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Abstract 

During routine inspecting, mobile robot may be requested to leave for certain locations to perform 

particular tasks occasionally. This study aims at optimal path planning for this multiple goals visiting task 

based on tailored genetic algorithm. We employ two objectives, i.e., energy consumption and idle time 

(non-working time) [1-2]. Under constraint of energy, the proposed algorithm will generate an optimal 

path that comprises as more goals as possible and as less idle time as possible. In this algorithm, 

customized chromosome representing a path and genetic operators including repair, cut and deletion are 

developed and implemented. Afterwards, simulations are carried out to verify the effectiveness and 

applicability. Finally, analysis of simulation results is conducted and future work is addressed.  
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1. Introduction  

Mobile robots have been developed for many real-life tasks such as automatic patrolling in a transformer 

substation [3], welding automatically in a production line [4] and guiding in a campus [5]. For all the 

applications, path planning plays an important role in navigating robot to execute missions [6-7]. Further, 

it is generally occurred that more than one accessible path can be found, which indicates that a strategy is 

necessary for selecting the optimal or near-optimal path. In recent years, the important issue of optimal 

path planning has attracted considerable attentions. 
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Types of Path Planning 

Generally, path planning is to find a suitable collision-free path for a robot moving from a start point to a 

fixed target location [8-9]. In this situation, there have just one start location and one goal. However, in 

different applications, there are other four types of path planning according to the number of start points 

and goals: (i) one robot starts from a point, and chooses a goal from multiple candidate goals to move to. 

For example, when needing to recharge, the robot should select a docking station from all the stations to 

go to [1]; (ii) one robot moves from a start point and arrives at a destination while during this course, it 

must visit parts of the specified goals, for example, to pick up loads and carry them to the target location 

[10]. Specially, if the robot must visit all the path nodes in the environment and finally return to the initial 

point, it is well known as the routing problem of TSP (Traveling Sales Problem) [11]; (iii) multiple mobile 

robots leave from the same start point and go towards the same goal [12]; (iv) multiple robots start from 

different initial points and move to different goals [13-16]. In this study, we will solve the problem that a 

robot sets off from a point and traverses the specified goals. Compared with other researches, it has three 

properties: (i) none is designated as the ultimate goal; (ii) every goal may be the final destination 

according to (i); (iii) no order is set for visiting the goals. 

Objectives for Optimal Path Determination 

Among researches about optimal path planning, mainly path length is used for evaluating a path [17-18]. 

However, when various features of outdoor environment are considered such as friction and gravity, other 

criteria are proposed for determining an optimal path. For example, Wang et al. intend to plan a 

time-optimal trajectory for the mobile robot [19]. When finding optimal paths on terrains for a mobile 

robot, Sun et al. use energy consumed due to friction and gravity as the cost of a path [20]. Liu et al. also 

treat energy efficiency as the central factor in the cost function when developing the global path planner 

for the mobile robot [21]. In [22], researchers considered the energy expended on rotating, since in the 

environment with many walls and corners, it may cause much energy consumption if rotating frequently. 
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For planning an optimal path to multiple goals, Lobaton et al. took retracing into consideration [23]. In a 

particular application, the robot is required to pick up loads on the way, so the optimal way is that costing 

less time and collecting more loads [10]. 

In previous research on optimal path planning, on consideration of road attributes including length, road 

grade, surface roughness and the set of speed hump, we have studied optimal path planning based on 

energy consumption [24]. Further, by taking into consideration influence of vibration on mobile robot 

induced by motion, we proposed the decision factor---idle time (non-working time) as the cost of a path, 

which is proven to be more comprehensive on evaluating a path [1-2]. In this study both energy 

consumption and idle time are employed to evaluate the path. 

Multiple Objectives Optimal Path Planning 

Practically, when finding the optimal path, more than one factor will be taken into account. In terrains, as 

partial road segments are easy to pass while some are difficult, authors use two factors, namely path length 

and difficulty for evaluation of paths [25-26]. In parts of applications, there is no longer a single optimal 

solution but rather a whole set of possible solutions of equivalent quality if more than one objective is 

considered. When dealing with multiple objectives, researchers have created effective methods for 

different situations. A common way is to assign a weight to each objective, and then use the sum or 

product of the weighted value of each objective as the decision factor for evaluating a path [27-29]. The 

advantage of this method is simple and easy to realize. However in some situations, it is difficult to give an 

exact weight for each factor, so other methods dealing with the objectives are proposed. Takanori Shibata 

et al. use a fuzzy set to determine the fitness of a string (representing a path) where each value is decided 

by effects of two objectives, i.e., time and load [10]. Lexicographic method is another effective approach 

with which the objective functions are arranged in order of importance [30]. In addition, it is reasonable to 

pursue an optimal solution according to one criterion while satisfying other objectives that are used as 

constraints, which is called “Bounded objective function method” in [30]. Moreover, Gideon Avigad et al. 



4 
 

have studied the sequential optimization-constraint multi-objective problems, where different optimal 

solutions are generated in accordance with different planning demands [30]. 

GA-based Path Planning 

Genetic algorithm (GA), based on the mechanism of natural selection and natural genetics, was first 

developed in the 1970s by Holland [32]. It is an evolutionary optimization method and is proven to 

perform well in optimal path planning [33]. To use GA, one should first find a pattern to express the 

feasible solutions, which is called chromosome. Besides, it is necessary to create a fitness function to 

evaluate each solution. The most challenging part is developing some appropriate genetic operators acting 

on the population of each generation that is the set of solutions. After evolving by certain generations, the 

optimal one will be determined by a criterion.  

For diverse applications, due to the differentiation of problems, various modifications are made based on 

basic GA to solve concrete problems. In many occasions, researches use fixed-length chromosome to 

represent a path [34-35]. While in other circumstances, variable length chromosomes are used. For 

example, in a grid-based environment, authors use string of cells to describe a path whose length is 

unfixed [27, 36-38]. Meanwhile, different forms of fitness functions are created due to the fact that 

different objectives should be considered in respective application, such as path length [17], energy 

consumption [21], time consumption [19], smoothness and safety [39]. The key for evolution is the 

genetic operators. Traditionally, two operators, i.e., crossover and mutation are used nearly in all 

applications [37]. They play significant pole in adding diversity to the population and therefore are in 

favor of finding the global optimal solution. Apart from them, customized genetic operators are often 

established according to different purposes. For example, to make a feasible solution better, operator 

improvement is designed, which will randomly choose a node, and search in neighboring grids of the node, 

and move it to a better location [27]. This function is also realized in [25] by an operator with the name 

repair. In [27], there is also an operator called repair, while it is used for make infeasible path feasible. In 
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[38], deletion is employed to eliminate duplicate nodes existed in a path and adjust an individual in order 

of search direction. In addition, insertion is developed to make invalid path qualified by inserting nodes 

between unconnected nodes. Various customized operators have enlarged the field of application of 

GA-based method vastly.  

In this paper, for the multiple goals visiting task, we proposed a tailored genetic algorithm to find an 

optimal path to visit as more goals as possible and two objectives, i.e., energy and idle time are both 

employed. As the robot is powered by rechargeable batteries, energy is limited and therefore should be 

taken into account in planning. In addition, on consideration of road attributes, we use idle time to evaluate 

a path if energy is sufficient. Based on the basic GA, modifications on expression of chromosome and 

genetic operators are made to fit the concrete case in this paper. This section has summarized related work 

and introduced our research. The remainder of this paper is organized as follows: in section 2, we will state 

the problem including the model of work environment, the multiple goals visiting task and properties of a 

path. In section 3, tailored genetic algorithm is described in detail. Then, simulations and analysis of 

results are conducted in section 4. Finally, conclusion and future work are addressed. 

 

2. Problem Formation 

In this section, we expand on the problem including the model of work environment and the task of 

multiple goals visiting. At last we introduce the properties of a path that are very important for the 

proposed genetic algorithm. 

2.1 Model of Work Environment 

We use a graph-based topological map to describe the work environment [1-2], which is illustrated in Fig. 

1. In the map, ( . . 0,1)mP i e m  represents a path segment, and A  to H are nodes connecting two or more 

path segments respectively. For each segment, four attributes are considered, i.e., path length mlp , surface 
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roughness mrp , road grade mgp  and the set of speed-control hump mhp . Besides, there have charging 

stations placed in the environment, each of which is named as ( . . 0,1)hD i e h . For example, in Fig.1, 0D is a 

charging station. 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 1. Model of work environment. 

In previous study [1-2], we have elaborated the cost of a path segment. The cost that the robot will pay for 

passing each segment includes two parts: energy consumption ec  and the influence of vibration on robot 

body bc . We use ( , )e bC c c  to describe the cost of each segment. Furthermore, the calculation of ec  and bc  

is  

_ _

ˆ
( )
(Δ cos( ) Δ sin ( )+ )

 
 
 

e e s

e s ml

e r mr mg e g mg s ml

c c c
r r p

r p p r p r p
                                             (1) 

_
_ fb μ

b mr ml mh b h
f

r
c ηp p p r

μ
                                                                        (2) 

where ˆec is the energy used for driving the motor and sc  is the energy that consumed by sensors on robot. 

By using ec  and bc , the idle time is computed as 

                      ( , )  e
IDLE e b b MTTR

charge

cT f c c c T
v

                                                                (3) 

0D

0P

mP

2P 3P

mlp

•

•

•

•

•

A

speed control hump

xy
(0,0)•

•

B

1P

C

E

D
•

F
G

H

1D



7 
 

where chargev  is the charging speed and MTTRT  is used to describe the Mean Time To Repair (MTTR) of our 

robot. Details of derivation of these formulations and descriptions of other parameters are not expected to 

shown in detail in this paper since they are available in previous work [1-2]. 

2.2 Task of Multiple Goals Visiting 

Normally when executing regular inspecting task, the robot traverses in accordance with predefined route 

in the environment. Occasionally, the robot may be commanded to go to certain positions to perform 

particular mission. At this moment, it should stop and plan an optimal feasible path to visit the goals one 

by one to accomplish the task. For example, in Fig. 2, when the robot is at point S , it is asked to visit 

1G , 2G and 3G  temporarily. 

The robot can choose any goal to visit first, which implies no order is set for the visiting task. Take the 

situation in Fig. 2 as an example. The robot can select the path coloured in blue to visit all the goals. Thus, 

the sequence of goals visited is 1 2 3 G G G , for which we use 1 1 2 3Γ { , , , , , } S A G G D G  to describe the 

whole path for completing the task. However, the robot may choose visiting 3G  before 2G , then the 

sequence becomes 1 3 2 G G G , and subsequently we get another feasible path 2 1 3 2Γ { , , , } S G G G  that is 

coloured in red in Fig. 2. 

 
 
 
 
 
 
 
 

Figure 2. Task of multiple goals visiting. 

The ideal situation is that the robot can visit all the goals by using the remaining energy. But in real-life 

cases, it is possible that the remaining energy is not sufficient for the robot to visit all the goals. Therefore, 
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task. The expecting result is to make the robot visit as more goals as possible under the precondition that 

after arriving at the last goal the robot still has enough energy to reach one charging station. For example, 

in Fig. 2, if the robot can’t get to 3G  when following the most energy-saving path 1Γ , it can decide not 

visiting goal 3G , then the optimal path is 1 1 2Γ { , , , } S A G G  and 2G  becomes the last goal to be visited. 

Certainly the worst situation is that the remaining energy can not support for visiting even one goal. 

Consequently, three cases can be obtained that are shown in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Three cases of task execution. 

(i) The robot can visit all the goals and the remaining energy is enough for reaching a charging station, 

which is shown as situation (a) in Fig. 3;  

 (ii) The robot can just visit a portion of the goals and has to go back to one charging station. For example, 

in situation (b) in  Fig. 3, the robot can not get to 3G  after visiting 2G  which means the robot can just visit 

two goals, i.e., 1G  and 2G . 

 (iii) The robot can not visit even one goal and has to go back to recharge. In situation (c) in Fig. 3, the 

robot even has not enough remaining energy to visit the first goal 1G . It should go back to charging station 

to recharge right now. Thus, it will not execute the task. 

2.3 Properties of a Path 
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Several properties of a path are stated in this subsection. In the topological map used to describe the 

environment, the road network is constituted by connected nodes, which is illustrated in Fig. 1. Therefore, 

we use the combination of nodes to represent a path. In this research, four properties of a path are 

obtained: 

(i) A path is constituted of parts of the nodes. For example, the path coloured in blue in Fig. 2 can be 

described as 1 1 2 3Γ { , , , , , } S A G G D G . This path is constituted by nodes 1 2, , , ,S A G G D  and 3G  in which 

1 2,G G and 3G  are the goals assigned. 

(ii) There is no priority or constraint for the sequence of goals to be visited. The ultimate purpose is to visit 

as more as possible goals. So, whichever is visited first is permitted. For example, in Fig. 2, both paths 

1 1 2 3Γ { , , , , , } S A G G D G  and 2 1 3 2Γ { , , , } S G G G  are admissible. 

(iii) It is permissible for a node appearing in the sequence more than once. For instance, in Fig. 4, one 

available path is 1 2 4 3Γ { , , , , , , } 2S G S G G G G , where S  and 2G  appeared twice. The purpose of the first 

arrival at one goal is to perform task, and that of the other times are for going to other goals. 

 
 
 
 
 
 
 
 

Figure 4. A special situation. 

 (iv) Since it may occur that the energy is not sufficient for visiting all the goals, the optimal path may not 

include all the goals. That is to say, for the case (b) shown in Fig.3, the optimal path will be 1 2Γ { , , } S G G , 

which does not include goal 3G . And in situation (c) in Fig. 3, the robot can not visit any goal and therefore 

there is no feasible path. Consequently, it is not requested that the result of path planning has to be a 

feasible path including all the goals. It is also reasonable to report the result that no feasible path is 

possible for the robot performing the task. 
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3. Proposed Genetic Algorithm for Path Planning 

In this section, we will first introduce the basic knowledge of genetic algorithm. Then the proposed 

tailored genetic algorithm is introduced to solve the problem described above. 

3.1 Basis of Genetic Algorithm  

As an advanced stochastic search technique similar to natural evolution based on the principle of “survival 

of the fittest” [27], traditionally, genetic algorithm involves three basic genetic operations to stimulate the 

adaptive process of natural systems: Selection, Crossover and Mutation.  

Selection is an operator to select the survival in a set of present candidate individuals (usually being called 

population) according to the fitness value computed by the fitness function. The selected individual(s) will 

be kept surviving in the next generation.  

Crossover is an operator adopted to reform the survival candidates. Usually, it is performed by exchanging 

parts of strings by use of old strings and then new strings are generated. This process derives from the 

natural system, in which a set of creatures creates a new set of the next generation by swapping among the 

creatures. Often the parts are crossed in couples of candidates selected randomly. When using this operator, 

one should determine a crossing rate to decide how often the selected individuals will carry out this 

operation. 

Mutation is another way to increase the diversity of population. Compared to crossover, mutation rate is 

much smaller. Another important function of this operator is to avoid trapping in the local minima in the 

search space. 

3.2 Tailored Genetic Algorithm  

Based on traditional genetic algorithm, modifications are made to fit our problem. We use the combination 

of nodes to represent the chromosome. The fitness functions include two parts which are used to calculate 
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energy consumption and idle time respectively. Except the basic three operators, i.e., selection, crossover 

and mutation, we create three operators: repair, cut and deletion. 

3.2.1. Chromosome 

The proposed genetic algorithm uses the combination of nodes for path representation. An example of 

path encoding is shown in Fig. 5, which is 1 2 3    S A G G D G . In this chromosome, S  is the start 

point, A and D  are non-goal points, and 1G , 2G and 3G  are three goals. 

 
 
 
 
 

Figure 5. An example of chromosome in tailored genetic algorithm. 

Two different chromosomes may have different length. For example, the length of the chromosome shown 

in Fig. 5 is 6, in which 3 goals are involved. While the length of the chromosome in Fig. 2, 1 3 2  S G G G , 

is 4, and the same 3 goals are included.  

3.2.2. Evaluation  

Chromosomes are selected for reproduction through genetic operators based on the fitness function, so it 

is important to establish a set of criteria to evaluate the quality of a path. For each individual, we adopt 

three termsΩ, eF  and IDLETF to describe it. Ω  is the number of goals involved in this chromosome. Thus, 

Ω Γ   represents the number of goals in path Γ . eF  is the energy that the robot will spend on moving along 

this path, and 
IDLETF  indicates the idle time induced by this path. The total energy consumption of a path is 

the sum of that of each path segment, so  
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where N is the number of segments, ( )ec i is the energy consumption of the thi segment.  

Similarly, 
IDLETF can be calculated as 

 
1

( )


IDLE

N

T IDLE
i

F T i                                                                       (5) 

where N is the number of segments and (i)IDLET  is the idle time of the thi segment. ( )ec i  and (i)IDLET  are 

introduced in section 2.1.  

Define restE  as the available energy the robot can utilize to perform the task, then we get 

 rest cur lowE E E                                                                          (6) 

where curE  is the remaining energy the robot has when it is at the start point, and lowE  is the threshold 

value of low energy.  

We define taske  as the extra energy consumption that the robot spends on executing task at each goal, and 

assume that it is a fixed value, namely, taske τ . For a path Γ , the total extra energy taskE  spending on 

performing task is  

Ω(Γ) Ω(Γ)   task taskE e τ                                                         (7) 

Thus, we get another condition that makes one path feasible, namely,  

(Γ) e task restF E E                                                                       (8) 

which means that the sum of the energy spent on walking along the path and executing tasks should be less 

than the remaining energy. 

3.2.3. Genetic Operators 

In proposed genetic algorithm, except the three basic operators, i.e., selection, crossover and mutation, we 

create three other operators, i.e., repair, cut and deletion. 

(1) Selection 
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The selection operation will select the best individual from the population in each generation and keep it in 

the next generation. The selection is based on the fitness value. Here, some special characteristics of this 

operator are emphasized in the following. 

At the beginning of the genetic algorithm, candidate solutions are generated randomly, which constitute 

the initial population. We assume that there exists at least one feasible path Γ  that involves all the goals 

and its energy consumption (Γ)eF meets equation (8), then in the initial population each candidate solution 

will include all the goals. For each generation, we will calculate the three terms for evaluating each path. 

Initially, we first check if any individual meets equation (8). If at least one solution conforming to this 

condition is found, we will use IDLETF as the criterion to select the best one from individuals that meet this 

condition. Otherwise, if none is found, the selection process will utilize eF  to evaluate a path since the one 

having less energy consumption is more likely to be evolved to a feasible one. Subsequently, the best one 

that has the minimal eF  or IDLETF will be selected to remain in the next generation. This strategy can 

guarantee that the best one up to now will not be destroyed by other genetic operations and can accelerate 

the convergence of the algorithm. 

(2) Crossover  

Crossover is an efficient way to add diversity to the population. Firstly, a crossover probability is 

predefined. In this operation, two parents are selected randomly and a position is selected randomly too. 

Then, a random probability is generated. If the probability value is less than the predefined value, the 

operation will go on. Otherwise, the two parents are passed to the next generation directly. The operation 

will end until certain times of crossing operations are carried out. 

When executing crossover operation, a crossover point will be generated. Since the length of two parents 

may not be the same, the sequence number of the point will not be bigger than the length of the shorter one. 

Then, in the other parent, we find the corresponding node and its sequence number of the first appearance. 
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If the other one has the same node, exchange the latter parts of the two parents. If not, quit and restart from 

choosing parents. 

The following is an example of crossover operation. First, two parents are selected: 

Parent 1: 1 3 2  S G G G  

Parent 2: 1 2 3    S A G G D G  

If point 1G  is selected as the position for exchanging, then we get the offspring after crossing: 

Child 1: 1 2 3   S G G D G  

Child 2: 1 3 2   S A G G G  

After crossing, the two children are put into the population of next generation. 

(3) Mutation  

In mutation operation, a position is randomly chosen and the node at this position is replaced with a 

different node. Mutation is served as a key role to diversify the solution population. Therefore, it is not 

necessary that a solution is better after mutating. After mutating, this node may not be connected directly 

with the two nodes before and after. For example, if node A  in path 1 2 3    S A G G D G  shown in Fig. 

2 is chosen to mutate, and changes to C , then, this individual becomes 1 2 3    S C G G D G . However, 

as seen in Fig. 2, nodes S  and C , and C and 1G  are not connected directly, which is to say, the individual 

after mutation is not a feasible solution. Even so, it has made the population diversified, and the following 

operator repair  can make it feasible. 

(4) Repair  

When executing genetic operators, some infeasible paths may appear. For instance, after mutation, 

individual 1 2 3    S A G G D G  becomes 1 2 3    S C G G D G . When this happens, we will use 

repair operator to solve this problem. The practical way is inserting some suitable nodes between the two 

nodes.  
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Take string 1 2 3    S C G G D G  as an example. When executing repair operation, we first check if this 

individual is feasible by examine every two adjacent nodes. If at a position, the node and the next node are 

not connected directly, then, this operator will try to add some nodes between them in order to make the 

two connected reasonably. In the above example, the nodes S and C  may be inserted by node A , and then 

C and 1G  may be inserted by nodes 2G  or A , which is decided randomly. If A  is selected, then the 

individual is repaired to be 1 2 3      S A C A G G D G , and if 2G is selected, it will become 

2 1 2 3      S A C G G G D G . No matter whichever is chosen, the result is that the path becomes 

feasible at last. 

It is notable that after mutation or crossover, the number of goals may change. For example, an individual 

should have k  goals but just involve  （ ）k k < k  goals. Then the repair operator will try to repair this string 

by adding nodes after the last node until the other - k k goals are included at least one time. 

(5) Cut  

In a chromosome, it is admissible that any node appears more than one time. But the unnecessary 

reduplication must be avoided. For example, in the string 1 2 3      S A C A G G D G obtained after 

repairing, node A  appears twice and between them there has no goal. It can be regarded as that between 

the two times arriving at A , the intention is not for going to any goal. So, the sequence C A is 

meaningless and it needs to be cut. Finally, this string becomes 1 2 3    S A G G D G . Therefore, the cut 

operator is to do such things that cutting the unmeaning sequences existing in each individual.  

However, the reduplication does not include the situation that a goal exists between the same two nodes. 

For instance, in chromosome 2 1 2 3      S A C G G G D G , goal 2G  appears twice. But between them 

there is another goal 1G  which indicates that the purpose of arriving at 2G  for the second time is for 

visiting another goal. Thus, the second time passing 2G  is meaningful.  

From the above analysis, two criteria can be used as judging whether a chromosome needs cut operation: 
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(i) If a node that is not a goal appears twice, and no goal is in the sequence, then this sequence can be cut to 

the first node. For example, the sequence  A C A  appearing in path 1 2 3      S A C A G G D G  can 

be cut to A .  

(ii) In an individual, for each goal, only the first appearance is regarded as a goal. The other times of 

appearance will be regard as a common path node, which implies that the purpose of passing the goal for 

the second or third time is for reaching another goal. Take 1 1 3      S A G A B G B G  as an example 

in which the robot reaches 1G  twice. Only the first time is for visiting this goal. This is why we cannot 

execute cut operation on the part 1A -G - A . On the contrary, the second time when it appears, it will be 

deemed as a common node. Therefore, 1 B G B  should be cut to be B  according to rule (i). 

(6) Deletion  

In a chromosome, when all the goals have appeared once, the remainder of the string is not necessary and 

should be deleted. Assume that the string is admitted to include k ( 0 k N , N is the number of goals 

assigned at the beginning) goals, then if k (  k k ) goals appear in the string, we should delete the string 

after the thk goal.  

When it is confirmed that the robot has no sufficient energy to visit all the goals, it will attempt to reduce 

one goal and go on searching the optimal path. For example, in the task of visiting goals 1G ， 2G and 3G , if 

it is found that the robot has no sufficient energy to visit all the three goals, then the robot will try visiting 

two goals. Thus, the path 2 1 2 3      S A C G G G D G  will become 2 1   S A C G G  after performing 

deletion operation.  

3.2.4 Execution of Proposed Genetic Algorithm 

Compared to traditional genetic algorithm, variations are made in the execution of proposed algorithm. It 

is cyclically executed, where the criterion for deciding the circulation is to check if any path satisfying the 
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energy constraint. In each cycle, the evolution process is similar to the basic GA. In Fig. 5, the execution 

of proposed GA is illustrated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Execution of the proposed genetic algorithm 
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generations. gGoal  indicates how many goals are involved in each individual, and _gFlag iter is used for 

determining if another circulation of performing the basic genetic algorithm is needed. In the entire 

procedure, gSize  keeps being POPULATION_SIZE  that is constant. On the contrary, gGoal may reduce if 

_gFlag iter  remains TRUE  when beginning another cycle. At the beginning, the value of gGoal  is 

_ _MAX GOALS NUM  which is the total number of goals to be visited. If _gFlag iter  remains TRUE  when 

one cycle is over, gGoal may reduce by one until it decreases to zero, which means trying to find an 

optimal path with one less goal. If in one cycle, _gFlag iter  turns into FALSE , the whole procedure will 

finish when gGeneration  increases to GENERATION_NUM  which is a predefined constant. 

In each cycle, the basic tailored genetic algorithm is conducted to search the optimal path of corresponding 

number of goals. In the end, if gGoal is not smaller than one, then one optimal path is gotten, otherwise, it 

will report that no feasible path is available. This mechanism will guarantee that the algorithm obtains an 

optimal path involving as more goals as possible if at least one feasible path exists. 

4. Simulation Studies 

In this section, simulations are implemented to examine our proposed tailored genetic algorithm. On top of 

this, with the simulation results, analysis and discussion are addressed in detail. 

4.1 Simulations and Results  

We still use the topological map (noted as Ϟ) shown in Fig. 7 in simulations, which is built in previous 

work [1]. In addition, the attributes of each segment are also listed in that literature.  

In simulations, parameters in the proposed genetic algorithm are set as follows: =30POPULATION_SIZE , 

and =100GENERATION_NUM . Crossover rate is 0.9cP  and Mutation rate 0.001mP . To simplify the 

computation, we assume 0 taske τ , then 0taskE . Therefore, equation (8) becomes (Γ)e restF E . 
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Furthermore, we assume that restE  is a constant. In the following simulations, we set 0.17restE V . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Topological map of environment. 

 (1) Simulation I 

In this test, node A  is set as the start point, and the goals are ,C H and M . The energy consumption and 

idle time of the best individual in each generation are shown in Fig. 8. It is obtained from the result that the 

optimal solution comes out in the 18th generation. The optimal path is       A B C O M O P H . Its 

energy consumption 0.1511eF V  and idle time 1022.1330IDLETF s . Since 0.17 e restF E V , this path is 

feasible, and all goals can be visited. Further more, the order of visiting is ,,C M H . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Result of simulation I. 
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In addition, there is a notable situation shown in the red rectangle in Fig. 8. For the best individual found in 

the 6th generation, its idle time is less than that of the 5th generation, while the energy consumption is more. 

This is because in the former 5 generations, we have found one path satisfying the condition of energy 

constraint, then the minimal idle time will be employed as principal for selecting the optimal path.  

Table 1.  
Details of best individuals in each generation. 

Generation Best individual /eF V  /IDLETF s  

1-5        A B C B N M O P H  0.1653 1139.6626 

6-10        A L M N B C Q G H  0.1656 1128.5902 

11       A L M O C O P H  0.1617 1090.5179 

12-17       A L M O C Q G H  0.1540 1026.6969 

18-100       A B C O M O P H  0.1511 1022.1323 

For sake of further understanding, we list out the concrete data of energy consumption and idle time of the 

best one in each generation in table 1. In table 1, the energy consumption of the best one in the first 

generation is 0.1653V  that is less than 0.17V . So, from the second generation, the best individual is 

selected from the candidates that satisfying energy condition by using idle time as criterion. 

 (2) Simulation II 

In this simulation, we set A as the start point, and the goals are H,N,O  and Q . One result is shown in Fig. 9. 

In the first 29 generations, energy consumption keeps more than 0.17V , thus, during this period, the 

criterion for selecting optimal individual in each generation is energy consumption. In the 30th generation, 

we get the optimal path that is        A B N M O C Q G H . Its energy consumption is 0.1646V  and 

idle time is 1123.5112s . The result shows that the robot also has sufficient energy visiting all the goals, and 

the order is , ,N O Q  and H . 
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Figure 9. Result of simulation II. 

(3) Simulation III 

In this simulation, A  is the start point, and goals are E, H, N and O . We show the result in Fig. 10.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Result of simulation III. 
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The energy consumption is less than 0.17V , however, it just allow the robot to visit three goals which are 

N,O and H . 

4.2 Analysis of the simulation results  

In the three simulations above, we implement our proposed tailored genetic algorithm to find the optimal 

path for multi-goal visiting task and finally optimal solutions are obtained. In the following we will 

discuss about the similarity and difference between each case and evaluate the proposed genetic algorithm 

based on simulation results. 

 (1) As the genetic algorithm itself is a kind of stochastic, evolutionary search method, the optimal solution 

obtained at the end may not be the global optimal one truly, but converges to.  

 (2) In the three cases above, the speed of converging to the optimal solution is different. For example, the 

optimal one appears in the 18th generation in simulation I, while it is obtained in the 30th generation in 

simulation II. Moreover, in simulation III, in the first cycle, the optimal one is gotten in the 92nd generation, 

and is proven to be not feasible. 

 (3) Generally, when using GA method, the stop condition can be either that the best solution keeps 

unvaried for certain number of generations, or that the current maximum generation is exceeded [40]. In 

proposed genetic algorithm, the latter is adopted. However, in reality, both can not ensure the final solution 

is one hundred percent the optimal one, and therefore it is uncertain that which one is better absolutely. As 

an example, in simulation III, the solution generated firstly in the 30th remains the best one in the 

following 62 generations. If we use the former stop criterion, and set the maximum generation is 50 or 60, 

this solution will be regarded as the final optimal path. However, it is soon replaced by a better solution. 

Furthermore, if we set the maximum generation is 90, we also can not get the better solution that comes 

out soon. 

 (4) In all the simulations, parameter restE  is considered as a constant for simplifying the problem. 
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Whereas, since for different paths, the last goal reached may not be the same, this value can be different. 

Actually, this value should be the minimum energy the robot needs to move to one charging station from 

the last goal. Hence, in practice, it is wiser to use different values of restE  rather than the same fixed value.  

 (5) In the topological map, there have just 17 path nodes. Since it is not a big number, the advantage of our 

method cannot be reflected on time complexity. In relevant studies on analogous problems, generally there 

are two kinds of solutions, which are stochastic search algorithm and exhaustive search method. The 

second method can guarantee that the optimal solution is sure to be found. However, when searching space 

grows exponentially as the nodes increases, time complexity will grow enormously too. Even in extreme 

cases, it seems impossible to complete in acceptable time. Under this circumstance, stochastic 

evolutionary search such as the proposed genetic algorithm great advantage because it can quickly locate 

high performance regions in extremely large and complex search space [10]. 

 

Conclusion 

We have proposed a tailored genetic algorithm to plan an optimal path for the multi-goal visiting task. 

Aiming at the particularity of the problem, special form of chromosome is used to represent the path and 

customized genetic operators are development. The effectiveness of the method is verified by simulations. 

Furthermore, through analysis of simulation results, evaluation on our proposed method is addressed, 

which is useful for wider implementation in various circumstances. Future work will be carried out to 

perfect this method by considering parameters more realistically and to test it on the real systems. 

 

Acknowledgements 

This research was sponsored by the Key Project of Science and Technology Committee of Chongqing 

(CSTC, 2009AB2139).  



24 
 

References 

[1] F. Liu, S. Liang, and X. D. Xian, Determination of An Optimal Return-path on Road Attributes for 

Mobile Robot Recharging, International Journal of Advanced Robotic Systems, 8(5) , 2011, 83-92. 

[2] F. Liu, S. Liang, and X. D. Xian, Corrigendum to Determination of An Optimal Return-path on Road 

Attributes for Mobile Robot Recharging, International Journal of Advanced Robotic Systems, 9(5) , 

2012, 1-3. 

[3] K. Z. Wang, S. Liang, H. B. Bi, and X. D. Xian, Implementation of a robot inspection system for 

substation equipment based on pioneer 3-at, Science, 4(5), 2010, 1-6. 

[4] O. Madsen, C. B. Sørensen, R. Larsen, L. Overgaard, and N. J. Jacobsen, A system for complex 

robotic welding, Industrial Robot: An International Journal, 29(2), 2002, 127-131. 

[5] R. Thrapp, C. Westbrook, and D. Subramanian, Robust localization algorithms for an autonomous 

campus tour guide, Proceedings of IEEE International Conference on Robotics and Automation, 2001, 

2065-2071. 

[6] P. Raja and S. Pugazhenthi, Optimal Path Planning of Mobile Robots: A Review, International 

Journal of Physical Sciences, 7(9), 2012, 1314-1320. 

[7] N. Sariff and N. Buniyamin, An Overview of Autonomous Mobile Robot Path Planning Algorithms, 

4th Student Conference on Research and Development, 2006, 183-188. 

[8] M. Yuan, S. A. Wang, C. Wu, and N. Chen, A Novel Immune Network Strategy for Robot Path 

Planning in Complicated Environments, Journal of Intelligent & Robotic Systems, 60(1), 2010, 

111-131. 

[9] M. McNaughton and C. Urmson, FAHR: Focused A* Heuristic Recomputation, International 

Conference on Intelligent Robots and Systems, 2009, 4893-4898. 

[10] T. Shibata and T. Fukuda, Intelligent Motion Planning by Genetic Algorithm with Fuzzy Critic, 

International Symposium on Intelligent Control, 1993, 5-10. 



25 
 

[11] O. Wongwirat and A. Anuntachai, Searching Energy-Efficient Route for Mobile Robot with Ant 

Algorithm, 11th International Conference on Control, Automation and Systems, 2011, 1071-1075. 

[12] S. X. Yang and Y. Hu, A Knowledge Based GA for Path Planning of Multiple Mobile Robots in 

Dynamic Environments, IEEE International Conference on Robotics and Automation, 2007, 71-76. 

[13] M. Bennewitz and S. Thrun, Optimizing Schedules for Prioritized Path Planning of Multi-Robot 

Systems, IEEE International Conference on Robotics and Automation, 2001, 271-276. 

[14] M. Mansouri, M. A. Shoorehdeli, and M. Teshnehlab, Path Planning of Mobile Robot Using Integer 

GA with Considering Terrain Conditions, IEEE International Conference on Systems, Man and 

Cybernetics, 2008, 208-213. 

[15] T. Zheng and P. Wang, Priority based Dynamic Multiple Robot Path Planning, 2nd International 

Conference on Autonomous Robots and Agents, 2004, 373-378. 

[16] L. E. Parker, Path Planning and Motion Coordination in Multiple Mobile Robot Teams, Encyclopedia 

of Complexity and System Science, 2009, 1-24. 

[17] T. Hellstrom and O. Ringdahl, Real-time path planning using a simulator-in-the-loop, International 

Journal of Vehicle Autonomous Systems, 7(1/2), 2009, 56-72. 

[18] R. Iraji, Robot path planning using wavefront approach with wall-following, 2nd IEEE International 

Conference on Computer Science and Information Technology, IEEE, 2009, 417-420. 

[19] H. F. Wang. and Y. Z. Yang, Time-optimal Trajectories for a Car-like Robot, Automatica, 34(4), 2008,  

445-452. 

[20] Z. Sun and J. H. Reif, On Finding Energy-Minimizing Paths on Terrains, IEEE Transaction on 

Robotics, 21(1), 2005, 102-114. 

[21] S. Liu and D. Sun, Optimal Motion Planning of a Mobile Robot with Minimum Energy Consumption, 

International Conference on Advanced Intelligent Mechatronics (AIM2011), Budapest, Hungary, 

2011, 43-48. 



26 
 

[22] Y. Mei, Y.-hsiang Lu, Y. C. Hu, and C. S.G. Lee, Energy-Efficient Motion Planning for Mobile Robots, 

International Conference on Robotics and Automation, 2004, 4344–4349. 

[23] E. Lobaton, J. Zhang, S. Patil, and R. Alterovitz, Planning Curvature-Constrained Paths to Multiple 

Goals Using Circle Sampling, IEEE International Conference on Robotics and Automation (ICRA), 

2011, 1463-1469. 

[24] F. Liu, S. Liang, X. D. Xian, and H. B. Bi, Optimal Path Planning for Mobile Robot in Consideration 

of Road Attributes, ICIC Express Letters, 6(1), 2012, 281-287. 

[25] N. Sedaghat, Mobile Robot Path Planning by New Structured Multi-objective Genetic Algorithm, The 

3rd International Conference of Soft Computing and Pattern Recognition (SoCPaR), 2011, 79-83. 

[26] F.O. Castillo, L. Trujillo and P. Melin, Multiple objective genetic algorithms for path-planning 

optimization, Soft Computing, 11, 2007, 269-279. 

[27] S. X. Yang, Y. Hu, and M. Q. Meng, A Knowledge Based GA for Path Planning of Multiple Mobile 

Robots in Dynamic Environments, IEEE International Conference on Robotics and Automation, 

2007, 71-76. 

[28] G. Capi, Multiobjective Evolution of Neural Controllers and Task Complexity, IEEE Transactions on 

Robotics, 23(6), 2007, 1225-1234. 

[29] E. Masehian and D. Sedighizadeh, A Multi-Objective PSO-based Algorithm for Robot Path Planning, 

IEEE International Conference on Industrial Technology(ICIT), 2010, 465-470. 

[30] R. T. Marler and J. S. Arora, Survey of multi-objective optimization methods for engineering, Struct 

Multidisc Optim, 26, 2004, 369-395. 

[31] G. Avigad and K. Deb, The Sequential Optimization-Constraint Multi-objective Problem and its 

Applications for robust Planning of robot paths, IEEE Congress on Evolutionary Computation, 2007, 

2101-2108. 

[32] Holland, Adaptation in Natural and Artificial Systems, Ann Arbor: University of Michigan Press, 



27 
 

1975. 

[33] A. Konak, D. W. Coit, and A.E. Smith, Multi-objective optimization using genetic algorithms: A 

tutorial, Reliability Engineering, 91(9), 2006, 992-1007. 

[34] I. AL-Taharwa, A. Sheta, and M. Al-Weshah, A Mobile Robot Path Planning Using Genetic 

Algorithm in Static Environment, Journal of Computer Science, 4(4), 2008, 341-344. 

[35] G. Nagib and W. Gharieb, Path Planning for a Mobile Robot Using genetic Algorithms, Proceedings 

of the International Conference on Electrical, Electronic and Computer Engineering (ICEEC’04), 

Cairo, Egypt, 2004, 185-189. 

[36] J. Tu and S. X. Yangt, Genetic Algorithm Based Path Planning for a Mobile Robot, International 

Conference on Robotics and Automation, 2003, 1221-1226. 

[37] M. Mansouri, M. A. Shoorehdeli, and M. Teshnehlab, Integer GA for Mobile Robot Path Planning 

with using another GA as repairing function, Proceedings of the IEEE International Conference on 

Automation and Logistics, 2008, 135-140. 

[38] Z. Yao, L. Ma, A Static Environment-Based Path Planning Method by Using Genetic Algorithm, 

International Conference on Computing, Control and Industrial Engineering, 2010, 405-407. 

[39] F. Ahmed and K. Deb, Multi-Objective Path Planning using Spline Representation, IEEE 

International Conference on Robotics and Biomimetics (ROBIO) , 2011, 1047-1052. 

[40] E. Zitzler, M. Laumanns, and S. Bleuler, A Tutorial on Evolutionary Multiobjective Optimization, 

Evolutionary Computation, 535(5), 2004, 3-37. 


