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Abstract

It is proved the existence of solutions to the exterior Dirichlet prob-
lem for the minimal hypersurface equation in complete non compact
Riemannian manifolds either with negative sectional curvature and
simply connected or with nonnegative Ricci curvature under a growth
condition on the sectional cuvature.

1 Introduction

With the development of the Riemannian Geometry many PDE results
proved in the Euclidean geometry for the class of geometric operators have
been investigated in more general Riemannian manifolds. In the case of the
Laplacian equation, S. T. Yau proved that Liouville�s Theorem (an entire non
constant solution of the Laplace equation in Rn is necessarily unbounded)
is also true in a complete Riemannian manifold Mn with non-negative Ricci
curvature and conjectured that if M is simply connected with sectional cur-
vature satisfying ��21 � KM � ��22 < 0; for some constants �1; �2; then
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there should exist bounded solutions of the Laplacian equation on M . This
has been proved in the 80�s by Anderson and Sullivan (see [23]). Actually,
they proved that on the compacti�ed manifoldM :=M[@1M one can solve
the Dirichlet problem for the Laplace equation for any given continuous data
on @1M .
In the case of the mean curvature PDE equation, H. Rosenberg [20] ex-

tended Bernstein�s Theorem (the only entire solutions of the minimal surface
equation in R2 are the a¢ ne functions) to a complete 2-dimensional man-
ifold with nonnegative sectional curvature. In [8] the authors proved the
existence of entire solutions of the minimal hypersurface equation with any
given smooth data at the asymptotic boundary @1M ofM ifM is complete,
simply connected, with sectional curvature satisfying KM � �k2 < 0 and
such that isotropy subgroup of the isometry group of M at some point p of
M acts transitively on the geodesic spheres centered at p: This result has
been substantially improved in [21].
We here study the existence of solutions to the exterior Dirichlet problem

for the mean curvature PDE equation in a complete non compact Riemannian
manifold M; namely, the existence of solutions to the following Dirichlet
problem8<: M (u) := div

�
gradup
1+jgraduj2

�
= 0 in 
; u 2 C2(
) \ C0(
)

uj@
 = 0
(1)

where 
 is an unbounded domain (open and connected) in M such that @

is compact; div and grad are the divergence and gradient in M:
The exterior Dirichlet problem for the minimal surface equation was �rst

studied by Nitsche (see [17]) in the case that M = R2 and with 
 being
the complement of a convex bounded domain. Later, Nitsche�s result was
extended and generalized by many authors as [10], [14], [19], but still in the
Euclidean space.
In this work we prove existence results of solutions of (1) in the cases that

eitherM has nonnegative Ricci curvature orM is simply connected and with
sectional curvature K satisfying K � �k2 < 0 for some positive constant k:
In the case of negative curvature, we prove:

Theorem 1 Assume that M is simply connected and the sectional curvature
KM of M satis�es KM � �k2 < 0 for some positive constant k: We require
that 
 is a C2;� domain ofM satisfying the exterior sphere condition, namely,
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given p 2 @
; there is a geodesic sphere of M passing through p; tangent to
@
 at p which is the boundary of a geodesic ball containing @
:
Given any nonnegative real number s; there exists a bounded solution

u 2 C2;�(
) of (1) such that

sup
@

jgraduj = s

and

max


juj � s (3s2 + 7)

2k (s2 + 1)
:

We next consider the case that M has nonnegative Ricci curvature. By
a soul in M we mean a compact totally geodesic submanifold S of M (not
necessarily convex) such that M is di¤eomorphic to the normal bundle of S:
We prove:

Theorem 2 Let M be a n-dimensional, complete noncompact Riemannian
manifold with nonnegative Ricci curvature, RicM � 0; admitting a soul S
and satisfying, for some c > 0;

KM(x) �
4c2

(1 + 4c2�2(x))2
; x 2M;

where � is the distance in M to S;

�(x) = inf fd(x; y) j y 2 Sg ;

d = Riemannian distance in M; and KM(x) is the maximum of the sectional
curvature of M on planes of TxM containing grad �:
Let 
 be an unbounded domain in M such that @
 is compact and S �

Mn
. Then, for any given nonnegative real number s; there exists a solution
u 2 C1(
) \ C0(
) of (1) such that

lim
x!@


sup jgradu(x)j = sup


jgraduj = s: (2)

If M has nonnegative sectional curvature the existence of the soul is
guaranteed by the Soul Theorem of Cheeger and Gromoll [3].
The vanishing boundary data hypothesis of the exterior Dirichlet problem,

at least in Theorem 2, can not be dispensed, since a result of N. Kutev and
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F. Tomi ([14]) proves the existence, when M = R2; of continuous non zero
boundary data with arbitrarily small C0 norm for which the exterior Dirichlet
problem does not have a solution:
The Dirichlet problem for the minimal and constant mean curvature equa-

tion in other spaces than the Euclidean one have also been studied in [9], [13],
[16], [18], [22]. The geometry of the minimal surfaces in product spaces of
the form M � R has also been investigated in [15]. Considering the more
general notion of Killing graphs the Dirichlet problem for the minimal and
constant mean curvature PDE is being also studied in more general spaces
(that includes the product spaces M � R) (see [1], [2], [4], [5], [6], [7]).

2 Some notations and preliminary results

Is is assumed that M is a complete Riemannian manifold. We shall
make use later of the following computation. Let N be any given smooth
compact submanifold of M and denote by � the distance to N; that is,

�(x) = d(x;N) = min fd(x; y) j y 2 Ng

where d is the Riemannian distance in M: Given a function ' 2 C2(R); set
w = '(�): If � is di¤erentiable in a neighborhood of x 2 M; considering an
orthonormal basis in TxM containing grad �(x); we obtain

M(w) = div

0@ gradwq
1 + jgradwj2

1A = div

0@ '0 grad �q
1 + ('0)2

1A ;

and, after some computations

M(w)(x) =
(n� 1)'00(�(x)) + '0(�(x))

�
1 + ('0(�(x)))2

�
��(x)

(n� 1)
�
1 + ('0(�(x)))2

�3=2 : (3)

The following result follows from Lemma 6 of [5]:

Lemma 3 Let � be a C2;� bounded open subset of M and u 2 C2;�(�) a
solution ofM [u] = 0 in �. Assume that u is bounded in � and that jgraduj
is bounded in � = @�. Then jgraduj is bounded in � by a constant that
depends only on sup� juj and sup� jgraduj.

4



In the case that M has nonnegative Ricci curvature we have in fact a
maximum principle for the gradient. This principle is fundamental for the
proof of Theorem 2:

Lemma 4 Assume that the Ricci curvature of M is nonnegative. Let � be a
C1 bounded open subset of M: Then any solution u 2 C1(�) ofM(u) = 0
in � satis�es the gradient maximum principle

max
�
jgraduj = max

@�
jgraduj :

Proof: Let � be a unit normal vector �eld orthogonal to the graph G of u
such that h�; T i � 0; where T is the Killing vector �eld T (p; r) = (0; 1) 2
T(p;r)M � R: Note that

h�; T i = 1p
1 + jgraduj

:

Note that RicM�R � 0 since RicM � 0: Then, from Proposition 1 of [11]

� h�; T i = �(RicM�R(�) + kBk2) h�; T i � 0;

where jjBjj is norm of the second fundamental form of G. The function h�; T i
is then superharmonic on G so that

min
G
h�; T i = min

@G
h�; T i

and then
max
�
jgraduj = max

@�
jgraduj :

Notation: Under the hypothesis and notations of Theorem 1, we denote by

 the Riemannian distance in M to @
 restrict to 
; namely


(p) = inf fd(p; q) j q 2 @
g ; p 2 
;

and under the hypothesis and notations of Theorem 2, we denote by � the
Riemannian distance in M to S restrict to 
: Moreover, we set Fr = 
�1(r);
r � 0 and denote by HFr the normalized mean curvature of Fr with respect
to the unit vector �eld normal to Fr pointing to the bounded connected
component of MnFr: Note that

�
(x) = (n� 1)HF
(x)(x); (4)

x 2M:
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Lemma 5 If M is simply connected and with sectional curvature satisfying
KM � �k2 < 0; k > 0, then

inf
Fr
HFr � k (5)

for any r > 0:

Proof: Let r > 0 and p0 2M be given. Denote by 
p0 the distance function
to p0: Comparing the Hessian of 
p0 with the Hessian of the distance function

k to a �xed point in a n-dimensional simply connected spaceMk of constant
sectional curvature �k2 (Theorem 1.1 of [23]) we obtain, for any x 2Mk such
that 
k(x) = r; any unit vector X 2 TxMk orthogonal to grad 
k(x) and any
unit vector Y 2 TpM orthogonal to grad 
p0(p); where p is any point in the
geodesic sphere Sr(p0) := 
�1p0 (r) centered at p0 with radius r;

hY;rY grad 
p0i = Hes(
p0)(Y; Y ) � Hes(
k)(X;X) = hX;rX grad 
ki :

This implies that
inf
r>0

HSr(p0) � k coth (k
k) � k;

where HSr(p0) is the mean curvature of Sr(p0) with respect to the inner unit
normal vector �eld.
Now, let p 2 Fr be given. There is q 2 @
 and a minimizing geodesic

� : [0; r] ! M such that �(0) = q and �(r) = p: Let Sl(p0) be a geodesic
sphere of M with some radius l and some center p0 passing through q; which
is tangent to @
 at q and such that @
 � Bl(p0): Then Sl+r(p0) passes to
p and; by Gauss Lemma, is tangent to Fr at p: Moreover, since the normal
exponential map from @
 to 
 is a di¤eomorphism, the geodesic ball Bl+r(p0)
contains Fr: Since Fr is an embedded smooth hypersurface of M; it follows
from the tangency principle that

HFr � HSl+r(p0) � k

and �nishes the proof of the lemma.

3 Proof of the Theorem 1.

Given s � 0, looking for constants a; b and c such that '(r) = (ar + b) = (r + c)
determines a subsolution vs(x) := '(
(x)) satisfying vsj@
 = 0 and jgrad vsj@
 =
s we obtain
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'(r) =
s (3s2 + 7) r

2k (s2 + 1) r + 3s2 + 7
:

To verify directly that ' is a subsolution note that

'0(r) =
s (3s2 + 7)

2

(2kr + 3s2 + 2krs2 + 7)2
� 0

so that, from (3), (4) and (5), we have that vs is a subsolution if

'00(
) + k'0(
)
�
1 + ('0(
))

2
�
� 0:

A straightforward calculation shows that the left side of the above in-
equality can be written as the product of 1= (2k
 + 3s2 + 2ks2
 + 7)6 times
a quartic polynomial on 
 with positive coe¢ cients, proving that vs is a
subsolution for Q on 
:
Note that if x 2 @
 then

vs(x) = '(
(x)) = '(0) = 0

and

jgrad vs(x)j = j'0(0)j jgrad 
(x)j = '0(0) = s:

Moreover

lim

(x)!1

vs(x) = lim
r!1

'(r) =
s (3s2 + 7)

2k (s2 + 1)
:

Let m 2 N be given; m � 1. Setting 
m = 
 \ fx 2 
 j 
(x) < mg ;
we prove the existence of a solution wm 2 C2;�(
m) of M = 0 in 
m with
wmj@
 = 0 and such that sup@
 jgradwmj = s: To this end, set

Tm =

�
t � 0 j 9ut 2 C2;�(
m) such thatM (ut) = 0;
utj@
 = 0; utj�m = t, sup@
 jgradutj � s

�
where �m = @
mn@
:
We have Tm 6= ;; since 0 2 Tm. We prove that if t 2 Tm then t � vsj�m ;

where vs is de�ned in (i). Given " > 0; we �rst prove that t < vs+"j�m : By
contradiction, assume that t � vs+"j�m : Since

jgrad vs+"j@
 = inf
@

jgrad vs+"j = s+ " > sup

@

jgradutj
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there is a neighborhood U of @
 in 
 such that ut(x) < vs+"(x) for all
x 2 Un@
: It follows that there exists a domain U � V � 
m such that
utj@V = vs+"j@V ; what is an absurd since vs+"jV is a subsolution of M and
hence vs+"jV � utjV : Letting "! 0 we have t � vsj�m :
It follows that Tm is bounded and we may set

tm = supTm <1:

We prove that tm 2 Tm:
We �rst prove that there is a constant C, not depending on m; such that

if t 2 Tm; then sup@
m jgradutj � C: Assume that t 2 Tm: By de�nition of
Tm we have sup@
 jgradutj � s:
Setting zm = vsj�m we have, as proved above, zm > t. Moreover, the

function ws := vs � (zm � t) is a subsolution ofM in 
m and

wsj@
 = � (zm � t) � 0 = utj

wsj�m = t = utj�m :

It follows that

ws � ut � t

wsj�m = t = utj�m

and we may conclude that

sup
�m

jgradutj � sup
�m

jgradwsj = '0(m)

=
s (3s2 + 7)

2

(2km+ 3s2 + 2kms2 + 7)2
� s

�
3s2 + 7

�2
=: C:

Then
sup
@
m

jgradutj � C (6)

for all t 2 Tm:
Consider now a sequence fzjg � Tm converging to tm as j goes to in�nity.

For each j; there is a function uj 2 C2;�(
m) such thatM (uj) = 0; ujj@
 = 0
and ujj�m = zj: Since, by the maximum principle,

sup

m

jujj � tm
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it follows from (6) and Lemma 3 that the sequence fujg has the C1 norm
uniformly bounded in 
m: Since 
m is a compact C2;� domain, from elliptic
PDE theory we have C2 compactness of fujg in 
m . Hence, there is a
subsequence of fujg that converges uniformly C2 in 
m to a solution wm 2
C2(
m) ofM = 0 in 
m. From PDE elliptic regularity wm 2 C2;�(
m):
The function wm is a solution ofM = 0 in 
m that satis�es wmj@
 = 0,

wmj�m = tm and sup@
m jgradwmj � s: It follows that tm 2 Tm; that is,
wm = utm.
We now note that sup@
 jgradwmj = s. In fact: By contradiction, assume

that sup@
 jgradwmj < s:
Consider a function � 2 C2;�(
m) such that �j@
 = 0 and �j�m = tm, set

C2;a0 (
m) =
�
! 2 C2;�(
m)

�� !j@
m = 0
	
;

and de�ne T : [0; 2]� C2;�0 (
m)! C�(
m) by

T (l; !) =M (! + l�) :

Then
T (1; !m) = 0

where !m = wm � �: From elliptic PDE theory we have that the Fréchet
derivative @2T (1; !m) = dMwm is a linear homeomorphism so that, from
the implicit function theorem, there exists a continuous function (on the
C2;� topology) i : (1� "; 1 + ") ! C2;�0 (
m); with i(1) = !m such that
T (l; i(l)) = 0; l 2 (1� "; 1 + ") : Therefore, since jgradwmj@
 < s and wm =
i(1) + �; there exists l 2 (1; 1 + ") such that sup@
 ji(l) + l�j < s: Since

0 = T (l; i(l)) =M (i(l) + l�)

i(l) + l� = 0 at @
 and i(l) + l� = ltm at �m; we have that ltm 2 Tm;
contradiction since ltm > tm = supTm: Hence, sup@
 jgradwmj = s:
Since the estimates

max
@
m

jgradwmj � s
�
3s2 + 7

�2
max

m

jwmj �
s (3s2 + 7)

2k (s2 + 1)
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do not depend on m it follows from Lemma 4 that the sequence fwmg has
uniform C1 estimates on compacts of 
 which implies the existence of a sub-
sequence of fwmg converging uniformly C2;� on compacts of 
 to a solution
us 2 C2;�(
) ofM = 0 in 
 satisfying usj@
 = 0 and

sup
@

jgradusj = s:

This concludes the proof of the theorem.

4 Proof of Theorem 2

We �rst consider the case that 
 is a C1 domain. Let s � 0 be given:
We assume s > 0 otherwise the theorem is trivial. Since the soul S of M is
contained in Mn
; the function � is smooth on 
:
Given m > 0; set Bm = f� � mg and let m0 be such that @
 � Bm for

all m � m0: Given m > m0; set 
m = 
 \Bm and Sm = @
mn@
:
We will prove the existence of m1 > m0 such that, given m � m1;

there is a solution um 2 C1(
m) of M = 0 in 
m with umj@
 = 0 and
sup@
 j gradumj = s: To this end, given m > m0; set

Tm =

(
t � 0 j 9ut 2 C1(
m) such thatM(ut) = 0;
sup

m

j gradutj � s; utj@
 = 0; utjSm = t:

)
It is clear that Tm is bounded and the uniform bound for the C1 norm

of the solutions of M = 0 corresponding to points of Tm imply that the
supremum tm = supTm is attained. Moreover, we may make use of the
implicit function theorem, as in the previous theorem, to assert that the
solution um 2 C1(
m) of M = 0 in 
m such that umjSm = tm satis�es
sup
m j gradutmj = s.
The main part of the proof consists in proving that the maximum of

j gradutmj is assumed at @
: To this end, we construct barriers from above
and from below to um which gradient less than or equal to s=2 at Sm:
Since wm := tm is a solution of M = 0 in 
m and uj@
m � wmj@
m we

have um � wm on 
m:
To construct a barrier from below for (1) we �rst consider the paraboloid

P of Rn+1 obtained by acting the rotational group of Rn+1; that leaves �xed
the xn+1-axis, on the parabola (t; 0; :::; 0; ct2); t 2 R: The sectional curvature
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of P at y = (y1; y2; :::; yn+1) 2 P with respect to any plane through TyP that
contains the tangent vector of the geodesic passing through y and the vertex
of P is given by

KP (y) =
4c2

(1 + 4c2r2(y))2

where r(y) =
p
y21 + :::+ y2n:

Let x 2 M and y 2 P be such that �(x) = dP (y; 0); where dP is the
Riemannian distance in P and 0 is the origin of Rn+1: Then

�(x) =

Z r(y)

0

p
1 + 4c2t2dt � r(y);

and, from the hypothesis, it follows that

KM(x) �
4c2

(1 + 4c2�2(x))2
� 4c2

(1 + 4c2r2(y))2
= KP (y):

We then obtain, from the Hessian Comparison Theorem ( Theorem 1.1
of [23] ), that ��(x) � ��P (y); where �P (y) = dP (y; 0): Therefore, if ' is
such that '0 � 0 it follows from (3) that v(x) = '(�(x)) is a subsolution of
Q in 
 if

(n� 1)'00(�P (y)) + '0(�P (y))
�
1 + ('0(�P (y)))

2
�
��P (y) � 0; (7)

for all y 2 P .
We have

��P (y) =
n� 1

r(y)
p
1 + 4c2r2(y)

: (8)

Introducing the notation

�(r) =

Z r

0

p
1 + 4c2t2dt

and  (r) = '(�(r)) we have

'0(�(r)) =
 0(r)

�0(r)
;
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'00(�(r))) =
1

(�0(r))3
[�0(r) 00(r)�  0(r)�00(r)] :

Setting r = r(y) we have that the inequality (7) holds if and only if

1

(�0(r))3

�
(n� 1) [ 00(r)�0(r)�  0(r)�00(r)]
+ 0(r) [(�0(r))2 + ( 0(r))2] ��P

�
� 0: (9)

Since �0(r) =
p
1 + 4c2r2, �00(r) = 4c2r=

p
1 + 4c2r2; from (8) we have that

(9) holds if, and only if,

(n� 1)
�
 00(r)

p
1 + 4c2r2 � 4c2r 0(r)p

1 + 4c2r2

�
+ 0(r)

�
1 + 4c2r2 + ( 0(r))2

�
(n� 1) 1

r
p
1 + 4c2r2

� 0

that is
(n� 1)

r
p
1 + 4c2r2

[r
�
1 + 4c2r2

�
 00(r)� 4c2r2 0(r)

+ 0(r)
�
1 + 4c2r2

�
+ ( 0(r))3] � 0

or
r
�
1 + 4c2r2

�
 00(r) +  0(r) + ( 0(r))3 � 0:

We have that

 a(r) =  (r) =
p
a

Z r

p
a

2c
p
4�a

p
4c2t2 + 1p

4c2t2(4� a)� a
dt

is a solution of

r
�
1 + 4c2r2

�
 00(r) +  0(r) + ( 0(r))3 = 0

for all a 2 [0; 4) and

r �
p
a

2c
p
4� a

:

Moreover,  a satis�es

 a

� p
a

2c
p
4� a

�
= 0 (10)

 0a

� p
a

2c
p
4� a

�
= +1:
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Let r0 be such that �(r0) = m0 and a0 such that
p
a0

2c
p
4� a0

= r0;

that is,

a0 =
16c2r20
1 + 4c2r20

:

Set '(�(r)) =  a0(r): Given m > m0; let rm such that �(rm) = m: Since

'0(m) =
 0a0(rm)

�0(rm)
=

p
a0p

4c2r2m (4� a0)� a0

we have '0(m) � s=2 if and only if

p
a0p

4c2r2m (4� a0)� a0
� s

2
, rm �

q
a0
�
1 + 4

s2

�
2c
p
4� a0

:

Hence, if we choose m1 > m0 such that

rm1 �

q
a0
�
1 + 4

s2

�
2c
p
4� a0

;

since rm increases with m we have '0(m) � s=2 for all m � m1: It follows
from (10) that, for all m � m1; vm(x) := '(�(x)) is a subsolution ofM on

 \ (BmnBm0) such that

vm(x) = 0

jgrad vm(x)j =1

if
�(x) = m0

and
jgrad vm(x)j �

s

2
(11)

if �(x) = m:
Clearly vm + b is a subsolution ofM on BmnBm0 for any constant b and

there is b0 such that vm(x) + b0 � um(x) for all x 2 
 \ (BmnBm0) : Set

bm = max fb j vm(x) + b � um(x); 8x 2 BmnBm0g :
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Since jgrad vm(x)j = 1 for x 2 Sm0 = @Bm0 it follows from the maximum
principle that vm(x) + bm = tm for x 2 Sm and um � vm on BmnBm0 : Then

jgradumjSm � max
�
jgrad vmjSm ; jgradwmjSm

	
= max

ns
2
; 0
o
=
s

2
:

It follows by Lemma 4 that

sup
@

j gradutmj = s:

Now, letting m ! 1; the uniform C1 estimates of utm on compacts of

 implies the existence of a subsequence of futmg converging uniformly on
compacts of 
 to a solution us 2 C1(
) ofM = 0 in 
 satisfying usj@
 = 0
and sup@
 j gradusj = s: Note that for each m there is a point qm 2 @
 such
that jgradutm(qm)j = s: Since @
 is compact a subsequence of qm converges
to q 2 @
: It follows that jgradus(q)j = s; so that us can not be identically
zero.
The case that @
 is simply a C0 domain is solved by approximating

@
 by C1 domains, applying the previous result and using the uniform C1

estimates to establish the existence of a subsequence converging to a solution
us of (1) satisfying (2): This concludes with the proof of the theorem.

References

[1] Alias, L. ; Dajczer, M.: �Normal geodesic graphs of constant mean cur-
vature�, Journal of Di¤erential Geometry, v. 75, p. 387-401, 2007.

[2] Alias, L.; Dajczer, M.; Rosenberg, H.: �The Dirichlet problem for CMC
surfaces in Heisenberg space�, Calculus of Variations and Partial Di¤er-
ential Equations, v. 30, p. 513-522, 2007.

[3] Cheeger, J.; Gromoll, D.: On the structure of complete manifolds of
nonnegative curvature, Ann. of Math. 96: 413-43, (1972)

[4] Dajczer, M.; Hinojosa, P. ; Lira, J. H. de: �Killing graphs with pre-
scribed mean curvature�, Calculus of Variations and Partial Di¤erential
Equations, v. 33, p. 231-248, 2008

14



[5] Dajczer, M; Lira, J. H. de: �Killing graphs with prescribed mean curva-
ture and Riemannian submersions�. Annales de l�Institut Henri Poincaré
- Analyse non linéaire 26 (2009), 763�775.

[6] Dajczer, M.; Lira, J. H. de: �Helicoidal graphs with prescribed mean
curvature�, Proceedings of the American Mathematical Society, v. 137,
p. 2441-2444, 2009.

[7] Dajczer, M.; Ripoll, J.: �An extension of a Theorem of Serrin to graphs
in warped products�, The Journal of Geometric Analysis, Vol 15, N 2,
193 - 205 (2005)

[8] do Espírito-Santo, N., Fornari, S. and Ripoll, J.:�The Dirichlet problem
for the minimal hypersurface equation in M �R with prescribed asymp-
totic boundary �. Journal de Mathématiques Pures et Apliquées 93 (2)
(2010).

[9] Elbert, M. F.; Rosenberg, H.: �Minimal graphs in M � R�; preprint

[10] Earp, R. S.; Toubiana, E.: Some applications of the maximum princi-
ple to hypersurface theory in Euclidean and hyperbolic space, New ap-
proaches in Nonlinear Analysis, T. M. Rassis, Hadronic Press, 1999, 183
- 202

[11] Fornari, S.; Ripoll, J.: Killing �elds, mean curvature, translation maps�,
Illinois Journal of Mathematics, Vol 48, N. 4, p 1385 - 1402, 2004

[12] Gilbarg, D.; Trudinger, N. S.: �Elliptic partial di¤erential equations of
second order�, Springer-Verlag, 1998

[13] Hauswirth, L.; Rosenberg, H.; Spruck, J.: �In�nite boundary value prob-
lems for constant mean curvature graphs in H2�R and S2�R�; preprint

[14] Kutev, K; Tomi, F.: �Nonexistence and instability in the exterior Dirich-
let problem for the minimal surface equation in the plane�, Paci�c Jour-
nal of Mathematics, Vol 170, N. 2, 1995

[15] W. H. Meeks, H.Rosenberg: �The theory of minimal surfaces in M�R�,
Comment. Math. Helv. 80 (2005)

15



[16] L. Mazet, M. M. Rodríguez, H. Rosenberg: �The Dirichlet problem for
the minimal surface equation with possible in�nite boundary data over
domains in a Riemannian surface�, preprint

[17] Nitsche, J. C. C.: �Lectures on minimal surfaces�, Vol I, Cambridge
University, 1989

[18] Nelli, B.; Rosenberg, H.: �Minimal surfaces in H�R�, Bull Braz Math
Soc (33), 2002, 263 - 292

[19] Ripoll, J.: �Some characterization, uniqueness and existence results for
Euclidean graphs of constant mean curvature with planar boundary�,
Paci�c Journal of Mathematics, Vol 198, N. 1, 2001, 175 - 196

[20] H. Rosenberg: �Minimal surfaces in M � R�, Illinois Jr of Math, 46,
1177 - 1195 (2002)

[21] J. Ripoll, M. Telichevesky: �Some existence results for the Dirichlet
problem for the minimal equation with prescribed asymptotic boundary
in a negatively curved complete Riemannian manifold�, preprint

[22] Spruck, J.: �Interior gradient estimates and existence theo-
rems for constant mean curvature graphs in M � R�; preprint,
http://www.math.jhu.edu/~js/grad2.pdf

[23] R. Schoen, Yau, S.-T.: �Lectures on Di¤erential Geometry�, Confer-
ence Proceedings and Lecture Notes in Geometry and Topology, Vol I,
International Press

16


