EXISTENCE AND TOPOLOGICAL UNIQUENESS OF
COMPACT CMC HYPERSURFACES WITH
BOUNDARY IN HYPERBOLIC SPACE
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ABSTRACT. It is proved that if I' is a compact, embedded hyper-
surface in a totally geodesic hypersurface H" of H"t! satisfying
the enclosing H-hypersphere condition with |H| < 1, then there
is one and only one (up to a reflection on H") compact embedded
constant mean curvature H hypersurface M such that OM = T.
Moreover, M is diffeomorphic to a ball.

1. INTRODUCTION

Let H"*! be the hyperbolic space of constant sectional curvature —1.
By a hypersphere of H"™! we mean a totally umbilical hypersurface of
H"*! which mean curvature has absolute value strictly smaller than 1.
Given —1 < H < 1, p € H"*! and a unit tangent vector v € T,H"*!,
there is only one hypersphere £, ; of H"*! passing through p which
has mean curvature H with respect to the unit normal vector field n
such that n(p) = v (for more details see next section).

Let H" be a totally geodesic hypersurface of H**!, Q) a smooth do-
main in H" and 7 the unit normal vector field along OS2 pointing to €.
Given 0 < H < 1, we say that {2 satisfies the enclosing H —hypersphere

condition if for any p € 02 the connected component of H”\Eg;(lp) "

to which 7(p) is pointing contains €2 (this definition is a natural exten-
sion to the hyperbolic space of the enclosing sphere condition used in
Euclidean PDE theory. See [6], p. 339).

Date: January, 2012; revised version May 2012.

2000 Mathematics Subject Classification. 53A10, 5C42.

Luis J. Alias was partially supported by MICINN project MTM2009-10418 and
Fundacién Séneca project 04540/ GERM /06, Spain. This research is a result of the
activity developed within the framework of the Programme in Support of Excellence
Groups of the Regién de Murcia, Spain, by Fundacién Séneca, Regional Agency for
Science and Technology (Regional Plan for Science and Technology 2007-2010).

Rafael Lopez was partially supported by MEC-FEDER, grant no. MTM2011-
22547 and Junta de Andalucia grant no. P09-FQM-5088.

Jaime Ripoll was partially supported by CAPES, Brazil.

1



2 LUIS J. ALIAS, RAFAEL LOPEZ, AND JAIME RIPOLL

A Killing vector field of H"*! is called hyperbolic if its integral curves
are hypercycles orthogonal to a totally geodesic hypersurface of H"*!.
Given an oriented geodesic v there is a unique hyperbolic Killing vector
field X tangent to 7 in the orientation of v. Moreover, X is orthogonal
to the totally geodesic hypersurfaces of H"*! which are orthogonal to
7.

Let X be a hyperbolic Killing vector field of H"™! orthogonal to a
totally geodesic hypersurface H" of H"™! and denote by ¢; the one
parameter subgroup of isometries determined by X, ¢g = Idyn+1. The
X-Killing graph Gr(u) of a function u defined in a subset S of H" is
Gr(u) = {¢uw(z) | z € S} . In the half space model for H*™ that is,
R’ with the metric dz? = (1/22_,)da?, where dz? is the Euclidean
metric, if the geodesic v is the oriented z,.; axis then ¢;(z) = e'z,
x € H"*! and the hyperbolic graphs are radial graphs over the totally
geodesic half sphere @f + ... + 22, = 1, 2,41 > 0. We prove:

Theorem 1.1. Let H" be a totally geodesic hypersurface of H™ .

(a) Let Q be a bounded C** domain in H" satisfying the enclosing
H—hypersphere condition, 0 < H < 1, and let v be an oriented geodesic
passing orthogonally through ) and X the hyperbolic Killing field tan-
gent to v in the orientation of v. Then there is a unique u € C*® (ﬁ)
such that ulgq = 0 and the X —Killing graph of u, oriented with a nor-
mal vector field n such that (n, X) < 0, has constant mean curvature
(CMC) H.

(b) Let M be a compact, embedded, CMC H hypersurface of H"
such that OM C H"™ is the boundary of a domain Q C H" satisfying
the enclosing H—hypersphere condition, 0 < H < 1. Then M is a
graph with respect to any hyperbolic Killing vector field tangent to a
geodesic of H"™ orthogonal to . In particular, M is diffeomorphic to
a n—dimensional ball.

Existence and uniqueness of compact constant mean curvature hy-
persurfaces with boundary in an umbilical hypersurface of the hyper-
bolic space have been studied by many authors. When the boun-
dary is contained in a totally geodesic hypersphere it is known that
if the mean curvature H¢ of the hyperbolic cylinder C' over 992 (that
is C = {pi(z) | z € 0, t € R}) satisfies Ho > H then there exists
u € C?* (ﬁ) as stated in (a). This is consequence of the more general
Theorem 1.1 of [5] when n = 2 and Theorem 1 of [4] in arbitrary dimen-
sions. In H"*! the existence of CMC H hyperbolic Killing graphs has
also been proved in [12] and in the recent work [16] both requiring the
strict inequality H- > H. We note that the H—enclosing hypersphere
condition does not imply Hs > H. Existence of CMC H hypersurfaces
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with boundary in a horosphere (CMC 1 umbilical hypersurfaces) are
proved in [9] (Theorem 1.1) and in [11] (Theorem 1.1) with hypothesis
which are similar to ours.

Regarding result (b), we observe that it follows from a well known
theorem of A. D. Alexandrov [1] that an embedded compact CMC hy-

persurface M in a simply connected space form M isa totally umbi-
lical round hypersphere (when the space form is a sphere it is required
the hypersurface to be contained in a hemisphere). In the context of
embedded compact CMC hypersurfaces with non-empty boundary, the
following topological problem has been investigated by several mathe-

maticians: Let IT ¢ M be a totally geodesic hypersurface, and let
M be an embedded compact CMC hypersurface with connected boun-
dary OM C II. Find natural geometric conditions under which M is a
topological n-dimensional ball.

This problem was considered in [3] for surfaces in the Euclidean
space R3, where the authors conjectured that a compact constant mean
curvature surface in R?® bounded by a circle is a spherical cap if either
the surface has genus 0 and it is immersed or the surface is embedded.
As pointed out in [3], the conjecture holds for the subclass of surfaces
that are embedded and contained in a halfspace by observing that, in
that case, the surface inherits the symmetries of its boundary. It is
therefore of interest to obtain natural geometric conditions that force
a compact embedded constant mean curvature surface M in R3 with
planar boundary OM C II to be contained in one of the halfspaces of
R3 determined by II. In this respect, it was proved in [3] that this
is true assuming additionally that OM is convex in Il and that M is
transverse to Il along M. We note that this problem can naturally

be stated in M and implies a topological version of Alexandrov’s
theorem.

In Euclidean space R"*! some progress has been done. Denoting by
Q2 C II the domain enclosed by M it is proved in [7] that if M is locally
a graph around 0M (with non assumption on the convexity), then M is
globally a graph on €2, showing that M is a topological n-dimensional
ball. When n = 2, in [9] it is proved that there exists a number
Vo > 0 depending only on OM such that if the volume V' of the surface
satisfies |V| < Vi, then M is a graph on €. In [13] it is proved that if

H < (min k) (min 11— (/ig/li)Q) , where £ is the planar curvature of

OM and &, is the geodesic curvature of M in M, then M is a round
cap sphere. Although in all these results the hypothesis depend on the
hypersurface M, one can expect that the topology of M is essentially
determined by H and OM. In fact, under the assumption that M is
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contained in a half space of R?, it is proved in [14] the existence of a
constant C'(k) > 0 depending only on the curvature x of M such that
if 0 < H < C(k) then the surface is a topological disk. An explicit
expression of C'(k) has not been found so far. Theorem 3.3 of [5] also
shows that the topology of M is determined only by the geometry of
OM and H. Our result improves Theorem 3.3 of [5] since it replaces
the enclosing sphere condition required in item (i) of Theorem 3.3 by
the weaker enclosing hypersphere condition. We point out that there is
a significant difference between these hypothesis: Under the enclosing
sphere condition it easily follows that M is contained in the hyperbolic
cone over M and the result is then an immediate application either
of Theorem 1.1 of [5] or of item (a) of our theorem.

2. PRELIMINARIES

We shall make use of the following basic facts.

Lemma 2.1. Let H" be a totally geodesic hypersurface of H**1. Given
p e H", veT,H [v] =1, and 0 < |H| < 1, we have E} '} =
B}, g NH".

Lemma 2.2. Let E be a H-hypersphere in H""1, H # 0, and o be a
é
point of the connected component of H" ™\ E towards H is pointing to,

%
where H denotes the mean curvature vector field of E. Let p € E and
v be the exterior unit normal vector to a geodesic sphere centered at o

passing through p. Then (v, ﬁ(p)} < 0.

For a proof of Lemma 2.1 and Lemma 2.2, it will be appropriate for
us to use the Minkowskian model of the hyperbolic space. Write R7*2
for R"*2, with canonical coordinates (xg,1,...,Tns1), endowed with
the Lorentzian metric

(,) = —daf +dai+ - +dz2,.

The (n + 1)-dimensional hyperbolic space H"! is the complete simply
connected Riemannian manifold with sectional curvature —1, which is
realized as the hyperboloid

H" ™ = {z ¢ R : (z,2) = —1,19 > 0} C R

endowed with the Riemannian metric induced from R}*2. In this mo-
del, the H-hyperspheres are given by

Y"(a,7) = {z € H"" : (a,2) = 7},
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where a € R} satisfies (a,a) = 1 and 7 # 0. It is not difficult to see
that the mean curvature vector field of ¥"(a,7) is given by

—_ —T

Ha,‘r(aj) = 1+ 72

(a+Tx)

for every x € X"(a,7). Therefore, given 0 < |H| < 1, p € H",
and a unit tangent vector v € T,H"™! the only H-hypersphere E}ou
passing through p and having mean curvature H with respect to the
unit normal field 7 such that n(p) = v is the H-hypersphere ¥"(a, 7)
with
H 1 H

— p— v, and T=-——o.

V1— H? V11— H? V1— H?

This implies that if p € H* € H"*! and v € T,H", then

By =5""(a,7) =%"(a,7) NH" = B}, N H".

This proves Lemma 2.1.
On the other hand, let E be a H-hypersphere in H"*', H # 0.
Without loss of generality, we may assume that

E=Y"a,7)={z € H" L. (a,x) =T},

where a € R}*? satisfies (a,a) = 1 and 7 > 0 (otherwise, replace a by
H
—a). Denote by E* the connected component of H*"*\ E towards H

H
is pointing to, where H denotes the mean curvature vector field of F,
that is,

N —T

H(z) = 1472

for every x € E. We claim that E* = {x € H"" : (a,z) < 7}. To see
it, take x € E and let

(a+Tx)

~(t) = cosh (t)x + sinh (t)ﬁ(aﬁ)
be the geodesic starting at x with velocity ﬁ(m) It is clear that
(a,v(t)) =Te " <1

for every t > 0. Thus, E* = {& € H"*! : (a,2) < 7} as claimed.
Choose a point 0 € E* and let p € E. Define s(-) = d(o, -), where d is
the Riemannian distance in H"*!. As is well known, the exterior unit
normal vector to the geodesic sphere centered at o and passing through
p is given by

v = grad s(p).
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Recall that s(-) = d(o,-) = argcosh(—(o,-)). In particular, for every
v e T,H",

v(s) = (grad s(p),v) = —(0,v)

sinh(s(p))’
Thus,
(v, H (p) = 75 (erad s(p).a+7p) = (1 v g)as;;gg(p )
7({0,a) + 7{0,p)) L+ (0. 7))

=+ 72)simbh(s(p)) ~ (1% 72)sinh(s(p)) ~

where we have used the facts that (0,a) < 7 and (o,p) < —1. This
completes the proof of Lemma 2.2.

3. PROOF OF THE THEOREM

Proof of (a). Assume that the geodesic vy passes through the point o €
Q and let X be the hyperbolic Killing field tangent to ~. Let H"™
stand for the connected component of H"™ \ H" to where X (0) points.

From an n—dimensional version of Proposition 2.1 of [5] we have to
prove the existence of a solution u € C**(2) to the Dirichlet problem

(3 1) { QH(U) — div pgrad u + {grad u,grad p) +nH=0 inQ

\/1+p2\ grad u|2 \/1+p2| grad u|?
uloo = 0,

where p(z) = || X(2)|*, € H""'. We use the standard open closed
argument to prove that the set

V ={te[0,1]; Jue C*>*(Q) such that Qi (u) =0, ulsq =0}

s [0,1]. Clearly 0 € V so that V' # () and, by the Implicit Function
Theorem, V is open. Choose a t € [0,1] and let u € C*%(Q) satisfies
Q:im(u) = 0 and u|gg = 0. The function v = 0 is a subsolution since
Qip(v) =tnH > 0. It follows that u > 0.

Let E be a H-hypersphere contained in H"™ orthogonal to the ge-
odesic 7 and oriented by a normal vector Ng such that (Ng, X) < 0.
Then F is a X-Killing graph of a strictly positive function z and
Qu(z) = 0. It follows that z is a supersolution for Qyy since Q. (z) =
—nH +tnH =nH(t — 1) <0. Since z|spg > 0 we have u < z. We then
have the C° a priori estimate

(3.2) lul, < C' = maxz.
0

To obtain C! estimates, we will construct local barriers from above
at any point of 9Q with uniform C! bounds. Precisely, we will prove
the existence of a constant D such that, given p € 09, there is a C%©



EXISTENCE AND TOPOLOGICAL UNIQUENESS OF CMC HYPERSURFACES7

neighborhood U, of p in Q, and a function w, € C** (U,) satisfying
the following properties:
(i) Qum(w,) <0 for every t € [0, 1],
(ii) wplu, > uly, for every solution u € C*%(2) of Quu(u) = 0 such
that u|gn = 0, and

(iii) maxy, |gradw,| < D.

If that is the case, since 0 < u < wy,, it follows that maxgq |grad u| <
D. Therefore, from Lemma 11 of [4] and the C° estimate (3.2) we have
a priori C'* estimates of any solution of u € C2%(Q) of Q,5(u) = 0 such
that u|spg = 0. From PDE elliptic theory we have V' = [0, 1].

To show the existence of these local barriers, since a barrier from
above for Qg is also a barrier from above for ();y, we may assume
that t = 1. Let EZ’}*l be the hypersphere in H" through p given by the
interior H-hypersphere condition. Define r(z) = d(z, E}~"), © € Q,
where d is the Riemannian distance in H", and let w(z) := w,(z) =
f(r(z)) for a certain f € C?(R) satisfying f > 0 and f(0) = 0 gi-
ven in the sequel. Noting that gradw = f’gradr, we obtain, after a
computation,

(1 + p2f’2>3/2 Qu(w) = (1 + pzf'Q) (pf’AT +nH\/1+ pzf’2>

+ (2 + pzf’2> f' (gradr, grad p) + pf".

We choose f(r) of the form f(r) = LIln(1 + K?r) where L and K are
constants to be determined later. The function f satisfies f/ > 0 and

f" = —f?/L. Since \/1+ p2f2 <1+ pf’, we have
pf' Ar +nHA\/1+ p2f2 < pf (Ar+nH) +nH.

Then
33) (1+0272)" Qulw) < (140277 (of (Ar + nH) + n)
2
+ <2 + ,02f/2> [/ {gradr, grad p) — %

We now show that the function (gradr,grad p) is negative at p. We
define the function s(z) = d(x,0). Since p is radially symmetric with
respect to o, grad p is orthogonal to the geodesic spheres centered at o.
Then grad p is proportional to grad s at p. Since X is a Killing vector
field, we have, at the point x = p,

(grad s, grad p) = grad s ((X, X)) = 2 (Vgaa s X, X)
= —2(VxX, grads) = =2 (a(X, X), grad s) > 0,
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where « is the second fundamental form of the cone around the ge-
odesic . It follows that grad p(p) = |grad p(p)|grad s(p). Moreover,

— =
since H (p) = H gradr(p), where H (p) is the mean curvature vector of
Er~! at p, we obtain, using Lemma 2.2,

(gradr, grad p) (p) = (1/H) |grad p <grad s, ﬁ> (p) < 0.

Thus there exists 7, > 0 such that U, = {x € Q;r(x) < r} is a
neighborhood of p where (gradr, grad p) (z) < 0 for all z € U,,. Mo-
reover, observing that Ar = —nH, where H, is the mean curvature of
the umbilical hypersurface at a distance r of E, and contained in the
connected component of H" where the mean curvature vector of £, is
pointing to, we obtain from (3.3):

12
(1+7272) " Qutw)lu, < (14 652) (nof? (1 — 1)+ )~ P2
Since H, — H as r — 0, letting » — 0 we obtain
12\ 3/ '(0))*
i (1277) " Quiw ) < o (14920 (70))?) - 22O

= p(p)K*L (nHp(p)L — 1) + Hn.
Choosing L = 2C/In(1 + K), where C' is given by (3.2), we obtain

. 12\ 3/2 2Cp(p)K* (2CnHp(p)
m (1 0 2) Qu(w)) < 173775 (1n(1+K)

—1) + Hn.

Since p(p) > 0, then
oy 2Cp(p)ET (20 H p(p)
K—+oo In(1+ K) \ In(1 + K)

and we may choose K sufficiently large, and depending only on p,n, C
and H, such that (say)

2Cp(p)K* (QCan(p)
In(1+ K) \ In(1+ K)

for every K > K. Therefore, we may then choose a positive number
K, > K, sufficiently large such that 1/K; < r and if r(z) < 1/K;,
then

—1>+Hn:—oo,

—1>+Hn§—2

N 3/2
(14 72%) " Quw)(@) <0,

This means that w is a supersolution for Q5 in Uy, . Moreover, since

Wlow, ., no0 = 0 = ulsn and

wlov, o0 = [(1/ K1) = 2C > ulay, . \on,
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the function w is a local upper barrier for problem (3.1) in a neighbor-
hood of p. By comparison, we obtain the a priori bound

lgrad u| (p) < |grad w] (p).

Since D := infgp > 0 it is clear that one may choose an a priori
gradient estimate of a solution of (3.1) that depends only on n, H, C
and D. This guarantees the existence of a graph G and completes the
proof of item (a). The uniqueness is an immediate consequence of the
maximum principle. ([l

Proof of (b). The idea of the proof is as follows. From the enclosing H-
hypersphere condition and the the tangency principle it follows that the
hypersurface does not intersect H" \ Q. As a consequence of comparing
M with the family of totally geodesic hyperplanes obtained moving H”
through a one parameter subgroup of isometries of H**!, we show that
M lies in a connected component H'}*! of H"*! \ H". Now we may
use item (a) to assert the existence of a hyperbolic Killing graph G on
2, with respect to a fixed but arbitrary geodesic passing orthogonally
through Q, with OM = 0G and contained in H"**\ H'}*!. Thus M UG
defines an embedded closed hypersurface which may be singular at
%) ; however, from the boundary tangency principle and the enclosing
hypersphere condition the tangent spaces of M and G along 0f) have
an inner angle strictly smaller than 7. We then use the Alexandrov
reflection technique on M U G and prove that M must be a Killing
graph. Let us now develop in detail this sketch.

The case H = 0 in the theorem is immediate: the tangency princi-
ple implies that M =  and the theorem is trivial in this case. We
may then assume that H > 0. Since M U 2 is a topological immersed
hypersurface without boundary, it divides H"*! into connected compo-
nents, one of them, say U, being unbounded. It is also an immediate
consequence of the tangency principle that the mean curvature vector
of M points to H" '\ U. Denote by H™" the closure of the connected
component of H"™\H" that contains points of M\dM.

Claim 1. It holds that M N (H”“\H’_ﬁl) = 0.

Proof of Claim 1. Let n be the unit normal vector field along 0f2 poin-

ting to Q. Let p € 02 be given and set £ = B} .- We claim that

the hypersurface M is contained in the closure E[’}’* of the connected
component of H”H\Eg’ which 7(p) is pointing to. In fact: First ob-
serve that, since () satisfies the enclosing H-hypersphere condition, it
follows from Lemma 2.1 that © C E}'*. Now, let ¢y be the one pa-

rameter subgroup of isometries of H"*! generated by the hyperbolic
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Killing field X,, which integral curves are hypercycles equidistant to a
geodesic orthogonal to EJ', 1o = Idgn+1. Assume that X (p) points to
Er— = H"\E}*. Setting

A={t>0; Ys(E))NM#0for all s € [0,t]},

we have A # () since 0 € A. Because M is compact, t := sup(A) < oo.
We assert that t; = 0. By contradiction, assume that t, > 0. Then
V1o (Ey) is tangent to M and moreover M is contained in vy, (E]").
As the mean curvature vectors of both surfaces agree at the tangent
point, the tangency principle gives a contradiction.

We then have tp = 0 and M N E}™ = (). Because this holds for any
p € 0N the surface M does not intersect H"\2. Now it is enough to
apply Theorem 2.2 of [8]. This completes the proof of Claim 1. O

Choose a point 0o € ) and let X be the hyperbolic Killing vector
field which integral curves are hypercycles equidistant to the geodesic
v through o and orthogonal to H". As in the proof of item (a), let
H"™! stand for the connected component of H"* \ H" to where X (o)
points, and assume that X induces the same orientation on . It then
follows from item (a) the existence of a hyperbolic X-Killing graph G
contained in the closure of H*™ with CMC H with respect to the unit
normal vector 7 such that (n, X) < 0, and satisfying 0G = 9f). Let ¢,
the one parameter subgroup of isometries determined by X, ¢y = Id.

We have that N := M U G is a topological compact hypersurface
without boundary which is not necessarily smooth along 02 and has
CMC H with respect to the inner orientation on N\02. Denote by
W C H""!' the domain bounded by N. We now use the well known
Alexandrov technique by taking reflections with respect to the totally
geodesic hypersurfaces ¢, (H™). In this process, we will use the notation
Mg+, M- and M} as in [15], which we recall here for the reader’s
convenience. Recall that OM C ¢o(H"). Then for every t € R, M+
denotes the portion of M which is on and above ¢, (H"). Similarly,
M;- denotes the portion of M which is on and below ¢, (H"™), while
M}, denotes the reflection of M;+ across ¢ (H").

Starting with reflections with ¢ > 0, we arrive until the time that
¢(H™) intersects M for the first time. After that, we begin considering
t such that M;+ C W and denote

to = sup{t; M} C W, for all s > t}.
Claim 2. [t holds that ty = 0.

Proof of Claim 2. By contradiction, assume that ty > 0. Then one of
the following three possibilities holds:
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(1) M% NN £ .

(2) There is a tangency between M % and G at a interior point of
both M * and G.

(3) There is "a boundary tangency between M 5 and M-

In the first case, since both M and G are contamed in EI’}”L with
peMin 0 and they cannot be tangent to EJ at p, the inner angle
0

between the tangent planes T,M and T,G at p is strictly smaller than
. Since 0M * NN =0 because to > 0, then M has to intersect
0f) at a pomt belonging to M "; \OM; , which is not E)OSSlble since M,
is smooth and totally contained in the interior of N. Observe that
by regularity, it is not possible for a smooth hypersurface to be at the
same time entirely contained in the interior of N and to touch a point
of 0.

The second possibility cannot hold. Otherwise N would be a smooth
surface, which is not possible since it is not smooth at 0¢2 as previously
observed.

Finally the third case is not possible either, since otherwise V;, :=
M UMtg would be a compact embedded CMC surface (without boun-
0

dary) and therefore, by Alexandrov’s theorem, it would be a geodesic
sphere with mean curvature bigger than 1, which is a contradiction.
This completes the proof of Claim 2. 0

t07

We then have that ¢y = 0 and this proves that M is a X —hyperbolic
Killing graph. Since o € €2 is arbitrary the proof of the theorem is
finished. O
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