+a
d(Ω1,Ω2)

dΩ1dΩ2 .

Now n‖·a = n‖a, the product of the lengths of the two vectors, and

(an‖)n‖ = a(n‖)2 = a(e ·n)2 ,

where e is a unit vector parallel to a. We now have

Fself =−
e2a

2(4π)2

∫∫ 1+(e ·n)2

d(Ω1,Ω2)
dΩ1dΩ2 ,
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Note that by spherical symmetry the integral here has to be independent of e. If e
points into the solid angle Ω , then∫∫

(e ·n)2

d(Ω1,Ω2)
dΩ1dΩ2 =

1
4π

∫
dΩ

∫∫
(e ·n)2

d(Ω1,Ω2)
dΩ1dΩ2

=
1

4π

∫∫ dΩ1dΩ2

d(Ω1,Ω2)

∫
(e ·n)2dΩ ,

and

1
4π

∫
(e ·n)2dΩ =

1
4π

∫
π

0
cos2

θ sinθdθ

∫ 2π

0
dφ

=
1
2

∫
π

0
cos2

θ sinθdθ =
1
3
.

So finally,

Fself =−
2
3

e2

(4π)2 a
∫∫ dΩ1dΩ2

d
=−4

3
Ua , (10.19)

where

U :=
e2

(4π)2
1
2

∫∫ dΩ1dΩ2

d

is the EM energy of the charge shell in this frame.
Equation (10.19) is a standard result [32]. It shows that the EM self-force in

this case is proportional to the four-acceleration of the spatially extended charge
distribution. The mass of such a particle can thus be renormalised in the limit as the
size of the charge distribution goes to zero.

10.6 Non-Relativistic Limit

Non-renormalisability remains in general in the non-relativistic limit. In this case,
the hyperplanes of simultaneity of either A or B are approximately hyperplanes of
simultaneity for the global inertial frame chosen at the outset, i.e., hyperplanes of
constant inertial time t. Furthermore, the proper times of both A and B are both
approximately equal to inertial time, i.e., τA(t)≈ t and τB(t)≈ t. So

xB(τB)− xA(τA)≈ (0,space vector from A to B at time t) .

This means that u0 ≈ 0, and u is approximately a unit space vector in the direction
from A to B lying in the hyperplane of constant t at each time t. The four-velocities
of A and B are

vA ≈ (c,dxA/dt) , vB ≈ (c,dxB/dt) ,

and the four-accelerations
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v̇A ≈ (0,d2xA/dt2) , v̇B ≈ (0,d2xB/dt2) .

We thus find

u · v̇A ≈−u·d
2xA

dt2 ,

which is minus the scalar product of the unit three-vector joining A to B in the con-
stant t hyperplane and the instantaneous three-acceleration of A at that inertial time
t. When this is not zero, as is generally the case, the term (u · v̇A)u in the self-force
(10.18) will not be zero, and nor will it generally be aligned with the acceleration of
A, since it lies along the unit three-vector joining A to B in the constant t hyperplane.

10.7 Conclusion

The conjecture in [32] to the effect that the leading order term in the EM self-
force of a spatially extended charge distribution is always aligned with the four-
acceleration of the distribution was not correct. This is sometimes true, however, and
in particular in the case of a spherically symmetric charge distribution. It was further
conjectured in [32] that this situation might arise because Maxwell’s theory is a
gauge theory, since it is known that gauge theories are renormalisable in quantum
field theory. There may still be a connection, of course, in the cases where the mass
of the classical object is actually renormalisable.

It may also be that the renormalisability in quantum field theory contains a hid-
den spherical symmetry assumption which would be difficult to discern, given the
obscure ontological characteristics of quantum field theory.

The rigidity assumption so tightly linked with the constraint of FW transport for
the system axis is another place to look for physical problems. In this context, it is
interesting to note that work has recently been done on EM self-forces without the
need to make such assumptions [26].

One final possibility concerns the unmentioned force that prevents the dumbbell
from collapsing (when eA and eB have opposite signs) or falling apart (when they
have the same sign). If this force arises due to some field for which the two entities A
and B are sources, a self-force effect can be expected due to this field. It is just pos-
sible that the component of this force that is not aligned or counteraligned with the
acceleration might for some reason always cancel the offending component of the
EM self-force. That seems unlikely, but it is important to remember that the model
of the spatially extended particle is not physically complete without considering all
the relevant forces.

Above all, it should be remembered that a problem only occurs here if we insist
on taking a point particle limit. If all particles, no matter how fundamental, are actu-
ally spatially extended sources of whatever force fields they may generate, then we
can live with the leading order term in the associated self-forces not being aligned
with the acceleration. On the other hand, if this occurred for very small scale struc-
tures within such sources, large self-force terms would be expected and ought to be
observed.



Chapter 11
Electromagnetic Radiation and the Coming of
Age of the Equivalence Principle

The discussion in this section will range in a recycling and sometimes redundant
way over the following:

• Uniformly accelerating charged particles.
• Supported charges in static homogeneous gravitational fields.
• Electromagnetic radiation from such charges.
• Equivalence principles.

The aim is to give an updated overview of [30], and to raise a few questions about
this long-standing and sometimes heated controversy.

11.1 The Scenario

Consider first a charged particle coming down the x axis in a flat spacetime, slowing
to a halt somewhere, then accelerating back up the x axis in such a way that its
four-acceleration has constant relativistic length aµ aµ . This is eternal translational
uniform acceleration, illustrated by the worldline in Fig. 11.1 (compare also with
Fig. 2.4). Translational uniform acceleration means that the worldline is a hyperbola,
as we have seen in Sect. 2.9, while eternal means that it goes on forever and has been
going on forever.

Now accelerating charged particles usually radiate electromagnetic energy, so
what about this point charge with hyperbolic motion? In order to find out, we have
to solve Maxwell’s equations for the fields, and luckily we always have the Liénard–
Wiechert retarded solutions. In this case we find that fields are produced in the
region x+ t ≥ 0, and we notice something interesting at the instant of time t = 0,
when the charge is instantaneously at rest in this particular inertial frame, namely
that the magnetic fields are instantaneously equal to zero everywhere, but only for
this instant of time. The same can therefore be said of the Poynting vector.

Of course, a Lorentz transformation can reduce any point on the worldline to
rest, and as Pauli pointed out, the hyperbolic worldline looks exactly the same in

353
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O

x+ t = 0

x− t = 0

d

t

x

Fig. 11.1 A charged particle arrives from large positive x (bottom right), slows down to a halt at
x = d (in this frame), then accelerates back up the x axis. The worldline is asymptotic to the null
cones at the origin, i.e., it is asymptotic to x+ t = 0 for large negative times, and x− t = 0 for large
positive times. Naturally, it never actually reaches the speed of light

any inertial frame, so the magnetic field and hence the Poynting vector are always
zero everywhere, provided we keep changing inertial frame, so that we are always
using the inertial frame instantaneously comoving with the charge. For this reason,
Pauli suggested that the charge might not radiate [46].

But in any given inertial frame, the Poynting vector is going to change from zero
as time goes by, and as far as we know, there is no relevance in what one would ob-
serve by continually changing inertial frame. However, in a well known non-inertial
frame adapted to the motion of the charge, the magnetic field components are iden-
tically zero everywhere and at all times. As we know, for any timelike worldline
in Minkowski spacetime, there are coordinates with special properties, said to be
adapted to the worldline, and which we have called semi-Euclidean (SE) coordi-
nates.

In summary, the idea is that, at each event on the given worldline, the accelerating
observer borrows the hyperplane of simultaneity of an instantaneously comoving in-
ertial observer and attributes her own proper time to all points on it. With this ploy
and a few other simple tricks, we can arrange for the observer to sit permanently at
the space origin of the new coordinate system, whence her worldline is just the time
coordinate axis, with the time coordinate being the observer’s own proper time. We
can also arrange for the metric to have Minkowski form right along the time axis,
but not off it. This means that the coordinate frame we are constructing is a tetrad
frame along the worldline, but not off it (see also Sect. 13.1.3). And finally, by the
ploy mentioned above, the geometry will be Euclidean on the constant time hyper-
surfaces, hence the name semi-Euclidean coordinates. But recall that the connection
is not zero along the worldline, since it must encode the acceleration.

We can make another interesting observation here, which shows just how special
this kind of motion is. It is only for an observer with eternal translational uniform
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acceleration that the Minkowski metric can be made to have a static form when
expressed relative to SE coordinates (by choosing a Fermi–Walker transported space
triad along the worldline). For any other kind of acceleration, if we carry out this
kind of construction, the components of the Minkowski metric will depend on the
new time coordinate or there will be nonzero components g0i, i= 1,2,3. For a proof,
see Sect. 2.3.8, and in particular (2.66) on p. 33.

11.2 The Fields

We now have the non-inertial coordinate system adapted to the charge motion, but
we still need to be able to talk about magnetic fields in a situation where we are not
using inertial coordinates. Physically, this is not so obvious, but mathematically it is
very easy, because we have the electromagnetic field tensor Fµν and we can express
its components relative to any frame. We also know that the matrix of components
of this tensor is antisymmetric in any frame so it can always be written in the form

Fµν =


0 E1 E2 E3
−E1 0 −B3 B2
−E2 B3 0 −B1
−E3 −B2 B1 0

 , (11.1)

and then we can just read off E and B. What these mean physically for a general
coordinate frame is another matter, to which we shall return.

So if we take the charge with hyperbolic motion, find its Liénard–Wiechert re-
tarded fields relative to some inertial coordinate system, then transform them to the
SE coordinate system adapted to the charge motion, we find that the SE magnetic
field is permanently zero. In addition, the SE electric field is static, in the sense that,
at any given SE space coordinate, the SE electric field does not change as SE coor-
dinate time goes by. We may make another observation here that shows once again
just how special this kind of motion is: it is precisely and only for the case of eternal
translational uniform acceleration that this construction yields such an elegant and
simple picture.

So maybe Pauli was right after all. Maybe there is no radiation of electromagnetic
energy in this case. There is another reason for thinking that this may be so. If a
charge radiates, we expect there to be a reaction force on it, but it turns out that the
radiation reaction force is zero for translational uniform acceleration. This can be
shown either from considerations of energy and momentum conservation [16], or
by calculating the electromagnetic force an extended charge distribution exerts on
itself when accelerated [32].
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11.3 The Problem

Despite these arguments, it is generally agreed that the uniformly accelerating
charge does in fact radiate, and we can of course calculate a radiation rate. That was
the conclusion of Bondi and Gold in a paper they published over 50 years ago [4],
but that raised another problem for them which is best introduced by a quote:

The principle of equivalence states that it is impossible to distinguish between the action
on a particle of matter of a constant acceleration or of static support in a gravitational field.
This might be thought to raise a paradox when a charged particle, statically supported in a
gravitational field, is considered, for it might be thought that a radiation field is required to
assure that no distinction can be made between the cases of gravitation and acceleration.

So now we are talking about a gravitational field and an equivalence principle, and
we are concerned about whether a static charge in a gravitational field should be
able to radiate. This can be spelt out in the following way.

A static homogeneous gravitational field (SHGF) is usually modelled in general
relativity (GR) by a metric interval of the form

ds2 =

(
1+

gy1

c2

)2

(dy0)2− (dy1)2− (dy2)2− (dy3)2 , (11.2)

where c is the speed of light and g a constant with units of acceleration (see Sect. 6.3,
and also Chap. 12 for further discussion). The metric gµν is almost in the standard
Minkowski form, except for the component g00, which is a function of one of the
space coordinates y1.

Now it turns out that this is precisely the SE line element for an eternally uni-
formly accelerating observer with absolute acceleration g, i.e., aµ aµ =−g2. So we
can show that the curvature is zero and there are therefore no tidal effects, hence
the name homogeneous for this spacetime. This is thus a flat spacetime, despite the
fact that we are taking it to model a gravitational field, and we can show that there
exist coordinates such that the metric assumes the Minkowski form everywhere and
everywhen. Those would then be interpreted as the coordinates that would naturally
be adopted by a freely falling observer.

So what was Bondi and Gold’s problem? They do not believe that a charge sitting
at fixed space coordinates in the SHGF should radiate. But the trouble is that general
relativity, with a little help, really does predict that it should radiate. And the little
bit of help is an equivalence principle. So if we do not believe that a charge sitting
at fixed space coordinates in the SHGF should radiate, perhaps it is the equivalence
principle that is wrong, or somehow inapplicable to charged particles.

11.4 Equivalence Principles

This is therefore a good point to recall the two equivalence principles that form part
of any introductory course on general relativity. The first is usually called the weak
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equivalence principle (WEP), although there is nothing weak at all about it. In fact it
forms part of the standard formulation of GR for any curved spacetime. We impose
the metric condition, which says that the covariant derivative of the metric should
be zero, and this fully determines the connection in the torsion-free case. It then
turns out that the first coordinate derivatives of the metric components are linear
combinations of the connection coefficients, so if we can arrange for the latter to be
zero at some event P by a clever choice of coordinates, we will find that the metric
components are slowly changing functions of the coordinates at that point.

We then have the following standard argument. For any event P in spacetime,
there is always a choice of coordinates in some neighbourhood of that event for
which the connection coefficients are zero at P and the metric takes the Minkowski
form at P. By continuity and the above observation, this will then be approximately
so in some small neighbourhood of P. Basically, WEP thereby guarantees the mathe-
matical existence of local inertial coordinates at any spacetime event in the manifold
and decrees that these correspond to the coordinates one would naturally set up in a
freely falling, non-rotating laboratory (see also Sect. 6.5).

But we still need to be able to talk about electromagnetism in the framework of
a general curved spacetime, and for this we need the strong equivalence principle
(SEP). This states that, in the locally inertial frames whose existence is guaranteed
by WEP, all physics looks roughly as it does in the context of special relativity.
This is a rather vague statement and would be difficult to use. In practice, we take
the special relativistic formulation of whatever non-gravitational physics it is we
are trying to do, e.g., Maxwell’s equations if we are doing electromagnetism, and
replace all coordinate derivatives by covariant derivatives. At least, this is the sim-
plest or minimal way to implement the strong equivalence principle. There are more
sophisticated ways which will not concern us here. This then leads to the minimal
extension of Maxwell’s equations (MEME) to a general curved spacetime.

Now imagine a charge held at fixed SE space coordinates in an SHGF. It turns
out that it is accelerating uniformly, and because of that, SEP tells us that it produces
exactly the same fields in the global inertial frame that happens to be available in
this case as a uniformly accelerating charge in a gravity-free spacetime. So if there
is radiation in the latter case, there will also be radiation for the static charge in an
SHGF. This is an application par excellence of the strong equivalence principle in
the sense that there is no approximation here due to local effects, since the local
inertial frame is globally inertial.

So if we think a static charge in a static spacetime cannot radiate EM energy, then
here is another argument against the uniformly accelerating charge in flat spacetime
without gravity being able to radiate EM energy. However, as mentioned earlier,
the consensus says that it can. Alternatively, ‘the’ equivalence principle may be
wrong. But WEP is built into standard GR, and GR would be virtually unusable
without SEP, in the sense that we would require some other way of shipping our non-
gravitational theories of physics into the curved spacetime framework. And another
alternative is that a static charge in a static spacetime may after all be able to radiate
EM energy.
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We have now sketched the whole issue here. This is a tangle of at least three
problems, probably more:

• Do eternally uniformly accelerating charges radiate EM energy?
• Does this debunk some form of equivalence principle?
• Can a stationary charge in a static spacetime radiate EM energy?

Let us begin by addressing the last question in more detail.

11.5 Stationary Charge in a Static Spacetime

A static spacetime is one in which there exist coordinates in which the metric inter-
val assumes the form

ds2 = g00(x1,x2,x3)(dx0)2 + ∑
i, j=1,2,3

gi j(x1,x2,x3)dxidx j , (11.3)

so that the metric components do not depend on the time coordinate, and in addition
the matrix of metric components is in block diagonal form with g01, g02, and g03
equal to zero (see Sect. 4.3.17). A static or stationary charge is one that sits at fixed
space coordinates in a spacetime with one time coordinate and three space coor-
dinates. This kind of staticity is clearly a coordinate dependent notion. To give an
example, a static charge in a semi-Euclidean coordinate system is accelerating.

Now Bondi and Gold say that a static charge in a static spacetime cannot radiate
EM energy. However, GR with the help of SEP and MEME predict that a freely
falling observer will observe EM radiation from a static charge in an SHGF, if uni-
formly accelerating charges in gravity-free spacetimes do radiate. And since Bondi
and Gold found that uniformly accelerating charges do radiate in the latter case, they
had to come up with some other solution. And here it is: there is no such thing as an
infinite static homogeneous gravitational field.

The point is that, if we do away with the SHGF, we may try to argue like this.
Radiation from a charge can only be established, according to Bondi and Gold,
by surveying space out to large distances. At any distance over which one could
affirm the observation of EM radiation, the presence of a gravitational field would
be revealed by its inhomogeneity. The EM effects do not then have to be the same as
in an SHGF, and this is supposed to save the charged particle from having to radiate.

The weak point here is presumably the first claim, that one must be a long way
from the charge in order to ascertain whether or not it is radiating. Of course, we
must agree that the SHGF is unphysical, but this is all a matter of approximation,
and there is no quantitative link between approximations to gravitational effects,
which have one kind of source, viz., matter and energy, and approximations to EM
effects, which have a quite different kind of source, viz., charges and the motions of
charges.

Many people commented on this over the following 25 years, in particular
Rohrlich, and we shall return to his views on these matters later. But in 1980, Boul-
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ware came up with a complete mathematical analysis of the EM fields due to a
charge with eternal translational uniform acceleration [5], and he concluded that
there would be EM radiation. So let us examine his arguments for reconciling these
issues.

Boulware is interesting because there is a subtle change of tack here. He does
not claim that a charge that is stationary relative to coordinates in which the met-
ric is static will not radiate, only that an observer that is stationary relative to these
coordinates will not be able to measure any radiation there is. So for a charge sup-
ported in an SHGF, there is radiation for the freely falling observer, but not for a
co-accelerating observer sitting with the charge. Something is therefore telling him
that the co-accelerating observer must not be able to see any radiation.

This seems to raise several questions. First of all, why should anyone want to
show that? Here is a conjecture. Suppose I am holding a charged particle and moving
inertially. Then I will not be able to tell what velocity I am moving at by looking
at the EM fields of the charge. This is because Maxwell’s equations are Lorentz
symmetric. So perhaps the idea here is that I will not even be able to tell whether I
am accelerating or not. The point is that I could be sitting still in an inertial frame and
holding the charge and not see any radiation, or I could be accelerating uniformly
and holding the charge and not see any radiation.

The problem is of course that this fails in the details, because the fields look
different in the accelerating case, for any choice of coordinates the observer might
make to express those fields. However, that does seem to raise another question:
how do we know what accelerating observers will see?

Before returning to this question, let us consider the two arguments Boulware
gives to try to support his claim (see the original paper [5] or the detailed discussion
in [30, Chap. 15]). Figure 11.2 shows spacetime again. The cross represents the
light cones at the spacetime origin. Now for reasons of causality, the charge can
only produce fields in regions I and II, which is x+ t ≥ 0. But also for reasons of
causality, if we travel with the charge, we can only get news from regions I and IV.
We can never get news of the fields in region II. So we cannot send a friend into
region II and he phones later to say that he is witness to some nice radiating fields
produced by the charge we are travelling with.

In fact, we are stuck looking at the fields in region I, and Boulware tries to con-
vince us that, if we do that, those fields will look more Coulomb than radiating,
that is to say, they will look more 1/r2 than 1/r for a suitable choice of distance r.
However, we should perhaps be asking whether the observer could not accurately
predict the fields even into region II from sufficiently accurate measurement of the
fields in the close neighbourhood of the charge worldline. And we may also wonder
why we should care about what one particular observer can or cannot measure.

Boulware’s second argument concerns the generalisation of the Poynting vector
to the SE coordinate system, which is identically zero everywhere in region I, as
pointed out earlier. This is often cited as definitive proof that the co-accelerating
observer could not detect any radiation. But what is the physical meaning of this
generalisation of the Poynting vector to coordinates other than inertial coordinates?
According to Parrott, one of the main post-Boulware commentators on these issues,
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x = tx = −t

I

II

III

IV
O

Fig. 11.2 Boulware’s four regions of spacetime. The line t = x is an event horizon, because the
observer O can never receive any signal from regions II and III on the other side of it. Pictorially
this is because the forward light cone of any potential signalling event in region II or III is entirely
contained within those regions. For a similar reason, O can never signal to any event in regions
III or IV, because the forward light cone of any point on the worldline of O is entirely contained
within regions I and II

it does not give an energy flow at all when integrated over a spacelike hypersurface,
but another radiated quantity, associated with a Lorentz boost Killing vector field
[45].

11.6 Killing Vector Fields Revisited

The Killing vector fields play an important role in these discussions, so it is worth
recalling the basics. As we saw in Sect. 4.3.17, a Killing vector field (KVF) is a
vector field K such that the Lie derivative of the metric along the flow of K is zero.
This is something very convenient from a mathematical point of view owing to the
elegant formulation

Kµ;ν +Kν ;µ = 0 . (11.4)

The flow of K is related to a symmetry of the metric, i.e., an isometry, so in a general
curved spacetime, there are no Killing vector fields. However, in a static spacetime,
there is always at least one Killing vector field, namely the time coordinate vector
field for coordinates in which the metric assumes its static form (11.3).

But what can we do with a Killing vector field? In fact, if we also have a zero-
divergence symmetric tensor T µν , i.e., having the properties

T µν
;ν = 0 , T µν = T νµ , (11.5)

then we can construct a vector field



11.6 Killing Vector Fields Revisited 361

vµ := T µν Kν , (11.6)

and it is straightforward to show that this new vector field will have zero covariant
divergence, i.e.,

vµ
;µ = 0 . (11.7)

It thus represents a conserved quantity, and we can use Gauss’ theorem, and so on.
But, of course, the energy–momentum tensor of the EM field is symmetric and

divergence-free in the right circumstances, so we can get a divergence-free vec-
tor field for every Killing vector field of the metric just by contracting with this
energy–momentum tensor. This can be used to define the energy of a field in an
inertial frame. The inertial time coordinate vector field in Minkowski spacetime is
a timelike, normalised KVF, and it gives the density of field energy–momentum by
contracting with the energy–momentum tensor.

Note, however, that not every divergence-free vector field constructed by con-
tracting a KVF with an energy–momentum tensor can be interpreted as a density
of field energy–momentum. There is a certain minimal requirement that the Killing
vector field must be timelike and normalised at a given event for that to work. This
is just the usual intepretation of the energy–momentum tensor in a general curved
spacetime. If an observer has four-velocity u, then the contraction of u with the
energy–momentum tensor is supposed to give the density of energy–momentum
that this observer would measure using standard techniques. And of course, u is a
unit timelike vector.

Now Minkowski spacetime is maximally symmetric, so it is absolutely full of
Killing vector fields. In fact, it is absolutely full of Lorentz boost KVFs, since there
is one in every space direction. Here is the one in the x direction:

K(x, t) := x
∂

∂ t
+ t

∂

∂x
, (11.8)

expressed relative to an inertial coordinate system. Written like this, it may not look
much, until we realise that every curve in the flow of this vector field is a uniformly
accelerating worldline. Better still, when it is expressed relative to the SE coordinate
system for an eternally uniformly accelerating observer in the x direction, it takes
on the very simple form

K = ∂τ , (11.9)

up to a multiplicative constant, where τ is the SE coordinate time. So it is basically
the SE time coordinate vector field.

This shows that there is a close relationship between the Lorentz boost Killing
vector fields and the SE coordinate systems of observers with eternal translational
uniform acceleration. This is indeed what makes the latter kind of motion so very
special in many respects. If we were to consider an observer with arbitrary timelike
worldline, we could always construct a SE coordinate system, but the metric would
not generally assume the static form (11.3), and this is because that worldline would
not generally be the flow curve of any KVF.
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So what about Boulware’s second argument, concerning the generalisation of
the Poynting vector to the SE coordinate system? According to Parrott, if the SE
observer comoving with the charge uses the SE Poynting vector, she will not be
calculating a flow of energy at all, but a flow of a kind of pseudo-energy constructed
from the energy–momentum tensor and the Lorentz boost KVF by contracting the
two. From a Minkowski standpoint, in terms of the flow of energy as it is usually
defined in an inertial frame, the calculation of the SE observer looks very strange
indeed [30, Chap. 16].

This may be so, but then we know that energy is a frame-dependent concept.
We know how to transform the energy of a thing from one inertial frame to another
by carrying out a Lorentz transformation of an energy–momentum four-vector, and
then we get a different energy for the thing in each inertial frame. But here we are
talking about non-inertial frames and this seems to raise several questions:

• How should an accelerating observer define energy?
• What energy would be measured by an accelerating observer using standard tech-

niques?
• How should an accelerating observer define radiation?

Of course, as a vector, an energy–momentum four-vector can be represented relative
to any coordinate or other frame, but here we are suggesting a different definition
which favours the idea that the relevant quantity should be a conserved quantity.

11.7 Equivalence Principles Revisited

Before considering these questions from a different angle, let us just do a small de-
tour and examine Boulware’s equivalence principle, since we have unfinished busi-
ness there. A striking thing about many of the papers that purport to be discussing
the equivalence principle in this context is that they often give no usable statement
of the equivalence principle. We usually have something like this: a uniformly ac-
celerated frame must be indistinguishable from a gravitational field. But this kind of
statement is clearly open to the kind of subjective interpretation we get from Boul-
ware. What does indistinguishable mean? We are saying here that there might be a
radiation field for one observer, but another one must not be able to see it. We must
ask whether such an idea is really necessary.

Perhaps we are we just trying to save Bondi and Gold’s opinion that a static
charge in a static spacetime cannot appear to radiate? But this in turn seems to as-
sume something about what constitutes energy and radiation in non-inertial frames,
which brings us back to our earlier question. And such statements of ‘the’ equiva-
lence principle are to be contrasted with WEP and SEP, which have fully objective
definitions and fully mathematical implementations.

Let us return to the questions raised above by a slightly circuitous route. Parrott
introduces an interesting idea of accelerating the charged particle by means of a tiny
rocket with a tiny fuel tank and a fuel gauge for reading off how much fuel has
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been used. In gravity-free Minkowski spacetime, since the uniformly accelerating
charge is radiating energy which can be detected and used, according to Parrott,
conservation of energy suggests that the radiated energy must be provided by the
rocket. We might then expect to burn more fuel to produce a given accelerating
worldline than we would to produce the same worldline for a neutral particle of the
same mass.

So according to Parrott, we have an experimental test to determine locally
whether EM energy is being radiated or not. The key point here is indeed that such
a test would be local. This is to be contrasted with Bondi and Gold’s idea that we
must be far away from the charge in order to find out whether or not it is radiating.
In this case, we simply observe the rocket’s fuel consumption.

But now consider a rocket holding the charge stationary relative to SE coordi-
nates in the SHGF. If we burn more fuel to carry the charged particle (than to carry
a neutral particle) when accelerating in the gravity-free Minkowski spacetime, we
shall burn more fuel to support the charged particle in an SHGF, by an application
par excellence of SEP. That is what the theory says if we accept the strong equiva-
lence principle: the mathematics is strictly identical in the two cases.

But Parrott says that the equivalence principle does not apply to charged par-
ticles [45]. It is not absolutely clear what he means by the equivalence principle,
because there is no clear statement of it in his paper. However, he does claim that
local experiments will distinguish a stationary charged particle in an SHGF from an
accelerated particle in a gravity-free Minkowski spacetime. And of course he may
be right. One day we may be able to do this experiment, and we may find that he
was right. In which case, we will know that the strong equivalence principle was not
applicable here.

On the other hand, if SEP were not always applicable, we would be in some kind
of trouble. How would we use GR? We would need some alternative way to ship our
non-gravitational theories of physics into the curved spacetime context. And to save
SEP, we need to admit that a stationary charge in an SHGF can radiate EM energy,
at least as viewed from a freely falling frame.

But it should be said that, apart from Parrott, nobody seems to disagree with that.
For example, Boulware and Rohrlich do not disagree with that. They just do not
want the stationary charge in the static spacetime to appear to radiate to a comoving
observer, for some reason. Recall the conjecture made earlier. Perhaps they consider
this to be some form of EP, or an extension of a relativity principle to an accelerating
situation. However, neither of these ideas are necessary to the system based on GR
with WEP and SEP, and both fail in the details, since the fields in the accelerating
case look different in the details for any choice of frame the accelerating observer
may choose to represent them.
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11.8 Which Frame?

The question remains: what will non-inertial observers actually observe? In the
gravity-free Minkowski spacetime, if we use the SE Poynting vector, are we cal-
culating radiated energy for some observer? Does that give the energy that would
be measured by an accelerating observer using standard techniques, whatever that
means? Or is it just a good definition? But if it is good, what is it good for? What
are we trying to achieve? And does the value we obtain by calculating with the SE
Poynting vector convert properly to the extra fuel that would be needed to accelerate
a charged particle?

What should concern us here is that there is no obvious reason why an accel-
erating observer should adopt SE coordinates. After all, they are just coordinates,
despite certain convenient features. They are also artificial in some ways. For exam-
ple, the accelerating observer would have to use a rigid ruler, i.e., one satisfying the
so-called ruler hypothesis, in order to actually measure the space coordinates in the
direction of acceleration.

And why not use a tetrad frame [34]? Recall that the SE coordinate frame is a
tetrad frame along the worldline, but not off it, and there are many ways to extend
it to a tetrad frame off the worldline. But which one should we use to represent the
EM fields off the worldline? More about this in Chap. 13.

11.9 Stationary Charge in a Static Spacetime Revisited

Let us now look more generally at the idea of a static charge in a static spacetime,
but this time consider a general static spacetime, which may or may not be curved,
as specified by the metric interval (11.3), asking once again whether it is true that
a charged particle that is stationary with respect to the space coordinates in a static
spacetime generates a pure electric field in that frame. Parrott gives a neat mathemat-
ical demonstration [45] that, if we have a stationary charge relative to coordinates
for which the metric is static, there will be retarded field solutions for such a charge
with zero magnetic field. Unfortunately, he has to assume that the electric field is
static in order to derive the result, which weakens the argument somewhat, but let us
gloss over that for these purposes. Then if the retarded field solution is unique, this
means that the retarded field solution for such a charge always has zero magnetic
field.

What is interesting about this argument is that it is entirely dependent upon the
use of SEP and MEME! Of course, how else could we say anything at all about
electromagnetism in a curved spacetime context?

Now the time coordinate in a static spacetime provides a timelike Killing vector
field for the static metric, and it is not difficult to show that we may assume the KVF
to be normalised along any given curve in its flow [see (12.3) on p. 376]. But then
this KVF gives a conserved quantity in conjunction with the EM energy–momentum
tensor by contracting the two together. So perhaps what a stationary charged parti-
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cle in this static spacetime does not radiate is the pseudo-energy defined as the con-
served quantity corresponding to translation by the formal time coordinate in this
spacetime. And perhaps we should indeed define this as the energy for an observer
sitting at fixed space coordinates in this spacetime. But if that is a good definition,
let us not forget to say what it is good for. What are we trying to achieve? Where is
the physics?

Going back to the flat spacetime context that we have been discussing here, Par-
rott agrees with Boulware that there is no radiation of the conserved quantity corre-
sponding to the Lorentz boost Killing vector field. But he says that this is irrelevant
to questions concerning physically observed radiation. And indeed, this is the case,
until someone fills the physical gaps in these arguments.

Parrott also considers a stationary charge relative to the usual coordinates for
Schwarzschild spacetime, which is a static spacetime, and asks whether it will radi-
ate EM energy? Parrott claims that it would not, which is interesting, because this
is exactly what one would say in a naive special relativistic (SR) version of gravity
in which gravity is just a force. A stationary particle is inertial in SR, so Maxwell’s
theory says there will be no radiation.

In fact, it is interesting to contrast what GR and SR say about radiation from
supported and freely falling charges, because they make diametrically opposite pre-
dictions about this. And this is because they make diametrically opposite claims
about which of the two cases is actually accelerating. In GR, the supported charge is
accelerating and the freely falling charge is not, while in SR, it is the freely falling
charge that is accelerating.

But in order to understand the physical implications of a scenario in GR, we must
first look at what is happening in the locally inertial frame guaranteed by WEP, and
then deduce things about EM fields by applying SEP, since this is the only procedure
we have. And when we look at the static charge in Schwarzschild spacetime as it
would be described in a locally inertial frame, we find that it is accelerating, so there
is then nothing obvious at all about the conclusion that this charge will not radiate.
On the contrary, MEME says it will, at least to the freely falling observer.

Then if energy radiates out, and if it is true that this can be detected locally, it is
tempting to consider that this must be supplied by whatever is holding the charge
up against the gravitational effects. However, the zero radiation reaction in the case
of eternal uniform acceleration confuses this issue. Boulware shows that there is a
flow of energy in towards the charge in the case of eternal uniform acceleration,
suggesting that this originates from the horizon x+ t = 0 (see the original paper [5]
or the detailed discussion in [30, Chap. 15]). However, there is only a field on this
horizon (in fact a distributional field) if the charge has been accelerating like this
forever, whereas self-force calculations suggest that the radiation reaction force on
the charge would be zero at any instant of time when it has uniform acceleration.

For an arbitrary, i.e., not necessarily uniform acceleration, there will be a radia-
tion reaction, and we might then be able to argue that the radiated energy is somehow
supplied by whatever is pushing the charged particle off its geodesic. It would be
interesting to see concise discussions of this point.
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Returning to the way energy is redefined for observers following the flow curve
of a KVF, the conserved quantity corresponding to the time coordinate KVF in a
static spacetime may be the only natural mathematical candidate for a conserved
quantity. But is it what we would normally call energy physically? Or is it just
a good definition, and if so, with what aim in mind? We ought to remember that
mathematical convenience is not sufficient to be sure that we are doing physics, i.e.,
that we are getting a useful relationship with what is out there.

Furthermore, if a charge is stationary relative to some coordinates we happen to
have chosen, we must remember that these are only coordinates. It will not generally
be stationary relative to the kind of coordinates we are supposed to use to understand
the theory physically, viz., inertial or locally inertial coordinates. And we should
remember that GR is very different from SR as regards gravitational effects, since
GR builds in an interaction of sorts between gravity and other fields via SEP. This
is indeed how light is affected by gravitational effects in GR.

11.10 Interpreting Physical Quantities
in Non-Inertial Frames

It is interesting to end this discussion by considering what Rohrlich has to say about
these matters in his classic book [49], now in its third edition. Here we focus in par-
ticular on the way he suggests that we should interpret quantities expressed relative
to non-inertial coordinate systems. A detailed discussion of all this can be found
in [30]. Let us begin with a quote:

[An SHGF] is a field whose lines of force are equidistant parallels, such as the gravitational
field in the laboratory. It is known that this type of gravitational field can be simulated by
uniform acceleration of a neutral particle in Newtonian mechanics and in special relativity.
Is this also true for the motion of a charged particle?

So here we have a rather typical statement of an equivalence principle. Let us see
how we get on with that.

He begins by presenting a tempting fallacy, and what is interesting here is to try
to determine precisely what it is that he considers to be fallacious in the following
statement:

A neutral and a charged particle cannot fall equally fast in an SHGF, because the charged
particle will radiate, being accelerated, and thereby lose energy, hence fall more slowly than
the neutral particle.

But if the freely falling charge is accelerating, and if this is not the fallacy here, then
it looks as though we are doing special relativity. Anyway, his statement of intent
is now to prove that a charged and a neutral particle in an SHGF will in fact fall
equally fast, despite the fact that, according to him, the charged one loses energy by
radiation.

Before examining his argument, let us just note that the GR picture is exceedingly
simple in this particular case, because the freely falling neutral and charged particles
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are stationary in the global Minkowski frame. The charged particle will not radiate,
so this is a solution of the free particle equation of motion, i.e., we do not need
to consider the kind of sophisticated arguments expounded in the classic paper by
DeWitt and Brehme [13], which show that curvature can intervene directly in the
equation of motion and change the whole notion of free fall for charged particles.
Note also that this charge would only radiate in the SR picture!

Returning to Rohrlich’s discussion, he thus sets out to prove that a charged and a
neutral particle in an SHGF will in fact fall equally fast, i.e., have the same world-
line or the same shape of worldline, despite the fact that the charged one, according
to him, loses energy by radiation. His argument is basically GR+SEP leading to
MEME, but note that he still claims that there is radiation. However, we then dis-
cover that the freely falling observer will not see any radiation, and this because the
charge is just sitting still in an inertial frame.

So this is precisely the GR picture, and we begin to wonder what we must do in
order to see this radiation. In fact, it turns out that we have to be stationary relative
to the SE coordinates for the SHGF to see it. However, the field of the charged par-
ticle in the freely falling frame is Coulomb, so what we are claiming here is that a
Coulomb field will look like a radiating one to an accelerating observer, whatever
that means. But even if it did, is that how the accelerating observer should under-
stand what is happening, by looking at the electric and magnetic fields relative to
some coordinates that happen to be adapted to her worldline?

After all, these are not the only possible coordinates that such a person could
use. There are other adapted coordinate systems, and there are tetrad frames that
could be used to express the fields off the worldline. But which picture should the
accelerating observer use?

We may consider another example of what seems unholy in this account of
things. The geodesic equation in the SHGF says precisely that the four-acceleration
of a thing is zero, and then we say that the thing is freely falling. Fiddling around
with the coordinates will not make free fall in this flat spacetime, or indeed in any
other spacetime, become a uniform acceleration, because it is zero acceleration. But
what Rohrlich suggests here is that, if the supported observer using SE coordinates
should somehow be duped into thinking that her coordinate system has any real sig-
nificance, the freely falling particle may appear to have this or that acceleration. So
in this view of things, coordinates can be taken by their resident observer, if there is
one, to have some real physical significance.

It is interesting that Rohrlich should seek coordinates for the supported observer
relative to which free fall looks like uniform acceleration, because free fall in an
SHGF is uniform acceleration in the naive special relativistic model of gravity in
which gravity is just a force [30, Chap. 3], another striking result concerning uni-
form acceleration.

Anyway, transforming the Coulomb field in the freely falling frame, which we
know to solve MEME in the GR version of the SHGF, Rohrlich claims that we
obtain a radiating field in the SE coordinates. So in his view the supported observer
will ‘see’ this charge as radiating. He goes further, giving the standard formula for
the radiation rate in ordinary Minkowski coordinates in SR, specifying how it is
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found algebraically from the components of the EM field tensor relative to such a
frame and noting that this rate is Lorentz invariant. But what he then suggests is that,
when we transform to arbitrary coordinates for this spacetime (no longer a Lorentz
transformation), we can use the same algebraic combination of the new components
of the EM field tensor to deliver a rate of energy radiation.

This is just to show how we can get a nonzero rate for the supported observer
when the radiation rate is resolutely zero for the freely falling observer. But there
are two difficulties here. First of all, the prescription is potentially ambiguous, given
the various possible ways of expressing the fields off the worldline. But note that if
the radiation rate depends only on a specific point on the worldline, i.e., a specific
proper time of the charge, it may be possible to circumvent this difficulty, using the
Lorentz invariance of the rate. On the other hand, this leaves us with the problem
of interpreting the radiation rate calculated in this way. Is it supposed to be what
the accelerating observer would measure using standard techniques, whatever that
means, or is it just a good definition? And if so, what is it good for? What are we
trying to achieve by it?

Here is an exercise for the reader. Think up an equivalence principle that would
make you want the Coulomb field to look like a radiating field to an accelerat-
ing observer. One answer is a Newtonian, naive special relativistic, pre-GR kind of
equivalence principle which we do not need, and which fails in the details, because
this field will never look exactly like the radiating field of an accelerating charge,
for any choice of coordinate system the accelerating observer may choose to express
the Coulomb field.

However, this is not the end of the mysteries. In 1964, Mould invented an entirely
theoretical radiation detector that would bear out such predictions [30, 39]. In other
words, when it is moving inertially and there is no radiation, it does not record any
radiation, and when it is moving inertially and there is radiation, it records radiation,
but when it moves in uniform acceleration past a Coulomb field, it also excites. This
is a striking result, if the theory in his paper is correct. There is a close parallel with
the Unruh–DeWitt detector in quantum field theory (QFT) (see Chap. 14).

Rohrlich also asks how we know that a charged particle at rest relative to the
supported frame will not radiate. That would be the prediction of an SR version
of gravity. In GR, it is perhaps better to say that this charged particle will radiate
and that the supported observer can spot this if she wants to! Rohrlich agrees that
the freely falling observer will see the supported charge radiating at the well known
constant rate. He then transforms the fields to the SE coordinate system and deduces
that there is no radiation because the magnetic field is zero in the SE system, an
argument we have already discussed twice here.

Such a claim is perhaps best answered by a question: should we treat the SE
magnetic field as the kind of magnetic field we know and love from our school
days? And let us note once again that, apart from having zero magnetic field and
being static, the SE version of these fields does not look anything like the Coulomb
field.
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11.11 Conclusion

This discussion has raised many questions, but two in particular. First of all, how
should we formulate our equivalence principles? A good rule might be to stick to
WEP and SEP and forget any statements that talk about whether something can be
distinguished from something else. The latter are likely to be Newtonian, naive SR,
and pre-GR principles that are no longer needed in the GR framework, and liable to
fail there.

Another question concerns the way we interpret quantities expressed relative to
non-inertial coordinate systems. Here we should perhaps be clearer about whether
we are interested in what accelerating observers actually measure, or whether we are
just trying to make good definitions for them. But what will accelerating observers
observe? What will they consider to be good definitions? And if they are good, what
are they good for? What exactly are we trying to achieve? What will accelerating
observers measure using accelerating detectors? Indeed, does it help to know what
accelerating detectors will detect?

We should remember that there is a major theoretical difference between inertial
motion and accelerating motion, both for observers and for detectors. When an ob-
server is moving inertially, we know what are the best coordinates for such a person
to use: they are inertial or locally inertial coordinates. This is because all our field
theories of matter are Lorentz symmetric or locally Lorentz symmetric, and these
are the coordinate systems in which they assume their simplest forms.

Regarding detectors, imagine designing two different detectors to measure the
same physical quantity. Whenever they are moving inertially in the same physical
context, we expect them to deliver the same value for whatever quantity it is they
are supposed to measure. This is once again because all our field theories of matter,
which govern both the internal constitution of the detectors and the environment of
the detectors, are Lorentz symmetric or locally Lorentz symmetric. But what can
we say when they are accelerating? Will they always deliver the same result for the
given physical quantity? After all, there is no corresponding acceleration symmetry
in our field theories of matter.

Note on the Exercise for the Reader

Consider a situation in the naive SR version of gravity, in which gravity is just a
force, and we have Maxwell’s theory in flat spacetime. Imagine an observer sees a
set of particles of various masses all accelerating away with the same acceleration.
She may construe this as a situation in which there is a gravitational field and the
particles are in free fall while she is held up against fall (case 1), or one in which
there is no gravitational field, the particles are moving inertially, and she is acceler-
ating away from the particles (case 2).

A Newtonian EP based on the equality of passive gravitational mass and inertial
mass claims that these situations will be indistinguishable to that observer. But what
happens if the particles are charged? When they are freely falling, they will generate



370 11 Electromagnetic Radiation and the Coming of Age of the Equivalence Principle

EM radiation in the inertial frame of the observer, because they are accelerating in
this SR picture. But if they are stationary in an inertial frame, they will produce
Coulomb fields, and in order for the two situations to be ‘indistinguishable’, the
accelerating observer in this second scenario must ‘see’ these Coulomb fields as
radiating fields.

Unfortunately, whatever coordinates or other frame the accelerating observer
uses in the second case, the Coulomb fields of the charges will not look exactly
like the radiating fields of accelerating charges to an inertially moving observer, so
that would nevertheless fail in the details.

What would be a GR version of this thought experiment? Actually, the two situ-
ations can be construed in many ways, but the one to watch is this. If we consider
case 1 to be free fall of the particles and the observer supported against free fall,
and case 2 to be inertial motion of the particles and acceleration of the observer,
then the two scenarios are identical in GR and there is no more to be said about
distinguishing them.



Chapter 12
KVFs, SHGFs, and Uniform Gravitational
Fields

Static homogeneous gravitational fields (SHGF) were first discussed in Sect. 6.3, but
mentioned again in Sect. 11.3. There is some doubt in the literature as to whether
they really are homogeneous. For example, in his classic paper, analysed at length
in [30], Boulware tries to derive the metric interval

ds2 =

(
1+

gy1

c2

)2

(dy0)2− (dy1)2− (dy2)2− (dy3)2 , (12.1)

given on p. 356, usually taken to model an SHGF in general relativity, from some
simple assumptions [5]: invariance under time translations for some time coordi-
nate, invariance under the Euclidean group E2 of translations and rotations in a 2D
spatial coordinate plane perpendicular to the other spatial coordinate axis, and flat
(zero curvature). Interestingly, he never refers to this spacetime as homogeneous,
only static. This is presumably because later on he claims that an extremely strong
gravitational field produces the future event horizon z = t. However, this has to be
a misunderstanding, because there are no tidal effects, an assumption he makes ex-
plicitly, of course, by assuming zero curvature.

One can see why he might make claims about an extremely strong gravitational
field. He is imagining observers supported at certain coordinate values. However,
that has nothing to do with the strength of any gravitational field. Coordinates are
just coordinates. What makes this spacetime homogeneous, and thus justifies the
appelation SHGF, is the assumption that there are no tidal effects. Someone can set
up funny coordinates, hold a set of observers there, and conclude that they are held
up against a gravitational field that could be varying in quite a wild way, even in
a flat spacetime, if that were how we defined the gravitational field. This was the
point about ‘stationary’ charges in gravitational fields discussed in Sect. 11.5. That
is a coordinate-dependent notion.

Of course, if one can see the source of a gravitational field, as happens in the
case of the Schwarzschild spacetime when it is taken to describe the gravitational
field around a massive spherical body, one could perhaps take proper distance from
the source, relative to some ‘natural’ choice of spacelike hypersurfaces, to define
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stationarity. That was certainly the pre-relativistic way of viewing things. This issue
does therefore raise a question of what it means, if anything, to be at rest in relativity
theories.

There is another spacetime which is sometimes taken to model a uniform gravita-
tional field and which may also be a good candidate for homogeneity [29]. Actually,
Boulware makes the claim that there do not exist static coordinate systems in which
bodies at rest at different points undergo the same proper acceleration [5], neglecting
to say that he assumes flatness! As a matter of fact, the uniform gravitational field
can be derived from the general class of spacetimes he considers at the beginning of
his paper [30]. This is the class with metric interval of the form

ds2 = e2φ(X)dT 2−dX2 , (12.2)

which includes (12.1) when the smooth function φ has the form

φ(X) := ln(1+gX) ,

for some constant g. For any smooth φ , it is straightforward to show that [30]:

• ∂/∂T is a Killing vector field.
• The proper acceleration of an observer at coordinate rest is φ ′(X).
• The curvature scalar of the metric is φ ′′+φ ′2.

The uniform gravitational field is the one with φ(X) := gX , on the grounds that all
observers sitting at fixed coordinates have the same proper acceleration g. The cur-
vature in this case is also constant, taking the value g2 throughout spacetime, so this
is not a flat spacetime unless g = 0. In that sense, this gravitational field, whether
considered homogeneous or not, is not an artefact of the choice of coordinate sys-
tem, as one might accuse the SHGF with metric interval (12.1).

Certainly, one could describe this spacetime as coordinate-homogeneous for the
coordinates (T,X). But do these coordinates have any real physical significance,
e.g., because of other properties of the metric with respect to these coordinates?
Of course, we may perfectly well define that to be a homogeneous spacetime if we
want, but the question is always whether one definition is better than another, and
that depends on what we want to achieve.

In GR, coordinate independence of an object is taken as a sign that it may cor-
respond to some real physical entity. Such objects are tensors. (A given tensor has
different representations depending on the choice of coordinates, but the tensor re-
mains independent of the choice of coordinates.) However, we do set up coordinate
systems in the real world in order to be able to describe it, and almost everything
we actually measure is coordinate dependent. But the ‘solution’ proposed here for
attributing physical meaning in all these coordinate-dependent situations is to do so
only when the coordinates are inertial (in flat spacetime) or locally inertial.

So there is an issue here, for example, about what it means to be at rest. As
one would expect, the notion of being at coordinate rest could hardly be physically
significant in itself. But there does exist a more geometric notion of being at rest
which could possibly be attributed physical meaning, and indeed often is. If M
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is a spacetime with a timelike Killing vector field (KVF), say T , then the integral
curves of T are the orbits of a one-parameter family of isometries, so in a sense these
worldlines might be said to represent an observer who does not see the spacetime
geometry changing.

Would such a person be able to justify saying she was at rest, and thus be able to
interpret her four-acceleration in terms of a gravitational force? Is this not precisely
what happens in a Schwarzschild spacetime, noting that ∂t is a timelike KVF for the
usual coordinates in such a spacetime, with integral curves{

(t,r,θ ,φ) : t ∈ R, r,θ ,φ constant
}

for each choice of r,θ ,φ , whereupon we can establish a relationship between GR
and the Newtonian approximation? Here is an idea that does not depend on any no-
tion of keeping some proper distance fixed, being firmly based on the very geometry
of the spacetime.

But then we have the problem of Minkowski spacetime with its multitude of
KVFs, and in particular, its multitude of Lorentz boost KVFs, all associated with
different four-accelerations, whence a different choice of KVF may lead us to decree
that a different force is required to support us ‘at rest’ in the gravitational field. In
answer to this, one might say that it was analogous to the Newtonian situation,
where we can have a ‘real’ gravitational force and a ‘fictitious’ inertial force due
to the coordinates adapted to one’s motion. One would just have to bear in mind
that the ‘gravitational force’ attributed in this way is a quantity associated with a
particular choice of timelike KVF.

The lengthy wording in the last paragraph reminds us that there is an impor-
tant switch of terminology in GR because a freely falling object has zero four-
acceleration, so one prefers to say that there is no force on it. In other words, gravity
itself is not a force in this picture. There is a force of some kind when the object
is pushed off its geodesic, e.g., when it is supported in a gravitational field. An ex-
ample would be an object held at fixed space coordinates in the usual coordinate
system for Schwarzschild spacetime, or at fixed SE space coordinates in an SHGF
with metric interval (12.1). When we take an object on our outstretched palm, we
prevent it from falling, hence push it off its geodesic, by exerting an upward force
on it.

In the SHGF, the problem is that one could deduce any value for the gravitational
field, by supporting objects at different fixed SE space coordinates for some TUA
observer. This is just the remains of the old Newtonian equivalence principle men-
tioned in the note at the end of Chap. 11 (see p. 369). Such effects do not have the
absolute status of tidal effects as instantiated by nonzero curvature and associated
geodesic deviation, which are usually taken as the sign of a somehow more genuine
gravitational effect.

But does this mean that we really can talk about the gravitational field of the
Rindler wedge (region I in Fig. 11.2) and say that it becomes stronger and stronger
as one approaches the surface z = t ? The trouble is that this requires us to impute
physical meaning to coordinates, because it requires us to impute physical meaning
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to the way we have chosen to support different objects at different locations in the
spacetime.

Regarding homogeneity, it can be viewed as genuinely geometric, rather than just
a coordinate based idea [29]. A spacetime is homogeneous if, given any two points
p,q, there is an isometry φ such that φ(p) = q. Minkowski spacetime clearly has this
property, and it is not alone in this. A spacetime is spatially homogeneous if it can
be written as a product Σ ×R, where we denote Σ ×{t} as Σt , such that for any t,
and any p,q∈ Σt , there is an isometry φ of the spacetime such that φ(p) = q. This is
satisfied by many cosmological solutions, and indeed it is built into the Robertson–
Walker cosmologies at the outset.

Note then that the spacetime with metric interval (12.2) and φ(X) := gX , re-
ferred to above as modelling a uniform gravitational field, is not homogeneous in
this sense: X translations are not isometries, because ∂/∂X is not a KVF. However,
both X and T translations preserve the integral curves of ∂/∂T and their proper
accelerations, so at a pinch one might claim that there is a sense in which the grav-
itational field, if not the metric geometry, is homogeneous. The coordinates seem
to have some kind of geometric significance, but how could one claim any physical
significance for them? The issue here is not really over how one defines homogene-
ity, but whether associated concepts have any physical interest. And it is striking that
all observers at coordinate rest for these coordinates have the same proper accelera-
tion of magnitude g. The gravitational field, if it is established by these observers, is
homogeneous, even if the metric geometry is not. But note that the Einstein tensor
is not zero anywhere, so this is not an empty spacetime. What could give such a
matter–energy distribution? What kind of energy condition would it satisfy? Are we
doing real physics with such a field?

Naturally, one expects being at rest to be a problem in relativity theories! It is thus
surprising how much store is laid by it, apparently, in discussions of EM radiation.
The explanation must certainly be related to the idea that geometry is unchanging
when one follows the flow of a KVF. We shall see this claim again in the context
of the Unruh effect (see Chap. 14). One can solve the Klein–Gordon scalar field
equation in the semi-Euclidean coordinate system of an observer with eternal trans-
lational uniform acceleration, obtaining positive and negative frequency solutions
for the proper time of that observer (provided one distributes that proper time ap-
propriately, in the SE coordinate way, over events off the observer worldline). One
can obtain a complete set of such Rindler modes and expand the quantum field in
the usual way in terms of those functions, defining creation operators as the coeffi-
cients of the negative frequency modes and annihilation operators as the coefficients
of the positive frequency modes, and thereby making a whole new construction of
the quantum field theory (related to the usual one in a certain way that can be estab-
lished). We then see claims like this [11]:

The quantisation of the scalar field in Rindler modes is just the natural quantisation a Rindler
observer would perform. To him spacetime always looks the same, so he ‘feels’ at rest just
like an object sitting on the surface of an infinite flat Earth.

We should baulk at this glib way of putting things. The only sure way of construct-
ing anything is to use WEP and SEP, because they are indeed necessary and suffi-
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cient, and observer independent, ways of getting the whole of physics in the curved
spacetime context. And the procedure these principles suggest is always to interpret
things physically in locally inertial frames.

This is true despite the fact that SEP can be implemented in different ways. This
principle requires curved space laws to reduce to flat space laws when the metric
is flat, and there are many ways to implement such a principle. The simplest or
minimal way is to replace coordinate derivatives by covariant derivatives in the flat
space laws, and then we can add all kinds of functions f (κ) (κ being curvature)
provided that f (0) = 0, or multiply by others g(κ) such that g(0) = 1, and so on.
Naturally, we begin with the simplest hypothesis, until such times as predictions no
longer accord with measurement, and then tweak that in some intelligent way if that
helps. The fact that there are many possibilities may look bad, but it is not. When
the time comes, we will see intuitively what kind of extra curvature dependent term
is needed, if that is the solution, because we will know more about the problem.

The gravitational aspect is crucial to the KVF version of rest put forward here.
Otherwise we can have uniformly accelerating observers in a gravity free spacetime
and say they are at rest, which sounds strange. What could stop that seeming strange
would be the presence of a gravitational field which those people consider they are
being supported against, although here again, the idea of being supported against
a gravitational field cannot be made precise unless there is some notion of proper
distance from the source. One should ask how a KVF picture is superior to one
using the kind of quasi-stationary quasi-canonical coordinates generally employed
to obtain Newtonian gravitational theory as an approximation from GR [14, 30].

In a context where one sees the source, proper distance from it does seem to be
an important factor, and this is something completely lacking in the idealistic flat
spacetime case generally referred to as an SHGF. Is there a source for that? It is
easy to find one in Newtonian gravity theory, but what about in GR [30, Chap. 2]?
Everything seems to work fine in the Schwarzschild case, for example. With the
usual coordinates, when we sit at fixed r,θ ,φ , we are on the flow curve of a KVF,
we are coordinate stationary, and our proper distance from the source is constant for
proper distance as suggested by this coordinate system. Here are three reasons one
might invoke for claiming to be at rest! And yet one must be accelerated in order to
achieve this state! This is surely a counterintuitive aspect of the GR picture.

But it remains problematic to claim that we really can talk about the gravitational
field of the Rindler wedge as becoming stronger and stronger as one approaches the
line z = t, given that there are no tidal effects here. It reveals the limitations of
this way of viewing things, at least in this highly idealistic situation. Indeed, it is
probably a reason for not bothering with observers and what they think. If anything,
it shows that we need to use the SHGF only as an approximation in regions where
curvature can be treated as roughly constant.

Those who do talk about observers are looking for some kind of explanatory pic-
ture. Indeed the KVF picture purports to be an explanatory picture for an observer.
But what exactly are we aiming to do with such pictures, e.g., for an observer mov-
ing with a detector? What is the observer apart from the detector? This was exactly
the problem raised in Chap. 11. It is confounded by the fact that detectors are likely
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to be unreliable when accelerating (either in SR or in GR) since there is no accel-
eration symmetry in our fundamental field theories of matter to match the veloc-
ity symmetries (Lorentz symmetries) they have. Two different detectors designed
to measure the same physical quantity will always deliver the same value of that
physical quantity when in free fall under the same physical conditions, but they are
unlikely to do so when accelerating in any way under the same physical conditions.

Another weak point about KVF pictures is that they only work for people fol-
lowing the flow curve of a KVF, i.e., not even for someone with arbitrary motion
in a flat spacetime. And we should also be concerned about the fact that they can-
not be normalised everywhere? Supposing there is an observer following one of the
flow curves, we can always arrange for the KVF to be normalised to unity along
that curve so that it is always equal to the four-velocity of our observer, since the
pseudolength

√
K2 of a KVF K is always constant along a flow curve:

Kµ
∇µ(K2) = 2Kµ Kν

∇µ Kν = 0 , because ∇µ Kν +∇ν Kµ = 0 . (12.3)

But then the KVF will not normally be normalised along any other flow curves, so
somehow, those other curves do not quite represent observers. This happens pre-
cisely because the flow curves are all accelerating worldlines, so it is a critical fea-
ture for Killing observers anywhere, even in flat spacetimes. To see this, note that,
if we could normalise K everywhere, so that K2 = 1, we would have Kµ Kµ;ν = 0,
hence Kµ Kν ;µ = 0 when K is a KVF, whence the flow curves of K would all be
geodesics, with no acceleration.

We see this for the Lorentz boost KVFs in Minkowski spacetime. The main ob-
server at the space origin of the SE coordinate frame can arrange for the time coor-
dinate to be her proper time, but then this time coordinate, distributed in the usual
way by the SE coordinate system to other SE space points, will never be the proper
time of any other observers following other flow curves of this same KVF. This is
worth mentioning because the so-called Rindler observer perspective about which
so much is made in the context of the Unruh effect (see Chap. 14) is built upon this
particular KVF-motivated way of distributing the proper time of the main observer
to other SE space points. This perspective, if it is one, is highly coordinate depen-
dent in that sense, whether there be an underlying KVF structure to the coordinates
or not. And as already mentioned several times, the whole approach leaves us in the
lurch for observers with other timelike worldlines.

So normalising the KVF is important if it is a natural picture we are after. In
general, only one observer can arrange for his parameter to be his proper time.
The fact that all the others going with the KVF flow are forced to use some other
parameter than their own proper time means that no one can pretend that this is
somehow an inertial coordinate frame. And this happens precisely because there is
acceleration.

Of course, each flow curve of a KVF can be used as the spatial origin of a coor-
dinate system, with proper time for time. So an observer on one flow curve can use
his proper time, and an observer on another can use hers, and although their time
coordinates do not agree, they can still communicate because the relationship be-
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tween the time coordinates is perfectly well-behaved. This is not a problem. There
is a quite general sense in which coordinate systems in GR serve largely only to
communicate. But there is an interesting point here if we think about inertial ob-
servers rather than accelerating ones: observers moving with an inertial observer in
her own frame would be inertial, with synchronisable times.

We said above that the gravitational aspect is crucial to the KVF notion of rest,
because otherwise we can have uniformly accelerating observers in a gravity free
spacetime and say they are at rest, which sounds strange. One reply to this is that
we should be willing to accept such strangeness. At this level of understanding of
the world, why should it not look strange? Perhaps our brains never evolved to
understand such things. Such a problem occurs in some quantum theories of micro-
physics. However, in the latter case, rather than saying that we understand a strange
theory, we might be better admitting that we have a theory that works but we do not
understand it, or maybe could never understand it.

On the other hand, such a stance does not seem appropriate in the present case,
because there is nothing particularly mysterious about spacetime. Is this really a
case where we need to re-educate or refine our intuition? What we have here is just
a strange definition of being at rest, and it is strange because it does not accord with
our usual understanding. Being at rest has something to do with distances to other
things, and in gravitational fields, those other things can only be the sources of the
fields. If saying that observer A is at rest is just another way of saying that observer
A’s worldline is the integral curve of a timelike KVF, on the grounds that we have
nothing better to replace it by, then that is fine, of course, and there would be no
point just arguing about words.

Now an observer at rest some distance from a spherically symmetric mass dis-
tribution has a four-acceleration in GR which to a high degree of approximation
matches the force required to hold an analogous observer at real, Newtonian rest
relative to the analogous mass distribution in Newtonian gravity. In this context,
how is a KVF picture superior to one using quasi-stationary quasi-canonical coor-
dinates (see [14, Chap. 6] or [30, Chap. 2])? One could argue that it is conceptually
cleaner, in that it really is a bit of intrinsic geometry, and not coordinate dependent.
And are we not supposed to find intrinsic geometric ideas more fundamental than
coordinate-based ones?

This is a well worn groove in the textbooks. But surely what is fundamental is
the way we relate coordinates to measurements in the real world, and that passes in
principle (WEP and SEP) by locally inertial frames. The philosophical idea behind
an intrinsic geometric idea is presumably that it corresponds to a thing in itself, a real
thing out there that we can only know through the shadows it casts, or something
like that. The manifold itself, for example, corresponds to the Universe as it is, not
just some description of it. That is certainly a fine idea, but we still need to relate
our descriptions of the manifold to descriptions of what is out there. Geometric
elegance, it should be remembered, is mathematics. Our problem is to relate that to
the real world.

As mentioned above, a common derivation of the link between Einstein’s equa-
tion and Newtonian gravity goes through the assumption that there are quasi-
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canonical quasi-stationary coordinates, which leads to a very general argument (for
any spacetime), but quasi-stationarity is founded on the understanding that the co-
ordinate system is fixed in some intuitive sense with respect to gravitational sources
(see [14, Chap. 6] or [30, Chap. 2]). It is not clear that we could really make the link
with the Newtonian approximation without at least intuitively referring to proper
distance to the source. If one were not somehow fixing the proper distance to the
source, the coordinates one came up with here might be free fall coordinates, in
which case there would appear to be no gravitational effect at all.

What do we actually gain by the Killing vector idea? Is it just a picture? If
the starting point is always SEP, i.e., the selection principle for which theories are
counted as plausible if they look reasonable when expressed in a free-falling inertial
frame, why make that coexist with another principle based on KVFs, which is very
likely incompatible with that, or can at best merely agree?

Non-Euclidean geometry is not necessarily the problem here for our intuitions.
The issues arise identically in flat spacetime. For example, why pretend that a uni-
formly accelerating rigid frame is an inertial frame? We do not need to believe
that. And anyway, accelerating frames are not inertial, they are accelerating, as at-
tested by the non-disappearance of the connection coefficients along the worldline
of the observer who uses them. There is a real mathematical difference with inertial
frames, even in flat spacetime.

Of course, we can see what the theory GR+SEP says about the picture a Killing
observer would obtain. However, a Killing observer is not an inertial observer unless
the flow curve of the KVF happens to be a geodesic. The problem is perhaps not
counterintuitive results, but hoping for something to be true which is not in general.
After all, the equivalence principle (WEP+SEP) provides a map everywhere, and
everyone uses it (although of course it may ultimately be wrong), and that map says
that the picture for a Killing observer will not look like the picture for an inertial
observer in general, because the Killing observer is usually accelerating.

The main advantages of the WEP and SEP solution are:

• There are no observers.
• The only coordinates mentioned are the canonical local inertial coordinates pro-

vided by WEP, and they do not actually need to be mentioned to implement that
programme.

• We do not need anything else.

As an example, consider the geodesic ‘principle’ which says that a point test particle
subject to no external non-gravitational effects will follow a geodesic. This and all
variants for spinning particles or charged particles or spatially extended particles
or whatever, follow from WEP+SEP together with the special relativistic versions
of Newton’s first and second laws and the appropriate field theories of matter (see
Sect. 8.7). Note that SEP is needed for all test particles, massive or massless, the
physical input being Newton’s laws and the appropriate field theories of matter for
massive particles and Maxwell’s theory, for example, for photons. And as discussed
in Chap. 6, without SEP, GR would be useless. Even the usual interpretation of gµν

as a metric field would just have to be posited, and it usually is, whereas SEP allows
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us to model specific clocks and rulers to show that they will measure the metric
field to this or that level of accuracy, thereby justifying the usual interpretation of
the metric field.

The KVF idea is just that the metric looks the same in some sense as one moves
along a flow curve of the KVF. This is also true in another sense (not the Lie deriva-
tive sense) if one moves along a geodesic and adopts the right coordinates, although
something intrinsic like the spacetime curvature may vary in that case. But flat
spacetime seems to illustrate a problem with our trust in KVFs. Which KVF should
we use? A free fall KVF whose flow curves are geodesics or a Lorentz boost KVF?
Would most people not opt for the former? In the latter case, we will not be able
to arrange for comoving coordinates relative to which the connection coefficients
are zero on the worldline. The metric looking the same thus seems a long way from
saying one is somehow at rest. After all, one might always be able to claim that one
is at rest, despite the fact that one presumably feels accelerations.

The upshot of all the problems discussed here is just that acceleration is not
inertial motion. Are we sure that we are taking accelerating motion seriously? What
good are these accelerating frame pictures? Do we need them?





Chapter 13
Using Tetrad Fields as Accelerating Frames

The aim here is to discuss a nice idea for improving our concept of accelerating
frame, exposed in a paper by Maluf and Ulhoa entitled Electrodynamics in acceler-
ated frames revisited [34]. They suggest expressing the Faraday tensor and electric
and magnetic fields relative to tetrad fields, in order to decide:

• whether the Coulomb field of a stationary charge in an inertial frame can appear
to radiate to an accelerating observer,

• whether the EM fields of an accelerating charge can appear Coulomb, or at least
appear not to be radiating to a coaccelerating observer.

They claim to be able to resolve what they refer to as a paradox: the idea that the
fields of the stationary charge in the inertial frame might look to an accelerating
observer the same as the fields of an accelerating charge would look to an inertially
moving observer.

Is this a paradox? Why should those two things look the same? One reason, dis-
cussed at length in [30] and reviewed in Chap. 11, is that it would save what is
actually an unfounded intuition about EM radiation by charged particles in static
spacetimes. The point was that the metric components for a static homogeneous
gravitational field (SHGF) look, in the usual coordinates for such a spacetime, like
the Minkowski metric components expressed relative to semi-Euclidean (Rindler)
coordinates adapted to a uniformly accelerating worldline. Now it is widely held,
although the assumption is unfounded, that a stationary charge in a static space-
time cannot radiate. If this were true, and if we take stationary to mean not moving
relative to the usual coordinates for the SHGF spacetime, then an application par
excellence of the weak and strong equivalence principles tells us that a uniformly
accelerating charge in a gravity-free Minkowski spacetime cannot radiate in the co-
moving SE coordinate frame.

Note also that anyone who really wants to save the unfounded intuition just men-
tioned is compelled either to question the transfer from the SHGF spacetime to the
gravity-free spacetime, i.e., the relevant equivalence principles, or perhaps to show
that the radiating accelerating charge in the gravity-free spacetime does not appear
to be radiating when we coaccelerate with it. But would the latter really satisfy
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someone who feels intuitively that a stationary charge in a static spacetime cannot
radiate. They would have to admit that it does radiate for a freely falling observer,
whatever happens, if the weak and strong equivalence principles are valid.

In any case, at this point there enter subjective versions of the equivalence prin-
ciple which talk about what can or cannot be distinguished, and as we saw in
Chap. 11, some commentators try to convince themselves that it is enough for some
observer coaccelerating with a uniformly accelerating charged particle in gravity-
free Minkowski spacetime to be physically unable to measure radiation which is in
fact there.

That brings us back to the paradox for Maluf and Ulhoa. But whatever one feels
about the above debate, these authors point out that it may not be the best policy,
when trying to understand what the coaccelerating, or any accelerating observer
would observe, to refer to coordinate frames. They advocate orthonormal frames, or
tetrads. The aim here is to examine the relationship between semi-Euclidean coor-
dinates in Minkowski spacetime and various possible tetrad fields, then look at the
choice made by these authors and ask whether one really does solve the problem of
what an accelerating observer would observe.

In Sect. 13.1, we examine the orthonormal frame associated with the SE coor-
dinate frame adapted to an observer with translational uniform acceleration, and in
Sect. 13.2, an orthonormal frame associated with a field of uniformly accelerating
observers all of whom have the same uniform acceleration. Section 13.3 discusses
the general problem of extending a tetrad defined along a worldline to some neigh-
bourhood of that worldline and comments in particular on the choice made by Maluf
and Ulhoa. Section 13.4 then obtains the components of the Faraday tensor relative
to the tetrad derived from the SE coordinate frame and shows that the magnetic field
is zero for that tetrad.

13.1 Tetrad for Semi-Euclidean Coordinate Frame

Here we consider the TUA observer of Sect. 2.9 and examine the associated SE
coordinate frame in order to obtain a natural tetrad from it. In fact, we shall see that
the coordinate frame is orthogonal, and we only need to normalise one of the vector
fields, viz., the temporal coordinate vector field, in order to obtain a tetrad.

According to (2.230) on p. 78, the transformation from SE coordinates (y0,y1)
to Minkowski coordinates (t,x) is

t =
c
g

(
1+

gy1

c2

)
sinh

gy0

c2 ,

x =
c2

g

(
1+

gy1

c2

)
cosh

gy0

c2 −
c2

g
,

(13.1)

where c is the speed of light and g a constant with units of acceleration.
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13.1.1 Uniformly Accelerating Worldline at y1 = 0

The curves with constant y1 are uniformly accelerating worldlines. For example,
when y1 = 0, we get the worldline

t(y0) =
c
g

sinh
gy0

c2 , x(y0) =
c2

g

(
cosh

gy0

c2 −1
)

, (13.2)

parametrised by y0. We can eliminate y0 to get x as a function of t along the world-
line:

x(t) =
c2

g

[(
1+

g2t2

c2

)1/2

−1

]
. (13.3)

This implies

v(t) :=
dx
dt

=
gt

(1+g2t2/c2)1/2 , (13.4)

from which we can find the proper time τ(t) along the curve, setting it to zero when
t = 0. We have

c2dτ
2 = c2dt2−dx2 = dt2[c2− v(t)2] ,

and, after a short calculation,(
c

dτ

dt

)2

= c2− v(t)2 = c2− g2t2

1+g2t2/c2 ,

implying finally that
dτ

dt
=

1
(1+g2t2/c2)1/2 . (13.5)

Hence,

τ(t) =
∫ t

0

1
(1+g2t2/c2)1/2 dt . (13.6)

Making the substitution

t =
c
g

sinhα ,
dt
dα

=
c
g

coshα ,

we then find that
τ(t) =

c
g

sinh−1 gt
c
, (13.7)

or
t(τ) =

c
g

sinh
gτ

c
. (13.8)

Looking back at the first relation of (13.2), we see that

τ(y0) =
1
c

y0 , (13.9)
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along this worldline, i.e., the SE time coordinate is, up to a factor of c, the proper
time of an observer following this worldline through the origin of the (t,x) coordi-
nates. Furthermore, when

t(τ) =
c
g

sinh
gτ

c
,

the equation (13.3) for the worldline can be parametrised by τ as

x(τ) =
c2

g

(
cosh

gτ

c
−1
)
. (13.10)

This allows us to calculate the four-velocity v(τ) of this worldline:

v(τ) :=
d

dτ

(
t(τ)
x(τ)

)
=

(
cosh(gτ/c)

csinh(gτ/c)

)
. (13.11)

This has pseudolength c.

13.1.2 Uniformly Accelerating Worldline at y1 = κ

We now examine the constant y1 curve obtained for some value y1 > 0, following
exactly the same pattern as in the last section. The path of a point at fixed y1 = κ > 0
is 

t(y0) =
c
g

(
1+

gκ

c2

)
sinh

gy0

c2 ,

x(y0) =
c2

g

(
1+

gκ

c2

)
cosh

gy0

c2 −
c2

g
.

(13.12)

Eliminating the parameter y0, we can parametrise this worldline by the Minkowski
time t as

x(t) =
c2

g

[√(
1+

gκ

c2

)2
+

g2t2

c2 −1

]
. (13.13)

This implies

v(t) :=
dx
dt

=
gt√(

1+
gκ

c2

)2
+

g2t2

c2

, (13.14)

and, after a short calculation,(
c

dτ

dt

)2

= c2− v(t)2 = c2− g2t2(
1+

gκ

c2

)2
+

g2t2

c2

,

implying finally that
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dτ

dt
=

1+gκ/c2√(
1+

gκ

c2

)2
+

g2t2

c2

. (13.15)

Comparing with (13.5), this is the same but with g replaced by another constant,
viz.,

g−→ g
1+gκ/c2 ,

so the solution this time is

t(τ) =
c(1+gκ/c2)

g
sinh

gτ

c(1+gκ/c2)
, (13.16)

replacing g by the new constant in (13.8).
It must be remembered, of course, that this is not the same τ as before. It is now

the proper time for the worldline specified by κ . According to the first relation of
(13.12), along this worldline,

sinh
gy0

c2 =
gt

c(1+gκ/c2)
,

and comparing with (13.16),

sinh
gτ

c(1+gκ/c2)
= sinh

gy0

c2 ,

whence
τ(y0) =

1
c

(
1+

gκ

c2

)
y0 . (13.17)

For the worldline through the spacetime origin, we retrieve (13.9).
The worldline (13.12) with κ 6= 0 can be parametrised by its proper time using

(13.17): 
t(τ) =

c(1+gκ/c2)

g
sinh

gτ

c(1+gκ/c2)
,

x(τ) =
c2(1+gκ/c2)

g
cosh

gτ

c(1+gκ/c2)
− c2

g
.

(13.18)

This allows us to calculate the four-velocity v(τ) of this worldline:

v(τ) :=
d

dτ

(
t(τ)
x(τ)

)
=

 cosh
gτ

c(1+gκ/c2)

csinh
gτ

c(1+gκ/c2)

 . (13.19)

This has pseudolength c. It can also be expressed as a function of the SE coordinates.
Since τ depends only on y0 along the curve, the same goes for the four-velocity.
Since
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gτ

c(1+gκ/c2)
=

gy0

c2 ,

we have

v(y0) =

(
cosh(gy0/c2)

csinh(gy0/c2)

)
. (13.20)

It is a remarkable thing that this is independent of κ , a point already established in
Sect. 2.9, which leads to the phenomenon of HOS sharing discussed on pp. 28 and
60. This is illustrated for the present case in Fig. 2.7. Another notation for writing
the last relation is

v(y0) = cosh
gy0

c2 ∂t + csinh
gy0

c2 ∂x . (13.21)

13.1.3 SE Coordinate Frame

We now return to (13.1) in order to express the SE coordinate frame {∂y0 ,∂y1} in
terms of the Minkowski coordinate frame {∂t ,∂x}. We have

∂

∂y0 =
∂ t

∂y0
∂

∂ t
+

∂x
∂y0

∂

∂x
,

∂

∂y1 =
∂ t

∂y1
∂

∂ t
+

∂x
∂y1

∂

∂x
,

whence

∂y0 =
1
c

(
1+

gy1

c2

)
cosh

gy0

c2 ∂t +

(
1+

gy1

c2

)
sinh

gy0

c2 ∂x (13.22)

and

∂y1 =
1
c

sinh
gy0

c2 ∂t + cosh
gy0

c2 ∂x . (13.23)

These are obviously pseudoorthogonal, since

∂y0 ·∂y1 = c2 1
c

(
1+

gy1

c2

)
cosh

gy0

c2
1
c

sinh
gy0

c2 −
(

1+
gy1

c2

)
sinh

gy0

c2 cosh
gy0

c2

= 0 ,

using
∂t ·∂t = c2 , ∂t ·∂x = 0 , ∂x ·∂x =−1 .

By similar calculations,

∂y0 ·∂y0 = c2 1
c2

(
1+

gy1

c2

)2

cosh2 gy0

c2 −
(

1+
gy1

c2

)2

sinh2 gy0

c2

=

(
1+

gy1

c2

)2

,
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and

∂y1 ·∂y1 = c2 1
c2 sinh2 gy0

c2 − cosh2 gy0

c2 =−1 .

In summary,

∂y0 ·∂y1 = 0 , ∂y0 ·∂y0 =

(
1+

gy1

c2

)2

, ∂y1 ·∂y1 =−1 . (13.24)

We observe that this tetrad is normalised right along the worldline y1 = 0, and
nowhere else. Note that it is the main observer who follows this worldline, i.e.,
the one who would set up these SE coordinates. In a sense, all the other observers
in this rigid observer field, sitting at fixed SE space coordinates for the the main
observer, are stuck with the proper time of the main observer, rather than their own.

Note also that rigidity is defined here, in the usual way, to mean that, in the SE
coordinate reckoning of the main observer, each of the other observers sits at fixed
values of y1. This in turn means that, at any proper time of the main observer, any
of the y1 = κ observers is always the same distance away as gauged in the inertial
frame instantaneously comoving with the main observer.

These are some of the wonderful properties of the SE coordinate system, but as
already mentioned in Sect. 2.9, they require other observers y1 = κ to have different
uniform accelerations to the main observer, as is easily checked by differentiating
v(τ) in (13.19) with respect to τ :

a(τ) :=
dv(τ)

dτ
=

g
c(1+gκ/c2)

 sinh
gτ

c(1+gκ/c2)

ccosh
gτ

c(1+gκ/c2)

 . (13.25)

This is a uniform acceleration, because

a ·a =− g2

(1+gκ/c2)2 , (13.26)

which is constant (but different for each value of κ). So the value of the uniform
acceleration of the observer at y1 = κ is g/(1+ gκ/c2), which is equal to g when
κ = 0, i.e., for the main observer, but smaller for everyone at positive values of κ .

It is easy to obtain a tetrad from {∂y0 ,∂y1} by normalising ∂y0 . A tetrad adapted
to the rigid field of UA observers would be

e0 =
1
c

cosh
gy0

c2 ∂t + sinh
gy0

c2 ∂x ,

e1 =
1
c

sinh
gy0

c2 ∂t + cosh
gy0

c2 ∂x ,

(13.27)

obtained from (13.22) and (13.23). Like ∂y0 , the vector field e0 is tangent everywhere
to all the worldlines of our rigid observer field. There is nothing more to check in
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claiming this, because those worldlines are the constant y1 curves in the spacetime,
i.e., they are coordinate curves, and they have tangent ∂y0 .

The above expression for the tetrad is somewhat hybrid, because we express
e0(t,x) and e1(t,x) in terms of the SE time coordinate y0. It is better if everything
on the right-hand side is given as a function of the inertial coordinates (t,x). We
need the inverse of the coordinate transformation (13.1) back on p. 382, which is
easily found to be 

y0 =
c2

g
tanh−1 ct

x+ c2/g
,

y1 =

[(
x+

c2

g

)2

− c2t2

]1/2

− c2

g
.

(13.28)

Now in (13.27), we have to replace cosh(gy0/c2) and sinh(gy0/c2), so we only need
the first relation of (13.28). This means working out the cosh and sinh of an inverse
tanh. With the obvious notation, we have

T :=
S
C

, C2−S2 = 1 ,

and hence,

C =
1√

1−T 2
, S =

T√
1−T 2

.

Hence,

cosh
gy0

c2 = coshtanh−1 ct
x+ c2/g

=
x+ c2/g√

(x+ c2/g)2− c2t2

and

sinh
gy0

c2 = sinh tanh−1 ct
x+ c2/g

=
ct√

(x+ c2/g)2− c2t2
,

so finally,
e0(t,x) =

1
c

x+ c2/g√
(x+ c2/g)2− c2t2

∂t +
ct√

(x+ c2/g)2− c2t2
∂x ,

e1(t,x) =
1
c

ct√
(x+ c2/g)2− c2t2

∂t +
x+ c2/g√

(x+ c2/g)2− c2t2
∂x .

(13.29)
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13.2 Tetrad for Another Field
of Uniformly Accelerating Observers

We now consider a field of uniformly accelerating observers, filling spacetime,
which looks rigid to some inertial observer. To do this we consider an observer
who, for that inertial observer, passes through the spacetime origin along the world-
line (13.3) on p. 383, viz.,

x(t) =
c2

g

[(
1+

g2t2

c2

)1/2

−1

]
, (13.30)

also given by (13.10) on p. 384, viz.,

x(τ) =
c2

g

(
cosh

gτ

c
−1
)
, (13.31)

when parametrised by its own proper time. The other observer worldlines are then
obtained by translation along the x axis. The one going through x = X at time t = 0
is given by

xX (τ) = X +
c2

g

(
cosh

gτ

c
−1
)
. (13.32)

Note that the parameter τ here will also be the proper time along this worldline,
taken as being zero when t = 0. Since this is also obviously given by

xX (t) = X +
c2

g

[(
1+

g2t2

c2

)1/2

−1

]
, (13.33)

this observer field looks rigid to the inertial observer with coordinates (t,x), in the
sense that, at any given time t, the x coordinate distance between any two such
observers is always the same. But it is not rigid in the usually accepted sense of
Sect. 13.1.

We now specify the tetrad field { f0, f1} as follows. At any (t,x) ∈M, we require
f0(t,x) to be tangent to the unique worldline xX passing through there, and f1(t,x)
to be the parallel transport along a curve of constant t of the vector f1(t,x−X) we
get by the SE construction for the worldline passing through (t,x) = (0,0) ∈M. In
other words, since parallel transport in M does not change vector components, we
can think of this as just taking the tetrad field along the main worldline (through the
origin of M for the given inertial coordinates) and sliding it parallel to the x axis to
all the different X values.

Looking at (13.27), we thus decree
f0(t,x) =

1
c

cosh
gτ

c
∂t + sinh

gτ

c
∂x ,

f1(t,x) =
1
c

sinh
gτ

c
∂t + cosh

gτ

c
∂x ,

(13.34)
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where τ is the proper time along the unique curve xX through (t,x). This is not the
best representation, because we would like our tetrad to be a function of the inertial
coordinates (t,x). But we know from (13.8) on p. 383 that

t(τ) =
c
g

sinh
gτ

c
.

Hence also,

cosh
gτ

c
=

√
1+

g2t2

c2 .

This means that 
f0(t,x) =

1
c

√
1+

g2t2

c2 ∂t +
gt
c

∂x ,

f1(t,x) =
gt
c2 ∂t +

√
1+

g2t2

c2 ∂x .

(13.35)

This should be compared with the first tetrad (13.29), which is a function of x as
well as t.

13.3 Tetrads Adapted to a Given Worldline

Given a timelike worldline, we can always find a tetrad field along it whose zeroth
member is the unit tangent to the worldline (basically, the velocity four-vector, up
to a factor of c). Then there are many ways to choose the other three members of
the tetrad at any point on the worldline. They only need to be tangent to a spacelike
hypersurface cutting the worldline at that point in such a way that the velocity four-
vector is perpendicular to it there. There is also plenty freedom if we wish to extend
the tetrad on the worldline to a tetrad over some neighbourhood of the worldline.

Now Maluf and Ulhoa are considering charges with accelerating worldlines
and observers moving with them, or accelerating observers and inertially moving
charges. They want their observer to use a tetrad field along her worldline to decide
whether the EM fields due to the charge are radiating or not. In fact it is easy to
formulate electromagnetic theory in terms of tetrad components. If {ea}a∈{0,1,2,3} is
a tetrad and Fµν are the components of the Faraday tensor relative to some coordi-
nates, then the tetrad components of this tensor are

Fab := ea
µ eb

ν Fµν . (13.36)

Of course, we can write down Maxwell’s equations for the tetrad components, but
there is no need to. If we can solve them for some set of coordinates (and we can,
for inertial coordinates, when the spacetime is flat), then we can transform using
(13.36) to get this picture of the EM field.

This is indeed what M/U do for the fields due to the point charge, whatever
it is doing, transforming the Liénard–Wiechert solution of Maxwell’s equations.
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On the face of things, it looks a very good idea to express the fields relative to a
tetrad field along the observer worldline, rather than just express them relative to SE
coordinates, since the coordinate frame for SE coordinates is not even normalised.
As we have seen, however, the SE coordinate frame is in fact normalised precisely
along the main worldline of the SE system, presumably a point in its favour.

But there is another point here. In order to assess the fields, however we intend
to do it, we must look at the values of the field components Fab off the worldline.
But it is obvious from (13.36) that this will depend, not only on the way the com-
ponents Fµν of the Faraday tensor vary off the worldline, but also on the choice of
tetrad, since ea

µ are functions of spacetime. Now once again, at first glance, one
might think that it would be better to refer the field to tetrad components, since the
SE coordinate frame is not normalised as soon as we leave the worldline. In some
ways, that does indeed seem to be a better solution than the usual arguments by
Boulware or Rohrlich, who suggest that we should pretend the SE coordinates are
inertial, and judge the SE components of the EM field as though they were inertial
components (see Chap. 11). That is precisely the kind of view deplored in [30]. Here
we definitely seem to have a better idea.

But which tetrad field shall we take when we leave the worldline? We have al-
ready found two such fields, viz., {e0,e1} in (13.29) and { f0, f1} in (13.35), identical
on the main worldline, i.e., the uniformly accelerating worldline through the origin
of the inertial coordinate system. What is more e0 and f0 are both equal to the ob-
server four-velocity along that worldline. One tetrad is adapted to a rigid observer
field in the standard relativistic sense of the word, and the other is adapted to what
would appear to be a rigid observer field to an inertial observer.

As mentioned at the beginning of this section, there is freedom in the choice
of spacelike vectors in the tetrad along the worldline. Of course, it is thoroughly
reasonable to adopt an FW transport of some particular choice at some event on the
observer worldline, say the origin of the inertial coordinate system. Then the tetrad
is at least fully determined along the worldline, and alternative choices of starting
orientation for the spatial triad only lead to a physically irrelevant fixed rotation.

But there is plenty of freedom in extending off the worldline, and that is the
problem here. The tetrad field is not unique, so the results we get by referring to this
tetrad will also not be unique. They will depend on the neighbouring observers we
must choose for our initial observer. The example of the rigid and non-rigid sets of
observers in Minkowski spacetime illustrates this in a simple situation.

In the most general context, i.e., for a general timelike worldline in a curved
spacetime, one could do the following, for example. First obtain a tetrad field along
the worldline by FW transport of some choice at some preselected event, so that the
zero vector is the four-velocity everywhere along the worldline. At each event on the
worldline consider all spacelike geodesics through that event that are orthogonal to
the four-velocity there. There will be some neighbourhood of the chosen event such
that those geodesics intersect nowhere else within the neighbourhood. Furthermore,
there will be some neighbourhood of the worldline such that no two of these space-
like geodesics from different events along the worldline actually intersect within
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that neighbourhood. We could then extend the tetrad by parallel transport along the
spacelike geodesics.

This can be looked at in a slightly different way. We expect there to be some
neighbourhood of the worldline such that, for any event within that neighbourhood,
there is a unique event on the worldline such that there is a unique spacelike geodesic
joining the two events with the property that it is orthogonal to the worldline where
it intersects it. The tetrad just suggested is found at the selected event by parallel
transport along that unique spacelike geodesic from the unique event on the world-
line.

That is one way to extend the tetrad. One can imagine others. If we refer back
to the tetrad {e0,e1} given by (13.27) on p. 387, we started with the uniformly
accelerating worldline through the origin of the inertial coordinates and chose the
obvious vector fields along that worldline. We then in fact extended that tetrad by
parallel transport along those spacelike geodesics through the worldline that cut it
orthogonally to its four-vector at each event. That remains to be proved, but is rather
obvious with some knowledge of the rigid observer field and SE coordinates. The
fact is best seen by examining (13.27). The vector fields vary only with y0, but are
‘constant’ on each hyperplane of simultaneity of the main observer, i.e., they do not
vary with y1. In any case, we understand that we obtained this tetrad by precisely
the very general idea of the last two paragraphs.

Note also, as shown in Fig. 2.5 on p. 79, that the spacelike geodesics in question
do intersect eventually, all at the same spacetime event, viz., y0 = 0, y1 = −c2/g,
which is an SE coordinate singularity, i.e., the g00 component of the SE metric goes
to zero there. This is a long way down the x axis at x =−c2/g, with t = 0.

The other tetrad field { f0, f1}, given by (13.35) on p. 390, is not obtained by the
above general method from the tetrad along the main observer worldline. It is still
obtained by parallel transport along geodesics, but they are not orthogonal to the
worldline. In fact, the geodesics here are t = constant, so it is easy to picture in the
(t,x) diagram. The claim here is best understood by looking at (13.35). The vector
fields vary only with t, but are ‘constant’ on each hyperplane t = constant, i.e., they
do not vary with x. This illustrates just how much freedom there is in extending the
tetrad off the worldline.

Now one might well criticise the choice { f0, f1} because it depends on a choice
of inertial frame, whereas the other extension seems much more closely adapted
to the SE coordinate system, parallel translating along hyperplanes of simultaneity
(HOS) of the main observer. Note in passing that this observer borrows the HOS
of the instantaneously comoving inertial observer at any event on her worldline,
attributing a time y0 = τ (her proper time) to all points on it. On the other hand, this
process in itself has something artificial about it. Why spread time like this over the
HOS? And why take this to be the HOS?

Let us now ask what method is used in [34] to extend the tetrad off the main
uniformly accelerating worldline, and what justification is given for selecting that
extension. Note that their conventions for the metric and positions of indices are
different from those used above, but we can see enough to understand what they are
doing, in particular, which tetrad field they choose. They consider first tetrad fields
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adapted to observers at rest in Minkowski spacetime, so

ea
µ(ct,x,y,z) = δ

a
µ .

They then consider a time-dependent boost in the x direction to get the tetrad field

ea
µ(ct,x,y,z) =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 , (13.37)

where
γ =

1
(1−β 2)1/2 , β = v/c , v = v(t) .

They say that this frame is adapted to observers with four-velocity

uµ = (γ,βγ,0,0) ,

so we already get an idea of which tetrad we have! Basically, the four-velocity field
of these observers is constant over hyperplanes t = constant. The boost is time de-
pendent, so the four-velocity field of the observers varies with t, but not with x.

So let us close the gap between (13.37) and (13.35). Considering the formulas
given by M/U, they say that we have uniform acceleration for each observer in their
observer field when

d
dt

v√
1− v2/c2

= a (constant) .

Assuming v(0) = 0, this implies that

v√
1− v2/c2

= at ,

and it is easy to check that a solution is

v(t) =
at

(1+a2t2/c2)1/2 .

Then
γ(t) =

1√
1− v2/c2

= (1+a2t2/c2)1/2 ,

so
γβ = γv/c = at/c ,

and the tetrad field (13.37) becomes

ea
µ(ct,x) =

(
(1+a2t2/c2)1/2 −at/c

−at/c (1+a2t2/c2)1/2

)
. (13.38)
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This should be compared with (13.35), which specifies our tetrad field { f0, f1}.

13.4 Faraday Tensor Components
Relative to SE Tetrad

The aim here is to express the fields of the uniformly accelerating charge (passing
through the origin of our inertial coordinates) relative to the SE tetrad (13.27) on
p. 387, viz., 

e0 =
1
c

cosh
gy0

c2 ∂t + sinh
gy0

c2 ∂x ,

e1 =
1
c

sinh
gy0

c2 ∂t + cosh
gy0

c2 ∂x .

(13.39)

We do this by transforming the Faraday tensor Fµν expressed relative to SE coordi-
nates, for which the frame field is given by (13.22) and (13.23) on p. 386, viz.,

∂y0 =

(
1+

gy1

c2

)(
1
c

cosh
gy0

c2 ∂t + sinh
gy0

c2 ∂x

)
,

∂y1 =
1
c

sinh
gy0

c2 ∂t + cosh
gy0

c2 ∂x .

(13.40)

Basically, we have

∂y0 =

(
1+

gy1

c2

)
e0 , ∂y1 = e1 , ∂y2 = e2 , ∂y3 = e3 . (13.41)

It is shown in [30, p. 231] that the Faraday tensor components relative to the SE
coordinate frame are

FSEcoord
µν =


0 E1 E2 E3
−E1 0 0 0
−E2 0 0 0
−E3 0 0 0

 , (13.42)

where

E =−

 ∂Aτ/∂ z

∂Aτ/∂x

∂Aτ/∂y

 , (13.43)

with

Aτ :=− eg
4π

g−2 +ρ2 +X2[(
g−2 +ρ2 +X2

)2−4X2g−2
]1/2 (13.44)

and
X2 := x2− t2 , ρ

2 = y2 + z2 . (13.45)
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So we have the well known fact that the SE magnetic field is zero, so often glibly
interpreted as meaning that there is no radiation. The details of the electric field are
given to show that it looks nothing like the Coulomb field to the coaccelerating ob-
server, even under the assumption that such an observer would use this picture of
things. It is a highly complex function. Note, however, that it is static, i.e., indepen-
dent of the SE coordinate time (not immediately obvious).

Let us convert the above version of the Faraday tensor from an expression relative
to the SE coordinate frame to an expression relative to the SE coordinate tetrad. The
following is somewhat laborious, especially as it is clear that we are going to get
zero magnetic field again for the transformation implied by (13.41). We have

FSEtetrad
ab = θ a

µ
θ b

ν FSEcoord
µν ,

where θ a
µ converts covectors expressed in components with respect to SE coordi-

nates to covectors expressed in components with respect to the SE tetrad. For any
vector V , we have

V =V µ
∂yµ , V =V aea .

How is V a related to V µ ? Looking at (13.41), it is clear that

V 1 =V 1 , V 2 =V 2 , V 3 =V 3 ,

and

V 0
∂y0 =V 0

(
1+

gy1

c2

)
e0 ,

so

V 0 =

(
1+

gy1

c2

)
V 0 . (13.46)

We thus have the transformation matrix

θ = (θ a
µ) =


1+gy1/c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 ,

with µ indexing columns and a indexing rows. Then for any vector V , we have

V a = θ
a

µV µ .

What about a covector ω now? We have

ωa = θ a
µ

ωµ ,

and
ωaV a = ωµV µ ,
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a scalar quantity for any vector V . Hence,

θ a
µ

ωµ θ
a

νV ν = ωµV µ ,

which implies
θ a

µ
θ

a
ν = δ

µ

ν . (13.47)

Now if we arrange for each matrix

θ = (θ a
µ) , θ = (θ a

µ) ,

to be such that a labels rows and µ labels columns, then (13.47) says that

θ
T

θ = Id , θ = (θ T)−1 .

Finally, then

θ =


(1+gy1/c2)−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 ,

and we have

FSEtetrad = θFSEcoordθ
T =

1
1+gy1/c2


0 E1 E2 E3
−E1 0 0 0
−E2 0 0 0
−E3 0 0 0

 . (13.48)

We have the obvious fact that the magnetic field is zero everywhere. The electric
field is static and clearly will not look like a Coulomb field relative to SE coordi-
nates, barring miracles, due to the complexity of the given functions (combined with
the fact that there is absolutely no reason why it should look Coulomb).

13.5 A Brief Conclusion

Maluf and Ulhoa fill their space with identically uniformly accelerating observers.
When they express the Faraday tensor components near the worldline in order to
picture what the field is doing (be it the field of a coaccelerating charge or an iner-
tially moving charge), the picture they get will depend to some extent on this choice.

Indeed, they find that the magnetic field due to the uniformly accelerating charge
passing through the origin of the inertial coordinates will not be zero relative to their
tetrad. On the other hand, relative to the SE tetrad, where space is filled with a rigid
field of uniformly accelerating observers, the magnetic field due to this uniformly
accelerating charge will in fact be zero. But which choice of tetrad field should we
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make? Which choice would an accelerating observer make? The fact is that we do
not know.

Even if the suggestion in [34] does turn out to be an improvement on what is
advocated by Boulware and Rohrlich (see Chap. 11), there is still an ambiguity.
In such a situation, would it not be preferable to picture the fields in the inertial
frame? And in the general context of a curved spacetime, would it not be preferable
to picture fields in locally inertial frames, as authorised by the weak and strong
equivalence principles which we must invoke in any case, whatever frame we are
choosing?

It seems odd to see how electromagnetic fields expressed relative to non-inertial
coordinate frames are often interpreted at face value. For example, a uniformly
accelerating observer using semi-Euclidean (Rindler) coordinates adapted to her
worldline is supposed to be duped somehow into thinking that her coordinates are
in fact inertial coordinates, and that the EM field components relative to that coor-
dinate frame can be treated as though they were the electric and magnetic fields we
know and love from our school days.

There is a sense in which a tetrad approach is an improvement. It is true that
the semi-Euclidean (SE) coordinate frame is orthonormal along the accelerating
worldline, but only there. Even in its immediate vicinity, the timelike coordinate
vector field is no longer normalised. That alone seems to be an argument against
trying to interpret the SE components of the Faraday tensor as though the tensor had
been expressed relative to an inertial coordinate frame.

On the other hand, one could just normalise the timelike SE coordinate vector
everywhere, since the SE coordinate frame is in fact orthogonal, and the three space-
like SE coordinate vectors are normalised everywhere. This tetrad field is obtained
from the one along the accelerating worldline by parallel transport along hypersur-
faces of constant SE time coordinate. One could then use this tetrad field to express
the components of the Faraday tensor.

But for some reason, Maluf and Ulhoa do not do that. Their tetrad field is ob-
tained from the one along the accelerating worldline by parallel transport along
hypersurfaces of constant inertial time coordinate, for some arbitrarily chosen iner-
tial coordinate system. We should wonder then why that would be a better choice.
It does make a difference to the final interpretation of the field which we hope to
attribute to the uniformly accelerating observer, because we have

Fab := ea
µ eb

ν Fµν ,

and the tetrad field components ea
µ are functions of spacetime. In fact, relative to

the tetrad derived by normalising the already orthogonal SE coordinate frame, the
magnetic field will be zero for the uniformly accelerating charge.

However, as discussed in Chap. 11, we should not take that to mean that there is
no radiation of EM energy by the charge, no more than we should take the vanishing
of the magnetic field of the uniformly accelerating charge in the SE coordinate frame
adapted to the charge to mean that there is no EM radiation. The present view is that
we should not take it to mean anything at all.
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While it may well make more sense to say that the accelerating observer will
interpret the field by expressing its components relative to a tetrad field than to say
that she would just consider its SE coordinate frame components, we do not really
escape from a much more fundamental problem, viz., we do not actually know what
accelerating observers would do. And it seems there are fundamentally different
choices, if the claim above is correct.

On the other hand, we do know what observers with inertial motion would do be-
cause we know (at least we think so, it is a hypothesis) what their measuring instru-
ments would do under inertial motion, and we know (if the hypothesis is right) that
there will be especially nice coordinates for such a person to use. Then in the more
general case of a curved spacetime, our only recourse is surely to refer to a locally
inertial frame, such as always exists (weak equivalence principle), where we make
the explicit further hypothesis (an add-on to all the other assumptions of general
relativity, often called the strong equivalence principle) that all non-gravitational
physics, e.g., electrodynamics, will look roughly as it would in the absence of grav-
ity, where we have Maxwell’s theory. So perhaps it is a fundamental mistake here to
try to say anything at all about what accelerating observers would do.



Chapter 14
Unruh Effect

Here is another situation where some quantities expressed relative to a semi-
Euclidean coordinate system are interpreted physically as being relevant to uni-
formly accelerating observers. To illustrate this, we may begin with a quote from an
epic review of everything that has been done in this area over the past 40 years [11]:

[The Unruh effect] has played a crucial role in our understanding that the particle content
of a field theory is observer dependent.

This is no longer classical electrodynamics. Here we are talking about quantum
field theory, where the concept of particle is subject to a certain ontological fuzzi-
ness, and the field is no longer an electromagnetic field, because the Unruh effect
is usually introduced by discussing the Klein–Gordon scalar field. Any reference to
field equations here can be taken to mean the Klein–Gordon (KG) equation.

14.1 Observer with Translational Uniform Acceleration

If we want to set up a quantum field theory, the key question is: what constitutes a
positive frequency solution to the field equations? Once we have that, we can try to
make the usual expansion of the field in terms of creation and annihilation operators.
But the answer to this question depends on what time coordinate we use. Now in
Minkowski spacetime, we normally choose an inertial time coordinate for the QFT
construction. But it turns out that we can find solutions to the field equations that are
positive frequency with respect to the SE time coordinate for an eternally uniformly
accelerating observer. The QFT construction then delivers a different vacuum and
different particles.

In inertial coordinates in Minkowski spacetime, the natural positive frequency
solutions to the field equations lead to what we normally call particles. Let us call
them Minkowski particles for the present purposes. In SE coordinates for an eter-
nally uniformly accelerating observer, associated as we have seen with a Lorentz
boost Killing vector field, the natural solutions to the field equations lead to differ-
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ent particles. Let us call these Rindler particles here. How are we to interpret this
new Rindler vacuum and these new particles?

The first thing we note is that the usual QFT vacuum, the Minkowski vacuum,
is full of Rindler particles. Of course, this is not really so surprising since we have
always known that the QFT vacuum is not nothing. But we also note that formally,
for the right formal choice of ‘Hamiltonian’, the density operator for the Rindler
particles is precisely the density operator for a system of particles in equilibrium at
a certain nonzero temperature. This is the Unruh temperature. It is linearly propor-
tional to the absolute acceleration of the eternally uniformly accelerating observer
who sets up this alternative view of the quantum field.

But how do we know that the formal ‘Hamiltonian’, constructed by the usual
Lagrangian field theoretical techniques but in the framework of a semi-Euclidean
coordinate system, is what an accelerating observer would call energy? Are we say-
ing that this is what such a person would naturally measure, or is it just a good
definition? And if it is a good definition, what is it good for? Note that the natural-
ness of the ‘temperature’ attributed to the thermal bath of Rindler particles depends
on the naturalness of this definition of the Hamiltonian.

Certain features of the new Hamiltonian are not so natural. It comes from a classi-
cal field ‘energy’ for the eternally uniformly accelerating observer, and this classical
field energy is defined to be

E :=
∫

Σ

Kµ Tµν dΣ
ν , (14.1)

where Kµ is the appropriate Lorentz boost Killing vector field, Tµν is the formal
energy–momentum tensor for the KG scalar quantum field, and Σ can be any space-
like hypersurface cutting all timelike curves in the spacetime, since we know that
Kµ Tµν is covariantly conserved, in the sense that its covariant divergence is zero
(see Sect. 11.6). A simple choice for Σ is the hyperplane of zero SE time for the
chosen observer.

This quantity E is supposed to be the energy of the field as gauged by an observer
following a flow line of the KVF. Note that K can be assumed normalised along the
observer worldline. However, the expression (14.1) for E integrates Kµ Tµν over
places where Kµ is not normalised, whence we cannot claim that this quantity is
the density of energy–momentum (a four-vector with components equal to the en-
ergy density and the rates of flow of energy per unit area in three space directions)
that would be measured by the observer following the flow line of the KVF at that
particular point.

Worse, all observers following flow curves of the Lorentz boost KVF are accel-
erating, and we shall soon see that they themselves will not measure the same things
with their detectors as instantaneously comoving inertial observers, according to the
results of the discussion about detectors below. So this really does look like a case
of making the best definition of energy we can, constrained by the requirement that
the thing we integrate must be conserved.

Anyway, the usual QFT vacuum is thus described as a thermal bath of Rindler
particles at the Unruh temperature. It is usual to joke at this point that, if we acceler-
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ate our lunch at high enough acceleration, it will cook, remembering of course not
to try to keep up with it! But can we demonstrate that an SE observer will interact
with those Rindler particles, just by the fact that she is accelerating? Can we show
that such an observer will end up in ‘thermal equilibrium’ with them? Surprisingly,
there are indeed arguments to support such claims.

Things become a lot clearer when we stop talking about observers and start talk-
ing about detectors. Consider the Unruh–DeWitt (UD) detector, which is a point-
like detector with a linear interaction with the quantum field and two energy levels
(ground and excited). Clearly this was not chosen on the grounds of physical re-
alism, but more sophisticated models have been investigated, and we shall assume
that the following discussion is also borne out in more realistic cases.

We can consider this detector in four different situations:

1. Stationary in an inertial frame in the Minkowski vacuum, it does not excite.
2. Accelerating uniformly in an inertial frame in the Minkowski vacuum, it does

excite. This case is also described by saying that the detector is stationary, i.e.,
sitting at fixed SE space coordinates, in the Rindler thermal bath. So we can
understand its excitation through absorption of the ontologically fuzzy Rindler
particles.

3. Stationary in an inertial frame in a Minkowski thermal bath of the usual (but
nevertheless ontologically fuzzy) Minkowski particles at the Unruh temperature
corresponding to some eternal uniform acceleration, the detector will excite, but
not at the same rate as in case 2.

4. Accelerating uniformly in an inertial frame in the Rindler vacuum, a state of
the field in which there are no Rindler particles but which is full of Minkowski
particles, the detector will not excite, provided that it has the right absolute ac-
celeration as determined by specifying the motion of the observer who set up
this particular Rindler vacuum. (There are different Rindler vacuums, depending
on the worldline of the observer who sets them up.) This case is also described
by saying that the detector is stationary in the Rindler vacuum, i.e., sitting at
fixed SE space coordinates for the observer who set up this Rindler vacuum con-
struction. The striking thing about this case is that the detector does not ‘see’ the
Minkowski particles in the field state, provided it has the right motion.

A large part of the discussion of the Unruh effect concerns interpretation of the eter-
nally uniformly accelerating cases in terms of Rindler particles, or their absence,
using the alternative expansion of the quantum field in terms of positive and nega-
tive frequency solutions to the KG equation. Note, however, that these expansions
are not necessary in order to calculate the excitation of the UD detector for arbitrary
motion through the Minkowski vacuum. This can always be done using the standard
expansion of the quantum field in terms of creation and annihilation operators asso-
ciated with negative and positive frequency operators for an inertial time coordinate,
and in this sense, these results are just standard results about the QFT vacuum.

Cases 1 and 3 above suggest that this detector does function in some sense as a
Minkowski particle detector, while cases 2 and 4 suggest that it functions in some
sense as a Rindler particle detector, provided that it is doing the right thing in each
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case, i.e., provided that it has the right motion. Of course, such claims are hampered
as always by the ontological fuzziness of the particle notion in quantum field theory.

What about temperature? We can consider not only excitation but also deexcita-
tion of the detector, and we find that the associated rates satisfy a detailed balance
relation. If we imagine a ‘gas’ of these pointlike detectors held at some fixed SE
space coordinate, i.e., uniformly accelerating, in the Minkowski vacuum (case 2),
and if we consider their excitation and deexcitation rates, we find that their energies
will distribute over the two available energies (ground and excited) in precisely the
way we would expect for a gas at the Unruh temperature. Likewise for a similar de-
tector ‘gas’ held stationary in an inertial frame in a Minkowski particle thermal bath
at the corresponding temperature, despite the fact that the excitation rates differ in
the two cases. So there is some value in this temperature interpretation and it does
suggest that one’s lunch might indeed cook if accelerated sufficiently, provided that
one’s lunch does behave like a gas of UD detectors. A proviso nevertheless.

To end, let us just compare the UD and Mould detectors (see Sect. 11.10):

• The Mould detector detects nothing when stationary in a Coulomb field, just as
the UD detector detects nothing when stationary in the Minkowski (usual QFT)
vacuum.

• The Mould detector detects radiation when accelerated through the Coulomb
field, just as the UD detector detects something when accelerated through the
Minkowski vacuum.

• The Mould detector detects nothing when accelerated with the charge source, just
as the UD detector detects nothing when ‘stationary’, i.e., uniformly accelerating,
in the appropriate Rindler vacuum.

• The Mould detector detects something when the charge is accelerated and the
detector is moving inertially, just as the UD detector will detect something when
moving inertially in a Minkowski thermal bath.

The parallel continues slightly:

• The excitation rate of the Mould detector when accelerated through a Coulomb
field is not the same as when it moves inertially through the field of an acceler-
ating charge (and in any case, the field of an accelerating charge does not look
exactly like a Coulomb field for any choice of coordinates adapted to the motion
of the accelerating charge).

• The excitation rate of the Unruh–DeWitt detector when uniformly accelerated
through the Minkowski vacuum with some absolute acceleration a, construed as
being stationary in a Rindler thermal bath, is not the same as its excitation rate
when stationary in a Minkowski thermal bath at a temperature equal to the Unruh
temperature corresponding to the acceleration a.

Those who study the Unruh effect have referred to the whole subject of the discus-
sion in Chap. 11 about uniformly accelerating charges and the equivalence principle
as being merely a semantic issue [24]! But what is physics if not the semantics of
our mathematical models, i.e., an attempt to extract meaning from such models in
the context of physical measurement in the real world?
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In any case, the same could be said about accounts of the Unruh effect. And a
problem remains with these accounts: they claim to give the perspective of an accel-
erating observer, while it is quite clear that this approach only works (only exists)
when the accelerating worldline is a flow curve of a Killing vector field. Without
this, there is apparently no elegant alternative construction of the quantum field the-
ory. So what would be the perspective of an arbitrarily accelerating observer?

As already suggested, not every timelike worldline in Minkowski spacetime is
the flow curve of some KVF. This can be understood by noting that, in flat space-
time, KVFs are related to transformations in the Poincaré group, with 3 space trans-
lations, 1 time translation, 3 Lorentz boosts, and 3 space rotations, making the to-
tal of 10, whence there can be no others, apart from combinations, e.g., a regular
spiral in spacetime, corresponding to a particle in circular motion with constant
angular speed. Basically, the Lie algebra of KVFs under Lie vector product is ten-
dimensional, and we can account for all the 10 dimensions without needing all kinds
of curve.

More rigorously, we can use the theorem that any affinely parametrised geodesic
cuts a KVF at the same angle everywhere [29]. If λ is the affine parameter and
T := ∂/∂λ is the tangent vector, then

d
dλ

(T ·K) = T ·∇(T ·K) = T µ(Tν ;µ Kν +T ν Kν ;µ) ,

and
T µ Tν ;µ = 0

is just the geodesic equation, while

T µ T ν Kν ;µ =
1
2

T µ T ν(Kν ;µ +Kµ;ν) = 0 ,

by the equation that says that K is a KVF.
With this in mind, it is easy to construct a timelike worldline that is not a flow

curve of a KVF. The geodesics in Minkowski spacetime are coordinate straight lines,
like the time axis, for example. So take a curve that follows the time axis, veers off
it slightly, comes back and crosses it, then rejoins it. If this were the flow curve of a
KVF, it would have to make the same angle with the time axis everywhere, which it
does not.

14.2 Observer with Circular Motion

Another case considered by Unruh theorists is circular motion at constant angular
speed [11]. They analyse this using corotating cyclindrical coordinates, rather than
the rigid semi-Euclidean coordinate systems discussed in Sect. 2.11. Let us look
briefly at the relevant mathematics.
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14.2.1 Cylindrical Coordinates and Killing Vector Field

In cylindrical coordinates (t,r,θ ,z), the observer worldline is specified by r and z
being constants, viz., R and 0, respectively, while θ = νt. We shall now show that
this worldline is the flow curve of a Killing vector field. We need to check a few
things here:

• Find the metric components in cylindrical coordinates.
• Find the connection coefficients in cylindrical coordinates.
• Show that K := ∂t +ν∂θ is a KVF.
• Show that K is tangent to the spiralling worldline.

14.2.2 Metric in Cylindrical Coordinates

Naturally, we have 
t = t ,

x = r cosθ ,

y = r sinθ ,

z = z .

The quick route to the metric is to note that the metric interval is

ds2 = dt2−dr2− r2dθ
2−dz2 , (14.2)

whence

gαβ =


1 0 0 0
0 −1 0 0
0 0 −r2 0
0 0 0 −1

 . (14.3)

14.2.3 Connection in Cylindrical Coordinates

We use the formula

Γ
α

βγ
=

1
2

gαδ (gδβ ,γ +gγδ ,β −gβγ,δ ) . (14.4)

Only derivatives with respect to r could be nonzero, and then only g22 is actually a
function of r. In short, only g22,1 =−2r is actually nonzero. We find

Γ
2

21 =
1
2

g2δ (gδ2,1) =
1
2

g22g22,1 ,
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noting that

gαβ =


1 0 0 0
0 −1 0 0
0 0 −1/r2 0
0 0 0 −1

 , (14.5)

whence
Γ

2
21 = Γ

2
12 =

1
r
.

The only other nonzero component is

Γ
1

22 =
1
2

g11(g12,2 +g21,2−g22,1) =−
1
2
(−2r) = r .

So finally, the only nonzero connection coefficients are

Γ
2

21 =
1
r
= Γ

2
12 , Γ

1
22 = r . (14.6)

14.2.4 Killing Vector Field

We now show that
K := ∂t +ν∂θ (14.7)

is a Killing vector field. In component form,

K0 = 1 , K1 = 0 , K2 = ν , K3 = 0 , (14.8)

and
K0 = 1 , K1 = 0 , K2 =−r2

ν , K3 = 0 . (14.9)

The Killing equation is
Kα;β +Kβ ;α = 0 , (14.10)

or
Kα,β +Kβ ,α = 2Γ

γ

αβ
Kγ . (14.11)

In this case,

2Γ
γ

αβ
Kγ = 2

(
Γ

0
αβ

K0 +Γ
1

αβ
K1 +Γ

2
αβ

K2 +Γ
3

αβ
K3
)

= 2
(
Γ

0
αβ
−Γ

2
αβ

r2
ν
)

= −2Γ
2

αβ
r2

ν ,

noting in the last step that Γ 0
αβ

= 0 for all α,β . From the connection coefficients in
(14.6), we see that we must have (α,β ) = (1,2) or (2,1) to get anything from this
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term. But this is also true on the other side of the Killing equation (14.11), because
only K2 has a nonzero coordinate derivative and that has to be a derivative with
respect to r. Then we just note that

K2,1 +K1,2 =−2rν

and
−2Γ

2
12r2

ν =−2rν .

We conclude that the Killing equation is satisfied.
Let us just check that our spiralling worldline is a flow curve of K, i.e., that K

is tangent to that worldline. Let the spiral be λ . Then for any function f : M→ R,
possibly only defined on a small neighbourhood of part of λ , the tangent vector T
to λ has the effect

T f =
∂ f
∂τ

∣∣∣∣
λ

(derivative along λ )

=
d

dτ
f
(
γ(τ)

)
=

d
dτ

f
(
γτ,Rcos(νγτ),Rsin(νγτ),0

)
(in Cartesian coordinates)

=
d

dτ
f (γτ,R,νγτ,0) (in cylindrical coordinates)

= γ∂τ f +νγ∂θ f

= γK .

So γK is the tangent vector when the worldline is parametrised by proper time.
This vector has unit length all along the worldline, of course. In fact, K was not
normalised:

K2 = gαβ Kα Kβ = 1− r2
ν

2 , (14.12)

and along the worldline r = R, so

K2(on worldline) = 1−R2
ν

2 = γ
−2 . (14.13)

This bears out the general fact that a Killing vector field always has constant length
along any of its flow curves, proven by observing that

Kµ
∇µ(K2) = 2Kµ Kν

∇µ Kν = Kµ Kν(∇µ Kν +∇ν Kµ) = 0 ,

and hence can be normalised along any preselected flow curve (although not gener-
ally everywhere in spacetime).

Note also from (14.12) that the KVF is timelike within the light cylinder r < 1/ν ,
and spacelike without. This will be important in a moment.
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14.2.5 Rotating Cylindrical Coordinates

The observer on the spiral at R and with angular speed ν does not just move up the
time axis in the cylindrical coordinates of the last section. We thus change to what
might be called rotating cylindrical coordinates (t,r,θ ′,z), where

θ
′ := θ −νt . (14.14)

The observer worldline is now

x(τ) =
(
t(τ) = γτ,R,0,0

)
. (14.15)

The observer is moving up a worldline ‘parallel’ to the time axis, i.e., with fixed
space coordinates, but with R 6= 0. Contrast with the rigid SE coordinate system we
attached to an observer with this kind of motion in Sect. 2.11.

We now carry out the same investigation as above:

• Find the metric components in rotating cylindrical coordinates.
• Find the connection coefficients in rotating cylindrical coordinates.
• Rewrite the Killing vector field K := ∂t +ν∂θ in the new coordinates and check

the Killing equation, just to make sure that there have been no errors.

14.2.6 Metric in Rotating Cylindrical Coordinates

A short cut to the metric is to write heuristically

dθ = dθ
′+νdt ,

then substitute this into the expression for the metric interval:

ds2 = dt2−dr2− r2(dθ
′+νdt)2−dz2

= dt2−dr2− r2dθ
′2− r2

ν
2dt2−2r2

νdθ
′dt−dz2 ,

so
ds2 = (1− r2

ν
2)dt2−dr2− r2dθ

′2−2r2
νdθ

′dt−dz2 , (14.16)

and

grot
αβ

=


1/γ(r)2 0 −r2ν 0

0 −1 0 0
−r2ν 0 −r2 0

0 0 0 −1

 , 1/γ(r)2 = 1− r2
ν

2 . (14.17)

The metric is in stationary, but not static form.
The raised form is
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gαβ

rot =


1 0 −ν 0
0 −1 0 0
−ν 0 −1/r2γ(r)2 0
0 0 0 −1

 . (14.18)

14.2.7 Connection in Rotating Cylindrical Coordinates

We use the formula

rot
Γ

α

βγ
=

1
2

gαδ
rot (g

rot
δβ ,γ +grot

γδ ,β −grot
βγ,δ ) . (14.19)

In the calculations, we shall drop the suffix indicating that this is relative to ro-
tating cylindrical coordinates. As before, only derivatives with respect to r, which
is coordinate 1, actually give something here. This gives four nonzero coordinate
derivatives of grot

αβ
, viz.,

grot
00,1 =−2rν

2 , grot
02,1 =−2rν , grot

20,1 =−2rν , grot
22,1 =−2r .

Now, regarding the prefactor gαδ ,
α = 0 =⇒ δ = 0 or 2 ,

α = 1 =⇒ δ = 1 ,

α = 2 =⇒ δ = 0 or 2 ,

α = 3 =⇒ δ = 3 .

Consider first

Γ
0

βγ
=

1
2

g00(g0β ,γ +gγ0,β −gβγ,0)+
1
2

g02(g2β ,γ +gγ2,β −gβγ,2) .

We know that gβγ,0 and gβγ,2 are zero for any β ,γ , and we obtain something nonzero
from the rest in the cases (β ,γ) = (0,1), (1,0), (1,2), and (2,1). However, the
calculation leads to

rot
Γ

0
01 =

rot
Γ

0
10 = 0 = rot

Γ
0

12 =
rot

Γ
0

21 . (14.20)

Now consider
Γ

1
βγ

=
1
2

g11(g1β ,γ +gγ1,β −gβγ,1) =
1
2

gβγ,1 .

We thus obtain

rot
Γ

1
00 =−rν

2 , rot
Γ

1
02 =−rν = rot

Γ
1

20 ,
rot

Γ
1

22 =−r . (14.21)
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Next we have

Γ
2

βγ
=

1
2

g20(g0β ,γ +gγ0,β −gβγ,0)+
1
2

g22(g2β ,γ +gγ2,β −gβγ,2) ,

where gβγ,0 and gβγ,2 are zero, so

Γ
2

βγ
=−ν

2
(g0β ,γ +gγ0,β )+

1
2

(
ν

2− 1
r2

)
(g2β ,γ +gγ2,β ) .

This is only nonzero for (β ,γ) = (0,1), (1,0), (1,2), or (2,1). We soon obtain

rot
Γ

2
01 =

ν

r
= rot

Γ
2

10 ,
rot

Γ
2

12 =
1
r
= rot

Γ
2

21 . (14.22)

Finally,

Γ
3

βγ
=

1
2

g33(g3β ,γ +gγ3,β −gβγ,3) = 0 ,

whence
rot

Γ
3

βγ
= 0 , ∀ β ,γ . (14.23)

14.2.8 Killing Vector Field Revisited

Let us reexpress the KVF K = ∂t + ν∂θ relative to the rotating cylindrical coordi-
nates and check Killing’s equations as a way to ensure that there are no errors in the
above calculations. The components in cylindrical coordinates are

K0 = 1 , K1 = 0 , K2 = ν , K3 = 0 , (14.24)

and in rotating cylindrical coordinates they are given by

Kµ ′ =
∂xµ ′

∂xν
Kν , (14.25)

where (
∂xµ ′

∂xν

)
=


∂x0′/∂x0 ∂x0′/∂x1 ∂x0′/∂x2 ∂x0′/∂x3

∂x1′/∂x0 ∂x1′/∂x1 ∂x1′/∂x2 ∂x1′/∂x3

∂x2′/∂x0 ∂x2′/∂x1 ∂x2′/∂x2 ∂x2′/∂x3

∂x3′/∂x0 ∂x3′/∂x1 ∂x3′/∂x2 ∂x3′/∂x3

 ,

whence



410 14 Unruh Effect

(
∂xµ ′

∂xν

)
=


1 0 0 0
0 1 0 0
−ν 0 1 0
0 0 0 1

 . (14.26)

We now observe that
K0′

K1′

K2′

K3′

=


1 0 0 0
0 1 0 0
−ν 0 1 0
0 0 0 1




1
0
ν

0

=


1
0
0
0

 ,

whence
K = ∂t , (14.27)

in the rotating cylindrical coordinate system. This is obviously tangent to the world-
line

x(τ) =
(
t(τ) = γ(R)τ,R,0,0

)
.

Equation (14.27) gives the contravariant vector field, with components

K0 = 1 , K1 = 0 , K2 = 0 , K3 = 0 , (14.28)

dropping the primes.
The covariant vector has components found by multiplying by the matrix of grot

αβ

in (14.17) on p. 407, which gives

K0 = 1−ν
2r2 , K1 = 0 , K2 =−νr2 , K3 = 0 . (14.29)

Let us check that this does satisfy the Killing equation

Kα,β +Kβ ,α = 2Γ
γ

αβ
Kγ .

This requires that
Kα,β +Kβ ,α = 2Γ

0
αβ

K0 +2Γ
2

αβ
K2 ,

which is equivalent to

Kα,β +Kβ ,α =−2Γ
2

αβ
r2

ν , ∀ α,β ,

since we know that Γ 0
αβ

= 0 for all α,β , by (14.20). Now referring to (14.22), we
note that we must have (α,β ) = (0,1), (1,0), (1,2), or (2,1) to get something on
the right-hand side, but this is also true on the left-hand side, since the covariant
components of K are only functions of r, and then only the 0 and 2 components
of K are actually functions of r. It is a simple matter to check that the equation is
satisfied for these cases.
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14.2.9 Detectors

It turns out that, in Minkowski spacetime, a two-level detector interacting linearly
with a KG quantum field, i.e., the Unruh–DeWitt detector, will excite with nonzero
probability when moving in a circular orbit with constant angular speed in the usual
Minkowski vacuum of that field. Not surprisingly, this is true whatever the angular
speed, even changing, but discussions focus on the case of constant angular speed,
and not only because it is of course simpler. In fact it highlights a problem with the
kind of discussion Unruh theorists engage in. The point is that, when the angular
speed is constant, the worldline of the detector is a flow curve of a Killing vector
field, as we have just seen, but when it varies, it is not. So what particle interpretation
could we give in the latter case?

However, there is an interesting twist in the case of constant angular speed Ω .
If we restrict the region of the spacetime available to the quantum field to some
cylindrical region of radius R about the axis of rotation, where ΩR < c, so that the
region occupied by the field lies entirely within the light cylinder, but where the
radius r of the worldline satisfies r < R, it turns out that the detector does not excite.

This is not the place to go into the details of the Unruh–DeWitt detector, although
it is surprisingly straightforward. Many accounts can be found by looking at [11] and
references therein. The QFT construction itself is also straightforward. We solve
the KG equations with some boundary conditions on the cylinder of radius R, e.g.,
Dirichlet boundary conditions, which stipulate that the field is zero on and beyond
the cylinder. When we do the expansion of the quantum field in terms of annihilation
and creation operators, the resulting operator-valued distribution has support within
the cylinder of radius R.

Incidentally, this shows how very different a QFT vacuum is from what we used
to call a vacuum. The latter was some region of spacetime where there was nothing.
The former is a state of a field in which there is not nothing in general, although
there may be nothing in some regions, e.g., outside the cylinder of radius R in the
case just described.

There is a strong sense in which the physical interest of the Unruh theory ends
here, with these albeit interesting insights into the nature of the quantum vacuum.
Although it may be amusing to try to establish a picture or perspective for someone
moving with the detector, it is almost never possible using the Killing vector field
idea, and it seems hardly necessary anyway. Surely what matters is just the interac-
tion and resulting behaviour of our detectors, something we can always predict, or
at least estimate, for any detector motion? But let us nevertheless review the twist in
the story that is supposed to be exemplified by uniform circular motion.

Returning to the unrestricted Minkowski spacetime, we were not surprised to
find the detector exciting, even if the field is in its vacuum state. This is because
the detector itself is not in an inertial state, but accelerating, which requires some
input of energy. So that seems comprehensible enough. But now we wonder how
this could be understood by someone moving with the detector, and using rotating
cylindrical coordinates, for example. The point about these coordinates is that our
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observer is stationary relative to such coordinates, i.e., there is no acceleration for
such a person, at least in the naive coordinate sense.

We are trying now to make this look paradoxical. Here is someone who is not ac-
celerating (in that naive, coordinate-based sense). If the field state were the vacuum
for this person, then that is supposed to seem odd, because of the non-accelerating
state of the detector in this ‘perspective’. So for this ‘perspective’ to make sense, we
would prefer to say that the usual Minkowski vacuum is not the vacuum for such an
observer, but a state of the field containing some kind of particles for this observer.
Then it does not matter if the detector is not accelerating in this perspective, be-
cause even an ‘inertially moving’ detector should be able to detect particles if there
are any.

However, this is actually a very silly idea. In fact, all our theories of physics are
generally covariant in the sense that they can of course be formulated relative to any
coordinate system, precisely because a choice of coordinates by an observer should
be irrelevant to what happens physically. Not moving relative to some coordinates
is a meaningless fact according to the basic principles of general relativity, which
also underpin what happens in flat spacetimes. Coordinates are just coordinates.
(The idea is pushed to an extreme in the general theory of relativity, because in this
theory there is only a generally covariant formulation.)

The presence of a Killing vector field slightly improves the situation for people
who think it worth giving this kind of particle interpretation. The observer moving
on the circular orbit with constant angular speed, whose worldline is therefore a
regular spiral in flat spacetime, is following the flow curve of a KVF, so there is
a sense in which the metric always ‘looks the same’ to this person, since the Lie
derivative of the metric is zero along the worldline. This is supposed to give a kind
of geometrical version of being ‘at rest’.

On the other hand, this person is accelerating. We have the same situation with
the eternally uniformly accelerating observer in flat spacetime, who is also following
the flow curve of a KVF. This person can likewise claim to be ‘at rest’ in the above
geometrical sense. It is certainly interesting in a mathematical sense that we can
achieve alternative perspectives, e.g., for the case of eternally uniformly accelerating
detectors and observers, with the associated notion of temperature. But it is not
necessary or useful and could not possibly have any deep physical meaning. If it
did, we would be able to do it for any motion of detector and observer, even motions
that are not flow curves of Killing vector fields.

We have already encountered a similar very silly idea in classical electromag-
netism with respect to the eternally uniformly accelerating observer (see Chap. 11).
If this person carries an electron, it will radiate electromagnetic energy, at least ac-
cording to the usual notion of EM radiation for any inertially moving detector (or
observer). But what about a detector (or observer) moving with the electron?

For the detector, we need to know something about its design and interaction with
the EM field, and there is every chance that what it does when it accelerates will
depend on both those features, and not be the same for two detectors with different
designs and interactions, even if they always register the same results when moving
inertially in the same EM fields. The reason is that, although our field theories are
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all Lorentz symmetric, there is no corresponding acceleration symmetry as far as
we know.

For the observer, then, there is a problem: how to define radiation when one
is accelerating? Now for various reasons, people who have discussed this problem
over the past 100 years (yes, that long!) have wanted the accelerating observer not to
see any radiation, or not to detect any, or to believe that there isn’t any. A common
idea has been to adopt a semi-Euclidean coordinate system in which this observer
remains at the space origin and then point out that the generalisation of the Poynting
vector for these particular EM fields is zero. But why use those coordinates? And
what is the physical meaning of this generalisation of the Poynting vector?

Indeed, why should we not want the observer moving with the charge to believe
that there is EM radiation? Just to keep our feet on the ground, physically, the only
important thing here is to be able to predict what this or that design of detector
should do when moving with the electron in this motion. But psychologically, per-
haps what we are trying to do is to extend the principle of relativity (which refers
to relativity of velocities) to a relativity of accelerations: however I am moving, if I
carry an electron with me, I can never deduce anything about my motion by looking
at its fields.

This is true if we restrict the motions to inertial motions, due to the Lorentz
symmetry of Maxwell’s theory, but it is not actually true if we allow accelerating
motions, because even though the generalisation of the Poynting vector to the co-
moving semi-Euclidean coordinate system is zero for eternal uniform acceleration,
the EM fields of the electron nevertheless look quite different to Coulomb fields
when expressed relative to the comoving semi-Euclidean coordinate system. The
observer could tell whether she was accelerating by looking at the EM fields of the
electron.

And why should we want to extend the principle of relativity to accelerations? It
looks as though we have the same kind of mistaken intention with the Unruh theory
in the case of eternal uniform acceleration. There is in fact a perfect parallel with
the classical example. Let us sketch that.

What the observer wants to say is that, when she is accelerating, the Minkowski
vacuum of the quantum field is not the vacuum. She likes to put it that way because a
detector she carries is registering something and she does not think it should register
something when they are both ‘sitting still’ in a vacuum. So she prefers to say that
this state of the field contains particles as far as she is concerned. Then she does not
need to be surprised to find that her detector registers something.

Actually, we do not need to be surprised anyway. Acceleration is acceleration. It
does not go away just because we can find coordinates relative to which we do not
move. It is better to understand the situation like this, because for most accelerating
motions there is absolutely no particle picture anyway, so there could be no deep
physical significance to these notions.

What is the classical parallel? Some authors (e.g., Rohrlich, Boulware) claim that
an observer accelerating through the Coulomb fields of an inertially moving electron
will think it is radiating. Some people (Mould) have even invented detectors to prove
this! But what coordinate or other frame should the accelerating observer use to see



414 14 Unruh Effect

the Coulomb fields as radiating? Each choice will give a different picture, and not
one of those pictures can make the fields look in the details exactly like the fields
due to an electron with the same acceleration as this observer but when viewed from
an inertial frame. There is no acceleration symmetry in Maxwell’s theory.

Of course, one can make definitions for accelerating observers. But why bother?
What matters is just what this or that detector will do, and we can predict that.

Now let us return to the tricky (but physically irrelevant) issue of the observers
in circular orbit at constant angular speed in flat spacetime. We said before that
we were trying to make the exciting detector look paradoxical to someone moving
with it, because this person considers herself stationary (and she is, in the rotating
cylindrical coordinate system). If the field state (the usual Minkowski vacuum) were
the vacuum for this person, then that is supposed to seem odd, because of the non-
accelerating state of the detector in this ‘perspective’. So for this ‘perspective’ to
make sense, we would prefer to say that the usual Minkowski vacuum is not the
vacuum for such an observer, but a state of the field containing some kind of particles
for this observer. Then it does not matter if the detector is not accelerating in this
perspective, because even an ‘inertially moving’ detector should be able to detect
particles if there are any.

But the trouble is that, if we think we can apply the ‘axioms’ for building the
QFT in the rotating cylindrical coordinate perspective, the usual Minkowski vacuum
turns out to be the vacuum for that new construction too. So this idea of changing
the definition of ‘particle’ for someone stationary relative to the rotating cylindrical
coordinate perspective would not appear to save us here. And, as the story goes, we
know why that is: it is because the Killing vector field associated with this world-
line goes spacelike beyond some distance from the centre of rotation [see (14.12)
on p. 406]. A proper QFT construction requires a global timelike Killing vector
field. So one of the ‘axioms’ authorizing this alternative construction has not been
fulfilled.

We can ‘prove’ that this is the correct interpretation by looking at the truncated
quantum field that goes to zero outside a cylinder that contains the worldline but lies
within the light cylinder. As mentioned above, the detector on the regular spiralling
worldline does not excite in the usual Minkowski vacuum of such a field configu-
ration, even though it is accelerating. In addition, the vacuum constructed using the
‘axioms’ for building the QFT in the rotating cylindrical coordinate perspective is
exactly the same as the usual Minkowski vacuum.

Apart from the fact that we may consider this to ‘solve’ a non-problem for the
reasons sketched above (why should we care if an observer stationary in some co-
ordinate system should see a detector excite, because being stationary in some co-
ordinate system is physically irrelevant?), should we not now be concerned that a
detector accelerating through a QFT vacuum does not register? After all, it is really
accelerating, not just doing something relative to some coordinates!

Here are two other questions intended to highlight the above points:

• Why does the observer with circular motion use rotating cylindrical coordinates
for the QFT construction? The only convenient feature about them is apparently
that she sits at the space origin of these coordinates throughout the motion. Why
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not use a Fermi–Walker transported tetrad along the worldline to construct a
truly rigid coordinate system (in the sense discussed earlier in this book)? Or
some other coordinate system in which the observer remains at the space origin
throughout the motion? Which choice should be decreed as giving the ‘perspec-
tive’ of the rotating observer?

• In the classical example of Chap. 11 and discussed again above, some commenta-
tors have the idea that the EM fields of an eternally uniformly accelerating charge
should not look like radiating fields when expressed relative to the comoving
semi-Euclidean (and rigid) coordinate system, even that they should look like
Coulomb fields. But they do not, although they share some qualitative features
with Coulomb fields (zero magnetic field, time constant electric field). These
fields are perhaps analogous therefore to the Rindler vacuum in the QFT con-
struction for an eternally uniformly accelerating observer. But does the Rindler
vacuum really look (to the eternally uniformly accelerating observer) in all the
details like a Minkowski vacuum (to the inertially moving observer)?

The last question extends to something more general. Does the whole Rindler vac-
uum and particle construction look, to the eternally uniformly accelerating observer,
in the details like the Minkowski vacuum and particle construction to the inertially
moving observer? If it did, there ought to be enough symmetry between the two
‘perspectives’ to be able to show that the Rindler vacuum is actually a thermal state
of Minkowski particles. Is that the case?

14.3 A Conclusion of Sorts

In this section, we have baulked at the claim that the quantisation of the scalar
field in Rindler modes is just the natural quantisation a Rindler observer would
perform. The defence for such a claim is that spacetime always looks the same to
this observer, so he feels at rest just like an object sitting on the surface of an infinite
flat Earth. The arguments against have been spelt out in enough detail by now. But
surely we need a way of thinking about what we mean by QFT and particles in a
general spacetime?

If we want to define particles, we have to be able to use the positive and neg-
ative frequency solutions of the field equations to define creation and annihilation
operators. But this construction depends on the spacetime having a natural time
coordinate. What could we do if it did not? Surely we can still do quantum field
theory? The answer is clearly that we should carry out the construction, albeit ap-
proximately, in locally inertial systems, applying the weak and strong equivalence
principles. This will always work, and it is precisely in such locally inertial frames
that we can claim to understand things physically. But this already rules out the
Rindler picture.

So the aim here is not to make an exception of the Rindler wedge alone, but of
all so-called pictures by accelerating observers, including any that is supposed to
come from a nice KVF-based solution of some field equations with associated con-
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struction of a quantum field. Of course, these constructions are there and they are
interesting, but as physicists, or natural philosophers, we should ask for more justifi-
cation of the physical interpretation. Geometric elegance, it should be remembered,
is mathematics. Our problem is to relate that to the real world.

In an absolutely general spacetime with nothing to help us, what would we do?
We would use a locally inertial frame and construct there. That is justified on prin-
ciple (the strong equivalence principle). The only way to understand any other con-
struction, e.g., relative to a KVF if there is one, is to refer to these locally inertial
systems. But there seems to be no attempt to do that. Instead, we are encouraged
to pretend that some non-inertial coordinates are actually inertial (compare with the
account of freely falling charges criticised in Sect. 11.10).

And of course we can always analyse the behaviour of detectors with arbitrary
worldlines in arbitrary spacetimes without any reference to the particle interpre-
tations that might be imputed to comoving observers. For instance, regarding the
pointlike Unruh–DeWitt detectors in QFT, one can analyse the behaviour of a par-
ticle detector with an arbitrary motion in Minkowski space. Coordinates make no
difference, fortunately, to what the theory says it will register. So we do not actually
need the alternative Rindler wedge construction of the quantum field. That serves
only to attempt to give a particle picture.
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308–310, 321, 323, 357, 364, 369, 374,
378, 397, 398, 415

application par excellence, 357, 363, 381
as bold hypothesis, 2, 317
different implementations, 375
role in Bell-type arguments, 245, 253, 254
role in free fall, 317, 378

strong force, 294

structure coefficients, 7, 157, 166
in holonomic frame, 158
transformation of, 158, 190–192

superhelical motion, 25, 37, 46, 48, 75, 88
supporting against gravity, 242, 300, 304, 363,

371, 373, 375

tensor, 372
tetrad formalism, 7, 161–193
tetrad frame, 9, 155, 161

adapted to a worldline, 390–394
connection in, 169
for continuous medium, 194, 195
for expressing EM fields, 364, 381–398
from SE frame for TUA observer, 382–388
of Maluf and Ulhoa, 392–394, 396
propagation, 166–167
tensor components in, 165

things in themselves, 377
Thomas precession, 26, 94, 344
tidal effects, 371, 373, 375
time dilation, 65, 219, 319

dynamical explanation for, 229, 320–325
in Schwarzschild spacetime, 239

timelike congruence, 161–193
expansion, 171, 189
vorticity, 173, 189
vorticity free, 175–177

torsion, 7, 146, 159, 170, 305–307, 309
in holonomic frame, 160
source for, 160

translational uniform acceleration, 34, 39,
49–51, 75–83, 110, 247, 248

and Lorentz boost KVF, 361
metric for FS coordinate frame, 79
motion of fixed space points, 81
non-covariance of, 39
of charged particle, 353–355
quantum field theory, 399–403
tetrad frame, 382–390

Ulhoa, S.C., 381, 382, 390, 392, 396, 397
uniform acceleration, 4, 9, 29

generalised, see generalised uniform
acceleration

translational, see translational uniform
acceleration

uniform gravitational field, 372
non-homogeneity of, 374

universal acceleration effects, 221, 227, 228,
267, 322

Unruh effect, 5, 9, 374, 376, 399–416
Minkowski particles, 399
Rindler particles, 374, 400, 401
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Rindler thermal bath, 400–402
Unruh temperature, 400

physical meaning of, 402
Unruh–DeWitt detector, 9, 226, 368, 401–402,

411
with arbitrary motion, 416
with circular motion, 411–415
with TUA motion, 401–403

vacuum, 9, 226, 401
as Rindler thermal bath, 400–402
Minkowski, 400, 401

nature of, 400, 411
Rindler, 400, 401
viewed from rotating frame, 403–415
viewed from TUA frame, 399–403

velocity symmetry, see Lorentz symmetry

weak equivalence principle, 2, 6, 141, 162,
230, 256, 298, 357, 369, 374, 378, 397,
415

weight in GR, 299
Weyl postulate, 233
world of happenings, 325


