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Abstract—During routine inspecting, mobile robot may be 
requested to leave for certain locations to do special tasks 
sometimes. This study aims at optimal path planning for this 
multiple goals visiting task based on tailored genetic algorithm. 
We adopt idle time (non-working time) as the decision factor for 
evaluating the path [1, 2]. The proposed algorithm will generate 
an optimal path that has the least idle time. In the algorithm, 
customized chromosome representing a path and genetic 
operators including repair and cut are developed and 
implemented. Afterwards, simulations are carried out to verify 
the effectiveness and applicability. Finally, analysis of simulation 
results is conducted and future work is addressed. 

Keywords—mobile robot; optimal path planning; multiple goals 
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I.  INTRODUCTION 
Mobile robots have been developed for many real-life tasks 
such as automatic patrolling in a transformer substation [3], 
welding automatically in a production line [4] and guiding in a 
campus [5]. For all the applications, path planning plays an 
important role in navigating robot to execute missions [6-7]. 
Further, it is generally occurred that more than one accessible 
path can be found, which indicates that a strategy is necessary 
for selecting the optimal or near-optimal path. In recent years, 
the important issue of optimal path planning has attracted 
considerable attentions. 

Types of Path Planning 

Generally, path planning is to find a suitable collision-free path 
for a robot moving from a start point to a fixed target location 
[8-9]. In this situation, there have just one start location and 
one goal. However, in different applications, there are other 
four types of path planning according to the number of start 
points and goals: (i) one robot starts from a point, and chooses 
a goal from multiple candidate goals to move to. For example, 
when needing to recharge, the robot should select a docking 
station from all the stations to go to [1]; (ii) one robot moves 
from a start point and arrives at a destination while during this 
course, it must visit parts of the specified goals, for example, to 
pick up loads and at last carry them to the target location [10]; 
(iii) multiple mobile robots leave from the same start point and 
go towards the same goal [11]; (iv) multiple robots start from 
different initial points and move to different goals [12, 13]. In 
this study, we will solve the problem that a robot sets off from 
a point and traverses the specified goals. Compared with other 

researches, it has two properties: (i) none is designated as the 
ultimate goal; (ii) no order is set for visiting the goals. 
Objectives for Optimal Path Determination 

Among researches about optimal path planning, mainly path 
length is used for evaluating a path [14, 15]. However, when 
various features of outdoor environment are considered such as 
friction and gravity, other criteria are proposed for determining 
an optimal path. For example, Wang et al. intend to plan a 
time-optimal trajectory for the mobile robot [16]. When finding 
optimal paths on terrains for a mobile robot, Sun et al. use 
energy consumed due to friction and gravity as the cost of a 
path [17]. In [18] researchers considered the energy expended 
on rotating, since in the environment with many walls and 
corners, it may cause much energy consumption if rotating 
frequently. For planning an optimal path to multiple goals, 
Lobaton et al. took retracing into consideration [19]. In a 
particular application, the robot is required to pick up loads on 
the way, so the optimal way is that costing less time and 
collecting more loads [10]. 

In previous research on optimal path planning, on 
consideration of road attributes including length, road grade, 
surface roughness and the set of speed hump, we have studied 
optimal path planning based on energy consumption [20]. 
Further, by taking into consideration influence of vibration on 
mobile robot induced by motion, we proposed the decision 
factor---idle time (non-working time) as the cost of a path, 
which is proven to be more comprehensive on evaluating a 
path [1, 2]. In this study, idle time is employed to evaluate the 
path. 

GA-based Path Planning 

Genetic algorithm (GA), based on the mechanism of natural 
selection and natural genetics, was first developed in the 
1970s by Holland [21]. It is an evolutionary optimization 
method and is proven to perform well in optimal path planning 
[22]. To use GA, one should first find a pattern to express the 
feasible solutions, which is called chromosome. Besides, it is 
necessary to create a fitness function to evaluate each solution. 
The most challenging part is developing some appropriate 
genetic operators acting on the population of each generation 
that is the set of solutions. After evolving by certain 
generations, the optimal one will be determined by a criterion.  

For diverse applications, due to the differentiation of problems, 
various modifications are made based on basic GA to solve 
concrete problems. In many occasions, researches use fixed-
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length chromosome to represent a path [23, 24]. While in 
other circumstances, variable length chromosomes are used. 
For example, in a grid-based environment, authors use string 
of cells to describe a path whose length is unfixed [25-27]. 
Meanwhile, different forms of fitness functions are created 
due to the fact that different objectives should be considered in 
respective application, such as path length [14], energy 
consumption [28], time consumption [16], smoothness and 
safety [29]. The key for evolution is the genetic operators. 
Traditionally, two operators, i.e., crossover and mutation are 
used nearly in all applications [26]. They play significant pole 
in adding diversity to the population and therefore are in favor 
of finding the global optimal solution. Apart from them, 
customized genetic operators are often established according 
to different purposes. For example, to make a feasible solution 
better, operator improvement is designed, which will randomly 
choose a node, and search in neighboring grids of the node, 
and move it to a better location [25]. In [27], deletion is 
employed to eliminate duplicate nodes existed in a path and 
adjust an individual in order of search direction. Various 
customized operators have enlarged the field of application of 
GA-based method vastly.  

In this paper, for the multiple goals visiting task, we proposed 
a tailored genetic algorithm to find an optimal path. This 
section has summarized related work and introduced our 
research. The remainder of this paper is organized as follows: 
in section 2, we will state the problem including the model of 
work environment, the multiple goals visiting task and 
properties of a path. In section 3, tailored genetic algorithm is 
described in detail. Then, simulations and analysis of results 
are conducted in section 4. Finally, conclusion and future 
work are addressed. 

II. PROBLEM FORMATION 
In this section, we expand on the problem including the model 
of work environment and the task of multiple goals visiting. 
At last we introduce the properties of a path that are very 
important for the proposed genetic algorithm. 

2.1 Model of Work Environment 
We use a graph-based topological map to describe the work 
environment [1, 2], which is illustrated in Fig. 1. In the map, 

( . . 0,1)mP i e m =  represents a path segment, and A  to H  are 
nodes connecting two or more path segments respectively. For 
each segment, four attributes are considered, i.e., path 
length mlp , surface roughness mrp , road grade mgp  and the 
set of speed-control hump mhp . Besides, there have charging 
stations placed in the environment, each of which is named 
as ( . . 0,1)hD i e h = . For example, in Fig.1, 0D is a charging 
station. 

In previous study [1, 2], we have elaborated the cost of a path 
segment. The cost that the robot will pay for passing each 
segment includes two parts: energy consumption ec  and the 
influence of vibration on robot body bc . We use ( , )e bC c c  to 
describe the cost of each segment. Furthermore, the 
calculation of ec  and bc  is  
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where ˆec is the energy used for driving the motor and sc  is 
the energy that consumed by sensors on robot. 
By using ec  and bc , the idle time is computed as 

 ( , ) /IDLE e b e charge b MTTRT f c c c v c T= = +     (3) 
where chargev  is the charging speed and MTTRT  is used to 
describe the Mean Time To Repair (MTTR) of our robot. 
Details of derivation of these formulations and descriptions of 
other parameters are not expected to shown in detail in this 
paper since they are available in previous work [1, 2]. 

 
Figure 1. Model of work environment 

2.2 Task of Multiple Goals Visiting 
Normally when executing regular inspecting task, the robot 
traverses in accordance with predefined route in the 
environment. Occasionally, the robot may be commanded to 
go to certain positions to perform particular mission. At this 
moment, it should stop and plan an optimal feasible path to 
visit the goals one by one to accomplish the task. For example, 
in Fig. 2, when the robot is at point S , it is asked to visit 

1 2,G G and 3G  temporarily. 

 
Figure 2. Task of multiple goals visiting. 

The robot can choose any goal to visit first, which implies no 
order is set for the visiting task. Take the situation in Fig. 2 as 
an example. The robot can select the path colored in blue to 
visit all the goals. Thus, the sequence of goals visited is 



1 2 3G G G→ → , for which we use 1 1 2 3Γ { , , , , , }S A G G D G=  
to describe the whole path for completing the task. However, 
the robot may choose visiting 3G  before 2G , then the 
sequence becomes 1 3 2G G G→ → , and subsequently we get 
another feasible path 2 1 3 2Γ { , , , }S G G G=  that is colored in 
red in Fig. 2. 

2.3 Properties of a Path 

Several properties of a path are stated in this subsection. In the 
topological map used to describe the environment, the road 
network is constituted by connected nodes, which is illustrated 
in Fig. 1. Therefore, we use the combination of nodes to 
represent a path. In this research, four properties of a path are 
obtained: 

(a) A path is constituted of parts of the nodes. For example, 
the path colored in blue in Fig. 2 can be described as 

1 1 2 3Γ { , , , , , }S A G G D G= . This path is constituted by nodes 

1 2, , , ,S A G G D  and 3G  in which 1 2,G G and 3G  are the goals 
assigned. 

(b) There is no priority or constraint for the sequence of goals 
to be visited. The ultimate purpose is to visit as more as 
possible goals. So, whichever is visited first is permitted. For 
example, in Fig. 2, both paths 1 1 2 3Γ { , , , , , }S A G G D G=  and 

2 1 3 2Γ { , , , }S G G G=  are admissible. 

(c) It is permissible for a node appearing in the sequence more 
than once. For instance, in Fig. 3, one available path is 

1 2 4 3Γ { , , , , , , }2S G S G G G G= , where S  and 2G  both are 
visited twice. The purpose of the first arrival at one goal is to 
perform task, and that of the other times are for going to other 
goals. 

 
Figure 3. A special situation 

III. PROPOSED GENETIC ALGORITHM FOR PATH PLANNING 

Based on traditional genetic algorithm, modifications are 
made to fit our problem. We use the combination of nodes to 
represent the chromosome. The fitness functions include two 
parts which are used to calculate energy consumption and idle 
time respectively. Except the basic three operators, i.e., 
selection, crossover and mutation, we create two operators: 
repair and cut. 

3.1  Chromosome 

The proposed genetic algorithm uses the combination of nodes 
for path representation. An example of path encoding is shown 
in Fig. 4, which is 1 2 3S A G G D G− − − − − . In this 

chromosome, S  is the start point, A and D  are non-goal 
points, and 1G , 2G and 3G  are three goals. 

 
Figure 4. An example of chromosome in tailored genetic algorithm. 

Two different chromosomes may have different length. For 
example, the length of the chromosome shown in Fig. 4 is 6, in 
which 3 goals are involved. While the length of the 
chromosome in Fig. 2, 1 3 2S G G G− − − , is 4, and the same 3 
goals are included.   

3.2 Evaluation 

Chromosomes are selected for reproduction through genetic 
operators based on the fitness function, so it is important to 
establish a set of criteria to evaluate the quality of a path. For 
each individual, we adopt IDLETF to evaluate it, where IDLETF  
indicates the idle time induced by this path. The total energy 
consumption of a path is the sum of that of each path segment, 
so  

 
1

( )IDLE

N

T IDLE
i

F T i
=

= ∑                               (4) 

where N is the number of segments and (i)IDLET  is the idle 
time of the thi segment. 

3.3 Genetic Operators 

In proposed genetic algorithm, except the three basic operators, 
i.e., selection, crossover and mutation, we create two other 
operators, i.e., repair and cut. 

(1) Selection 

The selection operation will select the best individual from the 
population in each generation and keep it in the next 
generation. The selection is based on the fitness value. Here, 
some special characteristics of this operator are emphasized in 
the following. 

The best one that has the minimal IDLETF will be selected to 
remain in the next generation. This strategy can guarantee that 
the best one up to now will not be destroyed by other genetic 
operations and can accelerate the convergence of the 
algorithm. 

(2) Crossover  

Crossover is an efficient way to add diversity to the 
population. Firstly, a crossover probability is predefined. In 
this operation, two parents are selected randomly and a 
position is selected randomly too. Then, a random probability 
is generated. If the probability value is less than the predefined 
value, the operation will go on. Otherwise, the two parents are 
passed to the next generation directly. The operation will end 
until certain times of crossing operations are carried out. 



When executing crossover operation, a crossover point will be 
generated. Since the length of two parents may not be the 
same, the sequence number of the point will not be bigger than 
the length of the shorter one. Then, in the other parent, we find 
the corresponding node and its sequence number of the first 
appearance. If the other one has the same node, exchange the 
latter parts of the two parents. If not, quit and restart from 
choosing parents. 

The following is an example of crossover operation. First, two 
parents are selected: 

Parent 1: 1 3 2S G G G− − −  

Parent 2: 1 2 3S A G G D G− − − − −  

If point 1G  is selected as the position for exchanging, then we 
get the offspring after crossing: 

Child 1: 1 2 3S G G D G− − − −  

Child 2: 1 3 2S A G G G− − − −  

After crossing, the two children are put into the population of 
next generation. 

(3) Mutation  

In mutation operation, a position is randomly chosen and the 
node at this position is replaced with a different node. 
Mutation is served as a key role to diversify the solution 
population. Therefore, it is not necessary that a solution is 
better after mutating. After mutating, this node may not be 
connected directly with the two nodes before and after. For 
example, if node A  in path 1 2 3S A G G D G− − − − −  shown 
in Fig. 2 is chosen to mutate, and changes to C , then, this 
individual becomes 1 2 3S C G G D G− − − − − . However, as 
seen in Fig. 2, nodes S  and C , and C and 1G  are not 
connected directly, which is to say, the individual after 
mutation is not a feasible solution. Even so, it has made the 
population diversified, and the following operator repair  can 
make it feasible. 

(4) Repair  

When executing genetic operators, some infeasible paths may 
appear. For instance, after mutation, individual 

1 2 3S A G G D G− − − − −  becomes 1 2 3S C G G D G− − − − − . 
When this happens, we will use repair operator to solve this 
problem. The practical way is inserting some suitable nodes 
between the two nodes.  

Take string 1 2 3S C G G D G− − − − −  as an example. When 
executing repair operation, we first check if this individual is 
feasible by examine every two adjacent nodes. If at a position, 
the node and the next node are not connected directly, then, 
this operator will try to add some nodes between them in order 
to make the two connected reasonably. In the above example, 
the nodes S and C  may be inserted by node A , and then 
C and 1G  may be inserted by nodes 2G  or A , which is 
decided randomly. If A  is selected, then the individual is 
repaired to be 1 2 3S A C A G G D G− − − − − − − , and if 2G is 

selected, it will become 2 1 2 3S A C G G G D G− − − − − − − . 
No matter whichever is chosen, the result is that the path 
becomes feasible at last. 

(5) Cut  

In a chromosome, it is admissible that any node appears more 
than one time. But the unnecessary reduplication must be 
avoided. For example, in the string 

1 2 3S A C A G G D G− − − − − − − obtained after repairing, 
node A  appears twice and between them there has no goal. It 
can be regarded as that between the two times arriving at A , 
the intention is not for going to any goal. So, the sequence 
C A− is meaningless and it needs to be cut. Finally, this string 
becomes 1 2 3S A G G D G− − − − − . Therefore, the cut 
operator is to do such things that cutting the unmeaning 
sequences existing in each individual. However, the 
reduplication does not include the situation that a goal exists 
between the same two nodes. For instance, in chromosome 

2 1 2 3S A C G G G D G− − − − − − − , goal 2G  appears twice. 
But between them there is another goal 1G  which indicates 
that the purpose of arriving at 2G  for the second time is for 
visiting another goal. Thus, the second time passing 2G  is 
meaningful.  

IV. SIMULATIONS AND RESULTS 

In this section, simulations are implemented to examine our 
proposed tailored genetic algorithm. On top of this, with the 
simulation results, analysis and discussion are addressed in 
detail. 

4.1 Simulations and results 

We still use the topological map (noted as Ϟ) shown in Fig. 5 
in simulations, which is built in previous work [1, 2]. In 
addition, the attributes of each segment are also listed in [1].  

Figure 5. Topological map of environment. 

In simulations, parameters in the proposed genetic algorithm 
are set as follows: =30POPULATION_SIZE , and 

=100GENERATION_NUM . Crossover rate is 0.9cP =  and 
Mutation rate 0.001mP = . 

(1) Simulation I 



In this test, node A  is set as the start point, and the goals are 
,C H and M . We list out the concrete value of idle time of 

the best one in each generation in table 1 and show them in 
Fig. 6. It is obtained from the result that the optimal solution 
comes out in the 18th generation. The optimal path is 
A B C O M O P H− − − − − − − . Its idle time 

1022.1330IDLETF s=  and the order of visiting is ,,C M H . 

 
Figure 6. Result of simulation I. 

TABLE I.  DETAILS OF BEST INDIVIDUALS IN EACH GENERATION 

Generation Best individual ( )IDLETF s  

1-5 
A B C B N

M O P H
− − − −

− − − −
 1139.6626 

6-10 
A L M N B
C Q G H
− − − −

− − − −
 1128.5902 

11 
A L M O C
O P H
− − − −

− − −
 1090.5179 

12-17 
A L M O C
Q G H
− − − −

− − −
 1026.6969 

18-100 
A B C O M
O P H
− − − −

− − −
 1022.1323 

(2) Simulation II 

In this simulation, we set A as the start point, and the goals 
are H,N, O  andQ . One result is shown in Fig. 7. In the 30th 
generation, we get the optimal path that 
is A B N M O C Q G H− − − − − − − − . Its idle time is 
1123.5112s . The result shows that the robot can visit the 
goals in the order of , ,N O Q  , H . 

 
Figure 7. Result of simulation II. 

(3) Simulation III 

In this simulation, A  is the initial point, and goals are 
E, H, N and O . We show the result in Fig. 8. From Fig. 8, we 
get the optimal solution in the 92nd generation. The optimal 
path is A - B - N - M - O - P - H - G - F - E  and its idle time is 
1193.8413s . Therefore, the robot will visit these goals in the 
order of N, O , H , E . 

 
Figure 8. Result of simulation III. 

4.2 Analysis of the simulation results 

In the three simulations above, we implement our proposed 
tailored genetic algorithm to find the optimal path for multi-
goal visiting task and finally optimal solutions are obtained. In 
the following we will discuss about the similarity and 
differences between each case and evaluate the proposed 
genetic algorithm based on simulation results. 

(1) As the genetic algorithm itself is a kind of stochastic, 
evolutionary search method, the optimal solution obtained at 
the end may not be the global optimal one truly, but converges 
to.  



(2) In the three cases above, the speed of converging to the 
optimal solution is different. For example, the optimal one 
appears in the 18th generation in simulation I, while it is 
obtained in the 30th generation in simulation II, and 92nd  in 
simulation III. 

(3) Generally, when using GA method, the stop condition can 
be either that the best solution keeps unvaried for certain 
number of generations, or that the current maximum 
generation is exceeded [30]. In proposed genetic algorithm, 
the latter is adopted. However, in reality, both can not ensure 
the final solution is one hundred percent the optimal one, and 
therefore it is uncertain that which one is better absolutely. As 
an example, in simulation III, the solution generated firstly in 
the 30th remains the best one in the following 62 generations. 
If we use the former stop criterion, and set the maximum 
generation is 50 or 60, this solution will be regarded as the 
final optimal path. However, it is soon replaced by a better 
solution. Furthermore, if we set the maximum generation is 90, 
we also can not get the better solution that comes out soon. 

(4) In the topological map, there have just 17 path nodes. 
Since it is not a big number, the advantage of our method 
cannot be reflected on time complexity. In relevant studies on 
analogous problems, generally there are two kinds of solutions, 
which are stochastic search algorithm and exhaustive search 
method. The second method can guarantee that the optimal 
solution is sure to be found. However, when searching space 
grows exponentially as the nodes increases, time complexity 
will grow enormously too. Even in extreme cases, it seems 
impossible to complete in acceptable time. Under this 
circumstance, stochastic evolutionary search such as the 
proposed genetic algorithm will show great advantage because 
it can quickly locate high performance regions in extremely 
large and complex search space [10].  

V. CONCLUSION 
We have proposed a tailored genetic algorithm to plan an 
optimal path for the multi-goal visiting task. Aiming at the 
particularity of the problem, special form of chromosome is 
used to represent the path and customized genetic operators 
are development. The effectiveness of the method is verified 
by simulations. Furthermore, through analysis of simulation 
results, evaluation on our proposed method is addressed, 
which is useful for wider implementation in various 
circumstances. Future work will be carried out to consider the 
situation that energy is limited, and therefore, both it and idle 
time should be employed to evaluate the path. 
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