Some existence results on the exterior
Dirichlet problem for the minimal
hypersurface equation

Nedir do Espirito-Santo Jaime Ripoll
UFRJ UFRGS
Instituto de Matematica, Instituto de Matematica
Caixa Postal 68530 Av. Bento Gongalves 9500
21941-909 Rio de Janeiro-RJ 91540-000 Porto Alegre-RS
BRAZIL BRAZIL
nedir@im.ufrj.br jaime.ripoll@ufrgs.br
Abstract

It is proved the existence of solutions to the exterior Dirichlet prob-
lem for the minimal hypersurface equation in complete non compact
Riemannian manifolds either with negative sectional curvature and
simply connected or with nonnegative Ricci curvature under a growth
condition on the sectional cuvature.

1 Introduction

With the development of the Riemannian Geometry many PDE results
proved in the Euclidean geometry for the class of geometric operators have
been investigated in more general Riemannian manifolds. In the case of the
Laplacian equation, S. T. Yau proved that Liouville’s Theorem (an entire non
constant solution of the Laplace equation in R™ is necessarily unbounded)
is also true in a complete Riemannian manifold M" with non-negative Ricci
curvature and conjectured that if M is simply connected with sectional cur-
vature satisfying —k? < Kj; < —k3 < 0, for some constants ki, k2, then



there should exist bounded solutions of the Laplacian equation on M. This
has been proved in the 80’s by Anderson and Sullivan (see [23]). Actually,
they proved that on the compactified manifold M := MU0, M one can solve
the Dirichlet problem for the Laplace equation for any given continuous data
on O, M.

In the case of the mean curvature PDE equation, H. Rosenberg [20] ex-
tended Bernstein’s Theorem (the only entire solutions of the minimal surface
equation in R? are the affine functions) to a complete 2-dimensional man-
ifold with nonnegative sectional curvature. In [8] the authors proved the
existence of entire solutions of the minimal hypersurface equation with any
given smooth data at the asymptotic boundary d,,M of M if M is complete,
simply connected, with sectional curvature satisfying Kj; < —k% < 0 and
such that isotropy subgroup of the isometry group of M at some point p of
M acts transitively on the geodesic spheres centered at p. This result has
been substantially improved in [21].

We here study the existence of solutions to the exterior Dirichlet problem
for the mean curvature PDE equation in a complete non compact Riemannian
manifold M, namely, the existence of solutions to the following Dirichlet
problem

M (u) :=div <&> =0inQ, ue C*(Q)NCQ)

VIt gadul (1)

U|BQ = 0

where €2 is an unbounded domain (open and connected) in M such that 0
is compact; div and grad are the divergence and gradient in M.

The exterior Dirichlet problem for the minimal surface equation was first
studied by Nitsche (see [17]) in the case that M = R? and with Q being
the complement of a convex bounded domain. Later, Nitsche’s result was
extended and generalized by many authors as [10], [14], [19], but still in the
Euclidean space.

In this work we prove existence results of solutions of (1) in the cases that
either M has nonnegative Ricci curvature or M is simply connected and with
sectional curvature K satisfying K < —k? < 0 for some positive constant k.

In the case of negative curvature, we prove:

Theorem 1 Assume that M is simply connected and the sectional curvature
Ky of M satisfies Ky < —k* < 0 for some positive constant k. We require
that Q is a C%* domain of M satisfying the exterior sphere condition, namely,



given p € 0S), there is a geodesic sphere of M passing through p, tangent to
0 at p which is the boundary of a geodesic ball containing Of).

Given any nonnegative real number s, there exists a bounded solution
u € C*%(Q) of (1) such that

sup |[grad u| = s
G

and (352 +7)
s (08° +
max |u| L ————+=.
axlul < o )

We next consider the case that M has nonnegative Ricci curvature. By
a soul in M we mean a compact totally geodesic submanifold S of M (not
necessarily convex) such that M is diffeomorphic to the normal bundle of S.
We prove:

Theorem 2 Let M be a n-dimensional, complete noncompact Riemannian
manifold with nonnegative Ricci curvature, Ricy, > 0, admitting a soul S
and satisfying, for some c > 0,

4c?

KM(x) S (1 —|—4C2,02($))2’

xr € M,

where p s the distance in M to S,

p(r) = inf {d(z,y) | y € S},

d = Riemannian distance in M, and Ky(x) is the mazximum of the sectional
curvature of M on planes of T, M containing grad p.

Let Q) be an unbounded domain in M such that OS2 is compact and S C
M\Q. Then, for any given nonnegative real number s, there exists a solution

u € C(Q) N C°Q) of (1) such that

lim sup |grad u(z)| = sup |grad u| = s. (2)
z—00 Q

If M has nonnegative sectional curvature the existence of the soul is
guaranteed by the Soul Theorem of Cheeger and Gromoll [3].

The vanishing boundary data hypothesis of the exterior Dirichlet problem,
at least in Theorem 2, can not be dispensed, since a result of N. Kutev and



F. Tomi ([14]) proves the existence, when M = R? of continuous non zero
boundary data with arbitrarily small C° norm for which the exterior Dirichlet
problem does not have a solution.

The Dirichlet problem for the minimal and constant mean curvature equa-
tion in other spaces than the Euclidean one have also been studied in [9], [13],
[16], [18], [22]. The geometry of the minimal surfaces in product spaces of
the form M x R has also been investigated in [15]. Considering the more
general notion of Killing graphs the Dirichlet problem for the minimal and
constant mean curvature PDE is being also studied in more general spaces
(that includes the product spaces M x R) (see [1], [2], [4], [5], [6], [7])-

2 Some notations and preliminary results

Is is assumed that M is a complete Riemannian manifold. We shall
make use later of the following computation. Let N be any given smooth
compact submanifold of M and denote by ( the distance to N, that is,

((2) = d(x, N) = min{d(z,y) | y € N}

where d is the Riemannian distance in M. Given a function ¢ € C?*(R), set
w = (C). If ¢ is differentiable in a neighborhood of x € M, considering an
orthonormal basis in T, M containing grad ((z), we obtain

grad w _ div @' grad

\/1—|—|g1radw|2 1—|—(gp’)2

and, after some computations

M(w) = div

M(w)(z) = (n—1)¢"(¢(z)) + ¢ (¢(x)) (1 + (¢ (¢(2))) ) AC(Q;) .

(n—1) (1 + (@)D"

The following result follows from Lemma 6 of [5]:

Lemma 3 Let A be a C** bounded open subset of M and u € C**(A) a
solution of M [u] =0 in A. Assume that u is bounded in A and that |grad u|
is bounded in T' = OA. Then |gradu| is bounded in A by a constant that
depends only on sup, |u| and supy |grad u|.
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In the case that M has nonnegative Ricci curvature we have in fact a
maximum principle for the gradient. This principle is fundamental for the
proof of Theorem 2:

Lemma 4 Assume that the Ricci curvature of M is nonnegative. Let A be a

C* bounded open subset of M. Then any solution u € C*(A) of M(u) =0
in A satisfies the gradient maximum principle

max lgrad u| = max lgrad u| .
Proof: Let 1 be a unit normal vector field orthogonal to the graph G of u

such that (n,T) > 0, where T is the Killing vector field T'(p,r) = (0,1) €
Ty M x R. Note that

1
1+ |gradu|

Note that Ricp«g > 0 since Ricy; > 0. Then, from Proposition 1 of [11]

A (n,T) = —Ricarxr(n) + | BII*) (. T) < 0,

<77a T> =

where || B|| is norm of the second fundamental form of G. The function (n, T
is then superharmonic on G so that

. T — i 7
min (7, T) = min (1, T)
and then
max lgrad u| = max lgrad u| .

Notation: Under the hypothesis and notations of Theorem 1, we denote by
~ the Riemannian distance in M to 0f) restrict to {2, namely

v(p) = inf {d(p,q) | ¢ € 99}, p € Q,

and under the hypothesis and notations of Theorem 2, we denote by p the
Riemannian distance in M to S restrict to Q. Moreover, we set I, = v~ *(r),
r > 0 and denote by Hp, the normalized mean curvature of F,. with respect
to the unit vector field normal to F,. pointing to the bounded connected
component of M\ F,. Note that

A’V(x) = (n - ]')HF'y(z) (:L’), (4)
x € M.



Lemma 5 If M s simply connected and with sectional curvature satisfying
Ky < —k*<0, k>0, then

iﬁlf Hp, > k (5)

for any r > 0.

Proof: Let r > 0 and py € M be given. Denote by 7, the distance function
to po. Comparing the Hessian of +,, with the Hessian of the distance function
v to a fixed point in a n-dimensional simply connected space M, of constant
sectional curvature —k? (Theorem 1.1 of [23]) we obtain, for any z € M, such
that v, (z) = r, any unit vector X € T, M, orthogonal to grad v,(z) and any
unit vector Y € T,M orthogonal to grad ~,,(p), where p is any point in the
geodesic sphere S,.(pg) := 'yp’ol (r) centered at py with radius r,

(Y, Vy grad y,,) = Hes(7,,)(Y,Y) > Hes(7;,)(X, X) = (X, Vx grad 1) -

This implies that
ing Hg, (py) = kcoth (kv) > F,
r>

where Hg, (,,) is the mean curvature of S,(py) with respect to the inner unit
normal vector field.

Now, let p € F, be given. There is ¢ € 02 and a minimizing geodesic
a : [0,r] — M such that a(0) = q and a(r) = p. Let Si(po) be a geodesic
sphere of M with some radius [ and some center pg passing through ¢, which
is tangent to JQ at ¢ and such that 9Q C By(po). Then S;..(po) passes to
p and, by Gauss Lemma, is tangent to F, at p. Moreover, since the normal
exponential map from 0f2 to 2 is a diffeomorphism, the geodesic ball B;.,.(po)
contains F).. Since F, is an embedded smooth hypersurface of M, it follows
from the tangency principle that

HF'r Z HSZ+7'(p0) Z k:

and finishes the proof of the lemma.

3 Proof of the Theorem 1.

Given s > 0, looking for constants a, b and ¢ such that ¢(r) = (ar +b) / (r + ¢)
determines a subsolution v,(z) := ¢(v(x)) satisfying vs|sq = 0 and |grad vs| 5, =
s we obtain



s(3s*+T)r
s24+1)r 432+ 7
To verify directly that ¢ is a subsolution note that

p(r) = 20

s(3s2+7)° -
(2kr 4 352 + 2krs? +17)° ~

¢'(r) =
so that, from (3), (4) and (5), we have that v, is a subsolution if

¢"(7) + k' () (1 + (w’(v)f) > 0.

A straightforward calculation shows that the left side of the above in-
equality can be written as the product of 1/ (2ky + 3s% + 2ks2y + 7)° times
a quartic polynomial on v with positive coefficients, proving that v, is a
subsolution for ) on ).

Note that if z € OS2 then

and

lgrad vs(x)] = |¢'(0)| |grad y(x)| = ¢'(0) = s.
Moreover

, , s(3s*+7)
lim v,(z) = 1 ACCEn Y
Jlm vs(w) = lim () = o (s2+1)

Let m € N be given, m > 1. Setting 2, = QN {z € Q[ y(z) <m},
we prove the existence of a solution w,, € C**(Q,,) of M = 0 in Q,, with
Wi |aa = 0 and such that supy, |grad w,,| = s. To this end, set

o) t=0 | Ju, € C**(Q,,) such that M (u,) = 0,
" ut|8Q = 07 Ut T = t? Supaﬂ |gra’dut| S S

where I';;, = 09, \092.

We have T, # (), since 0 € T,,,. We prove that if ¢t € T,, then t < v,]r,,,
where v, is defined in (i). Given £ > 0, we first prove that ¢t < vsic|r,,. By
contradiction, assume that ¢t > vs,.|p,, . Since

lgrad vste|yq = inf [grad vsy.| = s + € > sup |grad w|
[2/9] o0
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there is a neighborhood U of 99 in € such that ui(x) < vgeic(x) for all
x € U\0Q. It follows that there exists a domain U C V' C Q,, such that
utloy = Vsielov, what is an absurd since v |y is a subsolution of M and
hence vg, .|y < uyly. Letting e — 0 we have t < v,]r,,.

It follows that 7), is bounded and we may set

t,, =supT,, < oo.

We prove that t,, € T,,.

We first prove that there is a constant C', not depending on m, such that
if t € T, then supyq |gradu;| < C. Assume that ¢ € T,,,. By definition of
T, we have supy, |grad u;| < s.

Setting z,, = vs|r,, we have, as proved above, z, > t. Moreover, the
function w, := vy — (2, — t) is a subsolution of M in Q,, and

Wsloa = — (zm — 1) < 0 = wq

ws|r,, =t = ur,,-
It follows that
ws <up <t
wy|p,, =t = wr,,
and we may conclude that

sup |grad u;| < sup |grad w,| = ¢'(m)
m F"YL
3s% +7)°
— (3 +7) 2§3(352+7)2::C’.
(2km + 3s2 4+ 2kms? 4 7)

Then
sup |grad us| < C (6)
O

forall t € T,,.

Consider now a sequence {z;} C T, converging to t,, as j goes to infinity.
For each j, there is a function u; € C2%(Q,,) such that M (u;) = 0, u;|aq = 0
and u;|r,, = z;. Since, by the maximum principle,

sup [u;] <

m



it follows from (6) and Lemma 3 that the sequence {u;} has the C* norm
uniformly bounded in ©,,. Since Q,, is a compact C** domain, from elliptic
PDE theory we have C? compactness of {u;} in €, . Hence, there is a
subsequence of {u;} that converges uniformly C? in €, to a solution w,, €
C%(Q,,) of M =0 in Q,,. From PDE elliptic regularity w,, € C>*(Q,,).

The function w,, is a solution of M = 0 in €, that satisfies w,,|sq = 0,
W |r,, = tm and supyq |gradwy,| < s. It follows that ¢, € T, that is,
Wy = Uy,

We now note that supyg, |grad wy,| = s. In fact: By contradiction, assume

that supyq, |grad w,,| < s. o
Consider a function ¢ € C**(Q,,) such that ¢|sq = 0 and ¢

., = lm, set

m

Co" () = {w e C**(Q) | wlon,, =0},
and define T': [0,2] x C2*(Q,n) — C*(Qn) by
T(l,w)=M(w+19p).
Then
T, wy,) =0

where w,, = w,, — ¢. From elliptic PDE theory we have that the Fréchet
derivative 05T (1,w,,) = dM,,, is a linear homeomorphism so that, from
the implicit function theorem, there exists a continuous function (on the
C2 topology) i : (1—¢,14¢) — C3*(Q,,), with i(1) = w,, such that
T (l,i(l)) =0,1 € (1 —¢,1 +¢). Therefore, since |grad wp,|,o < s and wy, =
i(1) 4 ¢, there exists [ € (1,1 + ¢) such that supyg |i(l) + l¢| < s. Since

0= T(1,i(1)) = M (i(l) + 1)

i(l) + ¢ = 0 at 0Q and i(l) + l¢ = lt,, at T, we have that lt,, € T,
contradiction since lt,, > t,, = sup T,,. Hence, supyq, |grad w,,| = s.
Since the estimates

< 2 2
Iglﬂa;z( lgrad w,,| < s (38 + 7)

s(3s+7)
< N 0 7
max|wm| < 5 G



do not depend on m it follows from Lemma 4 that the sequence {w,,} has

uniform C' estimates on compacts of 2 which implies the existence of a sub-

sequence of {w,,} converging uniformly C%“ on compacts of ) to a solution
€ 022(Q) of M = 0 in Q satisfying u|sq = 0 and

sup |grad u,| = s.
G

This concludes the proof of the theorem.

4 Proof of Theorem 2

We first consider the case that (2 is a C*° domain. Let s > 0 be given.
We assume s > 0 otherwise the theorem is trivial. Since the soul S of M is
contained in M\, the function p is smooth on €.
Given m > 0, set B,, = {p < m} and let my be such that 0Q C B,, for
all m > mg. Given m > my, set Q,, = QN B,, and S,,, = 9, \ 0.
We will prove the existence of m; > mg such that, given m > my,

there is a solution u,, € C®(Q,,) of M = 0 in Q,, with u,|sq = 0 and
Supyq | grad u,,| = s. To this end, given m > my, set

sup | grad us| < s, wlon =0, wls,, =

m

- { t >0 Ju, € C>®(Q,,) such that M(u;) = }
m = t.

It is clear that 7, is bounded and the uniform bound for the C' norm
of the solutions of M = 0 corresponding to points of 7, imply that the
supremum t,, = sup7,, is attained. Moreover, we may make use of the
implicit function theorem, as in the previous theorem, to assert that the
solution w,, € C®(Q,,) of M = 0 in Q,, such that w,|s, = t, satisfies
supq, . | grad uy,, | = s.

The main part of the proof consists in proving that the maximum of
| grad uy,, | is assumed at 02. To this end, we construct barriers from above
and from below to w,, which gradient less than or equal to s/2 at S,,.

Since wy, = t,, is a solution of M = 0 in Q,, and u|sq, < Wnlsq, Wwe
have u,, < w,, on £2,,.

To construct a barrier from below for (1) we first consider the paraboloid
P of R"*! obtained by acting the rotational group of R™*!, that leaves fixed
the x,,,1-axis, on the parabola (¢, 0, ...,0,ct?), t € R. The sectional curvature
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of Paty= (y1,vy2, ..., Yynt1) € P with respect to any plane through T} P that
contains the tangent vector of the geodesic passing through y and the vertex
of P is given by

4c?

Rl = i)y

where 7(y) = \/y3 + ... + y2.

Let x+ € M and y € P be such that p(x) = dp(y,0), where dp is the
Riemannian distance in P and 0 is the origin of R"*!. Then

r(y)
p(x) = / V14 4ct2dt > r(y),
0

and, from the hypothesis, it follows that

4c? 4c?
KM(:B> < B < 2 — KP(IU)
(1+4c2p?(x))” — (14 4c*r2(y))

We then obtain, from the Hessian Comparison Theorem ( Theorem 1.1
of [23] ), that Ap(z) > App(y), where pp(y) = dp(y,0). Therefore, if ¢ is
such that ¢’ > 0 it follows from (3) that v(z) = ¢(p(z)) is a subsolution of
Q in Q if

(n = 1)¢"(pp(n) + ¢ (op () (1+ (£ (0p®)°) App(y) =0, ()

for all y € P.
We have
n—1
A = ) 8
PP(?J) r(y) T+ 4c2r2(y) ( )

Introducing the notation
i(r) = / V1+4c2t2dt
0

and 1(r) = ¢(d(r)) we have




1
"(6(r))) = 8 ()" (r) — ' (r)d"(r)] .
©"(6(r))) (5,(T))3[ (r)g"(r) — ' (r)o"(r)]

Setting 7 = r(y) we have that the inequality (7) holds if and only if

1 (n=1) () () = (r)d" ()]
(Mﬂf{+W0HWUW+@NﬂWAM>}ZO ©)

Since '(r) = V1 +4c2r2, §"(r) = 4c¢*r /v/1 + 4c?r?, from (8) we have that
(9) holds if, and only if,

" ol 4t (r)
(n—1) [¢ (r)vV1+4c N 4027“2]
/ 2,.2 ! 2 1

that is
(n_ 1) 2.2 " 2.2 1/
W[T(l—k% r )w (r) —4c*r=y'(r)
+/(r) (L4 4¢*r%) + (¢'(r))*] > 0

(L 4c®r2) " (r) +¢'(r) + (¥'(r)* > 0.
We have that
bulr) = (1) = Va VACE + 1

| :
2c¢% \/462t2(4 —a)—a

is a solution of
r(1+4¢%%) 9 (r) + 9/ (r) + (@' ()" = 0
for all @ € [0,4) and

r> \/5 )
— 2cv/4 —a

Moreover, 1), satisfies

ba (20\/%) —0 (10)

Va (26\/%—&) = +o0.
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Let ro be such that §(rg) = mg and ag such that
Ve
2WevE—ag

that is,

_16¢%rg

14 4er?

Set p(6(r)) = 1a, (). Given m > my, let r,, such that (r,,) = m. Since

él() (Tm) — \/a/_[)
8" (rm) V422, (4 — ag) — ag
we have ¢'(m) < s/2 if and only if

Qo

¢'(m) =

Qo (1+ ;ig)

20\/4 — Qg '

N

s
VA2 (4 —ag) —ag ~ 2

IA

S ry >

Hence, if we choose m; > mg such that

Qo (1 + ;ig)
rml 2 - e/
20\/4 — Qg

since r,, increases with m we have ¢'(m) < s/2 for all m > m;. It follows
from (10) that, for all m > mq, v, (z) := ¢(p(x)) is a subsolution of M on
QN (B \ B, ) such that

Um(z) =0
lgrad vy, (z)| = oo
if
p(x) = mg
and 5
jrad vy, (x)| < 3 (11)
if p(x) = m.

Clearly v,,, + b is a subsolution of M on B,,\B,,, for any constant b and
there is by such that v, (x) + by < uy,(z) for all x € QN (B \ B, ) - Set

by, = max {b | v, (z) +b < up(x), Vo € Bp\Bmg | -

13



Since |grad v, (z)| = oo for x € S,,, = 0B,,, it follows from the maximum
principle that v, (z) + b, = t,,, for € S, and u,, > v,, on By, \B,,. Then

|grad u,|g < max {|grad v,y |gradwm|sm} = max {g, O} =—.
It follows by Lemma 4 that

sup | grad uy,,| = s.
B

Now, letting m — oo, the uniform C' estimates of u;,, on compacts of
Q) implies the existence of a subsequence of {u;, } converging uniformly on
compacts of €2 to a solution u, € C=(Q) of M = 0 in Q satisfying u,|gq = 0
and supy, | grad us| = s. Note that for each m there is a point g, € 92 such
that |grad ut, (¢,,)| = s. Since S is compact a subsequence of ¢, converges
to ¢ € 0. Tt follows that |grad us(¢q)| = s, so that us can not be identically
zZero.

The case that 00 is simply a C° domain is solved by approximating
0 by C* domains, applying the previous result and using the uniform C*
estimates to establish the existence of a subsequence converging to a solution
u, of (1) satisfying (2). This concludes with the proof of the theorem.
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