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The following exercises are taken from [1] and [2].
(1) Let A be a differential graded algebra and B,C be differential graded A-modules. The

cobar resolution BA(B,C) is given by

Hom(B,C)→ Hom(A⊗B,C)→ Hom(A⊗ A⊗B,C)→ · · ·
where the map d is given by

df(a1 ⊗ · · · ⊗ ak ⊗ b) = a1f(a2 ⊗ · · · ⊗ ak ⊗ b)

+
∑

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ak ⊗ b)

+ (−1)kf(a1 ⊗ · · · ⊗ ak−1 ⊗ akb).
Please verify that d is a differential.

Proof. For the sake of clarity we will momentarily restrict our attention to the simpler
case of k = 3, and from there extract the structure of the general argument (which
ultimately amounts to an increase in the complexity of the notation involved). For the
resent case, this result follows from a simple calculation:

d2f(a1 ⊗ a2 ⊗ a3 ⊗ b) = a1df(a2 ⊗ a3 ⊗ b)− df(a1a2 ⊗ a3 ⊗ b) + df(a1 ⊗ a2a3 ⊗ b)− df(a1 ⊗ a2 ⊗ a3b)
= a1(a2f(a3 ⊗ b)− f(a2a3 ⊗ b) + f(a2 ⊗ a3b))
− (a1a2f(a3 ⊗ b)− f(a1a2a3 ⊗ b) + f(a1a2 ⊗ a3b))
+ (a1f(a2a3 ⊗ b)− f(a1a2a3 ⊗ b) + f(a1 ⊗ a2a3b))
− (a1f(a2 ⊗ a3b)− f(a1a2 ⊗ a3b) + f(a1 ⊗ a2a3b))

= (a1a2f(a3 ⊗ b)− a1a2f(a3 ⊗ b)) + (−a1f(a2a3 ⊗ b) + a1f(a2a3 ⊗ b))
+ (a1f(a2 ⊗ a3b)− a1f(a2 ⊗ a3b)) + (−f(a1a2a3 ⊗ b) + f(a1a2a3 ⊗ b))
+ (−f(a1a2 ⊗ a3b) + f(a1a2 ⊗ a3b)) + (f(a1 ⊗ a2a3b)− f(a1 ⊗ a2a3b))

= 0,

as desired. The reader is encouraged to make sure that all of the terms are properly
accounted for. From this, we can see that the terms cancel in pairs, and so in order
to capture this feature for the general argument we will introduce some notation, and
(hopefully) uncover the structural connection between these pairs.

The first application of d yields k + 1 terms, which I will denote by n1, · · · , nk+1.
Applying d once again yields k terms for each of these k + 1 terms, which I will denote
by nij, for 1 ≤ i ≤ k+ 1, 1 ≤ j ≤ k (e.g. n24 = (dn2)4 is the 4th term appearing in dn2).
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Then a brief glance at the above pairs reveals that the cancellation can be codified by
following relation:

nij + nj+1,i = 0 for i = 1, · · · , k; j = i, · · · , k. (∗)
Notice that summing over all such terms yields

k∑
i=0

k∑
j=i

(nij +nj+1,i) =
∑
j≥i

nij +
k∑

i=0

K∑
j=i

nj+1,i =
∑
j≥i

nij +
∑
j<i

nij =
∑
ij

nij = d2f(a1⊗· · ·⊗ak⊗b),

where the second equality comes from re-indexing the second summation (j+1 is replaced
by i and i replaced by j); thus the validity of (∗) would establish the result.

In order to verify (∗), we will first introduce one more piece of notation to simplify the
exposition. As it stands, the definition of d involves 3 seemingly distinct terms, which will
make the pairing of terms cumbersome and difficult to parse. As such, we will strip away
all the unnecessary components of the notation, and focus on the underlying pattern,
which will allow for us to write d as a sum of terms of a single type; thereby making the
pairing considerably easier to see. We let

(c, a1, · · · , ak, b) := cf(a1 ⊗ · · · ⊗ ak ⊗ b).
Moreover, for simplicity, we will let a0 = 1 and ak+1 = b. Then the definition of d
becomes

d(a0, · · · , ak+1) =
k∑

i=0

(−1)i(a0, · · · , aiai+1, · · · , ak+1).

From here we can immediately right down: ni = (−1)i(a0, · · · , aiai+1, · · · , ak+1) and
nj+1 = (−1)j+1(a0, · · · , aj+1aj+2, · · · , ak+1); hence

dni = (−1)i
[∑

j<i

(−1)j(a0, · · · , ajaj+1, · · · , aiai+1, · · · , ak+1)

+
∑
j≥i

(−1)j(a0, · · · , aiai+1, · · · , aj+1aj+2, · · · , ak+1)

]
(∗′)

and

dnj+1 = (−1)j+1

[ ∑
i<j+1

(−1)i(a0, · · · , aiai+1, · · · , aj+1aj+2, · · · , ak+1)

+
∑
i≥j+1

(−1)i(a0, · · · , aj+1aj+2, · · · , aiai+1, · · · , ak+1)

]
(∗′′)

(where we split the sum into two pieces in order to account for the shift in the index
when j is larger than i – since ai and ai+1 now occupy the same position, the (i+ 1)-th
spot is filled by ai+2, and so on, so that the j-th spot is now occupied by aj+1). Note
that we are using the following convention

(a0, · · · , aj−1aj, ajaj+1, · · · , ak+1) = (a0, · · · , aj−1ajaj+1, · · · , ak+1)

in order to keep the notation simplified enough to allow for just two terms in both (∗′)
and (∗′′).

Putting this all together, we can now say that given j ≥ i we have that (dni)j will
come from the second sum in (∗′), leaving us with

nij = (dni)j = (−1)i+j(a0, · · · , aiai+1, · · · , aj+1aj+2, · · · , ak+1).

Similarly, we see that (dnj+1)i will come from the first sum in (∗′′), yielding
nj+1,i = (dnj+1)i = (−1)j+1+i(a0, · · · , aiai+1, · · · , aj+1aj+2, · · · , ak+1).

These only differ by a power of -1, so we do indeed have that nij + nj+1,i = 0. �
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(2) We mentioned some axioms for G-equivariant open and closed TFTs: the G-twisted cen-

trality condition, the G-twisted adjoint condition, and the G-twisted Cardy condition.
Please draw the pictorial representations for these conditions. You can assume that there
is only one label in the category of boundary conditions.

Solution.

Figure 1: G-Twisted Centrality Condition

Figure 2: G-Twisted Adjoint Condition
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Figure 3: G-Twisted Cardy Condition

(3) (a) Write down an example of a special Lagrangian submanifold in T 6 and verify that
it is indeed such a submanifold.

(b) Please explain why the topologically nontrivial (respectively, trivial) cycle in [1],
Fig. 7 (page 196), has trivial (nontrivial) Maslov index.

Solution.

(a) As a subspace of R6, which is a 3-complex-dimensional manifold, T 6 inherits an
anti-holomorphic involution as a subspace. Denote this involution by ι and define a
submanifold M as the fixed locus of T 6, i.e.

M := {x ∈ T 6 | ι(x) = x}.
(Equivalently, one can say that this is the set of real points in T 6.) Then we claim
that M ⊂ T 6 is a special Lagrangian submanifold. This follows from the following
result:

Theorem. Let X be a Calabi-Yau manifold equipped with an anti-holomorphic in-
volution ι : X → X. Then the fixed locus of ι is always a special Lagrangian
submanifold.

Proof. Let ω denote the Kähler form on X, and note that, in light of X being a
Calabi-Yau manifold, we have a unique holomorphic n-form Ω. Since ω is a (1,1)-
form, so too is ι∗ω; however, this implies that ι∗ω is negative, or equivalently, that
−ι∗ω is positive. In particular, this implies that −ι∗ω is Ricci-flat, and so the
uniqueness of Ricci-flat metrics on Calabi-Yau manifolds thus implies that

−ι∗ω = ω.

Therefore, if we restrict ω to the fixed locus M of ι, we have that it vanishes.
Furthermore, this yields

ω|M ≡ 0 ⇒ Re Ω|M = 0 or Im Ω|M = 0.
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In either case, M is special Lagrangian, so we are done. �

Since T 6 has trivial first Chern class, it is a Calabi-Yau manifold, and so the an
application of the above theorem establishes our claim.

(b) First, let us recall Figure 7 from [1]:

OK

BAD

Figure 7: Loops which do and do not have trivial Maslov class

The Maslov class is a topological invariant which measures how much a Lagrangian
submanifold’s tangent space "turns" with respect to a given Lagrangian distribution
on the ambient space (note that it does not depend on our choice of distribution,
as it is a topological invariant). As such, one way of seeing this is to consider the
Lagrangian distribution given by the the longitudinal curves on the torus. Clearly,
as the curve labeled "good" (the nontrivial cycle) is one of the fibers in the folia-
tion generating this distribution, it’s tangent space does not "turn" with respect to
the distribution, and so it’s Maslov class is trivial, i.e. it constitutes a (potential)
Lagrangian A-brane on the torus. As for the "bad" curve, it’s tangent space is
definitely turned with respect to this distribution, and so it will have a nontrivial
Maslov class, i.e. it can be ruled out as a Lagrangian A-brane.
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