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Abstract. Given a Lie group G with a bi-invariant metric and a com-
pact Lie subgroup K; Bittencourt and Ripoll used the homogeneous
structure of quotient spaces to de�ne a Gauss map N : Mn ! S on
any hypersupersurface Mn # G=K; where S is the unit sphere of the
Lie algebra of G: It is proved in [BR] that Mn having constant mean
curvature (CMC) is equivalent to N being harmonic, a generalization of
a Ruh-Vilms theorem for submanifolds in the Euclidean space. In par-
ticular, when n = 2; the induced quadratic di¤erential QN := (N �g)2;0

is holomorphic on CMC surfaces of G=K.
In this paper, we take G=K = S2 � R and compare QN with the

Abresch-Rosenberg di¤erential Q, also holomorphic for CMC surfaces.
It is proved that Q = QN ; after showing that N is the twisted normal
given by (1.5) herein. Then we de�ne the twisted normal for surfaces in
H2 � R and prove that Q = QN as well. Within the uni�ed model for
the two product spaces, we compute the tension �eld of N and extend
to surfaces in H2 � R the equivalence between the CMC property and
the harmonicity of N :

Dedicated to Keti Tenenblat on her 65th birthday

1. Introduction

For an oriented immersed surface � in the Euclidean space E3 with Gauss
map N : � ! (S2; g); it is well known that the following alternatives are
equivalent:

a) � has constant mean curvature (CMC)

b) The Hopf�s quadratic di¤erential is holomorphic

c) N is harmonic.

The equivalence between a) and b) was obtained by H. Hopf [H] who used
it to prove his celebrated theorem asserting that a topological CMC sphere
in the Euclidean space is a round sphere. The equivalence between a) and
c) holds for submanifolds of arbitrary codimension in En and was proved by
Ruh-Vilms (see [RV]). The equivalence between b) and c) follows logically.
If the surface � is immersed in an arbitrary 3-dimensional Riemannian

manifoldM3; the Hopf (quadratic) di¤erential A is de�ned likewise, in terms

2000 Mathematics Subject Classi�cation. Primary 53A35, 30C99, 30F45.
Key words and phrases. holomorphic di¤erential, twisted normal map, harmonic map.

1



2 MARIA LUIZA LEITE AND JAIME RIPOLL

of the second fundamental form. However, A fails to be holomorphic for
CMC surfaces in general spaces.
In [AR], U. Abresch and H. Rosenberg de�ned a quadratic di¤erential

form Q of a surface � immersed in S2 � R; respectively in H2 � R; and ex-
tended Hopf�s theorem for CMC spheres in these ambient spaces. Precisely,

Q = 2HA� T ; resp. Q = 2HA+ T ; (1:1)

where H is the mean curvature of the surface, A is the Hopf di¤erential and
T = (dh
 dh)2;0; with h standing for the height function (see [AR]). They
prove that Q is holomorphic when the surface is CMC. In particular, Q � 0
holds if � is a CMC topological sphere; from this fact, they obtain that a
CMC sphere is rotationally symmetric.
In [BR], J. Ripoll and F. Bittencourt considered a hypersurface Mn ori-

ented by a unit normal N in a homogeneous space G=K and de�ned the
Gauss map N by taking the horizontal lifting eN of N followed by the right
translation of eN to the group identity,

N ([g]) = (drg�1)g eN(g) 2 TeG; [g] = gK 2Mn: (1:2)

This map N takes values on the unit sphere of the Lie algebra G and coin-
cides with the usual Gauss map N of a hypersurface in the Euclidean space
considered as an abelian Lie group (K = f~0g in this case). It follows from
Corollary 4.4 of [BR]:

Theorem 1.1. Let G endowed with a bi-invariant metric and K be a com-
pact Lie subgroup. Given an immersed orientable hypersurface in the homo-
geneous space G=K; its Gauss map

N :Mn ! (Sn+k; g) � G; k = dim K;

is harmonic if and only if Mn has constant mean curvature.

This theorem applies to the homogeneous space S2 � R = G=K; with
G = SO(3)�R and K = SO(2)�f0g: Thus, any CMC surface �# S2�R
is in correspondence with the harmonic Gauss map from [BR],

N : �! (S3; g) � so(3)� R: (1:3)

We recall that any harmonic map on a surface induces a holomorphic qua-
dratic di¤erential (see 10.5 of [EL]). In particular, if � is a CMC surface in
S2 � R; then N induces the holomorphic quadratic di¤erential

QN := (N �g)2;0 = 2g(Nz;Nz)dz2: (1:4)

As we know, the Abresch-Rosenberg di¤erential Q is also holomorphic on a
CMC surface. How are QN and Q related?
In Proposition 3.1 of this paper we prove that QN = Q holds for any

surface in S2 �R: For that, we �rst show in Proposition 2.3 that if the unit
normal is decomposed as N = (V; �); then the Gauss map de�ned by (1.2)
in [BR] satis�es

N = (JV; �); (1:5)
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where J is the operator acting on tangent planes of S2 as the clockwise
�=2-rotation. For that reason, we pass to call N the twisted normal map.
The computations to prove Proposition 3.1 clearly suggests that a similar

result should work for a surface in H2 � R; once we consider H2 � L3 and
adopt (1.5) as de�nition of N : Precisely, we decompose the unit normal of
�# H2 � R as N = (V; �) and de�ne the twisted normal of the surface by

N = (JV; �) : �! (dS3; g) � L3 � R; (1:6)

now taking values in the 3-dimensional de-Sitter space dS3:
In the spirit of [RV], we compute the tension �eld of N for surfaces in

both spaces H2 � R and S2 � R (Theorem 3.4 herein) and then prove that
the surface has CMC if and only if N is harmonic, all done in an uni�ed
model for product spaces.

Summarizing the above facts, in the new diagram

a0) � is a CMC surface in S2 � R or in H2 � R

b0) The Abresch-Rosenberg di¤erential is holomorphic

c0) N is harmonic,

the alternatives a0) and c0) are equivalent, and imply b0).

It is worth to mention that the assertion b0) may not imply a0). In [FM]
Fernandéz and Mira proved that if the normalized Abresch-Rosenberg dif-
ferential, given by Q=H; H 6= 0; is holomorphic on a surface in H2�R; then
it has constant mean curvature, except for a certain family of rotational
surfaces not CMC. The question about a surface in S2�R with holomorphic
Q=H being CMC remained open in [FM].
Very recently, Araújo and Leite [AL] determined all surfaces in both prod-

uct spaces with Q holomorphic. For the sake of curiosity, a surface in S2�R
satisfying b�) but not a�) is congruent to a unique rotational surface; when
the ambient space is H2 �R; the surface is congruent to a piece of a unique
surface foliated either by horizontal equidistant curves or by horizontal con-
centric circles. The rotational surfaces in both spaces have singularities,
while those foliated by equidistant curves are complete graphs over H2:

2. Preliminaries

Let F : �# (M3; h ; i) denote the immersion of an oriented surface into
a 3-dimensional manifold endowed with a Riemannian metric h ; i. It is
standard to consider the conformal structure on � induced by the metric
of the immersion. If z = x + iy is a complex coordinate of � and usual
derivatives are indicated by a lower index, then

hFx; Fxi = hFy; Fyi = E > 0; hFx; Fyi = 0;

hFz; Fzi = hFz; Fzi = 0; hFz; Fzi = E=2; 2Fz = Fx � iFy: (2:1)
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Let us denote by N the unit normal vector �eld orienting � and by r the
Levi-Civitta connection in M3: One has that

rFzF�z = (EH=2) N: (2:2)

�rFzN = HFz + (�=E)F�z (2:3)

rFzFz = (Ez=E)Fz + (�=2)N: (2:4)

If `dx2 + 2mdxdy + ndy2 is the local expression of the second fundamental
form of the immersion, then H = (` + n)=2E is the mean curvature of the
surface and the coe¢ cient � of the Hopf di¤erential satis�es

� = (`� n� i2m)=2; A = � dz 
 dz; (2:5)

We note that A is a (well-de�ned) quadratic di¤erential on �:
We now consider the Riemannian products

S2 � R � E3 � R; H2 � R � L3 � R; (2:6)

where L3 is the Minkowski space consisting of R3 with the non-degenerate
scalar product ~x:~x = x21 + x

2
2 � x23 and H2 = f~x : ~x:~x = �1; x3 � 1g: We use

the dot ���notation for the metrics on �; S2; S2 � R and E3; in all cases
restrictions of the Euclidean metric in E3�R: Likewise, for the Riemannian
metrics on H2 and H2 � R; restrictions of the Lorentzian metric in L3 � R:
Let M2(c) stand for the base manifold S2 or H2; according to c = 1 or

c = �1; respectively. We decompose the immersion F = (f; h) and the
normal N = (V; �); so that

f(z) 2M2(c); h(z) 2 R; V (z) 2 Tf(z)M2(c); �(z) 2 R: (2:7)

If r denotes the connection in M2(c); then the Riemannian connection
r in M2(c) � R is the product of r by the usual derivative on R: By its
turn, r is given by the tangential component of the usual derivative on E3
or L3; according to c = 1; or c = �1; respectively.
The Codazzi equations are resumed to

��z = E(Hz + c�hz): (2:8)

When H is constant, it follows from (2.8) and (2.2) that Q is holomorphic,
with T given by

T = 2(hz)2dz2: (2:9)

We next recall the de�nition of the Gauss map given in [BR].

De�nition 2.1. Let G=K be a homogeneous manifold of left residual classes
in K; where G is a Lie group endowed with a bi-invariant metric and K is
a compact Lie subgroup of G: Given an orientable hypersurface in G=K
oriented by the unit normal �eld N; the Gauss map N of this hypersurface
is the right translation to the Lie algebra G of the horizontal lifting eN of N:
Notice that it su¢ ces to take G with a right-invariant metric to have

N well-de�ned by (1.2), since r(gk)�1 � rk = rg�1 ; right-translations are

isometries in G and the horizontal lifting eN satis�es eN(gk) = (drk)g( eN(g)):
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Let us consider the identi�cation

S2 � R � G=K; G = SO(3)� R; K = SO(2)� f0g;
given by the map below, where Aj denotes the jth column of A 2 SO(3) :

(A; t)K 2 G=K 7! (A1; t) 2 S2 � R: (2:10)

Lemma 2.2. Let �# S2 � R, A 2 SO(3) and t 2 R be given: Then:
(i) the horizontal lifting of N = (V; �) satis�es eN = (eV ; �); witheV (A; t) = A� Z; for some Z ? so(2) in the Lie algebra so(3):
(ii) Assume that Z has the form

Z =

24 0 �a �b
a 0 0
b 0 0

35 2 so(2)? � so(3):
Under the identi�cation (2.10), one obtains eV (A1; t) = aA2 + bA3 2 TA1S2:
Proof. The �rst assertion follows from the linearity of multiplication by a
�xed matrix.
To prove (ii), observe that the identi�cation ASO(2) � A1 yields that

so(2)? corresponds to TA1S2; spanned by the orthonormal basis fA2; A3g:
Multiplication of matrices gives

A� Z = [aA2 + bA3 � aA1 � bA1]:

The expression of eV (A1; t) follows from (i). �

In the next result we prove that in S2 � R the Gauss map N de�ned in
[BR] is a twist of the standard normal of the surface.

Proposition 2.3. Let �# S2�R be oriented by the unit normal N = (V; �):
The map N : �! S3 � so(3)� R satis�es N = (JV; �):

Proof. It follows from de�nition and Lemma 2.2 that the so(3)-component
of N is eV (A; t)�A�1 = A� Z �A�1:
We obtain from multiplication of matrices that

A� Z �A�1 =

24 0 �a�33 + b�32 a�23 � b�22
a�33 � b�32 0 �a�13 + b�12
�a�23 + b�22 a�13 � b�12 0

35 ;
where �ij denotes the minor determinant of the entry Aij :
Using that A�1 = At , �ij = Aij under the convention that24 0 �t s

t 0 �r
�s r 0

35 2 so(3)$ (r; s; t) 2 R3;

we have that the E3 component of N is �bA2+ aA3; thus N = (JV; �): �
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3. Properties of the twisted normal map

In view of Theorem 1.1 and Proposition 2.3, we have that the twisted
normal N = (JV; �) : �! (S3; g) of a CMC surface in S2 � R is harmonic,
where N = (V; �) is the unit normal orienting �:
A well-known property of harmonic maps imply that QN ; de�ned in (1.3),

is holomorphic. A surprising property is

Theorem 3.1. QN � Q holds for any oriented surface in S2 � R:

Proof. It follows from Fz = (fz; hz) that 0 = N:Fz = V:fz + �hz: Moreover,

Nz = dN (fz; hz) = ((JV )z; �z) ; (JV )z = rfz(JV ) + [(JV )z:f ]f: (3:1)

We point out that rX(JY ) = J(rXY ) holds for arbitrary vector �elds, for
J commutes with r (to see that, take an orthonormal pair of parallel vector
�elds along the integral curve of X); in other words, every Riemann surface
is Kähler. Also, JV:f = V:f = 0 implies that (JV )z:f = �JV:fz:
Now we replace the last equality in (3.1), using that J preserves the metric

and also f:f = 1; to obtain that

Nz:Nz = rfz(V ):rfz(V ) + [JV:fz]2 + �2z : (3:2)

Adding the �rst and third summands in (3.2):

rfz(V ):rfz(V ) + �2z = r(fz ;hz)(V; �):r(fz ;hz)(V; �) =

rFz(N):rFz(N) = 2H(�=E)Fz:F�z = H�; (3:3)

note that we have used (2.4) and then (2.1) in the second line of (3.3).
As for the second summand in (3.2), we claim that

[JV:fz]
2 = �[hz]2: (3:4)

Indeed,
[JV:fz]

2 + [V:fz]
2 = jjV jj2[fz:fz] (3:5)

follows from the computations

[JV:fx]
2 � [JV:fy]2 � 2i[JV:fx][JV:fy] + [V:fx]2 � [V:fy]2 � 2i[V:fx][V:fy] =

jjV jj2jjfxjj2 � jjV jj2jjfyjj2 � 2ijjV jj2[fx:fy]:
Also, [V:fz]2 = [��hz]2 and jjV jj2[fz:fz] = (1� �2)(�[hz]2); so (3.4) holds.
Putting together (3.2), (3.3) and (3.4), we �nally arrive at

2Nz:Nz = 2H�� 2[hz]2: (3:6)

Recalling (1.1) and (2.9), we conclude that QN � Q: �
Similar computations work for surfaces in H2�R: Keeping the notations

F = (f; h) for the immersion and N = (V; �) for the unit normal, one has
that f:f = �1 and N(p) lies on

dS3 = f(x1; x2; x3; x4) 2 R4 : x21 + x22 � x23 + x24 = 1g � L3 � R;
known as the de-Sitter space. Inspired by Proposition 2.3, we set
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De�nition 3.2. Given �# H2�R oriented by the unit normal N = (V; �);
the twisted normal map of the surface is N = (JV; �) : � ! dS3; where J
is the complex structure on H2:

Theorem 3.3. QN � Q holds for any oriented surface in H2 � R:

Proof. The same of Theorem 3.1, except for a few signals. Due to f:f = �1;
the second equality in (3.1) becomes (JV )z = rfz(JV ) � [(JV )z:f ]f and
the second summand of Nz:Nz in (3.2) has a minus signal. Thus, equation
(3.6) changes into 2Nz:Nz = 2H�+ 2[hz]2 and QN � Q holds. �
Remark. If G=K = E3; then QN = 2HA; with N = N:

Theorem 3.4. For any immersion F : �!M2(c)�R; the tension �eld of
the twisted normal map N is given byb�N = �2 ~J � dF (grad H) = (�2=E) ~J(HxFx +HyFy);

where ~J(W;�) = (JW; �) and br stands for the connection in S3 or dS3;
depending on c = 1 or c = �1; respectively.

Proof. Let us list some facts to be used in this proof:
(i) The tension �eld of N is de�ned by b�N = tr(brdN ) (see [EL]). Its

local expression is (4=E)brN�zNz:
(ii) brN�zNz = Nz�z � [Nz�z:N ] N ; for N :N = 1:
(iii) Let (W;�) be a tangent vector �eld along a curve C = (f; h) in

M2(c)� R and _C = ( _f; _h) be the curve velocity in R4: Then

( _W; _�) = r _C(W;�)� c[W: _f ](f; 0): (3:7)

(iv) We have that (JV )z = rfz(JV ) + c [(JV )z:f ]f; as in the proofs of
Theorems 3.1 and 3.3. Also, (3.3) and (3.4) do not change. In particular,
(3.4) implies that

JV:fz = �ihz; JV:f�z = �ih�z: (3:8)

(v) (�=E)�z+(�=E2)E�z = (��z=E) = Hz+c�hz; by Codazzi equation (2.8).
(vi) r commutes with ~J on M2(c)� R:
We now compute Nz�z; from which b�N will be derived. It follows from

N = ~JN; (vi) and (3.7) that

�Nz = ~J
�
�rFzN

�
+ c[JV:fz](f; 0):

Using that ~J
�
rFzN

�
= (J(rfzV ); �z); plus (vi) and (3.7), one has that

�Nz�z = rF�z ~J
�
�rFzN

�
+ c[J(rfzV ):f�z](f; 0) + c f[JV:fz](f; 0)g�z : (3:9)

It follows from (2.3) and (v) that the �rst summand satis�es

rF�z ~J
�
�rFzN

�
= ~J rF�z(HFz + (�=E)F�z) =

H�z
~JFz + (Hz + c�hz) ~JF�z + � N ; � = (EH2=2) + (j�j2=2E): (3:10)

As for the second summand of (3.9), the following holds:

J(rfzV ):f�z = (rfzJV ):f�z = [JV:f�z]z � JV:rfzf�z = [JV:f�z]z; (3:11)
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since (2.2) implies that rfzf�z is parallel to V:
In view of (3.10) and (3.11), one obtains that

�Nz�z = H�z
~JFz + (Hz + c�hz) ~JF�z + � N +0(f; 0) + c[JV:fz](f�z; 0); (3:12)

the coe¢ cient of (f; 0); given by [JV:f�z]z + [JV:fz]�z; vanishes due to (3.8).
We prove in the Appendix that the component of [JV:fz](f�z; 0) orthogonal

to N (either in E4 or L4) is precisely ��hz ~JF�z: Therefore, using (ii), we
obtain that the tangential component of �Nz�z is just H�z

~JFz + Hz ~JF�z:
Since ~J is linear and 2(H�zFz + HzF�z) = HxFx + HyFy = E[dF (grad H)];
the theorem gets proved. �

Corollary 3.5. � is a CMC surface in H2 � R if and only if the twisted
normal map N : �! (dS3; g) � L3 � R is harmonic.

Proof. It is immediate from Theorem 3.4 that N is harmonic if and only if
H is constant. �

Remark 3.6. As in Corollary 3.5, we have an independent proof of Theorem
1.1 when G=K = S2 � R:

4. Appendix

Let X denote the component of (f�z; 0) orthogonal to N = (JV; �): Since
(f�z; 0):N = f�z:JV = �ih�z; we have that

X = (f�z; 0)� ih�z(JV; �) = (f�z � ih�zJV;�ih�z�): (4:1)

Let us observe that f�z never vanishes, since fx = fy = 0 at some point
would imply that E = h2x = h

2
y > 0 and hxhy = 0; a contradiction.

We claim that h�zJV = �if�z+� Jf�z holds everywhere. Indeed, �x a point
and write

h�zJV = af�z + b Jf�z;

with a; b 2 C: The claim gets proved from

h�zJV:f�z = a[f�z:f�z] =) h�z(�i)h�z = �a(h�z)2 ) a = �i;

h�zJV:Jf�z = b[f�z:f�z] =) ��(h�z)2 = �b(h�z)2 ) b = �:

Therefore,

f�z � ih�zJV = f�z � i(�if�z + � Jf�z) = � i� Jf�z =) X = � i�(Jf�z; h�z):

Finally, the component of [JV:fz](f�z; 0) orthogonal to N :

� ihzX = �hz�(Jf�z; h�z) = �� hz ~JF�z:
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