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The discussion here ranges in a recycling and sometimes redundant way over
the following:

• Uniformly accelerating charged particles.

• Supported charges in static homogeneous gravitational fields.

• Electromagnetic radiation from such charges.

• Equivalence principles.

The aim is to give an overview of the book S.N. Lyle: Uniformly Accelerating
Charged Particles. A Threat to the Equivalence Principle, Springer, Heidelberg
(2008), and to raise a few questions about this long-standing and sometimes
heated controversy.

Consider first a charged particle coming down the x axis in a flat spacetime,
slowing to a halt somewhere, then accelerating back up the x axis in such a way
that its four-acceleration has constant relativistic length aµaµ. This is eternal
uniform acceleration, illustrated by the worldline in Fig. 1. Uniform acceleration
means that the worldline is a hyperbola, while eternal means that it goes on
forever and has been going on forever.

Now accelerating charged particles usually radiate electromagnetic energy,
so what about this point charge with hyperbolic motion? In order to find out,
we have to solve Maxwell’s equations for the fields, and luckily we always have
the Lienard–Wiechert retarded solutions. In this case we find that fields are
produced in the region x + t ≥ 0, and we notice something interesting at the
instant of time t = 0, when the charge is instantaneously at rest in this particular
inertial frame, namely that the magnetic fields are instantaneously equal to zero
everywhere, but only for this instant of time. The same can therefore be said
of the Poynting vector.

Of course, a Lorentz transformation can reduce any point on the worldline to
rest, and as Pauli pointed out, the hyperbolic worldline looks exactly the same
in any inertial frame, so the magnetic field and hence the Poynting vector are
always zero everywhere, provided we keep changing inertial frame, so that we
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Figure 1: A charged particle arrives from large positive x (bottom right), slows
down to a halt at x = d (in this frame), then accelerates back up the x axis.
The worldline is asymptotic to the null cones at the origin, i.e., it is asymptotic
to x + t = 0 for large negative times, and x − t = 0 for large positive times.
Naturally, it never actually reaches the speed of light

are always using the inertial frame instantaneously comoving with the charge.
For this reason, Pauli suggested that the charge might not radiate [1].

But in any given inertial frame, the Poynting vector is going to change from
zero as time goes by, and as far as we know, there is no relevance in what
one would observe by continually changing inertial frame. However, in a well
known non-inertial frame adapted to the motion of the charge, the magnetic field
components are identically zero everywhere and at all times. In fact, for any
timelike worldline in Minkowski spacetime, there are coordinates with special
properties, said to be adapted to the worldline, and sometimes called semi-
Euclidean (SE) coordinates for reasons to become clear in a moment.

The idea is that, at each event on the given worldline, the accelerating
observer borrows the hyperplane of simultaneity of an instantaneously comoving
inertial observer and attributes her own proper time to all points on it. With
this ploy and a few other simple tricks [2, Chap. 2], we can arrange for the
observer to sit permanently at the space origin of the new coordinate system,
whence her worldline is just the time coordinate axis, with the time coordinate
being the observer’s own proper time. We can also arrange for the metric to
have Minkowski form right along the time axis, but not off it. This means that
the coordinate frame we are constructing is a tetrad frame along the worldline,
but not off it. And finally, by the ploy mentioned above, the geometry will be
Euclidean on the constant time hypersurfaces, hence the name semi-Euclidean
coordinates. Note that the connection is not zero along the worldline, since it
must encode the acceleration.

We can make another interesting observation here, which shows just how
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special this kind of motion is. It is only for an eternally uniformly accelerating
observer that the Minkowski metric still has static form when expressed relative
to SE coordinates. For any other kind of acceleration, if we carry out this kind
of construction, the components of the Minkowski metric will depend on the
new time coordinate. (For a proof in the case of acceleration along a straight
line, see [2, Chap. 2]. For a general proof, see [3, Chap. 12].)

We now have the non-inertial coordinate system adapted to the charge mo-
tion, but we still need to be able to talk about magnetic fields in a situation
where we are not using inertial coordinates. Physically, this is not so obvious,
but mathematically it is very easy, because we have the electromagnetic field
tensor Fµν and we can express its components relative to any frame. We also
know that the matrix of components of this tensor is antisymmetric in any frame
so it can always be written in the form

Fµν =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 , (1)

and then we can just read off E and B. What these mean physically for a
general coordinate frame is another matter, to which we shall return.

So if we take the charge with hyperbolic motion, find its Lienard–Wiechert
retarded fields relative to some inertial coordinate system, then transform them
to the SE coordinate system adapted to the charge motion, we find that the SE
magnetic field is permanently zero. In addition, the SE electric field is static, in
the sense that, at any given SE space coordinate, the SE electric field does not
change as SE coordinate time goes by. We may make another observation here
that shows once again just how special this kind of motion is: it is precisely and
only for the case of eternal uniform acceleration that this construction yields
such an elegant and simple picture.

So maybe Pauli was right after all. Maybe there is no radiation of electro-
magnetic energy in this case. There is another reason for thinking that this may
be so. If a charge radiates, we expect there to be a reaction force on it, but it
turns out that the radiation reaction force is zero for uniform acceleration. This
can be shown either from considerations of energy and momentum conservation
[4], or by calculating the electromagnetic force an extended charge distribution
exerts on itself when accelerated [3].

Despite these arguments, it is generally agreed that the uniformly accelerat-
ing charge does in fact radiate, and we can of course calculate a radiation rate.
That was the conclusion of Bondi and Gold in a paper they published over 50
years ago [5], but that raised another problem for them which is best introduced
by a quote:

The principle of equivalence states that it is impossible to distinguish
between the action on a particle of matter of a constant acceleration
or of static support in a gravitational field. This might be thought
to raise a paradox when a charged particle, statically supported in
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a gravitational field, is considered, for it might be thought that a
radiation field is required to assure that no distinction can be made
between the cases of gravitation and acceleration.

So now we are talking about a gravitational field and an equivalence principle,
and we are concerned about whether a static charge in a gravitational field
should be able to radiate. This can be spelt out in the following way.

A static homogeneous gravitational field (SHGF) is usually modelled in gen-
eral relativity (GR) by a metric interval of the form

ds2 =

(
1 +

gy1

c2

)2

(dy0)2 − (dy1)2 − (dy2)2 − (dy3)2 , (2)

where c is the speed of light and g a constant with units of acceleration. The
metric gµν is almost in the standard Minkowski form, except for the component
g00, which is a function of one of the space coordinates y1.

Now it turns out that this is precisely the SE line element for an eternally
uniformly accelerating observer with absolute acceleration g, i.e., aµaµ = −g2.
So we can show that the curvature is zero and there are therefore no tidal
effects, hence the name homogeneous for this spacetime. This is thus a flat
spacetime, despite the fact that we are taking it to model a gravitational field,
and we can show that there exist coordinates such that the metric assumes the
Minkowski form everywhere and everywhen. Those would then be interpreted
as the coordinates that would naturally be adopted by a freely falling observer.

So what was Bondi and Gold’s problem? They do not believe that a charge
sitting at fixed space coordinates in the SHGF should radiate. But the trouble is
that general relativity, with a little help, really does predict that it should radi-
ate. And the little bit of help is an equivalence principle. So if we do not believe
that a charge sitting at fixed space coordinates in the SHGF should radiate,
perhaps it is the equivalence principle that is wrong, or somehow inapplicable
to charged particles.

This is therefore a good point to recall the two equivalence principles that
form part of any introductory course on general relativity. The first is usually
called the weak equivalence principle (WEP), although there is nothing weak
at all about it. In fact it forms part of the standard formulation of GR for
any curved spacetime. We impose the metric condition, which says that the
covariant derivative of the metric should be zero, and this fully determines the
connection in the torsion-free case. It then turns out that the first coordinate
derivatives of the metric components are linear combinations of the connection
coefficients, so if we can arrange for the latter to be zero at some event P by a
clever choice of coordinates, we will find that the metric components are slowly
changing functions of the coordinates at that point.

We then have the following standard argument. For any event P in space-
time, there is always a choice of coordinates in some neighbourhood of that
event for which the connection coefficients are zero at P and the metric takes
the Minkowski form at P . By continuity and the above observation, this will
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then be approximately so in some small neighbourhood of P . Basically, WEP
thus guarantees the mathematical existence of local inertial coordinates at any
spacetime event in the manifold and decrees that these correspond to the coor-
dinates one would naturally set up in a freely falling, non-rotating laboratory.

But we still need to be able to talk about electromagnetism in the frame-
work of a general curved spacetime, and for this we need the strong equivalence
principle (SEP). This states that, in the locally inertial frames whose existence
is guaranteed by WEP, all physics looks roughly as it does in the context of
special relativity. This is a rather vague statement and would be difficult to
use. In practice, we take the special relativistic formulation of whatever non-
gravitational physics it is we are trying to do, e.g., Maxwell’s equations if we
are doing electromagnetism, and replace all coordinate derivatives by covari-
ant derivatives. At least, this is the simplest or minimal way to implement
the strong equivalence principle. There are more sophisticated ways which will
not concern us here. This then leads to the minimal extension of Maxwell’s
equations (MEME) to a general curved spacetime.

Now imagine a charge held at fixed SE space coordinates in an SHGF. It
turns out that it is accelerating uniformly, and because of that, SEP tells us that
it produces exactly the same fields in the global inertial frame that happens to
be available in this case as a uniformly accelerating charge in a gravity-free
spacetime. So if there is radiation in the latter case, there will also be radiation
for the static charge in an SHGF. This is an application par excellence of the
strong equivalence principle in the sense that there is no approximation here
due to local effects, since the local inertial frame is globally inertial.

So if we think a static charge in a static spacetime cannot radiate EM en-
ergy, then here is another argument against the uniformly accelerating charge
in flat spacetime without gravity being able to radiate EM energy. However,
as mentioned earlier, the consensus says that it can. Alternatively, ‘the’ equiv-
alence principle may be wrong. But WEP is built into standard GR, and GR
would be virtually unusable without SEP, in the sense that we would require
some other way of shipping our non-gravitational theories of physics into the
curved spacetime framework. And another alternative is that a static charge in
a static spacetime may after all be able to radiate EM energy.

We have now sketched the whole issue here. This is a tangle of at least three
problems, probably more:

• Do eternally uniformly accelerating charges radiate EM energy?

• Does this debunk some form of equivalence principle?

• Can a stationary charge in a static spacetime radiate EM energy?

Let us begin by addressing the last question in more detail.
A static spacetime is one in which there exist coordinates in which the metric

interval assumes the form

ds2 = g00(x1, x2, x3)(dx0)2 +
∑

i,j=1,2,3

gij(x
1, x2, x3)dxidxj , (3)
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so that the metric components do not depend on the time coordinate, and in
addition the matrix of metric components is in block diagonal form with g01,
g02, and g03 equal to zero. A static or stationary charge is one that sits at fixed
space coordinates in a spacetime with one time coordinate and three space
coordinates. This kind of staticity is clearly a coordinate dependent notion.
To give an example, a static charge in a semi-Euclidean coordinate system is
accelerating.

Now Bondi and Gold say that a static charge in a static spacetime cannot
radiate EM energy. However, GR with the help of SEP and MEME predict that
a freely falling observer will observe EM radiation from a static charge in an
SHGF, if uniformly accelerating charges in gravity-free spacetimes do radiate.
And since Bondi and Gold found that uniformly accelerating charges do radiate
in the latter case, they had to come up with some other solution. And here it
is: there is no such thing as an infinite static homogeneous gravitational field.

The point is that, if we do away with the SHGF, we may try to argue like
this. Radiation from a charge can only be established, according to Bondi and
Gold, by surveying space out to large distances. At any distance over which one
could affirm the observation of EM radiation, the presence of a gravitational
field would be revealed by its inhomogeneity. The EM effects do not then have
to be the same as in an SHGF, and this is supposed to save the charged particle
from having to radiate.

The weak point here is presumably the first claim, that one must be a long
way from the charge in order to ascertain whether or not it is radiating. Of
course, we must agree that the SHGF is unphysical, but this is all a matter
of approximation, and there is no quantitative link between approximations to
gravitational effects, which have one kind of source, viz., matter and energy,
and approximations to EM effects, which have a quite different kind of source,
viz., charges and the motions of charges.

Many people commented on this over the following 25 years, in particular
Rohrlich, and we shall return to his views on these matters later. But in 1980,
Boulware came up with a complete mathematical analysis of the EM fields due
to an eternally uniformly accelerating charge [6], and he concluded that there
would be EM radiation. So let us examine his arguments for reconciling these
issues.

Boulware is interesting because there is a subtle change of tack here. He does
not claim that a charge that is stationary relative to coordinates in which the
metric is static will not radiate, only that an observer that is stationary relative
to these coordinates will not be able to measure any radiation there is. So for a
charge supported in an SHGF, there is radiation for the freely falling observer,
but not for a co-accelerating observer sitting with the charge. Something is
therefore telling him that the co-accelerating observer must not be able to see
any radiation.

This seems to raise several questions. First of all, why should anyone want
to show that? Here is a conjecture. Suppose I am holding a charged particle and
moving inertially. Then I will not be able to tell what velocity I am moving at
by looking at the EM fields of the charge. This is because Maxwell’s equations
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Figure 2: Boulware’s four regions of spacetime. The line t = x is an event
horizon, because the observer O can never receive any signal from regions II
and III on the other side of it. Pictorially this is because the forward light cone
of any potential signalling event in region II or III is entirely contained within
those regions. For a similar reason, O can never signal to any event in regions
III or IV, because the forward light cone of any point on the worldline of O is
entirely contained within regions I and II

are Lorentz symmetric. So perhaps the idea here is that I will not even be able
to tell whether I am accelerating or not. The point is that I could be sitting still
in an inertial frame and holding the charge and not see any radiation, or I could
be accelerating uniformly and holding the charge and not see any radiation.

The problem is of course that this fails in the details, because the fields
look different in the accelerating case, for any choice of coordinates the observer
might make to express those fields. However, that does seem to raise another
question: how do we know what accelerating observers will see?

Before returning to this question, let us consider the two arguments Boul-
ware gives to try to support his claim (see the original paper [6] or the detailed
discussion in [2, Chap. 15]). Figure 2 shows spacetime again. The cross repre-
sents the light cones at the spacetime origin. Now for reasons of causality, the
charge can only produce fields in regions I and II, which is x+ t ≥ 0. But also
for reasons of causality, if we travel with the charge, we can only get news from
regions I and IV. We can never get news of the fields in region II. So we cannot
send a friend into region II and he phones later to say that he is witness to some
nice radiating fields produced by the charge we are travelling with.

In fact, we are stuck looking at the fields in region I, and Boulware tries
to convince us that, if we do that, those fields will look more Coulomb than
radiating, that is to say, they will look more 1/r2 than 1/r for a suitable choice
of distance r. However, we should perhaps be asking whether the observer could
not accurately predict the fields even into region II from sufficiently accurate
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measurement of the fields in the close neighbourhood of the charge worldline.
And we may also wonder why we should care about what one particular observer
can or cannot measure.

Boulware’s second argument concerns the generalisation of the Poynting
vector to the SE coordinate system, which is identically zero everywhere in
region I, as pointed out earlier. This is often cited as definitive proof that
the co-accelerating observer could not detect any radiation. But what is the
physical meaning of this generalisation of the Poynting vector to coordinates
other than inertial coordinates? According to Parrott, one of the main post-
Boulware commentators on these issues, it does not give an energy flow at all
when integrated over a spacelike hypersurface, but another radiated quantity,
associated with a Lorentz boost Killing vector field [7].

The Killing vector fields play an important role in these discussions, so it
is worth recalling the basics. A Killing vector field (KVF) is a vector field K
such that the Lie derivative of the metric along the flow of K is zero. This
is something very convenient from a mathematical point of view owing to the
elegant formulation

Kµ;ν +Kν;µ = 0 . (4)

The flow of K is related to a symmetry of the metric, i.e., an isometry, so in
a general curved spacetime, there are no Killing vector fields. However, in a
static spacetime, there is always at least one Killing vector field, namely the
time coordinate vector field for coordinates in which the metric assumes its
static form (3).

But what can we do with a Killing vector field? In fact, if we also have a
zero-divergence symmetric tensor Tµν , i.e., having the properties

Tµν ;ν = 0 , Tµν = T νµ , (5)

then we can construct a vector field

vµ := TµνKν , (6)

and it is straightforward to show that this new vector field will have zero co-
variant divergence, i.e.,

vµ;µ = 0 . (7)

It thus represents a conserved quantity, and we can use Gauss’ theorem, and so
on.

But, of course, the energy–momentum tensor of the EM field is symmetric
and divergence-free in the right circumstances, so we can get a divergence-free
vector field for every Killing vector field of the metric just by contracting with
this energy–momentum tensor. This can be used to define the energy of a
field in an inertial frame. The inertial time coordinate vector field in Minkowski
spacetime is a timelike, normalised KVF, and it gives the density of field energy–
momentum by contracting with the energy–momentum tensor.

Note, however, that not every divergence-free vector field constructed by
contracting a KVF with an energy–momentum tensor can be interpreted as
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a density of field energy–momentum. There is a certain minimal requirement
that the Killing vector field must be timelike and normalised at a given event
for that to work. This is just the usual intepretation of the energy–momentum
tensor in a general curved spacetime. If an observer has four-velocity u, then
the contraction of u with the energy–momentum tensor is supposed to give the
density of energy–momentum that this observer would measure using standard
techniques. And of course, u is a unit timelike vector.

Now Minkowski spacetime is maximally symmetric, so it is absolutely full of
Killing vector fields. In fact, it is absolutely full of Lorentz boost KVFs, since
there is one in every space direction. Here is the one in the x direction:

K(x, t) := x
∂

∂t
+ t

∂

∂x
, (8)

expressed relative to an inertial coordinate system. Written like this, it may
not look much, until we realise that every curve in the flow of this vector field
is a uniformly accelerating worldline. Better still, when it is expressed relative
to the SE coordinate system for an eternally uniformly accelerating observer in
the x direction, it takes on the very simple form

K = ∂τ , (9)

up to a multiplicative constant, where τ is the SE coordinate time. So it is
basically the SE time coordinate vector field.

This shows that there is a close relationship between the Lorentz boost
Killing vector fields and the SE coordinate systems of eternally uniformly ac-
celerating observers. This is indeed what makes the latter kind of motion so
very special in many respects. If we were to consider an observer with arbi-
trary timelike worldline, we could always construct a SE coordinate system [3,
Chap. 12], but the metric would not generally assume the static form (3), and
this is because that worldline would not generally be the flow curve of any KVF.

So what about Boulware’s second argument, concerning the generalisation
of the Poynting vector to the SE coordinate system? According to Parrott, if
the SE observer comoving with the charge uses the SE Poynting vector, she will
not be calculating a flow of energy at all, but a flow of a kind of pseudo-energy
constructed from the energy–momentum tensor and the Lorentz boost KVF by
contracting the two. From a Minkowski standpoint, in terms of the flow of
energy as it is usually defined in an inertial frame, the calculation of the SE
observer looks very strange indeed [2, Chap. 16].

This may be so, but then we know that energy is a frame-dependent concept.
We know how to transform the energy of a thing from one inertial frame to
another by carrying out a Lorentz transformation of an energy–momentum four-
vector, and then we get a different energy for the thing in each inertial frame.
But here, we are talking about non-inertial frames and this seems to raise several
questions:

• How should an accelerating observer define energy?
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• What energy would be measured by an accelerating observer using stan-
dard techniques?

• How should an accelerating observer define radiation?

Of course, as a vector, an energy–momentum four-vector can be represented
relative to any coordinate or other frame, but here we are suggesting a differ-
ent definition which favours the idea that the relevant quantity should be a
conserved quantity.

Before considering these questions from a different angle, let us just do a
small detour and examine Boulware’s equivalence principle, since we have un-
finished business there. A striking thing about many of the papers that purport
to be discussing the equivalence principle in this context is that they often give
no usable statement of the equivalence principle. We usually have something
like this: a uniformly accelerated frame must be indistinguishable from a gravi-
tational field. But this kind of statement is clearly open to the kind of subjective
interpretation we get from Boulware. What does indistinguishable mean? We
are saying here that there might be a radiation field for one observer, but an-
other one must not be able to see it. We must ask whether such an idea is really
necessary.

Perhaps we are we just trying to save Bondi and Gold’s opinion that a static
charge in a static spacetime cannot appear to radiate? But this in turn seems to
assume something about what constitutes energy and radiation in non-inertial
frames, which brings us back to our earlier question. And such statements of
‘the’ equivalence principle are to be contrasted with WEP and SEP, which have
fully objective definitions and fully mathematical implementations.

Let us return to the questions raised above by a slightly circuitous route.
Parrott introduces an interesting idea of accelerating the charged particle by
means of a tiny rocket with a tiny fuel tank and a fuel gauge for reading off
how much fuel has been used. In gravity-free Minkowski spacetime, since the
uniformly accelerating charge is radiating energy which can be detected and
used, according to Parrott, conservation of energy suggests that the radiated
energy must be provided by the rocket. We might then expect to burn more
fuel to produce a given accelerating worldline than we would to produce the
same worldline for a neutral particle of the same mass.

So according to Parrott, we have an experimental test to determine locally
whether EM energy is being radiated or not. The key point here is indeed that
such a test would be local. This is to be contrasted with Bondi and Gold’s idea
that we must be far away from the charge in order to find out whether or not
it is radiating. In this case, we simply observe the rocket’s fuel consumption.

But now consider a rocket holding the charge stationary relative to SE coor-
dinates in the SHGF. If we burn more fuel to carry the charged particle (than to
carry a neutral particle) when accelerating in the gravity-free Minkowski space-
time, we shall burn more fuel to support the charged particle in an SHGF, by
an application par excellence of SEP. That is what the theory says if we accept
the strong equivalence principle: the mathematics is strictly identical in the two
cases.
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But Parrott says that the equivalence principle does not apply to charged
particles [7]. It is not absolutely clear what he means by the equivalence prin-
ciple, because there is no clear statement of it in his paper. However, he does
claim that local experiments will distinguish a stationary charged particle in an
SHGF from an accelerated particle in a gravity-free Minkowski spacetime. And
of course he may be right. One day we may be able to do this experiment, and
we may find that he was right. In which case, we will know that the strong
equivalence principle was not applicable here.

On the other hand, if SEP were not always applicable, we would be in some
kind of trouble. How would we use GR? We would need some alternative way to
ship our non-gravitational theories of physics into the curved spacetime context.
And to save SEP, we need to admit that a stationary charge in an SHGF can
radiate EM energy, at least as viewed from a freely falling frame.

But it should be said that, apart from Parrott, nobody seems to disagree
with that. For example, Boulware and Rohrlich do not disagree with that.
They just do not want the stationary charge in the static spacetime to appear
to radiate to a comoving observer, for some reason. Recall the conjecture made
earlier. Perhaps they consider this to be some form of EP, or an extension of a
relativity principle to an accelerating situation. However, neither of these ideas
are necessary to the system based on GR with WEP and SEP, and both fail in
the details, since the fields in the accelerating case look different in the details
for any choice of frame the accelerating observer may choose to represent them.

And the question remains: what will non-inertial observers actually observe?
In the gravity-free Minkowski spacetime, if we use the SE Poynting vector, are
we calculating radiated energy for some observer? Does that give the energy
that would be measured by an accelerating observer using standard techniques,
whatever that means? Or is it just a good definition? But if it is good, what is
it good for? What are we trying to achieve? And does the value we obtain by
calculating with the SE Poynting vector convert properly to the extra fuel that
would be needed to accelerate a charged particle?

What should concern us here is that there is no obvious reason why an
accelerating observer should adopt SE coordinates. After all, they are just
coordinates, despite certain convenient features. They are also artificial in some
ways [3, Chap. 12]. For example, the accelerating observer would have to use a
rigid ruler, i.e., one satisfying the so-called ruler hypothesis, in order to actually
measure the space coordinates in the direction of acceleration.

And why not use a tetrad frame [8]? Recall that the SE coordinate frame is
a tetrad frame along the worldline, but not off it, and there are many ways to
extend it to a tetrad frame off the worldline. But which one should we use to
represent the EM fields off the worldline?

Let us now look more generally at the idea of a static charge in a static
spacetime, but this time consider a general static spacetime, which may or
may not be curved, as specified by the metric interval (3), asking once again
whether it is true that a charged particle that is stationary with respect to
the space coordinates in a static spacetime generates a pure electric field in
that frame. Parrott gives a neat mathematical demonstration [7] that, if we
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have a stationary charge relative to coordinates for which the metric is static,
there will be retarded field solutions for such a charge with zero magnetic field.
Unfortunately, he has to assume that the electric field is static in order to derive
the result, which weakens the argument somewhat, but let us gloss over that for
these purposes. Then if the retarded field solution is unique, this means that
the retarded field solution for such a charge always has zero magnetic field.

What is interesting about this argument is that it is entirely dependent upon
the use of SEP and MEME! Of course, how else could we say anything at all
about electromagnetism in a curved spacetime context?

Now the time coordinate in a static spacetime provides a timelike Killing
vector field for the static metric, and it is not difficult to show that we may as-
sume the KVF to be normalised along any given curve in its flow. But then this
KVF gives a conserved quantity in conjunction with the EM energy–momentum
tensor by contracting the two together. So perhaps what a stationary charged
particle in this static spacetime does not radiate is the pseudo-energy defined as
the conserved quantity corresponding to translation by the formal time coordi-
nate in this spacetime. And perhaps we should indeed define this as the energy
for an observer sitting at fixed space coordinates in this spacetime. But if that
is a good definition, let us not forget to say what it is good for. What are we
trying to achieve? Where is the physics?

Going back to the flat spacetime context that we have been discussing here,
Parrott agrees with Boulware that there is no radiation of the conserved quantity
corresponding to the Lorentz boost Killing vector field. But he says that this
is irrelevant to questions concerning physically observed radiation. And indeed,
this is the case, until someone fills the physical gaps in these arguments.

Parrott also considers a stationary charge relative to the usual coordinates
for Schwarzschild spacetime, which is a static spacetime, and asks whether it
will radiate EM energy? Parrott claims that it would not, which is interesting,
because this is exactly what one would say in a naive special relativistic (SR)
version of gravity in which gravity is just a force. A stationary particle is inertial
in SR, so Maxwell’s theory says there will be no radiation.

In fact, it is interesting to contrast what GR and SR say about radiation from
supported and freely falling charges, because they make diametrically opposite
predictions about this. And this is because they make diametrically opposite
claims about which of the two cases is actually accelerating. In GR, the sup-
ported charge is accelerating and the freely falling charge is not, while in SR, it
is the freely falling charge that is accelerating.

But in order to understand the physical implications of a scenario in GR, we
must first look at what is happening in the locally inertial frame guaranteed by
WEP, and then deduce things about EM fields by applying SEP, since this is the
only procedure we have. And when we look at the static charge in Schwarzschild
spacetime as it would be described in a locally inertial frame, we find that it is
accelerating, so there is then nothing obvious at all about the conclusion that
this charge will not radiate. On the contrary, MEME says it will, at least to the
freely falling observer.

Then if energy radiates out, and if it is true that this can be detected locally,
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it is tempting to consider that this must be supplied by whatever is holding the
charge up against the gravitational effects. However, the zero radiation reaction
in the case of eternal uniform acceleration confuses this issue. Boulware shows
that there is a flow of energy in towards the charge in the case of eternal uniform
acceleration, suggesting that this originates from the horizon x+ t = 0 (see the
original paper [6] or the detailed discussion in [2, Chap. 15]). However, there
is only a field on this horizon (in fact a distributional field) if the charge has
been accelerating like this forever , whereas self-force calculations suggest that
the radiation reaction force on the charge would be zero at any instant of time
when it has uniform acceleration.

For an arbitrary, i.e., not necessarily uniform acceleration, there will be a
radiation reaction, and we might then be able to argue that the radiated energy
is somehow supplied by whatever is pushing the charged particle off its geodesic.
It would be interesting to see concise discussions of this point.

Returning to the way energy is redefined for observers following the flow
curve of a KVF, the conserved quantity corresponding to the time coordinate
KVF in a static spacetime may be the only natural mathematical candidate for
a conserved quantity. But is it what we would normally call energy physically?
Or is it just a good definition, and if so, with what aim in mind? We ought
to remember that mathematical convenience is not sufficient to be sure that we
are doing physics, i.e., that we are getting a useful relationship with what is out
there.

Furthermore, if a charge is stationary relative to some coordinates we hap-
pen to have chosen, we must remember that these are only coordinates. It will
not generally be stationary relative to the kind of coordinates we are supposed
to use to understand the theory physically, viz., inertial or locally inertial coor-
dinates. And we should remember that GR is very different from SR as regards
gravitational effects, since GR builds in an interaction of sorts between gravity
and other fields via SEP. This is indeed how light is affected by gravitational
effects in GR.

It is interesting to end this discussion by considering what Rohrlich has to
say about these matters in his classic book [9], now in its third edition. Here we
focus in particular on the way he suggests that we should interpret quantities
expressed relative to non-inertial coordinate systems. Let us begin with a quote:

[An SHGF] is a field whose lines of force are equidistant parallels,
such as the gravitational field in the laboratory. It is known that this
type of gravitational field can be simulated by uniform acceleration
of a neutral particle in Newtonian mechanics and in special relativity.
Is this also true for the motion of a charged particle?

So here we have a rather typical statement of an equivalence principle. Let us
see how we get on with that.

He begins by presenting a tempting fallacy, and what is interesting here is
to try to determine precisely what it is that he considers to be fallacious in the
following statement:
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A neutral and a charged particle cannot fall equally fast in an SHGF,
because the charged particle will radiate, being accelerated, and
thereby lose energy, hence fall more slowly than the neutral par-
ticle.

But if the freely falling charge is accelerating, and if this is not the fallacy here,
then it looks as though we are doing special relativity. Anyway, his statement
of intent is now to prove that a charged and a neutral particle in an SHGF will
in fact fall equally fast, despite the fact that, according to him, the charged one
loses energy by radiation.

Before examining his argument, let us just note that the GR picture is
exceedingly simple in this particular case, because the freely falling neutral and
charged particles are stationary in the global Minkowski frame. The charged
particle will not radiate, so this is a solution of the free particle equation of
motion, i.e., we do not need to consider the kind of sophisticated arguments
expounded in the classic paper by DeWitt and Brehme [10], which show that
curvature can intervene directly in the equation of motion and change the whole
notion of free fall for charged particles. Note also that the charge would only
radiate in the SR picture!

Returning to Rohrlich’s discussion, he thus sets out to prove that a charged
and a neutral particle in an SHGF will in fact fall equally fast, i.e., have the same
worldline or the same shape of worldline, despite the fact that the charged one,
according to him, loses energy by radiation. His argument is basically GR+SEP
leading to MEME, but note that he still claims that there is radiation. However,
we then discover that the freely falling observer will not see any radiation, and
this because the charge is just sitting still in an inertial frame.

So this is precisely the GR picture, and we begin to wonder what we must do
in order to see this radiation. In fact, it turns out that we have to be stationary
relative to the SE coordinates for the SHGF to see it. However, the field of the
charged particle in the freely falling frame is Coulomb, so what we are claiming
here is that a Coulomb field will look like a radiating one to an accelerating
observer, whatever that means. But even if it did, is that how the accelerating
observer should understand what is happening, by looking at the electric and
magnetic fields relative to some coordinates that happen to be adapted to her
worldline?

After all, these are not the only possible coordinates that such a person could
use. There are other adapted coordinate systems, and there are tetrad frames
that could be used to express the fields off the worldline. But which picture
should the accelerating observer use?

We may consider another example of what seems unholy in this account
of things. The geodesic equation in the SHGF says precisely that the four-
acceleration of a thing is zero, and then we say that the thing is freely falling.
Fiddling around with the coordinates will not make free fall in this flat space-
time, or indeed in any other spacetime, become a uniform acceleration, because
it is zero acceleration. But what Rohrlich suggests here is that, if the supported
observer using SE coordinates should somehow be duped into thinking that her
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coordinate system has any real significance, the freely falling particle may ap-
pear to have this or that acceleration. So in this view of things, coordinates can
be taken by their resident observer, if there is one, to have some real physical
significance.

It is interesting that Rohrlich should seek coordinates for the supported
observer relative to which free fall looks like uniform acceleration, because free
fall in an SHGF is uniform acceleration in the naive special relativistic model
of gravity in which gravity is just a force [2, Chap. 3], another striking result
concerning uniform acceleration.

Anyway, transforming the Coulomb field in the freely falling frame, which
we know to solve MEME in the GR version of the SHGF, Rohrlich claims
that we obtain a radiating field in the SE coordinates. So in his view the
supported observer will ‘see’ this charge as radiating. He goes further, giving
the standard formula for the radiation rate in ordinary Minkowski coordinates in
SR, specifying how it is found algebraically from the components of the EM field
tensor relative to such a frame and noting that this rate is Lorentz invariant.
But what he then suggests is that, when we transform to arbitrary coordinates
for this spacetime (no longer a Lorentz transformation), we can use the same
algebraic combination of the new components of the EM field tensor to deliver
a rate of energy radiation.

This is just to show how we can get a nonzero rate for the supported ob-
server when the radiation rate is resolutely zero for the freely falling observer.
But there are two difficulties here. First of all, the prescription is potentially
ambiguous, given the various possible ways of expressing the fields off the world-
line. But note that if the radiation rate depends only on a specific point on the
worldline, i.e., a specific proper time of the charge, it may be possible to circum-
vent this difficulty, using the Lorentz invariance of the rate. On the other hand,
this leaves us with the problem of interpreting the radiation rate calculated in
this way. Is it supposed to be what the accelerating observer would measure
using standard techniques, whatever that means, or is it just a good definition?
And if so, what is it good for? What are we trying to achieve by it?

Here is an exercise for the reader. Think up an equivalence principle that
would make you want the Coulomb field to look like a radiating field to an
accelerating observer. One answer is a Newtonian, naive special relativistic,
pre-GR kind of equivalence principle which we do not need, and which fails
in the details, because this field will never look exactly like the radiating field
of an accelerating charge, for any choice of coordinate system the accelerating
observer may choose to express the Coulomb field.

However, this is not the end of the mysteries. In 1964, Mould invented
an entirely theoretical radiation detector that would bear out such predictions
[11]. In other words, when it is moving inertially and there is no radiation, it
does not record any radiation, and when it is moving inertially and there is
radiation, it records radiation, but when it moves in uniform acceleration past
a Coulomb field, it also excites. This is a striking result, if the theory in his
paper is correct. There is a close parallel with the Unruh–DeWitt detector in
quantum field theory (QFT) (see the appendix).
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Rohrlich also asks how we know that a charged particle at rest relative to
the supported frame will not radiate. That would be the prediction of an SR
version of gravity. In GR, it is perhaps better to say that this charged particle
will radiate and that the supported observer can spot this if she wants to!
Rohrlich agrees that the freely falling observer will see the supported charge
radiating at the well known constant rate. He then transforms the fields to
the SE coordinate system and deduces that there is no radiation because the
magnetic field is zero in the SE system, an argument we have already discussed
twice here.

Such a claim is perhaps best answered by a question: should we treat the SE
magnetic field as the kind of magnetic field we know and love from our school
days? And let us note once again that, apart from having zero magnetic field
and being static, the SE version of these fields does not look anything like the
Coulomb field.

Conclusion

This discussion has raised many questions, but two in particular. First of all,
how should we formulate our equivalence principles? A good rule might be
to stick to WEP and SEP and forget any statements that talk about whether
something can be distinguished from something else. The latter are likely to be
Newtonian, naive SR, and pre-GR principles that are no longer needed in the
GR framework, and liable to fail there.

Another question concerns the way we interpret quantities expressed relative
to non-inertial coordinate systems. Here we should perhaps be clearer about
whether we are interested in what accelerating observers actually measure, or
whether we are just trying to make good definitions for them. But what will
accelerating observers observe? What will they consider to be good definitions?
And if they are good, what are they good for? What exactly are we trying to
achieve? What will accelerating observers measure using accelerating detectors?
Indeed, does it help to know what accelerating detectors will detect?

We should remember that there is a major theoretical difference between
inertial motion and accelerating motion, both for observers and for detectors.
When an observer is moving inertially, we know what are the best coordinates
for such a person to use: they are inertial or locally inertial coordinates. This is
because all our field theories of matter are Lorentz symmetric or locally Lorentz
symmetric, and these are the coordinate systems in which they assume their
simplest forms.

Regarding detectors, imagine designing two different detectors to measure
the same physical quantity. Whenever they are moving inertially in the same
physical context, we expect them to deliver the same value for whatever quantity
it is they are supposed to measure. This is once again because all our field
theories of matter, which govern both the internal constitution of the detectors
and the environment of the detectors, are Lorentz symmetric or locally Lorentz
symmetric. But what can we say when they are accelerating? Will they always
deliver the same result for the given physical quantity? After all, there is no
corresponding acceleration symmetry in our field theories of matter.
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Appendix: Unruh Effect

Here is another situation where some quantities expressed relative to a semi-
Euclidean coordinate system are interpreted physically as being relevant to uni-
formly accelerating observers. To illustrate this, we may begin with a quote
from an epic review of everything that has been done in this area over the past
40 years [12]:

[The Unruh effect] has played a crucial role in our understanding
that the particle content of a field theory is observer dependent.

This is no longer classical electrodynamics. Here we are talking about quantum
field theory, where the concept of particle is subject to a certain ontological
fuzziness, and the field is no longer an electromagnetic field, because the Unruh
effect is usually introduced by discussing the Klein–Gordon scalar field. Any
reference to field equations here can be taken to mean the Klein–Gordon (KG)
equation.

If we want to set up a quantum field theory, the key question is: what
constitutes a positive frequency solution to the field equations? Once we have
that, we can try to make the usual expansion of the field in terms of creation
and annihilation operators. But the answer to this question depends on what
time coordinate we use. Now in Minkowski spacetime, we normally choose an
inertial time coordinate for the QFT construction. But it turns out that we can
find solutions to the field equations that are positive frequency with respect to
the SE time coordinate for an eternally uniformly accelerating observer. The
QFT construction then delivers a different vacuum and different particles.

In inertial coordinates in Minkowski spacetime, the natural positive fre-
quency solutions to the field equations lead to what we normally call particles.
Let us call them Minkowski particles for the present purposes. In SE coordi-
nates for an eternally uniformly accelerating observer, associated as we have
seen with a Lorentz boost Killing vector field, the natural solutions to the field
equations lead to different particles. Let us call these Rindler particles here.
How are we to interpret this new Rindler vacuum and these new particles?

The first thing we note is that the usual QFT vacuum, the Minkowski vac-
uum, is full of Rindler particles. Of course, this is not really so surprising since
we have always known that the QFT vacuum is not nothing. But we also note
that formally, for the right formal choice of ‘Hamiltonian’, the density opera-
tor for the Rindler particles is precisely the density operator for a system of
particles in equilibrium at a certain nonzero temperature. This is the Unruh
temperature. It is linearly proportional to the absolute acceleration of the eter-
nally uniformly accelerating observer who sets up this alternative view of the
quantum field.

But how do we know that the formal ‘Hamiltonian’, constructed by the usual
Lagrangian field theoretical techniques but in the framework of a semi-Euclidean
coordinate system, is what an accelerating observer would call energy? Are we
saying that this is what such a person would naturally measure, or is it just a
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good definition? And if it is a good definition, what is it good for? Note that
the naturalness of the ‘temperature’ attributed to the thermal bath of Rindler
particles depends on the naturalness of this definition of the Hamiltonian.

Certain features of the new Hamiltonian are not so natural. It comes from
a classical field ‘energy’ for the eternally uniformly accelerating observer, and
this classical field energy is defined to be

E :=

∫
Σ

KµTµνdΣν , (10)

where Kµ is the appropriate Lorentz boost Killing vector field, Tµν is the formal
energy–momentum tensor for the KG scalar quantum field, and Σ can be any
spacelike hypersurface cutting all timelike curves in the spacetime, since we
know that KµTµν is conserved. A simple choice for Σ is the hyperplane of zero
SE time for the chosen observer.

This quantity E is supposed to be the energy of the field as gauged by
an observer following a flow line of the KVF. Note that K can be assumed
normalised along the observer worldline. However, the expression (10) for E
integrates KµTµν over places where Kµ is not normalised, whence we cannot
claim that this quantity is the density of energy–momentum (a four-vector with
components equal to the energy density and the rates of flow of energy per unit
area in three space directions) that would be measured by the observer following
the flow line of the KVF at that particular point.

Worse, all observers following flow curves of the Lorentz boost KVF are
accelerating, and we shall soon see that they themselves will not measure the
same things with their detectors as instantaneously comoving inertial observers,
according to the results of the discussion about detectors below. So this really
does look like a case of making the best definition of energy we can, constrained
by the requirement that the thing we integrate must be conserved.

Anyway, the usual QFT vacuum is thus described as a thermal bath of
Rindler particles at the Unruh temperature. It is usual to joke at this point that,
if we accelerate our lunch at high enough acceleration, it will cook, remembering
of course not to try to keep up with it! But can we demonstrate that an SE
observer will interact with those Rindler particles, just by the fact that she
is accelerating? Can we show that such an observer will end up in ‘thermal
equilibrium’ with them? Surprisingly, there are indeed arguments to support
such claims.

Things become a lot clearer when we stop talking about observers and start
talking about detectors. Consider the Unruh–DeWitt (UD) detector, which is
a pointlike detector with a linear interaction with the quantum field and two
energy levels (ground and excited). Clearly this was not chosen on the grounds
of physical realism, but more sophisticated models have been investigated, and
we shall assume that the following discussion is also borne out in more realistic
cases.

We can consider this detector in four different situations:

1. Stationary in an inertial frame in the Minkowski vacuum, it does not
excite.
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2. Accelerating uniformly in an inertial frame in the Minkowski vacuum,
it does excite. This case is also described by saying that the detector
is stationary, i.e., sitting at fixed SE space coordinates, in the Rindler
thermal bath. So we can understand its excitation through absorption of
the ontologically fuzzy Rindler particles.

3. Stationary in an inertial frame in a Minkowski thermal bath of the usual
(but nevertheless ontologically fuzzy) Minkowski particles at the Unruh
temperature corresponding to some eternal uniform acceleration, the de-
tector will excite, but not at the same rate as in case 2.

4. Accelerating uniformly in an inertial frame in the Rindler vacuum, a state
of the field in which there are no Rindler particles but which is full of
Minkowski particles, the detector will not excite, provided that it has
the right absolute acceleration as determined by specifying the motion
of the observer who set up this particular Rindler vacuum. (There are
different Rindler vacuums, depending on the worldline of the observer who
sets them up.) This case is also described by saying that the detector is
stationary in the Rindler vacuum, i.e., sitting at fixed SE space coordinates
for the observer who set up this Rindler vacuum construction. The striking
thing about this case is that the detector does not ‘see’ the Minkowski
particles in the field state, provided it has the right motion.

A large part of the discussion of the Unruh effect concerns interpretation of
the eternally uniformly accelerating cases in terms of Rindler particles, or their
absence, using the alternative expansion of the quantum field in terms of positive
and negative frequency solutions to the KG equation. Note, however, that
these expansions are not necessary in order to calculate the excitation of the
UD detector for arbitrary motion through the Minkowski vacuum. This can
always be done using the standard expansion of the quantum field in terms
of creation and annihilation operators associated with negative and positive
frequency operators for an inertial time coordinate, and in this sense, these
results are just standard results about the QFT vacuum.

Cases 1 and 3 above suggest that this detector does function in some sense
as a Minkowski particle detector, while cases 2 and 4 suggest that it functions
in some sense as a Rindler particle detector, provided that it is doing the right
thing in each case, i.e., provided that it has the right motion. Of course, such
claims are hampered as always by the ontological fuzziness of the particle notion
in quantum field theory.

What about temperature? We can consider not only excitation but also de-
excitation of the detector, and we find that the associated rates satisfy a detailed
balance relation. If we imagine a ‘gas’ of these pointlike detectors held at some
fixed SE space coordinate, i.e., uniformly accelerating, in the Minkowski vac-
uum (case 2), and if we consider their excitation and deexcitation rates, we find
that their energies will distribute over the two available energies (ground and
excited) in precisely the way we would expect for a gas at the Unruh tempera-
ture. Likewise for a similar detector ‘gas’ held stationary in an inertial frame in
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a Minkowski particle thermal bath at the corresponding temperature, despite
the fact that the excitation rates differ in the two cases. So there is some value
in this temperature interpretation and it does suggest that one’s lunch might
indeed cook if accelerated sufficiently.

To end, let us just compare the UD and Mould detectors:

• The Mould detector detects nothing when stationary in a Coulomb field,
just as the UD detector detects nothing when stationary in the Minkowski
(usual QFT) vacuum.

• The Mould detector detects radiation when accelerated through the Coul-
omb field, just as the UD detector detects something when accelerated
through the Minkowski vacuum.

• The Mould detector detects nothing when accelerated with the charge
source, just as the UD detector detects nothing when ‘stationary’, i.e.,
uniformly accelerating, in the Rindler vacuum.

• The Mould detector detects something when the charge is accelerated
and the detector is moving inertially, just as the UD detector will detect
something when moving inertially in a Minkowski thermal bath.

The parallel continues slightly:

• The excitation rate of the Mould detector when accelerated through a
Coulomb field is not the same as when it moves inertially through the
field of an accelerating charge (and in any case, the field of an acceler-
ating charge does not look exactly like a Coulomb field for any choice of
coordinates adapted to the motion of the accelerating charge).

• The excitation rate of the Unruh–DeWitt detector when uniformly accel-
erated through the Minkowski vacuum with some absolute acceleration
a, construed as being stationary in a Rindler thermal bath, is not the
same as its excitation rate when stationary in a Minkowski thermal bath
at a temperature equal to the Unruh temperature corresponding to the
acceleration a.

Those who study the Unruh effect have referred to the whole subject of the
discussion about uniformly accelerating charges and the equivalence principle
as being merely a semantic issue! But what is physics if not the semantics of
our mathematical models, i.e., an attempt to extract meaning from such models
in the context of physical measurement in the real world?

In any case, the same could be said about accounts of the Unruh effect. And
a problem remains with these accounts: they claim to give the perspective of
an accelerating observer, while it is quite clear that this approach only works
(only exists) when the accelerating worldline is a flow curve of a Killing vector
field. Without this, there is apparently no elegant alternative construction of
the quantum field theory.
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Note on the Exercise for the Reader

Consider a situation in the naive SR version of gravity, in which gravity is just
a force, and we have Maxwell’s theory in flat spacetime. Imagine an observer
sees a set of particles of various masses all accelerating away with the same ac-
celeration. She may construe this as a situation in which there is a gravitational
field and the particles are in free fall while she is held up against fall (case 1), or
one in which there is no gravitational field, the particles are moving inertially,
and she is accelerating away from the particles (case 2).

A Newtonian EP based on the equality of passive gravitational mass and
inertial mass claims that these situations will be indistinguishable to that ob-
server. But what happens if the particles are charged? When they are freely
falling, they will generate EM radiation in the inertial frame of the observer,
because they are accelerating in this SR picture. But if they are stationary in an
inertial frame, they will produce Coulomb fields, and in order for the two situa-
tions to be ‘indistinguishable’, the accelerating observer in this second scenario
must ‘see’ these Coulomb fields as radiating fields.

Unfortunately, whatever coordinates or other frame the accelerating observer
uses in the second case, the Coulomb fields of the charges will not look exactly
like the radiating fields of accelerating charges to an inertially moving observer,
so that would nevertheless fail in the details.

What would be a GR version of this thought experiment? Actually, the two
situations can be construed in many ways, but the one to watch is this. If we
consider case 1 to be free fall of the particles and the observer supported against
free fall, and case 2 to be inertial motion of the particles and acceleration of the
observer, then the two scenarios are identical in GR and there is no more to be
said about distinguishing them.
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