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Abstract. It is proved that if Γ is a compact, embedded hyper-
surface in a totally geodesic hypersurface Hn of Hn+1 satisfying
the enclosing H-hypersphere condition with |H| < 1, then there
is one and only one (up to a reflection on Hn) compact embedded
constant mean curvature H hypersurface M such that ∂M = Γ.
Moreover, M is diffeomorphic to a ball.

1. Introduction

Let Hn+1 be the hyperbolic space of constant sectional curvature −1.
By a hypersphere of Hn+1 we mean a totally umbilical hypersurface of
Hn+1 which mean curvature has absolute value strictly smaller than 1.
Given −1 < H < 1, p ∈ Hn+1 and a unit tangent vector v ∈ TpHn+1,
there is only one hypersphere En

p,v,H of Hn+1 passing through p which
has mean curvature H with respect to the unit normal vector field η
such that η(p) = v (for more details see next section).

Let Hn be a totally geodesic hypersurface of Hn+1, Ω a smooth do-
main in Hn and η the unit normal vector field along ∂Ω pointing to Ω.
Given 0 ≤ H < 1, we say that Ω satisfies the enclosing H−hypersphere
condition if for any p ∈ ∂Ω the connected component of Hn\En−1

p,η(p),H

to which η(p) is pointing contains Ω (this definition is a natural exten-
sion to the hyperbolic space of the enclosing sphere condition used in
Euclidean PDE theory. See [6], p. 339).
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A Killing vector field of Hn+1 is called hyperbolic if its integral curves
are hypercycles orthogonal to a totally geodesic hypersurface of Hn+1.
Given an oriented geodesic γ there is a unique hyperbolic Killing vector
field X tangent to γ in the orientation of γ. Moreover, X is orthogonal
to the totally geodesic hypersurfaces of Hn+1 which are orthogonal to
γ.

Let X be a hyperbolic Killing vector field of Hn+1 orthogonal to a
totally geodesic hypersurface Hn of Hn+1 and denote by ϕt the one
parameter subgroup of isometries determined by X, ϕ0 = IdHn+1 . The
X-Killing graph Gr(u) of a function u defined in a subset S of Hn is
Gr(u) =

{
ϕu(x)(x) | x ∈ S

}
. In the half space model for Hn+1 that is,

Rn+1
+ with the metric dz2 = (1/x2

n+1)dx
2, where dx2 is the Euclidean

metric, if the geodesic γ is the oriented xn+1 axis then ϕt(x) = etx,
x ∈ Hn+1, and the hyperbolic graphs are radial graphs over the totally
geodesic half sphere x2

1 + ...+ x2
n+1 = 1, xn+1 > 0. We prove:

Theorem 1.1. Let Hn be a totally geodesic hypersurface of Hn+1.
(a) Let Ω be a bounded C2,α domain in Hn satisfying the enclosing

H−hypersphere condition, 0 ≤ H < 1, and let γ be an oriented geodesic
passing orthogonally through Ω and X the hyperbolic Killing field tan-
gent to γ in the orientation of γ. Then there is a unique u ∈ C2,α

(
Ω

)
such that u|∂Ω = 0 and the X−Killing graph of u, oriented with a nor-
mal vector field η such that 〈η,X〉 ≤ 0, has constant mean curvature
(CMC) H.

(b) Let M be a compact, embedded, CMC H hypersurface of Hn+1

such that ∂M ⊂ Hn is the boundary of a domain Ω ⊂ Hn satisfying
the enclosing H−hypersphere condition, 0 ≤ H < 1. Then M is a
graph with respect to any hyperbolic Killing vector field tangent to a
geodesic of Hn+1 orthogonal to Ω. In particular, M is diffeomorphic to
a n−dimensional ball.

Existence and uniqueness of compact constant mean curvature hy-
persurfaces with boundary in an umbilical hypersurface of the hyper-
bolic space have been studied by many authors. When the boun-
dary is contained in a totally geodesic hypersphere it is known that
if the mean curvature HC of the hyperbolic cylinder C over ∂Ω (that
is C = {ϕt(x) | x ∈ ∂Ω, t ∈ R}) satisfies HC ≥ H then there exists
u ∈ C2,α

(
Ω

)
as stated in (a). This is consequence of the more general

Theorem 1.1 of [5] when n = 2 and Theorem 1 of [4] in arbitrary dimen-
sions. In Hn+1 the existence of CMC H hyperbolic Killing graphs has
also been proved in [12] and in the recent work [16] both requiring the
strict inequality HC > H. We note that the H−enclosing hypersphere
condition does not imply HC ≥ H. Existence of CMC H hypersurfaces
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with boundary in a horosphere (CMC 1 umbilical hypersurfaces) are
proved in [9] (Theorem 1.1) and in [11] (Theorem 1.1) with hypothesis
which are similar to ours.

Regarding result (b), we observe that it follows from a well known
theorem of A. D. Alexandrov [1] that an embedded compact CMC hy-

persurface M in a simply connected space form M
n+1

is a totally umbi-
lical round hypersphere (when the space form is a sphere it is required
the hypersurface to be contained in a hemisphere). In the context of
embedded compact CMC hypersurfaces with non-empty boundary, the
following topological problem has been investigated by several mathe-

maticians: Let Π ⊂ M
n+1

be a totally geodesic hypersurface, and let
M be an embedded compact CMC hypersurface with connected boun-
dary ∂M ⊂ Π. Find natural geometric conditions under which M is a
topological n-dimensional ball.

This problem was considered in [3] for surfaces in the Euclidean
space R3, where the authors conjectured that a compact constant mean
curvature surface in R3 bounded by a circle is a spherical cap if either
the surface has genus 0 and it is immersed or the surface is embedded.
As pointed out in [3], the conjecture holds for the subclass of surfaces
that are embedded and contained in a halfspace by observing that, in
that case, the surface inherits the symmetries of its boundary. It is
therefore of interest to obtain natural geometric conditions that force
a compact embedded constant mean curvature surface M in R3 with
planar boundary ∂M ⊂ Π to be contained in one of the halfspaces of
R3 determined by Π. In this respect, it was proved in [3] that this
is true assuming additionally that ∂M is convex in Π and that M is
transverse to Π along ∂M . We note that this problem can naturally

be stated in M
n+1

and implies a topological version of Alexandrov’s
theorem.

In Euclidean space Rn+1 some progress has been done. Denoting by
Ω ⊂ Π the domain enclosed by ∂M it is proved in [7] that if M is locally
a graph around ∂M (with non assumption on the convexity), then M is
globally a graph on Ω, showing that M is a topological n-dimensional
ball. When n = 2, in [9] it is proved that there exists a number
V0 > 0 depending only on ∂M such that if the volume V of the surface
satisfies |V | ≤ V0, then M is a graph on Ω. In [13] it is proved that if

H ≤ (minκ)
(
min

√
1− (κg/κ)2

)
, where κ is the planar curvature of

∂M and κg is the geodesic curvature of ∂M in M, then M is a round
cap sphere. Although in all these results the hypothesis depend on the
hypersurface M, one can expect that the topology of M is essentially
determined by H and ∂M . In fact, under the assumption that M is
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contained in a half space of R3, it is proved in [14] the existence of a
constant C(κ) > 0 depending only on the curvature κ of ∂M such that
if 0 ≤ H ≤ C(κ) then the surface is a topological disk. An explicit
expression of C(κ) has not been found so far. Theorem 3.3 of [5] also
shows that the topology of M is determined only by the geometry of
∂M and H. Our result improves Theorem 3.3 of [5] since it replaces
the enclosing sphere condition required in item (i) of Theorem 3.3 by
the weaker enclosing hypersphere condition. We point out that there is
a significant difference between these hypothesis: Under the enclosing
sphere condition it easily follows that M is contained in the hyperbolic
cone over ∂M and the result is then an immediate application either
of Theorem 1.1 of [5] or of item (a) of our theorem.

2. Preliminaries

We shall make use of the following basic facts.

Lemma 2.1. Let Hn be a totally geodesic hypersurface of Hn+1. Given
p ∈ Hn, v ∈ TpHn, |v| = 1, and 0 < |H| < 1, we have En−1

p,v,H =
En

p,v,H ∩Hn.

Lemma 2.2. Let E be a H-hypersphere in Hn+1, H 6= 0, and o be a

point of the connected component of Hn+1\E towards
−→
H is pointing to,

where
−→
H denotes the mean curvature vector field of E. Let p ∈ E and

ν be the exterior unit normal vector to a geodesic sphere centered at o

passing through p. Then 〈ν,
−→
H (p)〉 < 0.

For a proof of Lemma 2.1 and Lemma 2.2, it will be appropriate for
us to use the Minkowskian model of the hyperbolic space. Write Rn+2

1

for Rn+2, with canonical coordinates (x0, x1, . . . , xn+1), endowed with
the Lorentzian metric

〈, 〉 = −dx2
0 + dx2

1 + · · ·+ dx2
n+1.

The (n+ 1)-dimensional hyperbolic space Hn+1 is the complete simply
connected Riemannian manifold with sectional curvature −1, which is
realized as the hyperboloid

Hn+1 = {x ∈ Rn+2
1 : 〈x, x〉 = −1, x0 > 0} ⊂ Rn+2

1

endowed with the Riemannian metric induced from Rn+2
1 . In this mo-

del, the H-hyperspheres are given by

Σn(a, τ) = {x ∈ Hn+1 : 〈a, x〉 = τ},
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where a ∈ Rn+2
1 satisfies 〈a, a〉 = 1 and τ 6= 0. It is not difficult to see

that the mean curvature vector field of Σn(a, τ) is given by

−→
H a,τ (x) =

−τ
1 + τ 2

(a+ τx)

for every x ∈ Σn(a, τ). Therefore, given 0 < |H| < 1, p ∈ Hn+1,
and a unit tangent vector v ∈ TpHn+1, the only H-hypersphere En

p,v,H

passing through p and having mean curvature H with respect to the
unit normal field η such that η(p) = v is the H-hypersphere Σn(a, τ)
with

a = − H√
1−H2

p− 1√
1−H2

v, and τ =
H√

1−H2
.

This implies that if p ∈ Hn ⊂ Hn+1 and v ∈ TpHn, then

En−1
p,v,H = Σn−1(a, τ) = Σn(a, τ) ∩Hn = En

p,v,H ∩Hn.

This proves Lemma 2.1.
On the other hand, let E be a H-hypersphere in Hn+1, H 6= 0.

Without loss of generality, we may assume that

E = Σn(a, τ) = {x ∈ Hn+1 : 〈a, x〉 = τ},

where a ∈ Rn+2
1 satisfies 〈a, a〉 = 1 and τ > 0 (otherwise, replace a by

−a). Denote by E+ the connected component of Hn+1\E towards
−→
H

is pointing to, where
−→
H denotes the mean curvature vector field of E,

that is,
−→
H (x) =

−τ
1 + τ 2

(a+ τx)

for every x ∈ E. We claim that E+ = {x ∈ Hn+1 : 〈a, x〉 < τ}. To see
it, take x ∈ E and let

γ(t) = cosh (t)x+ sinh (t)
−→
H (x)

be the geodesic starting at x with velocity
−→
H (x). It is clear that

〈a, γ(t)〉 = τe−t < τ

for every t > 0. Thus, E+ = {x ∈ Hn+1 : 〈a, x〉 < τ} as claimed.
Choose a point o ∈ E+ and let p ∈ E. Define s(·) = d(o, ·), where d is
the Riemannian distance in Hn+1. As is well known, the exterior unit
normal vector to the geodesic sphere centered at o and passing through
p is given by

ν = grad s(p).
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Recall that s(·) = d(o, ·) = arg cosh(−〈o, ·〉). In particular, for every
v ∈ TpHn+1,

v(s) = 〈grad s(p), v〉 =
−〈o, v〉

sinh(s(p))
.

Thus,

〈ν,
−→
H (p)〉 =

−τ
1 + τ 2

〈grad s(p), a+ τp〉 =
τ〈o, a+ τp〉

(1 + τ 2) sinh(s(p))

=
τ(〈o, a〉+ τ〈o, p〉)
(1 + τ 2) sinh(s(p))

<
τ 2(1 + 〈o, p〉)

(1 + τ 2) sinh(s(p))
< 0,

where we have used the facts that 〈o, a〉 < τ and 〈o, p〉 < −1. This
completes the proof of Lemma 2.2.

3. Proof of the theorem

Proof of (a). Assume that the geodesic γ passes through the point o ∈
Ω and let X be the hyperbolic Killing field tangent to γ. Let Hn+1

−
stand for the connected component of Hn+1 \Hn to where X(o) points.

From an n−dimensional version of Proposition 2.1 of [5] we have to
prove the existence of a solution u ∈ C2,α(Ω) to the Dirichlet problem

(3.1)

{
QH(u) := div ρ grad u√

1+ρ2| grad u|2
+ 〈grad u,grad ρ〉√

1+ρ2| grad u|2
+ nH = 0 in Ω

u|∂Ω = 0,

where ρ(x) = ‖X(x)‖2 , x ∈ Hn+1. We use the standard open closed
argument to prove that the set

V =
{
t ∈ [0, 1] ; ∃u ∈ C2,α(Ω) such that QtH(u) = 0, u|∂Ω = 0

}
is [0, 1] . Clearly 0 ∈ V so that V 6= ∅ and, by the Implicit Function
Theorem, V is open. Choose a t ∈ [0, 1] and let u ∈ C2,α(Ω) satisfies
QtH(u) = 0 and u|∂Ω = 0. The function v = 0 is a subsolution since
QtH(v) = tnH ≥ 0. It follows that u ≥ 0.

Let E be a H-hypersphere contained in Hn+1
− orthogonal to the ge-

odesic γ and oriented by a normal vector NE such that 〈NE, X〉 < 0.
Then E is a X-Killing graph of a strictly positive function z and
QH(z) = 0. It follows that z is a supersolution for QtH since QtH(z) =
−nH + tnH = nH(t− 1) ≤ 0. Since z|∂Ω > 0 we have u ≤ z. We then
have the C0 a priori estimate

(3.2) |u|0 ≤ C = max
Ω

z.

To obtain C1 estimates, we will construct local barriers from above
at any point of ∂Ω with uniform C1 bounds. Precisely, we will prove
the existence of a constant D such that, given p ∈ ∂Ω, there is a C2,α
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neighborhood Up of p in Ω, and a function wp ∈ C2,α
(
Up

)
satisfying

the following properties:

(i) QtH(wp) ≤ 0 for every t ∈ [0, 1],
(ii) wp|Up ≥ u|Up for every solution u ∈ C2,α(Ω) of QtH(u) = 0 such

that u|∂Ω = 0, and
(iii) maxUp |gradwp| ≤ D.

If that is the case, since 0 ≤ u ≤ wp, it follows that max∂Ω |gradu| ≤
D. Therefore, from Lemma 11 of [4] and the C0 estimate (3.2) we have
a priori C1 estimates of any solution of u ∈ C2,α(Ω) of QtH(u) = 0 such
that u|∂Ω = 0. From PDE elliptic theory we have V = [0, 1].

To show the existence of these local barriers, since a barrier from
above for QH is also a barrier from above for QtH , we may assume
that t = 1. Let En−1

p be the hypersphere in Hn through p given by the

interior H-hypersphere condition. Define r(x) = d(x,En−1
p ), x ∈ Ω,

where d is the Riemannian distance in Hn, and let w(x) := wp(x) =
f(r(x)) for a certain f ∈ C2(R) satisfying f ≥ 0 and f(0) = 0 gi-
ven in the sequel. Noting that gradw = f ′ grad r, we obtain, after a
computation,(

1 + ρ2f
′2
)3/2

QH(w) =
(
1 + ρ2f

′2
) (

ρf ′∆r + nH
√

1 + ρ2f ′2
)

+
(
2 + ρ2f

′2
)
f ′ 〈grad r, grad ρ〉+ ρf ′′.

We choose f(r) of the form f(r) = L ln(1 +K2r) where L and K are
constants to be determined later. The function f satisfies f ′ > 0 and
f ′′ = −f ′2/L. Since

√
1 + ρ2f ′2 ≤ 1 + ρf ′, we have

ρf ′∆r + nH
√

1 + ρ2f ′2 ≤ ρf ′ (∆r + nH) + nH.

Then (
1 + ρ2f

′2
)3/2

QH(w) ≤
(
1 + ρ2f

′2
)

(ρf ′ (∆r + nH) + nH)(3.3)

+
(
2 + ρ2f

′2
)
f ′ 〈grad r, grad ρ〉 − ρf

′2

L
.

We now show that the function 〈grad r, grad ρ〉 is negative at p. We
define the function s(x) = d(x, o). Since ρ is radially symmetric with
respect to o, grad ρ is orthogonal to the geodesic spheres centered at o.
Then grad ρ is proportional to grad s at p. Since X is a Killing vector
field, we have, at the point x = p,

〈grad s, grad ρ〉 = grad s (〈X,X〉) = 2 〈∇grad sX,X〉
= −2 〈∇XX, grad s〉 = −2 〈α(X,X), grad s〉 > 0,
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where α is the second fundamental form of the cone around the ge-
odesic γ. It follows that grad ρ(p) = |grad ρ(p)| grad s(p). Moreover,

since
−→
H (p) = H grad r(p), where

−→
H (p) is the mean curvature vector of

En−1
p at p, we obtain, using Lemma 2.2,

〈grad r, grad ρ〉 (p) = (1/H) |grad ρ|
〈
grad s,

−→
H

〉
(p) < 0.

Thus there exists r1 > 0 such that Ur1 = {x ∈ Ω; r(x) ≤ r1} is a
neighborhood of p where 〈grad r, grad ρ〉 (x) < 0 for all x ∈ Ur1 . Mo-
reover, observing that ∆r = −nHr where Hr is the mean curvature of
the umbilical hypersurface at a distance r of Ep and contained in the
connected component of Hn where the mean curvature vector of Ep is
pointing to, we obtain from (3.3):(
1 + ρ2f

′2
)3/2

QH(w)|Ur1
≤

(
1 + ρ2f

′2
)

(nρf ′ (H −Hr) + nH)− ρf ′2

L
.

Since Hr → H as r → 0, letting r → 0 we obtain

lim
r(x)→0

(
1 + ρ2f

′2
)3/2

QH(w)(x) ≤ nH
(
1 + ρ2(p) (f ′(0))

2
)
− ρ(p) (f ′(0))2

L

= ρ(p)K4L (nHρ(p)L− 1) +Hn.

Choosing L = 2C/ ln(1 +K), where C is given by (3.2), we obtain

lim
r(x)→0

(
1 + ρ2f

′2
)3/2

QH(w)(x) ≤ 2Cρ(p)K4

ln(1 +K)

(
2CnHρ(p)

ln(1 +K)
− 1

)
+Hn.

Since ρ(p) > 0, then

lim
K→+∞

2Cρ(p)K4

ln(1 +K)

(
2CnHρ(p)

ln(1 +K)
− 1

)
+Hn = −∞,

and we may choose K0 sufficiently large, and depending only on p, n, C
and H, such that (say)

2Cρ(p)K4

ln(1 +K)

(
2CnHρ(p)

ln(1 +K)
− 1

)
+Hn ≤ −2

for every K ≥ K0. Therefore, we may then choose a positive number
K1 > K0 sufficiently large such that 1/K1 ≤ r1 and if r(x) ≤ 1/K1,
then (

1 + ρ2f
′2
)3/2

QH(w)(x) < 0.

This means that w is a supersolution for QH in U1/K1 . Moreover, since
w|∂U1/K1

∩∂Ω = 0 = u|∂Ω and

w|∂U1/K1
\∂Ω = f(1/K1) = 2C > u|∂U1/K1

\∂Ω,
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the function w is a local upper barrier for problem (3.1) in a neighbor-
hood of p. By comparison, we obtain the a priori bound

|gradu| (p) ≤ |gradw| (p).
Since D := infΩ ρ > 0 it is clear that one may choose an a priori
gradient estimate of a solution of (3.1) that depends only on n, H, C
and D. This guarantees the existence of a graph G and completes the
proof of item (a). The uniqueness is an immediate consequence of the
maximum principle. �

Proof of (b). The idea of the proof is as follows. From the enclosing H-
hypersphere condition and the the tangency principle it follows that the
hypersurface does not intersect Hn \Ω. As a consequence of comparing
M with the family of totally geodesic hyperplanes obtained moving Hn

through a one parameter subgroup of isometries of Hn+1, we show that
M lies in a connected component Hn+1

+ of Hn+1 \ Hn. Now we may
use item (a) to assert the existence of a hyperbolic Killing graph G on
Ω, with respect to a fixed but arbitrary geodesic passing orthogonally
through Ω, with ∂M = ∂G and contained in Hn+1 \Hn+1

+ . Thus M ∪G
defines an embedded closed hypersurface which may be singular at
∂Ω ; however, from the boundary tangency principle and the enclosing
hypersphere condition the tangent spaces of M and G along ∂Ω have
an inner angle strictly smaller than π. We then use the Alexandrov
reflection technique on M ∪ G and prove that M must be a Killing
graph. Let us now develop in detail this sketch.

The case H = 0 in the theorem is immediate: the tangency princi-
ple implies that M = Ω and the theorem is trivial in this case. We
may then assume that H > 0. Since M ∪ Ω is a topological immersed
hypersurface without boundary, it divides Hn+1 into connected compo-
nents, one of them, say U, being unbounded. It is also an immediate
consequence of the tangency principle that the mean curvature vector
of M points to Hn+1\U. Denote by Hn+1

+ the closure of the connected
component of Hn+1\Hn that contains points of M\∂M.

Claim 1. It holds that M ∩
(
Hn+1\Hn+1

+

)
= ∅.

Proof of Claim 1. Let η be the unit normal vector field along ∂Ω poin-
ting to Ω. Let p ∈ ∂Ω be given and set En

p = En
p,η(p),H . We claim that

the hypersurface M is contained in the closure En,+
p of the connected

component of Hn+1\En
p which η(p) is pointing to. In fact: First ob-

serve that, since Ω satisfies the enclosing H-hypersphere condition, it
follows from Lemma 2.1 that Ω ⊂ En,+

p . Now, let ψt be the one pa-

rameter subgroup of isometries of Hn+1 generated by the hyperbolic
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Killing field Xp which integral curves are hypercycles equidistant to a
geodesic orthogonal to En

p , ψ0 = IdHn+1 . Assume that X(p) points to

En,−
p := Hn+1\En,+

p . Setting

A = {t ≥ 0; ψs(E
n
p ) ∩M 6= ∅ for all s ∈ [0, t]},

we have A 6= ∅ since 0 ∈ A. Because M is compact, t0 := sup(A) <∞.
We assert that t0 = 0. By contradiction, assume that t0 > 0. Then
ψt0(E

n
p ) is tangent to M and moreover M is contained in ψt0(E

n,+
p ).

As the mean curvature vectors of both surfaces agree at the tangent
point, the tangency principle gives a contradiction.

We then have t0 = 0 and M ∩ En,−
p = ∅. Because this holds for any

p ∈ ∂Ω the surface M does not intersect Hn\Ω. Now it is enough to
apply Theorem 2.2 of [8]. This completes the proof of Claim 1. �

Choose a point o ∈ Ω and let X be the hyperbolic Killing vector
field which integral curves are hypercycles equidistant to the geodesic
γ through o and orthogonal to Hn. As in the proof of item (a), let
Hn+1
− stand for the connected component of Hn+1 \Hn to where X(o)

points, and assume that X induces the same orientation on γ. It then
follows from item (a) the existence of a hyperbolic X-Killing graph G
contained in the closure of Hn+1

− with CMC H with respect to the unit
normal vector η such that 〈η,X〉 ≤ 0, and satisfying ∂G = ∂Ω. Let ϕt

the one parameter subgroup of isometries determined by X, ϕ0 = Id.
We have that N := M ∪ G is a topological compact hypersurface

without boundary which is not necessarily smooth along ∂Ω and has
CMC H with respect to the inner orientation on N\∂Ω. Denote by
W ⊂ Hn+1 the domain bounded by N . We now use the well known
Alexandrov technique by taking reflections with respect to the totally
geodesic hypersurfaces ϕt(Hn). In this process, we will use the notation
Mt+ , Mt− and M∗

t+ as in [15], which we recall here for the reader’s
convenience. Recall that ∂M ⊂ ϕ0(Hn). Then for every t ∈ R, Mt+

denotes the portion of M which is on and above ϕt(Hn). Similarly,
Mt− denotes the portion of M which is on and below ϕt(Hn), while
M∗

t+ denotes the reflection of Mt+ across ϕt(Hn).
Starting with reflections with t > 0, we arrive until the time that

ϕt(Hn) intersects M for the first time. After that, we begin considering
t such that Mt+ ⊂ W and denote

t0 = sup{t; M∗
s+ ⊂ W, for all s ≥ t}.

Claim 2. It holds that t0 = 0.

Proof of Claim 2. By contradiction, assume that t0 > 0. Then one of
the following three possibilities holds:
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(1) M∗
t+0
∩ ∂Ω 6= ∅.

(2) There is a tangency between M∗
t+0

and G at a interior point of

both M∗
t+0

and G.

(3) There is a boundary tangency between M∗
t+0

and Mt−0
.

In the first case, since both M and G are contained in En,+
p with

p ∈ M∗
t+0
∩ ∂Ω and they cannot be tangent to En

p at p, the inner angle

between the tangent planes TpM and TpG at p is strictly smaller than
π. Since ∂M∗

t+0
∩ ∂Ω = ∅ because t0 > 0, then M∗

t+0
has to intersect

∂Ω at a point belonging to M∗
t+0
\∂M∗

t0
, which is not possible since M∗

t+0
is smooth and totally contained in the interior of N . Observe that,
by regularity, it is not possible for a smooth hypersurface to be at the
same time entirely contained in the interior of N and to touch a point
of ∂Ω.

The second possibility cannot hold. Otherwise N would be a smooth
surface, which is not possible since it is not smooth at ∂Ω as previously
observed.

Finally the third case is not possible either, since otherwise Nt0 :=
M∗

t+0
∪Mt−0

would be a compact embedded CMC surface (without boun-

dary) and therefore, by Alexandrov’s theorem, it would be a geodesic
sphere with mean curvature bigger than 1, which is a contradiction.
This completes the proof of Claim 2. �

We then have that t0 = 0 and this proves that M is a X−hyperbolic
Killing graph. Since o ∈ Ω is arbitrary the proof of the theorem is
finished. �
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