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ABSTRACT. The study is aimed at investigating the effects of the consecutive speed-
control humps on the dynamic behaviour of the vehicle passing the consecutive speed-
control humps. The consecutive speed-control humps were modeled by combination of
sine and trapezoidal wave of constant amplitude and variable frequency. A two-DOF
quarter vehicle model with nonlinear spring and damper is applied. Occurrence of chaotic
vibration is analyzed by bifurcation diagram, time history, phase portrait, Poincar map
and power spectrum. Furthermore, the exact range of excitation frequency that results in
chaotic vibration is derived.
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1. Introduction. Consecutive speed-control humps have become a popular tool for speed
reducing devices at a particular site of highway [1, 2]. Speed-control hump is one of the
most efficient equipment of speed limit preventing accidents and traffic fatalities. The
ideal hump should have the function of controlling speed forcibly as well as have mod-
erate influence of vibration on vehicle and comfort on passengers [3]. Unfortunately,
the usage of speed-control hump inevitably increases the roughness of road surface [4].
Therefore, the problem of speed-control hump and its influence on vehicle and passengers
unwanted vibration is still a subject of research [5, 6]. The chaotic response may appear
when the vehicle moves over a bumpy road due to various nonlinearities in the vehicle
[7, 8]. Therefore, chaotic vibration of a vehicle system model with nonlinear spring and
nonlinear damper has been attracted much attention. The researcher mainly discussed
the chaotic behaviour of vehicle excited by a sine wave of signal or multi-frequency with
different amplitudes, or by random road excitation [9, 10]. As the road excitation am-
plitude increases, chaotic motion will occur in the nonlinear vehicle. However, for an
actual road excitation generated by the consecutive speed-control humps, it is of constant
low-amplitude and wide range frequency, and the higher the velocity of the vehicle, the
higher of the excitation from road surface. The study on the effects of the consecutive
speed-control humps on the dynamic behaviour of the vehicle passing the consecutive
speed-control humps has not been almost considered by now. In this paper, main atten-
tion is given to the chaotic vibration of a nonlinear vehicle with low amplitude and high
frequency of the consecutive speed-control humps. A mathematical model of road exci-
tation coupling consecutive speed-control humps with velocity is built by combination of
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F1cUurE 1. Two DOF nonlinear quarter-vehicle model

sine and trapezoidal wave, and a dynamic equation of a two-DOF quarter vehicle suspen-
sion system is derived firstly. Then the effect of the consecutive speed-control humps on
the chaotic vibration of a vehicle is investigated by numerical simulation. The existence
of chaotic vibration is verified via of bifurcation diagram, time history, phase portrait,
Poincaré map and power spectrum.

2. Model of Vehicle Suspension System and Road Excitation. Figure 2 shows
the model of two-DOF quarter vehicle suspension system simulated and discussed in this
paper [11], where M and M, are the vehicle body and tire mass respectively, &k, and k; are
respectively spring forces of suspension and tire, ¢; and ¢; are respectively damping forces
of suspension and tire, x; and x, are vertical displacements of body and tire, respectively,
x, represents the road excitation in consecutive speed-control humps area.
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Ficure 2. Consecutive speed-control hump on highway and its model of
trapezoidal excitation

The amplitude of hump excitation increases with certain slope when a vehicle enters the
speed-control hump area, and decreases with certain slope when leaving this area, which
is similar to a trapezoidal wave. Then the hump excitation is described as trapezoidal
wave showed as trap(t) in Figure 2. Furthermore, a sinusoidal wave is considered as the
intrinsic excitation caused by highway surface. The combination of a sinusoidal wave
and a trapezoidal wave is used do described the excitation generated by consecutive
speed-control humps area on highway. Thus, the consecutive speed-control humps are
approximated as

xy = Asin(27t/T) + trap(t) (1)
where .
Lot t<t,
h, t, <t <t
trap(t) = Lo x (Ti—t), ty<t<Ty @
0, Ty <t<T
and A is the amplitude of sinusoidal excitation.
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In Figure 2, T} is the time the vehicle passes a hump, [T7,7] is the time the vehicle
passes the road between two adjacent humps, 7' is the period of road excitation, and
h is the amplitude of trapezoidal excitation. Usually the value of h is between 0.003m
and 0.015m, and it is set to 0.008m here. When a vehicle passes a segment of speed-
control hump with s; at speed v, the time passing adjacent humps will be T'— T or sy/v,
excitation frequency f is equal to 1/T, thus the relation of speed v and frequency f can

be described as
v

1

/= T 5+ 5, 3)

In practice, the parameters of a hump are set to s; = 0.5m and sy = 0.8m. The

speed that the vehicle goes through consecutive speed-control humps area on highway is

restricted to 25 — 90km/h. Then, the range of frequency of road excitation on highway is
bounded to 5 — 17H z, which is used in the following study.

According to Newton’s second law, the equations of motion of vehicle suspension system

showed in Figure 2 are given by
{ Mz, = _fk:s - fcs - Msg (4)
My = frs+ Jes = Joo — oo — Mug

where fis, fru, fes and fe, are spring forces of body and tire, damping forces of body and
tire respectively, and have the following nonlinearity characteristics [11].

Jrs = ka(ws — 2y — 05) + koo (w5 — 2y — 65)° + kos(@5 — 20 — 65)° (5)
oo = kn(my — 3y — 6y) + kp(zy — 7 — 5u)2 + k(T — T — 5u)3 (6)
fes = cs(ds — dy) (7)
fa = by — 1) (8)

Taking d, and ¢, as the initial displacements of spring in a state of balance when vehicle
body and tires are in loaded, the state equations of suspension system for equilibrium state
can be expressed as

(Mg + M,)g = kndy — k202 + ki36}
Letting (M, + M,)g = F and M,g = ¢, from (9) we have
ks
85 = 3723 — (2'Y3(—=k2, 4 Bksiks3))/ (Bkss(2k2, — kg ksakss + 27qh>
(AR + Bk + (2K, — Okankaaka + 27gk%)2) /)
1 3 2
-+ m((QkSQ — 9k81k82l€83 -+ 27q/~€s3
+ \/(4(—l€§2 + 3kslks3)3 + (2]?22 - 9k81k82k83 + 27qk§3))2)1/3)
k
by = ﬁ — (2'Y3(=k2 + 3ky ki) / (Bkis(2k2, — Ok kpokys + 2TF K,
i
4 (AR + Bkakis)? + (2K — Okakeokes + 2TFkE))))

1
* 3% 21/3 x kyg

+ \/(4(—/{?2 + Bkukis)® + (2k3, — Ok kinkis + 27Fk%))2)' )

Parameters of system (9) for numerical simulation areshown in Table 1. Here, the values
of above parameters are chosen from an experimental equipment of two-DOF quarter
vehicle suspension system showed in Figure 2.

((2k%, — Ok kiokss + 2TF kX
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TABLE 1. Numerical values of the system parameters

Parameter Value Parameter Value

M, 0.694kg ko 19041.0N/m?
M, 0.353kg ki3 563307.0N/m?
ko 517.8N/m Cs 1.35N - s/m
koo 26082.0N/m? Ct 1.8N -s/m
kg3 —T718349.0N/m3 ¢ 9.8m/s?

FicUrE 3. Experimental equipment of two-DOF one quarter vehicle sus-
pension system

3. Numerical Simulation.

3.1. Analyzing with bifurcation diagram. It is known that the dynamics of a system
may be analyzed through a bifurcation diagram, which is obtained by plotting the dis-
placement of system versus the frequency of the excitation term. For studied system, the
amplitudes of sinusoidal and trapezoidal excitation are 0.0015m and 0.008m respectively,
and excitation frequency varies from 5Hz to 17H z.

Figure 4(a) and Figure 4(b) represent the bifurcation diagrams of =, and z,, by evolving
along with the varying excitation frequency. Figure 4(a) and Figure 4(b) show that x, and
T, may move into chaotic vibration when the frequency of road excitation is in the ranges
of 9.7 —11.7THz and 12.5 — 15H z. While there was no sign of chaotic vibration even if the
error of the amplitude of response seems big, but there are signs of variation with multi-
base frequencies between 11.7 and 12.5hz. According to (3), the speed that will cause
chaotic vibration is derived to be in the range of 45.4 — 54.8km/h and 58.5 — 70.2km/h.
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(a) Bifurcation diagram of x4 (b) Bifurcation diagram of x,,

F1GURE 4. Bifurcation diagram of x,; and x,

3.2. Discussion of vibration performance. In order to further reveal the possible
existence of chaotic in z; and z,,, the chaotic vibration that z; and z,, f = 13.3Hz and f =
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12.1Hz are respectively chosen as the frequency of road excitation. Then the vibration
performance of the system is discussed using time history, phase portrait, Poincaré map
and power spectrum.

3.2.1. In the case of f = 13.3Hz. Figure 5 shows the time history, phase portrait,
Poincaré map and power spectrum of x; when the excitation frequency is 13.3Hz, and
Figure 6 shows those of x,,.
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F1GURE 5. Time history, phase portrait, Poincaré map and power spectrum
of xy when f =13.3Hz

Figure 5 shows that the time history of x; appears erratically, the phase portrait and
the Poincaré map are hazy, and power spectrum is continuous, which indicate that x; has
the character of chaotic vibration. Also in Figure 6, the time history of z,, has the feature
of irregular, the phase portrait and Poincaré show hazily, power spectrum is continuous,
which imply that x, evolves chaotically. As a conclusion, the vehicle suspension system
has a chaotic motion when excitation frequency is 13.3H z.

3.2.2. In the case of f = 12.1Hz. Figure 7 shows the time history, phase portrait,
Poincaré map and power spectrum of x; when the excitation frequency is 12.1Hz, and
Figure 8 shows those of z,,.

Figure 7 shows that the time history of x4 evolves periodically, the phase portrait is
composed by circular lines, the Poincaré map is constituted by some discrete points, which
indicate that evolves with multi-base frequencies. Further more, the power spectrum of
x, consists of few peak frequencies which hold that x, evolves with multi-base frequencies
as well. Likewise, Figure 8 shows x, evolves with multi-base frequencies. Consequently,
the vehicle suspension system posses the performance of multi-base frequencies motion
when excitation frequency is 12.1Hz.

4. Conclusions. In the present paper, effect of consecutive speed-control humps on the
chaotic vibration of a vehicle when passing consecutive speed-control humps area on
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F1GURE 8. Time history, phase portrait, Poincaré map and power spectrum
of z, when f =12.1Hz

highway is investigated. The excitation generated by consecutive speed-control humps is
approximated by the combination of sinusoidal and trapezoidal wave. It is found that
the chaotic vibration may appear in vehicle when the road excitation frequency is within
the range of 9.7 — 11.7Hz and 12.5 — 15H 2, which is corresponded to 45.4 — 54.8km/h
and 58.5 — 70.2km/h of speed. The relation between excitation frequency and vehicle
speed is derived in this paper, with which the vehicle speed can be controlled and speed-
control humps can be better fixed to make the road excitation frequency appears out of
the range above, further to keep the suspension system from chaotic motion. The study
is mostly numerical simulation established on model of experiment equipment, and next
experimental verification will be launched.

Acknowledgements. This research was supported by Program of New Century Excel-
lent Talent in University (NCET-06-0766).

REFERENCES

[1] S. Bjarnason, Round top and flat top humps: The influence of design on the effect, Lund: Lund
Institute of Technology, 2004.

[2] D. Smith, S. Hallmark and K. Knapp, Temporary speed hump impact evaluation, Lund: Towa State
Unmiversity, 2002.

[3] W. Zhang, L. Wei and Q. Yu, Effect of road hump on driving comfort and safety of vehicles, Journal
of Chang’an University (Natural Science Edition), vol.28, no.4, pp.95-98, 2008.

[4] J. P. Hessling and P. Y. Zhu, Analysis of vehicle rotation during passage over speed control road
humps, International Conference on Intelligent Computation Technology and Automation, pp.304-
308, 2008.

[5] O.Kropac and P. Muckap, Effect of obstacles in the road profile on the dynamic response of a vehicle,
Proc. of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol.222,
no.3, pp.353-370, 2008.



1664 F. LIU, S. LIANG, Q. ZHU AND Q. XIONG

[6] W. Gao, N. Zhang and H. P. Du, A half-car model for dynamic analysis of vehicles with random
parameters, The 5th Australasian Congress on Applied Mechanics, Brisbane, Australia, vol.1, pp.595-
600, 2007.

[7] J. Jenny and S. Annika, Nonlinear dynamic behaviour of coupled suspension systems, Meccanica,
vol.38, pp.43-59, 2003.

[8] L. M. Sun and B. Hang, Dynamic balance instrumentation of automobile tire, ICIC Exzpress Letters,
vol.3, no.4, pp.1287-1292, 2009.

[9] S. H. Li and S. P. Yang, Investigation on combination resonance in a nonlinear vehicle suspension
system with multi-frequency excitations, Journal of Shijiazhuang Railway Institute, vol.16, no.1,
pp-19-23, 2003.

[10] G. Litak, M. Borowiec, M. I. Friswell and W. Przystupa, Chaotic vibration of a quarter-car model
excited by the road surface profile, Communications in Nonlinear Science and Numerical Simulation,
vol.13, no.7, pp.1373-1383, 2008.

[11] Q. Zhu and M. Ishitobi, Chaotic oscillations of a nonlinear two degrees of freedom system with air
springs, Dynamics of Continuous, Discrete and Impulsive Systems (Applications and Algorithms),
vol.14, pp.123-134, 2007.



