ON QUADRATIC DIFFERENTIALS AND TWISTED
NORMAL MAPS OF SURFACES IN S2 xR AND H? x R
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ABSTRACT. Given a Lie group G with a bi-invariant metric and a com-
pact Lie subgroup K, Bittencourt and Ripoll used the homogeneous
structure of quotient spaces to define a Gauss map N : M™ — S on
any hypersupersurface M"™ & G/K, where S is the unit sphere of the
Lie algebra of G. It is proved in [BR] that M™ having constant mean
curvature (CMC) is equivalent to A being harmonic, a generalization of
a Ruh-Vilms theorem for submanifolds in the Euclidean space. In par-
ticular, when n = 2, the induced quadratic differential Qur := (N*g)*°
is holomorphic on CMC surfaces of G/K.

In this paper, we take G/K = S? x R and compare Qn with the
Abresch-Rosenberg differential Q, also holomorphic for CMC surfaces.
It is proved that Q@ = Qy, after showing that N is the twisted normal
given by (1.5) herein. Then we define the twisted normal for surfaces in
H? x R and prove that Q@ = Onr as well. Within the unified model for
the two product spaces, we compute the tension field of A" and extend
to surfaces in H? x R the equivalence between the CMC property and
the harmonicity of N.

Dedicated to Keti Tenenblat on her 65™ birthday

1. INTRODUCTION

For an oriented immersed surface ¥ in the Euclidean space E3 with Gauss
map N : ¥ — (S%,g), it is well known that the following alternatives are
equivalent:

a) ¥ has constant mean curvature (CMC)
b) The Hopf’s quadratic differential is holomorphic
c¢) N is harmonic.

The equivalence between a) and b) was obtained by H. Hopf [H] who used
it to prove his celebrated theorem asserting that a topological CMC sphere
in the Euclidean space is a round sphere. The equivalence between a) and
¢) holds for submanifolds of arbitrary codimension in E"™ and was proved by
Ruh-Vilms (see [RV]). The equivalence between b) and c) follows logically.

If the surface ¥ is immersed in an arbitrary 3-dimensional Riemannian
manifold M3, the Hopf (quadratic) differential A is defined likewise, in terms

2000 Mathematics Subject Classification. Primary 53A35, 30C99, 30F45.
Key words and phrases. holomorphic differential, twisted normal map, harmonic map.
1



2 MARIA LUIZA LEITE AND JAIME RIPOLL

of the second fundamental form. However, A fails to be holomorphic for
CMC surfaces in general spaces.

In [AR], U. Abresch and H. Rosenberg defined a quadratic differential
form Q of a surface ¥ immersed in S? x R, respectively in H? x R, and ex-
tended Hopf’s theorem for CMC spheres in these ambient spaces. Precisely,

Q=2HA—-T, resp. Q=2HA+T, (1.1)

where H is the mean curvature of the surface, A is the Hopf differential and
T = (dh® dh)?°, with h standing for the height function (see [AR]). They
prove that Q is holomorphic when the surface is CMC. In particular, Q@ =0
holds if ¥ is a CMC topological sphere; from this fact, they obtain that a
CMC sphere is rotationally symmetric.

In [BR], J. Ripoll and F. Bittencourt considered a hypersurface M" ori-
ented by a unit normal N in a homogeneous space G/K and defined the
Gauss map N by taking the horizontal lifting N of N followed by the right
translation of N to the group identity,

N(lgl) = (dry-1),N(g) € T.G, [g] = gK € M". (1.2)
This map N takes values on the unit sphere of the Lie algebra G and coin-
cides with the usual Gauss map IV of a hypersurface in the Euclidean space
considered as an abelian Lie group (K = {0} in this case). It follows from
Corollary 4.4 of [BR]:

Theorem 1.1. Let G endowed with a bi-invariant metric and K be a com-
pact Lie subgroup. Given an immersed orientable hypersurface in the homo-
geneous space G /K, its Gauss map

N:M" — (S g) c G, k=dim K,
is harmonic if and only if M™ has constant mean curvature.

This theorem applies to the homogeneous space S? x R = G/K, with
G = S0(3) xR and K = SO(2) x {0}. Thus, any CMC surface ¥ 3 S? x R
is in correspondence with the harmonic Gauss map from [BR],

N:% — (S g) Cs0(3) x R. (1.3)
We recall that any harmonic map on a surface induces a holomorphic qua-

dratic differential (see 10.5 of [EL]). In particular, if ¥ is a CMC surface in
S? x R, then N induces the holomorphic quadratic differential

Qn = (N*g)20 = 2¢(N., N, )d22. (1.4)

As we know, the Abresch-Rosenberg differential Q is also holomorphic on a
CMC surface. How are Qa and Q related?

In Proposition 3.1 of this paper we prove that Ox = Q holds for any
surface in S? x R. For that, we first show in Proposition 2.3 that if the unit
normal is decomposed as N = (V,v), then the Gauss map defined by (1.2)
in [BR] satisfies

N = (JV,v), (1.5)
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where J is the operator acting on tangent planes of S? as the clockwise
7 /2-rotation. For that reason, we pass to call N the twisted normal map.
The computations to prove Proposition 3.1 clearly suggests that a similar
result should work for a surface in H? x R, once we consider H? C L? and
adopt (1.5) as definition of N. Precisely, we decompose the unit normal of
Y 9 H2 x R as N = (V,v) and define the twisted normal of the surface by

N =(JV,v): % — (dS3,g) C L3 x R, (1.6)

now taking values in the 3-dimensional de-Sitter space dSs.

In the spirit of [RV], we compute the tension field of A for surfaces in
both spaces H2 x R and S? x R (Theorem 3.4 herein) and then prove that
the surface has CMC if and only if N is harmonic, all done in an unified
model for product spaces.

Summarizing the above facts, in the new diagram

a’) ¥ is a CMC surface in S? x R or in H? x R
b’) The Abresch-Rosenberg differential is holomorphic
¢’) N is harmonic,

the alternatives a’) and ¢’) are equivalent, and imply b’).

It is worth to mention that the assertion b’) may not imply a’). In [FM]
Fernandéz and Mira proved that if the normalized Abresch-Rosenberg dif-
ferential, given by Q/H, H # 0, is holomorphic on a surface in H? x R, then
it has constant mean curvature, except for a certain family of rotational
surfaces not CMC. The question about a surface in S? x R with holomorphic
Q/H being CMC remained open in [FM].

Very recently, Aratijo and Leite [AL] determined all surfaces in both prod-
uct spaces with Q holomorphic. For the sake of curiosity, a surface in S? x R
satisfying b’) but not a’) is congruent to a unique rotational surface; when
the ambient space is H? x R, the surface is congruent to a piece of a unique
surface foliated either by horizontal equidistant curves or by horizontal con-
centric circles. The rotational surfaces in both spaces have singularities,
while those foliated by equidistant curves are complete graphs over H?Z.

2. PRELIMINARIES

Let F: X 9 (M3,(, )) denote the immersion of an oriented surface into
a 3-dimensional manifold endowed with a Riemannian metric (, ). It is
standard to consider the conformal structure on ¥ induced by the metric
of the immersion. If z = x 4 iy is a complex coordinate of > and usual
derivatives are indicated by a lower index, then

(Fp, Fy) = (Fy, Fy) = E >0, (Fy, Fy) =0,

(F.,F,) = (F5, F5) =0, (F.,Fs) = E/2, 2F, =F, —iF,. (2.1)
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Let us denote by N the unit normal vector field orienting 3 and by V the
Levi-Civitta connection in M3. One has that

Vg Fs = (EH/2) N. (2.2)
~VEgN=HF,+ (a/E) F; (2.3)
Ve F, = (E,/E)F, + (a/2) N. (2.4)

If ¢dz?® + 2mdady + ndy? is the local expression of the second fundamental
form of the immersion, then H = (¢ + n)/2FE is the mean curvature of the
surface and the coefficient « of the Hopf differential satisfies

a={l—-n—1i2m)/2, A=adz®dz, (2.5)
We note that A is a (well-defined) quadratic differential on X.
We now consider the Riemannian products
S?’xRCE3xR, H?2xRcCL?xR, (2.6)
where L3 is the Minkowski space consisting of R? with the non-degenerate
scalar product Z.7 = 23 + 23 — 23 and H? = {7 : Z.4 = —1,23 > 1}. We use
the dot “” notation for the metrics on ¥, S?, S? x R and E3, in all cases
restrictions of the Euclidean metric in E? x R. Likewise, for the Riemannian
metrics on H? and H? x R, restrictions of the Lorentzian metric in L3 x R.
Let M?(c) stand for the base manifold S? or H?, according to ¢ = 1 or

¢ = —1, respectively. We decompose the immersion F' = (f,h) and the
normal N = (V,v), so that

f(z) e M%*(c), h(z) €ER, V(z)€ Tf(Z)MQ(c), v(z) € R. (2.7)
If V denotes the connection in M?(c), then the Riemannian connection

V in M2(c) x R is the product of V by the usual derivative on R. By its
turn, V is given by the tangential component of the usual derivative on E?

or L3, according to ¢ = 1, or ¢ = —1, respectively.
The Codazzi equations are resumed to
az = E(H, + cvh;). (2.8)

When H is constant, it follows from (2.8) and (2.2) that Q is holomorphic,
with 7 given by
T = 2(h.)?%d2>. (2.9)

We next recall the definition of the Gauss map given in [BR].

Definition 2.1. Let G/K be a homogeneous manifold of left residual classes
in K, where GG is a Lie group endowed with a bi-invariant metric and K is
a compact Lie subgroup of G. Given an orientable hypersurface in G/K
oriented by the unit normal field N, the Gauss map N of this hypersurface
is the right translation to the Lie algebra G of the horizontal lifting N of N.

Notice that it suffices to take G with a right-invariant metric to have
N well-defined by (1.2), since 7(4)-1 0 1, = 74-1, right-translations are

isometries in G and the horizontal lifting N satisfies N(gk) = (drk)g(]v (9))-



ON QUADRATIC DIFFERENTIALS AND TWISTED NORMAL MAPS 5

Let us consider the identification
S?xR=G/K, G=S0(3)xR, K=_S0(2)x {0},
given by the map below, where A7 denotes the j** column of A € SO(3) :
(A, H)K € G/K — (A1) € S* x R. (2.10)

Lemma 2.2. Let ¥ % S2 xR, A€ SO(3) and t € R be given. Then:

(i) the horizontal lifting of N = (V,v) satisfies N = (V,v), with
V(A,t) = A x Z, for some Z L s0(2) in the Lie algebra so(3).

(ii) Assume that Z has the form

0 —a —b
Z=1a 0 0| ¢cso2)"tcso3).
b 0 0

Under the identification (2.10), one obtains V(AL t) = aA? + bA3 € T4 S2.

Proof. The first assertion follows from the linearity of multiplication by a
fixed matrix.

To prove (ii), observe that the identification ASO(2) = A! yields that
50(2)* corresponds to T41S?, spanned by the orthonormal basis {42, A3}.
Multiplication of matrices gives

Ax Z =[aA%+bA> —aAl —bAY.
The expression of V(A!,t) follows from (i). O

In the next result we prove that in S? x R the Gauss map A defined in
[BR] is a twist of the standard normal of the surface.

Proposition 2.3. Let ¥ & S?2xR be oriented by the unit normal N = (V,v).
The map N : ¥ — S? C 50(3) x R satisfies N = (JV,v).
Proof. 1t follows from definition and Lemma 2.2 that the so(3)-component
of NV is B
V(A ) x Al =AxZx AL
We obtain from multiplication of matrices that
0 —als3 + bAso alg3 — bAgg

Ax Zx Al = alAs3 — bAso 0 —al13 + bAq1s |,
—CLA23 + bAQQ aAlg — bAlg 0

where A;; denotes the minor determinant of the entry A;;.
Using that A~! = A® & A;; = A;; under the convention that

0 -t S
t 0 —r | €s0(3) (rs,t)eR3,
—-s T 0

we have that the E3 component of N is —bA? + a A3, thus N = (JV,v). O
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3. PROPERTIES OF THE TWISTED NORMAL MAP

In view of Theorem 1.1 and Proposition 2.3, we have that the twisted
normal N = (JV,v) : & — (S3, g) of a CMC surface in S? x R is harmonic,
where N = (V,v) is the unit normal orienting 3.

A well-known property of harmonic maps imply that Qar, defined in (1.3),
is holomorphic. A surprising property is

Theorem 3.1. Qx = Q holds for any oriented surface in S* x R.
Proof. 1t follows from F, = (f,, h,) that 0 = N.F, = V.f, +vh,. Moreover,
Nz =dN(f2,h) = (JV)z,v2)5 (JV): =V (JV) +[(JV)..flf. (3.1)

We point out that Vx (JY) = J(VxY) holds for arbitrary vector fields, for
J commutes with V (to see that, take an orthonormal pair of parallel vector
fields along the integral curve of X); in other words, every Riemann surface
is Kéhler. Also, JV.f = V.f = 0 implies that (JV),.f = =JV.f..

Now we replace the last equality in (3.1), using that J preserves the metric
and also f.f = 1, to obtain that

NN, =V (V).V (V) + [TV + 2. (3.2)
Adding the first and third summands in (3.2):
Vi)V (V) + 02 =V n) (Vi) Vg ny (Viv) =
VE (N)VEg (N)=2H(a/E)F,.F; = Ha (3.3)

note that we have used (2.4) and then (2.1) in the second line of (3.3).
As for the second summand in (3.2), we claim that

[JV.f.)? = —[h.]2 (3.4)
Indeed,

VLY + VL = VP S (3.5)
follows from the computations

[TV fol? = [IV.J) 1 = 28IV LIV fy] + [V fol? = [V = 2V L]V ) =
VIR P = VP12 = 20V [fo-fy)-

Also, [V.£,]? = [-vh,]? and ||V |*[f..f.] = (1 — v?)(=[h.]?), so (3.4) holds.
Putting together (3.2), (3.3) and (3.4), we finally arrive at

2NN, = 2Ho — 2[h,]% (3.6)
Recalling (1.1) and (2.9), we conclude that Oy = Q. O

Similar computations work for surfaces in H? x R. Keeping the notations
F = (f,h) for the immersion and N = (V,v) for the unit normal, one has
that f.f = —1 and N(p) lies on

dS'?’ = {($1,$2,$37$4) €R4$%+w%—x§+mi: 1} C]L3 XR,

known as the de-Sitter space. Inspired by Proposition 2.3, we set
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Definition 3.2. Given ¥ & H? x R oriented by the unit normal N = (V,v),
the twisted normal map of the surface is N' = (JV,v) : ¥ — dSs, where J
is the complex structure on H?2.

Theorem 3.3. Qnr = Q holds for any oriented surface in H? x R.

Proof. The same of Theorem 3.1, except for a few signals. Due to f.f = —1,
the second equality in (3.1) becomes (JV), = V (JV) — [(JV)..f]f and
the second summand of A, . N, in (3.2) has a minus signal. Thus, equation
(3.6) changes into 2\, N, = 2Ha + 2[h,]? and Qn = Q holds. a

Remark. If G/K = E3, then Qn = 2HA, with N = N.

Theorem 3.4. For any immersion F : ¥ — M2(c) x R, the tension field of
the twisted normal map N is given by

AN = —2J o dF(grad H) = (=2/E)J(H,F, + H,F,),
where J(W,3) = (JW, ) and V stands for the connection in S* or dSs,

depending on ¢ =1 or ¢ = —1, respectively.
Proof. Let us list some facts to be used in this proof:

(i) The tension field of N is defined by AN = tr(VdN) (see [EL]). Its
local expression is (4/E)V N

(11) 6'/\/’5./\/; :Nzg - [Nzg/\/] N, for NN =1.

(iii) Let (W, /) be a tangent vector field along a curve C = (f,h) in
M?(¢) x R and C = (f,h) be the curve velocity in R*. Then

(iv) We have that (JV), = V¢ (JV) + ¢ [(JV)..f]f, as in the proofs of
Theorems 3.1 and 3.3. Also, (3.3) and (3.4) do not change. In particular,
(3.4) implies that

JV.f, = +ih,, JV.fz = Fihs. (3.8)
(v) (a/E)z+(a/E?)E; = (az/E) = H,+cvh,, by Codazzi equation (2.8).
(vi) V commutes with J on M2(c) x R.

We now compute Nz, from which AN will be derived. It follows from
N = JN, (vi) and (3.7) that

~N: = J (=VEN) +c[JV.£](f,0).
Using that J (Ve,N) = (J(Vy,V),v.), plus (vi) and (3.7), one has that
~Nez = Vi (=VEN) + [ J(V V). f2)(£,0) + c{[JV.L(f,0)}; . (3.9)
It follows from (2.3) and (v) that the first summand satisfies
ﬁpgj (—WFZN) =J VFE(HFZ + (Q/E)Fg) =
H.JF, + (H. + cvh.)JF: + AN, A= (EH?/2) + (|of?/2E).  (3.10)
As for the second summand of (3.9), the following holds:
J(VeV)fz= (Ve JV) . fz=[JV.fz]. = JVV e fz=[JV.f5].,  (3.11)
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since (2.2) implies that V_fz is parallel to V.
In view of (3.10) and (3.11), one obtains that

~N.z = H:JJF, 4 (H. 4+ cvh,)JF; + A N 4+ 0(f,0) + c[JV.£.](fz,0); (3.12)

the coefficient of (f,0), given by [JV.fz], + [JV.f.]z, vanishes due to (3.8).

We prove in the Appendix that the component of [JV.f.](fz,0) orthogonal
to N (either in E* or IL#) is precisely —vh,JJFs. Therefore, using (i), we
obtain that the tangential component of —N,; is just ngFz + szFg.
Since J is linear and 2(H;F, + H,F;) = H,F, + H,F, = E[dF(grad H)],
the theorem gets proved. ([l

Corollary 3.5. ¥ is a CMC surface in H? x R if and only if the twisted
normal map N : ¥ — (dSs,g) C L? x R is harmonic.

Proof. Tt is immediate from Theorem 3.4 that N is harmonic if and only if
H is constant. O

Remark 3.6. Asin Corollary 3.5, we have an independent proof of Theorem
1.1 when G/K =S? x R.

4. APPENDIX

Let X denote the component of (fz,0) orthogonal to N' = (JV,v). Since
(fz,0).N = fz.JV = Fihz, we have that

X = (fz,0) £ihz(JV,v) = (f; £ ihsJV, £ihsv). (4.1)

Let us observe that f; never vanishes, since f, = f, = 0 at some point
would imply that E = h2 = h?/ > 0 and hghy = 0, a contradiction.

We claim that hzJV = +ifs:+v Jfz holds everywhere. Indeed, fix a point
and write

hzJV =afz+b Jfz,
with a,b € C. The claim gets proved from
hzJV.fz = a|fz.fz] = hz(Fi)hz = *a(hz)g = a = %,
hzJV.Jfs = blfs.fz] = —v(hz)? = =b(hz)? = b= v.
Therefore,
fexihzJV = fz £i(xifs+v Jfz) =L v Jf: = X =+ iww(Jfz hz).
Finally, the component of [JV.f.](fz,0) orthogonal to N :

+ ih,X = —h.v(Jfz,hz) = —v h, JF:.
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