CALCULATION POLICY - Chad Varah Primary

These are the methods that we teach at school. Different year groups teach different methods and the policy shows how the methods change as the children move through the school.
(In all years concrete resources are used alongside 'paper methods' to ensure a thorough understanding of abstract concepts.)

Addition

CALCULATION POLICY - Chad Varah Primary

Stage 6 Partitioned numbers are then written under one another:	$\begin{array}{r} 47=40+7 \\ +\underline{76} \quad \frac{70+6}{110+13}=123 \end{array}$
Stage 7 Write the numbers in columns. Add the tens first:	$\begin{array}{r} 47 \\ +\quad 76 \\ \hline 110 \\ \hline 123 \end{array}$
Adding the units first:	$\begin{array}{r} 47 \\ +\quad 76 \\ \hline 13 \\ \hline 110 \\ \hline 123 \end{array}$
Stage 8 This then becomes the shorter method where numbers get carried into the next column.	$\begin{array}{r} 47 \\ +\quad 76 \\ \hline 123 \\ \hline 11 \end{array}$
Stage 9 Later, move to adding three two-digit numbers, two three-digit numbers and numbers with different numbers of digits.	$\begin{array}{r} 258 \\ +\quad 87 \\ \hline \frac{345}{11} \end{array}$

CALCULATION POLICY - Chad Varah Primary

Subtraction

CALCULATION POLICY - Chad Varah Primary

Stage 5	$74-23=$
Partitioned numbers are then written under one another:	$70+4$
This is how we start introducing the column subtraction method	$\frac{20+3}{50+1}=51$
Stage 6 (Exchange for 2 digit numbers)	$74-27=$
These show the 2 steps which lead to the shortened version of the column subtraction method. We always start with the units number.	$\begin{array}{rr} 70+4 \\ -20+7 & -\frac{70+4}{40+7} \end{array} \quad \square \quad \begin{aligned} & 74 \\ & -\frac{27}{47} \end{aligned}$
Stage 7 (Exchange for 3 digit numbers) The same method but for bigger numbers still starting with the units number.	
Stage 8 (Exchange for 4 digits including 0)	$\left.\begin{array}{lll} 4000900100 \\ 5000+000+00+8 \\ -1000+200+50+7 \\ \hline 3000+700+50+1 \end{array} \quad \square \quad \begin{array}{rrrr} 9 \\ 4 & 10 & 10 \\ 5 & 0 & 0 & 8 \\ 1 & 2 & 5 & 7 \end{array}\right] \begin{array}{llll} 3 & 7 & 5 & 1 \end{array}$

CALCULATION POLICY - Chad Varah Primary

Multiplication

CALCULATION POLICY - Chad Varah Primary

Stage 5		
Partitioning	$\begin{aligned} & 13 \times 5= \\ & 10 \times 5=50 \quad 3 \times 5=15 \\ & 50+15=65 \end{aligned}$	
Stage 6 The grid method It is better to place the number with the most digits in the left-hand column of the grid so that it is easier to add the answers of each part of the multiplication together. $7 \times 38=$	\times	7
	30	210
	8	56
		266

Stage 7: Multiplying two, two digit numbers This follows the same steps as the first grid method but for 2 digit numbers.

\times	20	7	
50	1000	350	1350
6	120	42	162
			1512

CALCULATION POLICY - Chad Varah Primary

Division

Deriving and recalling division facts

Year 2 2 times table 5 times table 10 times table	Year 3	3 times table 4 times table 5 times table 6 times table 8 times table 10 times table	Year 4 Derive and recall division facts for all tables up to 10×12

Stage 1

Children will develop their understanding of division and use jottings to support calculation

Or alternatively arrays can be used.

Sharing equally

6 sweets shared between 2 people, how many do they each get?

Grouping or repeated addition

There are 6 sweets, how many people can have 2 sweets each?
\square

So $10 \div 2=5$

CALCULATION POLICY - Chad Varah Primary

Stage 2 Children should also move onto calculations involving remainders through repeated subtraction.	Repeated subtraction using a number line or bead bar $13 \div 3=4 \mathrm{r} 1$
Stage 3	Children will develop their use of repeated subtraction to be able to subtract multiples of the divisor. Initially, these should be multiples of $10 \mathrm{~s}, 5 \mathrm{~s}, 2 \mathrm{~s}$ and 1 s - numbers with which the children are more familiar. $27 \div 5=5 r 2$
Stage 4 Moving onto:	$27 \div 5=5 \mathrm{r} 2$
	7 7 17 72

CALCULATION POLICY - Chad Varah Primary

CALCULATION POLICY - Chad Varah Primary

Stage 7: Bus Stop Method	How many packs of 24 can we make from 560 biscuits? Start by multiplying 24 by multiples of 10 to get an estimate. As $24 \times 20=480$ and $24 \times 30=720$, we know the answer lies between 20 and 30 packs. 23 r 8 $2 4 \longdiv { 5 6 0 0 }$

Policy Agreed: February 2013
Review: February 2015
Reviewing Committee: Standards and Curriculum

